1
|
Wang S, Cheng L. The role of apoptosis in spinal cord injury: a bibliometric analysis from 1994 to 2023. Front Cell Neurosci 2024; 17:1334092. [PMID: 38293650 PMCID: PMC10825042 DOI: 10.3389/fncel.2023.1334092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/29/2023] [Indexed: 02/01/2024] Open
Abstract
Background Apoptosis after spinal cord injury (SCI) plays a pivotal role in the secondary injury mechanisms, which cause the ultimate neurologic insults. A better understanding of the molecular and cellular basis of apoptosis in SCI allows for improved glial and neuronal survival via the administrations of anti-apoptotic biomarkers. The knowledge structure, development trends, and research hotspots of apoptosis and SCI have not yet been systematically investigated. Methods Articles and reviews on apoptosis and SCI, published from 1st January 1994 to 1st Oct 2023, were retrieved from the Web of Science™. Bibliometrix in R was used to evaluate annual publications, countries, affiliations, authors, sources, documents, key words, and hot topics. Results A total of 3,359 publications in accordance with the criterions were obtained, which exhibited an ascending trend in annual publications. The most productive countries were the USA and China. Journal of Neurotrauma was the most impactive journal; Wenzhou Medical University was the most prolific affiliation; Cuzzocrea S was the most productive and influential author. "Apoptosis," "spinal-cord-injury," "expression," "activation," and "functional recovery" were the most frequent key words. Additionally, "transplantation," "mesenchymal stemness-cells," "therapies," "activation," "regeneration," "repair," "autophagy," "exosomes," "nlrp3 inflammasome," "neuroinflammation," and "knockdown" were the latest emerging key words, which may inform the hottest themes. Conclusions Apoptosis after SCI may cause the ultimate neurological damages. Development of novel treatments for secondary SCI mainly depends on a better understanding of apoptosis-related mechanisms in molecular and cellular levels. Such therapeutic interventions involve the application of anti-apoptotic agents, free radical scavengers, as well as anti-inflammatory drugs, which can be targeted to inhibit core events in cellular and molecular injury cascades pathway.
Collapse
Affiliation(s)
- Siqiao Wang
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, China
| | - Liming Cheng
- Division of Spine, Department of Orthopedics, Tongji Hospital Affiliated to Tongji University School of Medicine, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration (Tongji University), Ministry of Education, Shanghai, China
- Institute of Spinal and Spinal Cord Injury, Tongji University School of Medicine, Shanghai, China
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Zheng Y, Gallegos CM, Xue H, Li S, Kim DH, Zhou H, Xia X, Liu Y, Cao Q. Transplantation of Human Induced Pluripotent Stem Cell-Derived Neural Progenitor Cells Promotes Forelimb Functional Recovery after Cervical Spinal Cord Injury. Cells 2022; 11:2765. [PMID: 36078173 PMCID: PMC9454923 DOI: 10.3390/cells11172765] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/29/2022] [Accepted: 09/02/2022] [Indexed: 01/05/2023] Open
Abstract
Locomotor function after spinal cord injury (SCI) is critical for assessing recovery. Currently, available means to improve locomotor function include surgery, physical therapy rehabilitation and exoskeleton. Stem cell therapy with neural progenitor cells (NPCs) transplantation is a promising reparative strategy. Along this line, patient-specific induced pluripotent stem cells (iPSCs) are a remarkable autologous cell source, which offer many advantages including: great potential to generate isografts avoiding immunosuppression; the availability of a variety of somatic cells without ethical controversy related to embryo use; and vast differentiation. In this current work, to realize the therapeutic potential of iPSC-NPCs for the treatment of SCI, we transplanted purified iPSCs-derived NPCs into a cervical contusion SCI rat model. Our results showed that the iPSC-NPCs were able to survive and differentiate into both neurons and astrocytes and, importantly, improve forelimb locomotor function as assessed by the grooming task and horizontal ladder test. Purified iPSC-NPCs represent a promising cell type that could be further tested and developed into a clinically useful cell source for targeted cell therapy for cervical SCI patients.
