1
|
Raut AK, Mohapatra S, SiddiquI G, Rajak SK, Sonar R, Basu S, Joshi V, Singh V. The Human Cornea: Unraveling Its Structural, Chemical, and Biochemical Complexities. Chem Biodivers 2025; 22:e202402224. [PMID: 39559954 DOI: 10.1002/cbdv.202402224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/20/2024]
Abstract
The cornea, the transparent part of the anterior eye, is vital for light refraction and vision. This review examines the intricate chemical and biochemical interactions essential for maintaining corneal transparency and highlights significant advancements in corneal biology. The cornea comprises five layers: the epithelium, Bowman's layer, stroma, Descemet's membrane, and endothelium, each contributing uniquely to its structure and function. The epithelium, maintained by limbal stem cells, serves as a barrier and interacts with the tear film to maintain ocular surface health. The stroma, abundant in organized collagen fibrils and regulated by proteoglycans, is crucial for corneal clarity and biomechanical integrity, whereas the endothelium regulates corneal hydration and nutrition. Recent imaging advances have improved visualization of these molecular structures, enhancing our understanding of collagen organization and cross-linking. Proteoglycans such as decorin and lumican regulate collagen spacing and hydration, directly influencing corneal clarity. Biochemical processes within the cornea involve signaling molecules, growth factors, and cytokines, which are essential for wound healing, inflammation, and injury response. Despite progress, questions remain regarding corneal wound healing mechanisms, the impact of oxidative stress, and the roles of microRNAs. This review synthesizes recent discoveries to advance our understanding of corneal physiology and biochemical functions.
Collapse
Affiliation(s)
- Arun Kumar Raut
- LV Prasad Eye Institute, Kallam Anji Reddy Campus, Centre for Ocular Regeneration, Brien Holden Eye Research Centre, Champalimaud Translational Centre for Eye Research, Hyderabad, Telangana, India
| | - Sonali Mohapatra
- LV Prasad Eye Institute, Kallam Anji Reddy Campus, Centre for Ocular Regeneration, Brien Holden Eye Research Centre, Champalimaud Translational Centre for Eye Research, Hyderabad, Telangana, India
| | - Gufran SiddiquI
- LV Prasad Eye Institute, Kallam Anji Reddy Campus, Centre for Ocular Regeneration, Brien Holden Eye Research Centre, Champalimaud Translational Centre for Eye Research, Hyderabad, Telangana, India
| | - Suraj Kumar Rajak
- LV Prasad Eye Institute, Kallam Anji Reddy Campus, Centre for Ocular Regeneration, Brien Holden Eye Research Centre, Champalimaud Translational Centre for Eye Research, Hyderabad, Telangana, India
| | - Rohini Sonar
- LV Prasad Eye Institute, Kallam Anji Reddy Campus, Centre for Ocular Regeneration, Brien Holden Eye Research Centre, Champalimaud Translational Centre for Eye Research, Hyderabad, Telangana, India
| | - Sayan Basu
- LV Prasad Eye Institute, Kallam Anji Reddy Campus, Centre for Ocular Regeneration, Brien Holden Eye Research Centre, Champalimaud Translational Centre for Eye Research, Hyderabad, Telangana, India
| | - Vineet Joshi
- LV Prasad Eye Institute, Kallam Anji Reddy Campus, Centre for Ocular Regeneration, Brien Holden Eye Research Centre, Champalimaud Translational Centre for Eye Research, Hyderabad, Telangana, India
| | - Vivek Singh
- LV Prasad Eye Institute, Kallam Anji Reddy Campus, Centre for Ocular Regeneration, Brien Holden Eye Research Centre, Champalimaud Translational Centre for Eye Research, Hyderabad, Telangana, India
| |
Collapse
|
2
|
Chikami Y, Yahata K. Soma-germ contact across the basement membrane in the ovary. Biol Lett 2025; 21:20250056. [PMID: 40262642 PMCID: PMC12014236 DOI: 10.1098/rsbl.2025.0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/03/2025] [Accepted: 03/03/2025] [Indexed: 04/24/2025] Open
Abstract
Epithelial cells interact with other cells and environments at their apical side, while the basement membrane typically impedes such interaction at the basal surface. One notable instance is communication between soma and germ cells within the ovary across numerous bilaterian taxa. This contact underlies proper oogenesis and subsequent embryogenesis. Throughout the history of morphology and cell biology, there has been an emphasis on this heterocellular interaction primarily occurring at the apical side of epithelial cells. Contrary to this long-standing understanding, we uncover that ovarian follicle cells in two myriapod species belonging to phylogenetically basal myriapod clades extend their cytoplasmic processes, penetrating the basement membrane to establish direct contact with oocytes. These discoveries demonstrate that the ovarian soma-germ interaction transverses the basement membrane, suggesting that the basal matrix is not always a physical barrier to soma-germ communication. Furthermore, we find that the ovarian somatic cells in a myriapod directly connect with the oogonia or young oocyte before forming their basement membrane. These results encourage reconsidering the conventional view of soma-germ interaction and suggest an overlooked construction manner of heterocellular communication in epithelial cells.
Collapse
Affiliation(s)
- Yasuhiko Chikami
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Faculty of Science, Shizuoka University, Shizuoka, Shizuoka, Japan
| | - Kensuke Yahata
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
3
|
Kandasamy N, Palanivel T, Selvaraj V, Dhanasekaran A. Designing lysyl hydroxylase inhibitors for oral submucous fibrosis - Insights from molecular dynamics. Int J Biol Macromol 2025; 295:139304. [PMID: 39743109 DOI: 10.1016/j.ijbiomac.2024.139304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/26/2024] [Accepted: 12/27/2024] [Indexed: 01/04/2025]
Abstract
Alpha-ketoglutarate (αKG) dependent Lysyl hydroxylase (LH) is a critical enzyme in the post-translational conversion of lysine into hydroxylysine in collagen triple helix and telopeptide regions. Overexpression of LH increases collagen hydroxylation and covalent cross-linkage, causing fibrosis. Currently, no drugs are available to inhibit LH potentially. Virtual screening of the Zinc database was employed to identify new leads. They were docked using Glide. Lead1 complex exhibits a notably superior docking score compared to other leads. This complex hinders iron stabilization by engaging with the HXD..Xn..H motif and competitively inhibiting 2OG binding at the catalytic site via interactions with Cys691 and Arg729 by forming a salt bridge. Molecular dynamics simulations over a 500 ns time scale and molecular mechanics Poisson-Boltzmann surface area calculations illustrate the stable binding of Leads. DCCA analysis finds the coordinated residue motions and the influence of the second coordinating sphere in long-range interactions. In-silico results were validated by quantifying the amount of collagen in zebrafish through histology and hydroxyproline assay. These findings demonstrated a reduction in collagen deposition in the treated samples compared to the positive control. This computational study unveiled insights into how leads may impede collagen lysine hydroxylation and potentially impact collagen-related processes.
Collapse
Affiliation(s)
| | | | - Vimalraj Selvaraj
- Department of Applied Mechanics and Biomedical Engineering, Indian Institute of Technology-Madras, Chennai 600 036, Tamil Nadu, India
| | | |
Collapse
|
4
|
Zeng J, Heilig S, Ryma M, Groll J, Li C, Matsusaki M. Outermost Cationic Surface Charge of Layer-by-Layer Films Prevents Endothelial Cells Migration for Cell Compartmentalization in Three-Dimensional Tissues. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2417538. [PMID: 39985273 DOI: 10.1002/advs.202417538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Indexed: 02/24/2025]
Abstract
Tissues and organs possess an organized cellular arrangement that enables their unique functions. However, conventional three-dimensional (3D) encapsulation techniques fail to recapitulate this complexity due to the cell migration during cell culture. In biological tissues, basement membranes (BMs) are essential to mechanically support cellular organization. This study finds that a positively charged outermost surface of multilayered nanofilms, fabricated through layer-by-layer assembly of poly-l-lysine (PLL) and dextran (Dex) via hydrogen bonds, stimulates the barrier functions of BMs. This type of artificial BM (A-BM) demonstrates enhanced barrier properties in comparison to other types of A-BMs composed of BM components such as collagen type IV and laminin. Such an enhancement is potentially associated with the outermost cationic layer, which inhibits the sprouting of endothelial cells (ECs) and effectively prevents EC migration over a 14-d period, aligning with the formation timeline of natural BMs in 3D tissues. Finally, 3D organized vascular channels are successfully engineered with the support of shape-adaptable PLL/Dex nanofilms. This approach offers a guideline for engineering organized 3D tissue models by regulating cell migration, which can provide reliable platforms for in vitro permeability assay of new drugs or drug delivery carriers.
Collapse
Affiliation(s)
- Jinfeng Zeng
- College of Textiles, Donghua University, Shanghai, 201620, China
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Sven Heilig
- University of Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| | - Matthias Ryma
- University of Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| | - Jürgen Groll
- University of Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| | - Congju Li
- College of Textiles, Donghua University, Shanghai, 201620, China
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
5
|
Markasz L, Mobini-Far H, Sindelar R. Early and late postnatal lung distribution of collagen type VI in preterm and term infants. Respir Physiol Neurobiol 2025; 332:104366. [PMID: 39577825 DOI: 10.1016/j.resp.2024.104366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/24/2024]
Abstract
Collagen type VI (COL6) is an important component of the extracellular matrix (EM) and may have a major role in lung development and disease. Studies on COL6 expression during lung development are mainly based on animal models. The aim of the study was to define COL6 expression pattern in lung parenchyma in infants with different lung maturational stages. COL6 expression in 115 lung samples from deceased newborn infants (21-41 weeks' gestational age; 0-228 days' postnatal age) was studied by immunohistochemistry combined with digital image analysis. The distribution of COL6 expression was generally heterogeneous in the lung parenchyma of preterm and term infants. The size of the high-density and low-density areas appeared with logarithmic correlation and COL6 defined the basement membrane (BM) with a prominent expression around the air spaces in the canalicular stage during the first postnatal week. Infants at the alveolar stage showed linear correlation and a fine filamentous appearance during the first week of postnatal life, similarly to adults. COL6 is condensed to areas corresponding to the BM during the first postnatal week of the canalicular stage of lung development. After the first postnatal week COL6 expression changes to a microfibrillar appearance in the ECM, similar to the pattern that characterizes the later alveolar stage and adults. The localization of COL6 during the canalicular and saccular stages might have a higher impact on lung development than the amount of COL6.
Collapse
Affiliation(s)
- Laszlo Markasz
- Department of Women's and Children's Health, Uppsala University, Uppsala SE-751 85, Sweden.
| | - Hamid Mobini-Far
- Department of Pathology, Uppsala University Hospital, Uppsala SE-751 85, Sweden
| | - Richard Sindelar
- Department of Women's and Children's Health, Uppsala University, Uppsala SE-751 85, Sweden
| |
Collapse
|
6
|
Wenta T, Nastaly P, Lipinska B, Manninen A. Remodeling of the extracellular matrix by serine proteases as a prerequisite for cancer initiation and progression. Matrix Biol 2024; 134:197-219. [PMID: 39500383 DOI: 10.1016/j.matbio.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/16/2024] [Accepted: 10/31/2024] [Indexed: 11/25/2024]
Abstract
The extracellular matrix (ECM) serves as a physical scaffold for tissues that is composed of structural proteins such as laminins, collagens, proteoglycans and fibronectin, forming a three dimensional network, and a wide variety of other matrix proteins with ECM-remodeling and signaling functions. The activity of ECM-associated signaling proteins is tightly regulated. Thus, the ECM serves as a reservoir for water and growth regulatory signals. The ECM architecture is dynamically modulated by multiple serine proteases that process both structural and signaling proteins to regulate physiological processes such as organogenesis and tissue homeostasis but they also contribute to pathological events, especially cancer progression. Here, we review the current literature regarding the role of ECM remodeling by serine proteases (KLKs, uPA, furin, HtrAs, granzymes, matriptase, hepsin) in tumorigenesis.
Collapse
Affiliation(s)
- Tomasz Wenta
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Poland.
| | - Paulina Nastaly
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Barbara Lipinska
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Poland
| | - Aki Manninen
- Disease Networks Research Unit, Faculty of Biochemistry and Molecular Medicine & Biocenter Oulu, University of Oulu, Oulu, Finland.
| |
Collapse
|
7
|
Singh P, Jay DG. The Role of eHsp90 in Extracellular Matrix Remodeling, Tumor Invasiveness, and Metastasis. Cancers (Basel) 2024; 16:3873. [PMID: 39594828 PMCID: PMC11592750 DOI: 10.3390/cancers16223873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/01/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
Identifying proteins that act in tumor invasiveness and metastasis remains a critical unmet need in our search for effective cancer therapy. Hsp90, an abundant intracellular chaperone protein, plays a key role in maintaining cell homeostasis, and its elevated activity is pivotal in cancer progression. Due to the reliance of cancer cells on Hsp90's chaperone function to sustain tumor growth and spread, Hsp90 inhibitors have been the subject of numerous clinical trials over the past two decades. However, these efforts have largely been unsuccessful, primarily due to the cellular toxicity caused by pan-Hsp90 inhibitors at doses required for anticancer efficacy. Therefore, novel approaches to target Hsp90 are necessary. An identified subpopulation of Hsp90 located outside cells (eHsp90) may offer a promising alternative as a therapeutic target against cancer. Studies including our own have shown that eHsp90 is released specifically by cancer cells, and eHsp90 has unique interactors and functions extracellularly to promote tumor invasiveness, the initial step in metastasis. Inhibition of eHsp90 has been shown to suppress metastasis in animal models, indicating its therapeutic potential, although the underlying mechanisms remain incompletely understood. Cancer cells modulate the tumor microenvironment (TME) during the invasion, especially the ECM proteins and the state of the ECM is a strong predictor of invasive and metastatic cancer. Given that most of the known eHsp90 clients are ECM proteins or are proteins involved in ECM modulation, ECM remodelling could be the key mechanism through which eHsp90 enhances invasiveness. This review will focus on ECM modulation by eHsp90 as a driver of cancer invasion and metastasis. We will also discuss the potency of inhibiting eHsp90 in inhibiting invasion and metastatic spread in preclinical models and the using circulating Hsp90 patient samples as a biomarker of cancer invasion and metastasis.
