1
|
Cheng X, Qu J, Song S, Bian Z. Neighborhood-based inference and restricted Boltzmann machine for microbe and drug associations prediction. PeerJ 2022; 10:e13848. [PMID: 35990901 PMCID: PMC9387521 DOI: 10.7717/peerj.13848] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/14/2022] [Indexed: 01/18/2023] Open
Abstract
Background Efficient identification of microbe-drug associations is critical for drug development and solving problem of antimicrobial resistance. Traditional wet-lab method requires a lot of money and labor in identifying potential microbe-drug associations. With development of machine learning and publication of large amounts of biological data, computational methods become feasible. Methods In this article, we proposed a computational model of neighborhood-based inference (NI) and restricted Boltzmann machine (RBM) to predict potential microbe-drug association (NIRBMMDA) by using integrated microbe similarity, integrated drug similarity and known microbe-drug associations. First, NI was used to obtain a score matrix of potential microbe-drug associations by using different thresholds to find similar neighbors for drug or microbe. Second, RBM was employed to obtain another score matrix of potential microbe-drug associations based on contrastive divergence algorithm and sigmoid function. Because generalization ability of individual method is poor, we used an ensemble learning to integrate two score matrices for predicting potential microbe-drug associations more accurately. In particular, NI can fully utilize similar (neighbor) information of drug or microbe and RBM can learn potential probability distribution hid in known microbe-drug associations. Moreover, ensemble learning was used to integrate individual predictor for obtaining a stronger predictor. Results In global leave-one-out cross validation (LOOCV), NIRBMMDA gained the area under the receiver operating characteristics curve (AUC) of 0.8666, 0.9413 and 0.9557 for datasets of DrugVirus, MDAD and aBiofilm, respectively. In local LOOCV, AUCs of 0.8512, 0.9204 and 0.9414 were obtained for NIRBMMDA based on datasets of DrugVirus, MDAD and aBiofilm, respectively. For five-fold cross validation, NIRBMMDA acquired AUC and standard deviation of 0.8569 ± -0.0027, 0.9248 ± -0.0014 and 0.9369 ± -0.0020 on the basis of datasets of DrugVirus, MDAD and aBiofilm, respectively. Moreover, case study for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) showed that 13 out of the top 20 predicted drugs were verified by searching literature. The other two case studies indicated that 17 and 17 out of the top 20 predicted microbes for the drug of ciprofloxacin and minocycline were confirmed by identifying published literature, respectively.
Collapse
Affiliation(s)
- Xiaolong Cheng
- School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou, Jiangsu, China
| | - Jia Qu
- School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou, Jiangsu, China
| | - Shuangbao Song
- School of Computer Science and Artificial Intelligence, Changzhou University, Changzhou, Jiangsu, China
| | - Zekang Bian
- School of AI & Computer Science, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
2
|
Iregbu K, Dramowski A, Milton R, Nsutebu E, Howie SRC, Chakraborty M, Lavoie PM, Costelloe CE, Ghazal P. Global health systems' data science approach for precision diagnosis of sepsis in early life. THE LANCET. INFECTIOUS DISEASES 2022; 22:e143-e152. [PMID: 34914924 DOI: 10.1016/s1473-3099(21)00645-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 10/04/2021] [Accepted: 10/04/2021] [Indexed: 12/29/2022]
Abstract
Neonates and children in low-income and middle-income countries (LMICs) contribute to the highest number of sepsis-associated deaths globally. Interventions to prevent sepsis mortality are hampered by a lack of comprehensive epidemiological data and pathophysiological understanding of biological pathways. In this review, we discuss the challenges faced by LMICs in diagnosing sepsis in these age groups. We highlight a role for multi-omics and health care data to improve diagnostic accuracy of clinical algorithms, arguing that health-care systems urgently need precision medicine to avoid the pitfalls of missed diagnoses, misdiagnoses, and overdiagnoses, and associated antimicrobial resistance. We discuss ethical, regulatory, and systemic barriers related to the collection and use of big data in LMICs. Technologies such as cloud computing, artificial intelligence, and medical tricorders might help, but they require collaboration with local communities. Co-partnering (joint equal development of technology between producer and end-users) could facilitate integration of these technologies as part of future care-delivery systems, offering a chance to transform the global management and prevention of sepsis for neonates and children.
Collapse
Affiliation(s)
- Kenneth Iregbu
- Department of Medical Microbiology, National Hospital Abuja, Nigeria
| | - Angela Dramowski
- Department of Paediatrics and Child Health, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Rebecca Milton
- Centre for Trials Research, Cardiff University, Cardiff, UK
| | - Emmanuel Nsutebu
- Infectious Diseases Division, Sheikh Shakhbout Medical City, Abu Dhabi, United Arab Emirates
| | - Stephen R C Howie
- Department of Paediatrics, Child and Youth Health, University of Auckland, Auckland, New Zealand
| | | | - Pascal M Lavoie
- Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Ceire E Costelloe
- Global Digital Health Unit, School of Public Health, Imperial College London, London, UK
| | - Peter Ghazal
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff, UK.
| |
Collapse
|
3
|
Jensen HE. Animal models of invasive mycoses. APMIS 2021; 130:427-435. [PMID: 33644890 DOI: 10.1111/apm.13110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 12/21/2020] [Indexed: 11/30/2022]
Abstract
Animal models of invasive fungal infections have been developed and are applied in a huge number of different animal species for a number of research purposes, for example, the study of pathogenesis, defense mechanisms, and therapeutic strategies. From the different models, which in most cases are based on the same fungal species and often the same strain, as in spontaneous human infections, fundamental results and knowledge of the diagnosis, progression, prophylaxis, and therapy have been achieved. However, in all models, one should be critical with respect to mimicking the disease entity of humans, which is often the focus of the research. In many of the models for instance, the time course is different to the one of humans, and in others, the propensity for localization and containment in specific organs does not parallel the situation in humans. Nevertheless, many animal models of invasive mycoses have proven valuable in a number of research areas. With regard to new generations of anti-mycotic drugs, the models play an essential role in demonstrating antifungal activity, as well as in demonstrating the absence of toxic side effects, a critical step which cannot be accomplished by in vitro studies.
Collapse
Affiliation(s)
- Henrik Elvang Jensen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
4
|
Hodgson SH, Muller J, Lockstone HE, Hill AVS, Marsh K, Draper SJ, Knight JC. Use of gene expression studies to investigate the human immunological response to malaria infection. Malar J 2019; 18:418. [PMID: 31835999 PMCID: PMC6911278 DOI: 10.1186/s12936-019-3035-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 11/26/2019] [Indexed: 01/02/2023] Open
Abstract
Background Transcriptional profiling of the human immune response to malaria has been used to identify diagnostic markers, understand the pathogenicity of severe disease and dissect the mechanisms of naturally acquired immunity (NAI). However, interpreting this body of work is difficult given considerable variation in study design, definition of disease, patient selection and methodology employed. This work details a comprehensive review of gene expression profiling (GEP) of the human immune response to malaria to determine how this technology has been applied to date, instances where this has advanced understanding of NAI and the extent of variability in methodology between studies to allow informed comparison of data and interpretation of results. Methods Datasets from the gene expression omnibus (GEO) including the search terms; ‘plasmodium’ or ‘malaria’ or ‘sporozoite’ or ‘merozoite’ or ‘gametocyte’ and ‘Homo sapiens’ were identified and publications analysed. Datasets of gene expression changes in relation to malaria vaccines were excluded. Results Twenty-three GEO datasets and 25 related publications were included in the final review. All datasets related to Plasmodium falciparum infection, except two that related to Plasmodium vivax infection. The majority of datasets included samples from individuals infected with malaria ‘naturally’ in the field (n = 13, 57%), however some related to controlled human malaria infection (CHMI) studies (n = 6, 26%), or cells stimulated with Plasmodium in vitro (n = 6, 26%). The majority of studies examined gene expression changes relating to the blood stage of the parasite. Significant heterogeneity between datasets was identified in terms of study design, sample type, platform used and method of analysis. Seven datasets specifically investigated transcriptional changes associated with NAI to malaria, with evidence supporting suppression of the innate pro-inflammatory response as an important mechanism for this in the majority of these studies. However, further interpretation of this body of work was limited by heterogeneity between studies and small sample sizes. Conclusions GEP in malaria is a potentially powerful tool, but to date studies have been hypothesis generating with small sample sizes and widely varying methodology. As CHMI studies are increasingly performed in endemic settings, there will be growing opportunity to use GEP to understand detailed time-course changes in host response and understand in greater detail the mechanisms of NAI.
