1
|
Kouete MT, Longo AV, Byrne AQ, Echalle SN, Rosenblum EB, Blackburn DC. Host and environmental factors drive prevalence of the pathogen Batrachochytrium dendrobatidis in Central African amphibians. Sci Rep 2025; 15:14908. [PMID: 40295564 PMCID: PMC12037773 DOI: 10.1038/s41598-025-97367-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 04/03/2025] [Indexed: 04/30/2025] Open
Abstract
The spread of the fungal pathogen Batrachochytrium dendrobatidis (Bd) presents an escalating threat to amphibian populations globally, including in continental Africa. Focusing on Cameroon in Central Africa, we combined data from previous studies with newly sampled archived specimens and contemporary samples to investigate the emergence and dynamics of Bd, and to assess the risks it poses to local amphibian species. We find that Bd was already present in the early 1900s, with a prevalence averaging 54% (39-66, 95% CI), with the earliest record in 1905 in southern Cameroon-the earliest detection in Africa. The first detection in the mountains, which coincided with declining frog populations, occurred after 2009 and may be linked to BdCAPE, the sole lineage identified in the highlands. For the first time, we detected BdGPL in the country and confirmed that BdCAPE remains the dominant lineage. Pathogen dynamics and prevalence were strongly influenced by host factors, including taxonomic identity and ecology, and environmental variables such as precipitation and isothermality, which are likely to change with extreme weather events in the future. Our findings underscore the urgent need to address the dual threats of Bd and climate change, which together jeopardize the survival of amphibian populations in Cameroon.
Collapse
Affiliation(s)
- Marcel T Kouete
- Department of Natural History, Division of Herpetology, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA.
- School of Natural Resources and Environment, University of Florida, Gainesville, FL, USA.
| | - Ana V Longo
- Department of Biology, College of Liberal Arts & Sciences, University of Florida, Gainesville, FL, USA
| | - Allison Q Byrne
- Department of Environmental Science, Policy, & Management, University of California Berkeley, Berkeley, CA, USA
| | | | - Erica Bree Rosenblum
- Department of Environmental Science, Policy, & Management, University of California Berkeley, Berkeley, CA, USA
| | - David C Blackburn
- Department of Natural History, Division of Herpetology, Florida Museum of Natural History, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
2
|
Borteiro C, Laufer G, Gobel N, Arleo M, Kolenc F, Cortizas S, Barrasso DA, de Sá RO, Soutullo A, Ubilla M, Martínez-Debat C. Widespread occurrence of the amphibian chytrid panzootic lineage in Uruguay is constrained by climate. DISEASES OF AQUATIC ORGANISMS 2024; 158:123-132. [PMID: 38813853 DOI: 10.3354/dao03783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
The amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) causes chytridiomycosis, a disease among the main causes of amphibian declines worldwide. However, Bd studies on Neotropical amphibians from temperate areas are scarce. We present a comprehensive survey of Bd in Uruguay, in temperate central eastern South America, carried out between 2006 and 2014. Skin swabs of 535 specimens of 21 native and exotic frogs were tested by PCR. We used individual-level data to examine the relationship between infection, climatic variables, and their effects on body condition and the number of prey items found in stomach contents. Infection was widespread in free-ranging anurans with an overall prevalence of 41.9%, detected in 15 native species, wild American bullfrogs Aquarana catesbeiana, and captive specimens of Ceratophrys ornata and Xenopus laevis. Three haplotypes of the Bd ITS region were identified in native amphibians, all belonging to the global panzootic lineage (BdGPL), of which only one was present in exotic hosts. Despite high infection frequencies in different anurans, we found no evidence of morbidity or mortality attributable to chytridiomycosis, and we observed no discernible impact on body condition or consumed prey. Climatic conditions at the time of our surveys suggested that the chance of infection is associated with monthly mean temperature, mean humidity, and total precipitation. Temperatures below 21°C combined with moderate humidity and pronounced rainfall may increase the likelihood of infection. Multiple haplotypes of BdGPL combined with high frequencies of infection suggest an enzootic pattern in native species, underscoring the need for continued monitoring.
Collapse
Affiliation(s)
- Claudio Borteiro
- Sección Herpetología, Museo Nacional de Historia Natural, Montevideo 11800, Uruguay
| | - Gabriel Laufer
- Área Biodiversidad y Conservación, Museo Nacional de Historia Natural, Montevideo 11800, Uruguay
- Vida Silvestre Uruguay, Montevideo 11100, Uruguay
| | - Noelia Gobel
- Área Biodiversidad y Conservación, Museo Nacional de Historia Natural, Montevideo 11800, Uruguay
- Vida Silvestre Uruguay, Montevideo 11100, Uruguay
| | - Mailén Arleo
- Sección Bioquímica, Departamento de Biología, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Francisco Kolenc
- Sección Herpetología, Museo Nacional de Historia Natural, Montevideo 11800, Uruguay
| | - Sofía Cortizas
- Grupo de Agroecología, Sustentabilidad y Medio Ambiente, Universidad Tecnológica del Uruguay, Durazno 97000, Uruguay
| | - Diego A Barrasso
- Instituto de Diversidad y Evolución Austral (IDEAus-CONICET), and Facultad de Ciencias Naturales y Ciencias de la Salud, Universidad Nacional de la Patagonia 'San Juan Bosco' (UNPSJB), Puerto Madryn 9120, Chubut, Argentina
| | - Rafael O de Sá
- Department of Biology, University of Richmond, Richmond, Virginia 23173, USA
| | - Alvaro Soutullo
- Departamento de Ecología y Gestión Ambiental, Centro Universitario Regional del Este, Punta del Este 20100, Universidad de la República, Uruguay
| | - Martin Ubilla
- Departamento de Paleontología-ICG, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| | - Claudio Martínez-Debat
- Sección Bioquímica, Departamento de Biología, Facultad de Ciencias, Universidad de la República, Montevideo 11400, Uruguay
| |
Collapse
|
3
|
Mendoza AP, Muñoz-Maceda A, Ghersi BM, De La Puente M, Zariquiey C, Cavero N, Murillo Y, Sebastian M, Ibañez Y, Parker PG, Perez A, Uhart M, Robinson J, Olson SH, Rosenbaum MH. Diversity and prevalence of zoonotic infections at the animal-human interface of primate trafficking in Peru. PLoS One 2024; 19:e0287893. [PMID: 38324542 PMCID: PMC10849265 DOI: 10.1371/journal.pone.0287893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/01/2023] [Indexed: 02/09/2024] Open
Abstract
Wildlife trafficking creates favorable scenarios for intra- and inter-specific interactions that can lead to parasite spread and disease emergence. Among the fauna affected by this activity, primates are relevant due to their potential to acquire and share zoonoses - infections caused by parasites that can spread between humans and other animals. Though it is known that most primate parasites can affect multiple hosts and that many are zoonotic, comparative studies across different contexts for animal-human interactions are scarce. We conducted a multi-parasite screening targeting the detection of zoonotic infections in wild-caught monkeys in nine Peruvian cities across three contexts: captivity (zoos and rescue centers, n = 187); pet (households, n = 69); and trade (trafficked or recently confiscated, n = 132). We detected 32 parasite taxa including mycobacteria, simian foamyvirus, bacteria, helminths, and protozoa. Monkeys in the trade context had the highest prevalence of hemoparasites (including Plasmodium malariae/brasilianum, Trypanosoma cruzi, and microfilaria) and enteric helminths and protozoa were less common in pet monkeys. However, parasite communities showed overall low variation between the three contexts. Parasite richness (PR) was best explained by host genus and the city where the animal was sampled. Squirrel (genus Saimiri) and wooly (genus Lagothrix) monkeys had the highest PR, which was ~2.2 times the PR found in tufted capuchins (genus Sapajus) and tamarins (genus Saguinus/Leontocebus) in a multivariable model adjusted for context, sex, and age. Our findings illustrate that the threats of wildlife trafficking to One Health encompass exposure to multiple zoonotic parasites well-known to cause disease in humans, monkeys, and other species. We demonstrate these threats continue beyond the markets where wildlife is initially sold; monkeys trafficked for the pet market remain a reservoir for and contribute to the translocation of zoonotic parasites to households and other captive facilities where contact with humans is frequent. Our results have practical applications for the healthcare of rescued monkeys and call for urgent action against wildlife trafficking and ownership of monkeys as pets.
Collapse
Affiliation(s)
- A. Patricia Mendoza
- Wildlife Conservation Society - Peru Program, Lima, Peru
- Department of Biology, University of Missouri - Saint Louis, St Louis, Missouri, United States of America
- Asociación Neotropical Primate Conservation – Perú, Moyobamba, San Martín, Perú
| | - Ana Muñoz-Maceda
- School of Anthropology and Conservation, Durrell Institute of Conservation and Ecology, University of Kent, Canterbury, Kent, United Kingdom
| | - Bruno M. Ghersi
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts, United States of America
| | | | | | - Nancy Cavero
- Wildlife Conservation Society - Peru Program, Lima, Peru
| | - Yovana Murillo
- Wildlife Conservation Society - Peru Program, Lima, Peru
| | | | - Yohani Ibañez
- Wildlife Conservation Society - Peru Program, Lima, Peru
| | - Patricia G. Parker
- Department of Biology, University of Missouri - Saint Louis, St Louis, Missouri, United States of America
| | - Alberto Perez
- Servicio Nacional de Sanidad y Calidad Agroalimentaria, Buenos Aires, Argentina
| | - Marcela Uhart
- One Health Institute, University of California - Davis, Davis, California, United States of America
| | - Janine Robinson
- School of Anthropology and Conservation, Durrell Institute of Conservation and Ecology, University of Kent, Canterbury, Kent, United Kingdom
| | - Sarah H. Olson
- Wildlife Conservation Society - Health Program, Bronx, New York, United States of America
| | - Marieke H. Rosenbaum
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine at Tufts University, North Grafton, Massachusetts, United States of America
| |
Collapse
|
4
|
Gippet JMW, Sherpa Z, Bertelsmeier C. Reliability of social media data in monitoring the global pet trade in ants. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2023; 37:e13994. [PMID: 36424881 DOI: 10.1111/cobi.14041] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 09/27/2022] [Accepted: 11/16/2022] [Indexed: 05/30/2023]
Abstract
The global pet trade is a major risk to biodiversity and humans and has become increasingly globalized, diversified, digitalized, and extremely difficult to control. With billions of internet users posting online daily, social media could be a powerful surveillance tool. But it is unknown how reliably social media can track the global pet trade. We tested whether Instagram data predicted the geographic distribution of pet stores and the taxonomic composition of traded species in the emerging pet trade in ants (Hymenoptera, Formicidae). We visited 138 online stores selling ants as pets worldwide and recorded the species traded. We scraped ∼38,000 Instagram posts from ∼6300 users referencing ants as pets and analyzed comments on post and geolocation (available for ∼1800 users). We tested whether the number of Instagram users predicted the number of ant sellers per country and whether the species referenced as pets on Instagram matched the species offered in online stores, with a particular focus on invasive species. The location of Instagram users referencing ants as pets predicted the location of ant sellers across the globe (R2 = 0.87). Instagram data detected 439 of the 631 ant species traded in online stores (70%), including 59 of the 68 invasive species traded (87%). The number of Instagram users referencing a species was a good predictor of the number of sellers offering the species (R2 = 0.77). Overall, Instagram data provided affordable and reliable data for monitoring the emerging pet trade in ants. Easier access to these data would facilitate monitoring of the global pet trade and help implement relevant regulations in a timely manner.
Collapse
Affiliation(s)
- Jérôme M W Gippet
- Department of Ecology and evolution, University of Lausanne, Lausanne, Switzerland
| | - Zoé Sherpa
- Department of Ecology and evolution, University of Lausanne, Lausanne, Switzerland
| | - Cleo Bertelsmeier
- Department of Ecology and evolution, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
5
|
Ghose SL, Yap TA, Byrne AQ, Sulaeman H, Rosenblum EB, Chan-Alvarado A, Chaukulkar S, Greenbaum E, Koo MS, Kouete MT, Lutz K, McAloose D, Moyer AJ, Parra E, Portik DM, Rockney H, Zink AG, Blackburn DC, Vredenburg VT. Continent-wide recent emergence of a global pathogen in African amphibians. FRONTIERS IN CONSERVATION SCIENCE 2023. [DOI: 10.3389/fcosc.2023.1069490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023] Open
Abstract
IntroductionEmerging infectious diseases are increasingly recognized as a global threat to wildlife. Pandemics in amphibians, caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd), have resulted in biodiversity loss at a global scale. Genomic data suggest a complex evolutionary history of Bd lineages that vary in pathogenicity. Africa harbors a significant proportion of global amphibian biodiversity, and multiple Bd lineages are known to occur there; yet, despite the decline of many host species, there are currently no described Bd-epizootics. Here, we describe the historical and recent biogeographical spread of Bd and assess its risk to amphibians across the continent of Africa.MethodsWe provide a 165-year view of host-pathogen interactions by (i) employing a Bd assay to test 4,623 specimens (collected 1908–2013); (ii) compiling 12,297 published Bd records (collected 1852–2017); (iii) comparing the frequency of Bd-infected amphibians through time by both country and region; (iv) genotyping Bd lineages; (v) histologically identifying evidence of chytridiomycosis, and (vi) using a habitat suitability model to assess future Bd risk.ResultsWe found a pattern of Bd emergence beginning largely at the turn of the century. From 1852–1999, we found low Bd prevalence (3.2% overall) and limited geographic spread, but after 2000 we documented a sharp increase in prevalence (18.7% overall), wider geographic spread, and multiple Bd lineages that may be responsible for emergence in different regions. We found that Bd risk to amphibians was highest in much of eastern, central, and western Africa.DiscussionOur study documents a largely overlooked yet significant increase in a fungal pathogen that could pose a threat to amphibians across an entire continent. We emphasize the need to bridge historical and contemporary datasets to better describe and predict host-pathogen dynamics over larger temporal scales.