Collapse
Affiliation(s)
- Pragya Singh
- Graduate School of Biomedical Sciences, Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Daniel G. Jay
- Graduate School of Biomedical Sciences, Department of Developmental, Molecular and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| |
Collapse
|
8
|
Schluga PHDC, Larangote D, de Melo AM, Lobermayer GK, Torrejón D, de Oliveira LS, Alvarenga VG, Vivas-Ruiz DE, Veiga SS, Sanchez EF, Gremski LH. A Novel P-III Metalloproteinase from Bothrops barnetti Venom Degrades Extracellular Matrix Proteins, Inhibits Platelet Aggregation, and Disrupts Endothelial Cell Adhesion via α5β1 Integrin Receptors to Arginine-Glycine-Aspartic Acid (RGD)-Containing Molecules. Toxins (Basel) 2024; 16:486. [PMID: 39591241 PMCID: PMC11597958 DOI: 10.3390/toxins16110486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/02/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Viperid snake venoms are notably abundant in metalloproteinases (proteins) (SVMPs), which are primarily responsible for inducing hemorrhage and disrupting the hemostatic process and tissue integrity in envenomed victims. In this study, barnettlysin-III (Bar-III), a hemorrhagic P-III SVMP, was purified from the venom of the Peruvian snake Bothrops barnetti. Bar-III has a molecular mass of approximately 50 kDa and is a glycosylation-dependent functional metalloproteinase. Some biochemical properties of Bar-III, including the full amino acid sequence deduced from its cDNA, are reported. Its enzymatic activity is increased by Ca2+ ions and inhibited by an excess of Zn2+. Synthetic metalloproteinase inhibitors and EDTA also inhibit its proteolytic action. Bar-III degrades several plasma and ECM proteins, including fibrin(ogen), fibronectin, laminin, and nidogen. Platelets play a key role in hemostasis and thrombosis and in other biological process, such as inflammation and immunity, and platelet activation is driven by the platelet signaling receptors, glycoprotein (GP)Ib-IX-V, which binds vWF, and GPVI, which binds collagen. Moreover, Bar-III inhibits vWF- and convulxin-induced platelet aggregation in human washed platelets by cleaving the recombinant A1 domain of vWF and GPVI into a soluble ectodomain fraction of ~55 kDa (sGPVI). Bar-III does not reduce the viability of cultured endothelial cells; however, it interferes with the adhesion of these cells to fibronectin, vitronectin, and RGD peptides, as well as their migration profile. Bar-III binds specifically to the surface of these cells, and part of this interaction involves α5β1 integrin receptors. These results contribute to a better comprehension of the pathophysiology of snakebite accidents/incidents and could be used as a tool to explore novel and safer anti-venom therapeutics.
Collapse
Affiliation(s)
- Pedro Henrique de Caires Schluga
- Laboratório de Matriz Extracelular e Biotecnologia de Venenos, Universidade Federal do Paraná, UFPR, Curitiba 81531-980, Brazil; (P.H.d.C.S.); (A.M.d.M.); (G.K.L.); (S.S.V.)
| | - Debora Larangote
- Laboratório de Toxinologia de Venenos Animais, Fundação Ezequiel Dias, FUNED, Belo Horizonte 30510-010, Brazil; (D.L.); (L.S.d.O.); (V.G.A.); (E.F.S.)
| | - Ana Maria de Melo
- Laboratório de Matriz Extracelular e Biotecnologia de Venenos, Universidade Federal do Paraná, UFPR, Curitiba 81531-980, Brazil; (P.H.d.C.S.); (A.M.d.M.); (G.K.L.); (S.S.V.)
| | - Guilherme Kamienski Lobermayer
- Laboratório de Matriz Extracelular e Biotecnologia de Venenos, Universidade Federal do Paraná, UFPR, Curitiba 81531-980, Brazil; (P.H.d.C.S.); (A.M.d.M.); (G.K.L.); (S.S.V.)
| | - Daniel Torrejón
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima 15081, Peru; (D.T.); (D.E.V.-R.)
| | - Luciana Souza de Oliveira
- Laboratório de Toxinologia de Venenos Animais, Fundação Ezequiel Dias, FUNED, Belo Horizonte 30510-010, Brazil; (D.L.); (L.S.d.O.); (V.G.A.); (E.F.S.)
| | - Valeria Gonçalves Alvarenga
- Laboratório de Toxinologia de Venenos Animais, Fundação Ezequiel Dias, FUNED, Belo Horizonte 30510-010, Brazil; (D.L.); (L.S.d.O.); (V.G.A.); (E.F.S.)
| | - Dan Erick Vivas-Ruiz
- Laboratorio de Biología Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima 15081, Peru; (D.T.); (D.E.V.-R.)
| | - Silvio Sanches Veiga
- Laboratório de Matriz Extracelular e Biotecnologia de Venenos, Universidade Federal do Paraná, UFPR, Curitiba 81531-980, Brazil; (P.H.d.C.S.); (A.M.d.M.); (G.K.L.); (S.S.V.)
| | - Eladio Flores Sanchez
- Laboratório de Toxinologia de Venenos Animais, Fundação Ezequiel Dias, FUNED, Belo Horizonte 30510-010, Brazil; (D.L.); (L.S.d.O.); (V.G.A.); (E.F.S.)
| | - Luiza Helena Gremski
- Laboratório de Matriz Extracelular e Biotecnologia de Venenos, Universidade Federal do Paraná, UFPR, Curitiba 81531-980, Brazil; (P.H.d.C.S.); (A.M.d.M.); (G.K.L.); (S.S.V.)
| |
Collapse
|
9
|
Zhang H, Zhang X, Huang Z, Zhang H. Integrative genomics unveils basement membrane-related diagnostic markers and therapeutic targets in esophageal squamous cell carcinoma. Biol Direct 2024; 19:79. [PMID: 39256753 PMCID: PMC11389425 DOI: 10.1186/s13062-024-00529-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/04/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is often diagnosed at advanced stages due to the inherent limitations of current screening methodologies. Central to evaluating tumor invasion and prognostic assessment in ESCC is the integrity of the basement membrane (BM). However, current research on the implications of BM-related genes (BMRGs) in diagnosing ESCC remains sparse. METHODS We performed a comprehensive analysis using single-cell RNA-sequencing (scRNA-seq) data from the Gene Expression Omnibus (GEO) database, alongside gene expression profiles acquired from GEO and The Cancer Genome Atlas (TCGA) databases. This identified differentially expressed BMRGs in ESCC. Employing LASSO, RF, and SVM-RFE, we selected potential BM biomarkers and crafted a diagnostic nomogram for ESCC, validated by ROC curves and AUC values. We also explored immune infiltration and biological mechanisms through consensus clustering and GSVA, and utilized single cell trajectory analysis and GSCALite to study gene distributions and pathways. In vitro experiments further elucidated the role of these genes in ESCC carcinogenesis. RESULTS Here, we discovered that ESCC cell types exhibited markedly elevated BM-related scores. Our analysis pinpointed seven BM genes upregulated and linked to immune infiltration, showcasing unique gene expression profiles and varying immune cell densities across the BM-related subtypes. Furthermore, a robust positive correlation was observed between these genes expression and EMT activity. The knockdown of BGN significantly suppressed cell proliferation, migration, invasion, while also augmenting cell viability following chemotherapy drug treatment. CONCLUSION Our study identified seven key BMRGs (BGN, LAMB3, SPARC, MMP1, LUM, COL4A1, and NELL2) and established a diagnostic nomogram for ESCC. Of noteworthy significance is the discovery of BGN as a promising drug target, indicating a novel strategy for future clinical combination therapies in ESCC.
Collapse
Affiliation(s)
- Han Zhang
- Department of Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, People's Republic of China.
| | - Xia Zhang
- Department of Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, People's Republic of China
| | - Zhenyu Huang
- Department of Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, People's Republic of China
| | - Hao Zhang
- Department of Geriatrics, Medical Center On Aging of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China.
| |
Collapse
|
10
|
Wesp V, Scholz L, Ziermann-Canabarro JM, Schuster S, Stark H. Constructing networks for comparison of collagen types. J Integr Bioinform 2024; 21:jib-2024-0020. [PMID: 38997817 PMCID: PMC11602231 DOI: 10.1515/jib-2024-0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 05/15/2024] [Indexed: 07/14/2024] Open
Abstract
Collagens are structural proteins that are predominantly found in the extracellular matrix of multicellular animals, where they are mainly responsible for the stability and structural integrity of various tissues. All collagens contain polypeptide strands (α-chains). There are several types of collagens, some of which differ significantly in form, function, and tissue specificity. Because of their importance in clinical research, they are grouped into subdivisions, the so-called collagen families, and their sequences are often analysed. However, problems arise with highly homologous sequence segments. To increase the accuracy of collagen classification and prediction of their functions, the structure of these collagens and their expression in different tissues could result in a better focus on sequence segments of interest. Here, we analyse collagen families with different levels of conservation. As a result, clusters with high interconnectivity can be found, such as the fibrillar collagens, the COL4 network-forming collagens, and the COL9 FACITs. Furthermore, a large cluster between network-forming, FACIT, and COL28a1 α-chains is formed with COL6a3 as a major hub node. The formation of clusters also signifies, why it is important to always analyse the α-chains and why structural changes can have a wide range of effects on the body.
Collapse
Affiliation(s)
- Valentin Wesp
- Department of Bioinformatics, Friedrich-Schiller-University Jena, Jena, Germany
| | - Lukas Scholz
- Department of Bioinformatics, Friedrich-Schiller-University Jena, Jena, Germany
| | | | - Stefan Schuster
- Department of Bioinformatics, Friedrich-Schiller-University Jena, Jena, Germany
| | - Heiko Stark
- Department of Bioinformatics, Friedrich-Schiller-University Jena, Jena, Germany
- Institute of Zoology and Evolutionary Research, Friedrich-Schiller-University Jena, Jena, Germany
| |
Collapse
|
11
|
Brandhorst D, Brandhorst H, Acreman S, Johnson PRV. Perlecan: An Islet Basement Membrane Protein with Protective Anti-Inflammatory Characteristics. Bioengineering (Basel) 2024; 11:828. [PMID: 39199786 PMCID: PMC11351669 DOI: 10.3390/bioengineering11080828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/07/2024] [Accepted: 08/10/2024] [Indexed: 09/01/2024] Open
Abstract
Throughout the isolation process, human islets are subjected to destruction of the islet basement membrane (BM) and reduced oxygen supply. Reconstruction of the BM represents an option to improve islet function and survival post-transplant and may particularly be relevant for islet encapsulation devices and scaffolds. In the present study, we assessed whether Perlecan, used alone or combined with the BM proteins (BMPs) Collagen-IV and Laminin-521, has the ability to protect isolated human islets from hypoxia-induced damage. Islets isolated from the pancreas of seven different organ donors were cultured for 4-5 days at 2% oxygen in plain CMRL (sham-treated controls) or in CMRL supplemented with BMPs used either alone or in combination. Postculture, islets were characterized regarding survival, in vitro function and production of chemokines and reactive oxygen species (ROS). Individually added BMPs significantly doubled islet survival and increased in vitro function. Combining BMPs did not provide a synergistic effect. Among the tested BMPs, Perlecan demonstrated the significantly strongest inhibitory effect on chemokine and ROS production when compared with sham-treatment (p < 0.001). Perlecan may be useful to improve islet survival prior to and after transplantation. Its anti-inflammatory potency should be considered to optimise encapsulation and scaffolds to protect isolated human islets post-transplant.
Collapse
Affiliation(s)
- Daniel Brandhorst
- Islet Transplant Research Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK; (H.B.)
- Oxford Consortium for Islet Transplantation, Oxford Centre for Diabetes, Endocrinology, and Metabolism (OCDEM), Churchill Hospital, University of Oxford, Oxford OX3 7LE, UK
| | - Heide Brandhorst
- Islet Transplant Research Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK; (H.B.)
- Oxford Consortium for Islet Transplantation, Oxford Centre for Diabetes, Endocrinology, and Metabolism (OCDEM), Churchill Hospital, University of Oxford, Oxford OX3 7LE, UK
| | - Samuel Acreman
- Islet Transplant Research Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK; (H.B.)
| | - Paul R. V. Johnson
- Islet Transplant Research Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK; (H.B.)
- Oxford Consortium for Islet Transplantation, Oxford Centre for Diabetes, Endocrinology, and Metabolism (OCDEM), Churchill Hospital, University of Oxford, Oxford OX3 7LE, UK
| |
Collapse
|
12
|
Long Q, Huang C, Zhang L, Jiang H, Zhao S, Zhang L, Zheng X, Ou S, Gu H. A novel tissue-engineered corneal epithelium based on ultra-thin amniotic membrane and mesenchymal stem cells. Sci Rep 2024; 14:17407. [PMID: 39075142 PMCID: PMC11286932 DOI: 10.1038/s41598-024-68219-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 07/22/2024] [Indexed: 07/31/2024] Open
Abstract
Currently, in vitro cultured corneal epithelial transplantation is effective in treating limbal stem cell dysfunction (LSCD). Selecting carriers is crucial for constructing the corneal epithelium through tissue engineering. In this study, the traditional amniotic membrane (AM) was modified, and mesenchymal stem cells (MSCs) were inoculated into the ultra-thin amniotic membrane (UAM) stroma to construct a novel UAM-MSC tissue-engineered corneal epithelial carrier, that could effectively simulate the limbal stem cells (LSCs) microenvironment. The structure of different carriers cultured tissue-engineered corneal epithelium and the managed rabbit LSCD model corneas were observed through hematoxylin-eosin staining. Cell phenotypes were evaluated through fluorescence staining, Western blotting, and RT-qPCR. Additionally, cell junction genes and expression markers related to anti-neovascularization were evaluated using RT-qPCR. Corneal epithelium cell junctions were observed via an electron microscope. The tissue-engineered corneal epithelium culture medium was analyzed through mass spectrometry. Tissue-engineered corneal epithelial cells expanded by LSCs on UAM-MSCs had good transparency. Simultaneously, progenitor cell (K14, PNCA, p63) and corneal epithelial (PAX6) gene expression in tissue-engineered corneal epithelium constructed using UAM-MSCs was higher than that in corneal epithelial cells amplified by UAM and de-epithelialized amniotic membrane. Electron microscopy revealed that corneal epithelial cells grafted with UAM-MSCs were closely connected. In conclusion, the UAM-MSCs vector we constructed could better simulate the limbal microenvironment; the cultured tissue-engineered corneal epithelium had better transparency, anti-neovascularization properties, closer intercellular connections, and closer resemblance to the natural corneal epithelial tissue phenotype.
