1
|
Dessenne C, Mariller C, Vidal O, Huvent I, Guerardel Y, Elass-Rochard E, Rossez Y. Glycan-mediated adhesion mechanisms in antibiotic-resistant bacteria. BBA ADVANCES 2025; 7:100156. [PMID: 40207210 PMCID: PMC11979486 DOI: 10.1016/j.bbadva.2025.100156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/10/2025] [Accepted: 03/13/2025] [Indexed: 04/11/2025] Open
Abstract
Bacterial adhesins play a central role in host-pathogen interactions, with many specifically targeting glycans to mediate bacterial colonization, influence infection dynamics, and evade host immune responses. In this review, we focus on bacterial pathogens identified by the World Health Organization as critical threats to public health and in urgent need of new treatments. We summarize glycoconjugate targets identified in the literature across 19 bacterial genera and species. This comprehensive review provides a foundation for the development of innovative therapeutic strategies to effectively combat these pathogens.
Collapse
Affiliation(s)
- Clara Dessenne
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Christophe Mariller
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Olivier Vidal
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Isabelle Huvent
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Yann Guerardel
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
| | - Elisabeth Elass-Rochard
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Yannick Rossez
- Université Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| |
Collapse
|
2
|
Mangioni D, Fox V, Saltini P, Lombardi A, Bussini L, Carella F, Cariani L, Comelli A, Matinato C, Muscatello A, Teri A, Terranova L, Cento V, Carloni S, Bartoletti M, Alteri C, Bandera A. Increase in invasive group A streptococcal infections in Milan, Italy: a genomic and clinical characterization. Front Microbiol 2024; 14:1287522. [PMID: 38274761 PMCID: PMC10808429 DOI: 10.3389/fmicb.2023.1287522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/04/2023] [Indexed: 01/27/2024] Open
Abstract
Background Group A Streptococcus (GAS) causes multiple clinical manifestations, including invasive (iGAS) or even life-threatening (severe-iGAS) infections. After the drop in cases during COVID-19 pandemic, in 2022 a sharp increase of GAS was reported globally. Methods GAS strains collected in 09/2022-03/2023 in two university hospitals in Milan, Italy were retrospectively analyzed. Clinical/epidemiological data were combined with whole-genome sequencing to: (i) define resistome/virulome, (ii) identify putative transmission chains, (iii) explore associations between emm-types and clinical severity. Results Twenty-eight isolates were available, 19/28 (67.9%) from adults and 9/28 (32.1%) from pediatric population. The criteria for iGAS were met by 19/28 cases (67.9%), of which 11/19 (39.3%) met the further criteria for severe-iGAS. Pediatric cases were mainly non-invasive infections (8/9, 88.9%), adult cases were iGAS and severe-iGAS in 18/19 (94.7%) and 10/19 (52.6%), respectively. Thirteen emm-types were detected, the most prevalent being emm1 and emm12 (6/28 strains each, 21.4%). Single nucleotide polymorphism (SNP) analysis of emm1.0 and emm12.0 strains revealed pairwise SNP distance always >10, inconsistent with unique transmission chains. Emm12.0-type, found to almost exclusively carry virulence factors speH and speI, was mainly detected in children and in no-iGAS infections (55.6 vs. 5.3%, p = 0.007 and 66.7 vs. 0.0%, p < 0.001, respectively), while emm1.0-type was mainly detected in severe-iGAS (0.0 vs. 45.5%, p = 0.045). Conclusions This study showed that multiple emm-types contributed to a 2022/2023 GAS infection increase in two hospitals in Milan, with no evidence of direct transmission chains. Specific emm-types could be associated with disease severity or invasiveness. Overall, these results support the integration of classical epidemiological studies with genomic investigation to appropriately manage severe infections and improve surveillance.
Collapse
Affiliation(s)
- Davide Mangioni
- Infectious Diseases Unit, Foundation Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milano, Milan, Italy
| | - Valeria Fox
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Paola Saltini
- Infectious Diseases Unit, Foundation Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milano, Milan, Italy
| | - Andrea Lombardi
- Infectious Diseases Unit, Foundation Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milano, Milan, Italy
| | - Linda Bussini
- Infectious Disease Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Francesco Carella
- Infectious Disease Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Lisa Cariani
- Microbiology Laboratory, Clinical Pathology, Foundation Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Agnese Comelli
- Infectious Diseases Unit, Foundation Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Caterina Matinato
- Microbiology Laboratory, Clinical Pathology, Foundation Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Antonio Muscatello
- Infectious Diseases Unit, Foundation Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Antonio Teri
- Microbiology Laboratory, Clinical Pathology, Foundation Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Leonardo Terranova
- Respiratory Unit and Adult Cystic Fibrosis Center, Department of Internal Medicine, Foundation Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Valeria Cento
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Microbiology and Virology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy
| | - Sara Carloni
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Rozzano, Italy
| | - Michele Bartoletti
- Infectious Disease Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Humanitas Research Hospital, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Claudia Alteri
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Alessandra Bandera
- Infectious Diseases Unit, Foundation Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milano, Milan, Italy
| |
Collapse
|
3
|
Unoarumhi Y, Davis ML, Rowe LA, Mathis S, Li Z, Chochua S, Li Y, McGee L, Metcalf BJ, Lee JS, Beall B. A novel invasive Streptococcus pyogenes variant sublineage derived through recombinational replacement of the emm12 genomic region. Sci Rep 2023; 13:21510. [PMID: 38057343 PMCID: PMC10700362 DOI: 10.1038/s41598-023-48035-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 11/21/2023] [Indexed: 12/08/2023] Open
Abstract
Group A streptococcal strains potentially acquire new M protein gene types through genetic recombination (emm switching). To detect such variants, we screened 12,596 invasive GAS genomes for strains of differing emm types that shared the same multilocus sequence type (ST). Through this screening we detected a variant consisting of 16 serum opacity factor (SOF)-positive, emm pattern E, emm82 isolates that were ST36, previously only associated with SOF-negative, emm pattern A, emm12. The 16 emm82/ST36 isolates were closely interrelated (pairwise SNP distance of 0-43), and shared the same emm82-containing recombinational fragment. emm82/ST36 isolates carried the sof12 structural gene, however the sof12 indel characteristic of emm12 strains was corrected to confer the SOF-positive phenotype. Five independent emm82/ST36 invasive case isolates comprised two sets of genetically indistinguishable strains. The emm82/ST36 isolates were primarily macrolide resistant (12/16 isolates), displayed at least 4 different core genomic arrangements, and carried 11 different combinations of virulence and resistance determinants. Phylogenetic analysis revealed that emm82/ST36 was within a minor (non-clade 1) portion of ST36 that featured almost all ST36 antibiotic resistance. This work documents emergence of a rapidly diversifying variant that is the first confirmed example of an emm pattern A strain switched to a pattern E strain.
Collapse
Affiliation(s)
- Yvette Unoarumhi
- Centers for Disease Control and Prevention, Biotechnology Core Facility Branch, National Center for Emerging and Zoonotic Infectious Diseases, Division Scientific Resources, Atlanta, GA, USA
| | - Morgan L Davis
- Centers for Disease Control and Prevention, Biotechnology Core Facility Branch, National Center for Emerging and Zoonotic Infectious Diseases, Division Scientific Resources, Atlanta, GA, USA
| | - Lori A Rowe
- Centers for Disease Control and Prevention, Biotechnology Core Facility Branch, National Center for Emerging and Zoonotic Infectious Diseases, Division Scientific Resources, Atlanta, GA, USA
| | - Saundra Mathis
- Centers for Disease Control and Prevention, National Center for Immunization and Respiratory Diseases, Division of Bacterial Diseases, Respiratory Diseases Branch, Atlanta, GA, USA
| | - Zhongya Li
- Centers for Disease Control and Prevention, National Center for Immunization and Respiratory Diseases, Division of Bacterial Diseases, Respiratory Diseases Branch, Atlanta, GA, USA
| | - Sopio Chochua
- Centers for Disease Control and Prevention, National Center for Immunization and Respiratory Diseases, Division of Bacterial Diseases, Respiratory Diseases Branch, Atlanta, GA, USA
| | - Yuan Li
- Centers for Disease Control and Prevention, National Center for Immunization and Respiratory Diseases, Division of Bacterial Diseases, Respiratory Diseases Branch, Atlanta, GA, USA
| | - Lesley McGee
- Centers for Disease Control and Prevention, National Center for Immunization and Respiratory Diseases, Division of Bacterial Diseases, Respiratory Diseases Branch, Atlanta, GA, USA
| | - Benjamin J Metcalf
- Centers for Disease Control and Prevention, National Center for Immunization and Respiratory Diseases, Division of Bacterial Diseases, Respiratory Diseases Branch, Atlanta, GA, USA
| | - Justin S Lee
- Centers for Disease Control and Prevention, Biotechnology Core Facility Branch, National Center for Emerging and Zoonotic Infectious Diseases, Division Scientific Resources, Atlanta, GA, USA
| | - Bernard Beall
- Centers for Disease Control and Prevention, National Center for Immunization and Respiratory Diseases, Division of Bacterial Diseases, Respiratory Diseases Branch, Atlanta, GA, USA.
- Eagle GLobal Scientific, LLC, Atlanta, GA, USA.
| |
Collapse
|
4
|
Paspaliari DK, Sarvikivi E, Ollgren J, Vuopio J. Invasive beta-haemolytic streptococcal infections, Finland, 2006 to 2020: increase in Lancefield group C/G infections. Euro Surveill 2023; 28:2200807. [PMID: 37535473 PMCID: PMC10401913 DOI: 10.2807/1560-7917.es.2023.28.31.2200807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 03/13/2023] [Indexed: 08/05/2023] Open
Abstract
BackgroundInvasive infections with beta-haemolytic streptococci of Lancefield groups A (iGAS), B (iGBS) and C/G (iGCGS) are a major cause of morbidity and mortality worldwide.AimWe studied incidence trends of invasive beta-haemolytic streptococcal infections in Finland, focusing on iGCGS.MethodsWe conducted a retrospective register-based study. Cases were defined as isolations from blood and/or cerebrospinal fluid and retrieved from the National Infectious Disease Register where all invasive cases are mandatorily notified.ResultsBetween 2006 and 2020, the mean annual incidence was 4.1 per 100,000 for iGAS (range: 2.1-6.7), 5.2 for iGBS (4.0-6.3) and 10.1 for iGCGS (5.4-17.6). The incidence displayed an increasing trend for all groups, albeit for iGBS only for individuals 45 years and older. The increase was particularly sharp for iGCGS (8% annual relative increase). The incidence rate was higher in males for iGCGS (adjusted incidence rate ratio (IRR) = 1.6; 95% confidence interval (CI): 1.5-1.8) and iGAS (adjusted IRR = 1.3; 95% CI: 1.1-1.4); for iGBS, the association with sex was age-dependent. In adults, iGCGS incidence increased significantly with age. Recurrency was seen for iGCGS and secondarily iGBS, but not for iGAS. Infections with iGCGS and iGBS peaked in July and August.ConclusionsThe incidence of invasive beta-haemolytic streptococcal infections in Finland has been rising since 2006, especially for iGCGS and among the elderly population. However, national surveillance still focuses on iGAS and iGBS, and European Union-wide surveillance is lacking. We recommend that surveillance of iGCGS be enhanced, including systematic collection and typing of isolates, to guide infection prevention strategies.
Collapse
Affiliation(s)
- Dafni Katerina Paspaliari
- Finnish Institute of Health and Welfare, Helsinki, Finland
- ECDC Fellowship Programme, Public Health Microbiology path (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Solna, Sweden
| | - Emmi Sarvikivi
- Finnish Institute of Health and Welfare, Helsinki, Finland
| | - Jukka Ollgren
- Finnish Institute of Health and Welfare, Helsinki, Finland
| | - Jaana Vuopio
- Finnish Institute of Health and Welfare, Helsinki, Finland
- University of Turku, Institute of Biomedicine, Turku, Finland
- Turku University Hospital, Clinical Microbiology, Turku, Finland
| |
Collapse
|
5
|
Itzek A, Weißbach V, Meintrup D, Rieß B, van der Linden M, Borgmann S. Epidemiological and Clinical Features of Streptococcus dysgalactiae ssp. equisimilis stG62647 and Other emm Types in Germany. Pathogens 2023; 12:pathogens12040589. [PMID: 37111475 PMCID: PMC10143538 DOI: 10.3390/pathogens12040589] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/31/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
(1) Background: Streptococcus dysgalactiae subspecies equisimilis (SDSE) is an important β-hemolytic pathogen historically described as mainly affecting animals. Studies epidemiologically assessing the pathogenicity in the human population in Germany are rare. (2) Methods: the present study combines national surveillance data from 2010 to 2022 with a single-center clinical study conducted from 2016 to 2022, focusing on emm type, Lancefield antigen, antimicrobial resistance, patient characteristics, disease severity, and clinical infection markers. (3) Results: The nationwide reported invasive SDSE infections suggest an increasing infection burden for the German population. One particular emm type, stG62647, increased over the study period, being the dominant type in both study cohorts, suggesting a mutation-driven outbreak of a virulent clone. The patient data show that men were more affected than women, although in the single-center cohort, this trend was reversed for patients with stG62647 SDSE. Men affected by stG62647 developed predominantly fascial infections, whereas women suffering from superficial and fascial non-stG62647 SDSE infections were significantly younger than other patients. Increasing age was a general risk factor for invasive SDSE infections. (4) Conclusions: further studies are needed to further elucidate the raised questions regarding outbreak origin, underlying molecular mechanisms as well as sex-dependent pathogen adaptation.
Collapse
Affiliation(s)
- Andreas Itzek
- German National Reference Center for Streptococci, Institute of Medical Microbiology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Victoria Weißbach
- Department of Infectious Diseases and Infection Control, Ingolstadt Hospital, 85049 Ingolstadt, Germany
| | - David Meintrup
- Faculty of Engineering and Management, University of Applied Sciences Ingolstadt, 85049 Ingolstadt, Germany
| | - Beate Rieß
- Department of Infectious Diseases and Infection Control, Ingolstadt Hospital, 85049 Ingolstadt, Germany
| | - Mark van der Linden
- German National Reference Center for Streptococci, Institute of Medical Microbiology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Stefan Borgmann
- Department of Infectious Diseases and Infection Control, Ingolstadt Hospital, 85049 Ingolstadt, Germany
| |
Collapse
|
6
|
Frost HR, Guglielmini J, Duchêne S, Lacey JA, Sanderson-Smith M, Steer AC, Walker MJ, Botteaux A, Davies MR, Smeesters PR. Promiscuous evolution of Group A Streptococcal M and M-like proteins. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001280. [PMID: 36748538 PMCID: PMC9993116 DOI: 10.1099/mic.0.001280] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Group A Streptococcus (GAS) M and M-like proteins are essential virulence factors and represent the primary epidemiological marker of this pathogen. Protein sequences encoding 1054 M, Mrp and Enn proteins, from 1668 GAS genomes, were analysed by SplitsTree4, partitioning around medoids and co-occurrence. The splits network and groups-based analysis of all M and M-like proteins revealed four large protein groupings, with multiple evolutionary histories as represented by multiple edges for most splits, leading to 'M-family-groups' (FG) of protein sequences: FG I, Mrp; FG II, M protein and Protein H; FG III, Enn; and FG IV, M protein. M and Enn proteins formed two groups with nine sub-groups and Mrp proteins formed four groups with ten sub-groups. Discrete co-occurrence of M and M-like proteins were identified suggesting that while dynamic, evolution may be constrained by a combination of functional and virulence attributes. At a granular level, four distinct family-groups of M, Enn and Mrp proteins are observable, with Mrp representing the most genetically distinct of the family-group of proteins. While M and Enn protein families generally group into three distinct family-groups, horizontal and vertical gene flow between distinct GAS strains is ongoing.
