1
|
Homme RP, George AK, Singh M, Smolenkova I, Zheng Y, Pushpakumar S, Tyagi SC. Mechanism of Blood-Heart-Barrier Leakage: Implications for COVID-19 Induced Cardiovascular Injury. Int J Mol Sci 2021; 22:ijms222413546. [PMID: 34948342 PMCID: PMC8706694 DOI: 10.3390/ijms222413546] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/08/2021] [Accepted: 12/14/2021] [Indexed: 12/23/2022] Open
Abstract
Although blood–heart-barrier (BHB) leakage is the hallmark of congestive (cardio-pulmonary) heart failure (CHF), the primary cause of death in elderly, and during viral myocarditis resulting from the novel coronavirus variants such as the severe acute respiratory syndrome novel corona virus 2 (SARS-CoV-2) known as COVID-19, the mechanism is unclear. The goal of this project is to determine the mechanism of the BHB in CHF. Endocardial endothelium (EE) is the BHB against leakage of blood from endocardium to the interstitium; however, this BHB is broken during CHF. Previous studies from our laboratory, and others have shown a robust activation of matrix metalloproteinase-9 (MMP-9) during CHF. MMP-9 degrades the connexins leading to EE dysfunction. We demonstrated juxtacrine coupling of EE with myocyte and mitochondria (Mito) but how it works still remains at large. To test whether activation of MMP-9 causes EE barrier dysfunction, we hypothesized that if that were the case then treatment with hydroxychloroquine (HCQ) could, in fact, inhibit MMP-9, and thus preserve the EE barrier/juxtacrine signaling, and synchronous endothelial-myocyte coupling. To determine this, CHF was created by aorta-vena cava fistula (AVF) employing the mouse as a model system. The sham, and AVF mice were treated with HCQ. Cardiac hypertrophy, tissue remodeling-induced mitochondrial-myocyte, and endothelial-myocyte contractions were measured. Microvascular leakage was measured using FITC-albumin conjugate. The cardiac function was measured by echocardiography (Echo). Results suggest that MMP-9 activation, endocardial endothelial leakage, endothelial-myocyte (E-M) uncoupling, dyssynchronous mitochondrial fusion-fission (Mfn2/Drp1 ratio), and mito-myocyte uncoupling in the AVF heart failure were found to be rampant; however, treatment with HCQ successfully mitigated some of the deleterious cardiac alterations during CHF. The findings have direct relevance to the gamut of cardiac manifestations, and the resultant phenotypes arising from the ongoing complications of COVID-19 in human subjects.
Collapse
|
2
|
Homme RP, Zheng Y, Smolenkova I, Singh M, Tyagi SC. Remote Hind-Limb Ischemia Mechanism of Preserved Ejection Fraction During Heart Failure. Front Physiol 2021; 12:745328. [PMID: 34858202 PMCID: PMC8632236 DOI: 10.3389/fphys.2021.745328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/12/2021] [Indexed: 11/14/2022] Open
Abstract
During acute heart failure (HF), remote ischemic conditioning (RIC) has proven to be beneficial; however, it is currently unclear whether it also extends benefits from chronic congestive, cardiopulmonary heart failure (CHF). Previous studies from our laboratory have shown three phases describing CHF viz. (1) HF with preserved ejection fraction (HFpEF), (2) HF with reduced EF (HFrEF), and (3) HF with reversed EF. Although reciprocal organ interaction, ablation of sympathetic, and calcium signaling genes are associated with HFpEF to HFrEF, the mechanism is unclear. The HFrEF ensues, in part, due to reduced angiogenesis, coronary reserve, and leakage of endocardial endothelial (EE) and finally breakdown of the blood-heart barrier (BHB) integrity. In fact, our hypothesis states that a change in phenotype from compensatory HFpEF to decompensatory HFrEF is determined by a potential decrease in regenerative, proangiogenic factors along with a concomitant increase in epigenetic memory, inflammation that combinedly causes oxidative, and proteolytic stress response. To test this hypothesis, we created CHF by aorta-vena-cava (AV) fistula in a group of mice that were subsequently treated with that of hind-limb RIC. HFpEF vs. HFrEF transition was determined by serial/longitudinal echo measurements. Results revealed an increase in skeletal muscle musclin contents, bone-marrow (CD71), and sympathetic activation (β2-AR) by RIC. We also observed a decrease in vascular density and attenuation of EE-BHB function due to a corresponding increase in the activity of MMP-2, vascular endothelial growth factor (VEGF), caspase, and calpain. This decrease was successfully mitigated by RIC-released skeletal muscle exosomes that contain musclin, the myokine along with bone marrow, and sympathetic activation. In short, based on proteome (omics) analysis, ∼20 proteins that appear to be involved in signaling pathways responsible for the synthesis, contraction, and relaxation of cardiac muscle were found to be the dominant features. Thus, our results support that the CHF phenotype causes dysfunction of cardiac metabolism, its contraction, and relaxation. Interestingly, RIC was able to mitigate many of the deleterious changes, as revealed by our multi-omics findings.