Collapse
Affiliation(s)
- Susanne H Hodgson
- The Jenner Institute, University of Oxford, Old Road Campus Road Building, Off Roosevelt Drive, Oxford, OX3 7DQ, UK. .,Department of Infectious Diseases & Microbiology, Oxford University Hospitals Trust, Oxford, UK.
| | - Julius Muller
- The Jenner Institute, University of Oxford, Old Road Campus Road Building, Off Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Helen E Lockstone
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Adrian V S Hill
- The Jenner Institute, University of Oxford, Old Road Campus Road Building, Off Roosevelt Drive, Oxford, OX3 7DQ, UK.,Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Kevin Marsh
- Department of Tropical Medicine, University of Oxford, Oxford, UK
| | - Simon J Draper
- The Jenner Institute, University of Oxford, Old Road Campus Road Building, Off Roosevelt Drive, Oxford, OX3 7DQ, UK
| | - Julian C Knight
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
5
|
Pereira FL, Tavares GC, de Carvalho AF, Rosa JCC, Rezende CP, Leal CAG, Figueiredo HCP. Effects of temperature changes in the transcriptional profile of the emerging fish pathogen Francisella noatunensis subsp. orientalis. Microb Pathog 2019; 133:103548. [PMID: 31112771 DOI: 10.1016/j.micpath.2019.103548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/16/2019] [Accepted: 05/17/2019] [Indexed: 01/05/2023]
Abstract
One of the major challenges in Nile tilapia (Oreochromis niloticus L.) farming is the occurrence of bacterial infections, and the Francisella noatunensis subsp. orientalis (FNO) is an important pathogen that has emerged in last decades. Francisellosis outbreaks have been reported in the literature as occurring seasonally when water temperature is below 24 °C. The aim of this study was to quantify the median lethal doses (LD50) of FNO in experimental challenges at 28 °C and 22 °C, and to investigate the impact of temperature changes in whole genome expression using microarray technology. The LD50 for Nile tilapia at 28 °C was ∼105.7, whereas at 22 °C, the LD50 was ∼102.2, showing that the decrease in temperature enhanced disease outcome. Out of 1917 genes screened, a total of 31 and 19 genes were down- and up-regulated at 22 °C, respectively. These genes were grouped by orthology into functional categories of: amino acid, inorganic ion, and carbohydrate transport and metabolism; transcription; and posttranslational modification, protein turnover, and chaperones. Expression of genes related to metabolism, oxidative stress, and thermal shock were regulated by temperature changes, reflecting an ability of FNO to adapt to the environment. Expression of virulence genes usually required for the Francisella genus was not changed between tested temperatures, including that of genes located on the Francisella Pathogenicity Island.
Collapse
Affiliation(s)
- Felipe Luiz Pereira
- AQUACEN, National Reference Laboratory for Aquatic Animal Diseases, Ministry of Agriculture, Livestock and Food Supply, Federal University of Minas Gerais, Brazil.
| | - Guilherme Campos Tavares
- AQUACEN, National Reference Laboratory for Aquatic Animal Diseases, Ministry of Agriculture, Livestock and Food Supply, Federal University of Minas Gerais, Brazil.
| | - Alex Fiorini de Carvalho
- AQUACEN, National Reference Laboratory for Aquatic Animal Diseases, Ministry of Agriculture, Livestock and Food Supply, Federal University of Minas Gerais, Brazil.
| | - Júlio César Camara Rosa
- AQUACEN, National Reference Laboratory for Aquatic Animal Diseases, Ministry of Agriculture, Livestock and Food Supply, Federal University of Minas Gerais, Brazil.
| | - Cristiana Perdigão Rezende
- AQUACEN, National Reference Laboratory for Aquatic Animal Diseases, Ministry of Agriculture, Livestock and Food Supply, Federal University of Minas Gerais, Brazil.
| | - Carlos Augusto Gomes Leal
- AQUACEN, National Reference Laboratory for Aquatic Animal Diseases, Ministry of Agriculture, Livestock and Food Supply, Federal University of Minas Gerais, Brazil.
| | - Henrique César Pereira Figueiredo
- AQUACEN, National Reference Laboratory for Aquatic Animal Diseases, Ministry of Agriculture, Livestock and Food Supply, Federal University of Minas Gerais, Brazil. http://www.vet.ufmg.br/
| |
Collapse
|
6
|
Gao Q, Xia L, Liu J, Wang X, Gao S, Liu X. DNA microarray-mediated transcriptional profiling of avian pathogenic Escherichia coli O2 strain E058 during its infection of chicken. Microb Pathog 2016; 100:1-9. [PMID: 27569534 DOI: 10.1016/j.micpath.2016.08.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 08/24/2016] [Accepted: 08/24/2016] [Indexed: 01/15/2023]
Abstract
Avian pathogenic Escherichia coli (APEC) cause typical extraintestinal infections in poultry, including acute fatal septicemia, subacute pericarditis, and airsacculitis. These bacteria most often infect chickens, turkeys, ducks, and other avian species, and therefore pose a significant economic burden on the poultry industry worldwide. Few studies have analyzed the genome-wide transcriptional profile of APEC during infection in vivo. In this study, we examined the genome-wide transcriptional response of APEC O2 strain E058 in an in vivo chicken infection model to better understand the factors necessary for APEC colonization, growth, and survival in vivo. An Affymetrix multigenome DNA microarray, which contains most of the genomic open reading frames of E. coli K-12 strain MG1655, uropathogenic E. coli strain CFT073, and E. coli O157:H7 strain EDL 933, was used to profile the gene expression in APEC E058. We identified the in vivo transcriptional response of APEC E058 bacteria collected directly from the blood of infected chickens. Significant differences in expression levels were detected between the in vivo expression profile and the in vitro expression profile in LB medium. The genes highly expressed during infection were involved in metabolism, iron acquisition or transport, virulence, response to stress, and biological regulation. The reliability of the microarray data was confirmed by performing quantitative real-time PCR on 12 representative genes. Moreover, several significantly upregulated genes, including yjiY, sodA, phoB and spy, were selected to study their role in APEC pathogenesis. The data will help to better understand the mechanisms of APEC pathogenesis.
Collapse
Affiliation(s)
- Qingqing Gao
- Animal Infectious Disease Laboratory, Ministry of Agriculture, Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China.
| | - Le Xia
- Animal Infectious Disease Laboratory, Ministry of Agriculture, Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China.
| | - Juanhua Liu
- Animal Infectious Disease Laboratory, Ministry of Agriculture, Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China.
| | - Xiaobo Wang
- Animal Infectious Disease Laboratory, Ministry of Agriculture, Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China.
| | - Song Gao
- Animal Infectious Disease Laboratory, Ministry of Agriculture, Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China.
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, Ministry of Agriculture, Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China.
| |
Collapse
|
7
|
Abstract
Twenty years ago, the publication of the first bacterial genome sequence, from Haemophilus influenzae, shook the world of bacteriology. In this Timeline, we review the first two decades of bacterial genome sequencing, which have been marked by three revolutions: whole-genome shotgun sequencing, high-throughput sequencing and single-molecule long-read sequencing. We summarize the social history of sequencing and its impact on our understanding of the biology, diversity and evolution of bacteria, while also highlighting spin-offs and translational impact in the clinic. We look forward to a 'sequencing singularity', where sequencing becomes the method of choice for as-yet unthinkable applications in bacteriology and beyond.
Collapse
Affiliation(s)
- Nicholas J Loman
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | - Mark J Pallen
- Microbiology and Infection Unit, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
8
|
Chen F, Zhang C, Jia X, Wang S, Wang J, Chen Y, Zhao J, Tian S, Han X, Han L. Transcriptome Profiles of Human Lung Epithelial Cells A549 Interacting with Aspergillus fumigatus by RNA-Seq. PLoS One 2015; 10:e0135720. [PMID: 26273834 PMCID: PMC4537115 DOI: 10.1371/journal.pone.0135720] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 07/24/2015] [Indexed: 11/19/2022] Open
Abstract
Lung epithelial cells constitute the first defense line of host against the inhaled Aspergillus fumigatus; however, the transcriptional response of human alveolar type II epithelial cells was still unclear. Here we used RNA-Seq technology to assess the transcriptome profiles of A549 cells following direct interaction with conidia of A. fumigatus. The total number of identified genes was 19118. Compared with uninfected A549 cells, 459 genes were differentially expressed in cells co-incubated with conidia for 8 h, including 302 up-regulated genes and 157 down-regulated genes. GO and KEGG pathway enrichment analysis showed that most of the up-regulated genes were related to immune response, chemotaxis and inflammatory response and enriched in cytokine-cytokine receptor interaction, JAK-STAT and MAPK signaling pathways. The down-regulated genes were mainly enriched for terms associated with development, hemopoiesis and ion transport. Among them, EGR4 and HIST1H4J gene had the maximum of fold change in up-regulated and down-regulated genes, respectively. Fourteen up-regulated genes and three down-regulated genes were further validated and significant increase on expression of IL-6, IL-8 and TNF-α in A549 cells were confirmed by qRT-PCR during the interaction of A549 cells with A. fumigatus. Besides, western blot showed that expression of two proteins (ARC, EGR1) significantly increased in A549 cells during interaction with A. fumigatus conidia for 8h. Interference of endogenous expression of ARC or EGR1 protein in A549 cells reduced the internalization of A. fumigatus. These results provided important insights into dynamic changes of gene expression in lung epithelial cells, especially its strong immunological response against A. fumigatus infection.
Collapse
Affiliation(s)
- Fangyan Chen
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Beijing, China
| | - Changjian Zhang
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Beijing, China
| | - Xiaodong Jia
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Beijing, China
| | - Shuo Wang
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Beijing, China
| | - Jing Wang
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Beijing, China
| | - Yong Chen
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Beijing, China
| | - Jingya Zhao
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Beijing, China
| | - Shuguang Tian
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Beijing, China
| | - Xuelin Han
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Beijing, China
- * E-mail: (LH); (XH)
| | - Li Han
- Department for Hospital Infection Control & Research, Institute of Disease Control & Prevention of PLA, Academy of Military Medical Sciences, Beijing, China
- * E-mail: (LH); (XH)
| |
Collapse
|
9
|
Mangal M, Bansal S, Sharma SK, Gupta RK. Molecular Detection of Foodborne Pathogens: A Rapid and Accurate Answer to Food Safety. Crit Rev Food Sci Nutr 2015; 56:1568-84. [DOI: 10.1080/10408398.2013.782483] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
10
|
Németh T, Tóth A, Hamari Z, Falus A, Éder K, Vágvölgyi C, Guimaraes AJ, Nosanchuk JD, Gácser A. Transcriptome profile of the murine macrophage cell response to Candida parapsilosis. Fungal Genet Biol 2014; 65:48-56. [PMID: 24530442 DOI: 10.1016/j.fgb.2014.01.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 01/17/2014] [Accepted: 01/29/2014] [Indexed: 12/20/2022]
Abstract
Candida parapsilosis is a human fungal pathogen with increasing global significance. Understanding how macrophages respond to C. parapsilosis at the molecular level will facilitate the development of novel therapeutic paradigms. The complex response of murine macrophages to infection with C. parapsilosis was investigated at the level of gene expression using an Agilent mouse microarray. We identified 155 and 511 differentially regulated genes at 3 and 8h post-infection, respectively. Most of the upregulated genes encoded molecules involved in immune response and inflammation, transcription, signaling, apoptosis, cell cycle, electron transport and cell adhesion. Typical of the classically activated macrophages, there was significant upregulation of genes coordinating the production of inflammatory cytokines such as TNF, IL-1 and IL-15. Further, we used both primary murine macrophages and macrophages differentiated from human peripheral mononuclear cells to confirm the upregulation of the TNF-receptor family member TNFRSF9 that is associated with Th1 T-helper cell responses. Additionally, the microarray data indicate significant differences between the response to C. parapsilosis infection and that of C. albicans.
