1
|
Ruiz Polo AA, Luis Arismendiz LD, Barrera Rivera LV, Alvarado Aldana A, Saavedra Cornejo KI, Juárez Vilchez JP. Coexistence and food sources of adult mosquitoes (Diptera: Culicidae) in a rural health center in Piura, Peru 2024. Rev Peru Med Exp Salud Publica 2024; 41:309-315. [PMID: 39442114 PMCID: PMC11495935 DOI: 10.17843/rpmesp.2024.413.13696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/24/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Motivation for the study. Rural health facilities could be potential foci of transmission and scenarios of zoonosis during epidemic outbreaks of dengue and other arbovirosis due to the coexistence of mosquito species that feed on different vertebrates. BACKGROUND Main findings. Aedes aegypti feeds on Homo sapiens sapiens. Culex quinquefasciatus feeds on Homo sapiens sapiens and Canis familiaris. Both coexist in health care areas of the Querecotillo health center. BACKGROUND Implications. Molecular techniques should be integrated into vector control to understand feeding patterns in natural conditions and information on probable reservoirs. BACKGROUND This study aimed to determine the coexistence and food sources of adult mosquitoes (Diptera: Culicidae) in a rural health center in Piura, Peru by using a descriptive cross-sectional design. Entomological techniques were used to capture and identify mosquitoes, and molecular biotechnology techniques were used to identify food sources. A total of 793 specimens of the Culex and Aedes genera were found coexisting, 789 (99.5%) were Culex quinquefasciatus, 607 (76.9%) were males and 182 (23.1%) were females. Likewise, 4 (100%) corresponded to Aedes aegypti females. The food sources of Aedes aegypti were Homo sapiens sapiens, and Homo sapiens sapiens and Canis familiaris were the food sources of Culex quinquefasciatus. This study provides evidence that rural health centers could be acting as foci of arbovirosis, with the risk that people who come for different ailments could contract diseases transmitted by C. quinquefasciatus and A. aegypti.
Collapse
Affiliation(s)
- Archi Alejandro Ruiz Polo
- Research and Training Center in Entomology - CICE, Sub Regional Health Directorate Luciano Castillo Colonna, Piura, Peru.Research and Training Center in Entomology - CICESub Regional Health Directorate Luciano Castillo ColonnaPiuraPeru
| | - Leslie Diana Luis Arismendiz
- Research and Training Center in Entomology - CICE, Sub Regional Health Directorate Luciano Castillo Colonna, Piura, Peru.Research and Training Center in Entomology - CICESub Regional Health Directorate Luciano Castillo ColonnaPiuraPeru
| | - Lourdes Viviana Barrera Rivera
- Research and Training Center in Entomology - CICE, Sub Regional Health Directorate Luciano Castillo Colonna, Piura, Peru.Research and Training Center in Entomology - CICESub Regional Health Directorate Luciano Castillo ColonnaPiuraPeru
| | - Arturo Alvarado Aldana
- Referral Laboratory, Sub Regional Health Directorate Luciano Castillo Colonna, Piura, Peru.Referral LaboratorySub Regional Health Directorate Luciano Castillo ColonnaPiuraPeru
| | - Kelina Isbelia Saavedra Cornejo
- Referral Laboratory, Sub Regional Health Directorate Luciano Castillo Colonna, Piura, Peru.Referral LaboratorySub Regional Health Directorate Luciano Castillo ColonnaPiuraPeru
| | - Jose Pablo Juárez Vilchez
- Directorate of Integrated Health Interventions, Sub-Regional Health Directorate Luciano Castillo Colonna, Piura, Peru.Directorate of Integrated Health InterventionsSub-Regional Health Directorate Luciano Castillo ColonnaPiuraPeru
| |
Collapse
|
2
|
Dionne E, Machiavello Roman F, Farhadian S. Climate Change and Meningoencephalitis in the Americas: A Brewing Storm. Curr Infect Dis Rep 2024; 26:189-196. [DOI: 10.1007/s11908-024-00843-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2024] [Indexed: 01/04/2025]
|
3
|
Burkett-Cadena ND, Fish D, Weaver S, Vittor AY. Everglades virus: an underrecognized disease-causing subtype of Venezuelan equine encephalitis virus endemic to Florida, USA. JOURNAL OF MEDICAL ENTOMOLOGY 2023; 60:1149-1164. [PMID: 37862065 PMCID: PMC10645373 DOI: 10.1093/jme/tjad070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/04/2023] [Accepted: 06/08/2023] [Indexed: 10/21/2023]
Abstract
Everglades virus (EVEV) is subtype II of the Venezuelan equine encephalitis virus (VEEV) complex (Togaviridae: Alphavirus), endemic to Florida, USA. EVEV belongs to a clade that includes both enzootic and epizootic/epidemic VEEV subtypes. Like other enzootic VEEV subtypes, muroid rodents are important vertebrate hosts for EVEV and certain mosquitoes are important vectors. The hispid cotton rat Sigmodon hispidus and cotton mouse Peromyscus gossypinus are important EVEV hosts, based on natural infection (virus isolation and high seropositivity), host competence (experimental infections), and frequency of contact with the vector. The mosquito Culex (Melanoconion) cecedei is the only confirmed vector of EVEV based upon high natural infection rates, efficient vector competence, and frequent feeding upon muroid rodents. Human disease attributed to EVEV is considered rare. However, cases of meningitis and encephalitis are recorded from multiple sites, separated by 250 km or more. Phylogenetic analyses indicate that EVEV is evolving, possibly due to changes in the mammal community. Mutations in the EVEV genome are of concern, given that epidemic strains of VEEV (subtypes IAB and IC) are derived from enzootic subtype ID, the closest genetic relative of EVEV. Should epizootic mutations arise in EVEV, the abundance of Aedes taeniorhynchus and other epizootic VEEV vectors in southern Florida provides a conducive environment for widespread transmission. Other factors that will likely influence the distribution and frequency of EVEV transmission include the establishment of Culex panocossa in Florida, Everglades restoration, mammal community decline due to the Burmese python, land use alteration by humans, and climate change.