Collapse
Affiliation(s)
- Hannah R Frost
- Molecular Bacteriology Laboratory, Université libre de Bruxelles, Brussels, Belgium.,Tropical Diseases Research Group, Murdoch Children's Research Institute, Melbourne, Australia
| | - Julien Guglielmini
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, F-75015 Paris, France
| | - Sebastian Duchêne
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Jake A Lacey
- Doherty Department, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Martina Sanderson-Smith
- Illawarra Health and Medical Research Institute and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, Australia
| | - Andrew C Steer
- Tropical Diseases Research Group, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Pediatrics, University of Melbourne, Melbourne, Australia
| | - Mark J Walker
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, Australia
| | - Anne Botteaux
- Molecular Bacteriology Laboratory, Université libre de Bruxelles, Brussels, Belgium
| | - Mark R Davies
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Pierre R Smeesters
- Molecular Bacteriology Laboratory, Université libre de Bruxelles, Brussels, Belgium.,Tropical Diseases Research Group, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Pediatrics, University of Melbourne, Melbourne, Australia.,Academic Children Hospital Queen Fabiola, Université libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
7
|
Meumann EM, Krause VL, Baird R, Currie BJ. Using Genomics to Understand the Epidemiology of Infectious Diseases in the Northern Territory of Australia. Trop Med Infect Dis 2022; 7:tropicalmed7080181. [PMID: 36006273 PMCID: PMC9413455 DOI: 10.3390/tropicalmed7080181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
The Northern Territory (NT) is a geographically remote region of northern and central Australia. Approximately a third of the population are First Nations Australians, many of whom live in remote regions. Due to the physical environment and climate, and scale of social inequity, the rates of many infectious diseases are the highest nationally. Molecular typing and genomic sequencing in research and public health have provided considerable new knowledge on the epidemiology of infectious diseases in the NT. We review the applications of genomic sequencing technology for molecular typing, identification of transmission clusters, phylogenomics, antimicrobial resistance prediction, and pathogen detection. We provide examples where these methodologies have been applied to infectious diseases in the NT and discuss the next steps in public health implementation of this technology.
Collapse
Affiliation(s)
- Ella M. Meumann
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin 0810, Australia
- Department of Infectious Diseases, Division of Medicine, Royal Darwin Hospital, Darwin 0810, Australia
- Correspondence:
| | - Vicki L. Krause
- Northern Territory Centre for Disease Control, Northern Territory Government, Darwin 0810, Australia
| | - Robert Baird
- Territory Pathology, Royal Darwin Hospital, Darwin 0810, Australia
| | - Bart J. Currie
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin 0810, Australia
- Department of Infectious Diseases, Division of Medicine, Royal Darwin Hospital, Darwin 0810, Australia
| |
Collapse
|
8
|
Hirose Y, Kolesinski P, Hiraoka M, Uchiyama S, Zurich RH, Kumaraswamy M, Bjanes E, Ghosh P, Kawabata S, Nizet V. Contribution of Streptococcus pyogenes M87 protein to innate immune resistance and virulence. Microb Pathog 2022; 169:105636. [PMID: 35724830 PMCID: PMC9878354 DOI: 10.1016/j.micpath.2022.105636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 05/16/2022] [Accepted: 06/10/2022] [Indexed: 01/29/2023]
Abstract
Streptococcus pyogenes is a pre-eminent human pathogen, and classified by the hypervariable sequence of the emm gene encoding the cell surface M protein. Among a diversity of M/emm types, the prevalence of the M/emm87 strain has been steadily increasing in invasive S. pyogenes infections. Although M protein is the major virulence factor for globally disseminated M/emm1 strain, it is unclear if or how the corresponding M protein of M/emm87 strain (M87 protein) functions as a virulence factor. Here, we use targeted mutagenesis to show that the M87 protein contributes to bacterial resistance to neutrophil and whole blood killing and promotes the release of mature IL-1β from macrophages. While deletion of emm87 did not influence epithelial cell adherence and nasal colonization, it significantly reduced S. pyogenes-induced mortality and bacterial loads in a murine systemic infection model. Our data suggest that emm87 is involved in pathogenesis by modulating the interaction between S. pyogenes and innate immune cells.
Collapse
Affiliation(s)
- Yujiro Hirose
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Osaka 5650871, Japan,Department of Pediatrics, University of California at San Diego, La Jolla, California 92093, USA
| | - Piotr Kolesinski
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California 92093, USA
| | - Masanobu Hiraoka
- Department of Pediatrics, University of California at San Diego, La Jolla, California 92093, USA,Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Wakayama 6418509, Japan
| | - Satoshi Uchiyama
- Department of Pediatrics, University of California at San Diego, La Jolla, California 92093, USA
| | - Raymond H. Zurich
- Department of Pediatrics, University of California at San Diego, La Jolla, California 92093, USA
| | - Monika Kumaraswamy
- Department of Medicine, University of California at San Diego, La Jolla, California 92093, USA,Infectious Diseases Section, VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Elisabet Bjanes
- Department of Pediatrics, University of California at San Diego, La Jolla, California 92093, USA
| | - Partho Ghosh
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California 92093, USA
| | - Shigetada Kawabata
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Osaka 5650871, Japan,Correspondence: Victor Nizet, , TEL: +18585347408, Shigetada Kawabata, , TEL: +81668792896
| | - Victor Nizet
- Department of Pediatrics, University of California at San Diego, La Jolla, California 92093, USA,Skaggs School of Pharmaceutical Sciences, University of California at San Diego, La Jolla, California 92093, USA,Correspondence: Victor Nizet, , TEL: +18585347408, Shigetada Kawabata, , TEL: +81668792896
| |
Collapse
|
9
|
Sun L, Xiao Y, Huang W, Lai J, Lyu J, Ye B, Chen H, Gu B. Prevalence and identification of antibiotic-resistant scarlet fever group A Streptococcus strains in some pediatric cases at Shenzhen, China. J Glob Antimicrob Resist 2022; 30:199-204. [PMID: 35618209 DOI: 10.1016/j.jgar.2022.05.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE This study aimed to investigate the annual incidence, molecular epidemiological characteristics, and antimicrobial resistance of group A Streptococcus (GAS) clinical isolates from pediatric patients at Shenzhen Children's Hospital during 2016-2020. METHODS Clinical samples were collected from pediatric patients with a suspected diagnosis of GAS infections. We studied the annual incidence and characteristics of GAS infections using the GAS antigen detection method. Additionally, 250 GAS isolates were randomly selected for genotyping of the emm gene, and antimicrobial susceptibility assay was performed using the Kirby-Bauer paper dispersion strategy. RESULTS Among 43,593 collected samples, 9,313 were positive for the GAS antigen. The main emm type was emm12, followed by emm1, emm6, and emm 4, which were used for distinguishing 90% of the scarlet fever isolated strains. The percentage of emm1 increased from 36% in 2016 to 44% in 2019, whereas the percentage of emm12 decreased from 62% to 50%. Several unusual emm types isolated from scarlet fever patients showed an increase in proportions from 2016 to 2020. These GAS isolates were sensitive to penicillin, ceftriaxone, and vancomycin and were highly resistant to erythromycin and clindamycin. CONCLUSION There was a high incidence of GAS infections during 2016-2020 in Shenzhen, China. The GAS isolates had a high resistance rate to erythromycin and clindamycin; penicillin was the antibiotic of choice for GAS infections. The common emm types were emm12 and emm1. Future studies should investigate the clonal structure and superantigen profiles of the population of GAS isolates associated with scarlet fever.
Collapse
Affiliation(s)
- Lifang Sun
- Laboratory of Shenzhen Children's Hospital, Shenzhen, China
| | - Yunju Xiao
- Division of Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Weilong Huang
- Laboratory of Shenzhen Children's Hospital, Shenzhen, China
| | - Jianwei Lai
- Laboratory of Shenzhen Children's Hospital, Shenzhen, China
| | - Jingwen Lyu
- Division of Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China; Medical Technology School of Xuzhou Medical University, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou, China
| | - Bingjun Ye
- Laboratory of Shenzhen Children's Hospital, Shenzhen, China
| | - Hongyu Chen
- Laboratory of Shenzhen Children's Hospital, Shenzhen, China.
| | - Bing Gu
- Division of Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China; Medical Technology School of Xuzhou Medical University, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou, China.
| |
Collapse
|
10
|
Rafei R, Al Iaali R, Osman M, Dabboussi F, Hamze M. A global snapshot on the prevalent macrolide-resistant emm types of Group A Streptococcus worldwide, their phenotypes and their resistance marker genotypes during the last two decades: A systematic review. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 99:105258. [PMID: 35219865 DOI: 10.1016/j.meegid.2022.105258] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 12/29/2021] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Watchful epidemiological surveillance of macrolide-resistant Group A Streptococcus (MRGAS) clones is important owing to the evolutionary and epidemiological dynamic of GAS. Meanwhile, data on the global distribution of MRGAS emm types according to macrolide resistance phenotypes and genotypes are scant and need to be updated. For this, the present systematic review analyses a global set of extensively characterized MRGAS isolates from patients of diverse ages and clinical presentations over approximately two decades (2000 to 2020) and recaps the peculiar epidemiological features of the dominant MRGAS clones. Based on the inclusion and exclusion criteria, 53 articles (3593 macrolide-resistant and 15,951 susceptible isolates) distributed over 23 countries were dissected with a predominance of high-income countries over low-income ones. Although macrolide resistance in GAS is highly variable in different countries, its within-GAS distribution seems not to be random. emm pattern E, 13 major emm types (emm12, 4, 28, 77, 75, 11, 22, 92, 58, 60, 94, 63, 114) and 4 emm clusters (A-C4, E1, E6, and E2) were significantly associated with macrolide resistance. emm patterns A-C and D, 14 major emm types (emm89, 3, 6, 2, 44, 82, 87, 118, 5, 49, 81, 59, 227, 78) and 3 well-defined emm clusters (A-C5, E3, and D4) were significantly associated with macrolide susceptibility. Scrutinizing the tendency of each MRGAS emm type to be significantly associated with specific macrolide resistance phenotype or genotype, interesting vignettes are also unveiled. The 30-valent vaccine covers ~95% of MRGAS isolates. The presented data urge the importance of comprehensive nationwide sustained surveillance of MRGAS circulating clones particularly in Low and Middle income countries where sampling bias is high and GAS epidemiology is obfuscated and needs to be demystified.
Collapse
Affiliation(s)
- Rayane Rafei
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon.
| | - Rayane Al Iaali
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Marwan Osman
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon; Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850, USA
| | - Fouad Dabboussi
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Monzer Hamze
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| |
Collapse
|
11
|
Lynch T, Nandi T, Jayaprakash T, Gregson D, Church DL. Genomic analysis of group A Streptococcus isolated during a correctional facility outbreak of MRSA in 2004. JOURNAL OF THE ASSOCIATION OF MEDICAL MICROBIOLOGY AND INFECTIOUS DISEASE CANADA = JOURNAL OFFICIEL DE L'ASSOCIATION POUR LA MICROBIOLOGIE MEDICALE ET L'INFECTIOLOGIE CANADA 2022; 7:23-35. [PMID: 36340844 PMCID: PMC9603014 DOI: 10.3138/jammi-2021-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 08/22/2021] [Indexed: 06/16/2023]
Abstract
BACKGROUND In 2004-2005, an outbreak of impetigo occurred at a correctional facility during a sentinel outbreak of methicillin- resistant Staphylococcus aureus (MRSA) in Alberta, Canada. Next-generation sequencing (NGS) was used to characterize the group A Streptococcus (GAS) isolates and evaluate whether genomic biomarkers could distinguish between those recovered alone and those co-isolated with S. aureus. METHODS Superficial wound swabs collected from all adults with impetigo during this outbreak were cultured using standard methods. NGS was used to characterize and compare all of the GAS and S. aureus genomes. RESULTS Fifty-three adults were culture positive for GAS, with a subset of specimens also positive for MRSA (n = 5) or methicillin-sensitive S. aureus (n = 3). Seventeen additional MRSA isolates from this facility from the same time frame (no GAS co-isolates) were also included. All 78 bacterial genomes were analyzed for the presence of known virulence factors, plasmids, and antimicrobial resistance (AMR) genes. Among the GAS isolates were 12 emm types, the most common being 41.2 (n = 27; 51%). GAS genomes were phylogenetically compared with local and public datasets of invasive and non-invasive isolates. GAS genomes had diverse profiles for virulence factors, plasmids, and AMR genes. Pangenome analysis did not identify horizontally transferred genes in the co-infection versus single infections. CONCLUSIONS GAS recovered from invasive and non-invasive sources were not genetically distinguishable. Virulence factors, plasmids, and AMR profiles grouped by emm type, and no genetic changes were identified that predict co-infection or horizontal gene transfer between GAS and S. aureus.
Collapse
Affiliation(s)
- Tarah Lynch
- Department of Pathology & Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Tannistha Nandi
- Research Computing Services, Information Technologies, University of Calgary, Calgary, Alberta, Canada
| | - Teenus Jayaprakash
- Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Dan Gregson
- Department of Pathology & Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Deirdre L Church
- Department of Pathology & Laboratory Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
12
|
Yu D, Liang Y, Lu Q, Meng Q, Wang W, Huang L, Bao Y, Zhao R, Chen Y, Zheng Y, Yang Y. Molecular Characteristics of Streptococcus pyogenes Isolated From Chinese Children With Different Diseases. Front Microbiol 2021; 12:722225. [PMID: 34956108 PMCID: PMC8696671 DOI: 10.3389/fmicb.2021.722225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 11/11/2021] [Indexed: 11/13/2022] Open
Abstract
Streptococcus pyogenes is a bacterial pathogen that causes a wide spectrum of clinical diseases exclusively in humans. The distribution of emm type, antibiotic resistance and virulence gene expression for S. pyogenes varies temporally and geographically, resulting in distinct disease spectra. In this study, we analyzed antibiotic resistance and resistance gene expression patterns among S. pyogenes isolates from pediatric patients in China and investigated the relationship between virulence gene expression, emm type, and disease categories. Forty-two representative emm1.0 and emm12.0 strains (n = 20 and n = 22, respectively) isolated from patients with scarlet fever or obstructive sleep apnea-hypopnea syndrome were subjected to whole-genome sequencing and phylogenetic analysis. These strains were further analyzed for susceptibility to vancomycin. We found a high rate and degree of resistance to macrolides and tetracycline in these strains, which mainly expressed ermB and tetM. The disease category correlated with emm type but not superantigens. The distribution of vanuG and virulence genes were associated with emm type. Previously reported important prophages, such as φHKU16.vir, φHKU488.vir, Φ5005.1, Φ5005.2, and Φ5005.3 encoding streptococcal toxin, and integrative conjugative elements (ICEs) such as ICE-emm12 and ICE-HKU397 encoding macrolide and tetracycline resistance were found present amongst emm1 or emm12 clones from Shenzhen, China.