Collapse
Affiliation(s)
- Qiurong Long
- Guizhou Medical University, Guiyang, Guizhou, China
- The Affiliated Hospital of Guizhou Medical University, No.9 Beijing Road, Yunyan District, Guiyang, Guizhou, China
| | - Chao Huang
- Guizhou Medical University, Guiyang, Guizhou, China
| | - Liying Zhang
- Guizhou Medical University, Guiyang, Guizhou, China
- The Affiliated Hospital of Guizhou Medical University, No.9 Beijing Road, Yunyan District, Guiyang, Guizhou, China
| | - Hao Jiang
- Guizhou Medical University, Guiyang, Guizhou, China
- The Affiliated Hospital of Guizhou Medical University, No.9 Beijing Road, Yunyan District, Guiyang, Guizhou, China
| | - Su Zhao
- Guizhou Medical University, Guiyang, Guizhou, China
- The Affiliated Hospital of Guizhou Medical University, No.9 Beijing Road, Yunyan District, Guiyang, Guizhou, China
| | - Lingli Zhang
- Guizhou Medical University, Guiyang, Guizhou, China
| | - Xueer Zheng
- Guizhou Medical University, Guiyang, Guizhou, China
| | - Shangkun Ou
- Guizhou Medical University, Guiyang, Guizhou, China.
- The Affiliated Hospital of Guizhou Medical University, No.9 Beijing Road, Yunyan District, Guiyang, Guizhou, China.
| | - Hao Gu
- Guizhou Medical University, Guiyang, Guizhou, China.
- The Affiliated Hospital of Guizhou Medical University, No.9 Beijing Road, Yunyan District, Guiyang, Guizhou, China.
| |
Collapse
|
13
|
Hasan Aneem T, Sarker M, Wong SY, Lim S, Li X, Rashed A, Chakravarty S, Arafat MT. Antimicrobial peptide immobilization on catechol-functionalized PCL/alginate wet-spun fibers to combat surgical site infection. J Mater Chem B 2024. [PMID: 38958038 DOI: 10.1039/d4tb00889h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Surgical site infection (SSI) caused by pathogenic bacteria leads to delayed wound healing and extended hospitalization. Inappropriate uses of antibiotics have caused a surge in SSI and common antibiotics are proving to be ineffective against SSI. Antimicrobial peptides (AMPs) can be a potential solution to prevent SSI because of their broad spectrum of antimicrobial activities. In this study, naturally sourced AMPs were studied along with microfibers, fabricated by a novel wet-spinning method using sodium alginate and polycaprolactone. Afterward, fibers were functionalized by the catechol groups of dopamine immobilizing nucleophilic AMPs on the surface. Conjugation between PCL and alginate resulted in fibers with smooth surfaces improving their mechanical strength via hydrogen bonds. Having an average diameter of 220 μm, the mechanical properties of the fiber complied with USP standards for suture size 3-0. Engineered microfibers were able to hinder the growth of Proteus spp., a pathogenic bacterium for at least 60 hours whereas antibiotic ceftazidime failed. When subjected to a linear incisional wound model study, accelerated healing was observed when the wound was closed using the engineered fiber compared to Vicryl. The microfibers promoted faster re-epithelialization compared to Vicryl proving their higher wound healing capacity.
Collapse
Affiliation(s)
- Taufiq Hasan Aneem
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka-1205, Bangladesh.
| | - Mridul Sarker
- Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457, Singapore
| | - Siew Yee Wong
- Institute of Sustainability for Chemicals, Energy and Environment, A*STAR (Agency for Science, Technology and Research), Singapore, 138634, Singapore
| | - Sierin Lim
- Division of Bioengineering, School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637457, Singapore
| | - Xu Li
- Institute of Sustainability for Chemicals, Energy and Environment, A*STAR (Agency for Science, Technology and Research), Singapore, 138634, Singapore
- Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology and Research), Singapore, 138634, Singapore
| | - Asif Rashed
- Department of Microbiology, Mugda Medical College, Dhaka-1214, Bangladesh
| | - Saumitra Chakravarty
- Department of Pathology, Bangabandhu Sheikh Mujib Medical University (BSMMU), Dhaka-1000, Bangladesh
| | - M Tarik Arafat
- Department of Biomedical Engineering, Bangladesh University of Engineering and Technology (BUET), Dhaka-1205, Bangladesh.
| |
Collapse
|
14
|
Guo D, Liu S, Zhang J, Gu X, Shi L, Su Y, Xu S, Ju R, Wei Y, Liu C. Prickle1-driven basement membrane deposition of the iPSC-derived embryoid bodies is separable from the establishment of apicobasal polarity. Cell Prolif 2024; 57:e13595. [PMID: 38185785 PMCID: PMC11150132 DOI: 10.1111/cpr.13595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/07/2023] [Accepted: 12/19/2023] [Indexed: 01/09/2024] Open
Abstract
Basement membrane (BM) component deposition is closely linked to the establishment of cell polarity. Previously, we showed that Prickle1 is crucial for BM deposition and cell polarity events in tear duct elongation. To gain a deeper understanding of the intimate relationship between BM formation and cell polarity, we generated induced pluripotent stem cells (iPSCs)-derived embryoid bodies (EBs) with a basement membrane separating the visceral endoderm (VE) and inner EB cell mass. We found that Prickle1 was highly expressed in VE of the normal EBs, and the Prickle1 mutant EBs displayed severely impaired BM. Notably, the formation of the basement membrane appeared to rely on the proper microtubule network of the VE cells, which was disrupted in the Prickle1 mutant EBs. Moreover, disruption of vesicle trafficking in the VE hindered BM secretion. Furthermore, reintroducing Prickle1 in the mutant EBs completely rescued BM formation but not the apicobasal cell polarity of the VE. Our data, in conjunction with studies by others, highlight the conserved role of Prickle1 in directing the secretion of BM components of the VE cells during embryonic germ layer differentiation, even in the absence of established general polarity machinery. Our study introduces a novel system based on iPSCs-derived EBs for investigating cellular and molecular events associated with cell polarity.
Collapse
Affiliation(s)
- Dianlei Guo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Sikai Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Jiao Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Xinyu Gu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Lei Shi
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Yingchun Su
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Shujuan Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Rong Ju
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
| | - Yanhong Wei
- Department of Toxicology, School of Public HealthSun Yat‐sen UniversityGuangzhouChina
| | - Chunqiao Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen UniversityGuangzhouChina
- Guangdong Provincial Key Laboratory of Brain Function and DiseaseGuangzhouChina
| |
Collapse
|
15
|
Sadeghianmaryan A, Ahmadian N, Wheatley S, Alizadeh Sardroud H, Nasrollah SAS, Naseri E, Ahmadi A. Advancements in 3D-printable polysaccharides, proteins, and synthetic polymers for wound dressing and skin scaffolding - A review. Int J Biol Macromol 2024; 266:131207. [PMID: 38552687 DOI: 10.1016/j.ijbiomac.2024.131207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 03/15/2024] [Accepted: 03/26/2024] [Indexed: 04/15/2024]
Abstract
This review investigates the most recent advances in personalized 3D-printed wound dressings and skin scaffolding. Skin is the largest and most vulnerable organ in the human body. The human body has natural mechanisms to restore damaged skin through several overlapping stages. However, the natural wound healing process can be rendered insufficient due to severe wounds or disturbances in the healing process. Wound dressings are crucial in providing a protective barrier against the external environment, accelerating healing. Although used for many years, conventional wound dressings are neither tailored to individual circumstances nor specific to wound conditions. To address the shortcomings of conventional dressings, skin scaffolding can be used for skin regeneration and wound healing. This review thoroughly investigates polysaccharides (e.g., chitosan, Hyaluronic acid (HA)), proteins (e.g., collagen, silk), synthetic polymers (e.g., Polycaprolactone (PCL), Poly lactide-co-glycolic acid (PLGA), Polylactic acid (PLA)), as well as nanocomposites (e.g., silver nano particles and clay materials) for wound healing applications and successfully 3D printed wound dressings. It discusses the importance of combining various biomaterials to enhance their beneficial characteristics and mitigate their drawbacks. Different 3D printing fabrication techniques used in developing personalized wound dressings are reviewed, highlighting the advantages and limitations of each method. This paper emphasizes the exceptional versatility of 3D printing techniques in advancing wound healing treatments. Finally, the review provides recommendations and future directions for further research in wound dressings.
Collapse
Affiliation(s)
- Ali Sadeghianmaryan
- Department of Biomedical Engineering, University of Memphis, Memphis, TN, USA; Department of Mechanical Engineering, École de Technologie Supérieure, Montreal, Canada; University of Montreal Hospital Research Centre (CRCHUM), Montreal, Canada.
| | - Nivad Ahmadian
- Centre for Commercialization of Regenerative Medicine (CCRM), Toronto, Ontario, Canada
| | - Sydney Wheatley
- Department of Mechanical Engineering, École de Technologie Supérieure, Montreal, Canada; University of Montreal Hospital Research Centre (CRCHUM), Montreal, Canada
| | - Hamed Alizadeh Sardroud
- Division of Biomedical Engineering, College of Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | - Emad Naseri
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ali Ahmadi
- Department of Mechanical Engineering, École de Technologie Supérieure, Montreal, Canada; University of Montreal Hospital Research Centre (CRCHUM), Montreal, Canada
| |
Collapse
|
16
|
Tian J, Fu C, Li W, Li N, Yao L, Xiao J. Biomimetic tri-layered artificial skin comprising silica gel-collagen membrane-collagen porous scaffold for enhanced full-thickness wound healing. Int J Biol Macromol 2024; 266:131233. [PMID: 38554907 DOI: 10.1016/j.ijbiomac.2024.131233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/10/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
Full-thickness wounds are severe cutaneous damages with destroyed self-healing function, which need efficient clinical interventions. Inspired by the hierarchical structure of natural skin, we have for the first time developed a biomimetic tri-layered artificial skin (TLAS) comprising silica gel-collagen membrane-collagen porous scaffold for enhanced full-thickness wound healing. The TLAS with the thickness of 3-7 mm displays a hierarchical nanostructure consisting of the top homogeneous silica gel film, the middle compact collagen membrane, and the bottom porous collagen scaffold, exquisitely mimicking the epidermis, basement membrane and dermis of natural skin, respectively. The 1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide/N-Hydroxysuccinimide-dehydrothermal (EDC/NHS-DHT) dual-crosslinked collagen composite bilayer, with a crosslinking degree of 79.5 %, displays remarkable biocompatibility, bioactivity, and biosafety with no risk of hemolysis and pyrogen reactions. Notably, the extra collagen membrane layer provides a robust barrier to block the penetration of silica gel into the collagen porous scaffold, leading to the TLAS with enhanced biocompatibility and bioactivity. The full-thickness wound rat model studies have indicated the TLAS significantly facilitates the regeneration of full-thickness defects by accelerating re-epithelization, collagen deposition and migration of skin appendages. The highly biocompatible and bioactive tri-layered artificial skin provides an improved treatment for full-thickness wounds, which has great potential in tissue engineering.
Collapse
Affiliation(s)
- Jing Tian
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China; Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, PR China
| | - Caihong Fu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China; Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, PR China
| | - Wenhua Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China; Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, PR China
| | - Na Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China; Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, PR China
| | - Linyan Yao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China; School of Life Science, Lanzhou University, Lanzhou 730000, PR China; Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, PR China.
| | - Jianxi Xiao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, PR China; Gansu Engineering Research Center of Medical Collagen, Lanzhou 730000, PR China.
| |
Collapse
|
17
|
Ortega JA, Soares de Aguiar GP, Chandravanshi P, Levy N, Engel E, Álvarez Z. Exploring the properties and potential of the neural extracellular matrix for next-generation regenerative therapies. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1962. [PMID: 38723788 DOI: 10.1002/wnan.1962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 05/24/2024]
Abstract
The extracellular matrix (ECM) is a dynamic and complex network of proteins and molecules that surrounds cells and tissues in the nervous system and orchestrates a myriad of biological functions. This review carefully examines the diverse interactions between cells and the ECM, as well as the transformative chemical and physical changes that the ECM undergoes during neural development, aging, and disease. These transformations play a pivotal role in shaping tissue morphogenesis and neural activity, thereby influencing the functionality of the central nervous system (CNS). In our comprehensive review, we describe the diverse behaviors of the CNS ECM in different physiological and pathological scenarios and explore the unique properties that make ECM-based strategies attractive for CNS repair and regeneration. Addressing the challenges of scalability, variability, and integration with host tissues, we review how advanced natural, synthetic, and combinatorial matrix approaches enhance biocompatibility, mechanical properties, and functional recovery. Overall, this review highlights the potential of decellularized ECM as a powerful tool for CNS modeling and regenerative purposes and sets the stage for future research in this exciting field. This article is categorized under: Implantable Materials and Surgical Technologies > Nanotechnology in Tissue Repair and Replacement Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Implantable Materials and Surgical Technologies > Nanomaterials and Implants.
Collapse
Affiliation(s)
- J Alberto Ortega
- Department of Pathology and Experimental Therapeutics, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet del Llobregat, Spain
| | - Gisele P Soares de Aguiar
- Department of Pathology and Experimental Therapeutics, Institute of Neurosciences, University of Barcelona, L'Hospitalet de Llobregat, Barcelona, Spain
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), L'Hospitalet del Llobregat, Spain
| | - Palash Chandravanshi
- Biomaterials for Neural Regeneration Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Natacha Levy
- Biomaterials for Neural Regeneration Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Elisabeth Engel
- IMEM-BRT Group, Department of Materials Science and Engineering, EEBE, Technical University of Catalonia (UPC), Barcelona, Spain
- Biomaterials for Regenerative Therapies Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
| | - Zaida Álvarez
- Biomaterials for Neural Regeneration Group, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- CIBER en Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, Madrid, Spain
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
18
|
Shaukat A, Khaliq N, Riaz R, Munsab R, Ashraf T, Raufi N, Shah H. Noninvasive diagnostic biomarkers, genomic profiling, and advanced microscopic imaging in the early detection and characterization of Naegleria fowleri infections leading to primary amebic meningoencephalitis (PAM). Ann Med Surg (Lond) 2024; 86:2032-2048. [PMID: 38576920 PMCID: PMC10990330 DOI: 10.1097/ms9.0000000000001843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/08/2024] [Indexed: 04/06/2024] Open
Abstract
This review delves into the strategies for early detection and characterization of Naegleria fowleri infections leading to primary amoebic meningoencephalitis (PAM). The study provides an in-depth analysis of current diagnostic approaches, including cerebrospinal fluid analysis, brain tissue examination, immunostaining techniques, and culture methods, elucidating their strengths and limitations. It explores the geographical distribution of N. fowleri, with a focus on regions near the equator, and environmental factors contributing to its prevalence. The review emphasizes the crucial role of early detection in PAM management, discussing the benefits of timely identification in treatment, personalized care, and prevention strategies. Genomic profiling techniques, such as conventional PCR, nested PCR, multiplex PCR, and real-time PCR, are thoroughly examined as essential tools for accurate and prompt diagnosis. Additionally, the study explores advanced microscopic imaging techniques to characterize N. fowleri's morphology and behavior at different infection stages, enhancing our understanding of its life cycle and pathogenic mechanisms. In conclusion, this review underscores the potential of these strategies to improve our ability to detect, understand, and combat N. fowleri infections, ultimately leading to better patient outcomes and enhanced public health protection.