Collapse
|
6
|
Schilliger L, Paillusseau C, François C, Bonwitt J. Major Emerging Fungal Diseases of Reptiles and Amphibians. Pathogens 2023; 12:pathogens12030429. [PMID: 36986351 PMCID: PMC10053826 DOI: 10.3390/pathogens12030429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/16/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Emerging infectious diseases (EIDs) are caused by pathogens that have undergone recent changes in terms of geographic spread, increasing incidence, or expanding host range. In this narrative review, we describe three important fungal EIDs with keratin trophism that are relevant to reptile and amphibian conservation and veterinary practice. Nannizziopsis spp. have been mainly described in saurians; infection results in thickened, discolored skin crusting, with eventual progression to deep tissues. Previously only reported in captive populations, it was first described in wild animals in Australia in 2020. Ophidiomyces ophidiicola (formely O. ophiodiicola) is only known to infect snakes; clinical signs include ulcerating lesions in the cranial, ventral, and pericloacal regions. It has been associated with mortality events in wild populations in North America. Batrachochytrium spp. cause ulceration, hyperkeratosis, and erythema in amphibians. They are a major cause of catastrophic amphibian declines worldwide. In general, infection and clinical course are determined by host-related characteristics (e.g., nutritional, metabolic, and immune status), pathogens (e.g., virulence and environmental survival), and environment (e.g., temperature, hygrometry, and water quality). The animal trade is thought to be an important cause of worldwide spread, with global modifications in temperature, hygrometry, and water quality further affecting fungal pathogenicity and host immune response.
Collapse
Affiliation(s)
- Lionel Schilliger
- Argos Veterinary Clinic of Paris Auteuil, 35 Rue Leconte de Lisle, 75016 Paris, France
- SpéNac Referral Center, 100 Boulevard de la Tour Maubourg, 75007 Paris, France
- Correspondence: ; Tel.: +33-188-616-831
| | - Clément Paillusseau
- Argos Veterinary Clinic of Paris Auteuil, 35 Rue Leconte de Lisle, 75016 Paris, France
- SpéNac Referral Center, 100 Boulevard de la Tour Maubourg, 75007 Paris, France
| | - Camille François
- Argos Veterinary Clinic of Paris Auteuil, 35 Rue Leconte de Lisle, 75016 Paris, France
- SpéNac Referral Center, 100 Boulevard de la Tour Maubourg, 75007 Paris, France
| | - Jesse Bonwitt
- Department of Anthropology, Durham University, South Rd., Durham DH1 3LE, UK
| |
Collapse
|
7
|
Peñafiel-Ricaurte A, Price SJ, Leung WTM, Alvarado-Rybak M, Espinoza-Zambrano A, Valdivia C, Cunningham AA, Azat C. Is Xenopus laevis introduction linked with Ranavirus incursion, persistence and spread in Chile? PeerJ 2023; 11:e14497. [PMID: 36874973 PMCID: PMC9979829 DOI: 10.7717/peerj.14497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 11/10/2022] [Indexed: 03/03/2023] Open
Abstract
Ranaviruses have been associated with amphibian, fish and reptile mortality events worldwide and with amphibian population declines in parts of Europe. Xenopus laevis is a widespread invasive amphibian species in Chile. Recently, Frog virus 3 (FV3), the type species of the Ranavirus genus, was detected in two wild populations of this frog near Santiago in Chile, however, the extent of ranavirus infection in this country remains unknown. To obtain more information about the origin of ranavirus in Chile, its distribution, species affected, and the role of invasive amphibians and freshwater fish in the epidemiology of ranavirus, a surveillance study comprising wild and farmed amphibians and wild fish over a large latitudinal gradient (2,500 km) was carried out in 2015-2017. In total, 1,752 amphibians and 496 fish were tested using a ranavirus-specific qPCR assay, and positive samples were analyzed for virus characterization through whole genome sequencing of viral DNA obtained from infected tissue. Ranavirus was detected at low viral loads in nine of 1,011 X. laevis from four populations in central Chile. No other amphibian or fish species tested were positive for ranavirus, suggesting ranavirus is not threatening native Chilean species yet. Phylogenetic analysis of partial ranavirus sequences showed 100% similarity with FV3. Our results show a restricted range of ranavirus infection in central Chile, coinciding with X. laevis presence, and suggest that FV3 may have entered the country through infected X. laevis, which appears to act as a competent reservoir host, and may contribute to the spread the virus locally as it invades new areas, and globally through the pet trade.
Collapse
Affiliation(s)
- Alexandra Peñafiel-Ricaurte
- Sustainability Research Centre & PhD in Conservation Medicine Program, Life Sciences Faculty, Universidad Andres Bello, Santiago, Chile.,Institute of Zoology, Zoological Society of London, London, United Kingdom
| | | | - William T M Leung
- Institute of Zoology, Zoological Society of London, London, United Kingdom
| | - Mario Alvarado-Rybak
- Sustainability Research Centre & PhD in Conservation Medicine Program, Life Sciences Faculty, Universidad Andres Bello, Santiago, Chile.,Institute of Zoology, Zoological Society of London, London, United Kingdom.,Núcleo de Ciencias Aplicadas en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de las Américas, Santiago, Chile
| | - Andrés Espinoza-Zambrano
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Catalina Valdivia
- Sustainability Research Centre & PhD in Conservation Medicine Program, Life Sciences Faculty, Universidad Andres Bello, Santiago, Chile
| | | | - Claudio Azat
- Sustainability Research Centre & PhD in Conservation Medicine Program, Life Sciences Faculty, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
8
|
Fu M, Waldman B. Novel chytrid pathogen variants and the global amphibian pet trade. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2022; 36:e13938. [PMID: 35561039 DOI: 10.1111/cobi.13938] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 02/25/2022] [Indexed: 06/15/2023]
Abstract
Global wildlife trade spreads emerging infectious diseases that threaten biodiversity. The amphibian chytrid pathogen Batrachochytrium dendrobatidis (Bd) has caused population declines and species extinctions worldwide except in Asia. Fire-bellied toads (Bombina orientalis), exported in large numbers from Asia, are tolerant of Bd and carry hypervirulent ancestral chytrid BdAsia-1 variants. We assayed the virulence of a new isolate of BdAsia-1 on the model Australasian frog host Litoria caerulea. Infected individuals (n = 15) all showed rapid disease progression culminating in death, whereas sham-inoculated individuals (n = 10) presented no clinical signs of disease and all survived (log rank test, χ2 = 15.6, df = 1, p < 0.0001). The virulence of the new isolate of BdAsia-1 is comparable to the one we assayed previously (χ2 = 0.0, df = 1, p = 0.91). Internationally traded wildlife, even when they appear healthy, can carry hypervirulent variants of pathogens. Once new pathogen variants escape into the environment, native species that have had no opportunity to evolve resistance to them may perish. Our study suggests that hypervirulent pathogens are being spread by the international pet trade. Notifiable wildlife diseases attributable to locally endemic pathogens often fail to generate conservation concern so are rarely subject to border surveillance or import controls. Because of the danger novel variants pose, national border control agencies need to implement disease screening and quarantine protocols to ensure the safety of their endemic fauna.
Collapse
Affiliation(s)
- Minjie Fu
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Bruce Waldman
- School of Biological Sciences, Seoul National University, Seoul, South Korea
- Department of Integrative Biology, Oklahoma State University, Stillwater, Oklahoma, USA
| |
Collapse
|
9
|
Schmeller DS, Cheng T, Shelton J, Lin CF, Chan-Alvarado A, Bernardo-Cravo A, Zoccarato L, Ding TS, Lin YP, Swei A, Fisher MC, Vredenburg VT, Loyau A. Environment is associated with chytrid infection and skin microbiome richness on an amphibian rich island (Taiwan). Sci Rep 2022; 12:16456. [PMID: 36180528 PMCID: PMC9525630 DOI: 10.1038/s41598-022-20547-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 09/14/2022] [Indexed: 11/09/2022] Open
Abstract
Growing evidence suggests that the origins of the panzootic amphibian pathogens Batrachochytrium dendrobatidis (Bd) and Batrachochytrium salamandrivorans (Bsal) are in Asia. In Taiwan, an island hotspot of high amphibian diversity, no amphibian mass mortality events linked to Bd or Bsal have been reported. We conducted a multi-year study across this subtropical island, sampling 2517 individuals from 30 species at 34 field sites, between 2010 and 2017, and including 171 museum samples collected between 1981 and 2009. We analyzed the skin microbiome of 153 samples (6 species) from 2017 in order to assess any association between the amphibian skin microbiome and the probability of infection amongst different host species. We did not detect Bsal in our samples, but found widespread infection by Bd across central and northern Taiwan, both taxonomically and spatially. Museum samples show that Bd has been present in Taiwan since at least 1990. Host species, geography (elevation), climatic conditions and microbial richness were all associated with the prevalence of infection. Host life-history traits, skin microbiome composition and phylogeny were associated with lower prevalence of infection for high altitude species. Overall, we observed low prevalence and burden of infection in host populations, suggesting that Bd is enzootic in Taiwan where it causes subclinical infections. While amphibian species in Taiwan are currently threatened by habitat loss, our study indicates that Bd is in an endemic equilibrium with the populations and species we investigated. However, ongoing surveillance of the infection is warranted, as changing environmental conditions may disturb the currently stable equilibrium.
Collapse
Affiliation(s)
- Dirk S Schmeller
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, INPT, UPS, Toulouse, France
| | - Tina Cheng
- Department of Biology, San Francisco State University, 1600 Holloway Ave, San Francisco, CA, 94132, USA
- Bat Conservation International, Washington, DC, USA
| | - Jennifer Shelton
- Department of Infectious Disease Epidemiology, Imperial College London, London, W2 1PG, UK
| | - Chun-Fu Lin
- Zoology Division, Endemic Species Research Institute, Jiji, Nantou, Taiwan, ROC
| | - Alan Chan-Alvarado
- Department of Biology, San Francisco State University, 1600 Holloway Ave, San Francisco, CA, 94132, USA
| | - Adriana Bernardo-Cravo
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, INPT, UPS, Toulouse, France
| | - Luca Zoccarato
- Department of Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Alte Fischerhütte 2, 16775, Stechlin, Germany
| | - Tzung-Su Ding
- School of Forestry and Resource Conservation, National Taiwan University, Taipei City, 106, Taiwan, ROC
| | - Yu-Pin Lin
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan, ROC
| | - Andrea Swei
- Department of Biology, San Francisco State University, 1600 Holloway Ave, San Francisco, CA, 94132, USA
| | - Matthew C Fisher
- Department of Infectious Disease Epidemiology, Imperial College London, London, W2 1PG, UK
| | - Vance T Vredenburg
- Department of Biology, San Francisco State University, 1600 Holloway Ave, San Francisco, CA, 94132, USA
- Museum of Vertebrate Zoology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Adeline Loyau
- Laboratoire Ecologie Fonctionnelle et Environnement, Université de Toulouse, INPT, UPS, Toulouse, France.