Collapse
Affiliation(s)
- Dingle Yu
- Microbiology Laboratory, National Center for Children's Health, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China.,Shenzhen Children's Hospital, Shenzhen, China
| | - Yunmei Liang
- Beijing Chaoyang Hospital Affiliated to the Capital Medical University, Beijing, China
| | - Qinghua Lu
- Microbiology Laboratory, National Center for Children's Health, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China.,Shenzhen Children's Hospital, Shenzhen, China
| | - Qing Meng
- Shenzhen Children's Hospital, Shenzhen, China
| | | | - Lu Huang
- Shenzhen Children's Hospital, Shenzhen, China
| | - Yanmin Bao
- Shenzhen Children's Hospital, Shenzhen, China
| | | | | | | | - Yonghong Yang
- Microbiology Laboratory, National Center for Children's Health, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China.,Shenzhen Children's Hospital, Shenzhen, China
| |
Collapse
|
13
|
The Place of Group A Streptococci in Moroccan Children with Pharyngitis and Emm Type Distribution. ARCHIVES OF PEDIATRIC INFECTIOUS DISEASES 2021. [DOI: 10.5812/pedinfect.111172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Streptococcus pyogenes is responsible for a wide variety of diseases, including noninvasive and severe invasive infections. The emm gene encodes the M protein that is the virulence factor and immunological determinant of group A streptococci. Emm typing is the group A Streptococci (GAS) standard molecular typing method based on the amplification of the N terminal hypervariable region of the emm gene. Objectives: The aim of the present study was to determine the prevalence of GAS in children with pharyngitis and determine different types of emm gene in the GAS isolates using emm typing. Methods: The study was carried out over a period of 14 months (from February 2017 to March 2018). Throat samples were collected from cases aged ≤ 18 years with pharyngitis referring to a primary health care center in Fez, Morocco. GAS isolates were subjected to conventional tests to confirm species identification. Antimicrobial susceptibility testing was performed using the standard disk diffusion method. We researched emm gene by a polymerase chain reaction (PCR). Emm types were determined by a sequence-based protocol. Demographic and clinical data were recorded from each patient. Results: From a total of 177 throat samples, 11 isolates (6.2%) were identified as GAS in children with pharyngitis. Antibiotic sensitivity testing revealed that all the GAS isolates were sensitive to penicillin. The sequencing of the PCR products of the emm gene revealed that emm90 was the most obtained emm type (30,77%); while emm75 was the least type observed (7.7%). Conclusions: The emm90 is the most prevalent type detected from patients with tonsillitis. Penicillin and erythromycin are still the foremost effective antibiotics to treat GAS pharyngitis.
Collapse
|
14
|
Adigbli D, Rozen V, Darbar A, Janin P. Early intravenous immunoglobulin therapy for group A β-haemolytic streptococcal meningitis with toxic shock syndrome. BMJ Case Rep 2021; 14:e238472. [PMID: 33664027 PMCID: PMC7934773 DOI: 10.1136/bcr-2020-238472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2021] [Indexed: 11/03/2022] Open
Abstract
A woman in her forties was transferred to a Sydney (Australia)-based tertiary hospital, following presentation to a regional hospital with group A Streptococcus (GAS) otomastoiditis; complicated by meningitis, venous sinus thrombosis, haemorrhagic cerebral infarction and subdural empyema. She rapidly deteriorated with profound cardiovascular collapse. Despite initiation of high dose vasoactive therapy, she remained shocked and developed multiorgan dysfunction syndrome. Early intravenous immunoglobulin therapy (140 g in two doses) was initiated as an adjunct to antimicrobial, surgical and supportive care for refractory streptococcal toxic shock syndrome. Over the course of a twelve-day intensive care unit stay she made good progress with de-escalation of her vasoactive supportive care and reversal of her organ injuries. She was subsequently discharged to ward-based care. At her three-month follow-up appointment she had significantly reduced neurological deficit. Five months following her presentation to hospital she had returned to full-time work.
Collapse
Affiliation(s)
- Derick Adigbli
- Intensive Care Unit, Northern Sydney Local Health District, St Leonards, New South Wales, Australia
| | - Valerie Rozen
- Haematology, Northern Sydney Local Health District, St Leonards, New South Wales, Australia
| | - Archie Darbar
- Microbiology, Northern Sydney Local Health District, St Leonards, New South Wales, Australia
| | - Pierre Janin
- Intensive Care Unit, Northern Sydney Local Health District, St Leonards, New South Wales, Australia
| |
Collapse
|
15
|
de Crombrugghe G, Baroux N, Botteaux A, Moreland NJ, Williamson DA, Steer AC, Smeesters PR. The Limitations of the Rheumatogenic Concept for Group A Streptococcus: Systematic Review and Genetic Analysis. Clin Infect Dis 2021; 70:1453-1460. [PMID: 31334754 DOI: 10.1093/cid/ciz425] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/20/2019] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND The concept that a minority of group A streptococcus (GAS) emm types are more "rheumatogenic" than others has been widely disseminated. We aimed to provide a comprehensive list of acute rheumatic fever-associated GAS isolates and assess the presence of associated rheumatogenic motifs. METHODS Articles reporting GAS emm-type or emm-type-specific antibody responses associated with rheumatic fever were identified from 1 January 1944 to 31 July 2018. The revised Jones criteria were used to define rheumatic fever with a maximum period of 4 weeks between disease onset and microbiological characterization. A database of 175 representative M-protein sequences was used to analyze the protein diversity of rheumatic fever-associated strains in a phylogenetic tree and to identify the presence of 10 previously recognized rheumatogenic motifs. RESULTS We included 411 cases of rheumatic fever, for which microbiological characterization identified 73 different emm types associated with the disease. The classic rheumatogenic emm types represented only 12.3% of the 73 emm types and were responsible for 31.6% of the 411 clinical cases. Rheumatic fever-associated emm types were disseminated throughout the phylogeny, suggesting they belong to various genetic backgrounds. Rheumatic fever-associated motifs were present in only 15.1% of the rheumatic fever-associated emm types and only 24.8% of clinical cases. CONCLUSIONS The concept of rheumatogenicity should be extended to include strains other than those classically described. Our results highlight significant knowledge gaps in the understanding of rheumatic fever pathogenesis and suggest that a GAS vaccine candidate should offer broad coverage against a variety of GAS genetic variants in order to protect against this serious sequela.
Collapse
Affiliation(s)
- Gabrielle de Crombrugghe
- Academic Children Hospital Queen Fabiola, Université libre de Bruxelles, Brussels, Belgium
- Molecular Bacteriology Laboratory, Université libre de Bruxelles, Brussels, Belgium
| | - Noemie Baroux
- Tropical Diseases Research Group, Murdoch Children's Research Institute, Melbourne, Australia
| | - Anne Botteaux
- Molecular Bacteriology Laboratory, Université libre de Bruxelles, Brussels, Belgium
| | - Nicole J Moreland
- Faculty of Medical and Health Sciences, The University of Auckland, New Zealand
| | - Deborah A Williamson
- Microbiological Diagnostic Unit Public Health Laboratory, University of Melbourne, Australia
| | - Andrew C Steer
- Tropical Diseases Research Group, Murdoch Children's Research Institute, Melbourne, Australia
- Centre for International Child Health, University of Melbourne, Australia
| | - Pierre R Smeesters
- Academic Children Hospital Queen Fabiola, Université libre de Bruxelles, Brussels, Belgium
- Molecular Bacteriology Laboratory, Université libre de Bruxelles, Brussels, Belgium
- Tropical Diseases Research Group, Murdoch Children's Research Institute, Melbourne, Australia
- Centre for International Child Health, University of Melbourne, Australia
| |
Collapse
|
16
|
Remmington A, Haywood S, Edgar J, Green LR, de Silva T, Turner CE. Cryptic prophages within a Streptococcus pyogenes genotype emm4 lineage. Microb Genom 2021; 7:mgen000482. [PMID: 33245690 PMCID: PMC8115907 DOI: 10.1099/mgen.0.000482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 11/04/2020] [Indexed: 01/27/2023] Open
Abstract
The major human pathogen Streptococcus pyogenes shares an intimate evolutionary history with mobile genetic elements, which in many cases carry genes encoding bacterial virulence factors. During recent whole-genome sequencing of a longitudinal sample of S. pyogenes isolates in England, we identified a lineage within emm4 that clustered with the reference genome MEW427. Like MEW427, this lineage was characterized by substantial gene loss within all three prophage regions, compared to MGAS10750 and isolates outside of the MEW427-like lineage. Gene loss primarily affected lysogeny, replicative and regulatory modules, and to a lesser and more variable extent, structural genes. Importantly, prophage-encoded superantigen and DNase genes were retained in all isolates. In isolates where the prophage elements were complete, like MGAS10750, they could be induced experimentally, but not in MEW427-like isolates with degraded prophages. We also found gene loss within the chromosomal island SpyCIM4 of MEW427-like isolates, although surprisingly, the SpyCIM4 element could not be experimentally induced in either MGAS10750-like or MEW427-like isolates. This did not, however, appear to abolish expression of the mismatch repair operon, within which this element resides. The inclusion of further emm4 genomes in our analyses ratified our observations and revealed an international emm4 lineage characterized by prophage degradation. Intriguingly, the USA population of emm4 S. pyogenes appeared to constitute predominantly MEW427-like isolates, whereas the UK population comprised both MEW427-like and MGAS10750-like isolates. The degraded and cryptic nature of these elements may have important phenotypic and fitness ramifications for emm4 S. pyogenes, and the geographical distribution of this lineage raises interesting questions on the population dynamics of the genotype.
Collapse
Affiliation(s)
- Alex Remmington
- Department of Molecular Biology and Biotechnology, Florey Institute, University of Sheffield, Sheffield, UK
| | - Samuel Haywood
- Department of Molecular Biology and Biotechnology, Florey Institute, University of Sheffield, Sheffield, UK
| | - Julia Edgar
- Department of Molecular Biology and Biotechnology, Florey Institute, University of Sheffield, Sheffield, UK
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Luke R. Green
- Department of Infection, Immunity and Cardiovascular Disease, Florey Institute, University of Sheffield, Sheffield, UK
| | - Thushan de Silva
- Department of Infection, Immunity and Cardiovascular Disease, Florey Institute, University of Sheffield, Sheffield, UK
| | - Claire E. Turner
- Department of Molecular Biology and Biotechnology, Florey Institute, University of Sheffield, Sheffield, UK
| |
Collapse
|
17
|
Tsai WC, Shen CF, Lin YL, Shen FC, Tsai PJ, Wang SY, Lin YS, Wu JJ, Chi CY, Liu CC. Emergence of macrolide-resistant Streptococcus pyogenes emm12 in southern Taiwan from 2000 to 2019. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2020; 54:1086-1093. [PMID: 32994137 DOI: 10.1016/j.jmii.2020.08.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/26/2020] [Accepted: 08/30/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Group A Streptococcus (GAS) is an important pathogen causing morbidity and mortality worldwide. Surveillance of resistance and emm type has important implication to provide helpful information on the changing GAS epidemiology and empirical treatment. METHODS To study the emergence of resistant GAS in children with upper respiratory tract infection (URTI), a retrospective study was conducted from 2000 to 2019 in southern Taiwan. Microbiological studies, including antibiotic susceptibility, were performed. GAS emm types and sequences were determined by molecular methods. The population was divided into two separate decades to analyze potential changes over time. The 1st decade was 2000-2009; the 2nd decade was 2010-2019. Multivariate analyses were performed to identify independent risk factors associated with macrolide resistance between these periods. RESULTS A total of 320 GAS from 339 children were enrolled. Most of the children (75%) were under 9 years of age. The most common diagnosis was scarlet fever (225, 66.4%), and the frequency increased from 54.8% in the 1st to 77.9% in the 2nd decade (p < 0.0001). There was a significant increase in resistance to erythromycin and azithromycin from 18.1%, 19.3% in the 1st to 58.4%, 61.0% in the 2nd decade (p < 0.0001). This was associated with clonal expansion of the GAS emm12-ST36 which carrying erm(B) and tet(M) from 3.0% in the 1st to 53.2% in the 2nd decade (p < 0.0001). CONCLUSIONS Significant emergence of macrolide-resistant GAS emm12-ST36 in children supports the need for continuing surveillance and investigation for the clonal virulence.
Collapse
Affiliation(s)
- Wei-Chun Tsai
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Ching-Fen Shen
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Ya-Lan Lin
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Fan-Ching Shen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan
| | - Pei-Jane Tsai
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan City, Taiwan; Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan City, Taiwan
| | - Shu-Ying Wang
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan City, Taiwan; Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Yee-Shin Lin
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan City, Taiwan; Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Jiunn-Jong Wu
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang Ming University, Taipei, Taiwan
| | - Chia-Yu Chi
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City, Taiwan; National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan; Environmental and Occupational Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Ching-Chuan Liu
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City, Taiwan; Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan City, Taiwan.
| |
Collapse
|
18
|
Syed S, Viazmina L, Mager R, Meri S, Haapasalo K. Streptococci and the complement system: interplay during infection, inflammation and autoimmunity. FEBS Lett 2020; 594:2570-2585. [PMID: 32594520 DOI: 10.1002/1873-3468.13872] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 11/09/2022]
Abstract
Streptococci are a broad group of Gram-positive bacteria. This genus includes various human pathogens causing significant morbidity and mortality. Two of the most important human pathogens are Streptococcus pneumoniae (pneumococcus) and Streptococcus pyogenes (group A streptococcus or GAS). Streptococcal pathogens have evolved to express virulence factors that enable them to evade complement-mediated attack. These include factor H-binding M (S. pyogenes) and pneumococcal surface protein C (PspC) (S. pneumoniae) proteins. In addition, S. pyogenes and S. pneumoniae express cytolysins (streptolysin and pneumolysin), which are able to destroy host cells. Sometimes, the interplay between streptococci, the complement, and antistreptococcal immunity may lead to an excessive inflammatory response or autoimmune disease. Understanding the fundamental role of the complement system in microbial clearance and the bacterial escape mechanisms is of paramount importance for understanding microbial virulence, in general, and, the conversion of commensals to pathogens, more specifically. Such insights may help to identify novel antibiotic and vaccine targets in bacterial pathogens to counter their growing resistance to commonly used antibiotics.