Collapse
Affiliation(s)
- Rubens P Homme
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, United States
| | - Yuting Zheng
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, United States
| | - Irina Smolenkova
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, United States
| | - Mahavir Singh
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, United States
| | - Suresh C Tyagi
- Department of Physiology, University of Louisville School of Medicine, Louisville, KY, United States
| |
Collapse
|
3
|
Žukauskas M, Grybaitė B, Jonutė P, Vaickelionienė R, Gibieža P, Vaickelionis G, Dragūnaitė B, Anusevičius K, Mickevičius V, Petrikaitė V. Evaluation of N-aryl-β-alanine derivatives as anticancer agents in triple-negative breast cancer and glioblastoma in vitro models. Bioorg Chem 2021; 115:105214. [PMID: 34426161 DOI: 10.1016/j.bioorg.2021.105214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 07/16/2021] [Accepted: 07/24/2021] [Indexed: 11/24/2022]
Abstract
Synthesis of β-amino acid derivatives containing hydrazone and azole moieties is described. For this purpose, the appropriate hydrazide was treated with aromatic aldehydes, ketones and phenyl iso(thio)cyanates to obtain the desired outcome. The synthesized target compounds were evaluated for their anticancer properties. The assay displayed 3,3'-((2,6-diethylphenyl)azanediyl)bis(N'-(benzylidene)propanehydrazide) to possess the convincing anticancer effect against triple-negative breast cancer cells in vitro. To further study the anticancer properties of compounds containing a hydrazone moiety in breast cancer, series of previously and newly prepared dihydrazones were investigated. It was determined that derivatives with the bis(N'-(4-bromobenzylidene) fragment in the structure are exclusively cytotoxic to cancer cells. The most active compounds against both cell lines were those containing electron withdrawing 4-BrPh or 4-ClPh moieties, together with either chlorine, bromine or iodine groups in para position of phenyl ring. Selected two representative compounds showed migrastatic activity in MDA-MB-231 cell line, where both of them reduced the growth of breast cancer and glioblastoma cell 3D cultures and inhibited cell colony formation. 2009 Elsevier Ltd. All rights reserved.
Collapse
Affiliation(s)
| | - Birutė Grybaitė
- Kaunas University of Technology, Radvilėnų pl. 19, Kaunas 50254, Lithuania.
| | - Paulina Jonutė
- Lithuanian University of Health Sciences, A. Mickevičiaus g. 9, Kaunas LT-44307, Lithuania
| | | | - Paulius Gibieža
- Lithuanian University of Health Sciences, A. Mickevičiaus g. 9, Kaunas LT-44307, Lithuania
| | | | - Bertina Dragūnaitė
- Lithuanian University of Health Sciences, A. Mickevičiaus g. 9, Kaunas LT-44307, Lithuania
| | | | | | - Vilma Petrikaitė
- Lithuanian University of Health Sciences, A. Mickevičiaus g. 9, Kaunas LT-44307, Lithuania; Life Sciences Center of Vilnius University, Saulėtekio al. 7, LT-10257 Vilnius, Lithuania
| |
Collapse
|
4
|
Sindhe MA, Bodke YD, Kenchappa R, Telkar S, Chandrashekar A. Synthesis of a series of novel 2,5-disubstituted-1,3,4-oxadiazole derivatives as potential antioxidant and antibacterial agents. J Chem Biol 2016; 9:79-90. [PMID: 27493696 DOI: 10.1007/s12154-016-0153-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 06/30/2016] [Indexed: 02/06/2023] Open
Abstract
A series of novel 2,5-disubstituted-1,3,4-oxadiazole derivatives were synthesized and screened for their antimicrobial and antioxidant activities. The assay indicated that compounds 3c, 3d, and 3i exhibited comparable antibacterial and antioxidant activity with first-line drugs. The structure activity relationship and molecular docking study of the synthesized compounds are also reported.
Collapse
Affiliation(s)
- M Aruna Sindhe
- Department of P.G. Studies and Research in Industrial Chemistry, Jnana Sahyadri, Kuvempu University, Shankaraghatta, 577451 Shivamogga, Karnataka India
| | - Yadav D Bodke
- Department of P.G. Studies and Research in Industrial Chemistry, Jnana Sahyadri, Kuvempu University, Shankaraghatta, 577451 Shivamogga, Karnataka India
| | - R Kenchappa
- Department of P.G. Studies and Research in Industrial Chemistry, Jnana Sahyadri, Kuvempu University, Shankaraghatta, 577451 Shivamogga, Karnataka India
| | - Sandeep Telkar
- Department of P.G. Studies and Research in Biotechnology, Jnana Sahyadri, Kuvempu University, Shankaraghatta, 577451 Shivamogga, Karnataka India
| | - A Chandrashekar
- Department of P.G. Studies and Research in Industrial Chemistry, Jnana Sahyadri, Kuvempu University, Shankaraghatta, 577451 Shivamogga, Karnataka India
| |
Collapse
|
5
|
Survival analysis and microarray profiling identify Cd40 as a candidate for the Salmonella susceptibility locus, Ity5. Genes Immun 2015; 17:19-29. [PMID: 26562079 DOI: 10.1038/gene.2015.41] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 09/02/2015] [Accepted: 09/08/2015] [Indexed: 01/04/2023]
Abstract
The outcome of infection with Salmonella Typhimurium in mouse models of human typhoid fever is dependent upon a coordinated complex immune response. A panel of recombinant congenic strains (RCS) derived from reciprocal backcross of A/J and C57BL/6J mice was screened for their susceptibility to Salmonella infection and two susceptibility loci, Ity4 (Immunity to Typhimurium locus 4) and Ity5, were identified. We validated Ity5 in a genetic environment free of the impact of Ity4 using a cross between A/J and 129S6. Using a time-series analysis of genome-wide transcription during infection, comparing A/J with AcB60 mice having a C57BL/6J-derived Ity5 interval, we have identified the differential expression of the positional candidate gene Cd40, Cd40-associated signaling pathways, and the differential expression of numerous genes expressed in neutrophils. CD40 is known to coordinate T cell-dependent B-cell responses and myeloid cell activation. In fact, CD40 signaling is altered in A/J mice as seen by impaired IgM upregulation during infection, decreased Ig class switching, neutropenia, reduced granulocyte recruitment in response to infection and inflammation, and decreased ERK1/2 activity. These results suggest that altered CD40 signaling and granulocyte recruitment in response to infection are responsible for the Ity5-associated Salmonella susceptibility of A/J mice.