Collapse
Affiliation(s)
- Yiyan Zheng
- Center for Translational Science, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
- Robert Stempel College of Public Health and Social Work, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Chrystine M. Gallegos
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Haipeng Xue
- Center for Translational Science, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
- Robert Stempel College of Public Health and Social Work, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Shenglan Li
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Dong H. Kim
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Hongxia Zhou
- Center for Translational Science, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
- Robert Stempel College of Public Health and Social Work, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
| | - Xugang Xia
- Center for Translational Science, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
- Robert Stempel College of Public Health and Social Work, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
| | - Ying Liu
- Center for Translational Science, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
- Robert Stempel College of Public Health and Social Work, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Qilin Cao
- Center for Translational Science, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
- Robert Stempel College of Public Health and Social Work, Florida International University, 11350 SW Village Pkwy, Port St. Lucie, FL 34987, USA
- Department of Neurosurgery, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin St., Houston, TX 77030, USA
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
3
|
Shi Z, Yuan S, Shi L, Li J, Ning G, Kong X, Feng S. Programmed cell death in spinal cord injury pathogenesis and therapy. Cell Prolif 2021; 54:e12992. [PMID: 33506613 PMCID: PMC7941236 DOI: 10.1111/cpr.12992] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/19/2020] [Accepted: 01/02/2021] [Indexed: 12/17/2022] Open
Abstract
Spinal cord injury (SCI) always leads to functional deterioration due to a series of processes including cell death. In recent years, programmed cell death (PCD) is considered to be a critical process after SCI, and various forms of PCD were discovered in recent years, including apoptosis, necroptosis, autophagy, ferroptosis, pyroptosis and paraptosis. Unlike necrosis, PCD is known as an active cell death mediated by a cascade of gene expression events, and it is crucial for elimination unnecessary and damaged cells, as well as a defence mechanism. Therefore, it would be meaningful to characterize the roles of PCD to not only enhance our understanding of the pathophysiological processes, but also improve functional recovery after SCI. This review will summarize and explore the most recent advances on how apoptosis, necroptosis, autophagy, ferroptosis, pyroptosis and paraptosis are involved in SCI. This review can help us to understand the various functions of PCD in the pathological processes of SCI, and contribute to our novel understanding of SCI of unknown aetiology in the near future.
Collapse
Affiliation(s)
- Zhongju Shi
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Shiyang Yuan
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Linlin Shi
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Jiahe Li
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Guangzhi Ning
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaohong Kong
- School of Medicine, Nankai University, Tianjin, China
| | - Shiqing Feng
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China
| |
Collapse
|
4
|
Abbaszadeh F, Fakhri S, Khan H. Targeting apoptosis and autophagy following spinal cord injury: Therapeutic approaches to polyphenols and candidate phytochemicals. Pharmacol Res 2020; 160:105069. [PMID: 32652198 DOI: 10.1016/j.phrs.2020.105069] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/28/2020] [Accepted: 07/03/2020] [Indexed: 12/11/2022]
Abstract
Spinal cord injury (SCI) is a neurological disorder associated with the loss of sensory and motor function. Understanding the precise dysregulated signaling pathways, especially apoptosis and autophagy following SCI, is of vital importance in developing innovative therapeutic targets and treatments. The present study lies in the fact that it reveals the precise dysregulated signaling mediators of apoptotic and autophagic pathways following SCI and also examines the effects of polyphenols and other candidate phytochemicals. It provides new insights to develop new treatments for post-SCI complications. Accordingly, a comprehensive review was conducted using electronic databases including, Scopus, Web of Science, PubMed, and Medline, along with the authors' expertise in apoptosis and autophagy as well as their knowledge about the effects of polyphenols and other phytochemicals on SCI pathogenesis. The primary mechanical injury to spinal cord is followed by a secondary cascade of apoptosis and autophagy that play critical roles during SCI. In terms of pharmacological mechanisms, caspases, Bax/Bcl-2, TNF-α, and JAK/STAT in apoptosis along with LC3 and Beclin-1 in autophagy have shown a close interconnection with the inflammatory pathways mainly glutamatergic, PI3K/Akt/mTOR, ERK/MAPK, and other cross-linked mediators. Besides, apoptotic pathways have been shown to regulate autophagy mediators and vice versa. Prevailing evidence has highlighted the importance of modulating these signaling mediators/pathways by polyphenols and other candidate phytochemicals post-SCI. The present review provides dysregulated signaling mediators and therapeutic targets of apoptotic and autophagic pathways following SCI, focusing on the modulatory effects of polyphenols and other potential phytochemical candidates.
Collapse
Affiliation(s)
- Fatemeh Abbaszadeh
- Department of Neuroscience, Faculty of Advanced Technologies in Medical Sciences, Iran University of Medical Sciences, Tehran, Iran; Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan.