Collapse
Affiliation(s)
| | - Nawal Khaliq
- Dow University of Health Sciences, Karachi, Pakistan
| | - Rumaisa Riaz
- Dow University of Health Sciences, Karachi, Pakistan
| | - Rabbia Munsab
- Dow University of Health Sciences, Karachi, Pakistan
| | | | - Nahid Raufi
- Department of Medicine, Kabul Medical University, Kabul, Afghanistan
| | - Hafsa Shah
- Dow University of Health Sciences, Karachi, Pakistan
| |
Collapse
|
19
|
Krüger LJ, Vrugt MT, Bröker S, Wallmeyer B, Betz T, Wittkowski R. Analytical method for reconstructing the stress on a spherical particle from its surface deformation. Biophys J 2024; 123:527-537. [PMID: 38258291 PMCID: PMC10938078 DOI: 10.1016/j.bpj.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/10/2023] [Accepted: 01/17/2024] [Indexed: 01/24/2024] Open
Abstract
The mechanical forces that cells experience from the tissue surrounding them are crucial for their behavior and development. Experimental studies of such mechanical forces require a method for measuring them. A widely used approach in this context is bead deformation analysis, where spherical particles are embedded into the tissue. The deformation of the particles then allows to reconstruct the mechanical stress acting on them. Existing approaches for this reconstruction are either very time-consuming or not sufficiently general. In this article, we present an analytical approach to this problem based on an expansion in solid spherical harmonics that allows us to find the complete stress tensor describing the stress acting on the tissue. Our approach is based on the linear theory of elasticity and uses an ansatz specifically designed for deformed spherical bodies. We clarify the conditions under which this ansatz can be used, making our results useful also for other contexts in which this ansatz is employed. Our method can be applied to arbitrary radial particle deformations and requires a very low computational effort. The usefulness of the method is demonstrated by an application to experimental data.
Collapse
Affiliation(s)
- Lea Johanna Krüger
- Institute of Theoretical Physics, Center for Soft Nanoscience, University of Münster, Münster, Germany
| | - Michael Te Vrugt
- Institute of Theoretical Physics, Center for Soft Nanoscience, University of Münster, Münster, Germany; DAMTP, Centre for Mathematical Sciences, University of Cambridge, Cambridge, UK
| | - Stephan Bröker
- Institute of Theoretical Physics, Center for Soft Nanoscience, University of Münster, Münster, Germany
| | - Bernhard Wallmeyer
- Centre for Molecular Biology of Inflammation, Institute of Cell Biology, University of Münster, Münster, Germany
| | - Timo Betz
- Third Institute of Physics - Biophysics, University of Göttingen, Göttingen, Germany
| | - Raphael Wittkowski
- Institute of Theoretical Physics, Center for Soft Nanoscience, University of Münster, Münster, Germany.
| |
Collapse
|
20
|
Liu S, Chen H, Xie H, Liu X, Zhang M. Substrate Stiffness Modulates Stemness and Differentiation of Rabbit Corneal Endothelium Through the Paxillin-YAP Pathway. Invest Ophthalmol Vis Sci 2024; 65:15. [PMID: 38466286 DOI: 10.1167/iovs.65.3.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024] Open
Abstract
Purpose To explore the role of substrate stiffness and the mechanism beneath corneal endothelial cells' (CECs') stemness maintenance and differentiation. Methods CECs were divided into central zone (8 mm trephined boundary) and peripheral zone (8 mm trephined edge with attached limbal). Two zones were analyzed by hematoxylin-eosin staining and scanning electron microscopy for anatomic structure. The elastic modulus of Descemet's membrane (DM) was analyzed by atomic force microscopy. Compressed type I collagen gels with different stiffness were constructed as an in vitro model system to test the role of stiffness on phenotype using cultured rabbit CECs. Cell morphology, expression and intracellular distribution of Yes-associated protein (YAP), differentiation (ZO-1, Na+/K+-ATPase), stemness (FOXD3, CD34, Sox2, Oct3/4), and endothelial-mesenchymal transition (EnMT) markers were analyzed by immunofluorescence, quantitative RT-PCR, and Western blot. Results The results showed that the peripheral area of rabbit and human DM is softer than the central area ex vivo. Using the biomimetic extracellular matrix collagen gels in vitro model, we then demonstrated that soft substrate weakens the differentiation and EnMT in the culture of CECs. It was further proved by the inhibitor experiment that soft substrate enhances stemness maintenance via inhibition of paxillin-YAP signaling, which was activated on a stiff substrate. Conclusions Our findings confirm that substrate stiffness modulates the stemness maintenance and differentiation of CECs and suggest a potential strategy for CEC-based corneal tissue engineering.
Collapse
Affiliation(s)
- Shuting Liu
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hua Chen
- Senior Department of Ophthalmology, The Third Medical Center of PLA General Hospital, Beijing, China
| | - Huatao Xie
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Liu
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingchang Zhang
- Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
21
|
Shannon BA, Hurst JR, Flannagan RS, Craig HC, Rishi A, Kasper KJ, Tuffs SW, Heinrichs DE, McCormick JK. Streptolysin S is required for Streptococcus pyogenes nasopharyngeal and skin infection in HLA-transgenic mice. PLoS Pathog 2024; 20:e1012072. [PMID: 38452154 PMCID: PMC10950238 DOI: 10.1371/journal.ppat.1012072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/19/2024] [Accepted: 02/25/2024] [Indexed: 03/09/2024] Open
Abstract
Streptococcus pyogenes is a human-specific pathogen that commonly colonizes the upper respiratory tract and skin, causing a wide variety of diseases ranging from pharyngitis to necrotizing fasciitis and toxic shock syndrome. S. pyogenes has a repertoire of secreted virulence factors that promote infection and evasion of the host immune system including the cytolysins streptolysin O (SLO) and streptolysin S (SLS). S. pyogenes does not naturally infect the upper respiratory tract of mice although mice transgenic for MHC class II human leukocyte antigens (HLA) become highly susceptible. Here we used HLA-transgenic mice to assess the role of both SLO and SLS during both nasopharyngeal and skin infection. Using S. pyogenes MGAS8232 as a model strain, we found that an SLS-deficient strain exhibited a 100-fold reduction in bacterial recovery from the nasopharynx and a 10-fold reduction in bacterial burden in the skin, whereas an SLO-deficient strain did not exhibit any infection defects in these models. Furthermore, depletion of neutrophils significantly restored the bacterial burden of the SLS-deficient bacteria in skin, but not in the nasopharynx. In mice nasally infected with the wildtype S. pyogenes, there was a marked change in localization of the tight junction protein ZO-1 at the site of infection, demonstrating damage to the nasal epithelia that was absent in mice infected with the SLS-deficient strain. Overall, we conclude that SLS is required for the establishment of nasopharyngeal infection and skin infection in HLA-transgenic mice by S. pyogenes MGAS8232 and provide evidence that SLS contributes to nasopharyngeal infection through the localized destruction of nasal epithelia.
Collapse
Affiliation(s)
- Blake A. Shannon
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Jacklyn R. Hurst
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Ronald S. Flannagan
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Heather C. Craig
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Aanchal Rishi
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Katherine J. Kasper
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Stephen W. Tuffs
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - David E. Heinrichs
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - John K. McCormick
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
22
|
Junga A, Babenko T, Fedirko P, Pilmane M. Distribution and appearance of myosin, dystrophin, and collagen IV in strabismus-affected extraocular muscle tissue compared with control tissue. J Int Med Res 2024; 52:3000605241233521. [PMID: 38436252 PMCID: PMC10913506 DOI: 10.1177/03000605241233521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/29/2024] [Indexed: 03/05/2024] Open
Abstract
OBJECTIVE Extraocular muscles have complex development processes. The present study aimed to analyze the presence of myosin, dystrophin, and collagen IV in the strabismus-affected extraocular muscle. METHODS This research was an observational case-control study. Myosin, dystrophin, and collagen IV were detected by histological and immunohistochemical analyses of extraocular muscle samples from concomitant strabismus patients and controls. A semi-quantitative grading method and statistical analysis were used. RESULTS In the strabismus-affected extraocular muscle, morphological analysis demonstrated different-sized muscle fibers. Immature muscle fibers and an increased amount of connective tissue were also noted. Strong positive correlations were identified between myosin and collagen IV and between dystrophin and collagen IV. CONCLUSIONS The presence of newly formed muscle fibers, increased connective tissue, and variable diameters of skeletal striated muscle fibers indicate the decreased quality of extraocular muscles in strabismus cases. Reduced levels of myosin and dystrophin and a near absence of collagen IV in strabismus-affected skeletal striated muscle fibers characterized the muscular dystrophy of strabismus. Adjuvant therapy aimed at normalizing the metabolism of these muscles may be appropriate alongside concomitant strabismus treatment.
Collapse
Affiliation(s)
- Anna Junga
- Institute of Anatomy and Anthropology, Rīga Stradiņš University, Rīga, Latvia
| | - Tetyana Babenko
- Institute of Radiation Hygiene and Epidemiology, Kyiv, Ukraine
| | - Pavlo Fedirko
- Institute of Radiation Hygiene and Epidemiology, Kyiv, Ukraine
| | - Mara Pilmane
- Institute of Anatomy and Anthropology, Rīga Stradiņš University, Rīga, Latvia
| |
Collapse
|
23
|
Koskinen LM, Nieminen L, Arjonen A, Guzmán C, Peurla M, Peuhu E. Spatial Engineering of Mammary Epithelial Cell Cultures with 3D Bioprinting Reveals Growth Control by Branch Point Proximity. J Mammary Gland Biol Neoplasia 2024; 29:5. [PMID: 38416267 PMCID: PMC10902034 DOI: 10.1007/s10911-024-09557-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/20/2024] [Indexed: 02/29/2024] Open
Abstract
The three-dimensional (3D) structure of the ductal epithelium and the surrounding extracellular matrix (ECM) are integral aspects of the breast tissue, and they have important roles during mammary gland development, function and malignancy. However, the architecture of the branched mammary epithelial network is poorly recapitulated in the current in vitro models. 3D bioprinting is an emerging approach to improve tissue-mimicry in cell culture. Here, we developed and optimized a protocol for 3D bioprinting of normal and cancerous mammary epithelial cells into a branched Y-shape to study the role of cell positioning in the regulation of cell proliferation and invasion. Non-cancerous cells formed continuous 3D cell networks with several organotypic features, whereas the ductal carcinoma in situ (DCIS) -like cancer cells exhibited aberrant basal polarization and defective formation of the basement membrane (BM). Quantitative analysis over time demonstrated that both normal and cancerous cells proliferate more at the branch tips compared to the trunk region of the 3D-bioprinted cultures, and particularly at the tip further away from the branch point. The location-specific rate of proliferation was independent of TGFβ signaling but invasion of the DCIS-like breast cancer cells was reduced upon the inhibition of TGFβ. Thus, our data demonstrate that the 3D-bioprinted cells can sense their position in the branched network of cells and proliferate at the tips, thus recapitulating this feature of mammary epithelial branching morphogenesis. In all, our results demonstrate the capacity of the developed 3D bioprinting method for quantitative analysis of the relationships between tissue structure and cell behavior in breast morphogenesis and cancer.
Collapse
Affiliation(s)
- Leena M Koskinen
- Institute of Biomedicine, Cancer Laboratory FICAN West, University of Turku, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | | | | | | | - Markus Peurla
- Institute of Biomedicine, Cancer Laboratory FICAN West, University of Turku, Turku, Finland
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Emilia Peuhu
- Institute of Biomedicine, Cancer Laboratory FICAN West, University of Turku, Turku, Finland.
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.
| |
Collapse
|
24
|
Jones RA, Trejo B, Sil P, Little KA, Pasolli HA, Joyce B, Posfai E, Devenport D. An mTurq2-Col4a1 mouse model allows for live visualization of mammalian basement membrane development. J Cell Biol 2024; 223:e202309074. [PMID: 38051393 PMCID: PMC10697824 DOI: 10.1083/jcb.202309074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/03/2023] [Accepted: 11/15/2023] [Indexed: 12/07/2023] Open
Abstract
Basement membranes (BMs) are specialized sheets of extracellular matrix that underlie epithelial and endothelial tissues. BMs regulate the traffic of cells and molecules between compartments, and participate in signaling, cell migration, and organogenesis. The dynamics of mammalian BMs, however, are poorly understood, largely due to a lack of models in which core BM components are endogenously labeled. Here, we describe the mTurquoise2-Col4a1 mouse in which we fluorescently tag collagen IV, the main component of BMs. Using an innovative planar-sagittal live imaging technique to visualize the BM of developing skin, we directly observe BM deformation during hair follicle budding and basal progenitor cell divisions. The BM's inherent pliability enables dividing cells to remain attached to and deform the BM, rather than lose adhesion as generally thought. Using FRAP, we show BM collagen IV is extremely stable, even during periods of rapid epidermal growth. These findings demonstrate the utility of the mTurq2-Col4a1 mouse to shed new light on mammalian BM developmental dynamics.