Collapse
|
6
|
Yáñez JM, Houston RD, Newman S. Genetics and genomics of disease resistance in salmonid species. Front Genet 2014; 5:415. [PMID: 25505486 PMCID: PMC4245001 DOI: 10.3389/fgene.2014.00415] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 11/06/2014] [Indexed: 11/15/2022] Open
Abstract
Infectious and parasitic diseases generate large economic losses in salmon farming. A feasible and sustainable alternative to prevent disease outbreaks may be represented by genetic improvement for disease resistance. To include disease resistance into the breeding goal, prior knowledge of the levels of genetic variation for these traits is required. Furthermore, the information from the genetic architecture and molecular factors involved in resistance against diseases may be used to accelerate the genetic progress for these traits. In this regard, marker assisted selection and genomic selection are approaches which incorporate molecular information to increase the accuracy when predicting the genetic merit of selection candidates. In this article we review and discuss key aspects related to disease resistance in salmonid species, from both a genetic and genomic perspective, with emphasis in the applicability of disease resistance traits into breeding programs in salmonids.
Collapse
Affiliation(s)
- José M Yáñez
- Faculty of Veterinary and Animal Sciences, University of Chile Santiago, Chile ; Aquainnovo, Puerto Montt Chile
| | - Ross D Houston
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh Midlothian, UK
| | | |
Collapse
|
7
|
Lominadze D, Tyagi N, Sen U, Ovechkin A, Tyagi SC. Homocysteine alters cerebral microvascular integrity and causes remodeling by antagonizing GABA-A receptor. Mol Cell Biochem 2012; 371:89-96. [PMID: 22886392 DOI: 10.1007/s11010-012-1425-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 08/01/2012] [Indexed: 10/28/2022]
Abstract
High levels of homocysteine (Hcy), known as hyperhomocysteinemia (HHcy), are associated with cerebrovascular diseases, such as vascular dementia, stroke, and Alzheimer's disease. The γ-amino butyric acid (GABA) is an inhibitory neurotransmitter and a ligand of GABA-A receptor. By inhibiting excitatory response, it may decrease complications associated with vascular dementia and stroke. Hcy specifically competes with the GABA-A receptors and acts as an excitotoxic neurotransmitter. Previously, we have shown that Hcy increases levels of NADPH oxidase and reactive oxygen species (ROS), and decreases levels of thioredoxin and peroxiredoxin by antagonizing the GABA-A receptor. Hcy treatment leads to activation of matrix metalloproteinases (MMPs) in cerebral circulation by inducing redox stress and ROS. The hypothesis is that Hcy induces MMPs and suppresses tissue inhibitors of metalloproteinase (TIMPs), in part, by inhibiting the GABA-A receptor. This leads to degradation of the matrix and disruption of the blood brain barrier. The brain cortex of transgenic mouse model of HHcy (cystathionine β-synthase, CBS-/+) and GABA-A receptor null mice treated with and without muscimol (GABA-A receptor agonist) was analysed. The mRNA levels were measured by Q-RT-PCR. Levels of MMP-2, -9, -13, and TIMP-1, -2, -3, and -4 were evaluated by in situ labeling and PCR-gene arrays. Pial venular permeability to fluorescence-labeled albumin was assessed with intravital fluorescence microscopy. We found that Hcy increases metalloproteinase activity and decreases TIMP-4 by antagonizing the GABA-A receptor. The results demonstrate a novel mechanism in which brain microvascular permeability changes during HHcy and vascular dementias, and have therapeutic ramifications for microvascular disease in Alzheimer's patients.
Collapse
Affiliation(s)
- David Lominadze
- Department of Physiology and Biophysics, University of Louisville School of Medicine, Bldg. A, Room 1115, 500 South Preston Street, Louisville, KY 40202, USA.
| | | | | | | | | |
Collapse
|
8
|
|
9
|
Navas A, Cobas G, Talavera M, Ayala JA, López JA, Martínez JL. Experimental validation of Haldane's hypothesis on the role of infection as an evolutionary force for Metazoans. Proc Natl Acad Sci U S A 2007; 104:13728-31. [PMID: 17699615 PMCID: PMC1959450 DOI: 10.1073/pnas.0704497104] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A common drawback in evolutionary science is the fact that the evolution of organisms occurs in geological timing, completely out of the time scale of laboratory experimental work. For this reason, some relevant hypotheses on evolution of Metazoans are based on correlations more than on experimental data obtained for testing the robustness of those hypotheses. In the current work, we implement an experimental methodology to analyze the role of infections as a driving force in the evolution of Metazoans (Haldane's hypothesis). To that goal, we have used simple models of virulence with short reproduction times, large populations, and that are easily testable in the laboratory. Using the bacteriovirus nematode Caenorhabditis elegans as a model organism under evolution and their infection by the environmental opportunistic bacterial pathogen Pseudomonas aeruginosa as the selective force, we have demonstrated that bacterial infection selects an evolved nematode lineage resistant to infection, with changes in its respiration and capability of consuming novel food resources. Using an experimental approach, we show that infection is a selective force in the evolution of Metazoans as proposed earlier by Haldane.