- Department of Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Alte Fischerhütte 2, 16775, Stechlin, Germany.
| |
Collapse
|
10
|
Levitt BB, Lai HC, Manville AM. Effects of non-ionizing electromagnetic fields on flora and fauna, Part 2 impacts: how species interact with natural and man-made EMF. REVIEWS ON ENVIRONMENTAL HEALTH 2022; 37:327-406. [PMID: 34243228 DOI: 10.1515/reveh-2021-0050] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/26/2021] [Indexed: 06/13/2023]
Abstract
Ambient levels of nonionizing electromagnetic fields (EMF) have risen sharply in the last five decades to become a ubiquitous, continuous, biologically active environmental pollutant, even in rural and remote areas. Many species of flora and fauna, because of unique physiologies and habitats, are sensitive to exogenous EMF in ways that surpass human reactivity. This can lead to complex endogenous reactions that are highly variable, largely unseen, and a possible contributing factor in species extinctions, sometimes localized. Non-human magnetoreception mechanisms are explored. Numerous studies across all frequencies and taxa indicate that current low-level anthropogenic EMF can have myriad adverse and synergistic effects, including on orientation and migration, food finding, reproduction, mating, nest and den building, territorial maintenance and defense, and on vitality, longevity and survivorship itself. Effects have been observed in mammals such as bats, cervids, cetaceans, and pinnipeds among others, and on birds, insects, amphibians, reptiles, microbes and many species of flora. Cyto- and geno-toxic effects have long been observed in laboratory research on animal models that can be extrapolated to wildlife. Unusual multi-system mechanisms can come into play with non-human species - including in aquatic environments - that rely on the Earth's natural geomagnetic fields for critical life-sustaining information. Part 2 of this 3-part series includes four online supplement tables of effects seen in animals from both ELF and RFR at vanishingly low intensities. Taken as a whole, this indicates enough information to raise concerns about ambient exposures to nonionizing radiation at ecosystem levels. Wildlife loss is often unseen and undocumented until tipping points are reached. It is time to recognize ambient EMF as a novel form of pollution and develop rules at regulatory agencies that designate air as 'habitat' so EMF can be regulated like other pollutants. Long-term chronic low-level EMF exposure standards, which do not now exist, should be set accordingly for wildlife, and environmental laws should be strictly enforced - a subject explored in Part 3.
Collapse
Affiliation(s)
| | - Henry C Lai
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Albert M Manville
- Advanced Academic Programs, Krieger School of Arts and Sciences, Environmental Sciences and Policy, Johns Hopkins University, Washington DC Campus, USA
| |
Collapse
|
11
|
Moubarak M, Fischhoff IR, Han BA, Castellanos AA. A spatially explicit risk assessment of salamander populations to
Batrachochytrium salamandrivorans
in the United States. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
| | | | - Barbara A. Han
- Cary Institute of Ecosystem Studies Millbrook New York USA
| | | |
Collapse
|
12
|
Smith JA, Quesada T, Alake G, Anger N. Transcontinental Dispersal of Nonendemic Fungal Pathogens through Wooden Handicraft Imports. mBio 2022; 13:e0107522. [PMID: 35766379 PMCID: PMC9426497 DOI: 10.1128/mbio.01075-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/07/2022] [Indexed: 12/03/2022] Open
Abstract
This study examined the viability and diversity of fungi harbored in imported wooden handicraft products sold in six retail stores in Florida, United States. Despite being subjected to trade regulations that require various sterilization/fumigation protocols, our study demonstrates high survival and diversity of fungi in wood products originating from at least seven countries on three continents. Among these fungi were nonendemic plant and human pathogens, as well as mycotoxin producers. Several products that are sold for use in food preparation and consumption harbored a novel (to North America) plant and human pathogen, Paecilomyces formosus. In addition, a high number of species isolated were thermophilic and included halophilic species, suggesting adaptability and selection through current wood treatment protocols that utilize heat and/or fumigation with methyl-bromide. This research suggests that current federal guidelines for imports of wooden goods are not sufficient to avoid the transit of potential live pathogens and demonstrates the need to increase safeguards at both points of origin and entry for biosecurity against introduction from invasive fungal species in wood products. Future import regulations should consider living fungi, their tolerance to extreme conditions, and their potential survival in solid substrates. Mitigation efforts may require additional steps such as more stringent fumigation and/or sterilization strategies and limiting use of wood that has not been processed to remove bark and decay. IMPORTANCE This study, the first of its kind, demonstrates the risk of importation of nonendemic foreign fungi on wooden handicrafts into the United States despite the application of sanitation protocols. Previous risk assessments of imported wood products have focused on potential for introduction of invasive arthropods (and their fungal symbionts) or have focused on other classes of wood products (timber, wooden furniture, garden products, etc.). Little to no attention has been paid to wooden handicrafts and the fungal pathogens (of plants and humans) they may carry. Due to the large size and diversity of this market, the risk for introduction of potentially dangerous pathogens is significant as illustrated by the results of this study.
Collapse
Affiliation(s)
- Jason A. Smith
- School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville, Florida, USA
| | - Tania Quesada
- School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville, Florida, USA
| | - Gideon Alake
- School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville, Florida, USA
| | - Nicolas Anger
- School of Forest, Fisheries and Geomatics Sciences, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
13
|
Ramírez-Castañeda V, Westeen EP, Frederick J, Amini S, Wait DR, Achmadi AS, Andayani N, Arida E, Arifin U, Bernal MA, Bonaccorso E, Bonachita Sanguila M, Brown RM, Che J, Condori FP, Hartiningtias D, Hiller AE, Iskandar DT, Jiménez RA, Khelifa R, Márquez R, Martínez-Fonseca JG, Parra JL, Peñalba JV, Pinto-García L, Razafindratsima OH, Ron SR, Souza S, Supriatna J, Bowie RCK, Cicero C, McGuire JA, Tarvin RD. A set of principles and practical suggestions for equitable fieldwork in biology. Proc Natl Acad Sci U S A 2022; 119:e2122667119. [PMID: 35972961 PMCID: PMC9407469 DOI: 10.1073/pnas.2122667119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Field biology is an area of research that involves working directly with living organisms in situ through a practice known as "fieldwork." Conducting fieldwork often requires complex logistical planning within multiregional or multinational teams, interacting with local communities at field sites, and collaborative research led by one or a few of the core team members. However, existing power imbalances stemming from geopolitical history, discrimination, and professional position, among other factors, perpetuate inequities when conducting these research endeavors. After reflecting on our own research programs, we propose four general principles to guide equitable, inclusive, ethical, and safe practices in field biology: be collaborative, be respectful, be legal, and be safe. Although many biologists already structure their field programs around these principles or similar values, executing equitable research practices can prove challenging and requires careful consideration, especially by those in positions with relatively greater privilege. Based on experiences and input from a diverse group of global collaborators, we provide suggestions for action-oriented approaches to make field biology more equitable, with particular attention to how those with greater privilege can contribute. While we acknowledge that not all suggestions will be applicable to every institution or program, we hope that they will generate discussions and provide a baseline for training in proactive, equitable fieldwork practices.
Collapse
Affiliation(s)
- Valeria Ramírez-Castañeda
- Museum of Vertebrate Zoology, University of California, Berkeley, CA, 94720
- Department of Integrative Biology, University of California, Berkeley, CA, 94720
| | - Erin P. Westeen
- Museum of Vertebrate Zoology, University of California, Berkeley, CA, 94720
- Department of Environmental, Science, Policy, and Management, University of California, Berkeley, CA, 94720
| | - Jeffrey Frederick
- Museum of Vertebrate Zoology, University of California, Berkeley, CA, 94720
- Department of Integrative Biology, University of California, Berkeley, CA, 94720
| | - Sina Amini
- Museum of Vertebrate Zoology, University of California, Berkeley, CA, 94720
- Department of Integrative Biology, University of California, Berkeley, CA, 94720
| | - Daniel R. Wait
- Museum of Vertebrate Zoology, University of California, Berkeley, CA, 94720
- Department of Integrative Biology, University of California, Berkeley, CA, 94720
| | - Anang S. Achmadi
- Research Center for Applied Zoology, National Research and Innovation Agency, Jawa Barat 16911, Indonesia
| | - Noviar Andayani
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia
- Research Center for Climate Change, Gedung Laboratorium Multidisiplin, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia
| | - Evy Arida
- Research Center for Applied Zoology, National Research and Innovation Agency, Jawa Barat 16911, Indonesia
| | - Umilaela Arifin
- Museum of Vertebrate Zoology, University of California, Berkeley, CA, 94720
- Centre for Taxonomy and Morphology, Leibniz Institute for the Analysis of Biodiversity Change, Hamburg 20146 Germany
| | - Moisés A. Bernal
- Department of Biological Sciences, Auburn University, Auburn, AL 36849
| | - Elisa Bonaccorso
- Laboratorio de Biología Evolutiva, Colegio de Ciencias Biológicas y Ambientales e Instituto Biósfera, Universidad San Francisco de Quito, Quito 170901, Ecuador
| | - Marites Bonachita Sanguila
- Biodiversity Informatics and Research Center, Father Saturnino Urios University, Butuan City 8600, Philippines
| | - Rafe M. Brown
- Biodiversity Institute, University of Kansas, Lawrence, KS 66044
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66044
| | - Jing Che
- State Key Laboratory of Genetic Resource and Evolution and Yunnan Key Laboratory of Biodiversity and Ecological Security of Gaoligong Mountain, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223 Kunming, China
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 650223 Kunming, China
| | - F. Peter Condori
- Museo de Biodiversidad del Perú, Cusco 08003, Perú
- Museo de Historia Natural de la Universidad Nacional de San Antonio Abad del Cusco, Cusco 08002, Perú
| | | | - Anna E. Hiller
- Museum of Natural Science, Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803
| | - Djoko T. Iskandar
- Basic Sciences Commision, Indonesian Academy of Sciences, Jakarta 10110, Indonesia
- School of Life Sciences and Technology, Institut Teknologi Bandung, Bandung 40132, Indonesia
| | - Rosa Alicia Jiménez
- Museum of Vertebrate Zoology, University of California, Berkeley, CA, 94720
- Escuela de Biología, Facultad de Ciencias Químicas y Farmacia, Universidad de San Carlos de Guatemala, Ciudad de Guatemala 01012, Guatemala
| | - Rassim Khelifa
- Institute for Resources, Environment and Sustainability, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Biology Department, Condordia University, Montreal, Quebec H4B 1R6, Canada
| | - Roberto Márquez
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109
- Michigan Society of Fellows, University of Michigan, Ann Arbor, MI 48109
| | - José G. Martínez-Fonseca
- School of Forestry, Northern Arizona University, Flagstaff, AZ 86011
- Nicaraguan Bat Conservation Program, Carazo, Nicaragua
| | - Juan L. Parra
- Grupo de Ecología y Evolución de Vertebrados, Instituto de Biología, Universidad de Antioquia, Medellín 050010, Colombia
| | - Joshua V. Peñalba
- Center for Integrative Biodiversity Discovery, Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Berlin 10115, Germany
| | - Lina Pinto-García
- Centro Interdisciplinario de Estudios sobre el Desarrollo, Universidad de los Andes, Bogotá 111711, Colombia
- Institute for Science, Innovation and Society, University of Oxford, Oxford OX2 6PN, United Kingdom
| | - Onja H. Razafindratsima
- Department of Integrative Biology, University of California, Berkeley, CA, 94720
- Mention Zoologie et Biodiversité Animale, Université d'Antananarivo, Antananarivo 101, Madagascar
| | - Santiago R. Ron
- Museo de Zoología, Escuela de Biología, Pontificia Universidad Católica del Ecuador, Quito 170525, Ecuador
| | - Sara Souza
- Environment, Health & Safety, University of California, Berkeley, CA 94720
| | - Jatna Supriatna
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia
- Research Center for Climate Change, Gedung Laboratorium Multidisiplin, Faculty of Mathematics and Natural Sciences, Universitas Indonesia, Depok 16424, Indonesia
| | - Rauri C. K. Bowie
- Museum of Vertebrate Zoology, University of California, Berkeley, CA, 94720
- Department of Integrative Biology, University of California, Berkeley, CA, 94720
| | - Carla Cicero
- Museum of Vertebrate Zoology, University of California, Berkeley, CA, 94720
| | - Jimmy A. McGuire
- Museum of Vertebrate Zoology, University of California, Berkeley, CA, 94720
- Department of Integrative Biology, University of California, Berkeley, CA, 94720
| | - Rebecca D. Tarvin
- Museum of Vertebrate Zoology, University of California, Berkeley, CA, 94720
- Department of Integrative Biology, University of California, Berkeley, CA, 94720
| |
Collapse
|
14
|
|
15
|
Li Z, Wang Q, Sun K, Feng J. Prevalence of Batrachochytrium dendrobatidis in Amphibians From 2000 to 2021: A Global Systematic Review and Meta-Analysis. Front Vet Sci 2022; 8:791237. [PMID: 34977222 PMCID: PMC8718539 DOI: 10.3389/fvets.2021.791237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022] Open
Abstract
Chytridiomycosis is an amphibian fungal disease caused by Batrachochytrium dendrobatidis (Bd), which has caused large-scale death and population declines on several continents around the world. To determine the current status of Bd infection in amphibians, we conducted a global meta-analysis. Using PubMed, ScienceDirect, SpringerLink, China National Knowledge Infrastructure (CNKI) and Wanfang database searches, we retrieved a total of 111 articles from 2000 to 2021. Based on these, we estimated the Bd prevalence to be 18.54% (95% CI: 13.76–20.52) in current extent amphibians. Among these populations, the prevalence of Bd in Asia was the lowest at 7.88% (95% CI: 1.92–8.71). Further, no Bd infection was found in Vietnam. However, the prevalence of Bd in Oceania was the highest at 36.34% (95% CI: 11.31–46.52). The Bd prevalence in Venezuela was as high as 49.77% (95% CI: 45.92–53.62). After 2009, the global Bd prevalence decreased to 18.91% (95% CI: 13.23–21.56). The prevalence of Bd in epizootic populations was significantly higher than enzootic populations. The highest prevalence of Bd was detected with real-time PCR at 20.11% (95% CI: 13.12–21.38). The prevalence of Bd in frogs was the highest at 20.04% (95% CI: 13.52–21.71), and this different host was statistically significant (P < 0.05). At the same time, we analyzed the geographic factors (longitude, latitude, elevation, rainfall and temperature) that impacted the fungal prevalence in amphibians. Our meta-analysis revealed that factors including region, disease dynamic, detection method, host and climate may be sources of the observed heterogeneity. These results indicate that chytridiomycosis was a consistent threat to amphibians from 2000 to 2021. Based on different habitat types and geographical conditions, we recommend formulating corresponding control plans and adopting reasonable and efficient biological or chemical methods to reduce the severity of such diseases.