Collapse
Affiliation(s)
- Nathan D Burkett-Cadena
- Florida Medical Entomology Laboratory, University of Florida Institute of Food and Agricultural Sciences, 200 9th St. SE, Vero Beach, FL 32962, USA
| | - Durland Fish
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Scott Weaver
- Department of Pathology, Center for Biodefense and Emerging Infectious Disease, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| | - Amy Y Vittor
- Department of Medicine & Emerging Pathogens Institute, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
4
|
Guzy JC, Falk BG, Smith BJ, Willson JD, Reed RN, Aumen NG, Avery ML, Bartoszek IA, Campbell E, Cherkiss MS, Claunch NM, Currylow AF, Dean T, Dixon J, Engeman R, Funck S, Gibble R, Hengstebeck KC, Humphrey JS, Hunter ME, Josimovich JM, Ketterlin J, Kirkland M, Mazzotti FJ, McCleery R, Miller MA, McCollister M, Parker MR, Pittman SE, Rochford M, Romagosa C, Roybal A, Snow RW, Spencer MM, Waddle JH, Yackel Adams AA, Hart KM. Burmese pythons in Florida: A synthesis of biology, impacts, and management tools. NEOBIOTA 2023. [DOI: 10.3897/neobiota.80.90439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Burmese pythons (Python molurus bivittatus) are native to southeastern Asia, however, there is an established invasive population inhabiting much of southern Florida throughout the Greater Everglades Ecosystem. Pythons have severely impacted native species and ecosystems in Florida and represent one of the most intractable invasive-species management issues across the globe. The difficulty stems from a unique combination of inaccessible habitat and the cryptic and resilient nature of pythons that thrive in the subtropical environment of southern Florida, rendering them extremely challenging to detect. Here we provide a comprehensive review and synthesis of the science relevant to managing invasive Burmese pythons. We describe existing control tools and review challenges to productive research, identifying key knowledge gaps that would improve future research and decision making for python control.
Collapse
|
5
|
Valente MC, Prakoso D, Vittor AY, Blosser EM, Abid N, Pu R, Beachboard SE, Long MT, Burkett-Cadena ND, Mavian CN. Everglades virus evolution: Genome sequence analysis of the envelope 1 protein reveals recent mutation and divergence in South Florida wetlands. Virus Evol 2022; 8:veac111. [PMID: 36582503 PMCID: PMC9795574 DOI: 10.1093/ve/veac111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/16/2022] [Accepted: 11/30/2022] [Indexed: 12/15/2022] Open
Abstract
Everglades virus (EVEV) is a subtype (II) of Venezuelan equine encephalitis virus (VEEV), endemic in southern Florida, USA. EVEV has caused clinical encephalitis in humans, and antibodies have been found in a variety of wild and domesticated mammals. Over 29,000 Culex cedecei females, the main vector of EVEV, were collected in 2017 from Big Cypress and Fakahatchee Strand Preserves in Florida and pool-screened for the presence of EVEV using reverse transcription real-time polymerase chain reaction. The entire 1 E1 protein gene was successfully sequenced from fifteen positive pools. Phylogenetic analysis showed that isolates clustered, based on the location of sampling, into two monophyletic clades that diverged in 2009. Structural analyses revealed two mutations of interest, A116V and H441R, which were shared among all isolates obtained after its first isolation of EVEV in 1963, possibly reflecting adaptation to a new host. Alterations of the Everglades ecosystem may have contributed to the evolution of EVEV and its geographic compartmentalization. This is the first report that shows in detail the evolution of EVEV in South Florida. This zoonotic pathogen warrants inclusion into routine surveillance given the high natural infection rate in the vectors. Invasive species, increasing urbanization, the Everglades restoration, and modifications to the ecosystem due to climate change and habitat fragmentation in South Florida may increase rates of EVEV spillover to the human population.