Collapse
Affiliation(s)
| | | | | | | | - Juan A. López
- Unidad de Proteómica, Centro Nacional de Investigaciones Cardiovasculares Carlos III, 28029 Madrid, Spain
| | - José L. Martínez
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas-Universidad Autónoma, 28049 Madrid, Spain; and
- To whom correspondence should be addressed at:
Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología (CSIC), Darwin 3, Campus Universidad Autónoma de Madrid, Canto Blanco, 28049 Madrid, Spain. E-mail:
| |
Collapse
|
10
|
Huang SH, Wang X, Jong A. The evolving role of infectomics in drug discovery. Expert Opin Drug Discov 2007; 2:961-975. [PMID: 23484816 DOI: 10.1517/17460441.2.7.961] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Signatures of infectomes, which are encoded by both host and microbial genomes, and mirror the interplay between pathogens and their hosts, provide invaluable knowledge in the search for novel antimicrobial drugs. Infectomics is the study of infectomes by using systems biology and high-throughput omic approaches. There are three types of infectomic approaches that can be used for drug discovery: ecological infectomics, immunoinfectomics and chemical infectomics. Ecological infectomics, which is the ecological study of infectomes, explores symbiotic solutions to microbial infections. Research on drug discovery using infectomic signatures and immunomic approaches falls within the field of immunoinfectomics. Advances in chemical infectomics will lead to the development of a new generation of chemical drugs for therapeutics for microbial infections.
Collapse
Affiliation(s)
- Sheng-He Huang
- University of Southern California, Division of Infectious Diseases, Childrens Hospital Los Angeles, Department of Pediatrics, School of Medicine, 4650 Sunset Blvd., Mailstop #51, Los Angeles, CA 90027, USA +1 323 669 4160 ; +1 323 660 2661 ;
| | | | | |
Collapse
|
11
|
Abstract
For the past 20 years researchers have used transgenic mice to help understand the basic mechanisms associated with inherited human and animal diseases. The ability to integrate exogenous genetic information into the mouse genome has revolutionised the analysis of gene function. Both gene addition and gene replacement can be performed and the capability exists to create 'conditional' mutations and to study gene dosage effects. The aim of the present review is to provide a framework of information on transgenic mouse methodologies that can be applied to any area of research. A basic understanding of transgenic technology, recognising its advantages and disadvantages, is essential knowledge for the scientist in the 21st century.
Collapse
Affiliation(s)
- Judy M Hickman-Davis
- Department of Anesthesiology, 901 19th St. South, BMR2, Room 230, University of Alabama at Birmingham, Birmingham, AL 35205, USA.
| | | |
Collapse
|
12
|
Dar A, Munir S, Vishwanathan S, Manuja A, Griebel P, Tikoo S, Townsend H, Potter A, Kapur V, Babiuk LA. Transcriptional analysis of avian embryonic tissues following infection with avian infectious bronchitis virus. Virus Res 2005; 110:41-55. [PMID: 15845254 PMCID: PMC7114260 DOI: 10.1016/j.virusres.2005.01.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2004] [Revised: 12/27/2004] [Accepted: 01/03/2005] [Indexed: 12/21/2022]
Abstract
Avian infectious bronchitis virus (IBV) infection is one of the major viral respiratory diseases of chickens. Better understanding of the molecular basis of viral pathogenesis should contribute significantly towards the development of improved prophylactic, therapeutic and diagnostic reagents to control infections. In the present investigation, transcriptional profiles were analyzed by using RNA recovered from the lung tissue of IBV infected 18-day-old chicken embryos at 6, 24, 48 and 72 h post IBV infection. This microarray analysis was completed using avian cDNA arrays comprised of fragments of 1191 unique chicken and turkey gene transcripts. These arrays were generated from normalized cDNA subtraction libraries that were derived from avian pneumovirus (APV) infected chicken embryo fibroblast (CEF) cultures and tissues obtained from APV infected turkeys subtracted with their respective uninfected cultures and tissues. Of the 1191 unique genes represented on the array, the expression of a total of 327 genes (27% of total) were altered by two-fold or more from 6 through 72 h post-infection. A comparative analysis of IBV regulated genes with genes previously reported to change in expression following infection with other avian respiratory viruses revealed both conserved and unique changes. Real-time qRT-PCR was used to confirm the regulated expression of genes related to several functional classes including kinases, interferon induced genes, chemokines and adhesion molecules, vesicular trafficking and fusion protein genes, extracellular matrix protein genes, cell cycle, metabolism, cell physiology and development, translation, RNA binding, lysosomal, protein degradation and ubiquitination related genes. Microarray analysis served as an efficient tool in facilitating a comparative analysis of avian respiratory viral infections and provided insight into host transcriptional changes that were conserved as well as those which were unique to individual pathogens.
Collapse
Affiliation(s)
- Arshud Dar
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Mukhopadhyay S, Srivastava VML, Murthy PK, Hasnain SE. Poorer NF-κB signaling by microfilariae in macrophages from BALB/c mice affects their ability to produce cytotoxic levels of nitric oxide to kill microfilariae. FEBS Lett 2004; 567:275-80. [PMID: 15178336 DOI: 10.1016/j.febslet.2004.04.081] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2004] [Revised: 04/19/2004] [Accepted: 04/23/2004] [Indexed: 11/19/2022]
Abstract
Upon activation with microfilariae (mf), macrophages from C57Bl/6 mice showed higher nuclear factor-kappa B (NF-kappa B) but lower activating protein 1 DNA-binding activity as compared to BALB/c macrophages. The C57Bl/6 macrophages produced cytotoxic levels of nitric oxide (NO) to kill Setaria cervi mf as compared to BALB/c macrophages. Inhibition of the NF-kappa B signal by pyrrolidine dithiocarbamate (PDTC) blocked NO production and microfilaricidal activity of C57Bl/6 macrophages and inclusion of the exogenous NO generator (SNP) in the PDTC treated C57Bl/6 macrophage cultures induced mf cytotoxicity. These results underscore that the NF-kappa B signal (induced in response to mf) is important for the NO-mediated microfilaricidal activity of macrophages.