Collapse
Affiliation(s)
- Tibor Németh
- Department of Microbiology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Adél Tóth
- Department of Microbiology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Zsuzsanna Hamari
- Department of Microbiology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - András Falus
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary
| | - Katalin Éder
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, Nagyvárad tér 4, 1089 Budapest, Hungary
| | - Csaba Vágvölgyi
- Department of Microbiology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Allan J Guimaraes
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Ave, New York, NY 10461, USA
| | - Joshua D Nosanchuk
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Ave, New York, NY 10461, USA
| | - Attila Gácser
- Department of Microbiology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
| |
Collapse
|
11
|
Abstract
There is a real crisis in healthcare with the emergence of bacterial pathogens resistant to multiple drugs. The drug discovery industry is faced with the challenge of developing new classes of antibiotics that are effective against resistant organisms. Targeting bacterial virulence is one approach that has yet to be fully exploited, and the last decade or so has seen the development of reagents, screens and approaches that could make this possible. Several processes utilized by bacteria to cause infection are employed in a wide range of pathogens and as such may make attractive targets. Inhibitors of such targets would be unlikely to affect host cells, be cross-resistant to existing therapies and induce resistance themselves.
Collapse
Affiliation(s)
- Andrea Marra
- Pfizer Global Research and Development, Antibacterials Discovery, MS8118W-249 Eastern Point Road Groton, CT 06340, USA.
| |
Collapse
|
12
|
Zhang CG, Chromy BA, McCutchen-Maloney SL. Host–pathogen interactions: a proteomic view. Expert Rev Proteomics 2014; 2:187-202. [PMID: 15892564 DOI: 10.1586/14789450.2.2.187] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Host-pathogen interactions reflect the balance of host defenses and pathogen virulence mechanisms. Advances in proteomic technologies now afford opportunities to compare protein content between complex biologic systems ranging from cells to animals and clinical samples. Thus, it is now possible to characterize host-pathogen interactions from a global proteomic view. Most reports to date focus on cataloging protein content of pathogens and identifying virulence-associated proteins or proteomic alterations in host response. A more in-depth understanding of host-pathogen interactions has the potential to improve our mechanistic understanding of pathogenicity and virulence, thereby defining novel therapeutic and vaccine targets. In addition, proteomic characterization of the host response can provide pathogen-specific host biomarkers for rapid pathogen detection and characterization, as well as for early and specific detection of infectious diseases. A review of host-pathogen interactions focusing on proteomic analyses of both pathogen and host will be presented. Relevant genomic studies and host model systems will be also be discussed.
Collapse
Affiliation(s)
- Celia G Zhang
- Lawrence Livermore National Laboratory, Biosciences Directorate, 7000 East Avenue, Livermore, CA 94550, USA.
| | | | | |
Collapse
|
13
|
Bai X, Borrow R. Genetic shifts ofNeisseria meningitidisserogroup B antigens and the quest for a broadly cross-protective vaccine. Expert Rev Vaccines 2014; 9:1203-17. [DOI: 10.1586/erv.10.116] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Ricke SC, Khatiwara A, Kwon YM. Application of microarray analysis of foodborne Salmonella in poultry production: A review. Poult Sci 2013; 92:2243-50. [DOI: 10.3382/ps.2012-02740] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
15
|
Wang ZQ, Yu Y, Zhang XH, Qin J, Floyd E. Gene expression profile in human skeletal muscle cells infected with human adenovirus type 36. J Med Virol 2012; 84:1254-66. [PMID: 22711354 DOI: 10.1002/jmv.23332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Human adenovirus type-36 (HAdV-36) is a specific pathogen that may lead to increased adiposity and obesity. In order to evaluate the effects of HAdV-36 on gene transcription, a microarray analysis of muscle cells infected with HAdV-36 was performed. Gene expression profile was determined by microarray analysis in cultured human skeletal muscle cells with or without HAdV-36 infection. Quantitative real-time PCR (qPCR) assay was performed in selected 35 genes to verify the results of the microarray analysis. A total of 13,060 unique genes were detected in the HAdV-36 infected muscle cells infected with HAdV-36. Among them, 1,004 genes were significantly altered by using a cut-off point at fold change ≥1.5 and P value <0.05. Most of the principal 100 altered genes were involved in development, immune response, signal transduction, transcriptional regulation as well as carbohydrate, lipid and protein metabolism. Thirty-two genes (91.4%) from the 35 selected genes were confirmed by qPCR assay. In addition, HAdV-36 altered 252 genes that are associated with cancer. The study showed HAdV-36 infection upregulated host cell antiviral defense. HAdV-36 also induces changes in gene expression related to cellular signaling pathways of signal transduction, transcriptional regulation as well as carbohydrate, lipid and protein metabolism. However, it remains to be investigated if HAdV-36 infection could lead to oncogenesis.
Collapse
Affiliation(s)
- Zhong Q Wang
- Nutrition and Diabetes Research Laboratory, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, USA.
| | | | | | | | | |
Collapse
|
16
|
Herath TK, Bron JE, Thompson KD, Taggart JB, Adams A, Ireland JH, Richards RH. Transcriptomic analysis of the host response to early stage salmonid alphavirus (SAV-1) infection in Atlantic salmon Salmo salar L. FISH & SHELLFISH IMMUNOLOGY 2012; 32:796-807. [PMID: 22365992 DOI: 10.1016/j.fsi.2012.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Revised: 01/31/2012] [Accepted: 02/01/2012] [Indexed: 05/31/2023]
Abstract
Salmon pancreas disease, caused by salmonid alphavirus (SAV) of the family Togaviridae, is an economically important disease affecting farmed Atlantic salmon (Salmo salar L.) in Scotland, Norway, and Ireland. The virus causes characteristic lesions in the pancreas, heart, kidney and skeletal muscle of infected fish. The mechanisms responsible for the pathology and the immune responses elicited in infected Atlantic salmon are not fully understood. A microarray-based study was therefore performed to evaluate the host transcriptomic response during the early stages of an experimentally-induced SAV-1 infection. Atlantic salmon parr were injected intra-peritoneally with viral cell culture supernatant or cell culture supernatant without virus. RNA, extracted from head kidney sampled from infected and control fish at 1, 3 and 5 days post-injection (d.p.i.), was interrogated with the 17 k TRAITS/SGP cDNA microarray. The greatest number of significantly differentially expressed genes was recorded at 3 d.p.i., mainly associated with immune and defence mechanisms, including genes involved in interferon I pathways and Major Histocompatibility Complex Class I and II responses. Genes associated with apoptosis and cellular stress were also found to be differentially expressed between infected and uninfected individuals, as were genes involved in inhibiting viral attachment and replication. The microarray results were validated by follow-on analysis of eight genes by real-time PCR. The findings of the study reflect mechanisms used by the host to protect itself during the early stages of SAV-1 infection. In particular, there was evidence of rapid induction of interferon-mediated responses similar to those seen during mammalian alphavirus infections, and also early involvement of an adaptive immune response. This study provides essential knowledge to assist in the development of effective control and management strategies for SAV-1 infection.
Collapse
Affiliation(s)
- Tharangani K Herath
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, UK.
| | | | | | | | | | | | | |
Collapse
|
17
|
Hallinan J. Data mining for microbiologists. J Microbiol Methods 2012. [DOI: 10.1016/b978-0-08-099387-4.00002-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
|
18
|
Ebola virion attachment and entry into human macrophages profoundly effects early cellular gene expression. PLoS Negl Trop Dis 2011; 5:e1359. [PMID: 22028943 PMCID: PMC3196478 DOI: 10.1371/journal.pntd.0001359] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 09/01/2011] [Indexed: 11/19/2022] Open
Abstract
Zaire ebolavirus (ZEBOV) infections are associated with high lethality in primates. ZEBOV primarily targets mononuclear phagocytes, which are activated upon infection and secrete mediators believed to trigger initial stages of pathogenesis. The characterization of the responses of target cells to ZEBOV infection may therefore not only further understanding of pathogenesis but also suggest possible points of therapeutic intervention. Gene expression profiles of primary human macrophages exposed to ZEBOV were determined using DNA microarrays and quantitative PCR to gain insight into the cellular response immediately after cell entry. Significant changes in mRNA concentrations encoding for 88 cellular proteins were observed. Most of these proteins have not yet been implicated in ZEBOV infection. Some, however, are inflammatory mediators known to be elevated during the acute phase of disease in the blood of ZEBOV-infected humans. Interestingly, the cellular response occurred within the first hour of Ebola virion exposure, i.e. prior to virus gene expression. This observation supports the hypothesis that virion binding or entry mediated by the spike glycoprotein (GP(1,2)) is the primary stimulus for an initial response. Indeed, ZEBOV virions, LPS, and virus-like particles consisting of only the ZEBOV matrix protein VP40 and GP(1,2) (VLP(VP40-GP)) triggered comparable responses in macrophages, including pro-inflammatory and pro-apoptotic signals. In contrast, VLP(VP40) (particles lacking GP(1,2)) caused an aberrant response. This suggests that GP(1,2) binding to macrophages plays an important role in the immediate cellular response.