| |
Collapse
|
5
|
Albayar AA, Roche A, Swiatkowski P, Antar S, Ouda N, Emara E, Smith DH, Ozturk AK, Awad BI. Biomarkers in Spinal Cord Injury: Prognostic Insights and Future Potentials. Front Neurol 2019; 10:27. [PMID: 30761068 PMCID: PMC6361789 DOI: 10.3389/fneur.2019.00027] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/10/2019] [Indexed: 12/17/2022] Open
Abstract
Spinal Cord Injury (SCI) is a major challenge in Neurotrauma research. Complex pathophysiological processes take place immediately after the injury and later on as the chronic injury develops. Moreover, SCI is usually accompanied by traumatic injuries because the most common modality of injury is road traffic accidents and falls. Patients develop significant permanent neurological deficits that depend on the extent and the location of the injury itself and in time they develop further neurological and body changes that may risk their mere survival. In our review, we explored the recent updates with regards to SCI biomarkers. We observed two methods that may lead to the appearance of biomarkers for SCI. First, during the first few weeks following the injury the Blood Spinal Cord Barrier (BSCB) disruption that releases several neurologic structure components from the injured tissue. These components find their way to Cerebrospinal Fluid (CSF) and the systemic circulation. Also, as the injury develops several components of the pathological process are expressed or released such as in neuroinflammation, apoptosis, reactive oxygen species, and excitotoxicity sequences. Therefore, there is a growing interest in examining any correlations between these components and the degrees or the outcomes of the injury. Additionally, some of the candidate biomarkers are theorized to track the progressive changes of SCI which offers an insight on the patients' prognoses, potential-treatments-outcomes assessment, and monitoring the progression of the complications of chronic SCI such as Pressure Ulcers and urinary dysfunction. An extensive literature review was performed covering literature, published in English, until February 2018 using the Medline/PubMed database. Experimental and human studies were included and titles, PMID, publication year, authors, biomarkers studies, the method of validation, relationship to SCI pathophysiology, and concluded correlation were reported. Potential SCI biomarkers need further validation using clinical studies. The selection of the appropriate biomarker group should be made based on the stage of the injuries, the accompanying trauma and with regards to any surgical, or medical interference that might have been done. Additionally, we suggest testing multiple biomarkers related to the several pathological changes coinciding to offer a more precise prediction of the outcome.
Collapse
Affiliation(s)
- Ahmed A. Albayar
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, University of Pennsylvania, Philadelphia, PA, United States
| | - Abigail Roche
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, University of Pennsylvania, Philadelphia, PA, United States
| | - Przemyslaw Swiatkowski
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, University of Pennsylvania, Philadelphia, PA, United States
| | - Sarah Antar
- Department of Medical Biochemistry, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Nouran Ouda
- Department of Neurosurgery, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Eman Emara
- Department of Neurosurgery, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Douglas H. Smith
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, University of Pennsylvania, Philadelphia, PA, United States
| | - Ali K. Ozturk
- Department of Neurosurgery, Penn Center for Brain Injury and Repair, University of Pennsylvania, Philadelphia, PA, United States
| | - Basem I. Awad
- Department of Neurosurgery, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
6
|
Ziemba AM, Gilbert RJ. Biomaterials for Local, Controlled Drug Delivery to the Injured Spinal Cord. Front Pharmacol 2017; 8:245. [PMID: 28539887 PMCID: PMC5423911 DOI: 10.3389/fphar.2017.00245] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/19/2017] [Indexed: 11/13/2022] Open
Abstract
Affecting approximately 17,000 new people each year, spinal cord injury (SCI) is a devastating injury that leads to permanent paraplegia or tetraplegia. Current pharmacological approaches are limited in their ability to ameliorate this injury pathophysiology, as many are not delivered locally, for a sustained duration, or at the correct injury time point. With this review, we aim to communicate the importance of combinatorial biomaterial and pharmacological approaches that target certain aspects of the dynamically changing pathophysiology of SCI. After reviewing the pathophysiology timeline, we present experimental biomaterial approaches to provide local sustained doses of drug. In this review, we present studies using a variety of biomaterials, including hydrogels, particles, and fibers/conduits for drug delivery. Subsequently, we discuss how each may be manipulated to optimize drug release during a specific time frame following SCI. Developing polymer biomaterials that can effectively release drug to target specific aspects of SCI pathophysiology will result in more efficacious approaches leading to better regeneration and recovery following SCI.
Collapse
Affiliation(s)
| | - Ryan J. Gilbert
- Department of Biomedical Engineering and Center for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, TroyNY, USA
| |
Collapse
|
7
|
Yu WR, Fehlings MG. Fas/FasL-mediated apoptosis and inflammation are key features of acute human spinal cord injury: implications for translational, clinical application. Acta Neuropathol 2011; 122:747-61. [PMID: 22038545 PMCID: PMC3224722 DOI: 10.1007/s00401-011-0882-3] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 09/28/2011] [Accepted: 09/29/2011] [Indexed: 12/19/2022]
Abstract
The Fas/FasL system plays an important role in apoptosis, the inflammatory response and gliosis in a variety of neurologic disorders. A better understanding of these mechanisms could lead to effective therapeutic strategies following spinal cord injury (SCI). We explored these mechanisms by examining molecular changes in postmortem human spinal cord tissue from cases with acute and chronic SCI. Complementary studies were conducted using the in vivo Fejota™ clip compression model of SCI in Fas-deficient B6.MRL-Fas-lpr (lpr) and wild-type (Wt) mice to test Fas-mediated apoptosis, inflammation, gliosis and axonal degeneration by immunohistochemistry, Western blotting, gelatin zymography and ELISA with Mouse 32-plex cytokine/chemokine panel bead immunoassay. We report novel evidence that shows that Fas-mediated apoptosis of neurons and oligodendrocytes occurred in the injury epicenter in all cases of acute and subacute SCI and not in chronic SCI or in control cases. We also found significantly reduced apoptosis, expression of GFAP, NF-κB, p-IKappaB and iba1, increased number of CD4 positive T cells and MMP2 expression and reduced neurological dysfunction in lpr mice when compared with Wt mice after SCI. We found dramatically reduced inflammation and cytokines and chemokine expression in B6.MRL-Fas-lpr mice compared to Wt mice after SCI. In conclusion, we report multiple lines of evidence that Fas/FasL activation plays a pivotal role in mediating apoptosis, the inflammatory response and neurodegeneration after SCI, providing a compelling rationale for therapeutically targeting Fas in human SCI.
