1
|
Kim J, Lee JS, Noh S, Seo E, Lee J, Kim T, Cho SW, Kim G, Kim SS, Park J. Cellular level cryo-neuromodulation using rapid and localized cooling device combined with microelectrode array. Biosens Bioelectron 2025; 277:117257. [PMID: 39978154 DOI: 10.1016/j.bios.2025.117257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/07/2025] [Accepted: 02/11/2025] [Indexed: 02/22/2025]
Abstract
Cryotherapy, a rapid and effective medical treatment utilizing low temperatures, has not been widely adopted in clinical practice due to a limited understanding of its mechanisms and efficacy. This challenge stems from the absence of methods for fast, precise, and localized spatiotemporal temperature control, as well as the lack of reliable real-time quantitative techniques for measuring and analyzing the effects of cooling. To address these limitations, this study introduces a cryo-neuromodulation platform that integrates a high-speed precision cooling device with a microelectrode array (MEA) system. This platform enables the investigation of cellular-level cryo-modulation of neuronal activity and its effects on surrounding cells, providing a novel framework for advancing research in cryotherapy and neuromodulation. Experiments show that neurons recovered fully within 1 min of cooling with a fast-cooling rate (-20 °C/s at cooling) and that silenced neurons can influence distant cells via a well-organized network. Extended cooling durations (e.g., 10 min) resulted in altered neuronal dynamics, including delayed recovery and reduced burst activity, highlighting the importance of precise control over cooling parameters. This device offers reversible neural control, with potential applications in both research and clinical settings, such as anesthesia, pain management and treatment of neurological disorders like neocortical seizures.
Collapse
Affiliation(s)
- Jaehyun Kim
- Department of Mechanical Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Republic of Korea
| | - Jong Seung Lee
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Soyeon Noh
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan, 44919, Republic of Korea
| | - Eunseok Seo
- Department of Mechanical Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Republic of Korea
| | - Jungchul Lee
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Taesung Kim
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan, 44919, Republic of Korea
| | - Seung-Woo Cho
- Department of Biotechnology, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea; Center for Nanomedicine, Institute for Basic Science (IBS), 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea.
| | - Gunho Kim
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan, 44919, Republic of Korea.
| | - Sung Soo Kim
- Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA, USA.
| | - Jungyul Park
- Department of Mechanical Engineering, Sogang University, 35 Baekbeom-ro, Mapo-gu, Seoul, 04107, Republic of Korea.
| |
Collapse
|
2
|
Pranevičius M, Makackas D, Macas A, Petrikonis K, Šakalytė G, Pranevičius O, Benetis R. The Concept of Venous Steal: The Impact of Vascular Stenosis and Outflow Pressure Gradient on Blood Flow Diversion. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:672. [PMID: 40282963 PMCID: PMC12028601 DOI: 10.3390/medicina61040672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/24/2025] [Accepted: 03/29/2025] [Indexed: 04/29/2025]
Abstract
Vascular steal refers to the diversion of blood flow between collateral vessels that share a common inflow restricted by arterial stenosis. Blood is diverted from the high-pressure to the low-pressure, low-resistance system. Vascular steal is associated with anatomical bypass or vasodilation in the collateral network and is called "the arterial steal". However, we have demonstrated that in the presence of an outflow gradient (e.g., intra-extracranial), blood is shunted to a lower pressure system, a phenomenon we term "venous steal". Using Thevenin's equivalent, we generalized the concept of venous steal to apply it to any region of the vascular system with increased outflow pressure. Both arterial steal, caused by increased collateral network conductivity, and venous steal, resulting from lower collateral outflow pressure, reduce compartment perfusion. This occurs indirectly by increasing flow and the pressure gradient across the arterial stenosis, lowering the segmental compartment perfusion pressure-the difference between post-stenotic (inflow) and compartmental (outflow) pressures. Venous steal diverts blood flow from compartments with elevated pressure, such as intracranial, subendocardial, the ischemic core, and regions of focal edema due to inflammation, trauma, or external compression. In shock and low-flow states, it contributes to regional blood flow maldistribution. Treatment of venous steal addresses inflow stenosis, increased compartmental pressure and systemic loading conditions (arterial and venous pressure) to reverse venous steal malperfusion in the ischemic regions.
Collapse
Affiliation(s)
| | - Dalius Makackas
- Department of Applied Informatics, Faculty of Informatics, Kaunas University of Technology, 50254 Kaunas, Lithuania;
| | - Andrius Macas
- Department of Anesthesiology, Lithuanian University of Health Sciences, 50162 Kaunas, Lithuania;
| | - Kęstutis Petrikonis
- Department of Neurology, Lithuanian University of Health Sciences, 50162 Kaunas, Lithuania;
| | - Gintarė Šakalytė
- Institute of Cardiology, Lithuanian University of Health Sciences, 50162 Kaunas, Lithuania;
| | | | - Rimantas Benetis
- Department of Heart, Lithuanian University of Health Sciences, 50162 Kaunas, Lithuania;
| |
Collapse
|
3
|
Diprose WK, Rao A, Ghate K, Dyer Z, Campbell D, Almekhlafi M, Barber PA. Penumbral cooling in ischemic stroke with intraarterial, intravenous or active conductive head cooling: A thermal modeling study. J Cereb Blood Flow Metab 2024; 44:66-76. [PMID: 37734834 PMCID: PMC10905634 DOI: 10.1177/0271678x231203025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 08/08/2023] [Accepted: 08/12/2023] [Indexed: 09/23/2023]
Abstract
In ischemic stroke, selectively cooling the ischemic penumbra might lead to neuroprotection while avoiding systemic complications. Because penumbral tissue has reduced cerebral blood flow and in vivo brain temperature measurement remains challenging, the effect of different methods of therapeutic hypothermia on penumbral temperature are unknown. We used the COMSOL Multiphysics® software to model a range of cases of therapeutic hypothermia in ischemic stroke. Four ischemic stroke models were developed with ischemic core and/or penumbra volumes between 33-300 mL. Four experiments were performed on each model, including no cooling, and intraarterial, intravenous, and active conductive head cooling. The steady-state temperature of the non-ischemic brain, ischemic penumbra, and ischemic core without cooling was 37.3 °C, 37.5-37.8 °C, and 38.9-39.4 °C respectively. Intraarterial, intravenous and active conductive head cooling reduced non-ischemic brain temperature by 4.3 °C, 2.1 °C, and 0.7-0.8 °C respectively. Intraarterial, intravenous and head cooling reduced the temperature of the ischemic penumbra by 3.9-4.3 °C, 1.9-2.1 °C, and 1.2-3.4 °C respectively. Active conductive head cooling was the only method to selectively reduce penumbral temperature. Clinical studies that measure brain temperature in ischemic stroke patients undergoing therapeutic hypothermia are required to validate these hypothesis-generating findings.
Collapse
Affiliation(s)
- William K Diprose
- Department of Medicine, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- Department of Neurology, Auckland City Hospital, Auckland, New Zealand
| | - Avinash Rao
- Department of Engineering, Victoria University of Wellington, Wellington, New Zealand
| | - Kaustubha Ghate
- Department of Neurology, Auckland City Hospital, Auckland, New Zealand
| | - Zoe Dyer
- Department of Neurology, Auckland City Hospital, Auckland, New Zealand
| | - Doug Campbell
- Department of Anesthesia and Perioperative Medicine, Auckland City Hospital, Auckland, New Zealand
| | | | - P Alan Barber
- Department of Medicine, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
- Department of Neurology, Auckland City Hospital, Auckland, New Zealand
| |
Collapse
|
4
|
Mohsenian S, Kouhnavard B, Nami M, Mehdizadeh A, Seif M, Zamanian Z. Effect of temperature reduction of the prefrontal area on accuracy of visual sustained attention. INTERNATIONAL JOURNAL OF OCCUPATIONAL SAFETY AND ERGONOMICS 2023; 29:1368-1375. [PMID: 36177972 DOI: 10.1080/10803548.2022.2131116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Objectives. Detection of sensitive signs in many work environments with automated systems (aviation industry, flight safety tower, maritime industry, monitoring in the military industry, etc.) is essential and requires constant visual attention. Therefore, the aim of this study was to investigate the effect of forehead cooling on the accuracy of stable visual attention. Methods. This interventional study was performed on 34 male students. The sampling method was a randomized block design. Subjects were assessed by demographic questionnaire, Snellen chart, Spielberger state-trait anxiety inventory (STAI) and physiological and cognitive measurements. Results. Prefrontal cortex (PFC) cooling caused significant changes in sublingual temperature during four measurements in the intervention group. There were no significant changes in heart rate, diastolic blood pressure and saturation of peripheral oxygen (%SpO2) between the two groups. The critical flicker frequency (CFF) as an indicator of cognitive fatigue showed that cognitive improvement after PFC cooling occurred following a reduction in cognitive fatigue. Conclusions. Considering the importance of choosing non-invasive methods to improve the operator's cognitive skills while performing cognitive tasks in the field of neuroergonomics, it can be concluded that PFC cooling is an effective and safe way to improve some cognitive skills such as visual attention.
Collapse
Affiliation(s)
- Sajjad Mohsenian
- Non-Communicable Diseases Research Center, Department of Epidemiology, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mohammad Nami
- Faculty of Neuroscience, Shiraz University of Medical Sciences, Iran
| | | | - Mojgan Seif
- Non-Communicable Diseases Research Center, Department of Epidemiology, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Zamanian
- Non-Communicable Diseases Research Center, Department of Epidemiology, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Walter AE, Bai X, Wilkes J, Neuberger T, Sebastianelli W, Slobounov SM. Selective head cooling in the acute phase of concussive injury: a neuroimaging study. Front Neurol 2023; 14:1272374. [PMID: 37965166 PMCID: PMC10641407 DOI: 10.3389/fneur.2023.1272374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/09/2023] [Indexed: 11/16/2023] Open
Abstract
Introduction Neurovascular decoupling is a common consequence after brain injuries like sports-related concussion. Failure to appropriately match cerebral blood flow (CBF) with increases in metabolic demands of the brain can lead to alterations in neurological function and symptom presentation. Therapeutic hypothermia has been used in medicine for neuroprotection and has been shown to improve outcome. This study aimed to examine the real time effect of selective head cooling on healthy controls and concussed athletes via magnetic resonance spectroscopy (MRS) and arterial spin labeling (ASL) measures. Methods 24 participants (12 controls; 12 concussed) underwent study procedures including the Post-Concussion Symptom Severity (PCSS) Rating Form and an MRI cooling protocol (pre-cooling (T1 MPRAGE, ASL, single volume spectroscopy (SVS)); during cooling (ASL, SVS)). Results Results showed general decreases in brain temperature as a function of time for both groups. Repeated measures ANOVA showed a significant main effect of time (F = 7.94, p < 0.001) and group (F = 22.21, p < 0.001) on temperature, but no significant interaction of group and time (F = 1.36, p = 0.237). CBF assessed via ASL was non-significantly lower in concussed individuals at pre-cooling and generalized linear mixed model analyses demonstrated a significant main effect of time for the occipital left ROI (F = 11.29, p = 0.002) and occipital right ROI (F = 13.39, p = 0.001). There was no relationship between any MRI metric and PCSS symptom burden. Discussion These findings suggest the feasibility of MRS thermometry to monitor alterations of brain temperature in concussed athletes and that metabolic responses in response to cooling after concussion may differ from controls.
Collapse
Affiliation(s)
- Alexa E. Walter
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, United States
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Xiaoxiao Bai
- Social, Life, and Engineering Science Imaging Center, The Pennsylvania State University, University Park, PA, United States
| | - James Wilkes
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, United States
| | - Thomas Neuberger
- Department of Biomedical Engineering, and Social, Life, and Engineering Science Imaging Center, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, United States
| | - Wayne Sebastianelli
- Department of Athletic Medicine, The Pennsylvania State University, University Park, PA, United States
- Department of Orthopaedics, Penn State Health, State College, PA, United States
| | - Semyon M. Slobounov
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
6
|
Sangaletti R, Tamames I, Yahn SL, Choi JS, Lee JK, King C, Rajguru SM. Mild therapeutic hypothermia protects against inflammatory and proapoptotic processes in the rat model of cochlear implant trauma. Hear Res 2023; 428:108680. [PMID: 36586170 PMCID: PMC9840707 DOI: 10.1016/j.heares.2022.108680] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 12/13/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Mild therapeutic hypothermia (MTH) has been demonstrated to prevent residual hearing loss from surgical trauma associated with cochlear implant (CI) insertion. Here, we aimed to characterize the mechanisms of MTH-induced hearing preservation in CI in a well-established preclinical rodent model. APPROACH Rats were divided into four experimental conditions: MTH-treated and implanted cochleae, cochleae implanted under normothermic conditions, MTH only cochleae and un-operated cochleae (controls). Auditory brainstem responses (ABRs) were recorded at different time points (up to 84 days) to confirm long-term protection and safety of MTH locally applied to the cochlea for 20 min before and after implantation. Transcriptome sequencing profiling was performed on cochleae harvested 24 h post CI and MTH treatment to investigate the potential beneficial effects and underlying active gene expression pathways targeted by the temperature management. RESULTS MTH treatment preserved residual hearing up to 3 months following CI when compared to the normothermic CI group. In addition, MTH applied locally to the cochleae using our surgical approach was safe and did not affect hearing in the long-term. Results of RNA sequencing analysis highlight positive modulation of signaling pathways and gene expression associated with an activation of cellular inflammatory and immune responses against the mechanical damage caused by electrode insertion. SIGNIFICANCE These data suggest that multiple and possibly independent molecular pathways play a role in the protection of residual hearing provided by MTH against the trauma of cochlear implantation.