Collapse
Affiliation(s)
- Shahan Syed
- Department of Bacteriology and Immunology, University of Helsinki, Finland
| | - Larisa Viazmina
- Department of Bacteriology and Immunology, University of Helsinki, Finland
| | | | - Seppo Meri
- Department of Bacteriology and Immunology, University of Helsinki, Finland.,Humanitas University, Milano, Italy
| | - Karita Haapasalo
- Department of Bacteriology and Immunology, University of Helsinki, Finland
| |
Collapse
|
19
|
Qiu C, Yuan Y, Lee SW, Ploplis VA, Castellino FJ. A local α-helix drives structural evolution of streptococcal M-protein affinity for host human plasminogen. Biochem J 2020; 477:1613-1630. [PMID: 32270857 PMCID: PMC7663350 DOI: 10.1042/bcj20200197] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 11/17/2022]
Abstract
Plasminogen-binding group A streptococcal M-protein (PAM) is a signature surface virulence factor of specific strains of Group A Streptococcus pyogenes (GAS) and is an important tight binding protein for human plasminogen (hPg). After activation of PAM-bound hPg to the protease, plasmin (hPm), GAS cells develop invasive surfaces that are critical for their pathogenicity. PAMs are helical dimers in solution, which are sensitive to temperature changes over a physiological temperature range. We previously categorized PAMs into three classes (I-III) based on the number and nature of short tandem α-helical repeats (a1 and a2) in their NH2-terminal A-domains that dictate interactions with hPg/hPm. Class II PAMs are special cases since they only contain the a2-repeat, while Class I and Class III PAMs encompass complete a1a2-repeats. All dimeric PAMs tightly associate with hPg, regardless of their categories, but monomeric Class II PAMs bind to hPg much weaker than their Class I and Class III monomeric counterparts. Additionally, since the A-domains of Class II PAMs comprise different residues from other PAMs, the issue emerges as to whether Class II PAMs utilize different amino acid side chains for interactions with hPg. Herein, through NMR-refined structural analyses, we elucidate the atomic-level hPg-binding mechanisms adopted by two representative Class II PAMs. Furthermore, we develop an evolutionary model that explains from unique structural perspectives why PAMs develop variable A-domains with regard to hPg-binding affinity.
Collapse
Affiliation(s)
- Cunjia Qiu
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, U.S.A
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, U.S.A
| | - Yue Yuan
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, U.S.A
| | - Shaun W. Lee
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, U.S.A
| | - Victoria A. Ploplis
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, U.S.A
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, U.S.A
| | - Francis J. Castellino
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, U.S.A
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, U.S.A
| |
Collapse
|
20
|
Russo BT, Ayinuola YA, Singh D, Carothers K, Fischetti VA, Flores-Mireles AL, Lee SW, Ploplis VA, Liang Z, Castellino FJ. The M Protein of Streptococcus pyogenes Strain AP53 Retains Cell Surface Functional Plasminogen Binding after Inactivation of the Sortase A Gene. J Bacteriol 2020; 202:e00096-20. [PMID: 32123038 PMCID: PMC7186463 DOI: 10.1128/jb.00096-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 02/21/2020] [Indexed: 12/11/2022] Open
Abstract
Streptococcus pyogenes (Lancefield group A Streptococcus [GAS]) is a β-hemolytic human-selective pathogen that is responsible for a large number of morbid and mortal infections in humans. For efficient infection, GAS requires different types of surface proteins that provide various mechanisms for evading human innate immune responses, thus enhancing pathogenicity of the bacteria. Many such virulence-promoting proteins, including the major surface signature M protein, are translocated after biosynthesis through the cytoplasmic membrane and temporarily tethered to this membrane via a type 1 transmembrane domain (TMD) positioned near the COOH terminus. In these proteins, a sorting signal, LPXTG, is positioned immediately upstream of the TMD, which is cleaved by the membrane-associated transpeptidase, sortase A (SrtA), leading to the covalent anchoring of these proteins to newly emerging l-Ala-l-Ala cross-bridges of the growing peptidoglycan cell wall. Herein, we show that inactivation of the srtA gene in a skin-tropic pattern D GAS strain (AP53) results in retention of the M protein in the cell membrane. However, while the isogenic AP53 ΔsrtA strain is attenuated in overall pathogenic properties due to effects on the integrity of the cell membrane, our data show that the M protein nonetheless can extend from the cytoplasmic membrane through the cell wall and then to the surface of the bacteria and thereby retain its important properties of productively binding and activating fluid-phase host plasminogen (hPg). The studies presented herein demonstrate an underappreciated additional mechanism of cell surface display of bacterial virulence proteins via their retention in the cell membrane and extension to the GAS surface.IMPORTANCE Group A Streptococcus pyogenes (GAS) is a human-specific pathogen that produces many surface factors, including its signature M protein, that contribute to its pathogenicity. M proteins undergo specific membrane localization and anchoring to the cell wall via the transpeptidase sortase A. Herein, we explored the role of sortase A function on M protein localization, architecture, and function, employing, a skin-tropic GAS isolate, AP53, which expresses a human plasminogen (hPg)-binding M (PAM) Protein. We showed that PAM anchored in the cell membrane, due to the targeted inactivation of sortase A, was nonetheless exposed on the cell surface and functionally interacted with host hPg. We demonstrate that M proteins, and possibly other sortase A-processed proteins that are retained in the cell membrane, can still function to initiate pathogenic processes by this underappreciated mechanism.
Collapse
Affiliation(s)
- Brady T Russo
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Yetunde A Ayinuola
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Damini Singh
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Katelyn Carothers
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Vincent A Fischetti
- Laboratory of Bacterial Pathogenesis and Immunology, Rockefeller University, New York, New York, USA
| | - Ana L Flores-Mireles
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Shaun W Lee
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Victoria A Ploplis
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| | - Zhong Liang
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
| | - Francis J Castellino
- W. M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, Indiana, USA
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
21
|
Rafei R, Hawli M, Osman M, Dabboussi F, Hamze M. Distribution of emm types and macrolide resistance determinants among group A streptococci in the Middle East and North Africa region. J Glob Antimicrob Resist 2020; 22:334-348. [PMID: 32084609 DOI: 10.1016/j.jgar.2020.02.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 02/03/2020] [Accepted: 02/09/2020] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVES The aim of this review was to provide an updated scenario on the epidemiology of group A streptococci (GAS) in the Middle East and North Africa (MENA) region with a special spotlight on the most prevalent emmtypes and macrolide resistance profiles. METHODS This review briefly summarises the disease burden for GAS in the MENA region. RESULTS Whilst the burden of invasive GAS infections is difficult to assess in the MENA region, the GAS prevalence ranged from 2.5% up to 42.4% in pharyngitis patients and from 2.4% up to 35.4% in healthy carriers.emm1, emm12, emm89, emm4, emm28 and emm3were responsible for the major GAS burden in the MENA region. The coverage rate of the new M protein-based vaccine candidate (30-valent) varied from 42% to 100% according to the country. The rate of erythromycin resistance differed substantially between countries from low to moderate or high. CONCLUSION These data add more shreds of evidence on the neglected GAS burden in the MENA region. Systematic surveillance of invasive GAS infections along with molecular characterisation of GAS isolates are strongly recommended to track the trends of circulating clones and to evaluate the potential coverage of vaccine candidates.
Collapse
Affiliation(s)
- Rayane Rafei
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Malaik Hawli
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Marwan Osman
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Fouad Dabboussi
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Monzer Hamze
- Laboratoire Microbiologie Santé et Environnement (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon.
| |
Collapse
|
22
|
Worthing KA, Lacey JA, Price DJ, McIntyre L, Steer AC, Tong SYC, Davies MR. Systematic Review of Group A Streptococcal emm Types Associated with Acute Post-Streptococcal Glomerulonephritis. Am J Trop Med Hyg 2020; 100:1066-1070. [PMID: 30915958 DOI: 10.4269/ajtmh.18-0827] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Acute post-streptococcal glomerulonephritis (APSGN) is a postinfectious immune-mediated kidney disease associated with group A Streptococcus (GAS). The prevalence of APSGN varies within and between countries and is influenced by socioeconomic, host, and bacterial factors. The disease is more prevalent in developing countries and resource-poor settings of developed countries, such as the Indigenous populations residing in tropical Australia. The M-protein is a universally present GAS surface antigen that is the focus of molecular typing and vaccine research. Early reports suggested that some M-proteins (emm types) are more likely to cause APSGN than others. Here, we present the first systematic review of the global distribution of APSGN-associated GAS emm types. There were 46 emm types among the 676 cases described in 15 reviewed articles. Only 43% APSGN cases would have had theoretical coverage from the experimental M protein-based GAS vaccine. Vaccine coverage was higher in regions such as North America (97%) and the United Kingdom (98%) than Africa (67%) and Australia (38%). Variable vaccine coverage against APSGN- associated emm types highlights the need for further research into this disease, particularly in settings of poverty, where APSGN prevalence is higher. Three GAS emm types (emm49, emm60, and emm55) consistently occur in APSGN cases around the world. Future studies would therefore benefit from examining the genomic epidemiology of these emm types to unravel potential markers of APSGN.
Collapse
Affiliation(s)
- Kate A Worthing
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria, Australia
| | - Jake A Lacey
- Doherty Department at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria, Australia
| | - David J Price
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Victoria, Australia.,Victorian Infectious Diseases Reference Laboratory Epidemiology Unit, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria, Australia
| | - Liam McIntyre
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria, Australia
| | - Andrew C Steer
- Tropical Diseases Research Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Steven Y C Tong
- Menzies School of Health Research, Darwin, Australia.,Victorian Infectious Disease Service, The Royal Melbourne Hospital, Peter Doherty Institute for Infection and Immunity, Doherty Department University of Melbourne, Victoria, Australia
| | - Mark R Davies
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Victoria, Australia
| |
Collapse
|
23
|
Colineau L, Laabei M, Liu G, Ermert D, Lambris JD, Riesbeck K, Blom AM. Interaction of Streptococcus pyogenes with extracellular matrix components resulting in immunomodulation and bacterial eradication. Matrix Biol Plus 2020; 6-7:100020. [PMID: 33543018 PMCID: PMC7852299 DOI: 10.1016/j.mbplus.2020.100020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 11/16/2022] Open
Abstract
Streptococcus pyogenes is a major human pathogen that causes a variety of diseases ranging from mild skin and throat infections to fatal septicemia. In severe invasive infections, S. pyogenes encounters and interacts with components of the extracellular matrix (ECM), including small leucine rich-proteoglycans (SLRPs). In this study, we report a novel antimicrobial role played by SLRPs biglycan, decorin, fibromodulin and osteoadherin, specifically in promoting the eradication of S. pyogenes in a human sepsis model of infection. SLRPs can be released from the ECM and de novo synthesized by a number of cell types. We reveal that infection of human monocytes by S. pyogenes induces the expression of decorin. Furthermore, we show that the majority of genetically distinct and clinically relevant S. pyogenes isolates interact with SLRPs resulting in decreased survival in blood killing assays. Biglycan and decorin induce TLR2 and TLR4 signaling cascades resulting in secretion of proinflammatory and chemotactic molecules and recruitment of professional phagocytes. Surprisingly, SLRP-mediated elimination of S. pyogenes occurs independently of TLR activation. Our results indicate that SLRPs act in concert with human serum, enhancing deposition of complement activation fragments and the classical activator C1q on the bacterial surface, facilitating efficient microbial eradication. Addition of the complement C3 inhibitor compstatin significantly reverses SLRP-induced blood killing, confirming active complement as a key mediator in SLRP-mediated bacterial destruction. Taken together our results add to the functional repertoire of SLRPs, expanding to encompass their role in controlling bacterial infection. Streptococcus pyogenes bind short leucine rich-proteoglycans (SLRPs) These SLRPs are biglycan, decorin, fibromodulin, osteoadherin Decorin expression is increased in S. pyogenes-infected human monocytes SLRPs decrease the survival of S. pyogenes in a whole blood model SLRP-mediated bacteria elimination is mediated by complement
Collapse
Key Words
- AF647, Alexa Fluor 647
- BSA, bovine serum albumin
- Bacteria
- C4BP, C4b-binding protein
- CFSE, Carboxyfluorescein succinimidyl ester
- Complement
- Cp40, compstatin
- ECM, extracellular matrix
- GAG, glycosaminoglycan
- HI, heat-inactivated
- MAC, membrane attack complex
- NHS, normal human serum
- PMB, polymyxin B
- Pathogenesis
- SLRP, small leucine-rich proteoglycan
- Small leucine-rich proteoglycans
- Streptococcus pyogenes
- TLR, toll-like receptors
Collapse
Affiliation(s)
- Lucie Colineau
- Division of Medical Protein Chemistry, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Maisem Laabei
- Division of Medical Protein Chemistry, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden.,Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Guanghui Liu
- Division of Medical Protein Chemistry, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - David Ermert
- Division of Medical Protein Chemistry, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, USA
| | - Kristian Riesbeck
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Anna M Blom
- Division of Medical Protein Chemistry, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| |
Collapse
|
24
|
Tadros M, Cabrera A, Matukas LM, Muller M. Evaluation of Matrix-Assisted Laser Desorption Ionization Time-of-Flight Mass Spectrometry and ClinPro Tools as a Rapid Tool for Typing Streptococcus pyogenes. Open Forum Infect Dis 2019; 6:ofz441. [PMID: 31700941 PMCID: PMC6825801 DOI: 10.1093/ofid/ofz441] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/03/2019] [Indexed: 11/30/2022] Open
Abstract
Background Timely strain typing of group A Streptococci (GAS) is necessary to guide outbreak recognition and investigation. We evaluated the use of (matrix-assisted laser desorption ionization time-of-flight mass spectrometry) combined with cluster analysis software to rapidly distinguish between related and unrelated GAS isolates in real-time. Methods We developed and validated a typing model using 177 GAS isolates with known emm types. The typing model was created using 43 isolates, which included 8 different emm types, and then validated using 134 GAS isolates of known emm types that were not included in model generation. Results Twelve spectra were generated from each isolate during validation. The overall accuracy of the model was 74% at a cutoff value of 80%. The model performed well with emm types 4, 59, and 74 but showed poor accuracy for emm types 1, 3, 12, 28, and 101. To evaluate the ability of this tool to perform typing in an outbreak situation, we evaluated a virtual outbreak model using a “virtual outbreak strain; emm74” compared with a non-outbreak group or an “outgroup “ of other emm types. External validation of this model showed an accuracy of 91.4%. Conclusions This approach has the potential to provide meaningful information that can be used in real time to identify and manage GAS outbreaks. Choosing isolates characterized by whole genome sequencing rather than emm typing for model generation should improve the accuracy of this approach in rapidly identifying related and unrelated GAS strains.