Collapse
Affiliation(s)
- Wen Ru Yu
- Division of Genetics and Development, Toronto Western Research Institute and Krembil Neuroscience Centre, Toronto Western Hospital, University Health Network, Toronto, ON M5T 2S8 Canada
| | - Michael G. Fehlings
- Division of Neurosurgery, Toronto Western Research Institute and Krembil Neuroscience Centre, The Toronto Western Hospital, University Health Network, Room 4W-449, 399 Bathurst Street, Toronto, ON M5T 2S8 Canada
| |
Collapse
|
8
|
Sobani ZA, Quadri SA, Enam SA. Stem cells for spinal cord regeneration: Current status. Surg Neurol Int 2010; 1:93. [PMID: 21246060 PMCID: PMC3019362 DOI: 10.4103/2152-7806.74240] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2010] [Accepted: 11/01/2010] [Indexed: 01/03/2023] Open
Abstract
Background: Nearly 11,000 cases of spinal cord injury (SCI) are reported in the United States annually. Current management options give a median survival time of 38 years; however, no rehabilitative measures are available. Stem cells have been under constant research given their ability to differentiate into neural cell lines replacing non functional tissue. Efforts have been made to establish new synapses and provide a conducive environment, by grafting cells from autologous and fetal sources; including embryonic or adult stem cells, Schwann cells, genetically modified fibroblasts, bone stromal cells, and olfactory ensheathing cells and combinations/ variants thereof. Methods: In order to discuss the underlying mechanism of SCI along with the previously mentioned sources of stem cells in context to SCI, a simple review of literature was conducted. An extensive literature search was conducted using the PubMed data base and online search engines and articles published in the last 15 years were considered along with some historical articles where a background was required. Results: Stem cell transplantation for SCI is at the forefront with animal and in vitro studies providing a solid platform to enable well-designed human studies. Olfactory ensheathing cells seem to be the most promising; whilst bone marrow stromal cells appear as strong candidates for an adjunctive role. Conclusion: The key strategy in developing the therapeutic basis of stem cell transplantation for spinal cord regeneration is to weed out the pseudo-science and opportunism. All the trials should be based on stringent scientific criteria and effort to bypass that should be strongly discouraged at the international level.
Collapse
Affiliation(s)
- Zain A Sobani
- Department of Neurosurgery, Aga Khan University Hospital, Stadium Road, P.O. Box 3500, Karachi 74800, Pakistan
| | | | | |
Collapse
|
9
|
Cantarella G, Di Benedetto G, Scollo M, Paterniti I, Cuzzocrea S, Bosco P, Nocentini G, Riccardi C, Bernardini R. Neutralization of tumor necrosis factor-related apoptosis-inducing ligand reduces spinal cord injury damage in mice. Neuropsychopharmacology 2010; 35:1302-14. [PMID: 20107429 PMCID: PMC3055339 DOI: 10.1038/npp.2009.234] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Revised: 12/17/2009] [Accepted: 12/21/2009] [Indexed: 12/30/2022]
Abstract
Spinal cord injury (SCI) is a major cause of disability, its clinical outcome depending mostly on the extent of damage in which proapoptotic cytokines have a crucial function. In particular, the inducers of apoptosis belonging to TNF receptor superfamily and their respective ligands are upregulated after SCI. In this study, the function of the proapoptotic cytokine tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in SCI-induced damage was investigated in the mouse. SCI resulted in severe trauma, characterized by prominent inflammation-related damage and apoptosis. Immunostaining for TRAIL and its receptor DR5 was found in the white and gray matter of the perilesional area, as also confirmed by western blotting experiments. Immunoneutralization of TRAIL resulted in improved functional recovery, reduced apoptotic cell number, modulation of molecules involved in the inflammatory response (FasL, TNF-alpha, IL-1beta, and MPO), and the corresponding signaling (caspase-8 and -3 activation, JNK phosphorylation, Bax, and Bcl-2 expression). As glucocorticoid-induced TNF receptor superfamily-related protein (GITR) activated by its ligand (GITRL) contributes to SCI-related inflammation, interactions between TRAIL and GITRL were investigated. SCI was associated with upregulated GITR and GITRL expression, a phenomenon prevented by anti-TRAIL treatment. Moreover, the expression of both TRAIL and DR5 was reduced in tissues from mice lacking the GITR gene (GITR(-/-)) in comparison with wild-type mice suggesting that TRAIL- and GITRL-activated pathways synergise in the development of SCI-related inflammatory damage. Characterization of new targets within such molecular systems may constitute a platform for innovative treatment of SCI.