Collapse
|
19
|
Mukhopadhyay S, Nair S, Ghosh S. Pathogenesis in tuberculosis: transcriptomic approaches to unraveling virulence mechanisms and finding new drug targets. FEMS Microbiol Rev 2011; 36:463-85. [PMID: 22092372 DOI: 10.1111/j.1574-6976.2011.00302.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Revised: 07/31/2011] [Accepted: 08/05/2011] [Indexed: 01/12/2023] Open
Abstract
Tuberculosis (TB) remains a major health problem worldwide. Attempts to control this disease have proved difficult owing to our poor understanding of the pathobiology of Mycobacterium tuberculosis and the emergence of strains that are resistant to multiple drugs currently available for treatment. Genome-wide expression profiling has provided new insight into the transcriptome signatures of the bacterium during infection, notably of macrophages and dendritic cells. These data indicate that M. tuberculosis expresses numerous genes to evade the host immune responses, to suit its intracellular life style, and to respond to various antibiotic drugs. Among the intracellularly induced genes, several have functions in lipid metabolism, cell wall synthesis, iron uptake, oxidative stress resistance, protein secretion, or inhibition of apoptosis. Herein we review these findings and discuss possible ways to exploit the data to understand the complex etiology of TB and to find new effective drug targets.
Collapse
Affiliation(s)
- Sangita Mukhopadhyay
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting and Diagnostics, Nampally, Hyderabad, India.
| | | | | |
Collapse
|
20
|
Derrien M, Van Baarlen P, Hooiveld G, Norin E, Müller M, de Vos WM. Modulation of Mucosal Immune Response, Tolerance, and Proliferation in Mice Colonized by the Mucin-Degrader Akkermansia muciniphila. Front Microbiol 2011; 2:166. [PMID: 21904534 PMCID: PMC3153965 DOI: 10.3389/fmicb.2011.00166] [Citation(s) in RCA: 408] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 07/18/2011] [Indexed: 11/13/2022] Open
Abstract
Epithelial cells of the mammalian intestine are covered with a mucus layer that prevents direct contact with intestinal microbes but also constitutes a substrate for mucus-degrading bacteria. To study the effect of mucus degradation on the host response, germ-free mice were colonized with Akkermansia muciniphila. This anaerobic bacterium belonging to the Verrucomicrobia is specialized in the degradation of mucin, the glycoprotein present in mucus, and found in high numbers in the intestinal tract of human and other mammalian species. Efficient colonization of A. muciniphila was observed with highest numbers in the cecum, where most mucin is produced. In contrast, following colonization by Lactobacillus plantarum, a facultative anaerobe belonging to the Firmicutes that ferments carbohydrates, similar cell-numbers were found at all intestinal sites. Whereas A. muciniphila was located closely associated with the intestinal cells, L. plantarum was exclusively found in the lumen. The global transcriptional host response was determined in intestinal biopsies and revealed a consistent, site-specific, and unique modulation of about 750 genes in mice colonized by A. muciniphila and over 1500 genes after colonization by L. plantarum. Pathway reconstructions showed that colonization by A. muciniphila altered mucosal gene expression profiles toward increased expression of genes involved in immune responses and cell fate determination, while colonization by L. plantarum led to up-regulation of lipid metabolism. These indicate that the colonizers induce host responses that are specific per intestinal location. In conclusion, we propose that A. muciniphila modulates pathways involved in establishing homeostasis for basal metabolism and immune tolerance toward commensal microbiota.
Collapse
Affiliation(s)
- Muriel Derrien
- Laboratory of Microbiology, Wageningen University Wageningen, Netherlands
| | | | | | | | | | | |
Collapse
|
21
|
Srikanta D, Yang M, Williams M, Doering TL. A sensitive high-throughput assay for evaluating host-pathogen interactions in Cryptococcus neoformans infection. PLoS One 2011; 6:e22773. [PMID: 21829509 PMCID: PMC3145667 DOI: 10.1371/journal.pone.0022773] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 06/29/2011] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Cryptococcus neoformans causes serious disease in immunocompromised individuals, leading to over 600,000 deaths per year worldwide. Part of this impact is due to the organism's ability to thwart what should be the mammalian hosts' first line of defense against cryptococcal infection: internalization by macrophages. Even when C. neoformans is engulfed by host phagocytes, it can survive and replicate within them rather than being destroyed; this ability is central in cryptococcal virulence. It is therefore critical to elucidate the interactions of this facultative intracellular pathogen with phagocytic cells of its mammalian host. METHODOLOGY/PRINCIPAL FINDINGS To accurately assess initial interactions between human phagocytic cells and fungi, we have developed a method using high-throughput microscopy to efficiently distinguish adherent and engulfed cryptococci and quantitate each population. This method offers significant advantages over currently available means of assaying host-fungal cell interactions, and remains statistically robust when implemented in an automated fashion appropriate for screening. It was used to demonstrate the sensitivity of human phagocytes to subtle changes in the cryptococcal capsule, a major virulence factor of this pathogen. CONCLUSIONS/SIGNIFICANCE Our high-throughput method for characterizing interactions between C. neoformans and mammalian phagocytic cells offers a powerful tool for elucidating the relationship between these cell types during pathogenesis. This approach will be useful for screens of this organism and has potentially broad applications for investigating host-pathogen interactions.
Collapse
Affiliation(s)
- Deepa Srikanta
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Meng Yang
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Matthew Williams
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Tamara L. Doering
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
22
|
Abstract
Microarrays or DNA chips have been hailed as the ultimate experimental tool for research, drug discovery and diagnostics. They have the potential to perform a multitude of molecular tests simultaneously and to produce a wealth of information from a single clinical sample. Applications include genotyping, expression analysis and sequencing (1-4). The aim of this review is to provide a brief summary of current microarray technology and highlight the many ways in which it is being developed for use in clinical microbiology laboratories.
Collapse
|
23
|
Gomez P, Hackett TL, Moore MM, Knight DA, Tebbutt SJ. Functional genomics of human bronchial epithelial cells directly interacting with conidia of Aspergillus fumigatus. BMC Genomics 2010; 11:358. [PMID: 20525375 PMCID: PMC2897809 DOI: 10.1186/1471-2164-11-358] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2009] [Accepted: 06/04/2010] [Indexed: 11/29/2022] Open
Abstract
Background Aspergillus fumigatus (A. fumigatus) is a ubiquitous fungus which reproduces asexually by releasing abundant airborne conidia (spores), which are easily respirable. In allergic and immunocompromised individuals A. fumigatus can cause a wide spectrum of diseases, including allergic bronchopulmonary aspergillosis, aspergilloma and invasive aspergillosis. Previous studies have demonstrated that A. fumigatus conidia are internalized by macrophages and lung epithelial cells; however the exact transcriptional responses of airway epithelial cells to conidia are currently unknown. Thus, the aim of this study was to determine the transcriptomic response of the human bronchial epithelial cell line (16HBE14o-) following interaction with A. fumigatus conidia. We used fluorescence-activated cell sorting (FACS) to separate 16HBE14o- cells having bound and/or internalized A. fumigatus conidia expressing green fluorescent protein from cells without spores. Total RNA was then isolated and the transcriptome of 16HBE14o- cells was evaluated using Agilent Whole Human Genome microarrays. Results Immunofluorescent staining and nystatin protection assays demonstrated that 16HBE14o- cells internalized 30-50% of bound conidia within six hrs of co-incubation. After FAC-sorting of the same cell culture to separate cells associated with conidia from those without conidia, genome-wide analysis revealed a set of 889 genes showing differential expression in cells with conidia. Specifically, these 16HBE14o- cells had increased levels of transcripts from genes associated with repair and inflammatory processes (e.g., matrix metalloproteinases, chemokines, and glutathione S-transferase). In addition, the differentially expressed genes were significantly enriched for Gene Ontology terms including: chromatin assembly, G-protein-coupled receptor binding, chemokine activity, and glutathione metabolic process (up-regulated); cell cycle phase, mitosis, and intracellular organelle (down-regulated). Conclusions We demonstrate a methodology using FACs for analyzing the transcriptome of infected and uninfected cells from the same cell population that will provide a framework for future characterization of the specific interactions between pathogens such as A. fumigatus with human cells derived from individuals with or without underlying disease susceptibility.
Collapse
Affiliation(s)
- Pol Gomez
- UBC James Hogg Research Centre, Providence Heart + Lung Institute, St, Paul's Hospital, Vancouver, BC, Canada
| | | | | | | | | |
Collapse
|
24
|
Baker S, Favorov M, Dougan G. Searching for the elusive typhoid diagnostic. BMC Infect Dis 2010; 10:45. [PMID: 20205702 PMCID: PMC2846943 DOI: 10.1186/1471-2334-10-45] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2009] [Accepted: 03/05/2010] [Indexed: 12/03/2022] Open
Abstract
Typhoid (enteric) fever is still a common disease in many developing countries but current diagnostic tests are inadequate. Studies on pathogenesis and genomics have provided new insight into the organisms that cause enteric fever. Better understanding of the microorganisms explains, in part, why our current typhoid methodologies are limited in their diagnostic information and why developing new strategies may be a considerable challenge. Here we discuss the current position of typhoid diagnostics, highlight the need for technological improvements and suggest potential ways of advancing this area.