Collapse
Affiliation(s)
- Sangita Mukhopadhyay
- Centre For DNA Fingerprinting and Diagnostics, ECIL Road, Nacharam, Hyderabad, AP 500076, India.
| | | | | | | |
Collapse
|
14
|
Somech R, Amariglio N, Spirer Z, Rechavi G. Genetic predisposition to infectious pathogens: a review of less familiar variants. Pediatr Infect Dis J 2003; 22:457-61. [PMID: 12792391 DOI: 10.1097/01.inf.0000068205.82627.55] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The susceptibility and clinical manifestations of infectious diseases in human populations are influenced by a variety of factors, among them host genetics. Obvious examples for the effect of host genetics on predisposition to unique infections are the primary immunodeficiency diseases. Minor gene variants that influence the host immune system are much more common. The iceberg model can be used to illustrate the epidemiology of immunodeficiency states. Accordingly only a few individuals have known and severe recognized primary immunodeficiencies, whereas many more patients have mild immunodeficiencies that may remain undiagnosed and are predisposed to a unique infectious disease. We review some of the less common variants that influence the host defense and predispose to certain infectious agents or change their outcome.
Collapse
Affiliation(s)
- Raz Somech
- Pediatric Hemato-Oncology, Chaim Sheba Medical Center, Tel Hashomer, Israel
| | | | | | | |
Collapse
|
15
|
Sharma MK, Al-Azem A, Wolfe J, Hershfield E, Kabani A. Identification of a predominant isolate of Mycobacterium tuberculosis using molecular and clinical epidemiology tools and in vitro cytokine responses. BMC Infect Dis 2003; 3:3. [PMID: 12697047 PMCID: PMC154093 DOI: 10.1186/1471-2334-3-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2002] [Accepted: 04/08/2003] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Tuberculosis (TB) surveillance programs in Canada have established that TB in Canada is becoming a disease of geographically and demographically distinct groups. In 1995, treaty status aboriginals from the province of Manitoba accounted for 46% of the disease burden of this sub-group in Canada. The TB incidence rates are dramatically high in certain reserves of Manitoba and are equivalent to rates in African countries. The objective of our study was to identify prevalent isolates of Mycobacterium tuberculosis in the patient population of Manitoba using molecular epidemiology tools, studying the patient demographics associated with the prevalent strain and studying the in vitro cytokine profiles post-infection with the predominant strain. METHODS Molecular typing was performed on all isolates available between 1992 to 1997. A clinical database was generated using patient information from Manitoba. THP-1 cells were infected using strains of M. tuberculosis and cytokine profiles were determined using immunoassays for cytokines IL-1beta, IL-10, IL-12, IFN-gamma and TNF-alpha. RESULTS In Manitoba, 24% of the disease burden is due to a particular M. tuberculosis strain (Type1). The strain is common in patients of aboriginal decent and is responsible for at least 87% of these cases. Cytokine assays indicate that the Type1 strain induces comparatively lower titers of IL-1beta, IFN-gamma and TNF-alpha in infected THP-1 cells as compared to H37Ra and H37Rv strains. CONCLUSION In Manitoba, Type1 strain is predominant in TB patients. The majority of the cases infected with this particular strain are newly active with a high incidence of respiratory disease, positive chest radiographs and pulmonary cavities. In vitro secretion of IL-1beta, IFN-gamma and TNF-alpha is suppressed in Type1 infected culture samples when compared to H37Ra and H37Rv infected cells.
Collapse
Affiliation(s)
- M Kaushal Sharma
- Clinical Microbiology, Health Sciences Center, Winnipeg, MB, Canada
- National Reference Centre for Mycobacteriology, National Microbiology Laboratories, Health Canada, 1015 Arlington Street, Winnipeg, Canada
| | - A Al-Azem
- Clinical Microbiology, Health Sciences Center, Winnipeg, MB, Canada
| | - J Wolfe
- National Reference Centre for Mycobacteriology, National Microbiology Laboratories, Health Canada, 1015 Arlington Street, Winnipeg, Canada
| | - E Hershfield
- Provincial Tuberculosis Registry, Health Sciences Center, Winnipeg, Canada
- Faculty of Medicine, University of Manitoba, Winnipeg, Canada
| | - A Kabani
- Clinical Microbiology, Health Sciences Center, Winnipeg, MB, Canada
- Faculty of Medicine, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
16
|
McManus BM, Yanagawa B, Rezai N, Luo H, Taylor L, Zhang M, Yuan J, Buckley J, Triche T, Schreiner G, Yang D. Genetic determinants of coxsackievirus B3 pathogenesis. Ann N Y Acad Sci 2002; 975:169-79. [PMID: 12538163 DOI: 10.1111/j.1749-6632.2002.tb05950.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The development of high throughput genomic and bioinformatic analysis tools, coupled with established molecular techniques, has allowed new insights into the pathogenesis of infectious diseases. In humans, coxasackievirus B3 (CVB3) is the primary etiological agent of viral myocarditis, an inflammatory disease process involving the heart muscle. Early host cellular survival and apoptotic mechanisms during viral infections, as well as immune events, affect myocarditis progression and outcome. Therefore, our laboratory has been keenly interested in infectomics, defined here as the transcriptional events of both virus and host. We first elucidated up- or downregulated transcriptional activities in CVB3-infected hearts by mRNA differential display. Further characterization of these regulated genes including Nip21, IP10, and IGTPase, and study of their role in CVB3-infection are underway. In further dissection of the stages of myocarditis-peak viremia, inflammatory infiltration and tissue repair-we used cDNA microarrays to probe differential gene expression in the myocardium following virus infection. Following virus infection, there are global decreases in metabolic and mitochondrial genes, increases in signaling genes and distinctive patterns in other functional groups. To establish early gene expression profiles in infected cells by themselves, we also used oligonucleotide arrays in an in vitro model of CVB3 infection. Notably, we have found increased expression of transcription factors c-fos and c-jun down-stream of extracellular signal-related kinase, a pathway which is crucial for virus replication and pathogenesis. Our investigations based on gene profiling following CVB3 infection have thus far been fruitful in providing new experimental leads. High throughput genetic analysis has allowed us to simultaneously try on greater than 12,000 potential genetic "glass slippers." Our in vitro experimental plan has enabled us to chart prominent patterns of gene expression, analyzed by novel bioinformatic approaches, and to separate varied and potentially significant gene expression events.