Collapse
Affiliation(s)
- Giuseppina Cantarella
- Department of Experimental and Clinical Pharmacology, University of Catania School of Medicine, Catania, Italy
| | - Giulia Di Benedetto
- Department of Experimental and Clinical Pharmacology, University of Catania School of Medicine, Catania, Italy
- ‘Oasi' Institute for Research on Mental Retardation and Brain Aging (I.R.C.C.S.), Troina (EN), Italy
| | - Mimmo Scollo
- Department of Experimental and Clinical Pharmacology, University of Catania School of Medicine, Catania, Italy
| | - Irene Paterniti
- Department of Pharmacology, University of Messina School of Medicine, Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Pharmacology, University of Messina School of Medicine, Messina, Italy
| | - Paolo Bosco
- ‘Oasi' Institute for Research on Mental Retardation and Brain Aging (I.R.C.C.S.), Troina (EN), Italy
| | - Giuseppe Nocentini
- Department of Experimental Medicine, University of Perugia School of Medicine, Perugia, Italy
| | - Carlo Riccardi
- Department of Experimental Medicine, University of Perugia School of Medicine, Perugia, Italy
| | - Renato Bernardini
- Department of Experimental and Clinical Pharmacology, University of Catania School of Medicine, Catania, Italy
| |
Collapse
|
10
|
Buhler LA, Samara R, Guzman E, Wilson CL, Krizanac-Bengez L, Janigro D, Ethell DW. Matrix metalloproteinase-7 facilitates immune access to the CNS in experimental autoimmune encephalomyelitis. BMC Neurosci 2009; 10:17. [PMID: 19267908 PMCID: PMC2660336 DOI: 10.1186/1471-2202-10-17] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Accepted: 03/06/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Metalloproteinase inhibitors can protect mice against experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis (MS). Matrix metalloproteinase-9 (MMP-9) has been implicated, but it is not clear if other MMPs are also involved, including matrilysin/MMP-7 - an enzyme capable of cleaving proteins that are essential for blood brain barrier integrity and immune suppression. RESULTS Here we report that MMP-7-deficient (mmp7-/-) mice on the C57Bl/6 background are resistant to EAE induced by myelin oligodendrocyte glycoprotein (MOG). Brain sections from MOG-primed mmp7-/-mice did not show signs of immune cell infiltration of the CNS, but MOG-primed wild-type mice showed extensive vascular cuffing and mononuclear cell infiltration 15 days after vaccination. At the peak of EAE wild-type mice had MMP-7 immuno-reactive cells in vascular cuffs that also expressed the macrophage markers Iba-1 and Gr-1, as well as tomato lectin. MOG-specific proliferation of splenocytes, lymphocytes, CD4+ and CD8+ cells were reduced in cells isolated from MOG-primed mmp7-/- mice, compared with MOG-primed wild-type mice. However, the adoptive transfer of splenocytes and lymphocytes from MOG-primed mmp7-/- mice induced EAE in naïve wild-type recipients, but not naïve mmp7-/- recipients. Finally, we found that recombinant MMP-7 increased permeability between endothelial cells in an in vitro blood-brain barrier model. CONCLUSION Our findings suggest that MMP-7 may facilitate immune cell access or re-stimulation in perivascular areas, which are critical events in EAE and multiple sclerosis, and provide a new therapeutic target to treat this disorder.
