1
|
Lopes EDS, de Souza LCA, Santaren KCF, Parente CET, Seldin L. Microbiome and Resistome in Poultry Litter-Fertilized and Unfertilized Agricultural Soils. Antibiotics (Basel) 2025; 14:355. [PMID: 40298506 PMCID: PMC12024301 DOI: 10.3390/antibiotics14040355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/24/2025] [Accepted: 03/27/2025] [Indexed: 04/30/2025] Open
Abstract
Background: Poultry litter is the main waste of poultry farming and is widely used as an agricultural fertilizer. However, owing to the use of antimicrobials in animal production, it can accumulate antimicrobial residues, antimicrobial-resistant bacteria (ARB), and antimicrobial resistance genes (ARGs). This study aimed to evaluate the impact of poultry litter use on the microbiome and resistome of agricultural soils. Methods: Soil samples from fertilized and unfertilized plots were collected from two horticultural farms that intensively use poultry litter. Microbiome composition was assessed using 16S rRNA sequencing. A culture-dependent method was used to isolate resistant strains on CHROMagar plates supplemented with sulfamethoxazole or ciprofloxacin. ARGs and integrase-encoding genes were identified by PCR. Results: Microbiome analysis revealed significant differences in structure and composition between poultry litter-fertilized and unfertilized soils. Fertilized soils exhibited greater alpha diversity and richness. Bacillota, commonly found in the avian gastrointestinal tract, were more abundant in fertilized soils. A total of 62 resistant strains were isolated, and 23 clinically relevant strains harbored ARGs, including fluoroquinolone (qnrA and qnrB) and β-lactam (blaGES, blaTEM, and blaSHV) resistance genes. Class 1 and 2 integron-associated genes (intI1 and intI2) were also detected. Notably, the rare blaGES gene was detected in Bacillus sp. from unfertilized soil. Similarly, qnrA co-occurred with blaSHV in a Bosea sp. strain from unfertilized soil. Conclusions: These findings highlight the potential for ARB dissemination in agricultural environments, where ARB and ARGs, once introduced into soils, may spread by weathering and other environmental factors, complicating negative control selection in in situ studies.
Collapse
Affiliation(s)
- Eliene dos Santos Lopes
- Laboratory of Microbial Genetics, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-590, RJ, Brazil; (E.d.S.L.); (L.C.A.d.S.); (K.C.F.S.)
| | - Larissa Coutinho Araujo de Souza
- Laboratory of Microbial Genetics, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-590, RJ, Brazil; (E.d.S.L.); (L.C.A.d.S.); (K.C.F.S.)
| | - Karen Caroline Ferreira Santaren
- Laboratory of Microbial Genetics, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-590, RJ, Brazil; (E.d.S.L.); (L.C.A.d.S.); (K.C.F.S.)
| | - Cláudio Ernesto Taveira Parente
- Olaf Malm Environmental Studies Laboratory, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-590, RJ, Brazil;
| | - Lucy Seldin
- Laboratory of Microbial Genetics, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-590, RJ, Brazil; (E.d.S.L.); (L.C.A.d.S.); (K.C.F.S.)
| |
Collapse
|
2
|
Tanuma M, Sakurai T, Nakaminami H, Tanaka M. Risk factors and clinical characteristics for Stenotrophomonas maltophilia infection in an acute care hospital in Japan: a single-center retrospective study. J Pharm Health Care Sci 2025; 11:24. [PMID: 40155984 PMCID: PMC11951655 DOI: 10.1186/s40780-025-00429-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 03/08/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Stenotrophomonas maltophilia (S. maltophilia) is a Gram-negative pathogen that causes opportunistic infections. Although the mortality rate among patients with nosocomial infections caused by S. maltophilia is high, the risk factors for infection vary among studies. Moreover, S. maltophilia is highly resistant to several classes of antimicrobial agents. To date, few studies on S. maltophilia have been conducted in Japan, and the details remain unclear. Therefore, the objective of this study was to investigate the risk factors associated with S. maltophilia infection and the antimicrobial susceptibility of S. maltophilia isolates identified in our hospital. METHODS In this study, we investigated the risk factors associated with S. maltophilia infection and clinical characteristics isolated from patients at the NTT Medical Center Tokyo (Tokyo, Japan). We retrospectively examined the S. maltophilia isolates and the corresponding patients between March 2022 and August 2023. RESULTS Fifty-eight patients with S. maltophilia isolated (median age, 80.5 years; age range, 49-100 years; 70.7% male) were enrolled in this study. Twelve cases (20.7%) were placed in the S. maltophilia infection group and 46 cases were placed in the S. maltophilia colonization group. Central venous (CV) catheterization and higher Sequential Organ Failure Assessment (SOFA) scores were identified as risk factors for S. maltophilia infection. In addition, the 30-day mortality rate was significantly higher, and the survival rate was significantly lower in patients with S. maltophilia infection. The antimicrobial susceptibility rates of S. maltophilia were as follows: 28.6% for ceftazidime, 2.4% for cefozopran, 96.6% for levofloxacin, 100% for minocycline, and 98.3% for trimethoprim-sulfamethoxazole. CONCLUSIONS In actual clinical practice, S. maltophilia was more frequently isolated from sputum. However, most of the cases were colonization, and cases of infection were rare. Early treatment initiation should be considered for S. maltophilia infection in cases where the pathogen is detected from sterile sites, such as blood cultures and pleural fluid or from sputum in cases with a high SOFA score and CV catheter insertion.
Collapse
Affiliation(s)
- Michiya Tanuma
- Department of Pharmacy, NTT Medical Center Tokyo, 5-9-22 Higashi-Gotanda, Shinagawa-Ku, Tokyo, 141-8625, Japan.
- Department of Clinical Microbiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan.
| | - Takayuki Sakurai
- Department of Infectious Diseases, NTT Medical Center Tokyo, 5-9-22 Higashi-Gotanda, Shinagawa-Ku, Tokyo, 141-8625, Japan
| | - Hidemasa Nakaminami
- Department of Clinical Microbiology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Masayo Tanaka
- Department of Pharmacy, NTT Medical Center Tokyo, 5-9-22 Higashi-Gotanda, Shinagawa-Ku, Tokyo, 141-8625, Japan
| |
Collapse
|
3
|
Boncompagni SR, Riccobono E, Cusi MG, Di Pilato V, Rossolini GM. Evidence of dissemination of a clc-type integrative and conjugative element to Stenotrophomonas maltophilia, mediating acquisition of sul1 and other resistance determinants. Antimicrob Agents Chemother 2025; 69:e0155424. [PMID: 39817763 PMCID: PMC11823659 DOI: 10.1128/aac.01554-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/09/2024] [Indexed: 01/18/2025] Open
Abstract
A Stenotrophomonas maltophilia strain positive for the blaVIM-1 metallo-beta-lactamase gene and resistant to trimethoprim-sulfamethoxazole was unexpectedly isolated from a surveillance rectal swab. The characterization of the strain revealed carriage of a 91 kb integrative and conjugative element (ICE) harboring several resistance determinants [sul1, blaVIM-1, aac(6')-Ib, aac(6')-31, qacE∆1, cld, and merEDAPTR], closely related with a group of clc-type ICEs widespread among Pseudomonas aeruginosa and other pseudomonads. Results highlighted the possible spreading of similar elements to S. maltophilia, mediating the acquisition of relevant resistances.
Collapse
Affiliation(s)
- Selene Rebecca Boncompagni
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Microbiology and Virology Unit, Careggi University Hospital, Florence, Italy
| | - Eleonora Riccobono
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Maria Grazia Cusi
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Microbiology and Virology Unit, Siena University Hospital, Siena, Italy
| | - Vincenzo Di Pilato
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, Genoa, Italy
- Microbiology Unit, IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Microbiology and Virology Unit, Careggi University Hospital, Florence, Italy
| |
Collapse
|
4
|
Almangour TA, Alali HA, Alkherb Z, Alowais SA, Bin Saleh K, Almuhisen S, Almohaizeie A, Alsahli R, Alruwaite S, Alnashmi F, Fetyani L, Abouobaid NI, Alghofaily A, Binkhamis KM, Alsowaida YS. Monotherapy versus combination for the treatment of Stenotrophomonas maltophilia: a multicenter cohort study. Expert Rev Anti Infect Ther 2024; 22:997-1005. [PMID: 38738566 DOI: 10.1080/14787210.2024.2353704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/25/2024] [Indexed: 05/14/2024]
Abstract
BACKGROUND The aim of this study was to compare the safety and effectiveness of monotherapy versus combination therapy for the treatment of infections caused by S. maltophilia. METHODS This retrospective, multicenter, cohort study included patients treated with either monotherapy or combination therapy for infections caused by S. maltophilia. Primary outcomes included overall in-hospital mortality, 30-day mortality, and clinical cure. Safety outcomes were also evaluated. Multivariable logistic regression was used as a control for confounding variables. RESULTS A total of 407 patients were included, 330 patients received monotherapy and 77 patients received combination therapy. A total of 21% presented with concomitant bacteremia. After adjusting the differences between the two groups, there were no statistically significant differences between patients who received monotherapy versus combination therapy in clinical cure (55% vs 65%; OR, 0.72; 95% CI, 0.40-1.31) and overall in-hospital mortality (52% vs 49%; OR, 0.84; 95% CI, 0.45-1.57). However, patients who received monotherapy had a lower rate of 30-day mortality (28% vs 32%; OR, 0.45; 95% CI, 0.22-0.90) and acute kidney injury (9% vs 18%; OR, 0.35; 95% CI, 0.16-0.78). CONCLUSION Clinical outcomes did not significantly differ in patients who received combination therapy versus monotherapy. More data are needed to validate these findings.