Collapse
Affiliation(s)
| | | | - Amy Y Vittor
- Department of Pathology, Emerging Pathogens Institute, College of Medicine, University of Florida, Gainesville, FL 32601, USA,Division of Infectious Diseases and Global Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL 32601, USA
| | | | | | - Ruiyu Pu
- Department of Comparative Diagnostic and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL 32601, USA
| | - Sarah E Beachboard
- Department of Pathology, Emerging Pathogens Institute, College of Medicine, University of Florida, Gainesville, FL 32601, USA
| | | | | | | |
Collapse
|
6
|
Sloyer KE, Barve N, Kim D, Stenn T, Campbell LP, Burkett-Cadena ND. Predicting potential transmission risk of Everglades virus in Florida using mosquito blood meal identifications. FRONTIERS IN EPIDEMIOLOGY 2022; 2:1046679. [PMID: 38455283 PMCID: PMC10910907 DOI: 10.3389/fepid.2022.1046679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/16/2022] [Indexed: 03/09/2024]
Abstract
The overlap between arbovirus host, arthropod vectors, and pathogen distributions in environmentally suitable habitats represents a nidus where risk for pathogen transmission may occur. Everglades virus (EVEV), subtype II Venezuelan equine encephalitis virus (VEEV), is endemic to southern Florida where it is transmitted by the endemic vector Culex cedecei between muroid rodent hosts. We developed an ecological niche model (ENM) to predict areas in Florida suitable for EVEV transmission based upon georeferenced vector-host interactions from PCR-based blood meal analysis from blood-engorged female Cx. cedecei females. Thirteen environmental variables were used for model calibration, including bioclimatic variables derived from Daymet 1 km daily temperature and precipitation values, and land use and land cover data representing percent land cover derived within a 2.5 km buffer from 2019 National Land Cover Database (NLCD) program. Maximum temperature of the warmest month, minimum temperature of the coldest month, and precipitation of the driest month contributed 31.6%, 28.5% and 19.9% to ENM performance. The land cover types contributing the greatest to the model performance were percent landcover of emergent herbaceous and woody wetlands which contributed 5.2% and 4.3% to model performance, respectively. Results of the model output showed high suitability for Cx. cedecei feeding on rodents throughout the southwestern portion of the state and pockets of high suitability along the northern east coast of Florida, while areas with low suitability included the Miami-Dade metropolitan area and most of northern Florida and the Panhandle. Comparing predicted distributions of Cx. cedecei feeding upon rodent hosts in the present study to historical human cases of EVEV disease, as well as antibodies in wildlife show substantial overlap with areas predicted moderate to highly suitable for these vector/host associations. As such, the findings of this study likely predict the most accurate distribution of the nidus of EVEV to date, indicating that this method allows for better inference of potential transmission areas than models which only consider the vector or vertebrate host species individually. A similar approach using host blood meals of other arboviruses can be used to predict potential areas of virus transmission for other vector-borne diseases.
Collapse
Affiliation(s)
- Kristin E. Sloyer
- Department of Entomology & Nematology, Florida Medical Entomology Laboratory, Institute of Food and Agricultural Sciences, University of Florida, Vero Beach, FL, United States
| | - Narayani Barve
- Department of Ecology & Evolutionary Biology, University of Tennessee, Knoxville, TN, United States
| | - Dongmin Kim
- Department of Entomology & Nematology, Florida Medical Entomology Laboratory, Institute of Food and Agricultural Sciences, University of Florida, Vero Beach, FL, United States
| | - Tanise Stenn
- Department of Entomology & Nematology, Florida Medical Entomology Laboratory, Institute of Food and Agricultural Sciences, University of Florida, Vero Beach, FL, United States
| | - Lindsay P. Campbell
- Department of Entomology & Nematology, Florida Medical Entomology Laboratory, Institute of Food and Agricultural Sciences, University of Florida, Vero Beach, FL, United States
| | - Nathan D. Burkett-Cadena
- Department of Entomology & Nematology, Florida Medical Entomology Laboratory, Institute of Food and Agricultural Sciences, University of Florida, Vero Beach, FL, United States
| |
Collapse
|
7
|
Sloyer KE, Burkett-Cadena ND, Campbell LP. Predicting the potential distribution of Culex (Melanoconion) cedecei in Florida and the Caribbean using ecological niche models. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2022; 47:88-98. [PMID: 36629360 DOI: 10.52707/1081-1710-47.1.88] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/02/2022] [Indexed: 06/17/2023]
Abstract
Everglades virus (EVEV), an enzootic subtype of Venezuelan equine encephalitis virus, along with its endemic mosquito vector, Culex cedecei, is known only from South Florida. The taxonomy of Cx. cedecei is complex and was once synonymous with Culex opisthopus and Culex taeniopus. We modeled potential distribution of Cx. cedecei in Florida and the Caribbean using an ecological niche model and compared this distribution to the recorded distribution of EVEV in Florida as well as historical records of Cx. opisthopus/Cx. taeniopus. We used recent collections and occurrence data from scientific publications and temperature/precipitation variables and vegetation greenness values to calibrate models. We found mean annual temperature contributed the greatest to model performance. Everglades virus in humans and wildlife corresponded with areas predicted suitable for Cx. cedecei in Florida but not with incidence of antibodies reported in dogs. Most records of Cx. opisthopus/Cx. taeniopus in the Caribbean did not correspond to areas predicted suitable for Cx. cedecei, which may be due to mean annual temperature values in the Caribbean exceeding values within the calibration region, imposing model constraints. Results indicated that this model may adequately predict the distributions of Cx. cedecei within Florida but cannot predict areas suitable in the Caribbean.