Collapse
Affiliation(s)
- Stephen Baker
- Oxford University Clinical Research Unit, The Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
- The Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, Oxford University, Oxford, UK
| | - Michael Favorov
- The International Vaccine Institute, Kwanak-gu, Seoul, Korea
| | - Gordon Dougan
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| |
Collapse
|
25
|
Leroy Q, Raoult D. Review of microarray studies for host-intracellular pathogen interactions. J Microbiol Methods 2010; 81:81-95. [PMID: 20188126 DOI: 10.1016/j.mimet.2010.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 02/12/2010] [Accepted: 02/16/2010] [Indexed: 12/17/2022]
Abstract
Obligate intracellular bacteria are privileged soldiers on the battlefield that represent host-pathogen interactions. Microarrays are a powerful technology that can increase our knowledge about how bacteria respond to and interact with their hosts. This review summarizes the limitations inherent to host-pathogen interaction studies and essential strategies to improve microarray investigations of intracellular bacteria. We have compiled the comparative genomic and gene expression analyses of obligate intracellular bacteria currently available from microarrays. In this review we explore ways in which microarrays can be used to identify polymorphisms in different obligate intracellular bacteria such as Coxiella burnetii, Chlamydia trachomatis, Ehrlichia chaffeensis, Rickettsia prowazekii and Tropheryma whipplei. These microarray studies reveal that, while genomic content is highly conserved in obligate intracellular bacteria, genetic polymorphisms can potentially occur to increase bacterial pathogenesis. Additionally, changes in the gene expression of C. trachomatis throughout its life cycle, as well as changes in the gene expression profile of the pathogens R. prowazekii, Rickettsia rickettsii, Rickettsia typhi, T. whipplei and C. trachomatis following environmental changes, are discussed. Finally, an in vivo model of Rickettsia conorii within the skin is discussed. The gene expression analyses highlight the capacity of obligate intracellular bacteria to adapt to environmental changes and potentially to thwart the host response.
Collapse
Affiliation(s)
- Quentin Leroy
- Université de la Méditerranée, URMITE IRD-CNRS 6236, Faculté de Médecine, 27 Bd Jean Moulin, 13385 Marseille cedex 05, France
| | | |
Collapse
|
26
|
Fook LW, Chow VTK. Transcriptome profiling of host-microbe interactions by differential display RT-PCR. Methods Mol Biol 2010; 630:33-47. [PMID: 20300989 DOI: 10.1007/978-1-60761-629-0_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In recent years, DNA microarray has become increasingly popular as a tool to investigate global expression patterns compared to differential display RT-PCR. Although differential display RT-PCR can be labour-intensive, it has its own merits over those of DNA microarray. While the latter usually consists of a well-defined set of species-specific genes, differential display RT-PCR allows the investigation of host-microbe interactions without bias towards any mRNA transcripts. This means that the regulated transcript expression of both host and pathogen can be analysed simultaneously. In addition, novel transcripts and alternate splicing variants pertaining to the infection can also be discovered. We have investigated the response of rhabdomyosarcoma cells to infection with a neurovirulent strain of enterovirus 71 (EV71) at different time-points during the infection process compared with uninfected cells. Using differential display RT-PCR, we identified mRNAs that were up- or down-regulated. Less than half of the clones match known genes including those involved in mediating the cytoskeleton, cell cycle, cell death, protein translational machinery and cellular transport. The rest of the clones do not match any known genes, of which several are novel genes. Noteworthy is the discovery of an alternate splicing form of TRIP7, which is down-regulated during EV71 infection. The differential display technique has potentially wide applicability to elucidate the gene expression or transcriptomic profiles of host-microbe interactions, which can provide a better understanding of microbial pathogenesis.
Collapse
Affiliation(s)
- Leong Wai Fook
- Institute of Molecular and Cell Biology, Proteos, Singapore
| | | |
Collapse
|
27
|
Verra F, Mangano VD, Modiano D. Genetics of susceptibility to Plasmodium falciparum: from classical malaria resistance genes towards genome-wide association studies. Parasite Immunol 2009; 31:234-53. [PMID: 19388945 DOI: 10.1111/j.1365-3024.2009.01106.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Plasmodium falciparum represents one of the strongest selective forces on the human genome. This stable and perennial pressure has contributed to the progressive accumulation in the exposed populations of genetic adaptations to malaria. Descriptive genetic epidemiology provides the initial step of a logical procedure of consequential phases spanning from the identification of genes involved in the resistance/susceptibility to diseases, to the determination of the underlying mechanisms and finally to the possible translation of the acquired knowledge in new control tools. In malaria, the rational development of this strategy is traditionally based on complementary interactions of heterogeneous disciplines going from epidemiology to vaccinology passing through genetics, pathogenesis and immunology. New tools including expression profile analysis and genome-wide association studies are recently available to explore the complex interactions of host-parasite co-evolution. Particularly, the combination of genome-wide association studies with large multi-centre initiatives can overcome the limits of previous results due to local population dynamics. Thus, we anticipate substantial advances in the interpretation and validation of the effects of genetic variation on malaria susceptibility, and thereby on molecular mechanisms of protective immune responses and pathogenesis.
Collapse
Affiliation(s)
- F Verra
- Department of Public Health, University of Rome La Sapienza, Rome, Italy.
| | | | | |
Collapse
|
28
|
Földes-Papp Z. Viral Chip Technology in Genomic Medicine. GENOMIC AND PERSONALIZED MEDICINE 2009. [PMCID: PMC7149707 DOI: 10.1016/b978-0-12-369420-1.00048-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
29
|
Smith CL, Dickinson P, Forster T, Khondoker M, Craigon M, Ross A, Storm P, Burgess S, Lacaze P, Stenson BJ, Ghazal P. Quantitative assessment of human whole blood RNA as a potential biomarker for infectious disease. Analyst 2008; 132:1200-9. [PMID: 18318280 DOI: 10.1039/b707122c] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Infection remains a significant cause of morbidity and mortality especially in newborn infants. Analytical methods for diagnosing infection are severely limited in terms of sensitivity and specificity and require relatively large samples. It is proposed that stringent regulation of the human transcriptome affords a new molecular diagnostic approach based on measuring a highly specific systemic inflammatory response to infection, detectable at the RNA level. This proposition raises a number of as yet poorly characterised technical and biological variation issues that urgently need to be addressed. Here we report a quantitative assessment of methodological approaches for processing and extraction of RNA from small samples of infant whole blood and applying analysis of variation from biochip measurements. On the basis of testing and selection from a battery of assays we show that sufficient high quality RNA for analysis using multiplex array technology can be obtained from small neonatal samples. These findings formed the basis of implementing a set of robust clinical and experimental standard operating procedures for whole blood RNA samples from 58 infants. Modelling and analysis of variation between samples revealed significant sources of variation from the point of sample collection to processing and signal generation. These experiments further permitted power calculations to be run indicating the tractability and requirements of using changes in RNA expression profiles to detect different states between patient groups. Overall the results of our investigation provide an essential first step toward facilitating an alternative way for diagnosing infection from very small neonatal blood samples, providing methods and requirements for future chip-based studies.
Collapse
Affiliation(s)
- Claire L Smith
- Division of Pathway Medicine, The University of Edinburgh, The Chancellor's Building, 49 Little France Crescent, Edinburgh, Midlothian, UK EH16 4SB
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Handfield M, Baker HV, Lamont RJ. Beyond good and evil in the oral cavity: insights into host-microbe relationships derived from transcriptional profiling of gingival cells. J Dent Res 2008; 87:203-23. [PMID: 18296603 DOI: 10.1177/154405910808700302] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
In many instances, the encounter between host and microbial cells, through a long-standing evolutionary association, can be a balanced interaction whereby both cell types co-exist and inflict a minimal degree of harm on each other. In the oral cavity, despite the presence of large numbers of diverse organisms, health is the most frequent status. Disease will ensue only when the host-microbe balance is disrupted on a cellular and molecular level. With the advent of microarrays, it is now possible to monitor the responses of host cells to bacterial challenge on a global scale. However, microarray data are known to be inherently noisy, which is caused in part by their great sensitivity. Hence, we will address several important general considerations required to maximize the significance of microarray analysis in depicting relevant host-microbe interactions faithfully. Several advantages and limitations of microarray analysis that may have a direct impact on the significance of array data are highlighted and discussed. Further, this review revisits and contextualizes recent transcriptional profiles that were originally generated for the specific study of intricate cellular interactions between gingival cells and 4 important plaque micro-organisms. To our knowledge, this is the first report that systematically investigates the cellular responses of a cell line to challenge by 4 different micro-organisms. Of particular relevance to the oral cavity, the model bacteria span the entire spectrum of documented pathogenic potential, from commensal to opportunistic to overtly pathogenic. These studies provide a molecular basis for the complex and dynamic interaction between the oral microflora and its host, which may lead, ultimately, to the development of novel, rational, and practical therapeutic, prophylactic, and diagnostic applications.