Collapse
Affiliation(s)
- Rachele Sangaletti
- Department of Otolaryngology, University of Miami, Miami, FL, 33136, USA
| | - Ilmar Tamames
- Department of Biomedical Engineering, University of Miami, Miami, FL, 33136, USA
| | - Stephanie Lynn Yahn
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL, 33136, USA
| | - James Seungyeon Choi
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL, 33136, USA
| | - Jae K Lee
- Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami School of Medicine, Miami, FL, 33136, USA
| | | | - Suhrud M Rajguru
- Department of Otolaryngology, University of Miami, Miami, FL, 33136, USA; Department of Biomedical Engineering, University of Miami, Miami, FL, 33136, USA.
| |
Collapse
|
7
|
Marklund N. Response to Nordström CH, "Rapid Selective Brain Cooling with PolarCap ®-A Commercial Delusion?" (doi: 10.1089/neu.2022.0456). J Neurotrauma 2023. [PMID: 36641636 DOI: 10.1089/neu.2023.0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Niklas Marklund
- Department of Clinical Sciences, Lund, Lund University and Skåne University Hospital, Lund, Sweden
| |
Collapse
|
8
|
Chen X, An H, Wu D, Ji X. Research progress of selective brain cooling methods in the prehospital care for stroke patients: A narrative review. Brain Circ 2023; 9:16-20. [PMID: 37151794 PMCID: PMC10158655 DOI: 10.4103/bc.bc_88_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/14/2023] [Accepted: 01/29/2023] [Indexed: 05/09/2023] Open
Abstract
Over the past four decades, therapeutic hypothermia (TH) has long been suggested as a promising neuroprotective treatment of acute ischemic stroke (AIS). Much attention has focus on keeping the hypothermic benefits and removing side effects of systemic hypothermia. In the past few years, the advent of intravenous thrombolysis and endovascular thrombectomy has taken us into a reperfusion era of AIS treatment. With recent research emphasizing ways to plus neuroprotective treatments to reperfusion therapy, the spotlight is now shifting toward the study of how selective brain hypothermia can offset the drawbacks of systemic hypothermia and be applied in prehospital condition. This mini-review summarizes current brain cooling methods that can be used for inducing selective hypothermia in prehospital care. It will guide the future development of selective cooling methods, extend the application of TH in prehospital care, and provide insights into the prospects of selective hypothermia in AIS.
Collapse
Affiliation(s)
- Xi Chen
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Hong An
- Department of Neurology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Di Wu
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Xunming Ji
- Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
- Address for correspondence: Dr. Xunming Ji, Department of Neurology and China-America Institute of Neuroscience, Xuanwu Hospital, Beijing Institute of Brain Disorders, Capital Medical University, Beijing 100053, China. E-mail:
| |
Collapse
|
9
|
Diprose WK, Morgan CA, Wang MT, Diprose JP, Lin JC, Sheriff S, Campbell D, Barber PA. Active conductive head cooling of normal and infarcted brain: A magnetic resonance spectroscopy imaging study. J Cereb Blood Flow Metab 2022; 42:2058-2065. [PMID: 35707879 PMCID: PMC9580175 DOI: 10.1177/0271678x221107988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Active conductive head cooling is a simple and non-invasive intervention that may slow infarct growth in ischemic stroke. We investigated the effect of active conductive head cooling on brain temperature using whole brain echo-planar spectroscopic imaging. A cooling cap (WElkins Temperature Regulation System, 2nd Gen) was used to administer cooling for 80 minutes to healthy volunteers and chronic stroke patients. Whole brain echo-planar spectroscopic imaging scans were obtained before and after cooling. Brain temperature was estimated using the Metabolite Imaging and Data Analysis System software package, which allows voxel-level temperature calculations using the chemical shift difference between metabolite (N-acetylaspartate, creatine, choline) and water resonances. Eleven participants (six healthy volunteers, five post-stroke) underwent 80 ± 5 minutes of cooling. The average temperature of the coolant was 1.3 ± 0.5°C below zero. Significant reductions in brain temperature (ΔT = -0.9 ± 0.7°C, P = 0.002), and to a lesser extent, rectal temperature (ΔT = -0.3 ± 0.1°C, P = 0.03) were observed. Exploratory analysis showed that the occipital lobes had the greatest reduction in temperature (ΔT = -1.5 ± 1.2°C, P = 0.002). Regions of infarction had similar temperature reductions to the contralateral normal brain. Future research could investigate the feasibility of head cooling as a potential neuroprotective strategy in patients being considered for acute stroke therapies.
Collapse
Affiliation(s)
- William K Diprose
- Department of Medicine, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.,Department of Neurology, Auckland City Hospital, Auckland, New Zealand
| | - Catherine A Morgan
- Centre for Advanced MRI, The University of Auckland, Auckland, New Zealand.,School of Psychology and Centre for Brain Research, The University of Auckland, Auckland, New Zealand
| | - Michael Tm Wang
- Department of Medicine, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.,Department of Neurology, Auckland City Hospital, Auckland, New Zealand
| | | | - Joanne C Lin
- School of Pharmacy, Faculty of Medical and Health Sciences, The University of Auckland, New Zealand
| | - Sulaiman Sheriff
- Department of Radiology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Doug Campbell
- Department of Anaesthesia and Perioperative Medicine, Auckland City Hospital, Auckland, New Zealand
| | - P Alan Barber
- Department of Medicine, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.,Department of Neurology, Auckland City Hospital, Auckland, New Zealand
| |
Collapse
|
10
|
Al-Husseini A, Fazel Bakhsheshi M, Gard A, Tegner Y, Marklund N. Shorter recovery time in concussed elite ice hockey players by early head-and-neck cooling - a clinical trial. J Neurotrauma 2022. [PMID: 36222612 DOI: 10.1089/neu.2022.0248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A sports-related concussion (SRC) is most commonly sustained in contact sports, and is defined as a mild traumatic brain injury. An exercise-induced elevation of core body temperature is associated with increased brain temperature that may accelerate secondary injury processes following SRC, and exacerbate the brain injury. In a recent pilot study, acute head-neck cooling of 29 concussed ice hockey players resulted in shorter time to return-to-play. Here, we extended the clinical trial to include players of 19 male elite Swedish ice hockey teams over 5 seasons (2016-2021). In the intervention teams, acute head-neck cooling was implemented using a head cap for ≥45 minutes in addition to the standard SRC management used in controls. The primary endpoint was time from SRC until return-to-play (RTP). Sixty-one SRCs were included in the intervention group and 71 SRCs in the control group. The number of previous SRCs was 2 (median and interquartile range (IQR): 1.0 - 2.0) and 1 (IQR 1.0 - 2.0) in the intervention and control groups, respectively; p= 0.293. Median time to initiate head-neck cooling was 10 min (IQR 7-15; range 5-30 min) and median duration of cooling was 45 min (IQR 45-50; range 45-70 min). The median time to RTP was 9 days in the intervention group (IQR 7-13.5 days) and 13 days in the control group (IQR 9-30; p<0.001). The proportion of players out from play for more than the expected recovery time of 14 days was 24.7% in the intervention group, and 43.7% in controls (p<0.05). Study limitations include that a) allocation to cooling or control management was at the discretion of the medical staff of each teams, decided prior to each season, and not by strict randomization, b) no sham cap was used and evaluations could not be performed by blinded assessors and c) it could not be established with certainty that injury severity was similar between groups. While the results should thus be interpreted with caution, early head-neck cooling, with the aim of attenuating cerebral hyperthermia, may reduce post-SRC symptoms and lead to earlier return-to-play in elite ice hockey players.
Collapse
Affiliation(s)
- Ali Al-Husseini
- Lund University, 5193, Department of Clinical Sciences, Neurosurgery, Lund, Sweden;
| | | | - Anna Gard
- Lund University, 5193, Department of Clinical Sciences Lund, Entregatan 7, Hisshall EA, plan 4, Lund, Lund, Skane, Sweden, 22242;
| | - Yelverton Tegner
- Luleå University of Technology, Division of Medical Sciences, Department of Health Sciences, Department of Health Sciences, Luleå, Sweden, SE 971 87;
| | - Niklas Marklund
- Lund University, 5193, Clinical Sciences, Neurosurgery, Klinikgatan 17B, Lund, Sweden, 221 85.,Skåne University Hospital Lund, 59564, Neurosurgery, Lund, Sweden, 221 85;
| |
Collapse
|
11
|
You JS, Kim JY, Yenari MA. Therapeutic hypothermia for stroke: Unique challenges at the bedside. Front Neurol 2022; 13:951586. [PMID: 36262833 PMCID: PMC9575992 DOI: 10.3389/fneur.2022.951586] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/08/2022] [Indexed: 12/24/2022] Open
Abstract
Therapeutic hypothermia has shown promise as a means to improving neurological outcomes at several neurological conditions. At the clinical level, it has been shown to improve outcomes in comatose survivors of cardiac arrest and in neonatal hypoxic ischemic encephalopathy, but has yet to be convincingly demonstrated in stroke. While numerous preclinical studies have shown benefit in stroke models, translating this to the clinical level has proven challenging. Major obstacles include cooling patients with typical stroke who are awake and breathing spontaneously but often have significant comorbidities. Solutions around these problems include selective brain cooling and cooling to lesser depths or avoiding hyperthermia. This review will cover the mechanisms of protection by therapeutic hypothermia, as well as recent progress made in selective brain cooling and the neuroprotective effects of only slightly lowering brain temperature. Therapeutic hypothermia for stroke has been shown to be feasible, but has yet to be definitively proven effective. There is clearly much work to be undertaken in this area.
Collapse
Affiliation(s)
- Je Sung You
- Department of Emergency Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Jong Youl Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea
| | - Midori A. Yenari
- Department of Neurology, The San Francisco Veterans Affairs Medical Center, University of California, San Francisco, San Francisco, CA, United States
- *Correspondence: Midori A. Yenari
| |
Collapse
|
12
|
Beretta S, Versace A, Fiore G, Piola M, Martini B, Bigiogera V, Coppadoro L, Mariani J, Tinti L, Pirovano S, Monza L, Carone D, Riva M, Padovano G, Galbiati G, Santangelo F, Rasponi M, Padelli F, Giachetti I, Aquino D, Diamanti S, Librizzi L, Bruzzone MG, De Curtis M, Giussani C, Sganzerla EP, Ferrarese C. Selective Cerebrospinal Fluid Hypothermia: Bioengineering Development and In Vivo Study of an Intraventricular Cooling Device (V-COOL). Neurotherapeutics 2022; 19:1942-1950. [PMID: 36129603 PMCID: PMC9723013 DOI: 10.1007/s13311-022-01302-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2022] [Indexed: 12/14/2022] Open
Abstract
Hypothermia is a promising therapeutic strategy for severe vasospasm and other types of non-thrombotic cerebral ischemia, but its clinical application is limited by significant systemic side effects. We aimed to develop an intraventricular device for the controlled cooling of the cerebrospinal fluid, to produce a targeted hypothermia in the affected cerebral hemisphere with a minimal effect on systemic temperature. An intraventricular cooling device (acronym: V-COOL) was developed by in silico modelling, in vitro testing, and in vivo proof-of-concept application in healthy Wistar rats (n = 42). Cerebral cortical temperature, rectal temperature, and intracranial pressure were monitored at increasing flow rate (0.2 to 0.8 mL/min) and duration of application (10 to 60 min). Survival, neurological outcome, and MRI volumetric analysis of the ventricular system were assessed during the first 24 h. The V-COOL prototyping was designed to minimize extra-cranial heat transfer and intra-cranial pressure load. In vivo application of the V-COOL device produced a flow rate-dependent decrease in cerebral cortical temperature, without affecting systemic temperature. The target degree of cerebral cooling (- 3.0 °C) was obtained in 4.48 min at the flow rate of 0.4 mL/min, without significant changes in intracranial pressure. Survival and neurological outcome at 24 h showed no significant difference compared to sham-treated rats. MRI study showed a transient dilation of the ventricular system (+ 38%) in a subset of animals. The V-COOL technology provides an effective, rapid, selective, and safe cerebral cooling to a clinically relevant degree of - 3.0 °C.
Collapse
Affiliation(s)
- Simone Beretta
- Laboratory of Experimental Stroke Research, School of Medicine and Surgery, University of Milano Bicocca, Via Cadore 48, 20900, Monza, Italy.