Collapse
Affiliation(s)
- Manal Tadros
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Division of Microbiology, Unity Health Toronto, Toronto, Ontario, Canada
| | - Ana Cabrera
- Department of Pathology and Laboratory Medicine, Schulich School of Medicine & Dentistry, Western University, London, Ontario, Canada.,Division of Microbiology, Pathology and Laboratory Medicine, London Health Sciences Centre, London, Ontario, Canada
| | - Larissa M Matukas
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Division of Microbiology, Unity Health Toronto, Toronto, Ontario, Canada.,Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,Division of Infectious Diseases, Unity Health Toronto, Toronto, Ontario, Canada
| | - Matthew Muller
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada.,Division of Infectious Diseases, Unity Health Toronto, Toronto, Ontario, Canada
| |
Collapse
|
25
|
Qiu C, Yuan Y, Liang Z, Lee SW, Ploplis VA, Castellino FJ. Variations in the secondary structures of PAM proteins influence their binding affinities to human plasminogen. J Struct Biol 2019; 206:193-203. [PMID: 30880082 DOI: 10.1016/j.jsb.2019.03.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/04/2019] [Accepted: 03/12/2019] [Indexed: 11/25/2022]
Abstract
M-proteins (M-Prts) are major virulence determinants of Group A Streptococcus pyogenes (GAS) that are covalently anchored to the cell wall at their conserved COOH-termini while the NH2-terminal regions extend through the capsule into extracellular space. Functional M-Prts are also secreted and/or released from GAS cells where they exist as helical coiled-coil dimers in solution. Certain GAS strains (Pattern D) uniquely express an M-protein (plasminogen-binding group A streptococcal M-protein; PAM) that directly interacts with human plasminogen (hPg), a process strongly implicated in the virulence of these strains. M-Prt expressed by the emm gene is employed to serotype over 250 known strains of GAS, ∼20 of which are hitherto found to express PAMs. We have developed a modular structural model of the PAM dimer that describes the roles of different domains of this protein in various functions. While the helical COOH-terminal domains of PAM are essential for dimerization in solution, regions of its NH2-terminal domains also exhibit a weak potential to dimerize. We find that temperature controls the open (unwound) or closed (wound) states of the functional NH2-terminal domains of PAM. As temperature increases, α-helices are dramatically reduced, which concomitantly destabilizes the helical coiled-coil PAM dimers. PAMs with two a-repeats within the variable NH2-terminal A-domain (class I/III) bind to hPg tightly, but natural PAM isolates with a single a-repeat in this domain (class II) display dramatic changes in hPg binding with temperature. We conclude that coexistence of two a-repeats in PAM is critical to achieve optimal binding to hPg, especially in its monomeric form, at the biologically relevant temperature.
Collapse
Affiliation(s)
- Cunjia Qiu
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, United States; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Yue Yuan
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Zhong Liang
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Shaun W Lee
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Victoria A Ploplis
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, United States; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States
| | - Francis J Castellino
- W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN 46556, United States; Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, United States.
| |
Collapse
|
26
|
Horstmann N, Tran CN, Brumlow C, DebRoy S, Yao H, Nogueras Gonzalez G, Makthal N, Kumaraswami M, Shelburne SA. Phosphatase activity of the control of virulence sensor kinase CovS is critical for the pathogenesis of group A streptococcus. PLoS Pathog 2018; 14:e1007354. [PMID: 30379939 PMCID: PMC6231683 DOI: 10.1371/journal.ppat.1007354] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 11/12/2018] [Accepted: 09/14/2018] [Indexed: 12/15/2022] Open
Abstract
The control of virulence regulator/sensor kinase (CovRS) two-component system is critical to the infectivity of group A streptococcus (GAS), and CovRS inactivating mutations are frequently observed in GAS strains causing severe human infections. CovS modulates the phosphorylation status and with it the regulatory effect of its cognate regulator CovR via its kinase and phosphatase activity. However, the contribution of each aspect of CovS function to GAS pathogenesis is unknown. We created isoallelic GAS strains that differ only by defined mutations which either abrogate CovR phosphorylation, CovS kinase or CovS phosphatase activity in order to test the contribution of CovR phosphorylation levels to GAS virulence, emergence of hypervirulent CovS-inactivated strains during infection, and GAS global gene expression. These sets of strains were created in both serotype M1 and M3 backgrounds, two prevalent GAS disease-causing serotypes, to ascertain whether our observations were serotype-specific. In both serotypes, GAS strains lacking CovS phosphatase activity (CovS-T284A) were profoundly impaired in their ability to cause skin infection or colonize the oropharynx in mice and to survive neutrophil killing in human blood. Further, response to the human cathelicidin LL-37 was abrogated. Hypervirulent GAS isolates harboring inactivating CovRS mutations were not recovered from mice infected with M1 strain M1-CovS-T284A and only sparsely recovered from mice infected with M3 strain M3-CovS-T284A late in the infection course. Consistent with our virulence data, transcriptome analyses revealed increased repression of a broad array of virulence genes in the CovS phosphatase deficient strains, including the genes encoding the key anti-phagocytic M protein and its positive regulator Mga, which are not typically part of the CovRS transcriptome. Taken together, these data establish a key role for CovS phosphatase activity in GAS pathogenesis and suggest that CovS phosphatase activity could be a promising therapeutic target in GAS without promoting emergence of hypervirulent CovS-inactivated strains. Group A streptococcus (GAS), also known as Streptococcus pyogenes, causes a broad array of human infections of varying severity. Tight control of production of virulence factors is critical to GAS pathogenesis, and the control of virulence two-component signaling system (CovRS) is central to this process. The activity of the bifunctional histidine kinase CovS determines the phosphorylation status and thereby the activity of its cognate response regulator CovR. Herein, we sought to determine how varying CovR phosphorylation level (CovR~P) impacts GAS pathophysiology. Using three infection models, we discovered that GAS strains lacking CovS phosphatase activity resulting in high CovR~P levels had markedly impaired infectivity. Transcriptome analysis revealed that the hypovirulent phenotype of CovS phosphatase deficient strains is due to down-regulation of numerous genes encoding GAS virulence factors. We identified repression of additional virulence genes that are typically not controlled by CovR, thus expanding the CovR regulon at high CovR~P concentrations. Our data indicate that phosphatase activity of CovS sensor kinase is crucial for spatiotemporal regulation of GAS virulence gene expression. Thus, we propose that targeting the phosphatase activity of CovS sensor kinase could be a promising novel therapeutic approach to combat GAS disease.
Collapse
Affiliation(s)
- Nicola Horstmann
- Department of Infectious Diseases, Infection Control and Employee Health, MD Anderson Cancer Center, Houston TX, United States of America
| | - Chau Nguyen Tran
- Department of Infectious Diseases, Infection Control and Employee Health, MD Anderson Cancer Center, Houston TX, United States of America
| | - Chelcy Brumlow
- Department of Infectious Diseases, Infection Control and Employee Health, MD Anderson Cancer Center, Houston TX, United States of America
| | - Sruti DebRoy
- Department of Infectious Diseases, Infection Control and Employee Health, MD Anderson Cancer Center, Houston TX, United States of America
| | - Hui Yao
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston TX, United States of America
| | - Graciela Nogueras Gonzalez
- Department of Bioinformatics and Computational Biology, MD Anderson Cancer Center, Houston TX, United States of America
| | - Nishanth Makthal
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, United States of America
| | - Muthiah Kumaraswami
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, United States of America
| | - Samuel A. Shelburne
- Department of Infectious Diseases, Infection Control and Employee Health, MD Anderson Cancer Center, Houston TX, United States of America
- Department of Genomic Medicine, MD Anderson Cancer Center, Houston TX, United States of America
- * E-mail:
| |
Collapse
|
27
|
Bessen DE, Smeesters PR, Beall BW. Molecular Epidemiology, Ecology, and Evolution of Group A Streptococci. Microbiol Spectr 2018; 6:10.1128/microbiolspec.cpp3-0009-2018. [PMID: 30191802 PMCID: PMC11633622 DOI: 10.1128/microbiolspec.cpp3-0009-2018] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Indexed: 12/27/2022] Open
Abstract
The clinico-epidemiological features of diseases caused by group A streptococci (GAS) is presented through the lens of the ecology, population genetics, and evolution of the organism. The serological targets of three typing schemes (M, T, SOF) are themselves GAS cell surface proteins that have a myriad of virulence functions and a diverse array of structural forms. Horizontal gene transfer expands the GAS antigenic cell surface repertoire by generating numerous combinations of M, T, and SOF antigens. However, horizontal gene transfer of the serotype determinant genes is not unconstrained, and therein lies a genetic organization that may signify adaptations to a narrow ecological niche, such as the primary tissue reservoirs of the human host. Adaptations may be further shaped by selection pressures such as herd immunity. Understanding the molecular evolution of GAS on multiple levels-short, intermediate, and long term-sheds insight on mechanisms of host-pathogen interactions, the emergence and spread of new clones, rational vaccine design, and public health interventions.
Collapse
Affiliation(s)
- Debra E Bessen
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY 10595
| | - Pierre R Smeesters
- Department of Pediatrics, Queen Fabiola Children's University Hospital, and Molecular Bacteriology Laboratory, Université Libre de Bruxelles, Brussels, 1020, Belgium
| | - Bernard W Beall
- National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30333
| |
Collapse
|
28
|
An Outbreak of Streptococcus pyogenes in a Mental Health Facility: Advantage of Well-Timed Whole-Genome Sequencing Over emm Typing. Infect Control Hosp Epidemiol 2018; 39:852-860. [PMID: 29739475 DOI: 10.1017/ice.2018.101] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVEWe report the utility of whole-genome sequencing (WGS) conducted in a clinically relevant time frame (ie, sufficient for guiding management decision), in managing a Streptococcus pyogenes outbreak, and present a comparison of its performance with emm typing.SETTINGA 2,000-bed tertiary-care psychiatric hospital.METHODSActive surveillance was conducted to identify new cases of S. pyogenes. WGS guided targeted epidemiological investigations, and infection control measures were implemented. Single-nucleotide polymorphism (SNP)-based genome phylogeny, emm typing, and multilocus sequence typing (MLST) were performed. We compared the ability of WGS and emm typing to correctly identify person-to-person transmission and to guide the management of the outbreak.RESULTSThe study included 204 patients and 152 staff. We identified 35 patients and 2 staff members with S. pyogenes. WGS revealed polyclonal S. pyogenes infections with 3 genetically distinct phylogenetic clusters (C1-C3). Cluster C1 isolates were all emm type 4, sequence type 915 and had pairwise SNP differences of 0-5, which suggested recent person-to-person transmissions. Epidemiological investigation revealed that cluster C1 was mediated by dermal colonization and transmission of S. pyogenes in a male residential ward. Clusters C2 and C3 were genomically diverse, with pairwise SNP differences of 21-45 and 26-58, and emm 11 and mostly emm120, respectively. Clusters C2 and C3, which may have been considered person-to-person transmissions by emm typing, were shown by WGS to be unlikely by integrating pairwise SNP differences with epidemiology.CONCLUSIONSWGS had higher resolution than emm typing in identifying clusters with recent and ongoing person-to-person transmissions, which allowed implementation of targeted intervention to control the outbreak.Infect Control Hosp Epidemiol 2018;852-860.
Collapse
|
29
|
Gherardi G, Vitali LA, Creti R. Prevalent emm Types among Invasive GAS in Europe and North America since Year 2000. Front Public Health 2018; 6:59. [PMID: 29662874 PMCID: PMC5890186 DOI: 10.3389/fpubh.2018.00059] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 02/14/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Streptococcus pyogenes or group A streptococcus (GAS) is an important human pathogen responsible for a broad range of infections, from uncomplicated to more severe and invasive diseases with high mortality and morbidity. Epidemiological surveillance has been crucial to detect changes in the geographical and temporal variation of the disease pattern; for this purpose the M protein gene (emm) gene typing is the most widely used genotyping method, with more than 200 emm types recognized. Molecular epidemiological data have been also used for the development of GAS M protein-based vaccines. METHODS The aim of this paper was to provide an updated scenario of the most prevalent GAS emm types responsible for invasive infections in developed countries as Europe and North America (US and Canada), from 1st January 2000 to 31st May 2017. The search, performed in PubMed by the combined use of the terms ("emm") and ("invasive") retrieved 264 articles, of which 38 articles (31 from Europe and 7 from North America) met the inclusion criteria and were selected for this study. Additional five papers cited in the European articles but not retrieved by the search were included. RESULTS emm1 represented the dominant type in both Europe and North America, replaced by other emm types in only few occasions. The seven major emm types identified (emm1, emm28, emm89, emm3, emm12, emm4, and emm6) accounted for approximately 50-70% of the total isolates; less common emm types accounted for the remaining 30-50% of the cases. Most of the common emm types are included in either one or both the 26-valent and 30-valent vaccines, though some well-represented emm types found in Europe are not. CONCLUSION This study provided a picture of the prevalent emm types among invasive GAS (iGAS) in Europe and North America since the year 2000 onward. Continuous surveillance on the emm-type distribution among iGAS infections is strongly encouraged also to determine the potential coverage of the developing multivalent vaccines.
Collapse
Affiliation(s)
- Giovanni Gherardi
- Microbiology Unit, Department of Medicine, Campus Bio-Medico University, Rome, Italy
| | | | - Roberta Creti
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
30
|
Kwiatkowska RM, Manley P, Sims B, Lamagni T, Ready D, Coelho J, Alsaffar L, Beck CR, Neely F. Outbreak of group A Streptococcus emm94.0 affecting people who inject drugs in southwest England, April 2017. Am J Infect Control 2018; 46:238-240. [PMID: 29031429 DOI: 10.1016/j.ajic.2017.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/13/2017] [Accepted: 08/14/2017] [Indexed: 11/18/2022]
Abstract
We report an outbreak of invasive and noninvasive group A Streptococcus during April 2017 among people who inject drugs in southwest England. To date we have identified 14 cases linked to a specific town, all confirmed as group A Streptococcus emm94.0, a strain type not previously reported in the area. We have yet to identify a source for this ongoing outbreak. Actions described here may help reduce the burden of infection in vulnerable populations.
Collapse
Affiliation(s)
- Rachel M Kwiatkowska
- Field Epidemiology Service, National Infection Service, Public Health England, Bristol, United Kingdom.
| | - Petra Manley
- Field Epidemiology Service, National Infection Service, Public Health England, Bristol, United Kingdom
| | - Ben Sims
- Public Health England South West (South) Centre, Public Health England, Totnes, United Kingdom
| | - Theresa Lamagni
- Healthcare-Associated Infection & Antimicrobial Resistance Department, National Infection Service, Public Health England, London, United Kingdom
| | - Derren Ready
- Respiratory and Vaccine Preventable Bacteria Reference Unit, National Infection Service, Public Health England, London, United Kingdom
| | - Juliana Coelho
- Respiratory and Vaccine Preventable Bacteria Reference Unit, National Infection Service, Public Health England, London, United Kingdom
| | - Layth Alsaffar
- Royal Bournemouth and Christchurch Hospitals NHS Foundation Trust, United Kingdom
| | - Charles R Beck
- Field Epidemiology Service, National Infection Service, Public Health England, Bristol, United Kingdom
| | - Fiona Neely
- Public Health England South West (South) Centre, Public Health England, Totnes, United Kingdom
| |
Collapse
|
31
|
Mearkle R, Saavedra-Campos M, Lamagni T, Usdin M, Coelho J, Chalker V, Sriskandan S, Cordery R, Rawlings C, Balasegaram S. Household transmission of invasive group A Streptococcus infections in England: a population-based study, 2009, 2011 to 2013. ACTA ACUST UNITED AC 2017; 22:30532. [PMID: 28537550 PMCID: PMC5476984 DOI: 10.2807/1560-7917.es.2017.22.19.30532] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/21/2016] [Indexed: 11/23/2022]
Abstract
Invasive group A streptococcal infection has a 15% case fatality rate and a risk of secondary transmission. This retrospective study used two national data sources from England; enhanced surveillance (2009) and a case management system (2011–2013) to identify clusters of severe group A streptococcal disease. Twenty-four household pairs were identified. The median onset interval between cases was 2 days (range 0–28) with simultaneous onset in eight pairs. The attack rate during the 30 days after first exposure to a primary case was 4,520 per 100,000 person-years at risk (95% confidence interval (CI): 2,900–6,730) a 1,940 (95% CI: 1,240–2,880) fold elevation over the background incidence. The theoretical number needed to treat to prevent one secondary case using antibiotic prophylaxis was 271 overall (95% CI: 194–454), 50 for mother-neonate pairs (95% CI: 27–393) and 82 for couples aged 75 years and over (95% CI: 46–417). While a dramatically increased risk of infection was noted in all household contacts, increased risk was greatest for mother-neonate pairs and couples aged 75 and over, suggesting targeted prophylaxis could be considered. Offering prophylaxis is challenging due to the short time interval between cases emphasising the importance of immediate notification and assessment of contacts.