Collapse
Affiliation(s)
- Thamer A Almangour
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hussain A Alali
- Clinical Pharmacy Services, King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
| | - Zakiyah Alkherb
- Clinical Pharmacy Services, King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
| | - Shuroug A Alowais
- Department of Pharmacy Practice, College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- Pharmaceutical Care Department, King Abdulaziz Medical City, National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Khalid Bin Saleh
- Department of Pharmacy Practice, College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- Pharmaceutical Care Department, King Abdulaziz Medical City, National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Sara Almuhisen
- Pharmacy services administration, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Abdullah Almohaizeie
- Pharmaceutical Care Division, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
- College of Pharmacy, Alfaisal University, Riyadh, Saudi Arabia
| | - Renad Alsahli
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Shatha Alruwaite
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fai Alnashmi
- Department of Pharmacy Practice, College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- Pharmaceutical Care Department, King Abdulaziz Medical City, National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Lolwa Fetyani
- Department of Pharmacy Practice, College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
- Pharmaceutical Care Department, King Abdulaziz Medical City, National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Noran Ibrahim Abouobaid
- Pharmaceutical Care Division, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Alnajla Alghofaily
- Pharmaceutical Care Division, King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia
| | - Khalifa M Binkhamis
- Department of Pathology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
| | - Yazed Saleh Alsowaida
- Department of Clinical Pharmacy, College of Pharmacy, University of Ha'il, Hail, Saudi Arabia
| |
Collapse
|
5
|
Hase R, Sakurai A, Suzuki M, Itoh N, Hayakawa K, Uemura K, Matsumura Y, Kato H, Ishihara T, van Duin D, Ohmagari N, Doi Y, Saito S. Clinical characteristics and genome epidemiology of Stenotrophomonas maltophilia in Japan. J Antimicrob Chemother 2024; 79:1843-1855. [PMID: 38842502 PMCID: PMC11290880 DOI: 10.1093/jac/dkae168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/29/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Stenotrophomonas maltophilia is a carbapenem-resistant Gram-negative pathogen increasingly responsible for difficult-to-treat nosocomial infections. OBJECTIVES To describe the contemporary clinical characteristics and genome epidemiology of patients colonized or infected by S. maltophilia in a multicentre, prospective cohort. METHODS All patients with a clinical culture growing S. maltophilia were enrolled at six tertiary hospitals across Japan between April 2019 and March 2022. The clinical characteristics, outcomes, antimicrobial susceptibility and genomic epidemiology of cases with S. maltophilia were investigated. RESULTS In total, 78 patients were included representing 34 infection and 44 colonization cases. The median age was 72.5 years (IQR, 61-78), and males accounted for 53 cases (68%). The most common comorbidity was localized solid malignancy (39%). Nearly half of the patients (44%) were immunosuppressed, with antineoplastic chemotherapy accounting for 31%. The respiratory tract was the most common site of colonization (86%), whereas bacteraemia accounted for most infection cases (56%). The 30 day all-cause mortality rate was 21%, which was significantly higher in infection cases than colonization cases (35% versus 9%; adjusted HR, 3.81; 95% CI, 1.22-11.96). Susceptibility rates to ceftazidime, levofloxacin, minocycline and sulfamethoxazole/trimethoprim were 14%, 65%, 87% and 100%, respectively. The percentage of infection ranged from 13% in the unclassified group to 86% in genomic group 6A. The percentage of non-susceptibility to ceftazidime ranged from 33% in genomic group C to 100% in genomic groups 6 and 7 and genomic group geniculate. CONCLUSIONS In this contemporary multicentre cohort, S. maltophilia primarily colonized the respiratory tract, whereas patients with bacteraemia had the highest the mortality from this pathogen. Sulfamethoxazole/trimethoprim remained consistently active, but susceptibility to levofloxacin was relatively low. The proportions of cases representing infection and susceptibility to ceftazidime differed significantly based on genomic groups.
Collapse
Affiliation(s)
- Ryota Hase
- Department of Microbiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
- Department of Infectious Diseases, Japanese Red Cross Narita Hospital, Narita, Chiba, Japan
- Department of Infectious Diseases, Kameda Medical Center, Kamogawa, Chiba, Japan
| | - Aki Sakurai
- Department of Microbiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Masahiro Suzuki
- Department of Microbiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Naoya Itoh
- Division of Infectious Diseases, Aichi Cancer Center, Nagoya, Aichi, Japan
| | - Kayoko Hayakawa
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Shinjuku, Tokyo, Japan
| | - Kohei Uemura
- Department of Biostatistics and Bioinformatics, Interfaculty Initiative in Information Studies, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Yasufumi Matsumura
- Department of Clinical Laboratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Kyoto, Japan
| | - Hideaki Kato
- Infection Prevention and Control Department, Yokohama City University Hospital, Yokohama, Kanagawa, Japan
| | - Takuma Ishihara
- Innovative and Clinical Research Promotion Center, Gifu University Hospital, Gifu, Gifu, Japan
| | - David van Duin
- Division of Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Norio Ohmagari
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Shinjuku, Tokyo, Japan
| | - Yohei Doi
- Department of Microbiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
- Department of Infectious Diseases, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
- Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sho Saito
- Disease Control and Prevention Center, National Center for Global Health and Medicine, Shinjuku, Tokyo, Japan
| |
Collapse
|
6
|
Sapula SA, Hart BJ, Siderius NL, Amsalu A, Blaikie JM, Venter H. Multidrug-resistant Stenotrophomonas maltophilia in residential aged care facilities: An emerging threat. Microbiologyopen 2024; 13:e1409. [PMID: 38682784 PMCID: PMC11057060 DOI: 10.1002/mbo3.1409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/20/2024] [Accepted: 04/16/2024] [Indexed: 05/01/2024] Open
Abstract
Stenotrophomonas maltophilia is a multidrug-resistant (MDR), Gram-negative bacterium intrinsically resistant to beta-lactams, including last-resort carbapenems. As an opportunistic pathogen, it can cause serious healthcare-related infections. This study assesses the prevalence, resistance profiles, and genetic diversity of S. maltophilia isolated from residential aged care facilities (RACFs). RACFs are known for their overuse and often inappropriate use of antibiotics, creating a strong selective environment that favors the development of bacterial resistance. The study was conducted on 73 S. maltophilia isolates recovered from wastewater and facility swab samples obtained from three RACFs and a retirement village. Phenotypic and genotypic assessments of the isolates revealed high carbapenem resistance, exemplifying their intrinsic beta-lactam resistance. Alarmingly, 49.3% (36/73) of the isolates were non-wild type for colistin, with minimum inhibitory concentration values of > 4 mg/L, and 11.0% (8/73) were resistant to trimethoprim-sulfamethoxazole. No resistance mechanisms were detected for either antimicrobial. Genotypic assessment of known lineages revealed isolates clustering with Sm17 and Sm18, lineages not previously reported in Australia, suggesting the potential ongoing spread of MDR S. maltophilia. Lastly, although only a few isolates were biocide tolerant (2.7%, 2/73), their ability to grow in high concentrations (64 mg/L) of triclosan is concerning, as it may be selecting for their survival and continued dissemination.