Collapse
Affiliation(s)
- Kristin E Sloyer
- Florida Medical Entomology Laboratory, Vero Beach, FL, U.S.A.,
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, U.S.A
| | - Nathan D Burkett-Cadena
- Florida Medical Entomology Laboratory, Vero Beach, FL, U.S.A
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, U.S.A
| | - Lindsay P Campbell
- Florida Medical Entomology Laboratory, Vero Beach, FL, U.S.A
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, U.S.A
| |
Collapse
|
8
|
Anderson JF, Fish D, Armstrong PM, Misencik MJ, Bransfield A, Ferrandino FJ, Andreadis TG, Stenglein MD, Kapuscinski ML. Seasonal Dynamics of Mosquito-Borne Viruses in the Southwestern Florida Everglades, 2016, 2017. Am J Trop Med Hyg 2022; 106:610-622. [PMID: 35008051 PMCID: PMC8832897 DOI: 10.4269/ajtmh.20-1547] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 11/03/2021] [Indexed: 02/03/2023] Open
Abstract
Mosquitoes were collected for 12 consecutive months beginning June 2016, from 11 locations in the Florida Everglades, Collier County, and tested for viruses by isolation in Vero cells and subsequent identification. One species complex and 31 species of mosquitoes were identified from 668,809 specimens. Ochlerotatus taeniorhynchus comprised 72.2% of the collection. Other notable species were Anopheles crucians complex, Culex nigripalpus, Cx. erraticus, and Cx. cedecei. Seven species of virus were identified from 110 isolations: Everglades, Gumbo Limbo, Mahogany Hammock, Pahayokee, Shark River, Tensaw, and West Nile viruses. Everglades, West Nile, Tensaw, and Mahogany Hammock viruses were most frequently isolated. Largest numbers of viruses were identified from Cx. cedecei, Cx. nigripalpus, and An. crucians complex. Five species of virus were isolated from Cx. cedecei. Viruses were isolated from mangrove, cypress swamp, hardwood hammock, and sawgrass habitats. West Nile virus was isolated August through October when Cx. nigripalpus was most abundant. Everglades virus was the most frequently isolated virus from nine species of mosquitoes collected from June through August. Tensaw virus was isolated primarily from Anopheles species. Isolations were made in July, August, January, February, and April, suggesting that this virus may be present in host-seeking mosquitoes throughout the year. Mahogany Hammock, Shark River, Gumbo Limbo, and Pahayokee viruses were isolated primarily from Cx. cedecei from June through December. Shotgun metagenomic sequencing was used to document that seven pools of Cx. cedecei were infected with two arboviruses. As communities expand into the Everglades, more humans will become exposed to arboviruses.
Collapse
Affiliation(s)
- John F. Anderson
- Department of Entomology and Center for Vector Biology and Zoonotic Diseases, The Connecticut Agricultural Experiment Station, New Haven, Connecticut;,Address correspondence to John F. Anderson, The Connecticut Agricultural Experiment Station, 123 Huntington St., New Haven, CT 06511-1106. E-mail:
| | - Durland Fish
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut
| | - Philip M. Armstrong
- Department of Environmental Sciences and Center for Vector Biology and Zoonotic Diseases, The Connecticut Agricultural Experiment Station, New Haven, Connecticut
| | - Michael J. Misencik
- Department of Environmental Sciences and Center for Vector Biology and Zoonotic Diseases, The Connecticut Agricultural Experiment Station, New Haven, Connecticut
| | - Angela Bransfield
- Department of Environmental Sciences and Center for Vector Biology and Zoonotic Diseases, The Connecticut Agricultural Experiment Station, New Haven, Connecticut
| | - Francis J. Ferrandino
- Department of Plant Pathology, The Connecticut Agricultural Experiment Station, New Haven, Connecticut
| | - Theodore G. Andreadis
- Department of Environmental Sciences and Center for Vector Biology and Zoonotic Diseases, The Connecticut Agricultural Experiment Station, New Haven, Connecticut
| | - Mark D. Stenglein
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Marylee L. Kapuscinski
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
9
|
Emergence potential of mosquito-borne arboviruses from the Florida Everglades. PLoS One 2021; 16:e0259419. [PMID: 34807932 PMCID: PMC8608345 DOI: 10.1371/journal.pone.0259419] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 10/19/2021] [Indexed: 11/21/2022] Open
Abstract