Collapse
Affiliation(s)
- Lillian A Buhler
- Division of Biomedical Sciences, University of California Riverside, 900 University Avenue, Riverside, CA 92521-0121, USA
- Biochemistry and Molecular Biology Graduate Program, UCR, Riverside, CA 92521, USA
| | - Ramsey Samara
- Division of Biomedical Sciences, University of California Riverside, 900 University Avenue, Riverside, CA 92521-0121, USA
- Neuroscience Graduate Program, UCR, Riverside, CA 92521, USA
| | - Esther Guzman
- Division of Biomedical Sciences, University of California Riverside, 900 University Avenue, Riverside, CA 92521-0121, USA
| | - Carole L Wilson
- Department of Pathology, University of Washington School of Medicine, 300 9th Avenue, Seattle, WA 98104, USA
| | - Liljana Krizanac-Bengez
- Cerebrovascular Research, Cleveland Clinic Foundation NB20, Neurosurgery, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Damir Janigro
- Cerebrovascular Research, Cleveland Clinic Foundation NB20, Neurosurgery, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | - Douglas W Ethell
- Division of Biomedical Sciences, University of California Riverside, 900 University Avenue, Riverside, CA 92521-0121, USA
| |
Collapse
|
11
|
Vaquero J. Comment to the article Q-VD-OPh, a pancaspase inhibitor, reduces trauma-induced apoptosis and improves the recovery of hind-limb function in rats after spinal cord injury by Çolak et al. Neurocirugia (Astur) 2009. [DOI: 10.1016/s1130-1473(09)70131-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Dasari VR, Spomar DG, Li L, Gujrati M, Rao JS, Dinh DH. Umbilical cord blood stem cell mediated downregulation of fas improves functional recovery of rats after spinal cord injury. Neurochem Res 2007; 33:134-49. [PMID: 17703359 PMCID: PMC2167626 DOI: 10.1007/s11064-007-9426-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Accepted: 06/22/2007] [Indexed: 01/09/2023]
Abstract
Human umbilical cord blood stem cells (hUCB), due to their primitive nature and ability to develop into nonhematopoietic cells of various tissue lineages, represent a potentially useful source for cell-based therapies after spinal cord injury (SCI). To evaluate their therapeutic potential, hUCB were stereotactically transplanted into the injury epicenter, one week after SCI in rats. Our results show the presence of a substantial number of surviving hUCB in the injured spinal cord up to five weeks after transplantation. Three weeks after SCI, apoptotic cells were found especially in the dorsal white matter and gray matter, which are positive for both neuron and oligodendrocyte markers. Expression of Fas on both neurons and oligodendrocytes was efficiently downregulated by hUCB. This ultimately resulted in downregulation of caspase-3 extrinsic pathway proteins involving increased expression of FLIP, XIAP and inhibition of PARP cleavage. In hUCB-treated rats, the PI3K/Akt pathway was also involved in antiapoptotic actions. Further, structural integrity of the cytoskeletal proteins alpha-tubulin, MAP2A&2B and NF-200 has been preserved in hUCB treatments. The behavioral scores of hind limbs of hUCB-treated rats improved significantly than those of the injured group, showing functional recovery. Taken together, our results indicate that hUCB-mediated downregulation of Fas and caspases leads to functional recovery of hind limbs of rats after SCI.
Collapse
Affiliation(s)
- Venkata Ramesh Dasari
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria, IL 61656
| | - Daniel G. Spomar
- Department of Neurosurgery, University of Illinois College of Medicine at Peoria, Peoria, IL 61656
| | - Liang Li
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria, IL 61656
| | - Meena Gujrati
- Department of Pathology, University of Illinois College of Medicine at Peoria, Peoria, IL 61656
| | - Jasti S. Rao
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria, IL 61656
- Department of Neurosurgery, University of Illinois College of Medicine at Peoria, Peoria, IL 61656
| | - Dzung H. Dinh
- Department of Neurosurgery, University of Illinois College of Medicine at Peoria, Peoria, IL 61656
- *Corresponding Author: Dzung H. Dinh, M.D., Department of Neurosurgery, University of Illinois College of Medicine at Peoria, One Illini Drive, Peoria, IL 61605, USA, (309) 655-2642 – phone; (309) 655-7696 - fax; e-mail:
| |
Collapse
|
13
|
Wang J, Zheng Q, Zhao M, Guo X. Neurocyte apoptosis and expressions of caspase-3 and Fas after spinal cord injury and their implication in rats. ACTA ACUST UNITED AC 2007; 26:709-12. [PMID: 17357496 DOI: 10.1007/s11596-006-0622-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To study the expression of neurocyte apoptosis and the changes of caspase-3 and Fas after spinal cord injury (SCI) in rats, improved Allen's method was used to make model of acute SCI at the level of T9 and T10. The animals were divided into six groups: a control group and 5 injury groups. The segments of injured spinal cords were taken 6, 24, 48 h and 7, 15 days after injury for morphological studies, including HE staining, Hoechst33258 staining and TUNEL labeling. The expression of caspase-3 was detected by immunohistochemical staining and RT-PCR. TUNEL-positive cells began to appear in the compression region 6 h after the injury, mostly located in the gray matter. TUNEL-positive cells were found in both gray and white matter, reaching a peak at the 3rd day. They began to decrease at the 7th day, distributed mostly in the white matter. Fas increased at the 6th h and peaked at the 3rd day. Caspase-3 mRNA increased at the 6th h, peaking 48 h after the trauma, and decreased after 7 days. The protein expression of caspase-3, as revealed by immunohistochemical staining, was similar to TUNEL in time. It is concluded that apoptosis takes place after spinal cord injury, and caspase-3 mRNA and protein expressions were enhanced in the apoptosis. The expression of caspase-3 has a positive correlation with Fas expression.