Collapse
Affiliation(s)
- M Handfield
- Department of Oral Biology, College of Dentistry, Box 100424 JHMHSC, University of Florida, Gainesville, FL 32610-0424, USA.
| | | | | |
Collapse
|
31
|
Intravaginal immunization of mice with recombinant Salmonella enterica serovar Typhimurium expressing human papillomavirus type 16 antigens as a potential route of vaccination against cervical cancer. Infect Immun 2008; 76:1940-51. [PMID: 18332214 DOI: 10.1128/iai.01484-07] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Cervical cancer, the second leading cause of cancer deaths in women, is the consequence of high-risk human papillomavirus (HPV) infections. Toward the development of therapeutic vaccines that can induce both innate and adaptive mucosal immune responses, we analyzed intravaginal (ivag) vaccine delivery of live attenuated Salmonella enterica serovar Typhimurium expressing HPV16L1 as a model antigen. Innate immune responses were examined in cervicovaginal tissues by determining gene expression patterns by microarray analysis using nylon membranes imprinted with cDNA fragments coding for inflammation-associated genes. At 24 h, a wide range of genes, including those for chemokines and Th1- and Th2-type cytokine and chemokine receptors were up-regulated in mice ivag immunized with Salmonella compared to control mice. However, the majority of transcripts returned to their steady-state levels 1 week after immunization, suggesting a transient inflammatory response. Indeed, cervicovaginal histology of immunized mice showed a massive, but transient, infiltration of macrophages and neutrophils, while T cells were still increased after 7 days. Ivag immunization also induced humoral and antitumor immune responses, i.e., serum and vaginal anti-HPV16VLP antibody titers similar to those induced by oral immunization, and significant protection in tumor protection experiments using HPV16-expressing C3 tumor cells. These results show that ivag immunization with live attenuated Salmonella expressing HPV16 antigens modulates the local mucosal gene expression pattern into a transient proinflammatory profile, elicits strong systemic and mucosal immunity against HPV16, and confers protection against HPV16 tumor cells subcutaneously implanted in mice. Examination of the efficacy with which ivag HPV16E7E6 Salmonella induces regression of tumors located in cervicovaginal tissue is warranted.
Collapse
|
32
|
Jayaraman A, Hall CK, Genzer J. Computer simulation study of probe-target hybridization in model DNA microarrays: effect of probe surface density and target concentration. J Chem Phys 2008; 127:144912. [PMID: 17935444 DOI: 10.1063/1.2787618] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
We use lattice Monte Carlo simulations to study the thermodynamics of hybridization of single-stranded "target" genes in solution with complementary "probe" DNA molecules immobilized on a microarray surface. The target molecules in our system contain 48 segments and the probes tethered on a hard surface contain 8-24 segments. The segments on the probe and target are distinct, with each segment representing a sequence of nucleotides that interacts exclusively with its unique complementary target segment with a single hybridization energy; all other interactions are zero. We examine how surface density (number of probes per unit surface area) and concentration of target molecules affect the extent of hybridization. For short probe lengths, as the surface density increases, the probability of binding long stretches of target segments increases at low surface density, reaches a maximum at an intermediate surface density, and then decreases at high surface density. Furthermore, as the surface density increases, the target is less likely to bind completely to one probe; instead, it binds simultaneously to multiple probes. At short probe lengths, as the target concentration increases, the fraction of targets binding completely to the probes (specificity) decreases. At long probe lengths, varying the target concentration does not affect the specificity. At all target concentrations as the probe length increases, the fraction of target molecules bound to the probes by at least one segment (sensitivity) increases while the fraction of target molecules completely bound to the probes (specificity) decreases. This work provides general guidelines to maximizing microarray sensitivity and specificity. Our results suggest that the sensitivity and specificity can be maximized by using probes 130-180 nucleotides long at a surface density in the range of 7 x 10(-5)- 3 x 10(-4) probe molecules per nm(2).
Collapse
Affiliation(s)
- Arthi Jayaraman
- Department of Chemical and Biomolecular Engineering, North Carolina State University, College of Engineering I, 911 Partners Way, Raleigh, NC 27695, USA.
| | | | | |
Collapse
|
33
|
Leveau JHJ, Preston GM. Bacterial mycophagy: definition and diagnosis of a unique bacterial-fungal interaction. THE NEW PHYTOLOGIST 2008; 177:859-876. [PMID: 18086226 DOI: 10.1111/j.1469-8137.2007.02325.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
This review analyses the phenomenon of bacterial mycophagy, which we define as a set of phenotypic behaviours that enable bacteria to obtain nutrients from living fungi and thus allow the conversion of fungal into bacterial biomass. We recognize three types of bacterial strategies to derive nutrition from fungi: necrotrophy, extracellular biotrophy and endocellular biotrophy. Each is characterized by a set of uniquely sequential and differently overlapping interactions with the fungal target. We offer a detailed analysis of the nature of these interactions, as well as a comprehensive overview of methodologies for assessing and quantifying their individual contributions to the mycophagy phenotype. Furthermore, we discuss future prospects for the study and exploitation of bacterial mycophagy, including the need for appropriate tools to detect bacterial mycophagy in situ in order to be able to understand, predict and possibly manipulate the way in which mycophagous bacteria affect fungal activity, turnover, and community structure in soils and other ecosystems.
Collapse
Affiliation(s)
- Johan H J Leveau
- Netherlands Institute of Ecology (NIOO-KNAW), Heteren, the Netherlands
| | - Gail M Preston
- Department of Plant Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
34
|
Leishi Zhang, Kuljis J, Xiaohui Liu. Information Visualization for DNA Microarray Data Analysis: A Critical Review. ACTA ACUST UNITED AC 2008. [DOI: 10.1109/tsmcc.2007.906065] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
35
|
Capilla J, Clemons KV, Stevens DA. Animal models: an important tool in mycology. Med Mycol 2007; 45:657-84. [PMID: 18027253 PMCID: PMC7107685 DOI: 10.1080/13693780701644140] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Accepted: 08/22/2007] [Indexed: 10/29/2022] Open
Abstract
Animal models of fungal infections are, and will remain, a key tool in the advancement of the medical mycology. Many different types of animal models of fungal infection have been developed, with murine models the most frequently used, for studies of pathogenesis, virulence, immunology, diagnosis, and therapy. The ability to control numerous variables in performing the model allows us to mimic human disease states and quantitatively monitor the course of the disease. However, no single model can answer all questions and different animal species or different routes of infection can show somewhat different results. Thus, the choice of which animal model to use must be made carefully, addressing issues of the type of human disease to mimic, the parameters to follow and collection of the appropriate data to answer those questions being asked. This review addresses a variety of uses for animal models in medical mycology. It focuses on the most clinically important diseases affecting humans and cites various examples of the different types of studies that have been performed. Overall, animal models of fungal infection will continue to be valuable tools in addressing questions concerning fungal infections and contribute to our deeper understanding of how these infections occur, progress and can be controlled and eliminated.
Collapse
Affiliation(s)
- Javier Capilla
- California Institute for Medical Research, San Jose, USA
- Department of Medicine, Division of Infectious Diseases, Santa Clara Valley Medical Center, San Jose, USA
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, California, USA
| | - Karl V. Clemons
- California Institute for Medical Research, San Jose, USA
- Department of Medicine, Division of Infectious Diseases, Santa Clara Valley Medical Center, San Jose, USA
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, California, USA
| | - David A. Stevens
- California Institute for Medical Research, San Jose, USA
- Department of Medicine, Division of Infectious Diseases, Santa Clara Valley Medical Center, San Jose, USA
- Department of Medicine, Division of Infectious Diseases and Geographic Medicine, Stanford University, Stanford, California, USA
| |
Collapse
|
36
|
Ojha S, Kostrzynska M. Examination of animal and zoonotic pathogens using microarrays. Vet Res 2007; 39:4. [DOI: 10.1051/vetres:2007042] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Accepted: 07/27/2007] [Indexed: 01/13/2023] Open
|
37
|
Dang TL, Yasuike M, Hirono I, Kondo H, Aoki T. Transcriptional profile of red seabream iridovirus in a fish model as revealed by viral DNA microarrays. Virus Genes 2007; 35:449-61. [PMID: 17393296 DOI: 10.1007/s11262-007-0090-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Accepted: 02/21/2007] [Indexed: 10/23/2022]
Abstract
Red seabream iridovirus (RSIV) disease is a serious disease of many marine fish species in Japan and elsewhere. For a better understanding of the molecular pathogenic mechanism, we examined the transcriptional profile of RSIV in infected fish using a DNA microarray. Expression of RSIV open reading frames (ORFs) was first detected at about 5 days post-infection (d.p.i.), and accounted for about 45% of total ORFs. Almost all the ORFs (97-99%) were expressed at their maximum levels during 7-9 d.p.i. The expression levels and the number of expressed ORFs started to decrease at 10 d.p.i. These results suggest that pathogenesis of RSIV infection began at around day 5, and continued with high levels of viral multiplication until viral clearance by host antiviral defenses starting from around 10 d.p.i. A comparison of viral gene expressions in the spleen and kidney over the course of the infection suggests that RSIV preferentially targets the spleen. The spleen may thus be the most susceptible organ for diagnosis of iridoviral disease.
Collapse
Affiliation(s)
- Thi Lua Dang
- Laboratory of Genome Science, Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, Konan 4-5-7, Minato, Tokyo 108-8477, Japan
| | | | | | | | | |
Collapse
|
38
|
Skovgaard K, Mortensen S, Poulsen KT, Angen Ø, Heegaard PMH. Validation of putative reference genes for qRT-PCR normalization in tissues and blood from pigs infected with Actinobacillus pleuropneumoniae. Vet Immunol Immunopathol 2007; 118:140-6. [PMID: 17544155 DOI: 10.1016/j.vetimm.2007.04.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Revised: 03/19/2007] [Accepted: 04/26/2007] [Indexed: 11/20/2022]
Abstract
The quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR) is a sensitive and very efficient technique for quantification of gene expression. However, qRT-PCR relies on accurate normalization of gene expression data, as RNA recovery and cDNA synthesis efficiency might vary from sample to sample. In the present study, six putative reference genes were validated for normalization of gene expression in three different tissues and in white blood cells from pigs experimentally infected with the common respiratory pathogen Actinobacillus pleuropneumoniae. Two dedicated validation programs (geNorm and Normfinder) were used to rank the six reference genes from best to worst. qRT-PCR data for the proinflammatory cytokine IL-6 was normalized using the proposed genes from geNorm and Normfinder as well as the commonly used reference gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH). IL-6 expression was quantified in white blood cells, liver, lymph nodes and tonsils from 10 infected pigs and 5 control pigs. After normalization using either geNorm or Normfinder IL-6 was shown to be significantly up-regulated (P<0.05) in all of the tissues from infected animals compared to non-infected control animals with a good agreement of expression differences between the two programs. On the contrary, normalization of IL-6 expression data from blood using GAPDH rendered the difference between infected and non-infected groups non-significant, and resulted in significantly different values compared to geNorm (P=0.01). Based on these results, we recommend to validate putative reference genes before normalization.