Collapse
Affiliation(s)
- Sylvia A. Sapula
- Health and Biomedical Innovation, UniSA Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Bradley J. Hart
- Health and Biomedical Innovation, UniSA Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Naomi L. Siderius
- Health and Biomedical Innovation, UniSA Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Anteneh Amsalu
- Health and Biomedical Innovation, UniSA Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
- Department of Medical MicrobiologyUniversity of GondarGondarEthiopia
| | - Jack M. Blaikie
- Health and Biomedical Innovation, UniSA Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| | - Henrietta Venter
- Health and Biomedical Innovation, UniSA Clinical and Health SciencesUniversity of South AustraliaAdelaideSouth AustraliaAustralia
| |
Collapse
|
7
|
Parkan ÖM, Kiliç H, Alp E, Timur D, Gündoğdu A, Ünaldi Ö, Durmaz R. Clonal spread of trimethoprim-sulfamethoxazole-resistant Stenotrophomonas maltophilia isolates in a tertiary hospital. GMS HYGIENE AND INFECTION CONTROL 2024; 19:Doc26. [PMID: 38883406 PMCID: PMC11177223 DOI: 10.3205/dgkh000481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Aim The aims of this study were to: (i) determine antibiotic susceptibility of clinical Stenotrophomonas maltophilia isolates, (ii) investigate the presence of different classes of integrons and sul genes responsible for sulphonamide resistance, (iii) assess the molecular epidemiology of the isolates by determining their clonal relatedness, and (iv) investigate the potential sources of infection by collecting environmental samples when necessary. Methods 99 S. maltophilia isolates from clinical specimens of hospitalized patients were screened by PCR for sul1, sul2, sul3 genes, and integron-associated integrase genes: intI1, intI2, and intI3. PFGE was used to determine the clonal relatedness of the isolates. Results Susceptibility rates for trimethoprim-sulfamethoxazole, levofloxacin, and ceftazidime were 90.9%, 91.9%, and 53.5% respectively. All trimethoprim-sulfamethoxazole-resistant isolates were positive for intI1 and sul1. PFGE analysis revealed that 24 of the isolates were clonally related, clustering in seven different clones. Five of the nine trimethoprim-sulfamethoxazole-resistant isolates were clonally related. The first isolate in this clone was from a wound sample of a patient in the infectious diseases clinic, and the other four were isolated from the bronchoalveolar lavage samples of patients in the thoracic surgery unit. The patient with the first isolate neither underwent bronchoscopy nor stayed in the thoracic surgery unit. Although clustering was observed in bronchoalveolar lavage samples, no S. maltophilia growth was detected in environmental samples. Conclusion The findings demonstrated that the sul1 gene carried by class 1 integrons plays an important role in trimethoprim-sulfamethoxazole resistance in S. maltophilia isolates. PFGE analysis revealed a high degree of genetic diversity. However, detection of clonally related isolates suggests the acquisition from a common source and/or cross-transmission of this microorganism between the patients.
Collapse
Affiliation(s)
- Ömür Mustafa Parkan
- Department of Medical Microbiology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Hüseyin Kiliç
- Department of Medical Microbiology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Emine Alp
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Ankara Yildirim Beyazit University, Ankara, Turkey
| | - Demet Timur
- Department of Medical Microbiology, Bursa City Hospital, Bursa, Turkey
| | - Aycan Gündoğdu
- Department of Medical Microbiology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Özlem Ünaldi
- National Molecular Microbiology Reference Laboratory, Public Health Institution of Turkey, Ankara, Turkey
| | - Rıza Durmaz
- National Molecular Microbiology Reference Laboratory, Public Health Institution of Turkey, Ankara, Turkey
- Department of Medical Microbiology, Faculty of Medicine, Ankara Yildirim Beyazit University, Ankara, Turkey
| |
Collapse
|
8
|
Wang Y, Yang K, Li L, Yang L, Zhang S, Yu F, Hua L. Change characteristics, bacteria host, and spread risks of bioaerosol ARGs/MGEs from different stages in sewage and sludge treatment process. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134011. [PMID: 38492400 DOI: 10.1016/j.jhazmat.2024.134011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/21/2024] [Accepted: 03/10/2024] [Indexed: 03/18/2024]
Abstract
The spread of antibiotic resistance genes (ARGs) in the atmospheric environment has seriously threatened human health. Wastewater treatment plants (WWTPs) are an important source of aerosol ARGs. A large WWTP, including sewage treatment process (SWP) and sludge treatment process (SDP), was selected in North China for sampling in this study. The content of ARGs, mobile genetic elements (MGEs), and bacterial genera in sewage/sludge and aerosols from different process stages was detected. The possible correlation between ARGs/ MGEs and bacteria was analyzed. The risk of antibiotic-resistant bacteria was evaluated and the diffusion of ARGs/MGEs was simulated. The results showed that the concentration of ARGs/MGEs varied as the process progressed, and which in the aeration tank was relatively high. The ARGs/MGEs content in SWP aerosol (8.35-163.27 copies/m3) was higher than that in SDP (5.52-16.36 copies/m3). The main ARGs/MGEs detected in SWP aerosol were tnpA-05, tnpA-04, and ermF, while the main ARGs/MGEs detected in SDP aerosol were sul1, ermF, and blaPAO. ARGs were positively correlated with most bacteria and Escherichia coli with ARGs carries higher cytotoxicity. ARGs/MGEs mainly diffused towards the southeast, which may cause harm to urban residents with the diffusion of aerosols. This study provides clues and theoretical basis for preventing the hazards of ARGs from WWTP sources.
Collapse
Affiliation(s)
- Yanjie Wang
- School of Public Health, Zhengzhou University, Zhengzhou 450001, PR China; Lancaster Environment Centre, Lancaster University, United Kingdom, UK; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| | - Kai Yang
- School of Public Health, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Lin Li
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| | - Liying Yang
- School of Public Health, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Song Zhang
- School of Public Health, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Fangfang Yu
- School of Public Health, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Linlin Hua
- School of Public Health, Zhengzhou University, Zhengzhou 450001, PR China; Advanced Medical Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450014, PR China.
| |
Collapse
|
9
|
Mokhtari Bibalan M, Mojtahedi A, Mahdieh N, Jafari A, Atrkar Roushan Z, Arya MJ. Evaluation of the presence of integrons, sul and smqnr genes and the prevalence of antibiotic resistance in Stenotrophomonas maltophilia clinical isolates. Indian J Med Microbiol 2024; 49:100612. [PMID: 38750966 DOI: 10.1016/j.ijmmb.2024.100612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 03/26/2024] [Accepted: 05/12/2024] [Indexed: 05/19/2024]
Abstract
OBJECTIVES The objective of this investigation was to examine the mechanisms associated with antibiotic resistance in Stenotrophomonas maltophilia clinical isolates retrieved from hospitalized patients undergoing open heart surgery in a Heart Center located in Tehran, Iran. MATERIALS AND METHODS This investigation encompassed a cross-sectional study of 60 S. maltophilia isolates, which were procured from diverse clinical specimens. Primary identification of the isolates was conducted through conventional microbiologic methods and subsequently verified by means of PCR primers. The E-test was utilized to establish the minimum inhibitory concentrations (MICs). PCR was then employed to ascertain the antibiotic resistance genes (sul1, sul2, Smqnr and intl1 - intl3). RESULTS In this study, a total of sixty clinical isolates of S. maltophilia were collected, with the majority of them being obtained from Intensive Care Units (ICU) (n = 54; 90%). The disk diffusion method yielded results indicating that 55% of the isolates were sensitive to minocycline, whereas 30% were intermediate and 15% were found to be resistant. Additionally, the MIC results revealed that the resistant rates of the isolates towards ceftazidime, cotrimoxazole and levofloxacin were 46.7%, 1.7% and 5%, respectively. The PCR amplification of three classes of integrons genes indicated that fifteen (25%) of the isolates carried int1, while no detection for intl2 and intl3 was reported. Furthermore, the prevalence of antibiotic resistance genes (sul1, sul2, and Smqnr) was identified in 15 (25%), 6 (10%), and 28 (46.7%) isolates, respectively. CONCLUSION The reported increasing rate of antibiotic resistance and mobile genetic elements that could extend the resistance genes to other strains in the hospital, finally it could be an alarming issue for healthcare settings that need special attention to this strain and the epidemiological study on this issue.