Collapse
Affiliation(s)
- Rebecca A. Jones
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Brandon Trejo
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Parijat Sil
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | | | - H. Amalia Pasolli
- Electron Microscopy Resource Center, The Rockefeller University, New York, NY, USA
| | - Bradley Joyce
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Eszter Posfai
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Danelle Devenport
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
25
|
Schoenenberger MS, Halfter W, Ferrand A, Halfter K, Tzankov A, Scholl HPN, Henrich PB, Monnier CA. The biophysical and compositional properties of human basement membranes. FEBS J 2024; 291:477-488. [PMID: 37984833 DOI: 10.1111/febs.17007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/14/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023]
Abstract
Basement membranes are among the most widespread, non-cellular functional materials in metazoan organisms. Despite this ubiquity, the links between their compositional and biophysical properties are often difficult to establish due to their thin and delicate nature. In this article, we examine these features on a molecular level by combining results from proteomics, elastic, and nanomechanical analyses across a selection of human basement membranes. Comparing results between these different membranes connects certain compositional attributes to distinct nanomechanical signatures and further demonstrates to what extent water defines these properties. In all, these data underline BMs as stiff yet highly elastic connective tissue layers and highlight how the interplay between composition, mechanics and hydration yields such exceptionally adaptable materials.
Collapse
Affiliation(s)
| | - Willi Halfter
- Department of Ophthalmology, University of Basel, Switzerland
| | - Alexia Ferrand
- Imaging Core Facility, Biozentrum of the University of Basel, Switzerland
| | - Kathrin Halfter
- Munich Cancer Registry, Institute of Medical Informatics, Biometry and Epidemiology, Maximilian University Munich, Germany
| | - Alexandar Tzankov
- Histopathology and Autopsy, Institute of Medical Genetics and Pathology, University Hospital and University of Basel, Switzerland
| | - Hendrik P N Scholl
- Department of Ophthalmology, University of Basel, Switzerland
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Switzerland
| | - Paul Bernhard Henrich
- Department of Ophthalmology, University of Basel, Switzerland
- Università della Svizzera Italiana, Lugano, Switzerland
| | | |
Collapse
|
26
|
Roy A, Gauld JW. Sulfilimine bond formation in collagen IV. Chem Commun (Camb) 2024; 60:646-657. [PMID: 38116662 DOI: 10.1039/d3cc05715a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
The collagen IV network plays a crucial role in providing structural support and mechanical integrity to the basement membrane and surrounding tissues. A key aspect of this network is the formation of intra- and inter-collagen fibril crosslinks. One particular crosslink, an inter-residue sulfilimine bond, has been found, so far, to be unique to collagen IV. More specifically, these crosslinks are primarily formed between methionine and lysine or hydroxylysine residues and can occur within a single collagen fibril or between different collagen fibrils. Due to its significance as the major crosslink in the collagen IV network, the sulfilimine bond plays critical roles in tissue development and various human diseases. While the proposed reaction mechanism for sulfilimine bond formation is supported by experimental evidence, the precise nature of this bond remained uncertain until computational studies were conducted. The process involves the reaction of hypohalous acids (e.g., HOBr, HOCl), produced by a peroxidasin enzyme in the basement membrane, with the sidechain sulfur of methionine or sidechain nitrogen of lysine/hydroxylysine residues in collagen IV, to form halosulfonium or haloamine intermediates, respectively. The halosulfonium/haloamine then reacts with the sidechain amine/sulfide of the lysine (or hydroxylysine) or methionine respectively, eventually resulting in the formation of the sulfilimine (MetSNLys/Hyl) crosslink. The sulfilimine product formed not only plays a crucial role in physiological processes but also finds applications in various industrial and pharmaceutical contexts. In this review, we provide a comprehensive summary of existing studies, including our own research, aimed at understanding the reaction mechanism, protonation states, characteristic nature, and dynamic behavior of the sulfilimine bond in collagen IV. The goal is to offer readers an overview of this critically important biochemical bond.
Collapse
Affiliation(s)
- Anupom Roy
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada.
| | - James W Gauld
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, Ontario N9B 3P4, Canada.
| |
Collapse
|
27
|
Reich H, Savage-Dunn C. Signaling circuits and the apical extracellular matrix in aging: connections identified in the nematode Caenorhabditis elegans. Am J Physiol Cell Physiol 2023; 325:C1201-C1211. [PMID: 37721005 PMCID: PMC10861026 DOI: 10.1152/ajpcell.00195.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 08/24/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023]
Abstract
Numerous conserved signaling pathways play critical roles in aging, including insulin/IGF-1, TGF-β, and Wnt pathways. Some of these pathways also play prominent roles in the formation and maintenance of the extracellular matrix. The nematode Caenorhabditis elegans has been an enduringly productive system for the identification of conserved mechanisms of biological aging. Recent studies in C. elegans highlight the regulatory circuits between conserved signaling pathways and the extracellular matrix, revealing a bidirectional relationship between these factors and providing a platform to address how regulation of and by the extracellular matrix can impact lifespan and organismal health during aging. These discoveries provide new opportunities for clinical advances and novel therapeutic strategies.
Collapse
Affiliation(s)
- Hannah Reich
- Department of Biology, Queens College, City University of New York, Flushing, New York, United States
| | - Cathy Savage-Dunn
- Department of Biology, Queens College, City University of New York, Flushing, New York, United States
- PhD Program in Biology, The Graduate Center, City University of New York, New York, New York, United States
| |
Collapse
|
28
|
Singh P, Ramanathan V, Zhang Y, Georgakoudi I, Jay DG. Extracellular Hsp90 Binds to and Aligns Collagen-1 to Enhance Breast Cancer Cell Invasiveness. Cancers (Basel) 2023; 15:5237. [PMID: 37958410 PMCID: PMC10648158 DOI: 10.3390/cancers15215237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/09/2023] [Accepted: 10/21/2023] [Indexed: 11/15/2023] Open
Abstract
Cancer cell-secreted eHsp90 binds and activates proteins in the tumor microenvironment crucial in cancer invasion. Therefore, targeting eHsp90 could inhibit invasion, preventing metastasis-the leading cause of cancer-related mortality. Previous eHsp90 studies have solely focused on its role in cancer invasion through the 2D basement membrane (BM), a form of extracellular matrix (ECM) that lines the epithelial compartment. However, its role in cancer invasion through the 3D Interstitial Matrix (IM), an ECM beyond the BM, remains unexplored. Using a Collagen-1 binding assay and second harmonic generation (SHG) imaging, we demonstrate that eHsp90 directly binds and aligns Collagen-1 fibers, the primary component of IM. Furthermore, we show that eHsp90 enhances Collagen-1 invasion of breast cancer cells in the Transwell assay. Using Hsp90 conformation mutants and inhibitors, we established that the Hsp90 dimer binds to Collagen-1 via its N-domain. We also demonstrated that while Collagen-1 binding and alignment are not influenced by Hsp90's ATPase activity attributed to the N-domain, its open conformation is crucial for increasing Collagen-1 alignment and promoting breast cancer cell invasion. These findings unveil a novel role for eHsp90 in invasion through the IM and offer valuable mechanistic insights into potential therapeutic approaches for inhibiting Hsp90 to suppress invasion and metastasis.
Collapse
Affiliation(s)
- Pragya Singh
- Department of Developmental, Molecular and Chemical Biology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA; (P.S.); (I.G.)
| | - Varshini Ramanathan
- Department of Biomedical Engineering, Tufts University School of Engineering, Medford, MA 02155, USA; (V.R.); (Y.Z.)
| | - Yang Zhang
- Department of Biomedical Engineering, Tufts University School of Engineering, Medford, MA 02155, USA; (V.R.); (Y.Z.)
| | - Irene Georgakoudi
- Department of Developmental, Molecular and Chemical Biology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA; (P.S.); (I.G.)
- Department of Biomedical Engineering, Tufts University School of Engineering, Medford, MA 02155, USA; (V.R.); (Y.Z.)
| | - Daniel G. Jay
- Department of Developmental, Molecular and Chemical Biology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA; (P.S.); (I.G.)
| |
Collapse
|
29
|
Rogers ML, Schultz DW, Karnaros V, Shepheard SR. Urinary biomarkers for amyotrophic lateral sclerosis: candidates, opportunities and considerations. Brain Commun 2023; 5:fcad287. [PMID: 37946793 PMCID: PMC10631861 DOI: 10.1093/braincomms/fcad287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/23/2023] [Accepted: 10/24/2023] [Indexed: 11/12/2023] Open
Abstract
Amyotrophic lateral sclerosis is a relentless neurodegenerative disease that is mostly fatal within 3-5 years and is diagnosed on evidence of progressive upper and lower motor neuron degeneration. Around 15% of those with amyotrophic lateral sclerosis also have frontotemporal degeneration, and gene mutations account for ∼10%. Amyotrophic lateral sclerosis is a variable heterogeneous disease, and it is becoming increasingly clear that numerous different disease processes culminate in the final degeneration of motor neurons. There is a profound need to clearly articulate and measure pathological process that occurs. Such information is needed to tailor treatments to individuals with amyotrophic lateral sclerosis according to an individual's pathological fingerprint. For new candidate therapies, there is also a need for methods to select patients according to expected treatment outcomes and measure the success, or not, of treatments. Biomarkers are essential tools to fulfil these needs, and urine is a rich source for candidate biofluid biomarkers. This review will describe promising candidate urinary biomarkers of amyotrophic lateral sclerosis and other possible urinary candidates in future areas of investigation as well as the limitations of urinary biomarkers.
Collapse
Affiliation(s)
- Mary-Louise Rogers
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide 5042, South Australia, Australia
| | - David W Schultz
- Neurology Department and MND Clinic, Flinders Medical Centre, Adelaide 5042, South Australia, Australia
| | - Vassilios Karnaros
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide 5042, South Australia, Australia
| | - Stephanie R Shepheard
- Flinders Health and Medical Research Institute, College of Medicine and Public Health, Flinders University, Adelaide 5042, South Australia, Australia
| |
Collapse
|
30
|
Hagemann T, Czechowski P, Ghosh A, Sun W, Dong H, Noé F, Wolfrum C, Blüher M, Hoffmann A. Laminin α4 Expression in Human Adipose Tissue Depots and Its Association with Obesity and Obesity Related Traits. Biomedicines 2023; 11:2806. [PMID: 37893179 PMCID: PMC10604865 DOI: 10.3390/biomedicines11102806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/02/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Laminin α4 (LAMA4) is one of the main structural adipocyte basement membrane (BM) components that is upregulated during adipogenesis and related to obesity in mice and humans. We conducted RNA-seq-based gene expression analysis of LAMA4 in abdominal subcutaneous (SC) and visceral (VIS) adipose tissue (AT) depots across three human sub-cohorts of the Leipzig Obesity BioBank (LOBB) to explore the relationship between LAMA4 expression and obesity (N = 1479) in the context of weight loss (N = 65) and metabolic health (N = 42). We found significant associations of LAMA4 with body fat mass (p < 0.001) in VIS AT; higher expression in VIS AT compared to SC AT; and significant relation to metabolic health parameters e.g., body fat in VIS AT, waist (p = 0.009) and interleukin 6 (p = 0.002) in male VIS AT, and hemoglobin A1c (p = 0.008) in male SC AT. AT LAMA4 expression was not significantly different between subjects with or without obesity, metabolically healthy versus unhealthy, and obesity before versus after short-term weight loss. Our results support significant associations between obesity related clinical parameters and elevated LAMA4 expression in humans. Our work offers one of the first references for understanding the meaning of LAMA4 expression specifically in relation to obesity based on large-scale RNA-seq data.
Collapse
Affiliation(s)
- Tobias Hagemann
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, 04103 Leipzig, Germany
| | - Paul Czechowski
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, 04103 Leipzig, Germany
| | - Adhideb Ghosh
- Institute of Food, Nutrition and Health, ETH Zurich, 8093 Schwerzenbach, Switzerland
| | - Wenfei Sun
- Institute of Food, Nutrition and Health, ETH Zurich, 8093 Schwerzenbach, Switzerland
| | - Hua Dong
- Institute of Food, Nutrition and Health, ETH Zurich, 8093 Schwerzenbach, Switzerland
| | - Falko Noé
- Institute of Food, Nutrition and Health, ETH Zurich, 8093 Schwerzenbach, Switzerland
| | - Christian Wolfrum
- Institute of Food, Nutrition and Health, ETH Zurich, 8093 Schwerzenbach, Switzerland
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, 04103 Leipzig, Germany
- Medical Department III—Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04103 Leipzig, Germany
| | - Anne Hoffmann
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, 04103 Leipzig, Germany
| |
Collapse
|
31
|
Tomasin R, Rodrigues AM, Manucci AC, Bruni-Cardoso A. A molecular landscape of quiescence and proliferation highlights the role of Pten in mammary gland acinogenesis. J Cell Sci 2023; 136:jcs261178. [PMID: 37712332 DOI: 10.1242/jcs.261178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 09/08/2023] [Indexed: 09/16/2023] Open
Abstract
Cell context is key for cell state. Using physiologically relevant models of laminin-rich extracellular matrix (lrECM) induction of mammary epithelial cell quiescence and differentiation, we provide a landscape of the key molecules for the proliferation-quiescence decision, identifying multiple layers of regulation at the mRNA and protein levels. Quiescence occurred despite activity of Fak (also known as PTK2), Src and phosphoinositide 3-kinases (PI3Ks), suggesting the existence of a disconnecting node between upstream and downstream proliferative signalling. Pten, a lipid and protein phosphatase, fulfils this role, because its inhibition increased proliferation and restored signalling via the Akt, mTORC1, mTORC2 and mitogen-activated protein kinase (MAPK) pathways. Pten and laminin levels were positively correlated in developing murine mammary epithelia, and Pten localized apicolaterally in luminal cells in ducts and near the nascent lumen in terminal end buds. Consistently, in three-dimensional acinogenesis models, Pten was required for triggering and sustaining quiescence, polarity and architecture. The multilayered regulatory circuitry that we uncovered provides an explanation for the robustness of quiescence within a growth-suppressive microenvironment, which could nonetheless be disrupted by perturbations in master regulators such as Pten.