Collapse
Affiliation(s)
- Kerstin Skovgaard
- Department of Veterinary Diagnostics and Research, National Veterinary Institute, Technical University of Denmark, Bülowsvej 27, DK-1790 Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
39
|
Klitgaard K, Jensen TK, Angen Ø, Boye M. Measurement of bacterial gene expression in vivo by laser capture microdissection and quantitative real-time RT-PCR. J Microbiol Methods 2007; 69:414-6. [PMID: 17250913 DOI: 10.1016/j.mimet.2006.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2006] [Revised: 11/28/2006] [Accepted: 12/01/2006] [Indexed: 11/16/2022]
Abstract
Due to the relative small number of bacterial pathogens present in an infected host, exploration of pathogen gene expression in vivo is challenging. This study reports the development of a protocol for quantifying bacterial gene expression in vivo in Actinobacillus pleuropneumoniae using laser capture microdissection and real-time quantitative RT-PCR.
Collapse
Affiliation(s)
- Kirstine Klitgaard
- National Veterinary Institute, Technical University of Denmark, Bülowsvej 27, DK-1790 Copenhagen V, Denmark
| | | | | | | |
Collapse
|
40
|
Dogra N, Warburton C, McMaster WR. Leishmania major abrogates gamma interferon-induced gene expression in human macrophages from a global perspective. Infect Immun 2007; 75:3506-15. [PMID: 17470541 PMCID: PMC1932916 DOI: 10.1128/iai.00277-07] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Infection with Leishmania major triggers several pathways in the host cell that are crucial to initial infection as well as those that are used by Leishmania to enhance its replication and virulence. To identify the molecular events of the host cell in response to Leishmania, the global gene expression of the human monocytic cell line THP-1 either infected with Leishmania major in the presence and absence of gamma interferon (IFN-gamma) or in the presence of IFN-gamma alone was analyzed using high-density human oligonucleotide microarrays, followed by statistical analysis. The persistence of the parasite despite an extensive response to IFN-gamma, added 24 h after infection with L. major, suggests that L. major can survive in an IFN-gamma-enriched environment in vitro. Results demonstrate that L. major counteracts the IFN-gamma response in macrophages on a large scale. Expression of genes involved in the innate immune response, cell adhesion, proteasomal degradation, Toll-like receptor expression, a variety of signaling molecules, and matrix metalloproteinases was significantly modulated.
Collapse
Affiliation(s)
- Nisha Dogra
- Immunity and Infection Research Centre, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
41
|
Hedegaard J, Skovgaard K, Mortensen S, Sørensen P, Jensen TK, Hornshøj H, Bendixen C, Heegaard PMH. Molecular characterisation of the early response in pigs to experimental infection with Actinobacillus pleuropneumoniae using cDNA microarrays. Acta Vet Scand 2007; 49:11. [PMID: 17466061 PMCID: PMC1868913 DOI: 10.1186/1751-0147-49-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Accepted: 04/27/2007] [Indexed: 12/02/2022] Open
Abstract
Background The bacterium Actinobacillus pleuropneumoniae is responsible for porcine pleuropneumonia, a widespread, highly contagious and often fatal respiratory disease of pigs. The general porcine innate immune response after A. pleuropneumoniae infection is still not clarified. The objective of this study was hence to characterise the transcriptional response, measured by using cDNA microarrays, in pigs 24 hours after experimental inoculation with A. pleuropneumoniae. Methods Microarray analyses were conducted to reveal genes being differentially expressed in inflamed versus non-inflamed lung tissue sampled from inoculated animals as well as in liver and tracheobronchial lymph node tissue sampled from three inoculated animals versus two non-inoculated animals. The lung samples were studied using a porcine cDNA microarray with 5375 unique PCR products while liver tissue and tracheobronchial lymph node tissue were hybridised to an expanded version of the porcine microarray with 26879 unique PCR products. Results A total of 357 genes differed significantly in expression between infected and non-infected lung tissue, 713 genes differed in expression in liver tissue from infected versus non-infected animals and 130 genes differed in expression in tracheobronchial lymph node tissue from infected versus non-infected animals. Among these genes, several have previously been described to be part of a general host response to infections encoding immune response related proteins. In inflamed lung tissue, genes encoding immune activating proteins and other pro-inflammatory mediators of the innate immune response were found to be up-regulated. Genes encoding different acute phase reactants were found to be differentially expressed in the liver. Conclusion The obtained results are largely in accordance with previous studies of the mammalian immune response. Furthermore, a number of differentially expressed genes have not previously been associated with infection or are presently unidentified. Determination of their specific roles during infection may lead to a better understanding of innate immunity in pigs. Although additional work including more animals is clearly needed to elucidate host response to porcine pleuropneumonia, the results presented in this study demonstrate three subsets of genes consistently expressed at different levels depending upon infection status.
Collapse
|
42
|
Branen JR, Hass MJ, Maki WC, Branen AL. An enzymatic bionanotransduction system for multianalyte biological detection. J Appl Microbiol 2007; 102:892-908. [PMID: 17381732 DOI: 10.1111/j.1365-2672.2007.03300.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM The aim of this study was to develop and optimize a system for the detection of multiple biological targets in a single sample based on enzymatic bionanotransduction. METHOD AND RESULTS We used biological recognition elements (antibodies, DNA sequences) linked to DNA templates with T7 promoter regions for detection of specific target molecules. In vitro transcription of DNA templates bound to target molecules produced RNA nanosignals specific for every target in the sample. An enzyme-linked oligonucleotide fluorescence assay (ELOFA) provided a correlation between nanosignal profiles and target concentrations. The system was capable of detecting and distinguishing three species of specific immunoglobulin G (IgG) molecules at a level of 0.2 ng, mixed protein and DNA targets and single sample detection of Escherichia coli O157 micro-organisms and Staphylococcal enterotoxin B (SEB). CONCLUSIONS This report provided proof of concept for the use of enzymatic bionanotransduction with multianalyte biological detection based on differential nanosignal hybridization along with the application of this system to pathogen/toxin detection. SIGNIFICANCE AND IMPACT OF THE STUDY This system has the potential to be used as a tool for detection of multiple foodborne and environmental pathogens, toxins and targets of interest in a single sample.
Collapse
Affiliation(s)
- J R Branen
- University of Idaho, Post Falls, Idaho, USA.
| | | | | | | |
Collapse
|
43
|
Hasegawa Y, Mans JJ, Mao S, Lopez MC, Baker HV, Handfield M, Lamont RJ. Gingival epithelial cell transcriptional responses to commensal and opportunistic oral microbial species. Infect Immun 2007; 75:2540-7. [PMID: 17307939 PMCID: PMC1865734 DOI: 10.1128/iai.01957-06] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Transcriptional profiling and ontology tools were utilized to define the biological pathways of gingival epithelial cells modulated by coculture with the oral commensal Streptococcus gordonii and the opportunistic commensal Fusobacterium nucleatum. Overall, F. nucleatum and S. gordonii perturbed the gingival epithelial cell transcriptome much less significantly than the oral pathogens Porphyromonas gingivalis and Aggregatibacter actinomycetemcomitans perturbed the transcriptome, indicating that there was a greater degree of host adaptation by the commensal species (M. Handfield, J. J. Mans, G. Zheng, M. C. Lopez, S. Mao, A. Progulske-Fox, G. Narasimhan, H. V. Baker, and R. J. Lamont, Cell. Microbiol. 7:811-823, 2005). The biological pathways significantly impacted by F. nucleatum and S. gordonii included the mitogen-activated protein kinase (MAPK) and Toll-like receptor signaling pathways. Differential regulation of GADD45 and DUSP4, key components of the MAPK pathway, was confirmed at the protein level by Western blotting. Modulation of the MAPK pathway is likely to affect host cell proliferation and differentiation. In addition, both the MAPK and Toll-like receptor pathways ultimately converge on cytokine gene expression. An enzyme-linked immunosorbent assay of secreted interleukin-6 (IL-6) and IL-8 demonstrated that F. nucleatum induced production of these cytokines, whereas S. gordonii inhibited secretion from the epithelial cells. Stimulation of secretion of proinflammatory cytokines from epithelial cells may reflect the invasive phenotype of F. nucleatum and contribute to the greater pathogenic potential of F. nucleatum than of S. gordonii.