Collapse
Affiliation(s)
- Jinguang Wang
- Department of Orthopedics,Union Hospital, Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430022, China
| | | | | | | |
Collapse
|
14
|
Barut S, Unlü YA, Karaoğlan A, Tunçdemir M, Dağistanli FK, Oztürk M, Colak A. The neuroprotective effects of z-DEVD.fmk, a caspase-3 inhibitor, on traumatic spinal cord injury in rats. ACTA ACUST UNITED AC 2005; 64:213-20; discussion 220. [PMID: 16099247 DOI: 10.1016/j.surneu.2005.03.042] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2004] [Accepted: 03/21/2005] [Indexed: 10/25/2022]
Abstract
BACKGROUND Apoptosis is one of the most important forms of cell death seen in a variety of physiological and pathological conditions, including traumatic injuries. This type of cell death occurs via mediators known as caspases. Previous studies have investigated the roles that apoptosis and different caspases play in the pathogenesis of secondary damage after spinal cord injury (SCI). The aim of this research was to assess the neuroprotective effect of z-DEVD.fmk, a caspase-3 inhibitor, in a rat model of SCI. METHODS Forty-five Wistar albino rats were studied in 3 groups of 15 animals: sham-operated control animals (group 1); trauma-only control animals (group 2); and rats subjected to trauma + z-DEVD.fmk treatment (group 3). Spinal cord injury was produced at the thoracic level using the weight-drop technique. Responses to injury and the efficacy of z-DEVD.fmk were assessed by light microscopy and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling staining in cord tissues collected at 4 and 24 hours posttrauma. Five rats from each group were used to assess functional recovery at 7 days after SCI. The functional evaluations were done using the inclined-plane technique and a modified Tarlov motor grading scale. RESULTS At 4 hours postinjury, the mean apoptotic index in groups 1, 2, and 3 was 0, 33.01+/-6.62, and 16.40+/-4.91, respectively. The group 3 count was significantly lower than the group 2 count (P<.01). At 24 hours postinjury, light microscopic examination of group 2 tissues showed widespread hemorrhage, necrosis, polymorphonuclear leukocyte infiltration, and vascular thrombi. The group 3 tissues showed similar features. The prominent findings in group 2 were hemorrhage and necrosis, whereas the prominent findings in group 3 were focal hemorrhage and leukocyte infiltration. The mean inclined-plane angles in groups 1, 2, and 3 were 64.5 degrees+/-1.0 degrees, 41.5 degrees+/-1.3 degrees, and 47 degrees+/-2.0 degrees, respectively. Motor scale results in all groups showed a similar trend. CONCLUSION Local application of z-DEVD.fmk after SCI in rats reduces secondary tissue injury and helps preserve motor function. These effects can be explained by inhibition of apoptotic death in all cell types in the spinal cord.
Collapse
Affiliation(s)
- Seref Barut
- Neurosurgery Clinic, Taksim Education and Research Hospital, Istanbul, Turkey, 34144
| | | | | | | | | | | | | |
Collapse
|
15
|
Colak A, Karaoğlan A, Barut S, Köktürk S, Akyildiz AI, Taşyürekli M. Neuroprotection and functional recovery after application of the caspase-9 inhibitor z-LEHD-fmk in a rat model of traumatic spinal cord injury. J Neurosurg Spine 2005; 2:327-34. [PMID: 15796358 DOI: 10.3171/spi.2005.2.3.0327] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT Apoptosis is considered one of the most significant mechanisms in the pathogenesis of neuronal damage after spinal cord injury (SCI). This form of cell death occurs via mediators known as caspases. The aim of this study was to evaluate the neuroprotective effect of the caspase-9 inhibitor, z-LEHD-fmk, in a rat model of spinal cord trauma. METHODS Fifty-four Wistar albino rats were studied in the following three groups of 18 animals each: sham-operated controls (Group 1); trauma-only controls (Group 2); and trauma combined with z-LEHD-fmk-treated animals (0.8 microM/kg; Group 3). Spinal cord injury was produced at the thoracic level by using the weight-drop technique. Responses to SCI and the efficacy of z-LEHD-fmk treatment were determined on the basis of terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling staining and light and electron microscopy findings in cord tissue at 24 hours and 7 days posttrauma. Six rats from each group were also assessed for functional recovery at 3 and 7 days after SCI. This was conducted using the inclined-plane technique and a modified version of the Tarlov motor grading scale. At 24 hours postinjury, light microscopic examination of Group 2 tissue samples showed hemorrhage, edema, necrosis, polymorphonuclear leukocyte infiltration, and vascular thrombi. Those obtained in Group 3 rats at this stage showed similar features. At 24 hours postinjury, the mean apoptotic cell count in Group 2 was significantly higher than that in Group 3 (90.25 +/- 2.6 and 50.5 +/- 1.9, respectively; p < 0.05). At 7 days postinjury, the corresponding mean apoptotic cell counts were 49 +/- 2.1 and 17.7 +/- 2.6, also a significant difference (p < 0.05). Electron microscopy findings confirmed the occurrence of programmed cell death in different cell types in the spinal cord and showed that z-LEHD-fmk treatment protected neurons, glia, myelin, axons, and intracellular organelles. CONCLUSIONS Examination of the findings in this rat model of SCI revealed that apoptosis occurs not only in neurons and astrocytes but also in oligodendrocytes and microglia. Furthermore, immediate treatment with the caspase-9 inhibitor z-LEHD-fmk blocked apoptosis effectively and was associated with better functional outcome. More in-depth research of the role of programmed cell death in spinal cord trauma and further study of the ways in which caspases are involved in this process may lead to new strategies for treating SCI.