Collapse
Affiliation(s)
- Rebeka Tomasin
- E-signal lab, Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP 05508-000, Brazil
| | - Ana Maria Rodrigues
- E-signal lab, Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP 05508-000, Brazil
| | - Antonio Carlos Manucci
- E-signal lab, Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP 05508-000, Brazil
| | - Alexandre Bruni-Cardoso
- E-signal lab, Department of Biochemistry, Institute of Chemistry, University of São Paulo, Av. Prof. Lineu Prestes 748, São Paulo, SP 05508-000, Brazil
| |
Collapse
|
32
|
Jones RA, Trejo B, Sil P, Little KA, Pasolli HA, Joyce B, Posfai E, Devenport D. A Window into Mammalian Basement Membrane Development: Insights from the mTurq2-Col4a1 Mouse Model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.27.559396. [PMID: 37808687 PMCID: PMC10557719 DOI: 10.1101/2023.09.27.559396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Basement membranes (BMs) are specialized sheets of extracellular matrix that underlie epithelial and endothelial tissues. BMs regulate traffic of cells and molecules between compartments, and participate in signaling, cell migration and organogenesis. The dynamics of mammalian BMs, however, are poorly understood, largely due to a lack of models in which core BM components are endogenously labelled. Here, we describe the mTurquoise2-Col4a1 mouse, in which we fluorescently tag collagen IV, the main component of BMs. Using an innovative Planar-Sagittal live imaging technique to visualize the BM of developing skin, we directly observe BM deformation during hair follicle budding and basal progenitor cell divisions. The BM's inherent pliability enables dividing cells to remain attached to and deform the BM, rather than lose adhesion as generally thought. Using FRAP, we show BM collagen IV is extremely stable, even during periods of rapid epidermal growth. These findings demonstrate the utility of the mTurq2-Col4a1 mouse to shed new light on mammalian BM developmental dynamics.
Collapse
Affiliation(s)
- Rebecca A Jones
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Brandon Trejo
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Parijat Sil
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Katherine A Little
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - H Amalia Pasolli
- Electron Microscopy Resource Center, The Rockefeller University, 1230 York Ave., New York, NY 10065
| | - Bradley Joyce
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Eszter Posfai
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Danelle Devenport
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| |
Collapse
|
33
|
Nitti P, Narayanan A, Pellegrino R, Villani S, Madaghiele M, Demitri C. Cell-Tissue Interaction: The Biomimetic Approach to Design Tissue Engineered Biomaterials. Bioengineering (Basel) 2023; 10:1122. [PMID: 37892852 PMCID: PMC10604880 DOI: 10.3390/bioengineering10101122] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
The advancement achieved in Tissue Engineering is based on a careful and in-depth study of cell-tissue interactions. The choice of a specific biomaterial in Tissue Engineering is fundamental, as it represents an interface for adherent cells in the creation of a microenvironment suitable for cell growth and differentiation. The knowledge of the biochemical and biophysical properties of the extracellular matrix is a useful tool for the optimization of polymeric scaffolds. This review aims to analyse the chemical, physical, and biological parameters on which are possible to act in Tissue Engineering for the optimization of polymeric scaffolds and the most recent progress presented in this field, including the novelty in the modification of the scaffolds' bulk and surface from a chemical and physical point of view to improve cell-biomaterial interaction. Moreover, we underline how understanding the impact of scaffolds on cell fate is of paramount importance for the successful advancement of Tissue Engineering. Finally, we conclude by reporting the future perspectives in this field in continuous development.
Collapse
Affiliation(s)
- Paola Nitti
- Department of Engineering for Innovation, University of Salento, 73100 Lecce, Italy; (A.N.); (R.P.); (S.V.); (M.M.); (C.D.)
| | | | | | | | | | | |
Collapse
|
34
|
Zhang R, Guo J, Wang Y, Sun R, Dong G, Wang X, Du G. Prenatal bisphenol S exposure induces hepatic lipid deposition in male mice offspring through downregulation of adipose-derived exosomal miR-29a-3p. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131410. [PMID: 37088024 DOI: 10.1016/j.jhazmat.2023.131410] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
The increased usage of bisphenol S (BPS) results in wide distribution in pregnant women. In this study, pregnant mice were given multiple-dose BPS during gestation. Results showed that prenatal BPS exposure (50 μg/kg/day) induced increased weight gain, dyslipidemia, higher liver triglyceride (TG), adipocyte hypertrophy, and hepatic lipid deposition in male offspring. Exosomes play important roles in regulating lipid metabolism. Here, serum exosomes and adipose miRNA sequencing of male offspring indicated a remarkable decrease in miR-29a-3p expression. To clarify whether adipocyte-derived exosomes mediate hepatic lipid deposition, exosomes were extracted from BPS-treated adipocytes and co-cultured with hepatocytes. These exosomes could be taken up by hepatocytes and promoted lipid deposition, and notably, exosomal miR-29a-3p was downregulated. Furthermore, miR-29a-3p knockdown in adipocyte-derived exosomes promoted hepatocyte lipid deposition, whereas overexpression led to the opposite effect. Also, the role of miR-29a-3p was demonstrated in hepatocytes by overexpressing or knocking it down. Subsequent studies have shown that miR-29a-3p can promote lipid deposition by directly targeting Col4a1. Taken together, prenatal BPS exposure could lead to lower miR-29a-3p yield in adipocyte-derived exosomes and decrease miR-29a-3p content transported to hepatocytes, which further negatively regulate Col4a1 and promote hepatic lipid deposition. Our findings provided clues to maternal environmental exposure-induced liver metabolic diseases.
Collapse
Affiliation(s)
- Rui Zhang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Department of Immunology, Shanghai Pudong New Area Center for Disease Control and Prevention, Shanghai 200136, China
| | - Jingyao Guo
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yupeng Wang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Rundong Sun
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Guangzhu Dong
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Baijiahu Community Health Service Center, Moling Street, Jiangning District, Nanjing 211102, China
| | - Xinru Wang
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Guizhen Du
- State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
35
|
Pellegrinelli V, Figueroa-Juárez E, Samuelson I, U-Din M, Rodriguez-Fdez S, Virtue S, Leggat J, Çubuk C, Peirce VJ, Niemi T, Campbell M, Rodriguez-Cuenca S, Blázquez JD, Carobbio S, Virtanen KA, Vidal-Puig A. Defective extracellular matrix remodeling in brown adipose tissue is associated with fibro-inflammation and reduced diet-induced thermogenesis. Cell Rep 2023; 42:112640. [PMID: 37318951 DOI: 10.1016/j.celrep.2023.112640] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/25/2023] [Accepted: 05/29/2023] [Indexed: 06/17/2023] Open
Abstract
The relevance of extracellular matrix (ECM) remodeling is reported in white adipose tissue (AT) and obesity-related dysfunctions, but little is known about the importance of ECM remodeling in brown AT (BAT) function. Here, we show that a time course of high-fat diet (HFD) feeding progressively impairs diet-induced thermogenesis concomitantly with the development of fibro-inflammation in BAT. Higher markers of fibro-inflammation are associated with lower cold-induced BAT activity in humans. Similarly, when mice are housed at thermoneutrality, inactivated BAT features fibro-inflammation. We validate the pathophysiological relevance of BAT ECM remodeling in response to temperature challenges and HFD using a model of a primary defect in the collagen turnover mediated by partial ablation of the Pepd prolidase. Pepd-heterozygous mice display exacerbated dysfunction and BAT fibro-inflammation at thermoneutrality and in HFD. Our findings show the relevance of ECM remodeling in BAT activation and provide a mechanism for BAT dysfunction in obesity.
Collapse
Affiliation(s)
- Vanessa Pellegrinelli
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK.
| | - Elizabeth Figueroa-Juárez
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Isabella Samuelson
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Mueez U-Din
- Turku PET Centre, University of Turku, Turku, Finland; Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Sonia Rodriguez-Fdez
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Samuel Virtue
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Jennifer Leggat
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Cankut Çubuk
- Platform of Computational Medicine, Fundación Progreso y Salud (FPS), Hospital Virgen Del Rocío, 41013 Sevilla, Spain
| | - Vivian J Peirce
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK
| | - Tarja Niemi
- Department of Plastic and General Surgery, Turku University Hospital, Turku, Finland
| | - Mark Campbell
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK; Cambridge University Nanjing Centre of Technology and Innovation, Nanjing, P.R. China
| | - Sergio Rodriguez-Cuenca
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK; Cambridge University Nanjing Centre of Technology and Innovation, Nanjing, P.R. China
| | - Joaquin Dopazo Blázquez
- Platform of Computational Medicine, Fundación Progreso y Salud (FPS), Hospital Virgen Del Rocío, 41013 Sevilla, Spain; Bioinformatics in RareDiseases (BiER), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), 41013 Sevilla, Spain; Computational Systems Medicine, Institute of Biomedicine of Seville (IBiS), Sevilla 41013, Spain; Functional Genomics Node (INB-ELIXIR-es), Sevilla, Spain
| | - Stefania Carobbio
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK; Centro de Investigacion Principe Felipe (CIPF), Valencia, Spain
| | - Kirsi A Virtanen
- Turku PET Centre, University of Turku, Turku, Finland; Institute of Public Health and Clinical Nutrition, University of Eastern Finland (UEF), Kuopio, Finland; Department of Endocrinology and Clinical Nutrition, Kuopio University Hospital, Kuopio, Finland
| | - Antonio Vidal-Puig
- Wellcome-MRC Institute of Metabolic Science and Medical Research Council Metabolic Diseases Unit, University of Cambridge, Cambridge, UK; Cambridge University Nanjing Centre of Technology and Innovation, Nanjing, P.R. China; Centro de Investigacion Principe Felipe (CIPF), Valencia, Spain; Cambridge Heart and Lung Research Institute, Cambridge, UK.
| |
Collapse
|
36
|
Patras L, Paul D, Matei IR. Weaving the nest: extracellular matrix roles in pre-metastatic niche formation. Front Oncol 2023; 13:1163786. [PMID: 37350937 PMCID: PMC10282420 DOI: 10.3389/fonc.2023.1163786] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 05/15/2023] [Indexed: 06/24/2023] Open
Abstract
The discovery that primary tumors condition distant organ sites of future metastasis for seeding by disseminating tumor cells through a process described as the pre-metastatic niche (PMN) formation revolutionized our understanding of cancer progression and opened new avenues for therapeutic interventions. Given the inherent inefficiency of metastasis, PMN generation is crucial to ensure the survival of rare tumor cells in the otherwise hostile environments of metastatic organs. Early on, it was recognized that preparing the "soil" of the distal organ to support the outgrowth of metastatic cells is the initiating event in PMN development, achieved through the remodeling of the organ's extracellular matrix (ECM). Remote restructuring of ECM at future sites of metastasis under the influence of primary tumor-secreted factors is an iterative process orchestrated through the crosstalk between resident stromal cells, such as fibroblasts, epithelial and endothelial cells, and recruited innate immune cells. In this review, we will explore the ECM changes, cellular effectors, and the mechanisms of ECM remodeling throughout PMN progression, as well as its impact on shaping the PMN and ultimately promoting metastasis. Moreover, we highlight the clinical and translational implications of PMN ECM changes and opportunities for therapeutically targeting the ECM to hinder PMN formation.
Collapse
Affiliation(s)
- Laura Patras
- Children’s Cancer and Blood Foundation Laboratories, Department of Pediatrics, Division of Hematology/Oncology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Doru Paul
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, New York, NY, United States
| | - Irina R. Matei
- Children’s Cancer and Blood Foundation Laboratories, Department of Pediatrics, Division of Hematology/Oncology, Drukier Institute for Children’s Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
- Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
| |
Collapse
|
37
|
Restan Perez M, da Silva VA, Cortez PE, Joddar B, Willerth SM. 3D-bioprinted cardiac tissues and their potential for disease modeling. JOURNAL OF 3D PRINTING IN MEDICINE 2023; 7:10.2217/3dp-2022-0023. [PMID: 38250545 PMCID: PMC10798787 DOI: 10.2217/3dp-2022-0023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Heart diseases cause over 17.9 million total deaths globally, making them the leading source of mortality. The aim of this review is to describe the characteristic mechanical, chemical and cellular properties of human cardiac tissue and how these properties can be mimicked in 3D bioprinted tissues. Furthermore, the authors review how current healthy cardiac models are being 3D bioprinted using extrusion-, laser- and inkjet-based printers. The review then discusses the pathologies of cardiac diseases and how bioprinting could be used to fabricate models to study these diseases and potentially find new drug targets for such diseases. Finally, the challenges and future directions of cardiac disease modeling using 3D bioprinting techniques are explored.
Collapse
Affiliation(s)
| | - Victor Alisson da Silva
- Department of Mechanical Engineering, University of Victoria, 3800 Finnerty Road, Victoria, BC, V8W 2Y2, Canada
| | - Polette Esmeralda Cortez
- Department of Metallurgical, Materials & Biomedical Engineering, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA
| | - Binata Joddar
- Department of Metallurgical, Materials & Biomedical Engineering, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA
| | - Stephanie Michelle Willerth
- Axolotl Biosciences, 3800 Finnerty Road, Victoria, BC, V8W 2Y2, Canada
- Department of Mechanical Engineering, University of Victoria, 3800 Finnerty Road, Victoria, BC, V8W 2Y2, Canada
- Division of Medical Sciences, University of Victoria, 3800 Finnerty Road, Victoria, BC, V8W 2Y2, Canada
- Centre for Advanced Materials & Technology, University of Victoria, 3800 Finnerty Road, Victoria, BC, V8W 2Y2, Canada
- School of Biomedical Engineering, University of British Columbia, 2222 Health Sciences Mall, Vancouver, BC, V6T 1Z3, Canada
| |
Collapse
|
38
|
Karanfil AS, Louis F, Matsusaki M. Biofabrication of vascularized adipose tissues and their biomedical applications. MATERIALS HORIZONS 2023; 10:1539-1558. [PMID: 36789675 DOI: 10.1039/d2mh01391f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Recent advances in adipose tissue engineering and cell biology have led to the development of innovative therapeutic strategies in regenerative medicine for adipose tissue reconstruction. To date, the many in vitro and in vivo models developed for vascularized adipose tissue engineering cover a wide range of research areas, including studies with cells of various origins and types, polymeric scaffolds of natural and synthetic derivation, models presented using decellularized tissues, and scaffold-free approaches. In this review, studies on adipose tissue types with different functions, characteristics and body locations have been summarized with 3D in vitro fabrication approaches. The reason for the particular focus on vascularized adipose tissue models is that current liposuction and fat transplantation methods are unsuitable for adipose tissue reconstruction as the lack of blood vessels results in inadequate nutrient and oxygen delivery, leading to necrosis in situ. In the first part of this paper, current studies and applications of white and brown adipose tissues are presented according to the polymeric materials used, focusing on the studies which could show vasculature in vitro and after in vivo implantation, and then the research on adipose tissue fabrication and applications are explained.