Collapse
Affiliation(s)
- Zhongle Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China.,College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Qi Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Keping Sun
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China.,Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, China
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China.,College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| |
Collapse
|
16
|
Rivelli Zea SM, Toyotome T. Azole-resistant Aspergillus fumigatus as an emerging worldwide pathogen. Microbiol Immunol 2021; 66:135-144. [PMID: 34870333 DOI: 10.1111/1348-0421.12957] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 12/19/2022]
Abstract
Aspergillus fumigatus, a ubiquitous pathogen, causes aspergillosis in humans, especially in immunodeficient patients. Azoles are frontline antifungal drugs for treating aspergillosis. The recent global emergence of azole resistance in A. fumigatus has become a serious problem worldwide. It has arisen through two routes: long-term azole medical therapy, called the patient route, and the use of azole fungicides in its habitats especially for agricultural activities, called the environmental route. Resistant strains developed through the latter route show cross-resistance to medical azoles because of the identical molecular target Cyp51A between azole compounds used for medical treatment and agricultural disease control. In azole-resistant strains arising through the environmental route, A. fumigatus is observed frequently possessing mutations in the cyp51A gene linked to tandem repeats in the promoter region such as TR34 /L98H and TR46 /Y121F/T289A. Results of microsatellite genotyping analyses of resistant A. fumigatus strains have suggested a transboundary spread of this microorganism in many countries. Diverse actors are involved in the global highway of transmission. Therefore, the matter must be addressed as a "One Health" issue. This review presents a background of azole resistance in A. fumigatus and introduces newly discovered difficulties generated as this pathogen spreads worldwide. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
| | - Takahito Toyotome
- Department of Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine.,Diagnostic Center for Animal Health and Food Safety, Obihiro University of Agriculture and Veterinary Medicine.,Medical Mycology Research Center, Chiba University
| |
Collapse
|
17
|
Jairam R, Harris A, d'Orgeix CA. The Last South American Redoubt? Tested Surinamese Anurans Still Chytrid Free. ECOHEALTH 2021; 18:465-474. [PMID: 34862950 DOI: 10.1007/s10393-021-01566-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
Batrachochytrium dendrobatidis, a chytrid fungus infecting amphibians' cutaneous layer, is responsible for the greatest contemporary loss of amphibian biodiversity. In South America, Suriname is one of the only three countries where B. dendrobatidis infections of anurans (frogs and toads) have not been documented. To further examine this apparent gap in pathogen occurrence, frogs were sampled for B. dendrobatidis spores at eight disparate geographic locations in Suriname, including locations with high and low levels of anthropogenic activities, and near Suriname's border with Brazil and French Guiana, countries where B. dendrobatidis infections have been documented. None of the 347 frogs sampled, representing 37 species from eight families, tested positive for B. dendrobatidis. Our results provide the baseline data for future comparative testing and one of the last opportunities for a country in South America to proactively plan mitigation measures to protect amphibians from B. dendrobatidis' presumed eventual incursion into Suriname.
Collapse
Affiliation(s)
- Rawien Jairam
- National Zoological Collection of Suriname, Anton de Kom Universiteit, Paramaribo, Suriname
| | - Akira Harris
- Department of Biology, Virginia State University, P.O. Box 9064, Petersburg, VA, 23806, USA
| | - Christian A d'Orgeix
- Department of Biology, Virginia State University, P.O. Box 9064, Petersburg, VA, 23806, USA.
| |
Collapse
|
18
|
Early-diverging fungal phyla: taxonomy, species concept, ecology, distribution, anthropogenic impact, and novel phylogenetic proposals. FUNGAL DIVERS 2021; 109:59-98. [PMID: 34608378 PMCID: PMC8480134 DOI: 10.1007/s13225-021-00480-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/19/2021] [Indexed: 01/02/2023]
Abstract
The increasing number of new fungal species described from all over the world along with the use of genetics to define taxa, has dramatically changed the classification system of early-diverging fungi over the past several decades. The number of phyla established for non-Dikarya fungi has increased from 2 to 17. However, to date, both the classification and phylogeny of the basal fungi are still unresolved. In this article, we review the recent taxonomy of the basal fungi and re-evaluate the relationships among early-diverging lineages of fungal phyla. We also provide information on the ecology and distribution in Mucoromycota and highlight the impact of chytrids on amphibian populations. Species concepts in Chytridiomycota, Aphelidiomycota, Rozellomycota, Neocallimastigomycota are discussed in this paper. To preserve the current application of the genus Nephridiophaga (Chytridiomycota: Nephridiophagales), a new type species, Nephridiophaga blattellae, is proposed.
Collapse
|
19
|
Fisher MC, Pasmans F, Martel A. Virulence and Pathogenicity of Chytrid Fungi Causing Amphibian Extinctions. Annu Rev Microbiol 2021; 75:673-693. [PMID: 34351790 DOI: 10.1146/annurev-micro-052621-124212] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Ancient enzootic associations between wildlife and their infections allow evolution to innovate mechanisms of pathogenicity that are counterbalanced by host responses. However, erosion of barriers to pathogen dispersal by globalization leads to the infection of hosts that have not evolved effective resistance and the emergence of highly virulent infections. Global amphibian declines driven by the rise of chytrid fungi and chytridiomycosis are emblematic of emerging infections. Here, we review how modern biological methods have been used to understand the adaptations and counteradaptations that these fungi and their amphibian hosts have evolved. We explore the interplay of biotic and abiotic factors that modify the virulence of these infections and dissect the complexity of this disease system. We highlight progress that has led to insights into how we might in the future lessen the impact of these emerging infections. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Matthew C Fisher
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial School of Public Health, Imperial College London, London W2 1PG, United Kingdom;
| | - Frank Pasmans
- Wildlife Health Ghent, Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium
| | - An Martel
- Wildlife Health Ghent, Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium
| |
Collapse
|
20
|
Olson DH, Ronnenberg KL, Glidden CK, Christiansen KR, Blaustein AR. Global Patterns of the Fungal Pathogen Batrachochytrium dendrobatidis Support Conservation Urgency. Front Vet Sci 2021; 8:685877. [PMID: 34336978 PMCID: PMC8322974 DOI: 10.3389/fvets.2021.685877] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/15/2021] [Indexed: 12/21/2022] Open
Abstract
The amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd) is a skin pathogen that can cause the emerging infectious disease chytridiomycosis in susceptible species. It has been considered one of the most severe threats to amphibian biodiversity. We aimed to provide an updated compilation of global Bd occurrences by host taxon and geography, and with the larger global Bd dataset we reanalyzed Bd associations with environmental metrics at the world and regional scales. We also compared our Bd data compilation with a recent independent assessment to provide a more comprehensive count of species and countries with Bd occurrences. Bd has been detected in 1,375 of 2,525 (55%) species sampled, more than doubling known species infections since 2013. Bd occurrence is known from 93 of 134 (69%) countries at this writing; this compares to known occurrences in 56 of 82 (68%) countries in 2013. Climate-niche space is highly associated with Bd detection, with different climate metrics emerging as key predictors of Bd occurrence at regional scales; this warrants further assessment relative to climate-change projections. The accretion of Bd occurrence reports points to the common aims of worldwide investigators to understand the conservation concerns for amphibian biodiversity in the face of potential disease threat. Renewed calls for better mitigation of amphibian disease threats resonate across continents with amphibians, especially outside Asia. As Bd appears to be able to infect about half of amphibian taxa and sites, there is considerable room for biosecurity actions to forestall its spread using both bottom-up community-run efforts and top-down national-to-international policies. Conservation safeguards for sensitive species and biodiversity refugia are continuing priorities.
Collapse
Affiliation(s)
- Deanna H Olson
- Pacific Northwest Research Station, United States Department of Agriculture (USDA) Forest Service, Corvallis, OR, United States
| | - Kathryn L Ronnenberg
- Pacific Northwest Research Station, United States Department of Agriculture (USDA) Forest Service, Corvallis, OR, United States
| | | | - Kelly R Christiansen
- Pacific Northwest Research Station, United States Department of Agriculture (USDA) Forest Service, Corvallis, OR, United States
| | - Andrew R Blaustein
- Department of Integrative Biology, Oregon State University, Corvallis, OR, United States
| |
Collapse
|
21
|
Towards a more healthy conservation paradigm: integrating disease and molecular ecology to aid biological conservation †. J Genet 2021. [PMID: 33622992 PMCID: PMC7371965 DOI: 10.1007/s12041-020-01225-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Parasites, and the diseases they cause, are important from an ecological and evolutionary perspective because they can negatively affect host fitness and can regulate host populations. Consequently, conservation biology has long recognized the vital role that parasites can play in the process of species endangerment and recovery. However, we are only beginning to understand how deeply parasites are embedded in ecological systems, and there is a growing recognition of the important ways in which parasites affect ecosystem structure and function. Thus, there is an urgent need to revisit how parasites are viewed from a conservation perspective and broaden the role that disease ecology plays in conservation-related research and outcomes. This review broadly focusses on the role that disease ecology can play in biological conservation. Our review specifically emphasizes on how the integration of tools and analytical approaches associated with both disease and molecular ecology can be leveraged to aid conservation biology. Our review first concentrates on disease-mediated extinctions and wildlife epidemics. We then focus on elucidating how host–parasite interactions has improved our understanding of the eco-evolutionary dynamics affecting hosts at the individual, population, community and ecosystem scales. We believe that the role of parasites as drivers and indicators of ecosystem health is especially an exciting area of research that has the potential to fundamentally alter our view of parasites and their role in biological conservation. The review concludes with a broad overview of the current and potential applications of modern genomic tools in disease ecology to aid biological conservation.
Collapse
|
22
|
Distribution and Genetic Diversity of the Amphibian Chytrid in Japan. J Fungi (Basel) 2021; 7:jof7070522. [PMID: 34210103 PMCID: PMC8307550 DOI: 10.3390/jof7070522] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 06/25/2021] [Accepted: 06/27/2021] [Indexed: 11/28/2022] Open
Abstract
While research on frog chytrid fungus Batrachochytrium dendrobatidis (Bd), an infectious disease that threatens amphibian diversity, continues to advance worldwide, little progress has been made in Japan since around 2010. The reason for this is, which we pointed out in 2009, that the origin of frog chytrid fungus may be in the East Asian region, including Japan based on the Bd ITS-DNA variation, and as few cases of mass mortality caused by this fungus have been observed in wild amphibian populations in Japan, the interest of the Japanese government and the general public in Bd has waned. However, we believe that organizing the data obtained so far in Japan and distributing the status of frog chytrid fungus in Japan to the world will provide useful insight for future risk management of this pathogen. We collected more than 5500 swab samples from wild amphibians throughout Japan from 2009 to 2010. Then, we investigated the infection status using the Nested-PCR method. We sequenced the obtained DNA samples and constructed a maximum-parsimony (MP) tree to clarify the phylogenetic diversity of Bd. We detected Bd infection in 11 (nine native and two alien) amphibian species in Japan and obtained 44 haplotypes of Bd ITS-DNA. The MP tree showed a high diversity of Bd strains in Japan, suggesting that some strains belong to Bd-GPL and Bd-Brazil. Except for local populations of the Japanese giant salamanders Andrias japonicus in Honshu Island and the sword tail newts Cynops ensicauda in Okinawa Island, the Bd infection prevalence in native amphibian species was very low. The alien bullfrog Aquarana catesbeiana had high Bd infection rates in all areas where they were sampled. No Bd infection was detected in other native amphibians in the areas where giant salamanders, sword tail newts, and bullfrogs were collected, suggesting that many native amphibians are resistant to Bd infection. The sword tail newt of Okinawa Island had both the highest infectious incidence and greatest number of haplotypes. The giant salamanders also showed relatively high infection prevalence, but the infected strains were limited to those specific to this species. These two Caudata species are endemic to a limited area of Japan, and it was thought that they may have been refugia for Bd, which had been distributed in Japan Islands for a long time.