Collapse
Affiliation(s)
- Rachel Mearkle
- Field Epidemiology Services, South East and London, National Infection Service, Public Health England, England
| | - Maria Saavedra-Campos
- Field Epidemiology Services, South East and London, National Infection Service, Public Health England, England
| | - Theresa Lamagni
- Healthcare-Associated Infection and Antimicrobial Resistance Department, National Infection Service, Public Health England, England
| | | | - Juliana Coelho
- Respiratory and Vaccine Preventable Bacteria Reference Unit, Public Health England, England
| | - Vicki Chalker
- Respiratory and Vaccine Preventable Bacteria Reference Unit, Public Health England, England
| | - Shiranee Sriskandan
- NIHR Health Protection Research Unit in HCAI and AMR, Imperial College London, England
| | - Rebecca Cordery
- South London Health Protection Team, Public Health England, England
| | - Chas Rawlings
- Field Epidemiology Services, South East and London, National Infection Service, Public Health England, England
| | - Sooria Balasegaram
- Field Epidemiology Services, South East and London, National Infection Service, Public Health England, England
| |
Collapse
|
32
|
Bundle N, Bubba L, Coelho J, Kwiatkowska R, Cloke R, King S, Rajan-Iyer J, Courtney-Pillinger M, Beck CR, Hope V, Lamagni T, Brown CS, Jermacane D, Glass R, Desai M, Gobin M, Balasegaram S, Anderson C. Ongoing outbreak of invasive and non-invasive disease due to group A Streptococcus (GAS) type emm66 among homeless and people who inject drugs in England and Wales, January to December 2016. ACTA ACUST UNITED AC 2017; 22:30446. [PMID: 28128090 PMCID: PMC5322289 DOI: 10.2807/1560-7917.es.2017.22.3.30446] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 01/19/2017] [Indexed: 11/20/2022]
Abstract
We report an outbreak of invasive and non-invasive disease due to an unusual type of Streptococcus pyogenes(group A Streptococcus, emm66) among a vulnerable, largely homeless population in southern England and Wales, detected in September 2016. Twenty-seven confirmed cases were subsequently identified between 5 January and 29 December 2016; 20 injected drugs and six reported problematic alcohol use. To date, we have ruled out drug-related vehicles of infection and identified few common risk factors.
Collapse
Affiliation(s)
- Nick Bundle
- United Kingdom Field Epidemiology Training Programme, Public Health England, United Kingdom.,Field Epidemiology Services, National Infection Service, Public Health England, London and Bristol, United Kingdom.,European Programme for Intervention Epidemiology Training (EPIET), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Laura Bubba
- Reference Department Microbiology Services Division, National Infection Service, Public Health England, London, United Kingdom.,European Programme for Public Health Microbiology Training (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Juliana Coelho
- Respiratory and Vaccine Preventable Bacteria Reference Unit, National Infection Service, Public Health England, London, United Kingdom
| | - Rachel Kwiatkowska
- Field Epidemiology Services, National Infection Service, Public Health England, London and Bristol, United Kingdom.,United Kingdom Public Health Specialty Training Programme.,Public Health England South West, Bristol, United Kingdom
| | - Rachel Cloke
- Public Health England South East, Horsham, United Kingdom
| | - Sarah King
- Public Health England South West, Bristol, United Kingdom
| | | | | | - Charles R Beck
- Field Epidemiology Services, National Infection Service, Public Health England, London and Bristol, United Kingdom
| | - Vivian Hope
- Public Health Institute, Liverpool John Moores University, Liverpool, United Kingdom.,HIV and STI Department, National Infection Service, Public Health England, London, United Kingdom
| | - Theresa Lamagni
- Healthcare-Associated Infection & Antimicrobial Resistance Department, National Infection Service, Public Health England, London, United Kingdom
| | - Colin S Brown
- Respiratory and Vaccine Preventable Bacteria Reference Unit, National Infection Service, Public Health England, London, United Kingdom
| | - Daiga Jermacane
- Field Epidemiology Services, National Infection Service, Public Health England, London and Bristol, United Kingdom.,European Programme for Intervention Epidemiology Training (EPIET), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Rachel Glass
- HIV and STI Department, National Infection Service, Public Health England, London, United Kingdom
| | - Monica Desai
- HIV and STI Department, National Infection Service, Public Health England, London, United Kingdom
| | - Maya Gobin
- Field Epidemiology Services, National Infection Service, Public Health England, London and Bristol, United Kingdom
| | - Sooria Balasegaram
- Field Epidemiology Services, National Infection Service, Public Health England, London and Bristol, United Kingdom
| | - Charlotte Anderson
- Field Epidemiology Services, National Infection Service, Public Health England, London and Bristol, United Kingdom
| |
Collapse
|
33
|
Kapatai G, Coelho J, Platt S, Chalker VJ. Whole genome sequencing of group A Streptococcus: development and evaluation of an automated pipeline for emmgene typing. PeerJ 2017; 5:e3226. [PMID: 28462035 PMCID: PMC5410157 DOI: 10.7717/peerj.3226] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 03/24/2017] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pyogenes group A Streptococcus (GAS) is the most common cause of bacterial throat infections, and can cause mild to severe skin and soft tissue infections, including impetigo, erysipelas, necrotizing fasciitis, as well as systemic and fatal infections including septicaemia and meningitis. Estimated annual incidence for invasive group A streptococcal infection (iGAS) in industrialised countries is approximately three per 100,000 per year. Typing is currently used in England and Wales to monitor bacterial strains of S. pyogenes causing invasive infections and those isolated from patients and healthcare/care workers in cluster and outbreak situations. Sequence analysis of the emm gene is the currently accepted gold standard methodology for GAS typing. A comprehensive database of emm types observed from superficial and invasive GAS strains from England and Wales informs outbreak control teams during investigations. Each year the Bacterial Reference Department, Public Health England (PHE) receives approximately 3,000 GAS isolates from England and Wales. In April 2014 the Bacterial Reference Department, PHE began genomic sequencing of referred S. pyogenes isolates and those pertaining to selected elderly/nursing care or maternity clusters from 2010 to inform future reference services and outbreak analysis (n = 3, 047). In line with the modernizing strategy of PHE, we developed a novel bioinformatics pipeline that can predict emmtypes using whole genome sequence (WGS) data. The efficiency of this method was measured by comparing the emmtype assigned by this method against the result from the current gold standard methodology; concordance to emmsubtype level was observed in 93.8% (2,852/3,040) of our cases, whereas in 2.4% (n = 72) of our cases concordance was observed to emm type level. The remaining 3.8% (n = 117) of our cases corresponded to novel types/subtypes, contamination, laboratory sample transcription errors or problems arising from high sequence similarity of the allele sequence or low mapping coverage. De novo assembly analysis was performed in the two latter groups (n = 72 + 117) and was able to diagnose the problem and where possible resolve the discordance (60/72 and 20/117, respectively). Overall, we have demonstrated that our WGS emm-typing pipeline is a reliable and robust system that can be implemented to determine emm type for the routine service.
Collapse
Affiliation(s)
- Georgia Kapatai
- Respiratory and Vaccine Preventable Bacterial Reference Unit, Public Health England, London, United Kingdom
| | - Juliana Coelho
- Respiratory and Vaccine Preventable Bacterial Reference Unit, Public Health England, London, United Kingdom
| | - Steven Platt
- Infectious Disease Informatics, Public Health England, London, United Kingdom
| | - Victoria J Chalker
- Respiratory and Vaccine Preventable Bacterial Reference Unit, Public Health England, London, United Kingdom
| |
Collapse
|
34
|
Traverso F, Blanco A, Villalón P, Beratz N, Sáez Nieto JA, Lopardo H. Molecular characterization of invasive Streptococcus dysgalactiae subsp. equisimilis. Multicenter study: Argentina 2011-2012. Rev Argent Microbiol 2016; 48:279-289. [PMID: 28341023 DOI: 10.1016/j.ram.2016.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/01/2016] [Accepted: 07/31/2016] [Indexed: 11/27/2022] Open
Abstract
Streptococcus dysgalactiae subsp. equisimilis (SDSE) has virulence factors similar to those of Streptococcus pyogenes. Therefore, it causes pharyngitis and severe infections indistinguishable from those caused by the classic pathogen. The objectives of this study were: to know the prevalence of SDSE invasive infections in Argentina, to study the genetic diversity, to determine the presence of virulence genes, to study antibiotic susceptibility and to detect antibiotic resistance genes. Conventional methods of identification were used. Antibiotic susceptibility was determined by the disk diffusion and the agar dilution methods and the E-test. Twenty eight centers from 16 Argentinean cities participated in the study. Twenty three isolates (16 group G and 7 group C) were obtained between July 1 2011 and June 30 2012. Two adult patients died (8.7%). Most of the isolates were recovered from blood (60.9%). All isolates carried speJ and ssa genes. stG62647, stG653 and stG840 were the most frequent emm types. Nineteen different PFGE patterns were detected. All isolates were susceptible to penicillin and levofloxacin, 6 (26.1%) showed resistance or reduced susceptibility to erythromycin [1 mef(A), 3 erm(TR), 1 mef(A)+erm(TR) and 1 erm(TR)+erm(B)] and 7 (30.4%) were resistant or exhibited reduced susceptibility to tetracycline [2 tet(M), 5 tet(M)+tet(O)]. The prevalence in Argentina was of at least 23 invasive infections by SDSE. A wide genetic diversity was observed. All isolates carried speJ and ssa genes. Similarly to other studies, macrolide resistance (26.1%) was mainly associated to the MLSB phenotype.
Collapse
Affiliation(s)
- Fernando Traverso
- Servicio de Microbiología, Hospital de Pediatría Prof. Dr. Juan P Garrahan, Buenos Aires, Argentina; Nueva Clínica Chacabuco, Tandil, Buenos Aires, Argentina; Servicio de Neumotisiología, Tandil, Buenos Aires, Argentina.
| | - Alejandra Blanco
- Servicio de Microbiología, Hospital de Pediatría Prof. Dr. Juan P Garrahan, Buenos Aires, Argentina
| | - Pilar Villalón
- Centro Nacional de Microbiología ISCIII, Majadahonda, Madrid, Spain
| | - Noelia Beratz
- Servicio de Microbiología, Hospital de Pediatría Prof. Dr. Juan P Garrahan, Buenos Aires, Argentina
| | | | - Horacio Lopardo
- Servicio de Microbiología, Hospital de Pediatría Prof. Dr. Juan P Garrahan, Buenos Aires, Argentina
| | | |
Collapse
|
35
|
Sayyahfar S, Fahimzad A, Naddaf A, Tavassoli S. Antibiotic Susceptibility Evaluation of Group A Streptococcus Isolated from Children with Pharyngitis: A Study from Iran. Infect Chemother 2015; 47:225-30. [PMID: 26788405 PMCID: PMC4716273 DOI: 10.3947/ic.2015.47.4.225] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Revised: 06/25/2015] [Accepted: 06/25/2015] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The aim of this study was to evaluate the antibiotic susceptibility of Group A streptococcus (GAS) to antibiotics usually used in Iran for treatment of GAS pharyngitis in children. MATERIALS AND METHODS From 2011 to 2013, children 3-15 years of age with acute tonsillopharyngitis who attended Mofid Children's Hospital clinics and emergency ward and did not meet the exclusion criteria were enrolled in a prospective study in a sequential manner. The isolates strains from throat culture were identified as GAS by colony morphology, gram staining, beta hemolysis on blood agar, sensitivity to bacitracin, a positive pyrrolidonyl aminopeptidase (PYR) test result, and the presence of Lancefield A antigen determined by agglutination test. Antimicrobial susceptibility was identified by both disk diffusion and broth dilution methods. RESULTS From 200 children enrolled in this study, 59 (30%) cases were culture positive for GAS. All isolates were sensitive to penicillin G. The prevalence of erythromycin, azithromycin, and clarithromycin resistance by broth dilution method was 33.9%, 57.6%, and 33.9%, respectively. Surprisingly, 8.4% of GAS strains were resistant to rifampin. In this study, 13.5% and 32.2% of the strains were resistant to clindamycin and ofloxacin, respectively. CONCLUSION The high rate of resistance of GAS to some antibiotics in this study should warn physicians, especially in Iran, to use antibiotics restrictedly and logically to prevent the rising of resistance rates in future. It also seems that continuous local surveillance is necessary to achieve the best therapeutic option for GAS treatment.
Collapse
Affiliation(s)
- Shirin Sayyahfar
- Division of Pediatric Infectious Diseases, Departement of Pediatrics, Ali Asghar Children Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Fahimzad
- Division of Pediatric Infectious Diseases, Departement of Pediatrics, Pediatric Infectious Research Center, Mofid Children Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir Naddaf
- Department of Pediatrics, Fasa University of Medical sciences, Fasa, Iran
| | - Sara Tavassoli
- Traditional Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
36
|
Prevalent emm types and superantigen gene patterns of group A Streptococcus in Thailand. Epidemiol Infect 2015; 144:864-9. [PMID: 26265024 DOI: 10.1017/s0950268815001880] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Group A Streptococcus (GAS) are globally distributed bacterial pathogens. We examined the emm genotypes, which are important indicators of virulence, of 349 clinical GAS isolates collected using two surveillance systems, i.e. Invasive Bacterial Infection Surveillance (IBIS) from 2010 to 2011 (234 isolates) and routine surveillance of clinically isolated bacteria from various hospitals during 1996-2011 (115 isolates) in Thailand. The major emm genotypes in IBIS samples were emm44 (12·0%), emm104 (6·8%), emm22 (5·6%), and emm81 (5·6%), whereas only one isolate (0·4%) had the emm1 genotype, which is significantly more common in invasive cases in the Western world. In samples collected during routine surveillance, emm238 (10·4%), emm44 (8·7%), and emm165 (7·0%) were dominant. The major superantigen gene profiles were similar between the groups, and 30·1% of isolates did not possess the phage-encoded superantigens (speA, speC, speH, speI, speK, speL, speM, ssa). Although most isolates exhibited limited gene profiles, emm44 isolates had highly variable gene profiles (15 patterns). We conclude that emm44 is the predominant GAS genotype in Thailand, and isolates varied in superantigen gene profiles.