- Department of Neuroscience, San Gerardo Hospital, ASST Monza, Monza, Italy.
| | - Alessandro Versace
- Laboratory of Experimental Stroke Research, School of Medicine and Surgery, University of Milano Bicocca, Via Cadore 48, 20900, Monza, Italy
| | - Gianfranco Fiore
- Department of Electronic, Information and Bioengineering, Politecnico Di Milano, Milan, Italy
| | - Marco Piola
- Department of Electronic, Information and Bioengineering, Politecnico Di Milano, Milan, Italy
| | - Beatrice Martini
- Laboratory of Experimental Stroke Research, School of Medicine and Surgery, University of Milano Bicocca, Via Cadore 48, 20900, Monza, Italy
| | - Vittorio Bigiogera
- Laboratory of Experimental Stroke Research, School of Medicine and Surgery, University of Milano Bicocca, Via Cadore 48, 20900, Monza, Italy
| | - Lorenzo Coppadoro
- Department of Neuroscience, San Gerardo Hospital, ASST Monza, Monza, Italy
| | - Jacopo Mariani
- Laboratory of Experimental Stroke Research, School of Medicine and Surgery, University of Milano Bicocca, Via Cadore 48, 20900, Monza, Italy
| | - Lorenzo Tinti
- Laboratory of Experimental Stroke Research, School of Medicine and Surgery, University of Milano Bicocca, Via Cadore 48, 20900, Monza, Italy
| | - Silvia Pirovano
- Laboratory of Experimental Stroke Research, School of Medicine and Surgery, University of Milano Bicocca, Via Cadore 48, 20900, Monza, Italy
| | - Laura Monza
- Laboratory of Experimental Stroke Research, School of Medicine and Surgery, University of Milano Bicocca, Via Cadore 48, 20900, Monza, Italy
| | - Davide Carone
- Laboratory of Experimental Stroke Research, School of Medicine and Surgery, University of Milano Bicocca, Via Cadore 48, 20900, Monza, Italy
| | - Matteo Riva
- Laboratory of Experimental Stroke Research, School of Medicine and Surgery, University of Milano Bicocca, Via Cadore 48, 20900, Monza, Italy
| | - Giada Padovano
- Laboratory of Experimental Stroke Research, School of Medicine and Surgery, University of Milano Bicocca, Via Cadore 48, 20900, Monza, Italy
| | - Gilda Galbiati
- Laboratory of Experimental Stroke Research, School of Medicine and Surgery, University of Milano Bicocca, Via Cadore 48, 20900, Monza, Italy
| | - Francesco Santangelo
- Laboratory of Experimental Stroke Research, School of Medicine and Surgery, University of Milano Bicocca, Via Cadore 48, 20900, Monza, Italy
| | - Marco Rasponi
- Department of Electronic, Information and Bioengineering, Politecnico Di Milano, Milan, Italy
| | - Francesco Padelli
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Isabella Giachetti
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Domenico Aquino
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Susanna Diamanti
- Laboratory of Experimental Stroke Research, School of Medicine and Surgery, University of Milano Bicocca, Via Cadore 48, 20900, Monza, Italy
- Department of Neuroscience, San Gerardo Hospital, ASST Monza, Monza, Italy
| | - Laura Librizzi
- Department of Diagnostics and Technology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Maria Grazia Bruzzone
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Marco De Curtis
- Department of Diagnostics and Technology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Carlo Giussani
- Laboratory of Experimental Stroke Research, School of Medicine and Surgery, University of Milano Bicocca, Via Cadore 48, 20900, Monza, Italy
- Department of Neuroscience, San Gerardo Hospital, ASST Monza, Monza, Italy
| | - Erik P Sganzerla
- Laboratory of Experimental Stroke Research, School of Medicine and Surgery, University of Milano Bicocca, Via Cadore 48, 20900, Monza, Italy
- Department of Neuroscience, San Gerardo Hospital, ASST Monza, Monza, Italy
| | - Carlo Ferrarese
- Laboratory of Experimental Stroke Research, School of Medicine and Surgery, University of Milano Bicocca, Via Cadore 48, 20900, Monza, Italy
- Department of Neuroscience, San Gerardo Hospital, ASST Monza, Monza, Italy
| |
Collapse
|
13
|
Dzierzęcki S, Ząbek M, Zapolska G, Tomasiuk R. The S-100B level, intracranial pressure, body temperature, and transcranial blood flow velocities predict the outcome of the treatment of severe brain injury. Medicine (Baltimore) 2022; 101:e30348. [PMID: 36197246 PMCID: PMC9509168 DOI: 10.1097/md.0000000000030348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
This study evaluates the applicability of S100B levels, mean maximum velocity (Vmean) over time, pulsatility index (PI), intracranial pressure (ICP), and body temperature (T) for the prediction of the treatment of patients with traumatic brain injury (TBI). Sixty patients defined by the Glasgow Coma Scale score ≤ 8 were stratified using the Glasgow Coma Scale into 2 groups: favorable (FG: Glasgow Outcome Scale ≥ 4) and unfavorable (UG: Glasgow Outcome Scale < 4). The S100B concentration was at the time of hospital admission. Vmean was measured using transcranial Doppler. PI was derived from a transcranial Doppler examination. T was measured in the temporal artery. The differences in mean between FG and UG were tested using a bootstrap test of 10,000 repetitions with replacement. Changes in S100B, Vmean, PI, ICP, and T levels stratified by the group were calculated using the one-way aligned rank transform for nonparametric factorial analysis of variance. The reference ranges for the levels of S100B, Vmean, and PI were 0.05 to 0.23 µg/L, 30.8 to 73.17 cm/s, and 0.62 to 1.13, respectively. Both groups were defined by an increase in Vmean, a decrease in S100B, PI, and ICP levels; and a virtually constant T. The unfavorable outcome is defined by significantly higher levels of all parameters, except T. A favorable outcome is defined by S100B < 3 mg/L, PI < 2.86, ICP > 25 mm Hg, and Vmean > 40 cm/s. The relationships provided may serve as indicators of the results of the TBI treatment.
Collapse
Affiliation(s)
- Sebastian Dzierzęcki
- Department of Neurosurgery, Postgraduate Medical Centre, Warsaw, Poland
- Gamma Knife Centre, Brodno Masovian Hospital, Warsaw, Poland
- *Correspondence: Sebastian Dzierzecki, Warsaw Gamma Knife Centre, Brodno Masovian Hospital, Kondratowicza 8 Building H, 03-242 Warsaw, Poland (e-mail: )
| | - Mirosław Ząbek
- Department of Neurosurgery, Postgraduate Medical Centre, Warsaw, Poland
- Clinical Department of Neurosurgery, Central Clinical Hospital of the Ministry of the Interior and Administration, Warsaw, Poland
| | | | - Ryszard Tomasiuk
- Kazimierz Pulaski University of Technology and Humanities Radom, Faculty of Medical Sciences and Health Sciences, Radom, Poland
| |
Collapse
|
14
|
Congeni J, Murray T, Kline P, Bouhenni R, Morgan D, Liebig C, Lesak A, McNinch NL. Preliminary Safety and Efficacy of Head and Neck Cooling Therapy After Concussion in Adolescent Athletes: A Randomized Pilot Trial. Clin J Sport Med 2022; 32:341-347. [PMID: 34009790 PMCID: PMC9223510 DOI: 10.1097/jsm.0000000000000916] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/23/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To determine the safety and efficacy of head and neck cooling when applied up to 8 days after concussion among adolescent athletes. DESIGN A randomized nonblinded pilot trial. SETTING Sports Medicine Clinic in a tertiary hospital. PATIENTS Adolescent athletes aged 12 to 17 years diagnosed with a concussion within 1 week of injury. INTERVENTIONS AND MAIN OUTCOME MEASURES The control group (n = 27) received standard treatment (short term brain rest), whereas the treatment group (n = 28) received standard treatment and head and neck cooling. Head and neck cooling treatment was applied to patients at the postinjury assessment visit and at 72 hours post-injury. The SCAT5 (Sport Concussion Assessment Tool) total symptom severity score was collected at postinjury assessment visit, pre- and post-treatment at 72 hours, and at 10 days, and 4 weeks post-treatment. RESULTS Athletes who received head and neck cooling had a faster symptom recovery ( P = 0.003) and experienced significant reduction in symptom severity scores after treatment ( P < 0.001). Sport type and gender did not influence the treatment outcome ( P = 0.447 and 0.940, respectively). CONCLUSIONS This pilot study demonstrates feasibility of head and neck cooling for the management of acute concussion in adolescent athletes.
Collapse
Affiliation(s)
- Joseph Congeni
- Department of Sports Medicine, Akron Children's Hospital, Akron, Ohio; and
| | - Tamara Murray
- Department of Sports Medicine, Akron Children's Hospital, Akron, Ohio; and
| | - Peyton Kline
- Rebecca D. Considine Research Institute, Akron Children's Hospital, Akron, Ohio
| | - Rachida Bouhenni
- Rebecca D. Considine Research Institute, Akron Children's Hospital, Akron, Ohio
| | - Danielle Morgan
- Rebecca D. Considine Research Institute, Akron Children's Hospital, Akron, Ohio
| | - Christopher Liebig
- Department of Sports Medicine, Akron Children's Hospital, Akron, Ohio; and
| | - Alexandria Lesak
- Rebecca D. Considine Research Institute, Akron Children's Hospital, Akron, Ohio
| | - Neil L. McNinch
- Rebecca D. Considine Research Institute, Akron Children's Hospital, Akron, Ohio
| |
Collapse
|
15
|
Hong JM, Choi ES, Park SY. Selective Brain Cooling: A New Horizon of Neuroprotection. Front Neurol 2022; 13:873165. [PMID: 35795804 PMCID: PMC9251464 DOI: 10.3389/fneur.2022.873165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022] Open
Abstract
Therapeutic hypothermia (TH), which prevents irreversible neuronal necrosis and ischemic brain damage, has been proven effective for preventing ischemia-reperfusion injury in post-cardiac arrest syndrome and neonatal encephalopathy in both animal studies and clinical trials. However, lowering the whole-body temperature below 34°C can lead to severe systemic complications such as cardiac, hematologic, immunologic, and metabolic side effects. Although the brain accounts for only 2% of the total body weight, it consumes 20% of the body's total energy at rest and requires a continuous supply of glucose and oxygen to maintain function and structural integrity. As such, theoretically, temperature-controlled selective brain cooling (SBC) may be more beneficial for brain ischemia than systemic pan-ischemia. Various SBC methods have been introduced to selectively cool the brain while minimizing systemic TH-related complications. However, technical setbacks of conventional SBCs, such as insufficient cooling power and relatively expensive coolant and/or irritating effects on skin or mucosal interfaces, limit its application to various clinical settings. This review aimed to integrate current literature on SBC modalities with promising therapeutic potential. Further, future directions were discussed by exploring studies on interesting coping skills in response to environmental or stress-induced hyperthermia among wild animals, including mammals and birds.
Collapse
Affiliation(s)
- Ji Man Hong
- Department of Neurology, Ajou University School of Medicine, Ajou University Medical Center, Suwon, South Korea
- Department of Biomedical Science, Ajou University School of Medicine, Ajou University Medical Center, Suwon, South Korea
- *Correspondence: Ji Man Hong
| | - Eun Sil Choi
- Department of Biomedical Science, Ajou University School of Medicine, Ajou University Medical Center, Suwon, South Korea
| | - So Young Park
- Department of Neurology, Ajou University School of Medicine, Ajou University Medical Center, Suwon, South Korea
| |
Collapse
|
16
|
Ghozy S, Reda A, Varney J, Elhawary AS, Shah J, Murry K, Sobeeh MG, Nayak SS, Azzam AY, Brinjikji W, Kadirvel R, Kallmes DF. Neuroprotection in Acute Ischemic Stroke: A Battle Against the Biology of Nature. Front Neurol 2022; 13:870141. [PMID: 35711268 PMCID: PMC9195142 DOI: 10.3389/fneur.2022.870141] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 04/21/2022] [Indexed: 12/22/2022] Open
Abstract
Stroke is the second most common cause of global death following coronary artery disease. Time is crucial in managing stroke to reduce the rapidly progressing insult of the ischemic penumbra and the serious neurologic deficits that might follow it. Strokes are mainly either hemorrhagic or ischemic, with ischemic being the most common of all types of strokes. Thrombolytic therapy with recombinant tissue plasminogen activator and endovascular thrombectomy are the main types of management of acute ischemic stroke (AIS). In addition, there is a vital need for neuroprotection in the setting of AIS. Neuroprotective agents are important to investigate as they may reduce mortality, lessen disability, and improve quality of life after AIS. In our review, we will discuss the main types of management and the different modalities of neuroprotection, their mechanisms of action, and evidence of their effectiveness after ischemic stroke.
Collapse
Affiliation(s)
- Sherief Ghozy
- Department of Neuroradiology, Mayo Clinic, Rochester, MN, United States.,Nuffield Department of Primary Care Health Sciences and Department for Continuing Education (EBHC Program), Oxford University, Oxford, United Kingdom
| | - Abdullah Reda
- Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Joseph Varney
- School of Medicine, American University of the Caribbean, Philipsburg, Sint Maarten
| | | | - Jaffer Shah
- Medical Research Center, Kateb University, Kabul, Afghanistan
| | | | - Mohamed Gomaa Sobeeh
- Faculty of Physical Therapy, Sinai University, Cairo, Egypt.,Faculty of Physical Therapy, Cairo University, Giza, Egypt
| | - Sandeep S Nayak
- Department of Internal Medicine, NYC Health + Hospitals/Metropolitan, New York, NY, United States
| | - Ahmed Y Azzam
- Faculty of Medicine, October 6 University, Giza, Egypt
| | - Waleed Brinjikji
- Department of Neurosurgery, Mayo Clinic Rochester, Rochester, MN, United States
| | | | - David F Kallmes
- Department of Neuroradiology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
17
|
Hypothermia Therapy for Traumatic Spinal Cord Injury: An Updated Review. J Clin Med 2022; 11:jcm11061585. [PMID: 35329911 PMCID: PMC8949322 DOI: 10.3390/jcm11061585] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/07/2022] [Accepted: 03/10/2022] [Indexed: 11/16/2022] Open
Abstract
Although hypothermia has shown to protect against ischemic and traumatic neuronal death, its potential role in neurologic recovery following traumatic spinal cord injury (TSCI) remains incompletely understood. Herein, we systematically review the safety and efficacy of hypothermia therapy for TSCI. The English medical literature was reviewed using PRISMA guidelines to identify preclinical and clinical studies examining the safety and efficacy of hypothermia following TSCI. Fifty-seven articles met full-text review criteria, of which twenty-eight were included. The main outcomes of interest were neurological recovery and postoperative complications. Among the 24 preclinical studies, both systemic and local hypothermia significantly improved neurologic recovery. In aggregate, the 4 clinical studies enrolled 60 patients for treatment, with 35 receiving systemic hypothermia and 25 local hypothermia. The most frequent complications were respiratory in nature. No patients suffered neurologic deterioration because of hypothermia treatment. Rates of American Spinal Injury Association (AIS) grade conversion after systemic hypothermia (35.5%) were higher when compared to multiple SCI database control studies (26.1%). However, no statistical conclusions could be drawn regarding the efficacy of hypothermia in humans. These limited clinical trials show promise and suggest therapeutic hypothermia to be safe in TSCI patients, though its effect on neurological recovery remains unclear. The preclinical literature supports the efficacy of hypothermia after TSCI. Further clinical trials are warranted to conclusively determine the effects of hypothermia on neurological recovery as well as the ideal means of administration necessary for achieving efficacy in TSCI.