Collapse
Affiliation(s)
- Maryam Mokhtari Bibalan
- Department of Microbiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| | - Ali Mojtahedi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Nejat Mahdieh
- Cardiogenetic Research Center, Rajaei Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Alireza Jafari
- Urology Research Center, Razi Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| | - Zahra Atrkar Roushan
- Department of Biostatistics, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran.
| | | |
Collapse
|
10
|
Ochoa-Sánchez LE, Martínez JL, Gil-Gil T. Evolution of Resistance against Ciprofloxacin, Tobramycin, and Trimethoprim/Sulfamethoxazole in the Environmental Opportunistic Pathogen Stenotrophomonas maltophilia. Antibiotics (Basel) 2024; 13:330. [PMID: 38667006 PMCID: PMC11047544 DOI: 10.3390/antibiotics13040330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/27/2024] [Accepted: 04/02/2024] [Indexed: 04/29/2024] Open
Abstract
Stenotrophomonas maltophilia is an opportunistic pathogen that produces respiratory infections in immunosuppressed and cystic fibrosis patients. The therapeutic options to treat S. maltophilia infections are limited since it exhibits resistance to a wide variety of antibiotics such as β-lactams, aminoglycosides, tetracyclines, cephalosporins, macrolides, fluoroquinolones, or carbapenems. The antibiotic combination trimethoprim/sulfamethoxazole (SXT) is the treatment of choice to combat infections caused by S. maltophilia, while ceftazidime, ciprofloxacin, or tobramycin are used in most SXT-resistant infections. In the current study, experimental evolution and whole-genome sequencing (WGS) were used to examine the evolutionary trajectories of S. maltophilia towards resistance against tobramycin, ciprofloxacin, and SXT. The genetic changes underlying antibiotic resistance, as well as the evolutionary trajectories toward that resistance, were determined. Our results determine that genomic changes in the efflux pump regulatory genes smeT and soxR are essential to confer resistance to ciprofloxacin, and the mutation in the rplA gene is significant in the resistance to tobramycin. We identified mutations in folP and the efflux pump regulator smeRV as the basis of SXT resistance. Detailed and reliable knowledge of ciprofloxacin, tobramycin, and SXT resistance is essential for safe and effective use in clinical settings. Herein, we were able to prove once again the extraordinary ability that S. maltophilia has to acquire resistance and the importance of looking for alternatives to combat this resistance.
Collapse
Affiliation(s)
- Luz Edith Ochoa-Sánchez
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Darwin 3, 28049 Madrid, Spain;
| | - José Luis Martínez
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Darwin 3, 28049 Madrid, Spain;
| | - Teresa Gil-Gil
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas (CSIC), Darwin 3, 28049 Madrid, Spain;
- Department of Biology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
11
|
Bostanghadiri N, Sholeh M, Navidifar T, Dadgar-Zankbar L, Elahi Z, van Belkum A, Darban-Sarokhalil D. Global mapping of antibiotic resistance rates among clinical isolates of Stenotrophomonas maltophilia: a systematic review and meta-analysis. Ann Clin Microbiol Antimicrob 2024; 23:26. [PMID: 38504262 PMCID: PMC10953290 DOI: 10.1186/s12941-024-00685-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 03/05/2024] [Indexed: 03/21/2024] Open
Abstract
INTRODUCTION Infections caused by Stenotrophomonas maltophilia are clinically important due to its intrinsic resistance to a broad range of antibiotics. Therefore, selecting the most appropriate antibiotic to treat S. maltophilia infection is a major challenge. AIM The current meta-analysis aimed to investigate the global prevalence of antibiotic resistance among S. maltophilia isolates to the develop more effective therapeutic strategies. METHOD A systematic literature search was performed using the appropriate search syntax after searching Pubmed, Embase, Web of Science and Scopus databases (May 2023). Statistical analysis was performed using Pooled and the random effects model in R and the metafor package. A total of 11,438 articles were retrieved. After a thorough evaluation, 289 studies were finally eligible for inclusion in this systematic review and meta-analysis. RESULT Present analysis indicated that the highest incidences of resistance were associated with doripenem (97%), cefoxitin (96%), imipenem and cefuroxime (95%), ampicillin (94%), ceftriaxone (92%), aztreonam (91%) and meropenem (90%) which resistance to Carbapenems is intrinsic. The lowest resistance rates were documented for minocycline (3%), cefiderocol (4%). The global resistance rate to TMP-SMX remained constant in two periods before and after 2010 (14.4% vs. 14.6%). A significant increase in resistance to tigecycline and ceftolozane/tazobactam was observed before and after 2010. CONCLUSIONS Minocycline and cefiderocol can be considered the preferred treatment options due to low resistance rates, although regional differences in resistance rates to other antibiotics should be considered. The low global prevalence of resistance to TMP-SMX as a first-line treatment for S. maltophilia suggests that it remains an effective treatment option.
Collapse
Affiliation(s)
- Narjess Bostanghadiri
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sholeh
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Tahereh Navidifar
- Department of Basic Sciences, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran
| | - Leila Dadgar-Zankbar
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Elahi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alex van Belkum
- Open Innovation & Partnerships, BaseClear, Leiden, Netherlands
| | - Davood Darban-Sarokhalil
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Shahid S, Abid R, Ajmal W, Almuqbil M, Almadani ME, Khan Y, Ansari AA, Rani R, Alshehri A, Alghamdi A, Asdaq SMB, Ghazanfar S. Antibiotic resistance genes prediction via whole genome sequence analysis of Stenotrophomonas maltophilia. J Infect Public Health 2024; 17:236-244. [PMID: 38128408 DOI: 10.1016/j.jiph.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Stenotrophomonas maltophilia (S. maltophilia) is the first dominant ubiquitous bacterial species identified from the genus Stenotrophomonas in 1943 from a human source. S. maltophilia clinical strains are resistance to several therapies, this study is designed to investigate the whole genome sequence and antimicrobial resistance genes prediction in Stenotrophomonas maltophilia (S. maltophilia) SARC-5 and SARC-6 strains, isolated from the nasopharyngeal samples of an immunocompromised patient. METHODS These bacterial strains were obtained from Pakistan Institute of Medical Sciences (PIMS) Hospital, Pakistan. The bacterial genome was sequenced using a whole-genome shotgun via a commercial service that used an NGS (Next Generation Sequencing) technology called as Illumina Hiseq 2000 system for genomic sequencing. Moreover, detailed in-silico analyses were done to predict the presence of antibiotic resistance genes in S. maltophilia. RESULTS Results showed that S. maltophilia is a rare gram negative, rod-shaped, non sporulating bacteria. The genome assembly results in 24 contigs (>500 bp) having a size of 4668,850 bp with 65.8% GC contents. Phylogenetic analysis showed that SARC-5 and SARC-6 were closely related to S. maltophilia B111, S. maltophilia BAB-5317, S. maltophilia AHL, S. maltophilia BAB-5307, S. maltophilia RD-AZPVI_04, S. maltophilia JFZ2, S. maltophilia RD_MAAMIB_06 and lastly with S. maltophilia sp ROi7. Moreover, the whole genome sequence analysis of both SARC-5 and SARC-6 revealed the presence of four resistance genes adeF, qacG, adeF, and smeR. CONCLUSION Our study confirmed that S. maltophilia SARC-5 and SARC-6 are one of the leading causes of nosocomial infection which carry multiple antibiotic resistance genes.
Collapse
Affiliation(s)
- Sara Shahid
- Department of Life Sciences, Abasyn University Islamabad Campus Pakistan, Pakistan
| | - Rameesha Abid
- National Institute for Genomics and Advanced Biotechnology, National Agricultural Research Centre (NARC), Park Road, Islamabad 45500, Pakistan; Department of Microbiology, Quaid-i-Azam University, Islamabad 44100, Pakistan
| | - Wajya Ajmal
- National Institute for Genomics and Advanced Biotechnology, National Agricultural Research Centre (NARC), Park Road, Islamabad 45500, Pakistan.
| | - Mansour Almuqbil
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Moneer E Almadani
- Department of Clinical Medicine, College of Medicine, AlMaarefa University, Dariyah, 13713 Riyadh, Saudi Arabia
| | - Yasir Khan
- National Institute for Genomics and Advanced Biotechnology, National Agricultural Research Centre (NARC), Park Road, Islamabad 45500, Pakistan
| | - Adnan Ahmad Ansari
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad 44100, Pakistan
| | - Rehana Rani
- Department of Life Sciences, Abasyn University Islamabad Campus Pakistan, Pakistan.
| | - Ahmed Alshehri
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, King Faisal Road, Dammam 31441, Saudi Arabia
| | - Adel Alghamdi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Al-Baha University, P.O. Box 1988, Al-Baha, Saudi Arabia
| | | | - Shakira Ghazanfar
- National Institute for Genomics and Advanced Biotechnology, National Agricultural Research Centre (NARC), Park Road, Islamabad 45500, Pakistan.
| |
Collapse
|
13
|
Bhaumik R, Aungkur NZ, Anderson GG. A guide to Stenotrophomonas maltophilia virulence capabilities, as we currently understand them. Front Cell Infect Microbiol 2024; 13:1322853. [PMID: 38274738 PMCID: PMC10808757 DOI: 10.3389/fcimb.2023.1322853] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/20/2023] [Indexed: 01/27/2024] Open
Abstract
The Gram-negative pathogen Stenotrophomonas maltophilia causes a wide range of human infections. It causes particularly serious lung infections in individuals with cystic fibrosis, leading to high mortality rates. This pathogen is resistant to most known antibiotics and harbors a plethora of virulence factors, including lytic enzymes and serine proteases, that cause acute infection in host organisms. S. maltophilia also establishes chronic infections through biofilm formation. The biofilm environment protects the bacteria from external threats and harsh conditions and is therefore vital for the long-term pathogenesis of the microbe. While studies have identified several genes that mediate S. maltophilia's initial colonization and biofilm formation, the cascade of events initiated by these factors is poorly understood. Consequently, understanding these and other virulence factors can yield exciting new targets for novel therapeutics.