Collapse
|
23
|
Chytridiomycosis in Asian Amphibians, a Global Resource for Batrachochytrium dendrobatidis (Bd) Research. J Indian Inst Sci 2021; 101:227-241. [PMID: 34092943 PMCID: PMC8171229 DOI: 10.1007/s41745-021-00227-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/25/2021] [Indexed: 12/01/2022]
Abstract
Chytridiomycosis is an emerging infectious disease affecting amphibians globally and it is caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd). Chytridiomycosis has caused dramatic declines and even extinctions in wild amphibian populations in Europe, Australia, Central and North America. Spanning over two and a half decades, extensive research has led to discovery of epizootic and enzootic lineages of this pathogen. However, the Bd–amphibian system had garnered less attention in Asia until recently when an ancestral Bd lineage was identified in the Korean peninsula. Amphibians co-exist with the pathogen in Asia, only sub-lethal effects have been documented on hosts. Such regions are ‘coldspots’ of infection and are an important resource to understand the dynamics between the enzootic pathogen—Bd and its obligate host—amphibians. Insights into the biology of infection have provided new knowledge on the multi-faceted interaction of Bd in a hyperdiverse Asian amphibian community. We present the findings and highlight the knowledge gap that exists, and propose the ways to bridge them. We emphasize that chytridiomycosis in Asia is an important wildlife disease and it needs focussed research, as it is a dynamic front of pathogen diversity and virulence.
Collapse
|
24
|
Gippet JM, Colin T, Grangier J, Winkler F, Haond M, Dumet A, Tragust S, Mondy N, Kaufmann B. Land-cover and climate factors contribute to the prevalence of the ectoparasitic fungus Laboulbenia formicarum in its invasive ant host Lasius neglectus. FUNGAL ECOL 2021. [DOI: 10.1016/j.funeco.2021.101045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
25
|
Mangus LM, França MS, Shivaprasad HL, Wolf JC. Research-Relevant Background Lesions and Conditions in Common Avian and Aquatic Species. ILAR J 2021; 62:169-202. [PMID: 33782706 DOI: 10.1093/ilar/ilab008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/18/2020] [Accepted: 12/20/2020] [Indexed: 12/20/2022] Open
Abstract
Non-mammalian vertebrates including birds, fish, and amphibians have a long history of contributing to ground-breaking scientific discoveries. Because these species offer several experimental advantages over higher vertebrates and share extensive anatomic and genetic homology with their mammalian counterparts, they remain popular animal models in a variety of fields such as developmental biology, physiology, toxicology, drug discovery, immunology, toxicology, and infectious disease. As with all animal models, familiarity with the anatomy, physiology, and spontaneous diseases of these species is necessary for ensuring animal welfare, as well as accurate interpretation and reporting of study findings. Working with avian and aquatic species can be especially challenging in this respect due to their rich diversity and array of unique adaptations. Here, we provide an overview of the research-relevant anatomic features, non-infectious conditions, and infectious diseases that impact research colonies of birds and aquatic animals, including fish and Xenopus species.
Collapse
Affiliation(s)
- Lisa M Mangus
- Department of Molecular and Comparative Pathobiology, Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Monique S França
- Poultry Diagnostic and Research Center, The University of Georgia, Athens, Georgia, USA
| | - H L Shivaprasad
- California Animal Health and Food Safety Laboratory System, University of California, Davis, Tulare, California, USA
| | - Jeffrey C Wolf
- Experimental Pathology Laboratories, Inc., Sterling, Virginia, USA
| |
Collapse
|
26
|
González-Sánchez VH, Johnson JD, González-Solís D, Fucsko LA, Wilson LD. A review of the introduced herpetofauna of Mexico and Central America, with comments on the effects of invasive species and biosecurity methodology. Zookeys 2021; 1022:79-154. [PMID: 33762869 PMCID: PMC7960690 DOI: 10.3897/zookeys.1022.51422] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 01/24/2021] [Indexed: 12/05/2022] Open
Abstract
Among the principal causes producing detrimental effects on global biodiversity are introductions of alien species. Very few attempts to control introduced amphibians and reptiles in Middle America (Mexico and Central America) can be identified, so listings are provided for 24 exotic species, 16 translocated species, and 11 species that were removed from the introduced species listing because of lack of substantiating evidence that they are from established populations. Biosecurity methods are also identified that can be applied for preventing, controlling, and managing introduced and especially invasive species.
Collapse
Affiliation(s)
| | - Jerry D. Johnson
- Department of Biological Sciences, The University of Texas at El Paso, El Paso, 79968-0500, TX, USA
| | | | - Lydia Allison Fucsko
- Department of Humanities and Social Sciences, Swinburne University of Technology, Melbourne, Victoria, Australia
| | - Larry David Wilson
- Centro Zamorano de Biodiversidad, Escuela Agrícola Panamericana Zamorano, Departamento de Francisco Morazán, Honduras;
- 1350 Pelican Court, Homestead, 33035-1031, FL, USA
| |
Collapse
|
27
|
Usui R, Sheeran LK, Asbury AM, Blackson M. Impacts of the COVID-19 pandemic on mammals at tourism destinations: a systematic review. Mamm Rev 2021; 51:492-507. [PMID: 33821078 PMCID: PMC8014658 DOI: 10.1111/mam.12245] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 12/06/2020] [Accepted: 12/07/2020] [Indexed: 11/30/2022]
Abstract
The COVID‐19 outbreak is having an unprecedented effect on human society, but how is it affecting the mammals that people live with? Mammals that were part of tourism experiences are of concern, because they impact on people’s health and livelihoods and, since many of them are now dependent on people, we urge consideration of the status of these mammals as a result of the pandemic. We provide a systematic review of the impacts the COVID‐19 outbreak has had on mammals in tourism venues. We examine reports of diverse species in various settings responding to changes in their environments that are occurring because of the pandemic. We searched the scholarly literature, preprints, and online news sources using combinations of the search terms ‘tourism’, ‘animals’, ‘wildlife’, ‘coronavirus’, and ‘COVID‐19’. We searched Web of Science, SCOPUS, EBSCOHost, JSTOR, bioRxiv, OSFPREPRINTS, GDELT, Google News, and National Public Radio, and analysed a total of 39 news articles, one peer‐reviewed article, and six preprints. In total, we identified 92 distinct animal reports representing 48 mammal species. We used an existing tourism classification schema to categorise each article based on the situation reported, with the new addition of one context. We classified 92 separate animal reports in 46 articles into four (of six possible) contexts: mammals as attractions (n = 40 animal reports), mammals as commodities (n = 33), mammals as threats (n = 2), and unusual sightings of mammals (n = 17). Shortage of food, in danger of losing home, having an enriched/relaxed environment, spatial expansion, disease transmission, and poaching are the major impacts or events reported in these contexts. We suggest changes for each context with respect to how people interface with mammals, with the goal of improving the lives of mammals and the people dependent on them.
Collapse
Affiliation(s)
- Rie Usui
- Graduate School of Humanities and Social Sciences Hiroshima University 1-2-3 Kagamiyama, Higashihiroshima-shi Hiroshima 7398522 Japan
| | - Lori K Sheeran
- Department of Anthropology and Museum Studies, and Primate Behavior and Ecology Program Central Washington University 400 E University Way Ellensburg WA 98926 USA
| | - Ashton M Asbury
- Primate Behavior and Ecology Program Central Washington University 400 E University Way Ellensburg WA 98926 USA
| | - Maurice Blackson
- James E. Brooks Library Central Washington University 400 E University Way Ellensburg WA 98926 USA
| |
Collapse
|
28
|
Andersen D, Borzée A, Jang Y. Predicting global climatic suitability for the four most invasive anuran species using ecological niche factor analysis. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2020.e01433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
29
|
Basanta MD, Byrne AQ, Rosenblum EB, Piovia-Scott J, Parra-Olea G. Early presence of Batrachochytrium dendrobatidis in Mexico with a contemporary dominance of the global panzootic lineage. Mol Ecol 2020; 30:424-437. [PMID: 33205419 DOI: 10.1111/mec.15733] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 10/26/2020] [Accepted: 11/11/2020] [Indexed: 01/13/2023]
Abstract
Chytridiomycosis, caused by the fungus Batrachochytrium dendrobatidis (Bd), is a devastating infectious disease of amphibians. Retrospective studies using museum vouchers and genetic samples supported the hypothesis that Bd colonized Mexico from North America and then continued to spread into Central and South America, where it led to dramatic losses in tropical amphibian biodiversity (the epizootic wave hypothesis). While these studies suggest that Bd has been in Mexico since the 1970s, information regarding the historical and contemporary occurrence of different pathogen genetic lineages across the country is limited. In the current study, we investigated the historical and contemporary patterns of Bd in Mexico. We combined the swabbing of historical museum vouchers and sampling of wild amphibians with a custom Bd genotyping assay to assess the presence, prevalence, and genetic diversity of Bd over time in Mexico. We found Bd-positive museum specimens from the late 1800s, far earlier than previous records and well before recent amphibian declines. With Bd genotypes from samples collected between 1975-2019, we observed a contemporary dominance of the global panzootic lineage in Mexico and report four genetic subpopulations and potential for admixture among these populations. The observed genetic variation did not have a clear geographic signature or provide clear support for the epizootic wave hypothesis. These results provide a framework for testing new questions regarding Bd invasions and their temporal relationship to observed amphibian declines in the Americas.
Collapse
Affiliation(s)
- M Delia Basanta
- Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, México.,Posgrado en Ciencias Biológicas, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Allison Q Byrne
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA.,Museum of Vertebrate Zoology, University of California, Berkeley, CA, USA
| | - Erica Bree Rosenblum
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA.,Museum of Vertebrate Zoology, University of California, Berkeley, CA, USA
| | - Jonah Piovia-Scott
- School of Biological Sciences, Washington State University, Vancouver, BC, USA
| | - Gabriela Parra-Olea
- Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, México
| |
Collapse
|
30
|
Review: Examining the Natural Role of Amphibian Antimicrobial Peptide Magainin. Molecules 2020; 25:molecules25225436. [PMID: 33233580 PMCID: PMC7699765 DOI: 10.3390/molecules25225436] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 12/15/2022] Open
Abstract
Host defense peptides (HDPs) are a group of antimicrobial peptides (AMPs) that are crucial components of the innate immune system of many different organisms. These small peptides actively kill microbes and prevent infection. Despite the presence of AMPs in the amphibian immune system, populations of these organisms are in decline globally. Magainin is an AMP derived from the African clawed frog (Xenopus laevis) and has displayed potent antimicrobial effects against a wide variety of microbes. Included in this group of microbes are known pathogens of the African clawed frog and other amphibian species. Arguably, the most deleterious amphibious pathogen is Batrachochytrium dendrobatidis, a chytrid fungus. Investigating the mechanism of action of magainin can help understand how to effectively fight off infection. By understanding amphibian AMPs’ role in the frog, a potential conservation strategy can be developed for other species of amphibians that are susceptible to infections, such as the North American green frog (Rana clamitans). Considering that population declines of these organisms are occurring globally, this effort is crucial to protect not only these organisms but the ecosystems they inhabit as well.
Collapse
|
31
|
Castro Monzon F, Rödel MO, Jeschke JM. Tracking Batrachochytrium dendrobatidis Infection Across the Globe. ECOHEALTH 2020; 17:270-279. [PMID: 33201333 PMCID: PMC7719156 DOI: 10.1007/s10393-020-01504-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 09/21/2020] [Accepted: 09/21/2020] [Indexed: 05/17/2023]
Abstract
Infection records of Batrachochytrium dendrobatidis (Bd), a pathogen that has devastated amphibian populations worldwide, have rapidly increased since the pathogen's discovery. Dealing with so many records makes it difficult to (a) know where, when and in which species infections have been detected, (b) understand how widespread and pervasive Bd is and (c) prioritize study and management areas. We conducted a systematic review of papers and compiled a database with Bd infection records. Our dataset covers 71 amphibian families and 119 countries. The data revealed how widespread and adaptable Bd is, being able to infect over 50% of all tested amphibian species, with over 1000 confirmed host species and being present in 86 countries. The distribution of infected species is uneven among and within countries. Areas where the distributions of many infected species overlap are readily visible; these are regions where Bd likely develops well. Conversely, areas where the distributions of species that tested negative overlap, such as the Atlantic Coast in the USA, suggest the presence of Bd refuges. Finally, we report how the number of tested and infected species has changed through time, and provide a list of oldest detection records per country.
Collapse
Affiliation(s)
- Federico Castro Monzon
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, 14195, Berlin, Germany.