Collapse
|
18
|
Abstract
We search for ischemic stroke treatment knowing we have failed-intensely and often-to translate mechanistic knowledge into treatments that alleviate our patients' functional impairments. Lessons can be derived from our shared failures that may point to new directions and new strategies. First, the principle criticisms of both preclinical and clinical assessments are summarized. Next, previous efforts to develop single-mechanism treatments are reviewed. Finally, new definitions, novel approaches, and different directions are presented. In previous development efforts, the basic science and preclinical assessment of candidate treatments often lacked rigor and sufficiency; the clinical trials may have lacked power, rigor, or rectitude; or most likely both preclinical and clinical investigations were flawed. Single-target agents directed against specific molecular mechanisms proved unsuccessful. The term neuroprotection should be replaced as it has become ambiguous: protection of the entire neurovascular unit may be called cerebral cytoprotection or cerebroprotection. Success in developing cerebroprotection-either as an adjunct to recanalization or as stand-alone treatment-will require new definitions that recognize the importance of differential vulnerability in the neurovascular unit. Recent focus on pleiotropic multi-target agents that act via multiple mechanisms of action to interrupt ischemia at multiple steps may be more fruitful. Examples of pleiotropic treatments include therapeutic hypothermia and 3K3A-APC (activated protein C). Alternatively, the single-target drug NA-1 triggers multiple downstream signaling events. Renewed commitment to scientific rigor is essential, and funding agencies and journals may enforce quality principles of rigor in preclinical science. Appropriate animal models should be selected that are suited to the purpose of the investigation. Before clinical trials, preclinical assessment could include subjects that are aged, of both sexes, and harbor comorbid conditions such as diabetes or hypertension. With these new definitions, novel approaches, and renewed attention to rigor, the prospect for successful cerebroprotective therapy should improve.
Collapse
Affiliation(s)
- Patrick D Lyden
- Department of Physiology and Neuroscience, Department of Neurology, Zilkha Neurogenetic Institute, Keck School of Medicine of USC, Los Angeles, CA
| |
Collapse
|
19
|
Gard A, Tegner Y, Bakhsheshi MF, Marklund N. Selective head-neck cooling after concussion shortens return-to-play in ice hockey players. Concussion 2021; 6:CNC90. [PMID: 34084556 PMCID: PMC8162197 DOI: 10.2217/cnc-2021-0002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We aimed to investigate whether selective head–neck cooling could shorten recovery after sports-related concussions (SRCs). In a nonrandomized study of 15 Swedish professional ice hockey teams, 29 concussed players received immediate head and neck cooling for ≥30 min (initiated at 12.3 ± 9.2 min post-SRC by a portable cooling system), and 52 SRC controls received standard management. Players receiving head–neck cooling had shorter time to return-to-play than controls (7 vs 12.5 days, p < 0.0001), and 7% in the intervention group versus 25% in the control group were out of play for ≥3 weeks (p = 0.07). Immediate selective head–neck cooling is a promising option in the acute management of SRC that should be addressed in larger cohorts.
Collapse
Affiliation(s)
- Anna Gard
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Neurosurgery, Lund, Sweden
| | - Yelverton Tegner
- Department of Health Sciences, Luleå University of Technology, Luleå, Sweden
| | - Mohammad Fazel Bakhsheshi
- Lund University, Family Medicine & Community Medicine, Lund, Sweden.,BrainCool AB, Medicon Village, Lund, Sweden
| | - Niklas Marklund
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Neurosurgery, Lund, Sweden
| |
Collapse
|
20
|
Shi Z, Qin M, Huang L, Xu T, Chen Y, Hu Q, Peng S, Peng Z, Qu LN, Chen SG, Tuo QH, Liao DF, Wang XP, Wu RR, Yuan TF, Li YH, Liu XM. Human torpor: translating insights from nature into manned deep space expedition. Biol Rev Camb Philos Soc 2020; 96:642-672. [PMID: 33314677 DOI: 10.1111/brv.12671] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/09/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022]
Abstract
During a long-duration manned spaceflight mission, such as flying to Mars and beyond, all crew members will spend a long period in an independent spacecraft with closed-loop bioregenerative life-support systems. Saving resources and reducing medical risks, particularly in mental heath, are key technology gaps hampering human expedition into deep space. In the 1960s, several scientists proposed that an induced state of suppressed metabolism in humans, which mimics 'hibernation', could be an ideal solution to cope with many issues during spaceflight. In recent years, with the introduction of specific methods, it is becoming more feasible to induce an artificial hibernation-like state (synthetic torpor) in non-hibernating species. Natural torpor is a fascinating, yet enigmatic, physiological process in which metabolic rate (MR), body core temperature (Tb ) and behavioural activity are reduced to save energy during harsh seasonal conditions. It employs a complex central neural network to orchestrate a homeostatic state of hypometabolism, hypothermia and hypoactivity in response to environmental challenges. The anatomical and functional connections within the central nervous system (CNS) lie at the heart of controlling synthetic torpor. Although progress has been made, the precise mechanisms underlying the active regulation of the torpor-arousal transition, and their profound influence on neural function and behaviour, which are critical concerns for safe and reversible human torpor, remain poorly understood. In this review, we place particular emphasis on elaborating the central nervous mechanism orchestrating the torpor-arousal transition in both non-flying hibernating mammals and non-hibernating species, and aim to provide translational insights into long-duration manned spaceflight. In addition, identifying difficulties and challenges ahead will underscore important concerns in engineering synthetic torpor in humans. We believe that synthetic torpor may not be the only option for manned long-duration spaceflight, but it is the most achievable solution in the foreseeable future. Translating the available knowledge from natural torpor research will not only benefit manned spaceflight, but also many clinical settings attempting to manipulate energy metabolism and neurobehavioural functions.
Collapse
Affiliation(s)
- Zhe Shi
- National Clinical Research Center for Mental Disorders, and Department of Psychaitry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.,Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.,State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200030, China
| | - Meng Qin
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lu Huang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, 510632, China
| | - Tao Xu
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Ying Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qin Hu
- College of Life Sciences and Bio-Engineering, Beijing University of Technology, Beijing, 100024, China
| | - Sha Peng
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Zhuang Peng
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Li-Na Qu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Shan-Guang Chen
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Qin-Hui Tuo
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Duan-Fang Liao
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Xiao-Ping Wang
- National Clinical Research Center for Mental Disorders, and Department of Psychaitry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Ren-Rong Wu
- National Clinical Research Center for Mental Disorders, and Department of Psychaitry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200030, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226000, China
| | - Ying-Hui Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Xin-Min Liu
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.,State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China.,Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| |
Collapse
|
21
|
Kuwabara M, Sakamoto S, Okazaki T, Oshita J, Taguchi A, Kurisu K. Pediatric pial arteriovenous fistula located at the bottom of the callosal sulcus presenting with intraventricular hemorrhage: a case report and literature review. Childs Nerv Syst 2020; 36:3129-3133. [PMID: 32346787 DOI: 10.1007/s00381-020-04635-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 04/17/2020] [Indexed: 11/28/2022]
Abstract
BACKGROUND A pial arteriovenous fistula (pAVF) is a rare condition characterized by a direct connection between a cerebral artery and cerebral vein without an intervening nidus. The prognosis is poor in untreated cases with hemorrhagic manifestations, indicating that surgical treatment is desirable. We describe a successful endovascular treatment for a pediatric case of ruptured pAVF located at the bottom of the sulcus. CLINICAL DESCRIPTION An 11-year-old girl presented with severe headache and mild disturbance of consciousness. Head computed tomography showed hemorrhage in the callosal sulcus and ventricle. Cerebral angiography showed an arteriovenous shunt without a nidus. The branching artery from the pericallosal artery was connected directly to the thalamostriate vein without varix, and the shunt point was located at the bottom of the callosal sulcus. The patient was diagnosed with pAVF involving a single feeder and single drainer. Emergency endovascular transarterial embolization was performed using 20% N-butyl cyanoacrylate, and the shunt disappeared completely without complications. The patient was discharged with no neurological deficits. CONCLUSION Endovascular treatment is feasible, safe, and effective for pediatric cases of deeply located pAVF.
Collapse
Affiliation(s)
- Masashi Kuwabara
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima-shi, Hiroshima, 734-8551, Japan.
| | - Shigeyuki Sakamoto
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima-shi, Hiroshima, 734-8551, Japan
| | - Takahito Okazaki
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima-shi, Hiroshima, 734-8551, Japan
| | - Jumpei Oshita
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima-shi, Hiroshima, 734-8551, Japan
| | - Akira Taguchi
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima-shi, Hiroshima, 734-8551, Japan
| | - Kaoru Kurisu
- Department of Neurosurgery, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima-shi, Hiroshima, 734-8551, Japan
| |
Collapse
|
22
|
Sultan S, Acharya Y, Barrett N, Hynes N. A pilot protocol and review of triple neuroprotection with targeted hypothermia, controlled induced hypertension, and barbiturate infusion during emergency carotid endarterectomy for acute stroke after failed tPA or beyond 24-hour window of opportunity. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1275. [PMID: 33178807 PMCID: PMC7607101 DOI: 10.21037/atm-2020-cass-14] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An alternative to tissue plasminogen activator (tPA) failure has been a daunting challenge in ischemic stroke management. As tPA is time-dependent, delays can occur in definitive treatment while passively waiting to observe a clinical response to intravenous thrombolysis. Until today, uncertainty exists in the management strategy of wake-up stroke patients or those presenting beyond the therapeutic tPA window. Clinical dilemmas in these situations can prolong the transitional period of inertia, resulting in an adverse neurological outcome. We propose and review an innovative approach called triple neuro-protection (TNP), which encompasses three technical domains-targeted hypothermia, systemic induced hypertension, and barbiturates infusion, to protect the brain during carotid endarterectomy after failed tPA and/or beyond the 24-hour therapeutic mechanical thrombectomy window. This proposal assimilates discussion on the clinical evidence of the individual domains of TNP with our own clinical experience with TNP. Our first TNP was successfully employed in a 55-year-old man in 2015 while performing emergency carotid endarterectomy after he was referred to us 72 hours post tPA failure. The patient had a successful clinical outcome despite being in therapeutic inertia with 90–99% ipsilateral carotid stenosis and contralateral occlusion on presentation. In the last five years, we have safely used TNP in 25 selected cases with favourable clinical outcomes.
Collapse
Affiliation(s)
- Sherif Sultan
- Western Vascular Institute, Department of Vascular and Endovascular Surgery, University Hospital Galway, National University of Ireland, Galway, Ireland.,Department of Vascular & Endovascular Surgery, Galway Clinic, Royal College of Surgeons of Ireland/National University of Ireland Affiliated Teaching Hospitals, Doughiska, Galway, Ireland
| | - Yogesh Acharya
- Western Vascular Institute, Department of Vascular and Endovascular Surgery, University Hospital Galway, National University of Ireland, Galway, Ireland
| | - Nora Barrett
- Western Vascular Institute, Department of Vascular and Endovascular Surgery, University Hospital Galway, National University of Ireland, Galway, Ireland
| | - Niamh Hynes
- Department of Vascular & Endovascular Surgery, Galway Clinic, Royal College of Surgeons of Ireland/National University of Ireland Affiliated Teaching Hospitals, Doughiska, Galway, Ireland
| |
Collapse
|
23
|
Recent antiepileptic and neuroprotective applications of brain cooling. Seizure 2020; 82:80-90. [PMID: 33011591 DOI: 10.1016/j.seizure.2020.09.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/15/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022] Open
Abstract
Hypothermia is a widely used clinical practice for neuroprotection and is a well-established method to mitigate the adverse effects of some clinical conditions such as reperfusion injury after cardiac arrest and hypoxic ischemic encephalopathy in newborns. The discovery, that lowering the core temperature has a therapeutic potential dates back to the early 20th century, but the underlying mechanisms are actively researched, even today. Especially, in the area of neural disorders such as epilepsy and traumatic brain injury, cooling has promising prospects. It is well documented in animal models, that the application of focal brain cooling can effectively terminate epileptic discharges. There is, however, limited data regarding human clinical trials. In this review article, we will discuss the main aspects of therapeutic hypothermia focusing on its use in treating epilepsy. The various experimental approaches and device concepts for focal brain cooling are presented and their potential for controlling and suppressing seizure activity are compared.
Collapse
|
24
|
Goyal K, Garg N, Bithal P. Central fever: a challenging clinical entity in neurocritical care. JOURNAL OF NEUROCRITICAL CARE 2020. [DOI: 10.18700/jnc.190090] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
25
|
Diprose WK, Liem B, Wang MT, Sutcliffe JA, Brew S, Caldwell JR, McGuinness B, Campbell D, Barber PA. Impact of Body Temperature Before and After Endovascular Thrombectomy for Large Vessel Occlusion Stroke. Stroke 2020; 51:1218-1225. [DOI: 10.1161/strokeaha.119.028160] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Background and Purpose—
In ischemic stroke, body temperature is associated with functional outcome. However, the relationship between temperature and outcome may differ in the intraischemic and postischemic phases of stroke. We aimed to determine whether body temperature before or after endovascular thrombectomy (EVT) for large vessel occlusion stroke is associated with clinical outcomes.