Collapse
Affiliation(s)
- Yoshiaki Hasegawa
- Department of Oral Biology and Center for Molecular Microbiology, College of Dentistry, University of Florida, Gainesville, FL 32610-0424, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
van Munster M, Willis LG, Elias M, Erlandson MA, Brousseau R, Theilmann DA, Masson L. Analysis of the temporal expression of Trichoplusia ni single nucleopolyhedrovirus genes following transfection of BT1-Tn-5B1-4 cells. Virology 2006; 354:154-66. [PMID: 16872655 DOI: 10.1016/j.virol.2006.06.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Revised: 05/23/2006] [Accepted: 06/12/2006] [Indexed: 11/24/2022]
Abstract
Trichoplusia ni single nucleopolyhedrovirus (TnSNPV), a 134,394-bp double-stranded DNA group II Nucleopolyhedrovirus, is pathogenic to the lepidopteran T. ni. TnSNPV transcription is temporally regulated and divided into three promoter sequence-dependent classes (early, late and very late genes). A viral oligonucleotide DNA microarray containing all potential (144) viral genes of TnSNPV was designed to investigate global viral gene expression during cell infection. Total BT1-Tn-5B1-4 cellular mRNAs extracted between 0 and 72 h posttransfection with TnSNPV genomic DNA were hybridized to the microarray. Initial average expression of early genes was detected between 12 and 24 h posttransfection while late genes were mainly detected between 24 and 72 h posttransfection. The microarray expression profiling data verified many computer predicted promoter assignments. K-means clustering was used to sort the 144 genes based on their temporal expression pattern similarities. This clustering resulted in the confirmation and temporal class assignment of previously unidentified genes and promoters.
Collapse
Affiliation(s)
- Manuela van Munster
- Biotechnology Research Institute, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, Quebec, Canada H4P 2R2.
| | | | | | | | | | | | | |
Collapse
|
45
|
Jayaraman A, Hall CK, Genzer J. Computer simulation study of molecular recognition in model DNA microarrays. Biophys J 2006; 91:2227-36. [PMID: 16940474 PMCID: PMC1557571 DOI: 10.1529/biophysj.106.086173] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2006] [Accepted: 05/31/2006] [Indexed: 11/18/2022] Open
Abstract
DNA microarrays have been widely adopted by the scientific community for a variety of applications. To improve the performance of microarrays there is a need for a fundamental understanding of the interplay between the various factors that affect microarray sensitivity and specificity. We use lattice Monte Carlo simulations to study the thermodynamics and kinetics of hybridization of single-stranded target genes in solution with complementary probe DNA molecules immobilized on a microarray surface. The target molecules in our system contain 48 segments and the probes tethered on a hard surface contain 8-24 segments. The segments on the probe and target are distinct and each segment represents a sequence of nucleotides ( approximately 11 nucleotides). Each probe segment interacts exclusively with its unique complementary target segment with a single hybridization energy; all other interactions are zero. We examine how the probe length, temperature, or hybridization energy, and the stretch along the target that the probe segments complement, affect the extent of hybridization. For systems containing single probe and single target molecules, we observe that as the probe length increases, the probability of binding all probe segments to the target decreases, implying that the specificity decreases. We observe that probes 12-16 segments ( approximately 132-176 nucleotides) long gave the highest specificity and sensitivity. This agrees with the experimental results obtained by another research group, who found an optimal probe length of 150 nucleotides. As the hybridization energy increases, the longer probes are able to bind all their segments to the target, thus improving their specificity. The hybridization kinetics reveals that the segments at the ends of the probe are most likely to start the hybridization. The segments toward the center of the probe remain bound to the target for a longer time than the segments at the ends of the probe.
Collapse
Affiliation(s)
- Arthi Jayaraman
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | | | | |
Collapse
|
46
|
Skovgaard K, Grell SN, Heegaard PMH, Jungersen G, Pudrith CB, Coussens PM. Differential expression of genes encoding CD30L and P-selectin in cattle with Johne's disease: Progress toward a diagnostic gene expression signature. Vet Immunol Immunopathol 2006; 112:210-24. [PMID: 16621022 DOI: 10.1016/j.vetimm.2006.02.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Revised: 01/09/2006] [Accepted: 02/27/2006] [Indexed: 10/24/2022]
Abstract
Mycobacterium avium subspecies paratuberculosis (Mycobacterium paratuberculosis), the causative agent of paratuberculosis (paraTB) or Johne's disease in ruminants, is a health problem for the global cattle industry with significant economic losses related to decreased milk production and reduced fertility. Commonly paraTB in cattle is diagnosed by antibody detection by serum enzyme-linked immunosorbent assay (ELISA), by detection of the pathogen by cultivation of individual faecal samples, or by in vitro measurement of cell mediated immune responses using the IFN-gamma test. There is an ongoing need for developing new diagnostic approaches as all currently available diagnostic tests for paraTB may fail to detect sub-clinical infection. We used cDNA microarrays to simultaneously measure expression of over 1300 host genes to help identify a subset of gene expression changes that might provide a unique gene expression signature for paraTB infection. In the present study, non-stimulated leukocytes isolated from 10 sub-clinical paraTB infected cows were examined for genes being expressed at significantly different levels than in similar cells from control cows with the same herd background. We included cattle (Holstein) from two locations (Denmark and USA) for the microarray experiment. Our results indicate that expression profiles of at least 52 genes are different in leukocytes from M. paratuberculosis infected cattle compared to control cattle. Gene expression differences were verified by quantitative real-time reverse transcriptase polymerase chain reactions (qRT-PCR) on the same group of cattle (Holstein) used for the microarray experiment. In order to assess the generality of the observed gene expression, a second and different group of cattle (Jersey) was also examined using qRT-PCR. Out of the seven genes selected for qRT-PCR, CD30 ligand (CD30L) and P-selectin were consistently differentially expressed in freshly isolated leukocytes from paraTB infected and control animals of both breeds of cattle. Although further work is clearly needed to develop a more complete gene expression signature specific for paraTB, our results demonstrate that a subset of genes in leukocytes are consistently expressed at different levels, depending upon M. paratuberculosis infection status.
Collapse
Affiliation(s)
- Kerstin Skovgaard
- Department of Veterinary Diagnostics and Research, Danish Institute for Food and Veterinary Research, Bülowsvej 27, DK-1790 Copenhagen V, Denmark.
| | | | | | | | | | | |
Collapse
|
47
|
Trtkova J, Raclavsky V. MOLECULAR-GENETIC APPROACHES TO IDENTIFICATION AND TYPING OF PATHOGENIC CANDIDA YEASTS. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2006; 150:51-61. [PMID: 16936901 DOI: 10.5507/bp.2006.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Currently, invasive candidal infections represent an increasing cause of morbidity and mortality in seriously ill hospitalised patients. Because the accurate diagnosis of candidiasis remains difficult, a fast and reliable assay for characterization of fungal pathogens is critical for the early initiation of adequate antifungal therapy and/or for introduction of preventive measures. As novel molecular genetic techniques are continuously introduced, their role in the management of infectious diseases has also been growing. Today, molecular strategies complement conventional methods and provide more accurate and detailed insight. It can be expected that future technical development will improve their potential furthermore. In this article, we provide a critical review on the value and limitations of molecular tools in pathogenic Candida species identification and strain typing regarding their sensitivity, discriminatory power, reproducibility, cost and ease of performance.
Collapse
Affiliation(s)
- Jitka Trtkova
- Department of Biology, Faculty of Medicine, Palacký University, Hnevotínská 3, Olomouc, Czech Republic.
| | | |
Collapse
|
48
|
Zhang H, Su YA, Hu P, Yang J, Zheng B, Wu P, Peng J, Tang Y, Zhang L. Signature patterns revealed by microarray analyses of mice infected with influenza virus A and Streptococcus pneumoniae. Microbes Infect 2006; 8:2172-85. [PMID: 16797204 PMCID: PMC7110625 DOI: 10.1016/j.micinf.2006.04.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2006] [Revised: 03/31/2006] [Accepted: 04/10/2006] [Indexed: 01/07/2023]
Abstract
We used cDNA microarrays to identify differentially expressed genes in mice in response to infections with influenza virus A/PR/8/34 (H1N1) and Streptococcus pneumoniae. Expression microarray analysis showed up-regulation and down-regulation of many genes involved in the defense, inflammatory response and intracellular signaling pathways including chemokine, apoptosis, MAPK, Notch, Jak-STAT, T-cell receptor and complement and coagulation cascades. We have revealed signature patterns of gene expression in mice infected with two different classes of pathogens: influenza virus A and S. pneumoniae. Quantitative real-time RT-PCR results confirmed microarray results for most of the genes tested. These studies document clear differences in gene expression profiles between mice infected with influenza virus A and S. pneumoniae. Identification of genes that are differentially expressed after respiratory infections can provide insights into the mechanisms by which the host interacts with different pathogens, useful information about stage of diseases and selection of suitable targets for early diagnosis and treatments. The advantage of this novel approach is that the detection of pathogens is based on the differences in host gene expression profiles in response to different pathogens instead of detecting pathogens directly.
Collapse
Affiliation(s)
- Hong Zhang
- Z-BioMed Inc., 15725 Crabbs Branch Way, Rockville, MD 20855, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Abstract
For over a century, vaccines were developed according to Pasteur's principles of isolating, inactivating and injecting the causative agent of an infectious disease. The availability of a complete microbial genome sequence in 1995 marked the beginning of a genomic era that has allowed scientists to change the paradigm and approach vaccine development starting from genomic information, a process named reverse vaccinology. This can be considered as one of the most powerful examples of how genomic information can be used to develop therapeutic interventions, which were difficult or impossible to tackle with conventional approaches. As the genomic era progressed, it became apparent that multi-strain genome analysis is fundamental to the design of universal vaccines. In the post-genomic era, the next challenge of the vaccine biologist will be the merging of the vaccinology with structural biology.
Collapse
|
50
|
Affiliation(s)
- Dong-Eun Chang
- Advanced Center for Genome Technology, The University of Oklahoma, Norman, OK 73019, USA
| | | |
Collapse
|