Collapse
Affiliation(s)
| | | | - Gregory G. Anderson
- Department of Biology, Purdue School of Science, Indiana University Purdue University Indianapolis, Indianapolis, IN, United States
| |
Collapse
|
14
|
Alhayani T, Philpott CD, Liao S, Gentene AJ, Mueller EW. Comparison of Doxycycline or Minocycline to Sulfamethoxazole-Trimethoprim for Treatment of Stenotrophomonas maltophilia Pneumonia. Ann Pharmacother 2024; 58:21-27. [PMID: 37125743 DOI: 10.1177/10600280231166413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
BACKGROUND Stenotrophomonas maltophilia is a multidrug-resistant organism with limited antibiotic treatment options. Minocycline and doxycycline may be appropriate, but clinical data are limited. OBJECTIVE To compare tetracyclines (minocycline and doxycycline [TCN]) with standard of care, sulfamethoxazole-trimethoprim (TMP-SMZ), in S. maltophilia pneumonia treatment. METHODS This retrospective, 2-center study evaluated patients treated for S. maltophilia pneumonia with TCN or TMP-SMZ for clinical success, defined as resolution of leukocytosis, fever, and tachypnea. Patients were classified as treatment with TCN or TMP-SMZ based on definitive agent used for ≥50% of the treatment course and ≥4 days. Inclusion criteria were age ≥18 years, S. maltophilia confirmed on respiratory culture from January 2013 to November 2020, and appropriate definitive antibiotic dosing. Pregnancy, incarceration, S. maltophilia-resistant or intermediate to definitive therapy, and combination therapy for treatment of S. maltophilia pneumonia were exclusion criteria. Secondary outcomes were microbiologic success and recurrence or reinfection within 30 days requiring treatment. RESULTS A total of 80 patients were included (21 TCN [15 minocycline, 6 doxycycline], 59 TMP-SMZ). There was no difference in clinical success (28.6% vs 25.4%; P = 0.994), microbiologic success (n = 28, 55.6% vs 66.4%; P = 0.677), or recurrence or reinfection (n = 24, 66.7% vs 26.7%; P = 0.092) between TCN and TMP-SMZ, respectively. CONCLUSION AND RELEVANCE Clinical and microbiologic success rates were similar in patients treated with TCN compared with TMP-SMZ for S. maltophilia pneumonia. These data suggest minocycline and doxycycline may be options to treat S. maltophilia pneumonia, but conclusive clinical data continue to be lacking.
Collapse
Affiliation(s)
- Taha Alhayani
- Department of Pharmacy Services, Good Samaritan Hospital, TriHealth, Cincinnati, OH, USA
- Department of Pharmacy Services, University of Cincinnati Medical Center, UC Health, Cincinnati, OH, USA
| | - Carolyn D Philpott
- Department of Pharmacy Services, University of Cincinnati Medical Center, UC Health, Cincinnati, OH, USA
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA
| | - Siyun Liao
- Department of Pharmacy Services, University of Cincinnati Medical Center, UC Health, Cincinnati, OH, USA
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA
| | - Anthony J Gentene
- Department of Pharmacy Services, University of Cincinnati Medical Center, UC Health, Cincinnati, OH, USA
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA
| | - Eric W Mueller
- Department of Pharmacy Services, University of Cincinnati Medical Center, UC Health, Cincinnati, OH, USA
- James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
15
|
Pfaller MA, Shortridge D, Carvalhaes CG, Castanheira M. Trends in the susceptibility of U.S. Acinetobacter baumannii-calcoaceticus species complex and Stenotrophomonas maltophilia isolates to minocycline, 2014-2021. Microbiol Spectr 2023; 11:e0198123. [PMID: 37921464 PMCID: PMC10715018 DOI: 10.1128/spectrum.01981-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023] Open
Abstract
IMPORTANCE Acinetobacter baumannii-calcoaceticus species complex and Stenotrophomonas maltophilia are opportunistic, non-fermentative Gram-negative organisms that can cause serious hospital-acquired infections in immunocompromised patients. These pathogens are inherently resistant to several common drug classes and often acquire other resistance mechanisms, making them difficult to treat. In this study, we analyzed the trends of susceptibility of over 2,500 U.S. bacterial isolates collected from hospitalized patients over an 8-year period to minocycline, which is used to treat infections caused by these pathogens. These in vitro data suggest that minocycline is a useful treatment option for infections caused by Acinetobacter baumannii-calcoaceticus species complex or Stenotrophomonas maltophilia.
Collapse
Affiliation(s)
- Michael A. Pfaller
- University of Iowa, Iowa City, Iowa, USA
- JMI Laboratories, North Liberty, Iowa, USA
| | | | | | | |
Collapse
|
16
|
Bafandeh Zamanpour S, Yousefi Mashouf R, Salimizand H, Nazari M, Alikhani MY, Farajnia S. Relationship between antibiotic resistance with class 1 integron and SmeDEF efflux pump encoding genes in clinical isolates of Stenotrophomonas maltophilia. J Appl Genet 2023; 64:591-597. [PMID: 37574492 DOI: 10.1007/s13353-023-00776-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/02/2023] [Accepted: 08/01/2023] [Indexed: 08/15/2023]
Abstract
Stenotrophomonas maltophilia is an emerging multidrug-resistant organism with an increasing frequency of hospital-acquired infections predominantly in developing countries. The purpose of this study was to determine the antibiotic resistance and frequency of the smeD, class 1 integron, and sul1 genes in clinical isolates of S. maltophilia in two Iranian provinces. From January 2020 to September 2021, 38 clinical isolates of S. maltophilia were collected from patients in hospitals in Tabriz and Sanandaj provinces of Iran. S. maltophilia isolates were confirmed by standard bacteriological tests and 16S rRNA gene PCR. Disk diffusion and the MIC test strip methods were used to determine the antibiotic resistance patterns. PCR was performed to investigate the presence of smeD, class 1 integron, and sul1 genes. The antimicrobial test for the isolated S. maltophilia showed a high level of sensitivity against most of the antibiotics used. Maximum sensitivity was recorded for ciprofloxacin (100% (38/38)) and levofloxacin 100% (38/38), followed by ceftazidime (97.36% (37/38)), trimethoprim-sulfamethoxazole (81.57% (31/38)), ticarcillin-clavulanate (60.52% (23/38)), and piperacillin-tazobactam (55.26% (21/38)). We observed a high prevalence of smeD (100% (38/38)) and class 1 integron (94.73% (36/38)) genes in the isolates, and none of the isolates carried the sul1 gene. The findings from this study indicate that resistance to trimethoprim-sulfamethoxazole was not observed, and still, trimethoprim-sulfamethoxazole is the best drug with desirable antimicrobial effect in the treatment of nosocomial infections caused by S. maltophilia strains. Despite the observation of a high number of class 1 integron, the sul1 gene was not observed, which indicates the role of this gene in high-level trimethoprim-sulfamethoxazole resistance and not having a role in low-level resistance. Based on our results, clinical microbiology laboratories need continuous surveillance of resistance rates to trimethoprim-sulfamethoxazole, because of the possibility of S. maltophilia acquiring trimethoprim-sulfamethoxazole-resistance by mobile gen elements.
Collapse
Affiliation(s)
| | | | - Himen Salimizand
- Microbiology Department, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohsen Nazari
- Microbiology Department, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Yousef Alikhani
- Microbiology Department, Hamadan University of Medical Sciences, Hamadan, Iran.