Collapse
Affiliation(s)
- Aslı Sena Karanfil
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Japan.
| | - Fiona Louis
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Japan
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Japan.
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Graduate School of Engineering, Osaka University, Japan
| |
Collapse
|
39
|
Pashapour S, Seneca S, Schröter M, Frischknecht F, Platzman I, Spatz J. Design and Development of Extracellular Matrix Protein-Based Microcapsules as Tools for Bacteria Investigation. Adv Healthc Mater 2023; 12:e2202789. [PMID: 36599129 PMCID: PMC11468930 DOI: 10.1002/adhm.202202789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/19/2022] [Indexed: 01/06/2023]
Abstract
The extracellular matrix (ECM) plays an immense role in the homeostasis of tissues and organs, can function as a barrier for infectious agents, but is also exploited by pathogens during infection. Therefore, the development of well-defined 3D ECM models in the form of microcapsules to elucidate the interactions between ECM components and pathogens in confinement and study disease infectivity is important, albeit challenging. Current limitations are mainly attributed to the lack of biocompatible methods for the production of protein-based microcapsules. Herein, hollow ECM-based microcapsules from laminin-111 or laminin-111/collagen IV are generated to investigate the behavior of organisms within confined 3D extracellular matrices. Microcapsules are created using water-in-oil emulsion droplets stabilized by block copolymer surfactants as templates for the charge-mediated attraction of laminin or laminin-collagen proteins to the droplets' inner periphery, allowing for the formation of modular ECM-based microcapsules with tunable biophysical and biochemical properties and organism encapsulation. The release of E. coli-laden ECM-based protein microcapsules into a physiological environment revealed differences in the dynamic behavior of E. coli depending on the constitution of the surrounding ECM protein matrix. The developed ECM-based protein microcapsules have the potential to be implemented in several biomedical applications, including the design of in vitro infection models.
Collapse
Affiliation(s)
- Sadaf Pashapour
- Department of Cellular BiophysicsMax Planck Institute for Medical ResearchJahnstraße 29D‐69120HeidelbergGermany
- Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM)Heidelberg UniversityIm Neuenheimer Feld 225D‐69120HeidelbergGermany
| | - Senne Seneca
- Department of Cellular BiophysicsMax Planck Institute for Medical ResearchJahnstraße 29D‐69120HeidelbergGermany
- Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM)Heidelberg UniversityIm Neuenheimer Feld 225D‐69120HeidelbergGermany
| | - Martin Schröter
- Department of Cellular BiophysicsMax Planck Institute for Medical ResearchJahnstraße 29D‐69120HeidelbergGermany
- Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM)Heidelberg UniversityIm Neuenheimer Feld 225D‐69120HeidelbergGermany
- Department of Chemistry and Earth SciencesHeidelberg UniversityIm Neuenheimer Feld 225D‐69120HeidelbergGermany
| | - Friedrich Frischknecht
- Center for Infectious DiseasesHeidelberg University Medical SchoolIm Neuenheimer Feld 344D‐69120HeidelbergGermany
- German Center for Infection ResearchDZIFPartner Site HeidelbergIm Neuenheimer Feld 344D‐69120HeidelbergGermany
| | - Ilia Platzman
- Department of Cellular BiophysicsMax Planck Institute for Medical ResearchJahnstraße 29D‐69120HeidelbergGermany
- Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM)Heidelberg UniversityIm Neuenheimer Feld 225D‐69120HeidelbergGermany
| | - Joachim Spatz
- Department of Cellular BiophysicsMax Planck Institute for Medical ResearchJahnstraße 29D‐69120HeidelbergGermany
- Institute for Molecular Systems Engineering and Advanced Materials (IMSEAM)Heidelberg UniversityIm Neuenheimer Feld 225D‐69120HeidelbergGermany
- Max Planck School Matter to LifeJahnstraße 29D‐69120HeidelbergGermany
| |
Collapse
|
40
|
Makuloluwa AK, Hamill KJ, Rauz S, Bosworth L, Haneef A, Romano V, Williams RL, Dartt DA, Kaye SB. The conjunctival extracellular matrix, related disorders and development of substrates for conjunctival restoration. Ocul Surf 2023; 28:322-335. [PMID: 34102309 DOI: 10.1016/j.jtos.2021.05.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 05/05/2021] [Accepted: 05/26/2021] [Indexed: 12/15/2022]
Abstract
The conjunctiva can be damaged by numerous diseases with scarring, loss of tissue and dysfunction. Depending on extent of damage, restoration of function may require a conjunctival graft. A wide variety of biological and synthetic substrates have been tested in the search for optimal conditions for ex vivo culture of conjunctival epithelial cells as a route toward tissue grafts. Each substrate has specific advantages but also disadvantages related to their unique physical and biological characteristics, and identification and development of an improved substrate remains a priority. To achieve the goal of mimicking and restoring a biological material, requires information from the material. Specifically, extracellular matrix (ECM) derived from conjunctival tissue. Knowledge of the composition and structure of native ECM and identifying contributions of individual components to its function would enable using or mimicking those components to develop improved biological substrates. ECM is comprised of two components: basement membrane secreted predominantly by epithelial cells containing laminins and type IV collagens, which directly support epithelial and goblet cell adhesion differentiation and growth and, interstitial matrix secreted by fibroblasts in lamina propria, which provides mechanical and structural support. This review presents current knowledge on anatomy, composition of conjunctival ECM and related conjunctival disorders. Requirements of potential substrates for conjunctival tissue engineering and transplantation are discussed. Biological and synthetic substrates and their components are described in an accompanying review.
Collapse
Affiliation(s)
- Aruni K Makuloluwa
- Department of Eye and Vision Science, University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Kevin J Hamill
- Department of Eye and Vision Science, University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Saaeha Rauz
- Academic Unit of Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham and Birmingham and Midland Eye Centre, Dudley Road Birmingham, B18 7QU, UK
| | - Lucy Bosworth
- Department of Eye and Vision Science, University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Atikah Haneef
- Department of Eye and Vision Science, University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Vito Romano
- Department of Eye and Vision Science, University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Rachel L Williams
- Department of Eye and Vision Science, University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK
| | - Darlene A Dartt
- Schepens Eye Research Institute, Mass Eye and Ear Infirmary, Harvard Medical School, 20 Staniford St. Boston, MA, 02114, USA
| | - Stephen B Kaye
- Department of Eye and Vision Science, University of Liverpool, William Duncan Building, 6 West Derby Street, Liverpool, L7 8TX, UK.
| |
Collapse
|
41
|
Hou C, Gu Y, Yuan W, Zhang W, Xiu X, Lin J, Gao Y, Liu P, Chen X, Song L. Application of microfluidic chips in the simulation of the urinary system microenvironment. Mater Today Bio 2023; 19:100553. [PMID: 36747584 PMCID: PMC9898763 DOI: 10.1016/j.mtbio.2023.100553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/01/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
The urinary system, comprising the kidneys, ureters, bladder, and urethra, has a unique mechanical and fluid microenvironment, which is essential to the urinary system growth and development. Microfluidic models, based on micromachining and tissue engineering technology, can integrate pathophysiological characteristics, maintain cell-cell and cell-extracellular matrix interactions, and accurately simulate the vital characteristics of human tissue microenvironments. Additionally, these models facilitate improved visualization and integration and meet the requirements of the laminar flow environment of the urinary system. However, several challenges continue to impede the development of a tissue microenvironment with controllable conditions closely resemble physiological conditions. In this review, we describe the biochemical and physical microenvironment of the urinary system and explore the feasibility of microfluidic technology in simulating the urinary microenvironment and pathophysiological characteristics in vitro. Moreover, we summarize the current research progress on adapting microfluidic chips for constructing the urinary microenvironment. Finally, we discuss the current challenges and suggest directions for future development and application of microfluidic technology in constructing the urinary microenvironment in vitro.
Collapse
Affiliation(s)
- Changhao Hou
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Shanghai Eastern Institute of Urologic Reconstruction, Shanghai, China
| | - Yubo Gu
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Shanghai Eastern Institute of Urologic Reconstruction, Shanghai, China
| | - Wei Yuan
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Shanghai Eastern Institute of Urologic Reconstruction, Shanghai, China
| | - Wukai Zhang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xianjie Xiu
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Shanghai Eastern Institute of Urologic Reconstruction, Shanghai, China
| | - Jiahao Lin
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Shanghai Eastern Institute of Urologic Reconstruction, Shanghai, China
| | - Yue Gao
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Peichuan Liu
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiang Chen
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lujie Song
- Department of Urology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Shanghai Eastern Institute of Urologic Reconstruction, Shanghai, China
| |
Collapse
|
42
|
de Alvarenga VG, Oliveira LS, Santos GO, Vivas-Ruiz DE, Borges MH, de Souza RCG, Eble JA, Moura-da-Silva AM, Sanchez EF. Rhomb-I, a P–I metalloproteinase from Lachesis muta rhombeata venom degrades vessel extra cellular matrix components and impairs platelet aggregation. Toxicon 2023; 228:107097. [PMID: 37028563 DOI: 10.1016/j.toxicon.2023.107097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/21/2023] [Accepted: 03/22/2023] [Indexed: 04/08/2023]
Abstract
Rhomb-I, a 23-kDa metalloproteinase was isolated from L. m. rhombeata venom. Its dimethylcasein proteolysis was abolished by metal chelators, and slightly enhanced by Ca2+ and Mg2+ ions, but inhibited by Co2+, Zn2+ and α2-macroglobulin. In aqueous solution, rhomb-I autoproteolyzed to a 20- and 11-kDa fragments at 37 °C. The amino acid sequence showed high homology with other snake venom metalloproteinases. Rhomb-I causes hemorrhage that may be ascribed to hydrolysis of essential basement membrane, extracellular matrix and plasma proteins. It preferentially cleaves the α-chains of fibrin (ogen). Rhomb-I inhibited convulxin- and von Willebrand factor (vWF)-induced aggregation on human platelets without significant effect on collagen-stimulated aggregation or other effectors. It digests vWF into a low-molecular-mass multimers of vWF and a rvWF-A1 domain to a 27-kDa fragment as revealed by western blotting with mouse anti-rvWF A1-domain IgG. Incubation of platelets with rhomb-I resulted in adhesion to and cleavage of platelet receptors glycoprotein (GP)Ibα and GPVI to release a 55-kDa soluble form. Both membrane glycoproteins GPIbα that binds vWF, together with GPVI which binds collagen, play a key role in mediating platelet adhesion/activation and can initiate (patho)physiological thrombus formation. Conclusions: rhomb-I is implicated in the pathophysiology of Lachesis envenoming by disrupting vasculature, hemostasis and platelet aggregation through impairing vWF-GPIb axis and blocking GPVI-collagen binding.
Collapse
Affiliation(s)
| | - Luciana S Oliveira
- Laboratório de Bioquímica de Proteínas de Venenos Animais, Fundação Ezequiel Dias, Belo Horizonte, Brazil
| | - Gustavo O Santos
- Laboratório de Bioquímica de Proteínas de Venenos Animais, Fundação Ezequiel Dias, Belo Horizonte, Brazil
| | - Dan E Vivas-Ruiz
- Laboratório de Biologia Molecular, Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Márcia Helena Borges
- Laboratório de Proteômica e Aracnídeos, Fundação Ezequiel Dias, Belo Horizonte, Brazil
| | | | - Johannes A Eble
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Germany
| | | | - Eladio F Sanchez
- Laboratório de Bioquímica de Proteínas de Venenos Animais, Fundação Ezequiel Dias, Belo Horizonte, Brazil.
| |
Collapse
|
43
|
Ge X, Xu X, Cai Q, Xiong H, Chen X, Hong Y, Gao X, Yao Y, Bachoo R, Qin Z. pan-ECM: live brain extracellular matrix imaging with protein-reactive dye. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.29.534827. [PMID: 37034592 PMCID: PMC10081250 DOI: 10.1101/2023.03.29.534827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The brain extracellular matrix (ECM), consisting of proteins and glycosaminoglycans, is a critical scaffold in the development, homeostasis, and disorders of the central nervous system (CNS) and undergoes remodeling in response to environmental cues. Live imaging of brain ECM structure represents a native view of the brain ECM but, until now, remains challenging due to the lack of a robust fluorescent labeling approach. Here, we developed a pan-ECM method for labeling the entire (Greek: pan) brain ECM network by screening and delivering a protein-reactive dye into the brain. pan-ECM enables imaging of ECM compartments in live brain tissue, including the interstitial matrix, basement membrane (BM), and perineuronal nets (PNNs), and even the ECM in glioblastoma and stroke mouse brains. This approach provides access to the structure and dynamics of the ECM and enhances our understanding of the complexities of the brain ECM and its contribution to brain health and disease.
Collapse
|
44
|
Kim H, Jang EJ, Sankpal NV, Patel M, Patel R. Recent Development of Brain Organoids for Biomedical Application. Macromol Biosci 2023; 23:e2200346. [PMID: 36469016 DOI: 10.1002/mabi.202200346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/11/2022] [Indexed: 12/12/2022]
Abstract
Over the years, scientists have studied the behavior and anatomy of many animals to understand the own species. However, despite the continuous efforts, it is often difficult to know for certain how the brain works due to the differences between the brains of animals and the human brain. While the use of animal models for research continues, the origin of human cognition and neurological disorders needs further elucidation. To that end, in vitro organoids that exhibit in vivo characteristics of the human brain have been recently developed. These brain-like organoids enable researchers to dive deeper into understanding the human brain, its neurological structures, and the causes of neurological pathologies. This paper reviews the recent developments in the regeneration of brain-like organoids using Matrigel and other alternatives. Further, gel-free methods that may enhance the regeneration process of organoids are discussed. Finally, the vascularized brain organoid growth and development in both in vitro and in vivo conditions are detailed.