Methods—
Consecutive EVT patients were identified from a prospective registry. Temperature measurements within 24 hours of admission were stratified into pre-EVT (preprocedural and intraprocedural) and post-EVT measurements, which served as surrogates for the intraischemic and postischemic phases of large vessel occlusion stroke, respectively. The primary outcome was functional independence, defined as a modified Rankin Scale score of 0, 1, or 2 at 3 months. Secondary outcomes included the ordinal shift of modified Rankin Scale scores at 3 months, symptomatic intracerebral hemorrhage, and mortality at 3 months.
Results—
Four hundred thirty-two participants were included (59% men, mean±SD age 65.6±15.7 years). Multivariable logistic regression demonstrated that higher median pre-EVT temperature (per 1°C increase) was an independent predictor of reduced functional independence (odds ratio [OR], 0.66 [95% CI, 0.46–0.94];
P
=0.02), poorer modified Rankin Scale scores (common OR, 1.42 [95% CI, 1.08–1.85];
P
=0.01), and increased mortality (OR, 1.65 [95% CI, 1.02–2.69];
P
=0.04). Peak post-EVT temperature (per 1°C increase) was a significant predictor of elevated modified Rankin Scale scores (common OR, 1.39 [95% CI, 1.03–1.90];
P
=0.03) and higher mortality (OR, 1.66 [95% CI, 1.04–2.67];
P
=0.03).
Conclusions—
In patients with large vessel occlusion stroke treated with EVT, higher body temperatures during both the intraischemic and postischemic phases were associated with poorer clinical outcomes. Future research investigating the maintenance of normothermia or therapeutic hypothermia in patients needing to be transferred from primary to EVT-capable stroke centers could be considered.
Collapse
Affiliation(s)
- William K. Diprose
- From the Department of Medicine, Faculty of Medical and Health Sciences, The University of Auckland, New Zealand (W.K.D., M.T.M.W., P.A.B.)
- Department of Neurology (W.K.D., B.L., P.A.B.), Auckland City Hospital, New Zealand
| | - Bernard Liem
- Department of Neurology (W.K.D., B.L., P.A.B.), Auckland City Hospital, New Zealand
| | - Michael T.M. Wang
- From the Department of Medicine, Faculty of Medical and Health Sciences, The University of Auckland, New Zealand (W.K.D., M.T.M.W., P.A.B.)
| | - James A. Sutcliffe
- Department of Radiology (J.A.S., S.B., J.R.C., B.M.), Auckland City Hospital, New Zealand
| | - Stefan Brew
- Department of Radiology (J.A.S., S.B., J.R.C., B.M.), Auckland City Hospital, New Zealand
| | - James R. Caldwell
- Department of Radiology (J.A.S., S.B., J.R.C., B.M.), Auckland City Hospital, New Zealand
| | - Ben McGuinness
- Department of Radiology (J.A.S., S.B., J.R.C., B.M.), Auckland City Hospital, New Zealand
| | - Doug Campbell
- Department of Anaesthesia and Perioperative Medicine (D.C.), Auckland City Hospital, New Zealand
| | - P. Alan Barber
- From the Department of Medicine, Faculty of Medical and Health Sciences, The University of Auckland, New Zealand (W.K.D., M.T.M.W., P.A.B.)
- Department of Neurology (W.K.D., B.L., P.A.B.), Auckland City Hospital, New Zealand
| |
Collapse
|
26
|
Assis FR, Narasimhan B, Ziai W, Tandri H. From systemic to selective brain cooling - Methods in review. Brain Circ 2019; 5:179-186. [PMID: 31950093 PMCID: PMC6950511 DOI: 10.4103/bc.bc_23_19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/28/2019] [Accepted: 11/05/2019] [Indexed: 01/14/2023] Open
Abstract
Therapeutic hypothermia (TH) remains one of the few proven neuroprotective modalities available in clinical practice today. Although targeting lower temperatures during TH seems to benefit ischemic brain cells, systemic side effects associated with global hypothermia limit its clinical applicability. Therefore, the ability to selectively reduce the temperature of the brain while minimally impacting core temperature allows for maximizing neurological benefit over systemic complications. In that scenario, selective brain cooling (SBC) has emerged as a promising modality of TH. In this report, we reviewed the general concepts of TH, from systemic to selective brain hypothermia, and explored the different cooling strategies and respective evidence, including preclinical and clinical data. SBC has been investigated in different animal models with promising results, wherein organ-specific, rapid, and deep target brain temperature managements stand out as major advantages over systemic TH. Nevertheless, procedure-related complications and adverse events still remain a concern, limiting clinical translation. Different invasive and noninvasive methods for SBC have been clinically investigated with variable results, and although adverse effects were still reported in some studies, therapies rendered overall safe profiles. Further study is needed to define the optimal technique, timing of initiation, rate and length of cooling as well as target temperature and rewarming protocols for different indications.
Collapse
Affiliation(s)
- Fabrizio R Assis
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bharat Narasimhan
- Department of Internal Medicine, Mount Sinai St. Lukes-Roosevelt, New York, NY, USA
| | - Wendy Ziai
- Division of Anesthesia and Neurocritical Care, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Harikrishna Tandri
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
27
|
Sun YJ, Zhang ZY, Fan B, Li GY. Neuroprotection by Therapeutic Hypothermia. Front Neurosci 2019; 13:586. [PMID: 31244597 PMCID: PMC6579927 DOI: 10.3389/fnins.2019.00586] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 05/23/2019] [Indexed: 12/14/2022] Open
Abstract
Hypothermia therapy is an old and important method of neuroprotection. Until now, many neurological diseases such as stroke, traumatic brain injury, intracranial pressure elevation, subarachnoid hemorrhage, spinal cord injury, hepatic encephalopathy, and neonatal peripartum encephalopathy have proven to be suppressed by therapeutic hypothermia. Beneficial effects of therapeutic hypothermia have also been discovered, and progress has been made toward improving the benefits of therapeutic hypothermia further through combination with other neuroprotective treatments and by probing the mechanism of hypothermia neuroprotection. In this review, we compare different hypothermia induction methods and provide a summarized account of the synergistic effect of hypothermia therapy with other neuroprotective treatments, along with an overview of hypothermia neuroprotection mechanisms and cold/hypothermia-induced proteins.
Collapse
Affiliation(s)
- Ying-Jian Sun
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| | - Zi-Yuan Zhang
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| | - Bin Fan
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| | - Guang-Yu Li
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
28
|
Walter A, Finelli K, Bai X, Johnson B, Neuberger T, Seidenberg P, Bream T, Hallett M, Slobounov S. Neurobiological effect of selective brain cooling after concussive injury. Brain Imaging Behav 2019; 12:891-900. [PMID: 28712093 DOI: 10.1007/s11682-017-9755-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The search for effective treatment facilitating recovery from concussive injury, as well as reducing risk for recurrent concussion is an ongoing challenge. This study aimed to determine: a) feasibility of selective brain cooling to facilitate clinical symptoms resolution, and b) biological functions of the brain within athletes in acute phase of sports-related concussion. Selective brain cooling for 30 minutes using WElkins sideline cooling system was administered to student-athletes suffering concussive injury (n=12; tested within 5±3 days) and those without history of concussion (n=12). fMRI and ASL sequences were obtained before and immediately after cooling to better understanding the mechanism by which cooling affects neurovascular coupling. Concussed subjects self-reported temporary relief from physical symptoms after cooling. There were no differences in the number or strength of functional connections within Default Mode Network (DMN) between groups prior to cooling. However, we observed a reduction in the strength and number of connections of the DMN with other ROIs in both groups after cooling. Unexpectedly, we observed a significant increase in cerebral blood flow (CBF) assessed by ASL after selective cooling in the concussed subjects compared to the normal controls. We suggest that compromised neurovascular coupling in acute phase of injury may be temporarily restored by cooling to match CBF with surges in the metabolic demands of the brain. Upon further validation, selective brain cooling could be a potential clinical tool in the minimization of symptoms and pathological changes after concussion.
Collapse
Affiliation(s)
- Alexa Walter
- Penn State Center for Sport Concussion, Pennsylvania State University, 19 Recreation Building University Park, University Park, PA, 16802, USA.
- Department of Kinesiology, Pennsylvania State University, 19 Recreation Building University Park, University Park, PA, 16802, USA.
| | - Katie Finelli
- Penn State Center for Sport Concussion, Pennsylvania State University, 19 Recreation Building University Park, University Park, PA, 16802, USA
- Department of Kinesiology, Pennsylvania State University, 19 Recreation Building University Park, University Park, PA, 16802, USA
| | - Xiaoxiao Bai
- Social, Life, and Engineering Sciences Imaging Center, Pennsylvania State University, 19 Recreation Building University Park, University Park, PA, 16802, USA
- 120G Chandlee Lab University Park, University Park, PA, 16802, USA
| | - Brian Johnson
- Penn State Center for Sport Concussion, Pennsylvania State University, 19 Recreation Building University Park, University Park, PA, 16802, USA
- Department of Kinesiology, Pennsylvania State University, 19 Recreation Building University Park, University Park, PA, 16802, USA
| | - Thomas Neuberger
- Social, Life, and Engineering Sciences Imaging Center, Pennsylvania State University, 19 Recreation Building University Park, University Park, PA, 16802, USA
- 113 Chandlee Lab University Park, University Park, PA, 16802, USA
| | - Peter Seidenberg
- Penn State Center for Sport Concussion, Pennsylvania State University, 19 Recreation Building University Park, University Park, PA, 16802, USA
- Penn State University Intercollegiate Athletics, Pennsylvania State University, 19 Recreation Building University Park, University Park, PA, 16802, USA
- , 1850 E. Park Avenue, Suite 112, State College, PA, 16803, USA
| | - Timothy Bream
- Penn State Center for Sport Concussion, Pennsylvania State University, 19 Recreation Building University Park, University Park, PA, 16802, USA
- Penn State University Intercollegiate Athletics, Pennsylvania State University, 19 Recreation Building University Park, University Park, PA, 16802, USA
- Lasch Building University Park, University Park, PA, 16802, USA
| | - Mark Hallett
- NIH, NINDS, Medical Neurology Branch Building 10 Room 7D37 10 Center Drive MSC 1428, Bethesda, MD, 20892, USA
| | - Semyon Slobounov
- Penn State Center for Sport Concussion, Pennsylvania State University, 19 Recreation Building University Park, University Park, PA, 16802, USA
- Department of Kinesiology, Pennsylvania State University, 19 Recreation Building University Park, University Park, PA, 16802, USA
| |
Collapse
|
29
|
Inducing therapeutic hypothermia via selective brain cooling: a finite element modeling analysis. Med Biol Eng Comput 2019; 57:1313-1322. [PMID: 30756230 DOI: 10.1007/s11517-019-01962-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 02/04/2019] [Indexed: 02/06/2023]
Abstract
Therapeutic hypothermia is a treatment method to reduce brain injuries after stroke, especially for cerebral ischemia. This study investigates in the temperature distribution of the head within selective brain cooling (SBC). Anatomically accurate geometries based on CT images of head and neck regions are used to develop the 3D geometry and physical model for the finite element modeling. Two cooling methods, the direct head surface cooling strategy and the combination cooling strategy of both head and neck, are evaluated to analyze the inducing hypothermia. The results show that for direct head surface cooling, the scalp and skull temperatures decrease significantly as the blood perfusion rate is constrained, but it is hard to affect the brain core temperature. To achieve a lower cerebral temperature, combination cooling strategy of both head and neck is an effective method in improving deep brain cooling. In normal condition, the cerebral temperature is reduced by about 0.12 °C in 60 min of hypothermia, while the temperature drop is approximately 0.98 °C in ischemic condition. Graphical abstract In this study, the 3D geometry of the head and carotid artery model based on the computed tomography (CT) were derived separately and the corresponding investigations were conducted to validate the reliability of the model. Direct head surface cooling strategy and the combination cooling strategy of both the head and neck were numerically researched.
Collapse
|
30
|
Silva ABC, Wrobel LC, Ribeiro FL. A thermoregulation model for whole body cooling hypothermia. J Therm Biol 2018; 78:122-130. [DOI: 10.1016/j.jtherbio.2018.08.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 08/22/2018] [Accepted: 08/24/2018] [Indexed: 11/30/2022]
|
31
|
Cold Blooded: Evaluating Brain Temperature by MRI During Surface Cooling of Human Subjects. Neurocrit Care 2018; 27:214-219. [PMID: 28352966 DOI: 10.1007/s12028-017-0389-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Targeted temperature management (TTM) confers neurological and survival benefits for post-cardiac arrest patients with return of spontaneous circulation (ROSC) who remain comatose. Specialized equipment for induction of hypothermia is not available in the prehospital setting, and there are no reliable methods for emergency medical services personnel to initiate TTM. We hypothesized that the application of surface cooling elements to the neck will decrease brain temperature and act as initiators of TTM. METHODS Magnetic resonance (MR) spectroscopy was used to evaluate the effect of a carotid surface cooling element on brain temperature in healthy adults. RESULTS Six individuals completed this study. We measured a temperature drop of 0.69 ± 0.38 °C (95% CI) in the cortex of the brain following the application of the cooling element. Application of a room temperature element also caused a measurable decrease in brain temperature of 0.66 ± 0.41 °C (95% CI) which may be attributable to baroreceptor activation. CONCLUSION The application of surface cooling elements to the neck decreased brain temperature and may serve as a method to initiate TTM in the prehospital setting.