- Infectious Disease Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Safar Farajnia
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
17
|
Stege PB, Hordijk J, Sandholt AKS, Zomer AL, Viveen MC, Rogers MRC, Salomons M, Wagenaar JA, Mughini-Gras L, Willems RJL, Paganelli FL. Gut Colonization by ESBL-Producing Escherichia coli in Dogs Is Associated with a Distinct Microbiome and Resistome Composition. Microbiol Spectr 2023; 11:e0006323. [PMID: 37404183 PMCID: PMC10434115 DOI: 10.1128/spectrum.00063-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/12/2023] [Indexed: 07/06/2023] Open
Abstract
The gut microbiome of humans and animals acts as a reservoir of extended-spectrum beta-lactamase-producing Escherichia coli (ESBL-EC). Dogs are known for having a high prevalence of ESBL-EC in their gut microbiota, although their ESBL-EC carrier status often shifts over time. We hypothesized that the gut microbiome composition of dogs is implicated in ESBL-EC colonization status. Therefore, we assessed whether ESBL-EC carriage in dogs is associated with changes in the gut microbiome and resistome. Fecal samples were collected longitudinally from 57 companion dogs in the Netherlands every 2 weeks for a total of 6 weeks (n = 4 samples/dog). Carriage of ESBL-EC was determined through selective culturing and PCR and in line with previous studies, we observed a high prevalence of ESBL-EC carriage in dogs. Using 16s rRNA gene profiling we found significant associations between detected ESBL-EC carriage and an increased abundance of Clostridium sensu stricto 1, Enterococcus, Lactococcus, and the shared genera of Escherichia-Shigella in the dog microbiome. A resistome capture sequencing approach (ResCap) furthermore, revealed associations between detected ESBL-EC carriage and the increased abundance of the antimicrobial resistance genes: cmlA, dfrA, dhfR, floR, and sul3. In summary, our study showed that ESBL-EC carriage is associated with a distinct microbiome and resistome composition. IMPORTANCE The gut microbiome of humans and animals is an important source of multidrug resistant pathogens, including beta-lactamase-producing Escherichia coli (ESBL-EC). In this study, we assessed if the carriage of ESBL-EC in dogs was associated with changes in gut composition of bacteria and antimicrobial resistant genes (ARGs). Therefore, stool samples from 57 dogs were collected every 2 weeks for a total of 6 weeks. Sixty eight percent of the dogs carried ESBL-EC during at least one of the time points analyzed. By investigating the gut microbiome and resistome composition, we observed specific changes at time points when dogs were colonized with ESBL-EC compared to time points whenESBL-EC were not detected. In conclusion, our study highlights the importance to study the microbial diversity in companion animals, as gut colonization of particular antimicrobial resistant bacteria might be an indication of a changed microbial composition that is associated with the selection of particular ARGs.
Collapse
Affiliation(s)
- Paul B. Stege
- Department of Medical Microbiology, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Joost Hordijk
- Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Arnar K. S. Sandholt
- Utrecht University, Institute for Risk Assessment Sciences, Utrecht, The Netherlands
| | - Aldert L. Zomer
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- WHO Collaborating Centre for Reference and Research on Campylobacter and Antimicrobial Resistance from an One Health Perspective/OIE Reference Laboratory for Campylobacteriosis, Utrecht, The Netherlands
| | - Marco C. Viveen
- Department of Medical Microbiology, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Malbert R. C. Rogers
- Department of Medical Microbiology, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Moniek Salomons
- Department of Medical Microbiology, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jaap A. Wagenaar
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- WHO Collaborating Centre for Reference and Research on Campylobacter and Antimicrobial Resistance from an One Health Perspective/OIE Reference Laboratory for Campylobacteriosis, Utrecht, The Netherlands
| | - Lapo Mughini-Gras
- Centre for Infectious Disease Control Netherlands, National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
- Utrecht University, Institute for Risk Assessment Sciences, Utrecht, The Netherlands
| | - Rob J. L. Willems
- Department of Medical Microbiology, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Fernanda L. Paganelli
- Department of Medical Microbiology, UMC Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
18
|
Kadeřábková N, Furniss RCD, Maslova E, Eisaiankhongi L, Bernal P, Filloux A, Landeta C, Gonzalez D, McCarthy RR, Mavridou DA. Antibiotic potentiation and inhibition of cross-resistance in pathogens associated with cystic fibrosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.02.551661. [PMID: 37577508 PMCID: PMC10418187 DOI: 10.1101/2023.08.02.551661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Critical Gram-negative pathogens, like Pseudomonas, Stenotrophomonas and Burkholderia, have become resistant to most antibiotics. Complex resistance profiles together with synergistic interactions between these organisms increase the likelihood of treatment failure in distinct infection settings, for example in the lungs of cystic fibrosis patients. Here, we discover that cell envelope protein homeostasis pathways underpin both antibiotic resistance and cross-protection in CF-associated bacteria. We find that inhibition of oxidative protein folding inactivates multiple species-specific resistance proteins. Using this strategy, we sensitize multi-drug resistant Pseudomonas aeruginosa to β-lactam antibiotics and demonstrate promise of new treatment avenues for the recalcitrant pathogen Stenotrophomonas maltophilia. The same approach also inhibits cross-protection between resistant S. maltophilia and susceptible P. aeruginosa, allowing eradication of both commonly co-occurring CF-associated organisms. Our results provide the basis for the development of next-generation strategies that target antibiotic resistance, while also impairing specific interbacterial interactions that enhance the severity of polymicrobial infections.
Collapse
Affiliation(s)
- Nikol Kadeřábková
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, 78712, Texas, USA
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - R. Christopher D. Furniss
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - Evgenia Maslova
- Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Lara Eisaiankhongi
- Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Patricia Bernal
- Departamento de Microbiología, Facultad de Biología, Universidad de Sevilla, Seville, 41012, Spain
| | - Alain Filloux
- Centre for Bacterial Resistance Biology, Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 637551, Singapore
| | - Cristina Landeta
- Department of Biology, Indiana University, Bloomington, Indiana, 47405, USA
| | - Diego Gonzalez
- Laboratoire de Microbiologie, Institut de Biologie, Université de Neuchâtel, Neuchâtel, 2000, Switzerland
| | - Ronan R. McCarthy
- Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UB8 3PH, UK
| | - Despoina A.I. Mavridou
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, 78712, Texas, USA
- John Ring LaMontagne Center for Infectious Diseases, The University of Texas at Austin, Austin, 78712, Texas, USA
| |
Collapse
|
19
|
Li X, Mu X, Chen F, Lu X, He J, Zheng Y, Zhou D, Yin Z, Wang P. Characterization of Three Novel IMP Metallo-β-Lactamases, IMP-89, IMP-91, and IMP-96, and Diverse blaIMP-Carrying Accessory Genetic Elements from Chinese Clinical Isolates. Microbiol Spectr 2023; 11:e0498622. [PMID: 37092959 PMCID: PMC10269577 DOI: 10.1128/spectrum.04986-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 03/17/2023] [Indexed: 04/25/2023] Open
Abstract
Three novel imipenemase (IMP)-type metallo-β-lactamases (MBLs), referred to as IMP-89, IMP-91, and IMP-96, were detected in three clinical isolates from China. Antimicrobial susceptibility tests indicated these novel enzymes were resistant to most β-lactams, and IMP-96 with a Ser262Gly mutation had higher activity against meropenem than its point mutant. We then collected sequence data on all 91 available IMP variants for phylogenetic analysis. To further analyze the genetic environment of blaIMP, an extensive comparison was applied to nine accessory genetic elements (AGEs), including six sequenced blaIMP-carrying AGEs in this study and three others from GenBank. These nine AGEs were divided into three groups: three IncpJBCL41 plasmids, Tn6417 and its two derivatives, and three Tn6879-related integrative and conjugative elements (ICEs). All blaIMP genes in this study were captured by class 1 integrons. In the integrons, blaIMP genes usually coexisted with other resistance genes, which further impeded clinical antibacterial treatment. The emergence of new IMP variants and the diversity and complexity of their genetic environment make the prevention and control of drug-resistant strains critical, requiring serious attention from clinical and public health management departments. IMPORTANCE The spread of IMP-type MBLs has increased dramatically in recent years. We discovered three novel IMP variants from three clinical isolates in China. We summarized the classification and evolutionary relationship of all available IMP variants. Moreover, we detailed the genetic characteristics of blaIMP-carrying accessory genetic elements in five clinical isolates. Given the risk of rapid and extensive spread of blaIMP genes, we suggest that continuous surveillance is crucial to combat the acquisition and transmission of blaIMP genes by bacteria, which can impede clinical therapy effectiveness.