The Greater Everglades Region of South Florida is one of the largest natural wetlands and the only subtropical ecosystem found in the continental United States. Mosquitoes are seasonally abundant in the Everglades where several potentially pathogenic mosquito-borne arboviruses are maintained in natural transmission cycles involving vector-competent mosquitoes and reservoir-competent vertebrate hosts. The fragile nature of this ecosystem is vulnerable to many sources of environmental change, including a wetlands restoration project, climate change, invasive species and residential development. In this study, we obtained baseline data on the distribution and abundance of both mosquitos and arboviruses occurring in the southern Everglades region during the summer months of 2013, when water levels were high, and in 2014, when water levels were low. A total of 367,060 mosquitoes were collected with CO2-baited CDC light traps at 105 collection sites stratified among the major landscape features found in Everglades National Park, Big Cypress National Preserve, Fakahatchee State Park Preserve and Picayune State Forest, an area already undergoing restoration. A total of 2,010 pools of taxonomically identified mosquitoes were cultured for arbovirus isolation and identification. Seven vertebrate arboviruses were isolated: Everglades virus, Tensaw virus, Shark River virus, Gumbo Limbo virus, Mahogany Hammock virus, Keystone virus, and St. Louis encephalitis virus. Except for Tensaw virus, which was absent in 2013, the remaining viruses were found to be most prevalent in hardwood hammocks and in Fakahatchee, less prevalent in mangroves and pinelands, and absent in cypress and sawgrass. In contrast, in the summer of 2014 when water levels were lower, these arboviruses were far less prevalent and only found in hardwood hammocks, but Tensaw virus was present in cypress, sawgrass, pinelands, and a recently burned site. Major environmental changes are anticipated in the Everglades, many of which will result in increased water levels. How these might lead to the emergence of arboviruses potentially pathogenic to both humans and wildlife is discussed.
Collapse
|
10
|
Jenkins M, Ahmed S, Barnes AN. A systematic review of waterborne and water-related disease in animal populations of Florida from 1999-2019. PLoS One 2021; 16:e0255025. [PMID: 34324547 PMCID: PMC8321142 DOI: 10.1371/journal.pone.0255025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Florida's waters are a reservoir for a host of pathogens and toxins. Many of these microorganisms cause water-related diseases in people that are reportable to the Florida Department of Health. Our objective in this review was to ascertain which water-related pathogens and toxins of public health importance have been found in animal populations in Florida over the last twenty years. METHODS Nineteen databases were searched, including PubMed and Web of Science Core Collection, using keywords and search terms for the waterborne diseases, water-related vector-borne diseases, and water-based toxins reportable to the Florida Department of Health. For inclusion, peer-reviewed journal articles were to be written in English, published between January 1, 1999 and December 31, 2019, and contain primary research findings documenting at least one of the water-related pathogens or toxins of interest in an animal population within Florida during this same time frame. RESULTS Of over eight thousand initial search results, 65 studies were included for final analysis. The most common animal types implicated in the diseases of interest included marine mammals, fish and shellfish, wild birds, and livestock. Toxins or pathogens most often associated with these animals included toxin-producer Karenia brevis, vibriosis, Escherichia coli, and Salmonellosis. DISCUSSION/CONCLUSION Findings from this review elucidate the water-related disease-causing pathogens and toxins which have been reported within animal populations in recent Florida history. As most of these diseases are zoonotic, our results suggest a One Health approach is necessary to support and maintain healthy water systems throughout the state of Florida for the protection of both human and animal populations.
Collapse
Affiliation(s)
- Meg Jenkins
- Department of Public Health, University of North Florida, Jacksonville, Florida, United States of America
| | - Sabrina Ahmed
- Department of Public Health, University of North Florida, Jacksonville, Florida, United States of America
| | - Amber N. Barnes
- Department of Public Health, University of North Florida, Jacksonville, Florida, United States of America
| |
Collapse
|
11
|
Azar SR, Campos RK, Bergren NA, Camargos VN, Rossi SL. Epidemic Alphaviruses: Ecology, Emergence and Outbreaks. Microorganisms 2020; 8:E1167. [PMID: 32752150 PMCID: PMC7464724 DOI: 10.3390/microorganisms8081167] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/23/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
Over the past century, the emergence/reemergence of arthropod-borne zoonotic agents has been a growing public health concern. In particular, agents from the genus Alphavirus pose a significant risk to both animal and human health. Human alphaviral disease presents with either arthritogenic or encephalitic manifestations and is associated with significant morbidity and/or mortality. Unfortunately, there are presently no vaccines or antiviral measures approved for human use. The present review examines the ecology, epidemiology, disease, past outbreaks, and potential to cause contemporary outbreaks for several alphavirus pathogens.