Collapse
Affiliation(s)
- Bruce M McManus
- UBC McDonald Research Laboratories/The iCAPTUR E Center, Department of Pathology and Laboratory Medicine, St. Paul's Hospital/Providence Health Care-University of British Columbia, Canada.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Lee SH, Webb JR, Vidal SM. Innate immunity to cytomegalovirus: the Cmv1 locus and its role in natural killer cell function. Microbes Infect 2002; 4:1491-503. [PMID: 12505521 DOI: 10.1016/s1286-4579(02)00032-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The identification and characterization of genetic loci that contribute to patterns of susceptibility/resistance to infection provide important insights into the mechanisms of innate and adaptive immunity. Genetic heterogeneity across the population makes the characterization of such traits in humans technically difficult; however, inbred animal models represent an ideal tool for such analyses. This review illustrates the power of mouse genetics as utilized for the identification and characterization of the locus conferring early resistance to murine cytomegalovirus infection, Cmv1. This locus encodes an activating C-type lectin receptor of the Ly49 family that promotes natural killer (NK) cell cytolysis of infected cells. Although NK cells are usually able to detect and destroy virally infected cells via recognition of the downregulation of MHC class I molecules, the Cmv1 locus provides the first example of an NK receptor that is able to mediate clearance of viral infection via direct recognition of a virally encoded protein.
Collapse
Affiliation(s)
- Seung Hwan Lee
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, room 4207, 451 Smyth Road, Ont., K1H 8M5, Ottawa, Canada
| | | | | |
Collapse
|
18
|
Martínez JL, Baquero F. Interactions among strategies associated with bacterial infection: pathogenicity, epidemicity, and antibiotic resistance. Clin Microbiol Rev 2002; 15:647-79. [PMID: 12364374 PMCID: PMC126860 DOI: 10.1128/cmr.15.4.647-679.2002] [Citation(s) in RCA: 299] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Infections have been the major cause of disease throughout the history of human populations. With the introduction of antibiotics, it was thought that this problem should disappear. However, bacteria have been able to evolve to become antibiotic resistant. Nowadays, a proficient pathogen must be virulent, epidemic, and resistant to antibiotics. Analysis of the interplay among these features of bacterial populations is needed to predict the future of infectious diseases. In this regard, we have reviewed the genetic linkage of antibiotic resistance and bacterial virulence in the same genetic determinants as well as the cross talk between antibiotic resistance and virulence regulatory circuits with the aim of understanding the effect of acquisition of resistance on bacterial virulence. We also discuss the possibility that antibiotic resistance and bacterial virulence might prevail as linked phenotypes in the future. The novel situation brought about by the worldwide use of antibiotics is undoubtedly changing bacterial populations. These changes might alter the properties of not only bacterial pathogens, but also the normal host microbiota. The evolutionary consequences of the release of antibiotics into the environment are largely unknown, but most probably restoration of the microbiota from the preantibiotic era is beyond our current abilities.
Collapse
Affiliation(s)
- José L Martínez
- Departamento de Biotecnología Microbiana, Centro Nacional de Biotecnología. Servicio de Microbiología, Hospital Ramón y Cajal, Madrid, Spain.
| | | |
Collapse
|
19
|
Hunt MJ, Tyagi SC. Peroxisome proliferators compete and ameliorate Hcy-mediated endocardial endothelial cell activation. Am J Physiol Cell Physiol 2002; 283:C1073-9. [PMID: 12225971 DOI: 10.1152/ajpcell.00152.2002] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To determine whether homocysteine (Hcy)-mediated activation of endocardial endothelial (EE) cells is ameliorated by peroxisome proliferator-activated receptor (PPAR), we isolated EE cells from mouse endocardium. Matrix metalloproteinase (MMP) activity and intercellular adhesion molecule (ICAM)-1 in EE cells were measured in the presence and absence of Hcy, and ciprofibrate (CF; PPAR-alpha agonist) or 15-deoxy-Delta(12,14)-prostaglandin J(2) (PGJ(2); PPAR-gamma agonist) by zymography and Western blot analyses, respectively. Results suggest that Hcy-mediated MMP activation and ICAM-1 expression are ameliorated by CF and PGJ(2). To test the hypothesis that Hcy competes with other ligands for binding to PPARalpha and -gamma, we prepared cardiac nuclear extracts. Extracts were loaded onto an Hcy-cellulose affinity column. Bound proteins were eluted with CF and PGJ(2). To determine conformational changes in PPAR upon binding to Hcy, we measured PPAR fluorescence at 334 nm. Dose-dependent increase in PPAR fluorescence demonstrated a primary binding affinity of 0.32 +/- 0.06 microM. There was dose-dependent quenching of PPAR fluorescence by fluorescamine-homocysteine (F-Hcy). PPAR-alpha fluorescence quenching was abrogated by the addition of CF but not by PGJ(2). PPAR-gamma fluorescence quenching was abrogated by the addition of PGJ(2) but not by CF. These results suggest that Hcy competes with CF and PGJ(2) for binding to PPAR-alpha and -gamma, respectively, indicating a role of PPAR in amelioration of Hcy-mediated EE dysfunction.