Collapse
|
37
|
Emergence of a New Highly Successful Acapsular Group A Streptococcus Clade of Genotype emm89 in the United Kingdom. mBio 2015; 6:e00622. [PMID: 26173696 PMCID: PMC4502227 DOI: 10.1128/mbio.00622-15] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Group A Streptococcus (GAS) genotype emm89 is increasingly recognized as a leading cause of disease worldwide, yet factors that underlie the success of this emm type are unknown. Surveillance identified a sustained nationwide increase in emm89 invasive GAS disease in the United Kingdom, prompting longitudinal investigation of this genotype. Whole-genome sequencing revealed a recent dramatic shift in the emm89 population with the emergence of a new clade that increased to dominance over previous emm89 variants. Temporal analysis indicated that the clade arose in the early 1990s but abruptly increased in prevalence in 2008, coinciding with an increased incidence of emm89 infections. Although standard variable typing regions (emm subtype, tee type, sof type, and multilocus sequence typing [MLST]) remained unchanged, uniquely the emergent clade had undergone six distinct regions of homologous recombination across the genome compared to the rest of the sequenced emm89 population. Two of these regions affected known virulence factors, the hyaluronic acid capsule and the toxins NADase and streptolysin O. Unexpectedly, and in contrast to the rest of the sequenced emm89 population, the emergent clade-associated strains were genetically acapsular, rendering them unable to produce the hyaluronic acid capsule. The emergent clade-associated strains had also acquired an NADase/streptolysin O locus nearly identical to that found in emm12 and modern emm1 strains but different from the rest of the sequenced emm89 population. The emergent clade-associated strains had enhanced expression of NADase and streptolysin O. The genome remodeling in the new clade variant and the resultant altered phenotype appear to have conferred a selective advantage over other emm89 variants and may explain the changes observed in emm89 GAS epidemiology. Sudden upsurges or epidemic waves are common features of group A streptococcal disease. Although the mechanisms behind such changes are largely unknown, they are often associated with an expansion of a single genotype within the population. Using whole-genome sequencing, we investigated a nationwide increase in invasive disease caused by the genotype emm89 in the United Kingdom. We identified a new clade variant that had recently emerged in the emm89 population after having undergone several core genomic recombination-related changes, two of which affected known virulence factors. An unusual finding of the new variant was the loss of the hyaluronic acid capsule, previously thought to be essential for causing invasive disease. A further genomic adaptation in the NADase/streptolysin O locus resulted in enhanced production of these toxins. Recombination-related genome remodeling is clearly an important mechanism in group A Streptococcus that can give rise to more successful and potentially more pathogenic variants.
Collapse
|
38
|
Esposito S, Bianchini S, Fastiggi M, Fumagalli M, Andreozzi L, Rigante D. Geoepidemiological hints about Streptococcus pyogenes strains in relationship with acute rheumatic fever. Autoimmun Rev 2015; 14:616-621. [PMID: 25772310 DOI: 10.1016/j.autrev.2015.03.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 03/08/2015] [Indexed: 12/24/2022]
Abstract
Group A Streptococcus (GAS) strains are lately classified on the basis of sequence variations in the emm gene encoding the M protein, but despite the high number of distinct emm genotypes, the spectrum of phenotypes varying from invasive suppurative to non-suppurative GAS-related disorders has still to be defined. The relationship of GAS types with the uprising of acute rheumatic fever (ARF), a multisystemic disease caused by misdirected anti-GAS response in predisposed people, is also obscure. Studies published over the last 15 years were retrieved from PubMed using the keywords: "Streptococcus pyogenes" or "group A Streptococcus" and "acute rheumatic fever": the prevalence of peculiar emm types across different countries of the world is highly variable, depending on research designs, year of observation, country involved, patients' age, and gender. Most studies revealed that a relatively small number of specific emm/M protein types can be considered "rheumatogenic", as potentially characterized by the possibility of inducing ARF, with remarkable differences between developing and developed countries. The association between emm types and post-streptococcal manifestations is challenging, however surveillance of disease-causing variants in a specific community with high rate of ARF should be reinforced with the final goal of developing a potential primary prophylaxis against GAS infections.
Collapse
Affiliation(s)
- Susanna Esposito
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Sonia Bianchini
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Michele Fastiggi
- Institute of Pediatrics, Università Cattolica Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli, Rome, Italy
| | - Monica Fumagalli
- Neonatology and Neonatal Intensive Care Unit, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Laura Andreozzi
- Institute of Pediatrics, Università Cattolica Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli, Rome, Italy
| | - Donato Rigante
- Institute of Pediatrics, Università Cattolica Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli, Rome, Italy.
| |
Collapse
|
39
|
Bergmann R, Nitsche-Schmitz DP. Small plasmids in Streptococcus dysgalactiae subsp. equisimilis isolated from human infections in southern India and sequence analysis of two novel plasmids. Int J Med Microbiol 2015; 305:365-9. [PMID: 25769407 DOI: 10.1016/j.ijmm.2015.02.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 01/06/2015] [Accepted: 02/09/2015] [Indexed: 11/26/2022] Open
Abstract
Small plasmids are frequently found in S. pyogenes isolates from human infections in India. Streptococcus dysgalactiae subsp. equisimilis (SDSE) is a streptococcal subspecies that is genetically similar to S. pyogenes and has a similar ecology. Therefore, we determined the distribution of small plasmids in a collection of 254 SDSE isolates, comprising 44 different emm-types and emm non-typable strains, from southern India, utilizing an established PCR based method. Briefly, 1.2% (n=3) of the isolates were positive for repA (encoding the replication initiation protein A) and 1.6% (n=4) were repB positive (encoding the replication initiation protein B). One isolate (G315) showed a co-detection of repB and dysA (encoding the bacteriocin dysgalacticin) which is characteristic for previously described pDN281/pW2580-like plasmids, observed in SDSE and S. pyogenes. The remaining plasmid bearing isolates showed no characteristic co-detection of known plasmid-associated genes. Thus, plasmids pG271 and pG279, representatives for repB and repA harboring plasmids, respectively, were analyzed. The plasmids pG271 and pG279 could be assigned to the pMV158 and the pC194/pUB110 family of rolling-circle plasmids, respectively. Like the characterized small native plasmids of S. pyogenes from India, the SDSE plasmids discovered and described in this study did not carry any of the known antibiotic resistance genes. SDSE bore less of the investigated small native plasmids that were distinct from the small native plasmids of S. pyogenes of the same geographic region. This indicates a low rate of lateral transfer of these genetic elements between these two related streptococcal species.
Collapse
Affiliation(s)
- René Bergmann
- Department of Medical Microbiology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, D-38124 Braunschweig, Germany.
| | - D Patric Nitsche-Schmitz
- Department of Medical Microbiology, Helmholtz Centre for Infection Research, Inhoffenstrasse 7, D-38124 Braunschweig, Germany
| |
Collapse
|
40
|
Henningham A, Döhrmann S, Nizet V, Cole JN. Mechanisms of group A Streptococcus resistance to reactive oxygen species. FEMS Microbiol Rev 2015; 39:488-508. [PMID: 25670736 PMCID: PMC4487405 DOI: 10.1093/femsre/fuu009] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 12/19/2014] [Indexed: 12/16/2022] Open
Abstract
Streptococcus pyogenes, also known as group A Streptococcus (GAS), is an exclusively human Gram-positive bacterial pathogen ranked among the ‘top 10’ causes of infection-related deaths worldwide. GAS commonly causes benign and self-limiting epithelial infections (pharyngitis and impetigo), and less frequent severe invasive diseases (bacteremia, toxic shock syndrome and necrotizing fasciitis). Annually, GAS causes 700 million infections, including 1.8 million invasive infections with a mortality rate of 25%. In order to establish an infection, GAS must counteract the oxidative stress conditions generated by the release of reactive oxygen species (ROS) at the infection site by host immune cells such as neutrophils and monocytes. ROS are the highly reactive and toxic byproducts of oxygen metabolism, including hydrogen peroxide (H2O2), superoxide anion (O2•−), hydroxyl radicals (OH•) and singlet oxygen (O2*), which can damage bacterial nucleic acids, proteins and cell membranes. This review summarizes the enzymatic and regulatory mechanisms utilized by GAS to thwart ROS and survive under conditions of oxidative stress. This review discusses the mechanisms utilized by the bacterial pathogen group A Streptococcus to detoxify reactive oxygen species and survive in the human host under conditions of oxidative stress.
Collapse
Affiliation(s)
- Anna Henningham
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA The School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia The Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Simon Döhrmann
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Victor Nizet
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA Rady Children's Hospital, San Diego, CA 92123, USA
| | - Jason N Cole
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA The School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia The Australian Infectious Diseases Research Centre, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
41
|
Lucas MJ, Brouwer MC, Bovenkerk S, Man WK, van der Ende A, van de Beek D. Group A Streptococcal meningitis in adults. J Infect 2015; 71:37-42. [PMID: 25614959 DOI: 10.1016/j.jinf.2015.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 01/13/2015] [Indexed: 10/24/2022]
Abstract
OBJECTIVES We report on the incidence, clinical characteristics, and bacterial genotype of group A streptococcal (GAS) meningitis in the Netherlands. METHODS We assessed the incidence, clinical characteristics, and outcome of patients with GAS meningitis from a nationwide cohort study of adults with community-acquired bacterial meningitis in the Netherlands from 2006 to 2013. RESULTS GAS was identified in 26 of 1322 patients with community-acquired bacterial meningitis (2%); 9 cases (35%) occurred in the first four months of 2013. GAS meningitis was often preceded by otitis or sinusitis (24 of 26 [92%]) and a high proportion of patients developed complications during clinical course (19 of 26 [73%]). Subdural empyema occurred in 8 of 26 patients (35%). Nine patients underwent mastoidectomy and in 5 patients neurosurgical evacuation of the subdural empyema was performed. Five of 26 patients (19%) died and 11 of 21 surviving patient had neurologic sequelae (52%). Infection with the emm1 and cc28 GAS genotype was associated with subdural empyema (both 4 of 6 [67%] vs. 2 of 14 [14%]; P = 0.037). CONCLUSIONS GAS meningitis is an uncommon but severe disease. Patients are at risk for empyema, which is associated with infection with the emm1 and cc28 genotype.
Collapse
Affiliation(s)
- Marjolein J Lucas
- Academic Medical Center, Center of Infection and Immunity Amsterdam (CINIMA), Department of Neurology, PO Box 22660, 1100DD Amsterdam, The Netherlands
| | - Matthijs C Brouwer
- Academic Medical Center, Center of Infection and Immunity Amsterdam (CINIMA), Department of Neurology, PO Box 22660, 1100DD Amsterdam, The Netherlands
| | - Sandra Bovenkerk
- Academic Medical Center, Center of Infection and Immunity Amsterdam (CINIMA), Department of Medical Microbiology, PO Box 22660, 1100DD Amsterdam, The Netherlands; The Netherlands Reference Laboratory for Bacterial Meningitis, Academic Medical Center, PO Box 22660, 1100DD Amsterdam, The Netherlands
| | - Wing Kit Man
- Academic Medical Center, Center of Infection and Immunity Amsterdam (CINIMA), Department of Medical Microbiology, PO Box 22660, 1100DD Amsterdam, The Netherlands; The Netherlands Reference Laboratory for Bacterial Meningitis, Academic Medical Center, PO Box 22660, 1100DD Amsterdam, The Netherlands
| | - Arie van der Ende
- Academic Medical Center, Center of Infection and Immunity Amsterdam (CINIMA), Department of Medical Microbiology, PO Box 22660, 1100DD Amsterdam, The Netherlands; The Netherlands Reference Laboratory for Bacterial Meningitis, Academic Medical Center, PO Box 22660, 1100DD Amsterdam, The Netherlands
| | - Diederik van de Beek
- Academic Medical Center, Center of Infection and Immunity Amsterdam (CINIMA), Department of Neurology, PO Box 22660, 1100DD Amsterdam, The Netherlands.
| |
Collapse
|
42
|
HAMADA S, KAWABATA S, NAKAGAWA I. Molecular and genomic characterization of pathogenic traits of group A Streptococcus pyogenes. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2015; 91:539-59. [PMID: 26666305 PMCID: PMC4773581 DOI: 10.2183/pjab.91.539] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Group A streptococcus (GAS) or Streptococcus pyogenes causes various diseases ranging from self-limiting sore throat to deadly invasive diseases. The genome size of GAS is 1.85-1.9 Mb, and genomic rearrangement has been demonstrated. GAS possesses various surface-associated substances such as hyaluronic capsule, M proteins, and fibronectin/laminin/immunoglobulin-binding proteins. These are related to the virulence and play multifaceted and mutually reflected roles in the pathogenesis of GAS infections. Invasion of GAS into epithelial cells and deeper tissues provokes immune and non-immune defense or inflammatory responses including the recruitment of neutrophils, macrophages, and dendritic cells in hosts. GAS frequently evades host defense mechanisms by using its virulence factors. Extracellular products of GAS may perturb cellular and subcellular functions and degrade tissues enzymatically, which leads to the aggravation of local and/or systemic disorders in the host. In this review, we summarize some important cellular and extracellular substances that may affect pathogenic processes during GAS infections, and the host responses to these.
Collapse
Affiliation(s)
- Shigeyuki HAMADA
- Research Institute for Microbial Diseases, Japan-Thailand Collaboration Center for Emerging and Reemerging Infections, Osaka University, Osaka, Japan
- Correspondence should be addressed: S. Hamada, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan (e-mail: )
| | - Shigetada KAWABATA
- Department of Oral and Molecular Microbiology, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Ichiro NAKAGAWA
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
43
|
Henningham A, Yamaguchi M, Aziz RK, Kuipers K, Buffalo CZ, Dahesh S, Choudhury B, Van Vleet J, Yamaguchi Y, Seymour LM, Ben Zakour NL, He L, Smith HV, Grimwood K, Beatson SA, Ghosh P, Walker MJ, Nizet V, Cole JN. Mutual exclusivity of hyaluronan and hyaluronidase in invasive group A Streptococcus. J Biol Chem 2014; 289:32303-32315. [PMID: 25266727 PMCID: PMC4231703 DOI: 10.1074/jbc.m114.602847] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
A recent analysis of group A Streptococcus (GAS) invasive infections in Australia has shown a predominance of M4 GAS, a serotype recently reported to lack the antiphagocytic hyaluronic acid (HA) capsule. Here, we use molecular genetics and bioinformatics techniques to characterize 17 clinical M4 isolates associated with invasive disease in children during this recent epidemiology. All M4 isolates lacked HA capsule, and whole genome sequence analysis of two isolates revealed the complete absence of the hasABC capsule biosynthesis operon. Conversely, M4 isolates possess a functional HA-degrading hyaluronate lyase (HylA) enzyme that is rendered nonfunctional in other GAS through a point mutation. Transformation with a plasmid expressing hasABC restored partial encapsulation in wild-type (WT) M4 GAS, and full encapsulation in an isogenic M4 mutant lacking HylA. However, partial encapsulation reduced binding to human complement regulatory protein C4BP, did not enhance survival in whole human blood, and did not increase virulence of WT M4 GAS in a mouse model of systemic infection. Bioinformatics analysis found no hasABC homologs in closely related species, suggesting that this operon was a recent acquisition. These data showcase a mutually exclusive interaction of HA capsule and active HylA among strains of this leading human pathogen.