Collapse
Affiliation(s)
- Sasha R. Azar
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555-0609, USA;
| | - Rafael K. Campos
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555-0609, USA;
| | | | - Vidyleison N. Camargos
- Host-Microorganism Interaction Lab, Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil;
| | - Shannan L. Rossi
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555-0609, USA;
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, TX 77555-0610, USA
| |
Collapse
|
12
|
Mavian C, Dulcey M, Munoz O, Salemi M, Vittor AY, Capua I. Islands as Hotspots for Emerging Mosquito-Borne Viruses: A One-Health Perspective. Viruses 2018; 11:E11. [PMID: 30585228 PMCID: PMC6356932 DOI: 10.3390/v11010011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/18/2018] [Accepted: 12/18/2018] [Indexed: 02/08/2023] Open
Abstract
During the past ten years, an increasing number of arbovirus outbreaks have affected tropical islands worldwide. We examined the available literature in peer-reviewed journals, from the second half of the 20th century until 2018, with the aim of gathering an overall picture of the emergence of arboviruses in these islands. In addition, we included information on environmental and social drivers specific to island setting that can facilitate the emergence of outbreaks. Within the context of the One Health approach, our review highlights how the emergence of arboviruses in tropical islands is linked to the complex interplay between their unique ecological settings and to the recent changes in local and global sociodemographic patterns. We also advocate for greater coordination between stakeholders in developing novel prevention and mitigation approaches for an intractable problem.
Collapse
Affiliation(s)
- Carla Mavian
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32611, USA.
- Emerging Pathogens Institute University of Florida, Gainesville, FL 32611, USA.
| | - Melissa Dulcey
- Emerging Pathogens Institute University of Florida, Gainesville, FL 32611, USA.
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32611, USA.
| | - Olga Munoz
- Emerging Pathogens Institute University of Florida, Gainesville, FL 32611, USA.
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, FL 32611, USA.
- One Health Center of Excellence, University of Florida, Gainesville, FL 32611, USA.
| | - Marco Salemi
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL 32611, USA.
- Emerging Pathogens Institute University of Florida, Gainesville, FL 32611, USA.
| | - Amy Y Vittor
- Emerging Pathogens Institute University of Florida, Gainesville, FL 32611, USA.
- Division of Infectious Diseases and Global Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL 32611, USA.
| | - Ilaria Capua
- Emerging Pathogens Institute University of Florida, Gainesville, FL 32611, USA.
- One Health Center of Excellence, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
13
|
Unbiased Strain-Typing of Arbovirus Directly from Mosquitoes Using Nanopore Sequencing: A Field-forward Biosurveillance Protocol. Sci Rep 2018; 8:5417. [PMID: 29615665 PMCID: PMC5883038 DOI: 10.1038/s41598-018-23641-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 03/16/2018] [Indexed: 12/17/2022] Open
Abstract
The future of infectious disease surveillance and outbreak response is trending towards smaller hand-held solutions for point-of-need pathogen detection. Here, samples of Culex cedecei mosquitoes collected in Southern Florida, USA were tested for Venezuelan Equine Encephalitis Virus (VEEV), a previously-weaponized arthropod-borne RNA-virus capable of causing acute and fatal encephalitis in animal and human hosts. A single 20-mosquito pool tested positive for VEEV by quantitative reverse transcription polymerase chain reaction (RT-qPCR) on the Biomeme two3. The virus-positive sample was subjected to unbiased metatranscriptome sequencing on the Oxford Nanopore MinION and shown to contain Everglades Virus (EVEV), an alphavirus in the VEEV serocomplex. Our results demonstrate, for the first time, the use of unbiased sequence-based detection and subtyping of a high-consequence biothreat pathogen directly from an environmental sample using field-forward protocols. The development and validation of methods designed for field-based diagnostic metagenomics and pathogen discovery, such as those suitable for use in mobile “pocket laboratories”, will address a growing demand for public health teams to carry out their mission where it is most urgent: at the point-of-need.
Collapse
|
14
|
Reeves LE, Krysko KL, Avery ML, Gillett-Kaufman JL, Kawahara AY, Connelly CR, Kaufman PE. Interactions between the invasive Burmese python, Python bivittatus Kuhl, and the local mosquito community in Florida, USA. PLoS One 2018; 13:e0190633. [PMID: 29342169 PMCID: PMC5771569 DOI: 10.1371/journal.pone.0190633] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 12/18/2017] [Indexed: 12/30/2022] Open
Abstract
The Burmese python, Python bivittatus Kuhl, is a well-established invasive species in the greater Everglades ecosystem of southern Florida, USA. Most research on its ecological impacts focuses on its role as a predator and its trophic interactions with native vertebrate species, particularly mammals. Beyond predation, there is little known about the ecological interactions between P. bivittatus and native faunal communities. It is likely that established populations of P. bivittatus in southern Florida serve as hosts for native mosquito communities. To test this concept, we used mitochondrial cytochrome c oxidase subunit I DNA barcoding to determine the hosts of blood fed mosquitoes collected at a research facility in northern Florida where captive P. bivittatus and Argentine black and white tegu, Salvator merianae (Duméril and Bibron), are maintained in outdoor enclosures, accessible to local mosquitoes. We recovered python DNA from the blood meals of three species of Culex mosquitoes: Culex erraticus (Dyar and Knab), Culex quinquefasciatus Say, and Culex pilosus (Dyar and Knab). Culex erraticus conclusively (P = 0.001; Fisher's Exact Test) took more blood meals from P. bivittatus than from any other available host. While the majority of mosquito blood meals in our sample were derived from P. bivittatus, only one was derived from S. merianae. These results demonstrate that local mosquitoes will feed on invasive P. bivittatus, a recently introduced host. If these interactions also occur in southern Florida, P. bivittatus may be involved in the transmission networks of mosquito-vectored pathogens. Our results also illustrate the potential of detecting the presence of P. bivittatus in the field through screening mosquito blood meals for their DNA.