Collapse
Affiliation(s)
- Matthew J Hunt
- Department of Physiology and Biophysics, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA
| | | |
Collapse
|
20
|
Hussey GD, Watkins MLV, Goddard EA, Gottschalk S, Hughes EJ, Iloni K, Kibel MA, Ress SR. Neonatal mycobacterial specific cytotoxic T-lymphocyte and cytokine profiles in response to distinct BCG vaccination strategies. Immunology 2002; 105:314-24. [PMID: 11918693 PMCID: PMC1782661 DOI: 10.1046/j.1365-2567.2002.01366.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study evaluated whether different bacillus Calmette-Guérin (BCG) strains, routes of administration, vaccination age and percutaneous tools influenced immune responses to BCG vaccination in infants. Proliferative responses, cytokine production and cell-mediated cytotoxicity obtained in post-vaccinated children were compared to baseline cord bloods and unvaccinated 10-week-old infants. BCG vaccination generally induced strong lymphoproliferative and T helper type 1 (Th1)-type cytokine responses. There was a trend for greater responsiveness following the intradermal route of vaccination, with Japanese-172 strain and with delaying vaccination until 10 weeks. Cord mononuclear cells differentially stimulated the Th2-type cytokines interleukin-5 (IL-5) and IL-10 selectively in response to BCG, as compared to H37Rv or purified protein derivative stimulation. We document for the first time the generation of mycobacterium-specific cytotoxic T lymphocytes in neonates, following BCG vaccination. Cytotoxic activity correlated with the ratio of interferon-gamma to IL-5, aside from a single instance where use of the Biovac tool resulted in a striking dissociation selectively against H37Rv targets. These data have implications for correlates of protective immunity in design of vaccine studies.
Collapse
Affiliation(s)
- Gregory D Hussey
- Department of Paediatrics and Child Health, Groote Schuur Hospital and University of Cape Town, Rondebosch, Cape Town, South Africa.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Greenstein G, Hart TC. A critical assessment of interleukin-1 (IL-1) genotyping when used in a genetic susceptibility test for severe chronic periodontitis. J Periodontol 2002; 73:231-47. [PMID: 11895290 DOI: 10.1902/jop.2002.73.2.231] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND This review addresses the ability of a commercially available genetic susceptibility test to determine the risk of developing severe chronic periodontitis. The test is used to detect the simultaneous occurrence of allele 2 at the IL-1A+4845 and IL-1B+3954 loci. If both of these polymorphisms are present, patients are referred to as being genotype-positive and considered predisposed to becoming afflicted with severe chronic periodontitis. A basic premise of this test is the assumption that individuals who are genotype-positive produce increased amounts of IL-beta in response to microbial lipopolysaccharides, which allegedly predisposes them to an exaggerated inflammatory response and an increased incidence of chronic periodontitis. METHODS Controlled clinical trials were selected that evaluated the ability of the genetic test to predict which patients were susceptible to bleeding upon probing, periodontitis, peri-implantitis, and tooth loss. RESULTS Comparison of results from test (genotype-positive) and control groups (genotype-negative) revealed that there is ambiguity with regard to predicting which patients will manifest elevated sub-gingival levels of IL-beta. Similarly, it is questionable if the test is able to forecast which individuals will demonstrate an increased occurrence of bleeding upon probing, diminished clinical attachment, decreased osseous support, or loss of teeth. CONCLUSIONS There are many unanswered questions concerning the utility of detecting allele 2 at the IL-1A+4845 and IL-IB+3954 loci to foretell which patients will develop severe chronic periodontitis. Therefore, clinicians must cautiously interpret results obtained with the commercially available genetic susceptibility test before they alter maintenance schedules or treatment regimens of symptomatic or asymptomatic patients.
Collapse
Affiliation(s)
- Gary Greenstein
- University of Medicine and Dentistry of New Jersey, Newark, USA.
| | | |
Collapse
|
22
|
Paccione MF, Warren SM, Spector JA, Greenwald JA, Bouletreau PJ, Longaker MT. A mouse model of mandibular osteotomy healing. J Craniofac Surg 2001; 12:444-50. [PMID: 11572249 DOI: 10.1097/00001665-200109000-00008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The purpose of this study was to establish a novel mouse model of membranous osteotomy healing. By applying this model to transgenic mice or using in situ hybridization techniques, we can subsequently investigate candidate genes that are believed to be important in membranous osteotomy healing. In the current study, 20 adult male CD-1 mice underwent a full-thickness osteotomy between the second and third molars of the right hemimandible using a 3-mm diamond disc and copious irrigation. Compo-Post pins were secured into the mandible, 2 mm anterior and posterior to the osteotomy. After the soft tissues were reapproximated and the skin was closed, an acrylic external fixator was attached to the exposed posts for stabilization. The animals were killed on postoperative day number 7, 10, 14, and 28 (n=5 animals per time point). The right hemimandibles were decalcified and embedded in paraffin for histologic evaluation or immunohistochemistry localizing osteocalcin. At 7 days after the osteotomy, early intramembranous bone formation could be seen extending from either edge of the osteotomized bone. By 10 days, an increasing number of small blood vessels could be seen within and around the osteotomy. At 14 days, the bone edges were in close approximation, and by 28 days the callus had been replaced by actively remodeling woven bone in all specimens examined. Immunohistochemistry demonstrated that osteocalcin expression correlated temporally with the transition from a soft to a hard callus. Furthermore, osteocalcin was spatially confined to osteoblasts actively laying down new osteoid or remodeling bone. This study describes a novel mouse model of membranous osteotomy healing that can be used as a paradigm for future osteotomy healing studies investigating candidate genes critical for osteogenesis and successful bone repair.