Collapse
|
32
|
Roth T, Mayleben D, Feldman N, Lankford A, Grant T, Nofzinger E. A novel forehead temperature-regulating device for insomnia: a randomized clinical trial. Sleep 2018; 41:4958122. [PMID: 29648642 PMCID: PMC5946849 DOI: 10.1093/sleep/zsy045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 02/08/2018] [Indexed: 11/14/2022] Open
Abstract
Study Objectives Insomnia is one of the most common disorders in the general population. Hypnotic medications are efficacious, but their use is limited by adverse events (AEs). This study evaluated the safety and efficacy of a novel forehead temperature-regulating device that delivers frontal cerebral thermal therapy (maintained at 14-16°C, equivalent to 57-61°F) for the treatment of insomnia. Methods This was a prospective, randomized controlled trial involving two nights of therapy in 106 adults diagnosed with insomnia. The main outcome measures included latency to persistent sleep and sleep efficiency derived from polysomnographic (PSG) recordings and frequency and severity of AEs. Results The safety profile was comparable to sham treatment. Statistically significant differences were not found in the two a priori co-primary endpoint measures absolute latency to persistent sleep (p = 0.092) or absolute sleep efficiency. Frontal cerebral thermal therapy produced improvements over sham in other convergent measures of sleep latency including relative changes from baseline in latency to persistent sleep (p = 0.013), the latency to stage 1 NREM sleep (p = 0.006), the latency to stage 2 NREM sleep (p = 0.002), a trend for the latency to stage 3 NREM sleep (p = 0.055), and an increase in the minutes of sleep during the first hour of the night (p = 0.024). Conclusions Two-night frontal cerebral thermal therapy produced improvements in PSG measures of insomnia patients' ability to fall asleep and had a benign safety profile. Further studies are warranted to determine the role of this therapy in the longer-term management of insomnia. Trial Registration clinicaltrials.gov Identifier: NCT01966211.
Collapse
Affiliation(s)
- Thomas Roth
- Henry Ford Sleep Research Center, Henry Ford Hospital, Detroit, MI
| | | | - Neil Feldman
- St. Petersburg Sleep Disorders Center, St. Petersburg, FL
| | | | | | | |
Collapse
|
33
|
Abstract
Selective brain hypothermia is a powerful concept for neuroprotection that has been successfully investigated in a variety of animal models of global and focal ischemia. Its major advantages over systemic hypothermia include rapid induction of cooling, ability to achieve profound target brain temperatures, organ-selective cooling, and temperature control. Clinical systems and devices are available or are currently under development that utilize conductive (surface-cooling pads, closed-loop catheters), convective (transnasal coolant delivery), or mass and energy transport (cold intra-arterial infusion) methods to achieve and maintain selective brain hypothermia. The "ideal" brain-cooling system that is characterized by rapid cooling to profound hypothermia, its ability to maintain selective cooling over several days, and is noninvasive in nature, remains unrealistic. Instead, systems may be identified by their distinct advantages to meet a specific need in the care of a patient. This involves the consideration of the timing of ischemic injury (preischemic, intraischemic, postischemic), extent of ischemic damage (excitotoxicity, inflammation, necrosis, edema), and type and setting of therapeutic intervention (intensive care, interventional therapy, surgery). The successful translation of these systems into clinical practice will depend on smart engineering, safety and efficacy, and usability in current clinical work flow.
Collapse
Affiliation(s)
- Jae H Choi
- Neurological Surgery PC, Lake Success, NY, United States.
| | | |
Collapse
|
34
|
Zhu L. Hypothermia Used in Medical Applications for Brain and Spinal Cord Injury Patients. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1097:295-319. [PMID: 30315552 DOI: 10.1007/978-3-319-96445-4_16] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite more than 80 years of animal experiments and clinical practice, efficacy of hypothermia in improving treatment outcomes in patients suffering from cell and tissue damage caused by ischemia is still ongoing. This review will first describe the history of utilizing cooling in medical treatment, followed by chemical and biochemical mechanisms of cooling that can lead to neuroprotection often observed in animal studies and some clinical studies. The next sections will be focused on current cooling approaches/devices, as well as cooling parameters recommended by researchers and clinicians. Animal and clinical studies of implementing hypothermia to spinal cord and brain tissue injury patients are presented next. This section will review the latest outcomes of hypothermia in treating patients suffering from traumatic brain injury (TBI), spinal cord injury (SCI), stroke, cardiopulmonary surgery, and cardiac arrest, followed by a summary of available evidence regarding both demonstrated neuroprotection and potential risks of hypothermia. Contributions from bioengineers to the field of hypothermia in medical treatment will be discussed in the last section of this review. Overall, an accumulating body of clinical evidence along with several decades of animal research and mathematical simulations has documented that the efficacy of hypothermia is dependent on achieving a reduced temperature in the target tissue before or soon after the injury-precipitating event. Mild hypothermia with temperature reduction of several degrees Celsius is as effective as modest or deep hypothermia in providing therapeutic benefit without introducing collateral/systemic complications. It is widely demonstrated that the rewarming rate must be controlled to be lower than 0.5 °C/h to avoid mismatch between local blood perfusion and metabolism. In the past several decades, many different cooling methods and devices have been designed, tested, and used in medical treatments with mixed results. Accurately designing treatment protocols to achieve specific cooling outcomes requires collaboration among engineers, researchers, and clinicians. Although this problem is quite challenging, it presents a major opportunity for bioengineers to create methods and devices that quickly and safely produce hypothermia in targeted tissue regions without interfering with routine medical treatment.
Collapse
Affiliation(s)
- Liang Zhu
- Department of Mechanical Engineering, University of Maryland Baltimore County, Baltimore, MD, USA.
| |
Collapse
|
35
|
Cobas MA, Vera-Arroyo A. Hypothermia: Update on Risks and Therapeutic and Prophylactic Applications. Adv Anesth 2017; 35:25-45. [PMID: 29103575 DOI: 10.1016/j.aan.2017.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Miguel A Cobas
- Department of Anesthesiology and Perioperative Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA.
| | - Arnaldo Vera-Arroyo
- Department of Anesthesiology and Perioperative Medicine, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
36
|
Li H, Chen RK, Tang Y, Meurer W, Shih AJ. An experimental study and finite element modeling of head and neck cooling for brain hypothermia. J Therm Biol 2017; 71:99-111. [PMID: 29301706 DOI: 10.1016/j.jtherbio.2017.10.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 10/31/2017] [Accepted: 10/31/2017] [Indexed: 11/28/2022]
Abstract
Reducing brain temperature by head and neck cooling is likely to be the protective treatment for humans when subjects to sudden cardiac arrest. This study develops the experimental validation model and finite element modeling (FEM) to study the head and neck cooling separately, which can induce therapeutic hypothermia focused on the brain. Anatomically accurate geometries based on CT images of the skull and carotid artery are utilized to find the 3D geometry for FEM to analyze the temperature distributions and 3D-printing to build the physical model for experiment. The results show that FEM predicted and experimentally measured temperatures have good agreement, which can be used to predict the temporal and spatial temperature distributions of the tissue and blood during the head and neck cooling process. Effects of boundary condition, perfusion, blood flow rate, and size of cooling area are studied. For head cooling, the cooling penetration depth is greatly depending on the blood perfusion in the brain. In the normal blood flow condition, the neck internal carotid artery temperature is decreased only by about 0.13°C after 60min of hypothermia. In an ischemic (low blood flow rate) condition, such temperature can be decreased by about 1.0°C. In conclusion, decreasing the blood perfusion and metabolic reduction factor could be more beneficial to cool the core zone. The results also suggest that more SBC researches should be explored, such as the optimization of simulation and experimental models, and to perform the experiment on human subjects.
Collapse
Affiliation(s)
- Hui Li
- Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China; Electronic Paper Display Institute, South China Normal University, Guangzhou 510006, China.
| | - Roland K Chen
- Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164-2920, USA
| | - Yong Tang
- Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China
| | - William Meurer
- Department of Emergency Medicine, Department of Neurology, Michigan Center for Integrative Research in Critical Care, University of Michigan Health System, Ann Arbor, MI 48109-5303, USA
| | - Albert J Shih
- Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
37
|
Transient brain hypothermia reduces the reperfusion injury of delayed tissue plasminogen activator and extends its therapeutic time window in a focal embolic stroke model. Brain Res Bull 2017; 134:85-90. [DOI: 10.1016/j.brainresbull.2017.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/02/2017] [Accepted: 07/07/2017] [Indexed: 11/18/2022]
|
38
|
The Damage Control Surgery in Austere Environments Research Group (DCSAERG): A dynamic program to facilitate real-time telementoring/telediagnosis to address exsanguination in extreme and austere environments. J Trauma Acute Care Surg 2017. [PMID: 28628601 DOI: 10.1097/ta.0000000000001483] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Hemorrhage is the most preventable cause of posttraumatic death. Many cases are potentially anatomically salvageable, yet remain lethal without logistics or trained personnel to deliver diagnosis or resuscitative surgery in austere environments. Revolutions in technology for remote mentoring of ultrasound and surgery may enhance capabilities to utilize the skill sets of non-physicians. Thus, our research collaborative explored remote mentoring to empower non-physicians to address junctional and torso hemorrhage control in austere environments. Major studies involved using remote-telementored ultrasound (RTMUS) to identify torso and junctional exsanguination, remotely mentoring resuscitative surgery for torso hemorrhage control, understanding and mitigating physiological stress during such tasks, and the technical practicalities of conducting damage control surgery (DCS) in austere environments. Iterative projects involved randomized guiding of firefighters to identify torso (RCT) and junctional (pilot) hemorrhage using RTMUS, randomized remote mentoring of MedTechs conducting resuscitative surgery for torso exsanguination in an anatomically realistic surgical trainer ("Cut Suit") including physiological monitoring, and trained surgeons conducting a comparative randomized study for torso hemorrhage control in normal (1g) versus weightlessness (0g). This work demonstrated that firefighters could be remotely mentored to perform just-in-time torso RTMUS on a simulator. Both firefighters and mentors were confident in their abilities, the ultrasounds being 97% accurate. An ultrasound-naive firefighter in Memphis could also be remotely mentored from Hawaii to identify and subsequently tamponade an arterial junctional hemorrhage using RTMUS in a live tissue model. Thereafter, both mentored and unmentored MedTechs and trained surgeons completed resuscitative surgery for hemorrhage control on the Cut-Suit, demonstrating practicality for all involved. While remote mentoring did not decrease blood loss among MedTechs, it increased procedural confidence and decreased physiologic stress. Therefore, remote mentoring may increase the feasibility of non-physicians conducting a psychologically daunting task. Finally, DCS in weightlessness was feasible without fundamental differences from 1g. Overall, the collective evidence suggests that remote mentoring supports diagnosis, noninvasive therapy, and ultimately resuscitative surgery to potentially rescue those exsanguinating in austere environments and should be more rigorously studied.
Collapse
|
39
|
Szczygielski J, Müller A, Mautes AE, Sippl C, Glameanu C, Schwerdtfeger K, Steudel WI, Oertel J. Selective Brain Hypothermia Mitigates Brain Damage and Improves Neurological Outcome after Post-Traumatic Decompressive Craniectomy in Mice. J Neurotrauma 2017; 34:1623-1635. [PMID: 27799012 DOI: 10.1089/neu.2016.4615] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Hypothermia and decompressive craniectomy (DC) have been considered as treatment for traumatic brain injury. The present study investigates whether selective brain hypothermia added to craniectomy could improve neurological outcome after brain trauma. Male CD-1 mice were assigned into the following groups: sham; DC; closed head injury (CHI); CHI followed by craniectomy (CHI+DC); and CHI+DC followed by focal hypothermia (CHI+DC+H). At 24 h post-trauma, animals were subjected to Neurological Severity Score (NSS) test and Beam Balance Score test. At the same time point, magnetic resonance imaging using a 9.4 Tesla scanner and subsequent volumetric evaluation of edema and contusion were performed. Thereafter, the animals were sacrificed and subjected to histopathological analysis. According to NSS, there was a significant impairment among all the groups subjected to trauma. Animals with both trauma and craniectomy performed significantly worse than animals with craniectomy alone. This deleterious effect disappeared when additional hypothermia was applied. BBS was significantly worse in the CHI and CHI+DC groups, but not in the CHI+DC+H group, compared to the sham animals. Edema and contusion volumes were significantly increased in CHI+DC animals, but not in the CHI+DC+H group, compared to the DC group. Histopathological analysis showed that neuronal loss and contusional blossoming could be attenuated by application of selective brain hypothermia. Selective brain cooling applied post-trauma and craniectomy improved neurological function and reduced structural damage and may be therefore an alternative to complication-burdened systemic hypothermia. Clinical studies are recommended in order to explore the potential of this treatment.
Collapse
Affiliation(s)
- Jacek Szczygielski
- 1 Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine , Homburg/Saar, Germany
| | - Andreas Müller
- 2 Department of Radiology, Saarland University Medical Center and Saarland University Faculty of Medicine , Homburg/Saar, Germany
| | - Angelika E Mautes
- 1 Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine , Homburg/Saar, Germany
| | - Christoph Sippl
- 1 Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine , Homburg/Saar, Germany
| | - Cosmin Glameanu
- 1 Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine , Homburg/Saar, Germany
| | - Karsten Schwerdtfeger
- 1 Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine , Homburg/Saar, Germany
| | - Wolf-Ingo Steudel
- 1 Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine , Homburg/Saar, Germany
| | - Joachim Oertel
- 1 Department of Neurosurgery, Saarland University Medical Center and Saarland University Faculty of Medicine , Homburg/Saar, Germany
| |
Collapse
|
40
|
Chava R, Zviman M, Raghavan MS, Halperin H, Maqbool F, Geocadin R, Quinones-Hinojosa A, Kolandaivelu A, Rosen BA, Tandri H. Rapid Induction of Therapeutic Hypothermia Using Transnasal High Flow Dry Air. Ther Hypothermia Temp Manag 2016; 7:50-56. [PMID: 27635468 DOI: 10.1089/ther.2016.0016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Early induction of therapeutic hypothermia (TH) is recommended in out-of-hospital cardiac arrest (CA); however, currently no reliable methods exist to initiate cooling. We investigated the effect of high flow transnasal dry air on brain and body temperatures in adult porcine animals. Adult porcine animals (n = 23) under general anesthesia were subject to high flow of transnasal dry air. Mouth was kept open to create a unidirectional airflow, in through the nostrils and out through the mouth. Brain, internal jugular, and aortic temperatures were recorded. The effect of varying airflow rate and the air humidity (0% or 100%) on the temperature profiles were recorded. The degree of brain cooling was measured as the differential temperature from baseline. A 10-minute exposure of high flow dry air caused rapid cooling of brain and gradual cooling of the jugular and the aortic temperatures in all animals. The degree of brain cooling was flow dependent and significantly higher at higher airflow rates (0.8°C ± 0.3°C, 1.03°C ± 0.6°C, and 1.3°C ± 0.7°C for 20, 40, and 80 L, respectively, p < 0.05 for all comparisons). Air temperature had minimal effect on the brain cooling over 10 minutes with similar decrease in temperature at 4°C and 30°C. At a constant flow rate (40 LPM) and temperature, the degree of cooling over 10 minutes during dry air exposure was significantly higher compared to humid air (100% saturation) (1.22°C ± 0.35°C vs. 0.21°C ± 0.12°C, p < 0.001). High flow transnasal dry air causes flow dependent cooling of the brain and the core temperatures in intubated porcine animals. The mechanism of cooling appears to be evaporation of nasal mucus as cooling is mitigated by humidifying the air. This mechanism may be exploited to initiate TH in CA.