Collapse
Affiliation(s)
- Lawrence E. Reeves
- Entomology and Nematology Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America
- * E-mail:
| | - Kenneth L. Krysko
- Division of Herpetology, Florida Museum of Natural History, University of Florida, Gainesville, Florida, United States of America
| | - Michael L. Avery
- National Wildlife Research Center, United States Department of Agriculture, Gainesville, Florida, United States of America
| | - Jennifer L. Gillett-Kaufman
- Entomology and Nematology Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America
| | - Akito Y. Kawahara
- McGuire Center for Lepidoptera and Biodiversity, Florida Museum of Natural History, University of Florida, Gainesville, Florida, United States of America
| | - C. Roxanne Connelly
- Florida Medical Entomology Laboratory, Institute of Food and Agricultural Sciences, University of Florida, Vero Beach, Florida, United States of America
| | - Phillip E. Kaufman
- Entomology and Nematology Department, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
15
|
Hoyer IJ, Blosser EM, Acevedo C, Thompson AC, Reeves LE, Burkett-Cadena ND. Mammal decline, linked to invasive Burmese python, shifts host use of vector mosquito towards reservoir hosts of a zoonotic disease. Biol Lett 2017; 13:20170353. [PMID: 28978755 PMCID: PMC5665769 DOI: 10.1098/rsbl.2017.0353] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/29/2017] [Indexed: 01/02/2023] Open
Abstract
Invasive apex predators have profound impacts on natural communities, yet the consequences of these impacts on the transmission of zoonotic pathogens are unexplored. Collapse of large- and medium-sized mammal populations in the Florida Everglades has been linked to the invasive Burmese python, Python bivittatus Kuhl. We used historic and current data to investigate potential impacts of these community effects on contact between the reservoir hosts (certain rodents) and vectors of Everglades virus, a zoonotic mosquito-borne pathogen that circulates in southern Florida. The percentage of blood meals taken from the primary reservoir host, the hispid cotton rat, Sigmodon hispidus Say and Ord, increased dramatically (422.2%) from 1979 (14.7%) to 2016 (76.8%), while blood meals from deer, raccoons and opossums decreased by 98.2%, reflecting precipitous declines in relative abundance of these larger mammals, attributed to python predation. Overall species diversity of hosts detected in Culex cedecei blood meals from the Everglades declined by 40.2% over the same period (H(1979) = 1.68, H(2016) = 1.01). Predictions based upon the dilution effect theory suggest that increased relative feedings upon reservoir hosts translate into increased abundance of infectious vectors, and a corresponding upsurge of Everglades virus occurrence and risk of human exposure, although this was not tested in the current study. This work constitutes the first indication that an invasive predator can increase contact between vectors and reservoirs of a human pathogen and highlights unrecognized indirect impacts of invasive predators.
Collapse
Affiliation(s)
- Isaiah J Hoyer
- Florida Medical Entomology Laboratory, University of Florida, Vero Beach, FL 32962, USA
| | - Erik M Blosser
- Florida Medical Entomology Laboratory, University of Florida, Vero Beach, FL 32962, USA
| | - Carolina Acevedo
- Florida Medical Entomology Laboratory, University of Florida, Vero Beach, FL 32962, USA
| | - Anna Carels Thompson
- Florida Medical Entomology Laboratory, University of Florida, Vero Beach, FL 32962, USA
| | - Lawrence E Reeves
- Entomology and Nematology Department, University of Florida, Gainesville, FL 32611, USA
| | | |
Collapse
|
16
|
Blosser EM, Burkett-Cadena ND. Culex (Melanoconion) panocossa from peninsular Florida, USA. Acta Trop 2017; 167:59-63. [PMID: 28012907 DOI: 10.1016/j.actatropica.2016.12.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 12/16/2016] [Accepted: 12/17/2016] [Indexed: 10/20/2022]
Abstract
Culex (Melanoconion) panocossa is a suspected vector of Venezuelan equine encephalitis virus in Central America. Prior to this report, Cx. panocossa was known from Central America (Belize, Costa Rica, El Salvador, Guatemala, southern Mexico, Panama), northern South America (Colombia, Venezuela) and the Greater Antilles (Cuba and Jamaica). Larvae (n=5) and adults (n=4286) of Cx. panocossa were collected at two locations near Homestead, FL, which indicates substantial established populations of this probable vector species in the continental US. Since larvae of Cx. panocossa are associated with Pistia spp. (water lettuce), the distribution of this mosquito is likely to expand in Florida, where water lettuce is a major invasive plant in freshwater ecosystems. The putative establishment of Cx. panocossa in Florida is of significant concern from a public health perspective, as its proliferation in developed areas could link historically sylvatic transmission foci of Everglades virus with populated centers such as the greater Miami Metropolitan area.