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587, Berlin, Germany.
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Königin-Luise-Str. 2-4, 14195, Berlin, Germany.
| | - Mark-Oliver Rödel
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Königin-Luise-Str. 2-4, 14195, Berlin, Germany
- Museum für Naturkunde - Leibniz Institute for Evolution and Biodiversity Science, Invalidenstr. 43, 10115, Berlin, Germany
| | - Jonathan M Jeschke
- Institute of Biology, Freie Universität Berlin, Königin-Luise-Str. 1-3, 14195, Berlin, Germany
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Müggelseedamm 310, 12587, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, Königin-Luise-Str. 2-4, 14195, Berlin, Germany
| |
Collapse
|
32
|
Novel parasite invasion leads to rapid demographic compensation and recovery in an experimental population of guppies. Proc Natl Acad Sci U S A 2020; 117:22580-22589. [PMID: 32848066 DOI: 10.1073/pnas.2006227117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The global movement of pathogens is altering populations and communities through a variety of direct and indirect ecological pathways. The direct effect of a pathogen on a host is reduced survival, which can lead to decreased population densities. However, theory also suggests that increased mortality can lead to no change or even increases in the density of the host. This paradoxical result can occur in a regulated population when the pathogen's negative effect on survival is countered by increased reproduction at the lower density. Here, we analyze data from a long-term capture-mark-recapture experiment of Trinidadian guppies (Poecilia reticulata) that were recently infected with a nematode parasite (Camallanus cotti). By comparing the newly infected population with a control population that was not infected, we show that decreases in the density of the infected guppy population were transient. The guppy population compensated for the decreased survival by a density-dependent increase in recruitment of new individuals into the population, without any change in the underlying recruitment function. Increased recruitment was related to an increase in the somatic growth of uninfected fish. Twenty months into the new invasion, the population had fully recovered to preinvasion densities even though the prevalence of infection of fish in the population remained high (72%). These results show that density-mediated indirect effects of novel parasites can be positive, not negative, which makes it difficult to extrapolate to how pathogens will affect species interactions in communities. We discuss possible hypotheses for the rapid recovery.
Collapse
|
33
|
Zimkus BM, Baláž V, Belasen AM, Bell RC, Channing A, Doumbia J, Fokam EB, Gonwouo LN, Greenbaum E, Gvoždík V, Hirschfeld M, Jackson K, James TY, Kusamba C, Larson JG, Mavoungou LB, Rödel MO, Zassi-Boulou AG, Penner J. Chytrid Pathogen (Batrachochytrium dendrobatidis) in African Amphibians: A Continental Analysis of Occurrences and Modeling of Its Potential Distribution. HERPETOLOGICA 2020. [DOI: 10.1655/0018-0831-76.2.201] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Breda M. Zimkus
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Vojtech Baláž
- University of Veterinary and Pharmaceutical Sciences Brno, Faculty of Veterinary Hygiene and Ecology, Department of Biology and Wildlife Diseases, 612 42 Brno, Czech Republic
| | - Anat M. Belasen
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - Rayna C. Bell
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA
| | - Alan Channing
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa
| | - Joseph Doumbia
- ONG EnviSud Guinée Commune Ratoma 030BP:558 4720 Conakry, Guinée
| | - Eric B. Fokam
- Department of Zoology and Animal Physiology, University of Buea, 00237, Cameroon
| | - LeGrand N. Gonwouo
- Laboratory of Zoology, Faculty of Sciences, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Eli Greenbaum
- Department of Biological Sciences, University of Texas at El Paso, 500 W. University Ave., El Paso, TX 79968, USA
| | - Václav Gvoždík
- Institute of Vertebrate Biology of the Czech Academy of Sciences, 603 65 Brno, Czech Republic
| | - Mareike Hirschfeld
- Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstr. 43, 10115 Berlin, Germany
| | - Kate Jackson
- Department of Biology, Whitman College, 345 Boyer Avenue, Walla Walla, WA 99362, USA
| | - Timothy Y. James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chifundera Kusamba
- Centre de Recherche en Sciences Naturelles, Département de Biologie, Lwiro, The Democratic Republic of the Congo
| | - Joanna G. Larson
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lise-Bethy Mavoungou
- Institut National de Recherche en Sciences Exactes et Naturelles (IRSEN), Cité Scientifique (Ex-ORSTOM), 2400, République du Congo
| | - Mark-Oliver Rödel
- Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstr. 43, 10115 Berlin, Germany
| | - Ange-Ghislain Zassi-Boulou
- Institut National de Recherche en Sciences Exactes et Naturelles (IRSEN), Cité Scientifique (Ex-ORSTOM), 2400, République du Congo
| | - Johannes Penner
- Museum für Naturkunde Berlin, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstr. 43, 10115 Berlin, Germany
| |
Collapse
|
34
|
Weldon C, Channing A, Misinzo G, Cunningham AA. Disease driven extinction in the wild of the Kihansi spray toad, Nectophrynoides asperginis. AFR J HERPETOL 2020. [DOI: 10.1080/21564574.2020.1752313] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Ché Weldon
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Alan Channing
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Gerald Misinzo
- SACIDS Africa Centre of Excellence for Infectious Diseases of Humans and Animals in Eastern and Southern Africa, Sokoine University of Agriculture, Morogoro, Tanzania
| | | |
Collapse
|
35
|
Abstract
Discovering that chytrid fungi cause chytridiomycosis in amphibians represented a paradigm shift in our understanding of how emerging infectious diseases contribute to global patterns of biodiversity loss. In this Review we describe how the use of multidisciplinary biological approaches has been essential to pinpointing the origins of amphibian-parasitizing chytrid fungi, including Batrachochytrium dendrobatidis and Batrachochytrium salamandrivorans, as well as to timing their emergence, tracking their cycles of expansion and identifying the core mechanisms that underpin their pathogenicity. We discuss the development of the experimental methods and bioinformatics toolkits that have provided a fuller understanding of batrachochytrid biology and informed policy and control measures.
Collapse
|
36
|
Gupta P, Robin VV, Dharmarajan G. Towards a more healthy conservation paradigm: integrating disease and molecular ecology to aid biological conservation †. J Genet 2020; 99:65. [PMID: 33622992 PMCID: PMC7371965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/23/2020] [Accepted: 05/25/2020] [Indexed: 08/23/2024]
Abstract
Parasites, and the diseases they cause, are important from an ecological and evolutionary perspective because they can negatively affect host fitness and can regulate host populations. Consequently, conservation biology has long recognized the vital role that parasites can play in the process of species endangerment and recovery. However, we are only beginning to understand how deeply parasites are embedded in ecological systems, and there is a growing recognition of the important ways in which parasites affect ecosystem structure and function. Thus, there is an urgent need to revisit how parasites are viewed from a conservation perspective and broaden the role that disease ecology plays in conservation-related research and outcomes. This review broadly focusses on the role that disease ecology can play in biological conservation. Our review specifically emphasizes on how the integration of tools and analytical approaches associated with both disease and molecular ecology can be leveraged to aid conservation biology. Our review first concentrates on disease mediated extinctions and wildlife epidemics. We then focus on elucidating how host-parasite interactions has improved our understanding of the eco-evolutionary dynamics affecting hosts at the individual, population, community and ecosystem scales. We believe that the role of parasites as drivers and indicators of ecosystem health is especially an exciting area of research that has the potential to fundamentally alter our view of parasites and their role in biological conservation. The review concludes with a broad overview of the current and potential applications of modern genomic tools in disease ecology to aid biological conservation.
Collapse
Affiliation(s)
- Pooja Gupta
- Savannah River Ecology Laboratory, University of Georgia, PO Drawer E, Aiken, SC 29801, USA.
| | | | | |
Collapse
|
37
|
Doherty‐Bone TM, Cunningham AA, Fisher MC, Garner TWJ, Ghosh P, Gower DJ, Verster R, Weldon C. Amphibian chytrid fungus in Africa – realigning hypotheses and the research paradigm. Anim Conserv 2019. [DOI: 10.1111/acv.12538] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- T. M. Doherty‐Bone
- Conservation Programs Royal Zoological Society of Scotland Edinburgh UK
- Department of Life Sciences Natural History Museum London UK
| | | | - M. C. Fisher
- School of Public Health Imperial College London London UK
| | - T. W. J. Garner
- Institute of Zoology Zoological Society of London London UK
- Unit for Environmental Sciences and Management North‐West University Potchefstroom South Africa
| | - P. Ghosh
- School of Public Health Imperial College London London UK
- Unit for Environmental Sciences and Management North‐West University Potchefstroom South Africa
| | - D. J. Gower
- Department of Life Sciences Natural History Museum London UK
| | - R. Verster
- Unit for Environmental Sciences and Management North‐West University Potchefstroom South Africa
| | - C. Weldon
- Unit for Environmental Sciences and Management North‐West University Potchefstroom South Africa
| |
Collapse
|
38
|
Hettyey A, Ujszegi J, Herczeg D, Holly D, Vörös J, Schmidt BR, Bosch J. Mitigating Disease Impacts in Amphibian Populations: Capitalizing on the Thermal Optimum Mismatch Between a Pathogen and Its Host. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00254] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
39
|
Aureoboletus projectellus (Fungi, Boletales) – An American bolete rapidly spreading in Europe as a new model species for studying expansion of macrofungi. FUNGAL ECOL 2019. [DOI: 10.1016/j.funeco.2018.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Del Valle JM, Eisthen HL. Treatment of Chytridiomycosis in Laboratory Axolotls ( Ambystoma mexicanum) and Rough-skinned Newts ( Taricha granulosa). Comp Med 2019; 69:204-211. [PMID: 31142399 DOI: 10.30802/aalas-cm-18-000090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Chytridiomycosis is an infectious disease of amphibians caused by the fungal species Batrachochytrium dendrobatidis and B. salamandrivorans and has been implicated in the population decline of amphibian species worldwide. This case report describes a successful treatment protocol for chytridiomycosis in laboratory-maintained colonies of axolotls (Ambystoma mexicanum) and rough-skinned newts (Taricha granulosa). Over 12 mo, axolotls (n = 12) in a laboratory-reared colony developed multifocal erythematous dermatitis, mainly on the distal limbs and tails. Wild-caught newts handled by the same lab personnel were housed in an adjacent room and occasionally presented with abdominal distension and lethargy. Differentials included poor water quality, pathogen infection, parasitic infestation, and trauma. Antibiotic treatment of animals according to results of bacterial culture and sensitivity, combined with bleach disinfection of aquaria, did not resolve clinical signs. Skin swabs from clinically affected axolotls submitted for a newly available commercial screen were positive for B. dendrobatidis. Additional PCR and sequencing analysis revealed chytrid-positive animals among group-housed newts in 2 clinically unaffected aquaria and suspected PCR-positives for 2 affected newt aquaria and an additional axolotl. Axolotls with skin lesions (n = 2) and newts with abdominal distension and lethargy (n = 2) underwent experimental treatment with itraconazole submersion (0.002% to 0.0025%; 5 min daily for 10 d). This pilot treatment was well tolerated and led to clinical resolution. Subsequent itraconazole treatment of the entire colony led to regrowth of extremities and restoration of normal coloration among axolotls. During treatment, the facility was decontaminated, and additional biosecurity measures were developed. PCR results after the pilot treatment and subsequent full-colony treatments (at 1 wk, 1 mo, and 6 mo after treatment) were negative for the presence of B. dendrobatidis. Because chytridiomycosis is a reportable animal disease in our state, colonies officially remained quarantined until negative PCR results were obtained at least 6 mo after treatment.
Collapse
Affiliation(s)
| | - Heather L Eisthen
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan,
| |
Collapse
|
41
|
West AM, Jarnevich CS, Young NE, Fuller PL. Evaluating Potential Distribution of High-Risk Aquatic Invasive Species in the Water Garden and Aquarium Trade at a Global Scale Based on Current Established Populations. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2019; 39:1169-1191. [PMID: 30428498 DOI: 10.1111/risa.13230] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 06/20/2018] [Accepted: 10/08/2018] [Indexed: 06/09/2023]
Abstract
Aquatic non-native invasive species are commonly traded in the worldwide water garden and aquarium markets, and some of these species pose major threats to the economy, the environment, and human health. Understanding the potential suitable habitat for these species at a global scale and at regional scales can inform risk assessments and predict future potential establishment. Typically, global habitat suitability models are fit for freshwater species with only climate variables, which provides little information about suitable terrestrial conditions for aquatic species. Remotely sensed data including topography and land cover data have the potential to improve our understanding of suitable habitat for aquatic species. In this study, we fit species distribution models using five different model algorithms for three non-native aquatic invasive species with bioclimatic, topographic, and remotely sensed covariates to evaluate potential suitable habitat beyond simple climate matches. The species examined included a frog (Xenopus laevis), toad (Bombina orientalis), and snail (Pomacea spp.). Using a unique modeling approach for each species including background point selection based on known established populations resulted in robust ensemble habitat suitability models. All models for all species had test area under the receiver operating characteristic curve values greater than 0.70 and percent correctly classified values greater than 0.65. Importantly, we employed multivariate environmental similarity surface maps to evaluate potential extrapolation beyond observed conditions when applying models globally. These global models provide necessary forecasts of where these aquatic invasive species have the potential for establishment outside their native range, a key component in risk analyses.