Collapse
Affiliation(s)
- Xinyue Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiaofei Mu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Fangzhou Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xiuhui Lu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jiaqi He
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yali Zheng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Dongsheng Zhou
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zhe Yin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Peng Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
20
|
Banar M, Sattari-Maraji A, Bayatinejad G, Ebrahimi E, Jabalameli L, Beigverdi R, Emaneini M, Jabalameli F. Global prevalence and antibiotic resistance in clinical isolates of Stenotrophomonas maltophilia: a systematic review and meta-analysis. Front Med (Lausanne) 2023; 10:1163439. [PMID: 37215718 PMCID: PMC10196134 DOI: 10.3389/fmed.2023.1163439] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/14/2023] [Indexed: 05/24/2023] Open
Abstract
Introduction Stenotrophomonas maltophilia is a little-known environmental opportunistic bacterium that can cause broad-spectrum infections. Despite the importance of this bacterium as an emerging drug-resistant opportunistic pathogen, a comprehensive analysis of its prevalence and resistance to antibiotics has not yet been conducted. Methods A systematic search was performed using four electronic databases (MEDLINE via PubMed, Embase, Scopus, and Web of Science) up to October 2019. Out of 6,770 records, 179 were documented in the current meta-analysis according to our inclusion and exclusion criteria, and 95 studies were enrolled in the meta-analysis. Results Present analysis revealed that the global pooled prevalence of S. maltophilia was 5.3 % [95% CI, 4.1-6.7%], with a higher prevalence in the Western Pacific Region [10.5%; 95% CI, 5.7-18.6%] and a lower prevalence in the American regions [4.3%; 95% CI, 3.2-5.7%]. Based on our meta-analysis, the highest antibiotic resistance rate was against cefuroxime [99.1%; 95% CI, 97.3-99.7%], while the lowest resistance was correlated with minocycline [4·8%; 95% CI, 2.6-8.8%]. Discussion The results of this study indicated that the prevalence of S. maltophilia infections has been increasing over time. A comparison of the antibiotic resistance of S. maltophilia before and after 2010 suggested there was an increasing trend in the resistance to some antibiotics, such as tigecycline and ticarcillin-clavulanic acid. However, trimethoprim-sulfamethoxazole is still considered an effective antibiotic for treating S. maltophilia infections.
Collapse
Affiliation(s)
- Maryam Banar
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Azin Sattari-Maraji
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghazal Bayatinejad
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe Ebrahimi
- Department of Microbiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Leila Jabalameli
- Department of Microbiology, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Reza Beigverdi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Emaneini
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Jabalameli
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Antibiotic Stewardship and Antimicrobial Resistance, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Upraising Stenotrophomonas maltophilia in Critically Ill Patients: A New Enemy? Diagnostics (Basel) 2023; 13:diagnostics13061106. [PMID: 36980413 PMCID: PMC10047194 DOI: 10.3390/diagnostics13061106] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/08/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Stenotrophomonas maltophilia (S. maltophilia), an important pathogen in immuno-compromised patients, has recently gained attention in patients admitted in intensive care units (ICU). We sought to investigate clinical features of infections caused by S. maltophilia in ICU patients and identify risk factors for mortality. We conducted a retrospective study in two multivalent non-COVID-19 ICUs of tertiary-teaching hospitals in Greece and Spain, including patients with isolated S. maltophilia from at least one clinical specimen along with clinical signs of infection. A total of 103 patients (66% male) were analyzed. Median age was 65.5 (54–73.3) years and mean APACHE II and SOFA scores upon ICU admission were 18.36 (±7.22) and 18.17 (±6.95), respectively. Pneumonia was the predominant clinical syndrome (72.8%), while 22% of cases were among hemato/oncology patients. Crude 28-day mortality rate was 54.8%, even though, 14-day clinical and microbiological response was 96%. Age, APACHE II on ICU admission, hemato-oncologic disease, and multi-organ failure were initially identified as potential predictors of mortality. In the multivariable analysis, only increasing age and hemato-oncologic disease were shown to be independent risk factors for 28-day mortality. High all-cause mortality was observed in critically ill patients with predominantly respiratory infections by S. maltophilia, despite initial clinical and laboratory response after targeted treatment. The study elucidates a potentially worrisome emerging pathogen in the ICU.
Collapse
|
22
|
Peykov S, Strateva T. Whole-Genome Sequencing-Based Resistome Analysis of Nosocomial Multidrug-Resistant Non-Fermenting Gram-Negative Pathogens from the Balkans. Microorganisms 2023; 11:microorganisms11030651. [PMID: 36985224 PMCID: PMC10051916 DOI: 10.3390/microorganisms11030651] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Non-fermenting Gram-negative bacilli (NFGNB), such as Pseudomonas aeruginosa and Acinetobacter baumannii, are among the major opportunistic pathogens involved in the global antibiotic resistance epidemic. They are designated as urgent/serious threats by the Centers for Disease Control and Prevention and are part of the World Health Organization’s list of critical priority pathogens. Also, Stenotrophomonas maltophilia is increasingly recognized as an emerging cause for healthcare-associated infections in intensive care units, life-threatening diseases in immunocompromised patients, and severe pulmonary infections in cystic fibrosis and COVID-19 individuals. The last annual report of the ECDC showed drastic differences in the proportions of NFGNB with resistance towards key antibiotics in different European Union/European Economic Area countries. The data for the Balkans are of particular concern, indicating more than 80% and 30% of invasive Acinetobacter spp. and P. aeruginosa isolates, respectively, to be carbapenem-resistant. Moreover, multidrug-resistant and extensively drug-resistant S. maltophilia from the region have been recently reported. The current situation in the Balkans includes a migrant crisis and reshaping of the Schengen Area border. This results in collision of diverse human populations subjected to different protocols for antimicrobial stewardship and infection control. The present review article summarizes the findings of whole-genome sequencing-based resistome analyses of nosocomial multidrug-resistant NFGNBs in the Balkan countries.
Collapse
Affiliation(s)
- Slavil Peykov
- Department of Genetics, Faculty of Biology, Sofia University “St. Kliment Ohridski”, 8, Dragan Tzankov Blvd., 1164 Sofia, Bulgaria
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Sofia, 2, Zdrave Str., 1431 Sofia, Bulgaria
- BioInfoTech Laboratory, Sofia Tech Park, 111, Tsarigradsko Shosse Blvd., 1784 Sofia, Bulgaria
- Correspondence: (S.P.); (T.S.); Tel.: +359-87-6454492 (S.P.); +359-2-9172750 (T.S.)
| | - Tanya Strateva
- Department of Medical Microbiology, Faculty of Medicine, Medical University of Sofia, 2, Zdrave Str., 1431 Sofia, Bulgaria
- Correspondence: (S.P.); (T.S.); Tel.: +359-87-6454492 (S.P.); +359-2-9172750 (T.S.)
| |
Collapse
|
23
|
Genotypic Diversity, Antibiotic Resistance, and Virulence Phenotypes of Stenotrophomonas maltophilia Clinical Isolates from a Thai University Hospital Setting. Antibiotics (Basel) 2023; 12:antibiotics12020410. [PMID: 36830320 PMCID: PMC9951947 DOI: 10.3390/antibiotics12020410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Stenotrophomonas maltophilia is a multidrug-resistant organism that is emerging as an important opportunistic pathogen. Despite this, information on the epidemiology and characteristics of this bacterium, especially in Thailand, is rarely found. This study aimed to determine the demographic, genotypic, and phenotypic characteristics of S. maltophilia isolates from Maharaj Nakorn Chiang Mai Hospital, Thailand. A total of 200 S. maltophilia isolates were collected from four types of clinical specimens from 2015 to 2016 and most of the isolates were from sputum. In terms of clinical characteristics, male and aged patients were more susceptible to an S. maltophilia infection. The majority of included patients had underlying diseases and were hospitalized with associated invasive procedures. The antimicrobial resistance profiles of S. maltophilia isolates showed the highest frequency of resistance to ceftazidime and the lower frequency of resistance to chloramphenicol, levofloxacin, trimethoprim/sulfamethoxazole (TMP/SMX), and no resistance to minocycline. The predominant antibiotic resistance genes among the 200 isolates were the smeF gene (91.5%), followed by blaL1 and blaL2 genes (43% and 10%), respectively. Other antibiotic resistance genes detected were floR (8.5%), intI1 (7%), sul1 (6%), mfsA (4%) and sul2 (2%). Most S. maltophilia isolates could produce biofilm and could swim in a semisolid medium, however, none of the isolates could swarm. All isolates were positive for hemolysin production, whereas 91.5% and 22.5% of isolates could release protease and lipase enzymes, respectively. In MLST analysis, a high degree of genetic diversity was observed among the 200 S. maltophilia isolates. One hundred and forty-one sequence types (STs), including 130 novel STs, were identified and categorized into six different clonal complex groups. The differences in drug resistance patterns and genetic profiles exhibited various phenotypes of biofilm formation, motility, toxin, and enzymes production which support this bacterium in its virulence and pathogenicity. This study reviewed the characteristics of genotypes and phenotypes of S. maltophilia from Thailand which is necessary for the control and prevention of S. maltophilia local spreading.