Collapse
Affiliation(s)
- Anna Henningham
- Department of Pediatrics, University of California San Diego, La Jolla, California 92093; School of Chemistry and Molecular Biosciences and The University of Queensland, St. Lucia, Queensland 4072, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Masaya Yamaguchi
- Department of Pediatrics, University of California San Diego, La Jolla, California 92093; Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan
| | - Ramy K Aziz
- Systems Biology Research Group, University of California San Diego, La Jolla, California 92093; Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Kirsten Kuipers
- Department of Pediatrics, University of California San Diego, La Jolla, California 92093; Department of Pediatrics, Laboratory of Pediatric Infectious Diseases, Radboud University Medical Centre, 6500 HC Nijmegen, The Netherlands
| | - Cosmo Z Buffalo
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093
| | - Samira Dahesh
- Department of Pediatrics, University of California San Diego, La Jolla, California 92093
| | - Biswa Choudhury
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, California 92093
| | - Jeremy Van Vleet
- Glycobiology Research and Training Center, University of California San Diego, La Jolla, California 92093
| | - Yuka Yamaguchi
- Department of Pediatrics, University of California San Diego, La Jolla, California 92093
| | - Lisa M Seymour
- School of Chemistry and Molecular Biosciences and The University of Queensland, St. Lucia, Queensland 4072, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Nouri L Ben Zakour
- School of Chemistry and Molecular Biosciences and The University of Queensland, St. Lucia, Queensland 4072, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Lingjun He
- Department of Mathematics and Statistics, San Diego State University, San Diego, California 92182
| | - Helen V Smith
- Queensland Health Forensic and Scientific Services, Coopers Plains, Queensland 4108, Australia
| | - Keith Grimwood
- Queensland Children's Medical Research Institute, Herston, Queensland 4029, Australia, and
| | - Scott A Beatson
- School of Chemistry and Molecular Biosciences and The University of Queensland, St. Lucia, Queensland 4072, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Partho Ghosh
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California 92093
| | - Mark J Walker
- School of Chemistry and Molecular Biosciences and The University of Queensland, St. Lucia, Queensland 4072, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Victor Nizet
- Department of Pediatrics, University of California San Diego, La Jolla, California 92093; Skaggs School of Pharmacy and Pharmaceutical Sciences, and University of California San Diego, La Jolla, California 92093; Rady Children's Hospital, San Diego, California 92123
| | - Jason N Cole
- Department of Pediatrics, University of California San Diego, La Jolla, California 92093; School of Chemistry and Molecular Biosciences and The University of Queensland, St. Lucia, Queensland 4072, Australia; Australian Infectious Diseases Research Centre, The University of Queensland, St. Lucia, Queensland 4072, Australia,.
| |
Collapse
|
44
|
Lo HH, Cheng WS. Distribution of virulence factors and association with emm polymorphism or isolation site among beta-hemolytic group G Streptococcus dysgalactiae subspecies equisimilis. APMIS 2014; 123:45-52. [PMID: 25244428 DOI: 10.1111/apm.12305] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 06/23/2014] [Indexed: 11/29/2022]
Abstract
Distribution of virulence factors and association with emm polymorphism or isolation site among beta-hemolytic group G Streptococcus dysgalactiae subspecies equisimilis. Streptococcus dysgalactiae subspecies equisimilis (SDSE), the dominant human pathogenic species among group G streptococci, is the causative agent of several invasive and non-invasive diseases worldwide. However, limited information is available about the distribution of virulence factors among SDSE isolates, or their association with emm types and the isolation sites. In this study, 246 beta-hemolytic group G SDSE isolates collected in central Taiwan between February 2007 and August 2011 were under investigation. Of these, 66 isolates were obtained from normally sterile sites and 180 from non-sterile sites. emm typing revealed 32 types, with the most prevalent one being stG10.0 (39.8%), followed by stG245.0 (15.4%), stG840.0 (12.2%), stG6.1 (7.7%), and stG652.0 (4.1%). The virulence genes lmb (encoding laminin-binding protein), gapC (glyceraldehyde 3-phosphate dehydrogenase), sagA (streptolysin S), and hylB (hyaluronidase) existed in all isolates. Also, 99.2% of the isolates possessed slo (streptolysin O) and scpA (C5a peptidase) genes. In addition, 72.8%, 14.6%, 9.4%, and 2.4% of the isolates possessed the genes ska (streptokinase), cbp (putative collagen-binding protein, SDEG_1781), fbp (putative fibronectin-binding protein, SDEG_0161), and sicG (streptococcal inhibitor of complement), respectively. The only superantigen gene detected was spegg (streptococcus pyrogenic exotoxin G(dys) ), which was possessed by 74.4% of the isolates; these isolates correlated with non-sterile sites. Positive correlations were observed between the following emm types and virulence genes: stG10.0 and stG840.0 with spegg, stG6.1 and stG652.0 with ska, and stG840.0 with cbp. On the other hand, negative correlations were observed between the following: stG245.0, stG6.1, and stG652.0 types with spegg, stG10.0 with ska, and stG10.0, stG245.0, and stG6.1 types with cbp. The prevalence of emm types of SDSE in central Taiwan was investigated for the first time. Moreover, the distribution of virulence factors among beta-hemolytic group G SDSE isolates, as well as their association with emm types or isolation sites were also examined.
Collapse
Affiliation(s)
- Hsueh-Hsia Lo
- Department of Medical Laboratory Science and Biotechnology, Central Taiwan University of Science and Technology, Taichung, Taiwan
| | | |
Collapse
|
45
|
Olafsdottir LB, Erlendsdóttir H, Melo-Cristino J, Weinberger DM, Ramirez M, Kristinsson KG, Gottfredsson M. Invasive infections due to Streptococcus pyogenes: seasonal variation of severity and clinical characteristics, Iceland, 1975 to 2012. Euro Surveill 2014. [DOI: 10.2807/1560-7917.es2014.19.17.20784] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epidemiology and clinical characteristics of invasive Group A streptococcal infections (IGASI) are highly variable. Long-term studies are needed to understand the interplay between epidemiology and virulence. In a population-based study of IGASI in Iceland from 1975 to 2012, 288 cases were identified by positive cultures from normally sterile body sites. Charts were reviewed retrospectively and emm-types of viable Streptococcus pyogenes isolates (n=226) determined. Comparing the first and last decade of the study period, IGASI incidence increased from 1.09 to 3.96 cases per 100,000 inhabitants per year. The most common were emm types 1 (25%), 28 (11%) and 89 (11%); emm1 strains were most likely to cause severe infections. Infections in adults were significantly more likely to be severe during the seasonal peak from January to April (risk ratio: 2.36, 95% confidence interval: 1.34–4.15). Significant seasonal variability in severity was noted among patients with diagnosis of sepsis, respiratory infection and cellulitis, with 38% of severe infections in January to April compared with 16% in other months (p<0.01). A seasonal increase in severity of IGASI suggested that generalised seasonal increase in host susceptibility, rather than introduction of more virulent strains may play a role in the pathogenesis of these potentially fatal infections.
Collapse
Affiliation(s)
- L B Olafsdottir
- Department of Medicine, Landspitali University Hospital, Reykjavik, Iceland
| | - H Erlendsdóttir
- Clinical Microbiology, Landspitali University Hospital, Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - J Melo-Cristino
- Institute of Microbiology, Institute of Molecular Medicine, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - D M Weinberger
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States
| | - M Ramirez
- Institute of Microbiology, Institute of Molecular Medicine, Faculty of Medicine, University of Lisbon, Lisbon, Portugal
| | - K G Kristinsson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Clinical Microbiology, Landspitali University Hospital, Reykjavik, Iceland
| | - M Gottfredsson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Medicine, Landspitali University Hospital, Reykjavik, Iceland
| |
Collapse
|
46
|
Deriving group A Streptococcus typing information from short-read whole-genome sequencing data. J Clin Microbiol 2014; 52:1871-6. [PMID: 24648555 DOI: 10.1128/jcm.00029-14] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Typing of group A Streptococcus (GAS) is crucial for infection control and epidemiology. While whole-genome sequencing (WGS) is revolutionizing the way that bacterial organisms are typed, it is necessary to provide backward compatibility with currently used typing schemas to facilitate comparisons and understanding of epidemiological trends. Here, we sequenced the genomes of 191 GAS isolates representing 42 different emm types and used bioinformatics tools to derive commonly used GAS typing information directly from the short-read WGS data. We show that emm typing and multilocus sequence typing can be achieved rapidly and efficiently using this approach, which also permits the determination of the presence or absence of genes associated with GAS tissue tropism. We also report on how the WGS data analysis was instrumental in identifying ambiguities present in the commonly used emm type database hosted by the U.S. Centers for Disease Control and Prevention.
Collapse
|
47
|
Factors that cause trimethoprim resistance in Streptococcus pyogenes. Antimicrob Agents Chemother 2014; 58:2281-8. [PMID: 24492367 DOI: 10.1128/aac.02282-13] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The use of trimethoprim in treatment of Streptococcus pyogenes infections has long been discouraged because it has been widely believed that this pathogen is resistant to this antibiotic. To gain more insight into the extent and molecular basis of trimethoprim resistance in S. pyogenes, we tested isolates from India and Germany and sought the factors that conferred the resistance. Resistant isolates were identified in tests for trimethoprim or trimethoprim-sulfamethoxazole (SXT) susceptibility. Resistant isolates were screened for the known horizontally transferable trimethoprim-insensitive dihydrofolate reductase (dfr) genes dfrG, dfrF, dfrA, dfrD, and dfrK. The nucleotide sequence of the intrinsic dfr gene was determined for resistant isolates lacking the horizontally transferable genes. Based on tentative criteria, 69 out of 268 isolates (25.7%) from India were resistant to trimethoprim. Occurring in 42 of the 69 resistant isolates (60.9%), dfrF appeared more frequently than dfrG (23 isolates; 33.3%) in India. The dfrF gene was also present in a collection of SXT-resistant isolates from Germany, in which it was the only detected trimethoprim resistance factor. The dfrF gene caused resistance in 4 out of 5 trimethoprim-resistant isolates from the German collection. An amino acid substitution in the intrinsic dihydrofolate reductase known from trimethoprim-resistant Streptococcus pneumoniae conferred resistance to S. pyogenes isolates of emm type 102.2, which lacked other aforementioned dfr genes. Trimethoprim may be more useful in treatment of S. pyogenes infections than previously thought. However, the factors described herein may lead to the rapid development and spread of resistance of S. pyogenes to this antibiotic agent.
Collapse
|
48
|
McMillan DJ, Drèze PA, Vu T, Bessen DE, Guglielmini J, Steer AC, Carapetis JR, Van Melderen L, Sriprakash KS, Smeesters PR. Updated model of group A Streptococcus M proteins based on a comprehensive worldwide study. Clin Microbiol Infect 2013; 19:E222-9. [PMID: 23464795 DOI: 10.1111/1469-0691.12134] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 12/02/2012] [Accepted: 12/14/2012] [Indexed: 12/16/2022]
Abstract
Group A Streptococcus (GAS) M protein is an important virulence factor and potential vaccine antigen, and constitutes the basis for strain typing (emm-typing). Although >200 emm-types are characterized, structural data were obtained from only a limited number of emm-types. We aim to evaluate the sequence diversity of near-full-length M proteins from worldwide sources and analyse their structure, sequence conservation and classification. GAS isolates recovered from throughout the world during the last two decades underwent emm-typing and complete emm gene sequencing. Predicted amino acid sequence analyses, secondary structure predictions and vaccine epitope mapping were performed using MUSCLE and Geneious software. A total of 1086 isolates from 31 countries were analysed, representing 175 emm-types. emm-type is predictive of the whole protein structure, independent of geographical origin or clinical association. Findings of an emm-type paired with multiple, highly divergent central regions were not observed. M protein sequence length, the presence or absence of sequence repeats and predicted secondary structure were assessed in the context of the latest vaccine developments. Based on these global data, the M6 protein model is updated to a three representative M protein (M5, M80 and M77) model, to aid in epidemiological analysis, vaccine development and M protein-related pathogenesis studies.
Collapse
Affiliation(s)
- D J McMillan
- Bacterial Pathogenesis Laboratory, Queensland Institute of Medical Research, Brisbane, Qld, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Steer AC, Lamagni T, Curtis N, Carapetis JR. Invasive group a streptococcal disease: epidemiology, pathogenesis and management. Drugs 2012; 72:1213-27. [PMID: 22686614 PMCID: PMC7100837 DOI: 10.2165/11634180-000000000-00000] [Citation(s) in RCA: 164] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Invasive group A streptococcal infections are uncommon, although serious, infections with high case fatality rates. Periodic resurgences in invasive group A streptococcal infections in industrialized countries have been reported from the 1980s onwards, with current estimates of incidence in these countries of approximately 3–4 per 100000 population. Infants, pregnant women and the elderly are at increased risk of invasive group A streptococcal infection. The group A streptococcus has an array of virulence factors that underpin its invasive capacity and, in approximately 10% of cases, super-antigen toxins produced by the bacteria stimulate a large proportion of T cells, leading to streptococcal toxic shock syndrome. Given the rapid clinical progression, effective management of invasive group A streptococcal infections hinges on early recognition of the disease and prompt initiation of supportive care (often intensive care) together with antibacterial therapy. In cases of toxic shock syndrome, it is often difficult to distinguish between streptococcal and staphylococcal infection before cultures become available and so antibacterial choice must include coverage of both of these organisms. In addition, clindamycin is an important adjunctive antibacterial because of its anti-toxin effects and excellent tissue penetration. Early institution of intravenous immunoglobulin therapy should be considered in cases of toxic shock syndrome and severe invasive infection, including necrotizing fasciitis. Early surgical debridement of necrotic tissue is also an important part of management in cases of necrotizing fasciitis.
Collapse
Affiliation(s)
- Andrew C Steer
- Centre for International Child Health, Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia.
| | | | | | | |
Collapse
|
50
|
High-throughput multilocus sequence typing: bringing molecular typing to the next level. PLoS One 2012; 7:e39630. [PMID: 22815712 PMCID: PMC3399827 DOI: 10.1371/journal.pone.0039630] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 05/23/2012] [Indexed: 11/19/2022] Open
Abstract
Multilocus sequence typing (MLST) is a widely used system for typing microorganisms by sequence analysis of housekeeping genes. The main advantage of MLST in comparison to other typing techniques is the unambiguity and transferability of sequence data. However, a main disadvantage is the high cost of DNA sequencing. Here we introduce a high-throughput MLST (HiMLST) method that employs next-generation sequencing (NGS) technology (Roche 454), to generate large quantities of high-quality MLST data at low costs. The HiMLST protocol consists of two steps. In the first step MLST target genes are amplified by PCR in multi-well plates. During this PCR the amplicons of each bacterial isolate are provided with a unique DNA barcode, the multiplex identifier (MID). In the second step all amplicons are pooled and sequenced in a single NGS-run. The MLST profile of each individual isolate can be retrieved easily using its unique MID. With HiMLST we have profiled 575 isolates of Legionella pneumophila, Staphylococcus aureus, Pseudomonas aeruginosa and Streptococcus pneumoniae in mixed species HiMLST experiments. In conclusion, the introduction of HiMLST paves the way for a broad employment of the MLST as a high-quality and cost-effective method for typing microbial species.
Collapse
|