Collapse
Affiliation(s)
- Raghuram Chava
- Division of Cardiology, Departments of Neuroanesthesia and Neurosurgery, The Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Menekhem Zviman
- Division of Cardiology, Departments of Neuroanesthesia and Neurosurgery, The Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Madhavan Srinivas Raghavan
- Division of Cardiology, Departments of Neuroanesthesia and Neurosurgery, The Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Henry Halperin
- Division of Cardiology, Departments of Neuroanesthesia and Neurosurgery, The Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Farhan Maqbool
- Division of Cardiology, Departments of Neuroanesthesia and Neurosurgery, The Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Romergryko Geocadin
- Division of Cardiology, Departments of Neuroanesthesia and Neurosurgery, The Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Alfredo Quinones-Hinojosa
- Division of Cardiology, Departments of Neuroanesthesia and Neurosurgery, The Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Aravindan Kolandaivelu
- Division of Cardiology, Departments of Neuroanesthesia and Neurosurgery, The Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Benjamin A Rosen
- Division of Cardiology, Departments of Neuroanesthesia and Neurosurgery, The Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Harikrishna Tandri
- Division of Cardiology, Departments of Neuroanesthesia and Neurosurgery, The Johns Hopkins University School of Medicine , Baltimore, Maryland
| |
Collapse
|
41
|
Fukuda T. Targeted temperature management for adult out-of-hospital cardiac arrest: current concepts and clinical applications. J Intensive Care 2016; 4:30. [PMID: 27123306 PMCID: PMC4847228 DOI: 10.1186/s40560-016-0139-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 02/04/2016] [Indexed: 11/25/2022] Open
Abstract
Targeted temperature management (TTM) (primarily therapeutic hypothermia (TH)) after out-of-hospital cardiac arrest (OHCA) has been considered effective, especially for adult-witnessed OHCA with a shockable initial rhythm, based on pathophysiology and on several clinical studies (especially two randomized controlled trials (RCTs) published in 2002). However, a recently published large RCT comparing TTM at 33 °C (TH) and TTM at 36 °C (normothermia) showed no advantage of 33 °C over 36 °C. Thus, this RCT has complicated the decision to perform TH after cardiac arrest. The results of this RCT are sometimes interpreted fever control alone is sufficient to improve outcomes after cardiac arrest because fever control was not strictly performed in the control groups of the previous two RCTs that showed an advantage for TH. Although this may be possible, another interpretation that the optimal target temperature for TH is much lower than 33 °C may be also possible. Additionally, there are many points other than target temperature that are unknown, such as the optimal timing to initiate TTM, the period between OHCA and initiating TTM, the period between OHCA and achieving the target temperature, the duration of maintaining the target temperature, the TTM technique, the rewarming method, and the management protocol after rewarming. RCTs are currently underway to shed light on several of these underexplored issues. In the present review, we examine how best to perform TTM after cardiac arrest based on the available evidence.
Collapse
Affiliation(s)
- Tatsuma Fukuda
- Department of Emergency and Critical Care Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan
| |
Collapse
|
42
|
Kudenchuk PJ, Sandroni C, Drinhaus HR, Böttiger BW, Cariou A, Sunde K, Dworschak M, Taccone FS, Deye N, Friberg H, Laureys S, Ledoux D, Oddo M, Legriel S, Hantson P, Diehl JL, Laterre PF. Breakthrough in cardiac arrest: reports from the 4th Paris International Conference. Ann Intensive Care 2015; 5:22. [PMID: 26380990 PMCID: PMC4573754 DOI: 10.1186/s13613-015-0064-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 08/18/2015] [Indexed: 02/08/2023] Open
Abstract
Jean-Luc Diehl The French Intensive Care Society organized on 5th and 6th June 2014 its 4th "Paris International Conference in Intensive Care", whose principle is to bring together the best international experts on a hot topic in critical care medicine. The 2014 theme was "Breakthrough in cardiac arrest", with many high-quality updates on epidemiology, public health data, pre-hospital and in-ICU cares. The present review includes short summaries of the major presentations, classified into six main chapters: Epidemiology of CA Pre-hospital management Post-resuscitation management: targeted temperature management Post-resuscitation management: optimizing organ perfusion and metabolic parameters Neurological assessment of brain damages Public healthcare.
Collapse
Affiliation(s)
| | - Claudio Sandroni
- Department of Anaesthesiology and Intensive Care, Catholic University School of Medicine, Rome, Italy.
| | - Hendrik R Drinhaus
- Department of Anaesthesiology and Intensive Care Medicine, University of Koeln, Cologne, Germany.
| | - Bernd W Böttiger
- Department of Anaesthesiology and Intensive Care Medicine, University of Koeln, Cologne, Germany.
| | - Alain Cariou
- Medical Intensive Care Unit, AP-HP, Cochin Hospital, Paris, France.
- Paris Descartes University and Sorbonne Paris Cité-Medical School and INSERM U970 (Team 4), Cardiovascular Research Center, European Georges Pompidou Hospital, Paris, France.
| | - Kjetil Sunde
- Division of Emergencies and Critical Care, Department of Anaesthesiology, Surgical Intensive Care Unit Ullevål, Oslo University Hospital, Oslo, Norway.
| | - Martin Dworschak
- Division of Cardiothoracic and Vascular Anesthesia and Intensive Care Medicine, Vienna General Hospital, Medical University Vienna, Vienna, Austria.
| | - Fabio Silvio Taccone
- Department of Intensive Care, Laboratoire de Recherche Experimentale, Erasme Hospital, Brussels, Belgium.
| | - Nicolas Deye
- Medical Intensive Care Unit, AP-HP, Lariboisière University Hospital, Inserm U942, Paris, France.
| | - Hans Friberg
- Anaesthesiology and Intensive Care Medicine, Skåne University Hospital, Lund University, Lund, Sweden.
| | - Steven Laureys
- Coma Science Group, Cyclotron Research Centre, University of Liège and Liège 2 Department of Neurology, University Hospital of Liège, Liège, Belgium.
| | - Didier Ledoux
- Coma Science Group, Cyclotron Research Centre, University of Liège and Department of Intensive Care Medicine, University Hospital of Liège, Liège, Belgium.
| | - Mauro Oddo
- Department of Intensive Care Medicine, Faculty of Biology and Medicine, CHUV-University Hospital, Lausanne, Switzerland.
| | - Stéphane Legriel
- Intensive Care Unit, Centre Hospitalier de Versailles, Le Chesnay, France.
| | - Philippe Hantson
- Department of Intensive Care, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain, Brussels, Belgium.
| | - Jean-Luc Diehl
- Medical Intensive Care Unit, AP-HP, European Georges Pompidou Hospital, Paris Descartes University and Sorbonne Paris Cité-Medical School, Paris, France.
| | - Pierre-Francois Laterre
- Department of Intensive Care, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain Brussels, Brussels, Belgium.
| |
Collapse
|
43
|
Jackson K, Rubin R, Van Hoeck N, Hauert T, Lana V, Wang H. The effect of selective head-neck cooling on physiological and cognitive functions in healthy volunteers. Transl Neurosci 2015; 6:131-138. [PMID: 28123796 PMCID: PMC4936650 DOI: 10.1515/tnsci-2015-0012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 06/07/2015] [Indexed: 11/15/2022] Open
Abstract
In general, brain temperatures are elevated during physical sporting activities; therefore, reducing brain temperature shortly after a sports-related concussion (SRC) could be a promising intervention technique. The main objective of this study was to examine the effects of head and neck cooling on physiological and cognitive function in normal healthy volunteers. Twelve healthy volunteers underwent two different sessions of combined head and neck cooling, one session with a cold pack and one session with a room temperature pack. Physiological measurements included: systolic/diastolic blood pressure, pulse oximetry, heart rate, and sublingual and tympanic temperature. Cognitive assessment included: processing speed, executive function, and working memory tasks. Physiological measurements were taken pre-, mid- and post-cooling, while cognitive assessments were done before and after cooling. The order of the sessions was randomized. There was a significant decrease in tympanic temperature across both sessions; however more cooling occurred when the cold pack was in the device. There was no significant decrease in sublingual temperature across either session. The observed heart rates, pulse oximetry, systolic and diastolic blood pressure during the sessions were all within range of a normal healthy adult. Cognitive assessment remained stable across each session for both pre- and post-cooling. We propose that optimizing brain temperature management after brain injury using head and neck cooling technology may represent a sensible, practical, and effective strategy to potentially enhance recovery and perhaps minimize the subsequent short and long term consequences from SRC.
Collapse
Affiliation(s)
- Kevin Jackson
- Thermal Neuroscience Beckman Institute University of Illinois Urbana, IL 61801, USA
| | - Rachael Rubin
- Thermal Neuroscience Beckman Institute University of Illinois Urbana, IL 61801, USA; Carle Foundation Hospital Urbana, Il 61801, USA
| | - Nicole Van Hoeck
- Psychological & Educational Sciences Vrije Universiteit Brussel, Belgium
| | - Tommy Hauert
- Thermal Neuroscience Beckman Institute University of Illinois Urbana, IL 61801, USA
| | - Valentina Lana
- Thermal Neuroscience Beckman Institute University of Illinois Urbana, IL 61801, USA
| | - Huan Wang
- Thermal Neuroscience Beckman Institute University of Illinois Urbana, IL 61801, USA; Carle Foundation Hospital Urbana, Il 61801, USA
| |
Collapse
|
44
|
Smyth MD, Han RH, Yarbrough CK, Patterson EE, Yang XF, Miller JW, Rothman SM, D'Ambrosio R. Temperatures achieved in human and canine neocortex during intraoperative passive or active focal cooling. Ther Hypothermia Temp Manag 2015; 5:95-103. [PMID: 25902001 DOI: 10.1089/ther.2014.0025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Focal cortical cooling inhibits seizures and prevents acquired epileptogenesis in rodents. To investigate the potential clinical utility of this treatment modality, we examined the thermal characteristics of canine and human brain undergoing active and passive surface cooling in intraoperative settings. Four patients with intractable epilepsy were treated in a standard manner. Before the resection of a neocortical epileptogenic focus, multiple intraoperative studies of active (custom-made cooled irrigation-perfused grid) and passive (stainless steel probe) cooling were performed. We also actively cooled the neocortices of two dogs with perfused grids implanted for 2 hours. Focal surface cooling of the human brain causes predictable depth-dependent cooling of the underlying brain tissue. Cooling of 0.6-2°C was achieved both actively and passively to a depth of 10-15 mm from the cortical surface. The perfused grid permitted comparable and persistent cooling of canine neocortex when the craniotomy was closed. Thus, the human cortex can easily be cooled with the use of simple devices such as a cooling grid or a small passive probe. These techniques provide pilot data for the design of a permanently implantable device to control intractable epilepsy.
Collapse
Affiliation(s)
- Matthew D Smyth
- 1 Department of Neurosurgery, Washington University School of Medicine , St. Louis, Missouri
| | - Rowland H Han
- 1 Department of Neurosurgery, Washington University School of Medicine , St. Louis, Missouri
| | - Chester K Yarbrough
- 1 Department of Neurosurgery, Washington University School of Medicine , St. Louis, Missouri
| | - Edward E Patterson
- 2 Department of Clinical Sciences, College of Veterinary Medicine, University of Minnesota , Saint Paul, Minnesota
| | - Xiao-Feng Yang
- 3 Department of Pediatrics (Clinical Neuroscience), University of Minnesota , Minneapolis, Minnesota
| | - John W Miller
- 4 Department of Neurological Surgery, University of Washington , Seattle, Washington.,5 Department of Neurology and Regional Epilepsy Center, University of Washington , Seattle, Washington
| | | | - Raimondo D'Ambrosio
- 4 Department of Neurological Surgery, University of Washington , Seattle, Washington.,5 Department of Neurology and Regional Epilepsy Center, University of Washington , Seattle, Washington.,7 Center for Human Development and Disability, University of Washington , Seattle, Washington
| |
Collapse
|
45
|
Abstract
Neuropathology and neurologic impairment were characterized in a clinically relevant canine model of hypothermic (18°C) circulatory arrest (HCA) and cardiopulmonary bypass (CPB). Adult dogs underwent 2 hours of HCA (n = 39), 1 hour of HCA (n = 20), or standard CPB (n = 22) and survived 2, 8, 24, or 72 hours. Neurologic impairment and neuropathology were much more severe after 2-hour HCA than after 1-hour HCA or CPB; histopathology and neurologic deficit scores were significantly correlated. Apoptosis developed as early as 2 hours after injury and was most severe in the granule cells of the hippocampal dentate gyrus. Necrosis evolved more slowly and was most severe in amygdala and pyramidal neurons in the cornu ammonis hippocampus. Neuronal injury was minimal up to 24 hours after 1-hour HCA, but 1 dog that survived to 72 hours showed substantial necrosis in the hippocampus, suggesting that, with longer survival time, the injury was worse. Although neuronal injury was minimal after CPB, we observed rare apoptotic and necrotic neurons in hippocampi and caudate nuclei. These results have important implications for CPB in humans and may help explain the subtle cognitive changes experienced by patients after CPB.