Collapse
Affiliation(s)
- Amanda M West
- Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO, USA
| | - Catherine S Jarnevich
- Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO, USA
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, CO, USA
| | - Nicholas E Young
- Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO, USA
| | - Pam L Fuller
- U.S. Geological Survey, Wetland and Aquatic Research Center, Gainesville, FL, USA
| |
Collapse
|
42
|
Host Specificity in Variable Environments. Trends Parasitol 2019; 35:452-465. [PMID: 31047808 DOI: 10.1016/j.pt.2019.04.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/02/2019] [Accepted: 04/02/2019] [Indexed: 12/15/2022]
Abstract
Host specificity encompasses the range and diversity of host species that a parasite is capable of infecting and is considered a crucial measure of a parasite's potential to shift hosts and trigger disease emergence. Yet empirical studies rarely consider that regional observations only reflect a parasite's 'realized' host range under particular conditions: the true 'fundamental' range of host specificity is typically not approached. We provide an overview of challenges and directions in modelling host specificity under variable environmental conditions. Combining tractable modelling frameworks with multiple data sources that account for the strong interplay between a parasite's evolutionary history, transmission mode, and environmental filters that shape host-parasite interactions will improve efforts to quantify emerging disease risk in times of global change.
Collapse
|
43
|
DiRenzo GV, Tunstall TS, Ibáñez R, deVries MS, Longo AV, Zamudio KR, Lips KR. External Reinfection of a Fungal Pathogen Does not Contribute to Pathogen Growth. ECOHEALTH 2018; 15:815-826. [PMID: 30128614 DOI: 10.1007/s10393-018-1358-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 06/23/2018] [Accepted: 07/05/2018] [Indexed: 06/08/2023]
Abstract
Chytridiomycosis is an emerging infectious disease of amphibians caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd), which has led to devastating declines in amphibian populations worldwide. Current theory predicts that Bd infections are maintained through both reproduction on the host's skin and reinfection from sources outside of the host. To investigate the importance of external reinfection on pathogen burden, we infected captive-bred individuals of the highly susceptible Panamanian Golden Frog, Atelopus glyphus, and wild-caught glass frogs, Espadarana prosoblepon, with Bd. We housed the animals in one of three treatments: individually, in heterospecific pairs, and in conspecific pairs. For 8 weeks, we measured the Bd load and shedding rate of all frogs. We found that Atelopus had high rates of increase in both Bd load and shedding rate, but pathogen growth rates did not differ among treatments. The infection intensity of Espadarana co-housed with Atelopus was indistinguishable from those housed singly and those in conspecific pairs, despite being exposed to a large external source of Bd zoospores. Our results indicate that Bd load in both species is driven by pathogen replication within an individual, with reinfection from outside the host contributing little to the amplification of host fungal load.
Collapse
Affiliation(s)
- Graziella V DiRenzo
- Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara, 93106, USA
| | - Tate S Tunstall
- Institute for Conservation Research, San Diego Zoo, San Diego, CA, 92027, USA.
| | - Roberto Ibáñez
- Smithsonian Tropical Research Institute, Panama City, Panama
| | - Maya S deVries
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Ana V Longo
- Department of Biology, University of Maryland, College Park, College Park, MD, 20742, USA
| | - Kelly R Zamudio
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY, 1458, USA
| | - Karen R Lips
- Department of Biology, University of Maryland, College Park, College Park, MD, 20742, USA
| |
Collapse
|
44
|
Salla RF, Rizzi-Possignolo GM, Oliveira CR, Lambertini C, Franco-Belussi L, Leite DS, Silva-Zacarin ECM, Abdalla FC, Jenkinson TS, Toledo LF, Jones-Costa M. Novel findings on the impact of chytridiomycosis on the cardiac function of anurans: sensitive vs. tolerant species. PeerJ 2018; 6:e5891. [PMID: 30425891 PMCID: PMC6228586 DOI: 10.7717/peerj.5891] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 08/29/2018] [Indexed: 12/01/2022] Open
Abstract
Background Understanding of the physiological effects of chytridiomycosis is crucial to worldwide amphibian conservation. Therefore, we analyzed the cardiac function of two anuran species (Xenopus laevis and Physalaemus albonotatus) with different susceptibilities to infection by the causative agent of chytridiomycosis, Batrachochytrium dendrobatidis (hereafter Bd). Methods We analyzed the in situ heart rate (fH - bpm), relative ventricular mass (RVM -%), and Ca2+ handling in heart of Bd infected animals compared to uninfected controls of both study species. Results Bd infection resulted in a 78% decrease in contraction force values in P. albonotatus when compared to the less susceptible X. laevis. This negative effect was even more evident (82%) for the cardiac pumping capacity. The time to reach peak tension was 125% longer in P. albonotatus than in X. laevis, and cardiac relaxation was 57% longer. Discussion These results indicate a delay in the cardiac cycle of P. albonotatus on a beat-to-beat basis, which was corroborated by the bradycardia observed in situ. In summary, Bd-sensitive species present impaired cardiac function, which could be a factor in mortality risk. The more pronounced effects of Bd in P. albonotatus may not only result from electrolyte imbalance, as previously reported, but also could be an effect of toxins produced by Bd. For X. laevis, the ability to promote cardiac adjustments seems to be an important homeostatic feature that allows greater tolerance to chytridiomycosis. This study provides new physiological mechanisms underlying the tolerance or susceptibility of amphibian species to chytridiomycosis, which determine their adaptability to survive in the affected environments.
Collapse
Affiliation(s)
- Raquel F Salla
- Department of Biology, Universidade Federal de São Carlos, Sorocaba, SP, Brazil.,Department of Animal Biology, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Gisele M Rizzi-Possignolo
- Department of Biology, University of California, Santa Cruz, Santa Cruz, CA, United States of America
| | | | - Carolina Lambertini
- Department of Animal Biology, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | | | - Domingos S Leite
- Department of Genetic, Evolution, Microbiology and Immunology, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | | | - Fábio C Abdalla
- Department of Biology, Universidade Federal de São Carlos, Sorocaba, SP, Brazil
| | - Thomas S Jenkinson
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, United States of America
| | - Luís Felipe Toledo
- Department of Animal Biology, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Monica Jones-Costa
- Department of Biology, Universidade Federal de São Carlos, Sorocaba, SP, Brazil
| |
Collapse
|
45
|
Patchett SA, Jones AD, Belk MC. Density and Pond Habitat Affect Survival and Growth Rates in Larval Columbia Spotted Frogs (Rana luteiventris). WEST N AM NATURALIST 2018. [DOI: 10.3398/064.078.0206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
| | | | - Mark C. Belk
- Department of Biology, Brigham Young University, Provo, UT 84602
| |
Collapse
|
46
|
Mutnale MC, Anand S, Eluvathingal LM, Roy JK, Reddy GS, Vasudevan K. Enzootic frog pathogen Batrachochytrium dendrobatidis in Asian tropics reveals high ITS haplotype diversity and low prevalence. Sci Rep 2018; 8:10125. [PMID: 29973607 PMCID: PMC6031667 DOI: 10.1038/s41598-018-28304-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 06/20/2018] [Indexed: 11/09/2022] Open
Abstract
Emerging Infectious Diseases (EIDs) are a major threat to wildlife and a key player in the declining amphibian populations worldwide. One such EID is chytridiomycosis caused by Batrachochytrium dendrobatidis (Bd), a fungal pathogen. Aetiology of Bd infection is poorly known from tropical frogs in Asian biodiversity hotspots. Surveys were carried out in four biodiversity hotspots to ascertain the status of Bd fungus. We collected a total of 1870 swab samples from frogs representing 32 genera and 111 species. Nested PCRs revealed low prevalence (8.4%) and high Bd haplotype richness was revealed after sequencing. We document 57 Bd Internal Transcribed Spacer region (ITS) haplotypes, of which 46 were unique to the global database. Bd ITS region showed indels at the Taqman binding site and qPCR reverse primer binding site, suggesting qPCR is unsuitable for diagnosis in Asian Bd coldspots. Our median-joining network and Bayesian tree analyses reveal that the Asian haplotypes, with the exception of Korea, formed a separate clade along with pandemic BdGPL (Bd Global Panzootic Lineage) haplotype. We hypothesise that the frog populations in Asian tropics might harbour several endemic strains of Bd, and the high levels of diversity and uniqueness of Bd haplotypes in the region, probably resulted from historical host-pathogen co-evolution.
Collapse
Affiliation(s)
- Milind C Mutnale
- CSIR-Centre for Cellular and Molecular Biology, Laboratory for the Conservation of Endangered Species, Hyderabad, Telangana, India
| | - Sachin Anand
- CSIR-Centre for Cellular and Molecular Biology, Laboratory for the Conservation of Endangered Species, Hyderabad, Telangana, India
| | | | - Jayanta K Roy
- Department of Life Science and Bioinformatics, Assam University, Diphu Campus, Karbi Anglong, Assam, 782460, India
| | - Gundlapally S Reddy
- CSIR-Centre for Cellular and Molecular Biology, Laboratory for the Conservation of Endangered Species, Hyderabad, Telangana, India
| | - Karthikeyan Vasudevan
- CSIR-Centre for Cellular and Molecular Biology, Laboratory for the Conservation of Endangered Species, Hyderabad, Telangana, India.
| |
Collapse
|
47
|
Miller CA, Tasse Taboue GC, Ekane MMP, Robak M, Sesink Clee PR, Richards-Zawacki C, Fokam EB, Fuashi NA, Anthony NM. Distribution modeling and lineage diversity of the chytrid fungus Batrachochytrium dendrobatidis (Bd) in a central African amphibian hotspot. PLoS One 2018; 13:e0199288. [PMID: 29924870 PMCID: PMC6010240 DOI: 10.1371/journal.pone.0199288] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/05/2018] [Indexed: 11/18/2022] Open
Abstract
The amphibian disease chytridiomycosis in amphibians is caused by the chytrid fungus Batrachochytrium dendrobatidis (Bd) and has resulted in dramatic declines and extinctions of amphibian populations worldwide. A hypervirulent, globally-dispersed pandemic lineage (Bd-GPL) is thought to be largely responsible for population declines and extinctions, although numerous endemic lineages have also been found. Recent reports of amphibian declines have been linked to the emergence of Bd in Cameroon, a major hotspot of African amphibian diversity. However, it is not known whether Bd-GPL or other lineages have been found in this region. This study therefore aims to examine Bd lineage diversity in the region and predict the distribution of this pathogen under current and future climate conditions using data from this study and from historical records. Almost 15% (52/360) of individuals tested positive for Bd using a standard quantitative PCR diagnostic. Infected amphibians were found at all eight sites sampled in this study. Species distribution models generated in BIOMOD2 indicate that areas with highest predicted environmental suitability occur in the Cameroon highlands and several protected areas throughout the country. These areas of high environmental suitability for Bd are projected to shift or decrease in size under future climate change. However, montane regions with high amphibian diversity are predicted to remain highly suitable. Phylogenetic analysis of the ITS sequences obtained from a set of positive Bd samples indicate that most fall within the Bd-GPL lineage while the remainder group with isolates from either Brazil or South Korea. Although more in depth phylogenetic analyses are needed, identification of Bd-GPL lineages in areas of high amphibian diversity emphasizes the need to continue to monitor for Bd and develop appropriate conservation strategies to prevent its further spread.
Collapse
Affiliation(s)
- Courtney A. Miller
- Department of Biological Sciences, University of New Orleans, New Orleans, Louisiana, United States of America
| | - Geraud Canis Tasse Taboue
- Department of Zoology and Animal Physiology, University of Buea, Buea, Cameroon
- Institute of Geological and Mining Research, Yaoundé, Cameroon
| | - Mary M. P. Ekane
- Department of Zoology and Animal Physiology, University of Buea, Buea, Cameroon
| | - Matthew Robak
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, Louisiana, United States of America
| | - Paul R. Sesink Clee
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Corinne Richards-Zawacki
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Eric B. Fokam
- Department of Zoology and Animal Physiology, University of Buea, Buea, Cameroon
| | | | - Nicola M. Anthony
- Department of Biological Sciences, University of New Orleans, New Orleans, Louisiana, United States of America
| |
Collapse
|
48
|
First report of Euryhelmis parasites (Trematoda, Heterophyidae) in Africa: conservation implications for endemic amphibians. Parasitol Res 2018; 117:2569-2576. [PMID: 29860574 DOI: 10.1007/s00436-018-5946-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 05/24/2018] [Indexed: 10/14/2022]
Abstract
In this study, we report, through molecular identification, the first African records of a digenean trematode parasite of the genus Euryhelmis. We recovered metacercariae encysted in an anuran, the endemic Moroccan painted frog (Discoglossus scovazzi), and a vulnerable caudate, the North African fire salamander (Salamandra algira), from four localities in North Africa (Morocco). Our records go back to the past century and have been confirmed in successive fieldwork seasons thereafter. Metacercarial stages of these parasites require amphibians as the last intermediate host, but the exact identity of the primary hosts and predators of the infected animals in Africa remain unknown. Our searches with basic local alignment search tool (BLAST) from Genbank revealed that hosts were infected by parasites of Euryhelmis costaricensis, which showed almost the same genetic identity (with only one substitution) to previous reports from Costa Rica and Japan, suggesting a recent introduction in Morocco. We proceed to discuss the likely role of introduced mustelids as the potential definitive hosts of trematode adults. Under this assumption, we conclude that the infestation of Discoglossus scovazzi and Salamandra algira might pose a risk to these threatened species.