Collapse
Affiliation(s)
- Ahmet Colak
- Neurosurgery and Pathology Clinics, Taksim Education and Research Hospital, Istanbul, Turkey.
| | | | | | | | | | | |
Collapse
|
16
|
Abstract
While defective apoptosis predisposes to neoplasia, inappropriate apoptosis in the brain leads to permanent neurological deficits. Disregulated apoptosis has been implicated in several neurodegenerative disorders including Alzheimer's, Parkinson's, and Huntington's diseases. Recent reports have suggested that the key apoptosis regulator Fas ligand (FasL) may participate in both neuronal and immune cell apoptosis in Alzheimer's disease. FasL has also been implicated as a negative regulator for the inflammatory component of the demyelinating brain disorder multiple sclerosis (MS). Here we discuss how FasL-mediated apoptosis may balance immune cell access to the brain with Alzheimer's disease and MS representing extremes of too little and too much immune access, respectively.
Collapse
Affiliation(s)
- Douglas W Ethell
- Division of Biomedical Sciences, University of California Riverside, Riverside, California, USA.
| | | |
Collapse
|
17
|
Abstract
While defective apoptosis predisposes to neoplasia, inappropriate apoptosis in the brain leads to permanent neurological deficits. Disregulated apoptosis has been implicated in several neurodegenerative disorders including Alzheimer's, Parkinson's, and Huntington's diseases. Recent reports have suggested that the key apoptosis regulator Fas ligand (FasL) may participate in both neuronal and immune cell apoptosis in Alzheimer's disease. FasL has also been implicated as a negative regulator for the inflammatory component of the demyelinating brain disorder multiple sclerosis (MS). Here, we discuss how FasL-mediated apoptosis may balance immune cell access to the brain with Alzheimer's disease and MS representing extremes of too little and too much immune access, respectively.
Collapse
Affiliation(s)
- Douglas W Ethell
- Division of Biomedical Sciences, University of California-Riverside, 900 University Avenue, Riverside, California 92521-0121, USA.
| | | |
Collapse
|
18
|
Abstract
Inflammatory reaction following a spinal cord injury (SCI) contributes substantially to secondary effects, with both beneficial and devastating effects. This review summarizes the current knowledge concerning the structural features (vascular, cellular, and biochemical events) of SCI and gives an overview of the regulation of post-traumatic inflammation.
Collapse
Affiliation(s)
- O N Hausmann
- Neurosurgical Department, University Clinics Basel, Switzerland
| |
Collapse
|
19
|
Zurita M, Vaquero J, Oya S, Morales C. Effects of dexamethasone on apoptosis-related cell death after spinal cord injury. J Neurosurg 2002; 96:83-9. [PMID: 11795719 DOI: 10.3171/spi.2002.96.1.0083] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECT The purpose of this study was to analyze the expression of F7-26 (Apostain) in injured spinal cord tissue, and the modifying effects of dexamethasone administration. METHODS A total of 56 adult female Wistar rats were subjected to traumatic spinal cord injury (SCI) to induce complete paraplegia. These rats were divided into two groups according to whether they received dexamethasone (doses of 1 mg/kg daily) post-SCI. Injured spinal cord tissue was studied by means of conventional histological techniques, and Apostain expression was determined by immunohistochemical analysis at 1, 4, 8, 24, and 72 hours, and at 1 and 2 weeks after SCI in all the animals. Apostain-positive cells, mainly neurons and glial cells, were detected 1 hour after injury, peaking at 8 hours, after which the number decreased. One week after injury, apoptosis was limited to a few glial cells, mainly oligodendrocytes, and 2 weeks after injury there was no evidence of Apostain-positive cells. In the group of paraplegic rats receiving post-SCI intraperitoneal dexamethasone, there was a significant decrease in the number of Apostain-positive cells. CONCLUSIONS Analysis of the results indicated that apoptosis plays a role in the early period after SCI and that administration of dexamethasone decreases apoptosis-related cell death in the injured spinal cord tissue.
Collapse
Affiliation(s)
- Mercedes Zurita
- Neuroscience Research Unit, Mapfre-Medicine Foundation and Neurosurgical Service, Puerta de Hierro Clinic, Autonomous University, Madrid, Spain
| | | | | | | |
Collapse
|