Collapse
Affiliation(s)
- HanSol Kim
- Bio-Convergence (BC), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon, 21983, South Korea
| | - Eun Jo Jang
- Nano Science and Engineering, Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University, Songdogwahak-ro, Yeonsu-gu, Incheon, 21983, South Korea
| | - Narendra V Sankpal
- Norton Thoracic Institute St. Joseph's Hospital and Medical Center, Phoenix, AZ, 85013, USA
| | - Madhumita Patel
- Department of Chemistry and Nanoscience, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, South Korea
| | - Rajkumar Patel
- Energy & Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University, 85 Songdogwahak-ro, Yeonsugu, Incheon, 21938, South Korea
| |
Collapse
|
45
|
Alge JL, Bekheirnia N, Willcockson AR, Qin X, Scherer SE, Braun MC, Bekheirnia MR. Variants in genes coding for collagen type IV α-chains are frequent causes of persistent, isolated hematuria during childhood. Pediatr Nephrol 2023; 38:687-695. [PMID: 35759000 DOI: 10.1007/s00467-022-05627-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 01/19/2023]
Abstract
BACKGROUND Children with persistent, isolated microscopic hematuria typically undergo a limited diagnostic workup and are monitored for signs of kidney disease in long-term longitudinal follow-up, which can delay diagnosis and allow disease progression in some cases. METHODS To determine the clinical utility of genetic screening in this population, we performed targeted genetic testing using a custom, 32-gene next-generation sequencing panel for progressive kidney disease on children referred to the Texas Children's Hospital Pediatric Nephrology clinic for persistent, microscopic hematuria (n = 30; cohort 1). Patients with microscopic hematuria identified by urinalysis on at least two separate occasions were eligible for enrollment, but those with other evidence of kidney disease were excluded. Results were analyzed for sequence variants using the American College of Medical Genetics and Genomics (ACMG) guideline for data interpretation and were validated using a secondary analysis of a dataset of children with hematuria and normal kidney function who had undergone genetic testing as part of an industry-sponsored program (cohort 2; n = 67). RESULTS In cohort 1 33% of subjects (10/30) had pathogenic or likely pathogenic (P/LP) variants in the type IV collagen genes (COL4A3/A4/A5), and 10% (3/30) had variants of uncertain significance in these genes. The high diagnostic rate in type IV collagen genes was confirmed in cohort 2, where 27% (18/67) of subjects had P/LP variants in COL4A3/A4/A5 genes. CONCLUSIONS Children with persistent, isolated microscopic hematuria have a high likelihood of having pathogenic variants in type IV collagen genes and genetic screening should be considered. A higher resolution version of the Graphical abstract is available as Supplementary information.
Collapse
Affiliation(s)
- Joseph L Alge
- Department of Pediatrics, Division of Pediatric Nephrology, Baylor College Medicine, Houston, TX, 77030, USA
| | - Nasim Bekheirnia
- Department of Pediatrics, Division of Pediatric Nephrology, Baylor College Medicine, Houston, TX, 77030, USA
| | | | - Xiang Qin
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Steven E Scherer
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, 77030, USA.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Michael C Braun
- Department of Pediatrics, Division of Pediatric Nephrology, Baylor College Medicine, Houston, TX, 77030, USA
| | - Mir Reza Bekheirnia
- Department of Pediatrics, Division of Pediatric Nephrology, Baylor College Medicine, Houston, TX, 77030, USA. .,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
46
|
Sánchez-Porras D, Durand-Herrera D, Carmona R, Blanco-Elices C, Garzón I, Pozzobon M, San Martín S, Alaminos M, García-García ÓD, Chato-Astrain J, Carriel V. Expression of Basement Membrane Molecules by Wharton Jelly Stem Cells (WJSC) in Full-Term Human Umbilical Cords, Cell Cultures and Microtissues. Cells 2023; 12:cells12040629. [PMID: 36831296 PMCID: PMC9954414 DOI: 10.3390/cells12040629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023] Open
Abstract
Wharton's jelly stem cells (WJSC) from the human umbilical cord (UC) are one of the most promising mesenchymal stem cells (MSC) in tissue engineering (TE) and advanced therapies. The cell niche is a key element for both, MSC and fully differentiated tissues, to preserve their unique features. The basement membrane (BM) is an essential structure during embryonic development and in adult tissues. Epithelial BMs are well-known, but similar structures are present in other histological structures, such as in peripheral nerve fibers, myocytes or chondrocytes. Previous studies suggest the expression of some BM molecules within the Wharton's Jelly (WJ) of UC, but the distribution pattern and full expression profile of these molecules have not been yet elucidated. In this sense, the aim of this histological study was to evaluate the expression of main BM molecules within the WJ, cultured WJSC and during WJSC microtissue (WJSC-MT) formation process. Results confirmed the presence of a pericellular matrix composed by the main BM molecules-collagens (IV, VII), HSPG2, agrin, laminin and nidogen-around the WJSC within UC. Additionally, ex vivo studies demonstrated the synthesis of these BM molecules, except agrin, especially during WJSC-MT formation process. The WJSC capability to synthesize main BM molecules could offer new alternatives for the generation of biomimetic-engineered substitutes where these molecules are particularly needed.
Collapse
Affiliation(s)
- David Sánchez-Porras
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, Universidad de Granada, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Doctoral Program in Biomedicine, Doctoral School, Universidad de Granada, 18016 Granada, Spain
| | - Daniel Durand-Herrera
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, Universidad de Granada, 18016 Granada, Spain
- Facultad de Odontología, Universidad Michoacana de San Nicolás de Hidalgo (UMSNH), Morelia 58010, Mexico
| | - Ramón Carmona
- Department of Cell Biology, Faculty of Sciences, Universidad de Granada, 18071 Granada, Spain
| | - Cristina Blanco-Elices
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, Universidad de Granada, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - Ingrid Garzón
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, Universidad de Granada, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - Michela Pozzobon
- Department of Women and Children’s Health, University of Padova, 35129 Padova, Italy
- Corso Stati Uniti 4, Institute of Pediatric Research Città della Speranza, 35127 Padova, Italy
| | - Sebastián San Martín
- Centro de Investigaciones Biomédicas, Escuela de Medicina, Facultad de Medicina, Universidad de Valparaíso, Valparaíso 2520000, Chile
| | - Miguel Alaminos
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, Universidad de Granada, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - Óscar Darío García-García
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, Universidad de Granada, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Correspondence: (Ó.D.G.-G.); (J.C.-A.)
| | - Jesús Chato-Astrain
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, Universidad de Granada, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Correspondence: (Ó.D.G.-G.); (J.C.-A.)
| | - Víctor Carriel
- Tissue Engineering Group, Department of Histology, Faculty of Medicine, Universidad de Granada, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| |
Collapse
|
47
|
Choi JW, Youn J, Kim DS, Park TE. Human iPS-derived blood-brain barrier model exhibiting enhanced barrier properties empowered by engineered basement membrane. Biomaterials 2023; 293:121983. [PMID: 36610323 DOI: 10.1016/j.biomaterials.2022.121983] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 10/17/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022]
Abstract
The basement membrane (BM) of the blood-brain barrier (BBB), a thin extracellular matrix (ECM) sheet underneath the brain microvascular endothelial cells (BMECs), plays crucial roles in regulating the unique physiological barrier function of the BBB, which represents a major obstacle for brain drug delivery. Owing to the difficulty in mimicking the unique biophysical and chemical features of BM in in vitro systems, current in vitro BBB models have suffered from poor physiological relevance. Here, we describe a highly ameliorated human BBB model accomplished by an ultra-thin ECM hydrogel-based engineered basement membrane (nEBM), which is supported by a sparse electrospun nanofiber scaffold that offers in vivo BM-like microenvironment to BMECs. BBB model reconstituted on a nEBM recapitulates the physical barrier function of the in vivo human BBB through ECM mechano-response to physiological relevant stiffness (∼500 kPa) and exhibits high efflux pump activity. These features of the proposed BBB model enable modelling of ischemic stroke, reproducing the dynamic changes of BBB, immune cell infiltration, and drug response. Therefore, the proposed BBB model represents a powerful tool for predicting the BBB permeation of drugs and developing therapeutic strategies for brain diseases.
Collapse
Affiliation(s)
- Jeong-Won Choi
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
| | - Jaeseung Youn
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Dong Sung Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea; Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea; Institute for Convergence Research and Education in Advanced Technology, Yonsei University, Seoul, 03722, Republic of Korea.
| | - Tae-Eun Park
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| |
Collapse
|
48
|
Morris EK, Daignault-Mill S, Stehbens SJ, Genovesi LA, Lagendijk AK. Addressing blood-brain-tumor-barrier heterogeneity in pediatric brain tumors with innovative preclinical models. Front Oncol 2023; 13:1101522. [PMID: 36776301 PMCID: PMC9909546 DOI: 10.3389/fonc.2023.1101522] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/06/2023] [Indexed: 01/27/2023] Open
Abstract
Brain tumors represent the leading cause of disease-related mortality and morbidity in children, with effective treatments urgently required. One factor limiting the effectiveness of systemic therapy is the blood-brain-barrier (BBB), which limits the brain penetration of many anticancer drugs. BBB integrity is often compromised in tumors, referred to as the blood-brain-tumor-barrier (BBTB), and the impact of a compromised BBTB on the therapeutic sensitivity of brain tumors has been clearly shown for a few selected agents. However, the heterogeneity of barrier alteration observed within a single tumor and across distinct pediatric tumor types represents an additional challenge. Herein, we discuss what is known regarding the heterogeneity of tumor-associated vasculature in pediatric brain tumors. We discuss innovative and complementary preclinical model systems that will facilitate real-time functional analyses of BBTB for all pediatric brain tumor types. We believe a broader use of these preclinical models will enable us to develop a greater understanding of the processes underlying tumor-associated vasculature formation and ultimately more efficacious treatment options.
Collapse
Affiliation(s)
- Elysse K. Morris
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
| | - Sheena Daignault-Mill
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
| | - Samantha J. Stehbens
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
| | - Laura A. Genovesi
- The University of Queensland Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia,*Correspondence: Laura A. Genovesi, ; Anne K. Lagendijk,
| | - Anne K. Lagendijk
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia,School of Biomedical Sciences, University of Queensland, St. Lucia, QLD, Australia,*Correspondence: Laura A. Genovesi, ; Anne K. Lagendijk,
| |
Collapse
|
49
|
Zhang Z, Ji C, Wang D, Wang M, Song D, Xu X, Zhang D. The burden of diabetes on the soft tissue seal surrounding the dental implants. Front Physiol 2023; 14:1136973. [PMID: 36875028 PMCID: PMC9978121 DOI: 10.3389/fphys.2023.1136973] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/08/2023] [Indexed: 02/18/2023] Open
Abstract
Soft tissue seal around implant prostheses is considered the primary barrier against adverse external stimuli and is a critical factor in maintaining dental implants' stability. Soft tissue seal is formed mainly by the adhesion of epithelial tissue and fibrous connective tissue to the transmembrane portion of the implant. Type 2 diabetes mellitus (T2DM) is one of the risk factors for peri-implant inflammation, and peri-implant disease may be triggered by dysfunction of the soft tissue barrier around dental implants. This is increasingly considered a promising target for disease treatment and management. However, many studies have demonstrated that pathogenic bacterial infestation, gingival immune inflammation, overactive matrix metalloproteinases (MMPs), impaired wound healing processes and excessive oxidative stress may trigger poor peri-implant soft tissue sealing, which may be more severe in the T2DM state. This article reviews the structure of peri-implant soft tissue seal, peri-implant disease and treatment, and moderating mechanisms of impaired soft tissue seal around implants due to T2DM to inform the development of treatment strategies for dental implants in patients with dental defects.
Collapse
Affiliation(s)
- Zhanwei Zhang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong Provincial Clinical Research Center for Oral, Shandong University , Jinan, China
| | - Chonghao Ji
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong Provincial Clinical Research Center for Oral, Shandong University , Jinan, China
| | | | - Maoshan Wang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong Provincial Clinical Research Center for Oral, Shandong University , Jinan, China
| | - Dawei Song
- School of Stomatology, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, China
| | - Xin Xu
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong Provincial Clinical Research Center for Oral, Shandong University , Jinan, China
| | - Dongjiao Zhang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong Provincial Clinical Research Center for Oral, Shandong University , Jinan, China
| |
Collapse
|
50
|
Ghannam SF, Rutland CS, Allegrucci C, Mongan NP, Rakha E. Defining invasion in breast cancer: the role of basement membrane. J Clin Pathol 2023; 76:11-18. [PMID: 36253088 DOI: 10.1136/jcp-2022-208584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 10/01/2022] [Indexed: 12/27/2022]
Abstract
Basement membrane (BM) is an amorphous, sheet-like structure separating the epithelium from the stroma. BM is characterised by a complex structure comprising collagenous and non-collagenous proteoglycans and glycoproteins. In the breast, the thickness, density and composition of the BM around the ductal lobular system vary during differing development stages. In pathological conditions, the BM provides a physical barrier that separates proliferating intraductal epithelial cells from the surrounding stroma, and its absence or breach in malignant lesions is a hallmark of invasion and metastases. Currently, diagnostic services often use special stains and immunohistochemistry (IHC) to identify the BM in order to distinguish in situ from invasive lesions. However, distinguishing BM on stained sections, and differentiating the native BM from the reactive capsule or BM-like material surrounding some invasive malignant breast tumours is challenging. Although diagnostic use of the BM is being replaced by myoepithelial cell IHC markers, BM is considered by many to be a useful marker to distinguish in situ from invasive lesions in ambiguous cases. In this review, the structure, function and biological and clinical significance of the BM are discussed in relation to the various breast lesions with emphasis on how to distinguish the native BM from alternative pathological tissue mimicking its histology.
Collapse
Affiliation(s)
- Suzan F Ghannam
- Division of cancer and stem cells, school of Medicine, University of Nottingham, Nottingham, UK
- Histology and Cell Biology, Suez Canal University Faculty of Medicine, Ismailia, Egypt
- Nottingham Breast Cancer Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, UK
| | - Catrin Sian Rutland
- Nottingham Breast Cancer Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, UK
- School of Veterinary Medicine and Sciences, University of Nottingham, Nottingham, UK
| | - Cinzia Allegrucci
- Nottingham Breast Cancer Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, UK
- School of Veterinary Medicine and Sciences, University of Nottingham, Nottingham, UK
| | - Nigel P Mongan
- School of Veterinary Medicine and Sciences, University of Nottingham, Nottingham, UK
- Department of Pharmacology, Weill Cornell Medicine, New York, New York, USA
| | - Emad Rakha
- Division of cancer and stem cells, school of Medicine, University of Nottingham, Nottingham, UK
- Nottingham Breast Cancer Research Centre, Biodiscovery Institute, University of Nottingham, Nottingham, UK
- Histopathology,school of Medicine, University of Nottingham School of Medicine, Nottingham, UK
| |
Collapse
|