Collapse
|
49
|
O'Hanlon SJ, Rieux A, Farrer RA, Rosa GM, Waldman B, Bataille A, Kosch TA, Murray KA, Brankovics B, Fumagalli M, Martin MD, Wales N, Alvarado-Rybak M, Bates KA, Berger L, Böll S, Brookes L, Clare F, Courtois EA, Cunningham AA, Doherty-Bone TM, Ghosh P, Gower DJ, Hintz WE, Höglund J, Jenkinson TS, Lin CF, Laurila A, Loyau A, Martel A, Meurling S, Miaud C, Minting P, Pasmans F, Schmeller DS, Schmidt BR, Shelton JMG, Skerratt LF, Smith F, Soto-Azat C, Spagnoletti M, Tessa G, Toledo LF, Valenzuela-Sánchez A, Verster R, Vörös J, Webb RJ, Wierzbicki C, Wombwell E, Zamudio KR, Aanensen DM, James TY, Gilbert MTP, Weldon C, Bosch J, Balloux F, Garner TWJ, Fisher MC. Recent Asian origin of chytrid fungi causing global amphibian declines. Science 2018; 360:621-627. [PMID: 29748278 PMCID: PMC6311102 DOI: 10.1126/science.aar1965] [Citation(s) in RCA: 312] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 03/29/2018] [Indexed: 12/14/2022]
Abstract
Globalized infectious diseases are causing species declines worldwide, but their source often remains elusive. We used whole-genome sequencing to solve the spatiotemporal origins of the most devastating panzootic to date, caused by the fungus Batrachochytrium dendrobatidis, a proximate driver of global amphibian declines. We traced the source of B. dendrobatidis to the Korean peninsula, where one lineage, BdASIA-1, exhibits the genetic hallmarks of an ancestral population that seeded the panzootic. We date the emergence of this pathogen to the early 20th century, coinciding with the global expansion of commercial trade in amphibians, and we show that intercontinental transmission is ongoing. Our findings point to East Asia as a geographic hotspot for B. dendrobatidis biodiversity and the original source of these lineages that now parasitize amphibians worldwide.
Collapse
Affiliation(s)
- Simon J O'Hanlon
- Department of Infectious Disease Epidemiology and MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London W2 1PG, UK.
- Institute of Zoology, Regent's Park, London NW1 4RY, UK
| | - Adrien Rieux
- CIRAD, UMR PVBMT, 97410 St. Pierre, Reunion, France
| | - Rhys A Farrer
- Department of Infectious Disease Epidemiology and MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London W2 1PG, UK
| | - Gonçalo M Rosa
- Institute of Zoology, Regent's Park, London NW1 4RY, UK
- Department of Biology, University of Nevada, Reno, NV 89557, USA
- Centre for Ecology, Evolution and Environmental Changes (CE3C), Faculdade de Ciências da Universidade de Lisboa, Lisboa, Portugal
| | - Bruce Waldman
- Laboratory of Behavioral and Population Ecology, School of Biological Sciences, Seoul National University, Seoul 08826, South Korea
| | - Arnaud Bataille
- Laboratory of Behavioral and Population Ecology, School of Biological Sciences, Seoul National University, Seoul 08826, South Korea
- CIRAD, UMR ASTRE, F-34398 Montpellier, France
| | - Tiffany A Kosch
- Laboratory of Behavioral and Population Ecology, School of Biological Sciences, Seoul National University, Seoul 08826, South Korea
- One Health Research Group, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland 4811, Australia
| | - Kris A Murray
- Department of Infectious Disease Epidemiology and MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London W2 1PG, UK
| | - Balázs Brankovics
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584CT Utrecht, Netherlands
- Institute of Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands
| | - Matteo Fumagalli
- Department of Life Sciences, Silwood Park Campus, Imperial College London, Ascot, UK
- UCL Genetics Institute, University College London, London WC1E 6BT, UK
| | - Michael D Martin
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Erling Skakkes gate 49, NO-7012 Trondheim, Norway
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Nathan Wales
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Mario Alvarado-Rybak
- Centro de Investigación para la Sustentabilidad, Facultad de Ecología y Recursos Naturales, Universidad Andres Bello, Republica 440, Santiago, Chile
| | - Kieran A Bates
- Department of Infectious Disease Epidemiology and MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London W2 1PG, UK
- Institute of Zoology, Regent's Park, London NW1 4RY, UK
| | - Lee Berger
- One Health Research Group, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland 4811, Australia
| | - Susanne Böll
- Agency for Population Ecology and Nature Conservancy, Gerbrunn, Germany
| | - Lola Brookes
- Institute of Zoology, Regent's Park, London NW1 4RY, UK
| | - Frances Clare
- Department of Infectious Disease Epidemiology and MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London W2 1PG, UK
- Institute of Zoology, Regent's Park, London NW1 4RY, UK
| | - Elodie A Courtois
- Laboratoire Ecologie, Évolution, Interactions des Systèmes Amazoniens (LEEISA), Université de Guyane, CNRS, IFREMER, 97300 Cayenne, French Guiana
| | | | | | - Pria Ghosh
- Department of Infectious Disease Epidemiology and MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London W2 1PG, UK
- Unit for Environmental Sciences and Management, Private Bag x6001, North-West University, Potchefstroom 2520, South Africa
| | - David J Gower
- Life Sciences, Natural History Museum, London SW7 5BD, UK
| | - William E Hintz
- Biology Department, University of Victoria, Victoria, BC V8W 3N5, Canada
| | - Jacob Höglund
- Department of Ecology and Genetics, EBC, Uppsala University, Norbyv. 18D, SE-75236, Uppsala, Sweden
| | - Thomas S Jenkinson
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chun-Fu Lin
- Zoology Division, Endemic Species Research Institute, 1 Ming-shen East Road, Jiji, Nantou 552, Taiwan
| | - Anssi Laurila
- Department of Ecology and Genetics, EBC, Uppsala University, Norbyv. 18D, SE-75236, Uppsala, Sweden
| | - Adeline Loyau
- Department of Conservation Biology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany
- EcoLab, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - An Martel
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium
| | - Sara Meurling
- Department of Ecology and Genetics, EBC, Uppsala University, Norbyv. 18D, SE-75236, Uppsala, Sweden
| | - Claude Miaud
- PSL Research University, CEFE UMR 5175, CNRS, Université de Montpellier, Université Paul-Valéry Montpellier, EPHE, Montpellier, France
| | - Pete Minting
- Amphibian and Reptile Conservation (ARC) Trust, Boscombe, Bournemouth, Dorset BH1 4AP, UK
| | - Frank Pasmans
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium
| | - Dirk S Schmeller
- Department of Conservation Biology, Helmholtz Centre for Environmental Research-UFZ, 04318 Leipzig, Germany
- EcoLab, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
| | - Benedikt R Schmidt
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, 8057 Zurich, Switzerland, and Info Fauna Karch, UniMail-Bâtiment G, Bellevaux 51, 2000 Neuchâtel, Switzerland
| | - Jennifer M G Shelton
- Department of Infectious Disease Epidemiology and MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London W2 1PG, UK
| | - Lee F Skerratt
- One Health Research Group, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland 4811, Australia
| | - Freya Smith
- Institute of Zoology, Regent's Park, London NW1 4RY, UK
- National Wildlife Management Centre, APHA, Woodchester Park, Gloucestershire GL10 3UJ, UK
| | - Claudio Soto-Azat
- Centro de Investigación para la Sustentabilidad, Facultad de Ecología y Recursos Naturales, Universidad Andres Bello, Republica 440, Santiago, Chile
| | | | - Giulia Tessa
- Non-profit Association Zirichiltaggi-Sardinia Wildlife Conservation, Strada Vicinale Filigheddu 62/C, I-07100 Sassari, Italy
| | - Luís Felipe Toledo
- Laboratório de História Natural de Anfíbios Brasileiros (LaHNAB), Departamento de Biologia Animal, Instituto de Biologia, Unicamp, Campinas, Brazil
| | - Andrés Valenzuela-Sánchez
- Centro de Investigación para la Sustentabilidad, Facultad de Ecología y Recursos Naturales, Universidad Andres Bello, Republica 440, Santiago, Chile
- ONG Ranita de Darwin, Nataniel Cox 152, Santiago, Chile
| | - Ruhan Verster
- Unit for Environmental Sciences and Management, Private Bag x6001, North-West University, Potchefstroom 2520, South Africa
| | - Judit Vörös
- Collection of Amphibians and Reptiles, Department of Zoology, Hungarian Natural History Museum, Budapest, Baross u. 13., 1088, Hungary
| | - Rebecca J Webb
- One Health Research Group, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland 4811, Australia
| | - Claudia Wierzbicki
- Department of Infectious Disease Epidemiology and MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London W2 1PG, UK
| | - Emma Wombwell
- Institute of Zoology, Regent's Park, London NW1 4RY, UK
| | - Kelly R Zamudio
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, NY 14853, USA
| | - David M Aanensen
- Department of Infectious Disease Epidemiology and MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London W2 1PG, UK
- Centre for Genomic Pathogen Surveillance, Wellcome Genome Campus, Cambridgeshire, UK
| | - Timothy Y James
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - M Thomas P Gilbert
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Erling Skakkes gate 49, NO-7012 Trondheim, Norway
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark
| | - Ché Weldon
- Unit for Environmental Sciences and Management, Private Bag x6001, North-West University, Potchefstroom 2520, South Africa
| | - Jaime Bosch
- Museo Nacional de Ciencias Naturales, CSIC c/ Jose Gutierrez Abascal 2, 28006 Madrid, Spain
| | - François Balloux
- UCL Genetics Institute, University College London, London WC1E 6BT, UK
| | - Trenton W J Garner
- Institute of Zoology, Regent's Park, London NW1 4RY, UK
- Unit for Environmental Sciences and Management, Private Bag x6001, North-West University, Potchefstroom 2520, South Africa
- Non-profit Association Zirichiltaggi-Sardinia Wildlife Conservation, Strada Vicinale Filigheddu 62/C, I-07100 Sassari, Italy
| | - Matthew C Fisher
- Department of Infectious Disease Epidemiology and MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London W2 1PG, UK.
| |
Collapse
|
50
|
Ranavirus genotypes in the Netherlands and their potential association with virulence in water frogs (Pelophylax spp.). Emerg Microbes Infect 2018; 7:56. [PMID: 29615625 PMCID: PMC5882854 DOI: 10.1038/s41426-018-0058-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/04/2017] [Accepted: 02/25/2018] [Indexed: 12/15/2022]
Abstract
Ranaviruses are pathogenic viruses for poikilothermic vertebrates worldwide. The identification of a common midwife toad virus (CMTV) associated with massive die-offs in water frogs (Pelophylax spp.) in the Netherlands has increased awareness for emerging viruses in amphibians in the country. Complete genome sequencing of 13 ranavirus isolates collected from ten different sites in the period 2011–2016 revealed three CMTV groups present in distinct geographical areas in the Netherlands. Phylogenetic analysis showed that emerging viruses from the northern part of the Netherlands belonged to CMTV-NL group I. Group II and III viruses were derived from the animals located in the center-east and south of the country, and shared a more recent common ancestor to CMTV-amphibian associated ranaviruses reported in China, Italy, Denmark, and Switzerland. Field monitoring revealed differences in water frog host abundance at sites where distinct ranavirus groups occur; with ranavirus-associated deaths, host counts decreasing progressively, and few juveniles found in the north where CMTV-NL group I occurs but not in the south with CMTV-NL group III. Investigation of tandem repeats of coding genes gave no conclusive information about phylo-geographical clustering, while genetic analysis of the genomes revealed truncations in 17 genes across CMTV-NL groups II and III compared to group I. Further studies are needed to elucidate the contribution of these genes as well as environmental variables to explain the observed differences in host abundance.
Collapse
|