Collapse
|
46
|
Wang H, Wang B, Jackson K, Miller CM, Hasadsri L, Llano D, Rubin R, Zimmerman J, Johnson C, Sutton B. A novel head-neck cooling device for concussion injury in contact sports. Transl Neurosci 2015; 6:20-31. [PMID: 28123788 PMCID: PMC4936612 DOI: 10.1515/tnsci-2015-0004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Accepted: 11/29/2014] [Indexed: 12/21/2022] Open
Abstract
Emerging research on the long-term impact of concussions on athletes has allowed public recognition of the potentially devastating effects of these and other mild head injuries. Mild traumatic brain injury (mTBI) is a multifaceted disease for which management remains a clinical challenge. Recent pre-clinical and clinical data strongly suggest a destructive synergism between brain temperature elevation and mTBI; conversely, brain hypothermia, with its broader, pleiotropic effects, represents the most potent neuro-protectant in laboratory studies to date. Although well-established in selected clinical conditions, a systemic approach to accomplish regional hypothermia has failed to yield an effective treatment strategy in traumatic brain injury (TBI). Furthermore, although systemic hypothermia remains a potentially valid treatment strategy for moderate to severe TBIs, it is neither practical nor safe for mTBIs. Therefore, selective head-neck cooling may represent an ideal strategy to provide therapeutic benefits to the brain. Optimizing brain temperature management using a National Aeronautics and Space Administration (NASA) spacesuit spinoff head-neck cooling technology before and/or after mTBI in contact sports may represent a sensible, practical, and effective method to potentially enhance recover and minimize post-injury deficits. In this paper, we discuss and summarize the anatomical, physiological, preclinical, and clinical data concerning NASA spinoff head-neck cooling technology as a potential treatment for mTBIs, particularly in the context of contact sports.
Collapse
Affiliation(s)
- Huan Wang
- Department of Neurosurgery, Carle Foundation Hospital, University of Illinois College of Medicine at Urbana-Champaign, Urbana, USA; Thermal Neuroscience Laboratory, Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Bonnie Wang
- Department of Internal Medicine, Carle Foundation Hospital, University of Illinois College of Medicine at Urbana-Champaign, Urbana, USA
| | - Kevin Jackson
- Thermal Neuroscience Laboratory, Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Claire M Miller
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Linda Hasadsri
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Daniel Llano
- Department of Molecular and Integrative Physiology, University of Illinois College of Medicine at Urbana-Champaign, Carle Foundation Hospital, Urbana, USA; The Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Rachael Rubin
- The Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Jarred Zimmerman
- Department of Sports Medicine, Carle Foundation Hospital, Urbana, USA
| | - Curtis Johnson
- The Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, USA; Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, USA
| | - Brad Sutton
- The Beckman Institute, University of Illinois at Urbana-Champaign, Urbana, USA; Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, USA
| |
Collapse
|
47
|
Wang H, Wang B, Normoyle KP, Jackson K, Spitler K, Sharrock MF, Miller CM, Best C, Llano D, Du R. Brain temperature and its fundamental properties: a review for clinical neuroscientists. Front Neurosci 2014; 8:307. [PMID: 25339859 PMCID: PMC4189373 DOI: 10.3389/fnins.2014.00307] [Citation(s) in RCA: 203] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 09/12/2014] [Indexed: 01/13/2023] Open
Abstract
Brain temperature, as an independent therapeutic target variable, has received increasingly intense clinical attention. To date, brain hypothermia represents the most potent neuroprotectant in laboratory studies. Although the impact of brain temperature is prevalent in a number of common human diseases including: head trauma, stroke, multiple sclerosis, epilepsy, mood disorders, headaches, and neurodegenerative disorders, it is evident and well recognized that the therapeutic application of induced hypothermia is limited to a few highly selected clinical conditions such as cardiac arrest and hypoxic ischemic neonatal encephalopathy. Efforts to understand the fundamental aspects of brain temperature regulation are therefore critical for the development of safe, effective, and pragmatic clinical treatments for patients with brain injuries. Although centrally-mediated mechanisms to maintain a stable body temperature are relatively well established, very little is clinically known about brain temperature's spatial and temporal distribution, its physiological and pathological fluctuations, and the mechanism underlying brain thermal homeostasis. The human brain, a metabolically "expensive" organ with intense heat production, is sensitive to fluctuations in temperature with regards to its functional activity and energy efficiency. In this review, we discuss several critical aspects concerning the fundamental properties of brain temperature from a clinical perspective.
Collapse
Affiliation(s)
- Huan Wang
- Department of Neurosurgery, Carle Foundation Hospital, University of Illinois College of Medicine at Urbana-ChampaignUrbana, IL, USA
- Thermal Neuroscience Laboratory, Beckman Institute, University of Illinois at Urbana-ChampaignUrbana, IL, USA
| | - Bonnie Wang
- Department of Internal Medicine, Carle Foundation Hospital, University of Illinois College of Medicine at Urbana-ChampaignUrbana, IL, USA
| | - Kieran P. Normoyle
- Department of Internal Medicine, College of Medicine at Urbana-Champaign, University of IllinoisChampaign, Urbana, IL, USA
- Department of Molecular and Integrative Physiology, University of Illinois College of Medicine at Urbana-ChampaignUrbana, IL, USA
| | - Kevin Jackson
- Thermal Neuroscience Laboratory, Beckman Institute, University of Illinois at Urbana-ChampaignUrbana, IL, USA
| | - Kevin Spitler
- Department of Internal Medicine, Carle Foundation Hospital, University of Illinois College of Medicine at Urbana-ChampaignUrbana, IL, USA
| | - Matthew F. Sharrock
- Department of Internal Medicine, College of Medicine at Urbana-Champaign, University of IllinoisChampaign, Urbana, IL, USA
| | - Claire M. Miller
- Department of Internal Medicine, College of Medicine at Urbana-Champaign, University of IllinoisChampaign, Urbana, IL, USA
- Neuroscience Program, University of Illinois at Urbana-ChampaignUrbana, IL, USA
| | - Catherine Best
- Molecular and Cellular Biology, University of Illinois at Urbana-ChampaignUrbana, IL, USA
| | - Daniel Llano
- Thermal Neuroscience Laboratory, Beckman Institute, University of Illinois at Urbana-ChampaignUrbana, IL, USA
- Department of Molecular and Integrative Physiology, University of Illinois College of Medicine at Urbana-ChampaignUrbana, IL, USA
| | - Rose Du
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical SchoolBoston, MA, USA
| |
Collapse
|
48
|
Jeon SB, Koh Y, Choi HA, Lee K. Critical care for patients with massive ischemic stroke. J Stroke 2014; 16:146-60. [PMID: 25328873 PMCID: PMC4200590 DOI: 10.5853/jos.2014.16.3.146] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/03/2014] [Accepted: 09/04/2014] [Indexed: 01/29/2023] Open
Abstract
Malignant cerebral edema following ischemic stroke is life threatening, as it can cause inadequate blood flow and perfusion leading to irreversible tissue hypoxia and metabolic crisis. Increased intracranial pressure and brain shift can cause herniation syndrome and finally brain death. Multiple randomized clinical trials have shown that preemptive decompressive hemicraniectomy effectively reduces mortality and morbidity in patients with malignant middle cerebral artery infarction. Another life-saving decompressive surgery is suboccipital craniectomy for patients with brainstem compression by edematous cerebellar infarction. In addition to decompressive surgery, cerebrospinal fluid drainage by ventriculostomy should be considered for patients with acute hydrocephalus following stroke. Medical treatment begins with sedation, analgesia, and general measures including ventilatory support, head elevation, maintaining a neutral neck position, and avoiding conditions associated with intracranial hypertension. Optimization of cerebral perfusion pressure and reduction of intracranial pressure should always be pursued simultaneously. Osmotherapy with mannitol is the standard treatment for intracranial hypertension, but hypertonic saline is also an effective alternative. Therapeutic hypothermia may also be considered for treatment of brain edema and intracranial hypertension, but its neuroprotective effects have not been demonstrated in stroke. Barbiturate coma therapy has been used to reduce metabolic demand, but has become less popular because of its systemic adverse effects. Furthermore, general medical care is critical because of the complex interactions between the brain and other organ systems. Some challenging aspects of critical care, including ventilator support, sedation and analgesia, and performing neurological examinations in the setting of a minimal stimulation protocol, are addressed in this review.
Collapse
Affiliation(s)
- Sang-Beom Jeon
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Younsuck Koh
- Department of Pulmonary and Critical Care Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - H Alex Choi
- Departments of Neurology and Neurosurgery, The University of Texas Medical School at Houston, Houston, Texas, USA
| | - Kiwon Lee
- Departments of Neurology and Neurosurgery, The University of Texas Medical School at Houston, Houston, Texas, USA
| |
Collapse
|
49
|
Saxena M, Andrews PJD, Cheng A, Deol K, Hammond N, Cochrane Injuries Group. Modest cooling therapies (35ºC to 37.5ºC) for traumatic brain injury. Cochrane Database Syst Rev 2014; 2014:CD006811. [PMID: 25135381 PMCID: PMC7389311 DOI: 10.1002/14651858.cd006811.pub3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND Animal models of traumatic brain injury suggest that induced normothermia (36.5 or 37 ºC), compared to induced hyperthermia (39 ºC), improves histopathological and neurobehavioural outcomes. Observational clinical studies of patients with TBI suggest an association between raised body temperature and unfavourable outcome, although this relationship is inconsistent. OBJECTIVES To assess the effects of modest cooling therapies (defined as any drug or physical therapy aimed at maintaining body temperature between 35 ºC and 37.5 ºC) when applied to patients in the first week after traumatic brain injury. SEARCH METHODS The most recent search was run on 23(rd) September 2013. We searched the Cochrane Injuries Group's Specialised Register, The Cochrane Library (CENTRAL), MEDLINE (OvidSP), Embase (OvidSP), ISI WOS: SCI-EXPANDED (1970) & CPCI-S (1990), PubMed and trials registries together with reference checking. SELECTION CRITERIA All completed randomised, controlled and placebo-controlled trials published or unpublished, where modest cooling therapies were applied in the first week after traumatic brain injury. DATA COLLECTION AND ANALYSIS Two authors independently applied the selection criteria to relevant trials. MAIN RESULTS We were unable to find any randomised controlled trials of modest cooling therapies after traumatic brain injury. AUTHORS' CONCLUSIONS In order to further explore the preliminary findings provided by animal models and observational clinical studies that suggests there may be a beneficial effect of modest cooling for TBI, randomised trials designed to explore the effect of these interventions on patient-centred outcomes are needed.
Collapse
Affiliation(s)
- Manoj Saxena
- St George HospitalIntensive Care UnitGray StKogarahSydneyNSWAustralia2217
| | - Peter JD Andrews
- Lead Clinician, Critical Care Services, Western General Hospital, LUHDIntensive Care & Pain Medicine, University of EdinburghEdinburghUK
| | - Andrew Cheng
- St George HospitalIntensive Care UnitGray StKogarahSydneyNSWAustralia2217
| | - Kiran Deol
- St George HospitalIntensive Care UnitGray StKogarahSydneyNSWAustralia2217
| | - Naomi Hammond
- The George Institute for Global HealthCritical Care and Trauma DivisionLevel 7, 341 George StSydneyNSWAustralia2000
| | | |
Collapse
|
50
|
Madhavan K, Benglis DM, Wang MY, Vanni S, Lebwohl N, Green BA, Levi AD. The use of modest systemic hypothermia after iatrogenic spinal cord injury during surgery. Ther Hypothermia Temp Manag 2014; 2:183-92. [PMID: 24716491 DOI: 10.1089/ther.2012.0019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Iatrogenic spinal cord injury (SCI) is an uncommon (0%-3%), yet devastating, complication of spine surgery. Recent evidence based on small clinical studies indicates that modest hypothermia is a feasible treatment option for severe SCI. We extended this treatment modality to patients with devastating iatrogenic SCI. We conducted a retrospective case series of five male patients (cervical trauma--1, cervical degenerative--2, thoracic trauma--1, and thoracic scoliosis--1) with an age range of 16-51 years (average age of 46 years) with intraoperative motor-evoked potential/somatosensory-evoked potential loss secondary to catastrophic events during the spinal operation associated with new SCI. Modest hypothermia was instituted immediately postsurgery for 24 hours. Four patients also received methylprednisolone. Preoperative American Spinal Injury Association (ASIA) scores were D (n=3) and E (n=2), while immediate postoperative scores were A (n=1), B (n=1), C (n=2), and D (n=1). Immediate postoperative MRI revealed new cord signal change in three patients. Two patients required subsequent surgery. ASIA scores at last follow-up were C (n=1), D (n=3), and E (n=1) with an improvement of 1-2 grades per patient. Adverse events such as pulmonary embolism, deep venous thrombosis, coagulopathy, or infection were not observed. Hypothermia is a feasible treatment option for patients with iatrogenic SCI. While hypothermia has not been proven to improve outcomes in these situations, aggressive medical management, including cooling, resulted in better-than-expected outcomes in this small cohort.
Collapse
Affiliation(s)
- Karthik Madhavan
- 1 The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of Medicine , Miami, Florida
| | | | | | | | | | | | | |
Collapse
|