Collapse
|
17
|
Gale P, Kelly L, Snary EL. Pathways for Entry of Livestock Arboviruses into Great Britain: Assessing the Strength of Evidence. Transbound Emerg Dis 2015; 62:115-23. [DOI: 10.1111/tbed.12317] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Indexed: 11/28/2022]
Affiliation(s)
- P. Gale
- Department of Epidemiological Sciences; Animal Health and Veterinary Laboratories Agency; Addlestone UK
| | - L. Kelly
- Department of Epidemiological Sciences; Animal Health and Veterinary Laboratories Agency; Addlestone UK
- Department of Mathematics and Statistics; University of Strathclyde; Glasgow UK
| | - E. L. Snary
- Department of Epidemiological Sciences; Animal Health and Veterinary Laboratories Agency; Addlestone UK
| |
Collapse
|
18
|
Sherman MB, Trujillo J, Leahy I, Razmus D, Dehate R, Lorcheim P, Czarneski MA, Zimmerman D, Newton JTM, Haddow AD, Weaver SC. Construction and organization of a BSL-3 cryo-electron microscopy laboratory at UTMB. J Struct Biol 2012; 181:223-33. [PMID: 23274136 DOI: 10.1016/j.jsb.2012.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Revised: 12/13/2012] [Accepted: 12/14/2012] [Indexed: 10/27/2022]
Abstract
A unique cryo-electron microscopy facility has been designed and constructed at the University of Texas Medical Branch (UTMB) to study the three-dimensional organization of viruses and bacteria classified as select agents at biological safety level (BSL)-3, and their interactions with host cells. A 200keV high-end cryo-electron microscope was installed inside a BSL-3 containment laboratory and standard operating procedures were developed and implemented to ensure its safe and efficient operation. We also developed a new microscope decontamination protocol based on chlorine dioxide gas with a continuous flow system, which allowed us to expand the facility capabilities to study bacterial agents including spore-forming species. The new unified protocol does not require agent-specific treatment in contrast to the previously used heat decontamination. To optimize the use of the cryo-electron microscope and to improve safety conditions, it can be remotely controlled from a room outside of containment, or through a computer network world-wide. Automated data collection is provided by using JADAS (single particle imaging) and SerialEM (tomography). The facility has successfully operated for more than a year without an incident and was certified as a select agent facility by the Centers for Disease Control.
Collapse
Affiliation(s)
- Michael B Sherman
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX 77555-1055, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Williams MR, Savage HM. Development of multiplexed species specific polymerase chain reaction assays for identification of the Culex (Melanoconion) species (Diptera: Culicidae) of the southeastern United States based on rDNA. JOURNAL OF MEDICAL ENTOMOLOGY 2011; 48:961-966. [PMID: 21936313 DOI: 10.1603/me11081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Adult female mosquitoes within the subgenus Culex (Melanoconion) Theobald (Diptera: Culicidae) are difficult to identify to species using external morphological features. We present two multiplexed polymerase chain reaction assays that quickly and accurately identify specimens from the southeastern United States based on sequence differences in the internal transcribed spacers of the ribosomal DNA gene array. One assay identifies all species that occur only in Florida, whereas the second assay identifies species that may occur in other southeastern states. These assays require small amounts of DNA, such as DNA from two sonicated legs, or an individual specimen. These assays also may be run as multiple singleplex reactions to determine the mosquito species composition of virus-positive mosquito pools. Reaction volumes may be as low as 10 microl, which reduces assay cost.
Collapse
Affiliation(s)
- Martin R Williams
- Centers for Disease Control and Prevention, 3150 Rampart Road, Fort Collins, CO 80521, USA
| | | |
Collapse
|
20
|
Williams MR, Savage HM. Identification of Culex (Melanoconion) species of the United States using female cibarial armature (Diptera: Culicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2009; 46:745-752. [PMID: 19645276 DOI: 10.1603/033.046.0404] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Species within the subgenus Culex (Melanoconion) Theobald are the primary enzootic vectors of viruses in the Venezuelan equine encephalitis complex including Everglades virus, and probable enzootic vectors of eastern equine encephalitis and West Nile viruses. Adult females of this subgenus are often difficult or impossible to identify to species based on external morphological characters. The use of female cibarial armature allows for the identification of field-collected adult female specimens of Culex (Melanoconion). The cibarial armatures are described and illustrated for all species from the United States and a key to species using this character is presented.
Collapse
Affiliation(s)
- Martin R Williams
- Centers for Disease Control and Prevention, 3150 Rampart Rd., Fort Collins, CO 80521, USA
| | | |
Collapse
|
21
|
|