Collapse
Affiliation(s)
- M F Paccione
- Department of Surgery, New York University Medical Center, New York, USA
| | | | | | | | | | | |
Collapse
|
23
|
Boyartchuk VL, Broman KW, Mosher RE, D'Orazio SE, Starnbach MN, Dietrich WF. Multigenic control of Listeria monocytogenes susceptibility in mice. Nat Genet 2001; 27:259-60. [PMID: 11242105 DOI: 10.1038/85812] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have used a novel quantitative trait locus model to study the genetics of survival of F2 progeny of susceptible BALB/cByJ and resistant C57BL/6ByJ mice that have been infected with Listeria monocytogenes. This allowed us to map modifiers of L. monocytogenes susceptibility to chromosomes 5 and 13.
Collapse
Affiliation(s)
- V L Boyartchuk
- Howard Hughes Medical Institute/Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
24
|
McNicholl JM, Downer MV, Udhayakumar V, Alper CA, Swerdlow DL. Host-pathogen interactions in emerging and re-emerging infectious diseases: a genomic perspective of tuberculosis, malaria, human immunodeficiency virus infection, hepatitis B, and cholera. Annu Rev Public Health 2001; 21:15-46. [PMID: 10884944 DOI: 10.1146/annurev.publhealth.21.1.15] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
On exposure to a pathogen, a host may resist infection, become subclinically infected, or progress through several stages from mild to severe infection. Chronic sequelae may or may not occur. Host factors, particularly host genes, influence many of these stages. We have used a model of the continuum of pathogenesis of infectious diseases to consider the effect of host genes on five pathogens of significant public health burden: Mycobacterium tuberculosis, Plasmodium species, human immunodeficiency virus, hepatitis B virus, and Vibrio cholerae. The relationships between these infections and polymorphisms in human leukocyte antigen, cytokines, other immune response, or pathogen receptor genes are reviewed. We discuss gene-gene interactions and their effects in complex settings, such as coinfections with several pathogens. Priorities for prevention and control of these pathogens include vaccines and antimicrobial drugs. Research on how host genes can influence vaccine responses and the efficacy of drugs or other interventions, as well as further research into the relationship of host genes to infectious disease outcomes, may lead to new strategies for prevention and control.
Collapse
Affiliation(s)
- J M McNicholl
- Division of AIDS, National Center for Infectious Diseases, Centers for Disease Control, Atlanta, Georgia 30333, USA.
| | | | | | | | | |
Collapse
|
25
|
Hickman-Davis JM. Implications of mouse genotype for phenotype. NEWS IN PHYSIOLOGICAL SCIENCES : AN INTERNATIONAL JOURNAL OF PHYSIOLOGY PRODUCED JOINTLY BY THE INTERNATIONAL UNION OF PHYSIOLOGICAL SCIENCES AND THE AMERICAN PHYSIOLOGICAL SOCIETY 2001; 16:19-22. [PMID: 11390941 DOI: 10.1152/physiologyonline.2001.16.1.19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Genetic engineering of inbred mice offers the capability to separate interactions of multiple genes that control host resistance to pathogens. An understanding of the negative impact that genetic variability of mouse substrains can have on data is necessary for the design of experiments to dissect out complicated gene interactions.
Collapse
Affiliation(s)
- J M Hickman-Davis
- Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, AL 35249-0006, USA
| |
Collapse
|
26
|
Singh B, Nayak BP, Rao KV, Sharma P. Immune responses mediating survival of naive BALB/c mice experimentally infected with lethal rodent malaria parasite, Plasmodium yoelii nigeriensis. Microbes Infect 2000; 2:473-80. [PMID: 10865192 DOI: 10.1016/s1286-4579(00)00321-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The rodent malaria parasite, Plasmodium yoelii nigeriensis is known to cause fatal malaria infections in BALB/c mice. However, we found that nearly 5% of inbred BALB/c mice could overcome primary infections initiated with lethal inoculum of P. y. nigeriensis asexual blood-stages, without any experimental intervention. These 'survivor' mice developed peak parasitemia levels of about 5% and successfully resolved their infections in about two weeks time; infected blood collected during the descending phase of infection in these mice and subinoculated in naive recipients resulted in a normal lethal course of infection. Typically, the parasites in survivor mice looked 'sick' compared to those in the susceptible mice. In experiments to define temporal basis of this protection, we found that purified splenic B cells isolated from such a survivor mouse, plus T cells from an infected or naive mouse, could adoptively transfer this protection to an X-irradiated, naive mouse against a lethal parasite challenge. Purified T cells or B cells alone from the survivor mouse donor provided no protection to the X-irradiated, naive recipient. Passive transfer of sera collected from survivor mice animals a week after recovery from infection was also able to substantially alter the course of preestablished P. y. nigeriensis infection. These findings are discussed in the light of recent reports on the genetic control of blood parasitemia in mouse malaria models. In the generally lethal malaria infections such as those caused by P. y. nigeriensis in mice and by Plasmodium falciparum in naive children, it is not clear what constitutes a protective immune response in cases which survive primary infections without any experimental or therapeutic intervention. An understanding of these mechanisms and their regulation would help design better vaccination strategies.
Collapse
Affiliation(s)
- B Singh
- Immunology Group, International Centre for Genetic Engineering & Biotechnology, New Delhi, Aruna Asaf Ali Marg, India
| | | | | | | |
Collapse
|