Collapse
|
24
|
Lopes ES, Parente CET, Picão RC, Seldin L. Irrigation Ponds as Sources of Antimicrobial-Resistant Bacteria in Agricultural Areas with Intensive Use of Poultry Litter. Antibiotics (Basel) 2022; 11:1650. [PMID: 36421294 PMCID: PMC9686582 DOI: 10.3390/antibiotics11111650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/03/2022] [Accepted: 11/15/2022] [Indexed: 10/17/2023] Open
Abstract
Poultry litter is widely used worldwide as an organic fertilizer in agriculture. However, poultry litter may contain high concentrations of antibiotics and/or antimicrobial-resistant bacteria (ARB), which can be mobilized through soil erosion to water bodies, contributing to the spread of antimicrobial resistance genes (ARGs) in the environment. To better comprehend this kind of mobilization, the bacterial communities of four ponds used for irrigation in agricultural and poultry production areas were determined in two periods of the year: at the beginning (low volume of rainfall) and at the end of the rainy season (high volume of rainfall). 16S rRNA gene sequencing revealed not only significantly different bacterial community structures and compositions among the four ponds but also between the samplings. When the DNA obtained from the water samples was PCR amplified using primers for ARGs, those encoding integrases (intI1) and resistance to sulfonamides (sul1 and sul2) and β-lactams (blaGES, blaTEM and blaSHV) were detected in three ponds. Moreover, bacterial strains were isolated from CHROMagar plates supplemented with sulfamethoxazole, ceftriaxone or ciprofloxacin and identified as belonging to clinically important Enterobacteriaceae. The results presented here indicate a potential risk of spreading ARB through water resources in agricultural areas with extensive fertilization with poultry litter.
Collapse
Affiliation(s)
- Eliene S. Lopes
- Laboratório de Genética Microbiana, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
| | - Cláudio E. T. Parente
- Laboratório de Radioisótopos Eduardo Penna Franca, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
| | - Renata C. Picão
- Laboratório de Investigação em Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
| | - Lucy Seldin
- Laboratório de Genética Microbiana, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
25
|
Identification of natural inhibitor against L1 β-lactamase present in Stenotrophomonas maltophilia. J Mol Model 2022; 28:342. [PMID: 36197525 PMCID: PMC9533269 DOI: 10.1007/s00894-022-05336-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 09/28/2022] [Indexed: 11/21/2022]
Abstract
Antibiotic resistance is threatening the medical industry in treating microbial infections. Many organisms are acquiring antibiotic resistance because of the continuous use of the same drug. Gram-negative organisms are developing multi-drug resistance properties (MDR) due to chromosomal level changes that occurred as a part of evolution or some intrinsic factors already present in the organism. Stenotrophomonas maltophilia falls under the category of multidrug-resistant organism. WHO has also urged to evaluate the scenario and develop new strategies for making this organism susceptible to otherwise resistant antibiotics. Using novel compounds as drugs can ameliorate the issue to some extent. The β-lactamase enzyme in the bacteria is responsible for inhibiting several drugs currently being used for treatment. This enzyme can be targeted to find an inhibitor that can inhibit the enzyme activity and make the organism susceptible to β-lactam antibiotics. Plants produce several secondary metabolites for their survival in adverse environments. Several phytoconstituents have antimicrobial properties and have been used in traditional medicine for a long time. The computational technologies can be exploited to find the best compound from many compounds. Virtual screening, molecular docking, and dynamic simulation methods are followed to get the best inhibitor for L1 β-lactamase. IMPPAT database is screened, and the top hit compounds are studied for ADMET properties. Finally, four compounds are selected to set for molecular dynamics simulation. After all the computational calculations, withanolide R is found to have a better binding and forms a stable complex with the protein. This compound can act as a potent natural inhibitor for L1 β-lactamase.
Collapse
|
26
|
Zhang Y, Li D, Yan Q, Xu P, Chen W, Xin H, Wu D, Zhou M, Xu Y, Zhang A, Wei W, Jiang Z. Genome-wide analysis reveals the emergence of multidrug resistant Stenotrophomonas acidaminiphila strain SINDOREI isolated from a patient with sepsis. Front Microbiol 2022; 13:989259. [PMID: 36212813 PMCID: PMC9537462 DOI: 10.3389/fmicb.2022.989259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/19/2022] [Indexed: 11/24/2022] Open
Abstract
Stenotrophomonas acidaminiphila, the most recent reported species in genus Stenotrophomonas, is a relatively rare bacteria and is an aerobic, glucose non-fermentative, Gram-negative bacterium. However, little information of S. acidaminiphila is known to cause human infections. In this research, we firstly reported a multidrug-resistant strain S. acidaminiphila SINDOREI isolated from the blood of a patient with sepsis, who was dead of infection eventually. The whole genome of strain SINDOREI was sequenced, and genome comparisons were performed among six closely related S. acidaminiphila strains. The core genes (2,506 genes) and strain-specific genes were identified, respectively, to know about the strain-level diversity in six S. acidaminiphila stains. The presence of a unique gene (narG) and essential genes involved in biofilm formation in strain SINDOREI are important for the pathogenesis of infections. Strain SINDOREI was resistant to trimethoprim/sulfamethoxazole, ciprofloxacin, ofloxacin, cefepime, ceftazidime, and aztreonam. Several common and specific antibiotic resistance genes were identified in strain SINDOREI. The presence of two sul genes and exclusive determinants GES-1, aadA3, qacL, and cmlA5 is responsible for the resistance to multidrug. The virulence factors and resistance determinants can show the relationship between the phenotype and genotype and afford potential therapeutic strategies for infections.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Changsha, China
- Hunan Hematology Oncology Clinical Medical Research Center, Changsha, China
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Danhua Li
- Departmant of Scientific Affairs, Hugobiotech Co. Ltd., Beijing, China
| | - Qun Yan
- Department of Laboratory Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Ping Xu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
| | - Wei Chen
- Department of Gastroenterology, Changsha Central Hospital, Changsha, China
| | - Hongya Xin
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Changsha, China
- Hunan Hematology Oncology Clinical Medical Research Center, Changsha, China
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Dengshu Wu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Changsha, China
- Hunan Hematology Oncology Clinical Medical Research Center, Changsha, China
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Mingxiang Zhou
- Department of Laboratory Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Yajing Xu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Changsha, China
- Hunan Hematology Oncology Clinical Medical Research Center, Changsha, China
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ao Zhang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Changsha, China
- Hunan Hematology Oncology Clinical Medical Research Center, Changsha, China
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Wenjia Wei
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Changsha, China
- Hunan Hematology Oncology Clinical Medical Research Center, Changsha, China
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhiping Jiang
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Diseases, Xiangya Hospital, Changsha, China
- Hunan Hematology Oncology Clinical Medical Research Center, Changsha, China
- National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Zhiping Jiang,
| |
Collapse
|
27
|
Han P, Zhang W, Pu M, Li Y, Song L, An X, Li M, Li F, Zhang S, Fan H, Tong Y. Characterization of the Bacteriophage BUCT603 and Therapeutic Potential Evaluation Against Drug-Resistant Stenotrophomonas maltophilia in a Mouse Model. Front Microbiol 2022; 13:906961. [PMID: 35865914 PMCID: PMC9294509 DOI: 10.3389/fmicb.2022.906961] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/16/2022] [Indexed: 11/26/2022] Open
Abstract
Stenotrophomonas maltophilia (S. maltophilia) is a common opportunistic pathogen that is resistant to many antibiotics. Bacteriophages are considered to be an effective alternative to antibiotics for the treatment of drug-resistant bacterial infections. In this study, we isolated and characterized a phage, BUCT603, infecting drug-resistant S. maltophilia. Genome sequencing showed BUCT603 genome was composed of 44,912 bp (32.5% G + C content) with 64 predicted open reading frames (ORFs), whereas no virulence-related genes, antibiotic-resistant genes or tRNA were identified. Whole-genome alignments showed BUCT603 shared 1% homology with other phages in the National Center for Biotechnology Information (NCBI) database, and a phylogenetic analysis indicated BUCT603 can be classified as a new member of the Siphoviridae family. Bacteriophage BUCT603 infected 10 of 15 S. maltophilia and used the TonB protein as an adsorption receptor. BUCT603 also inhibited the growth of the host bacterium within 1 h in vitro and effectively increased the survival rate of infected mice in a mouse model. These findings suggest that bacteriophage BUCT603 has potential for development as a candidate treatment of S. maltophilia infection.
Collapse
Affiliation(s)
- Pengjun Han
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Wenjing Zhang
- School of Public Health, Lanzhou University, Lanzhou, China
| | - Mingfang Pu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Yahao Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Lihua Song
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Xiaoping An
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Mengzhe Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Fei Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
- Clinical Laboratory Center, Taian City Central Hospital, Taian, China
| | - Shuyan Zhang
- Department of Medical Technology Support, Jingdong Medical District of Chinese PLA General Hospital, Beijing, China
- *Correspondence: Shuyan Zhang,
| | - Huahao Fan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
- Huahao Fan,
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
- Yigang Tong,
| |
Collapse
|
28
|
Zhao J, Huang Y, Li J, Zhang B, Dong Z, Wang D. In vitro Antibacterial Activity and Resistance Prevention of Antimicrobial Combinations for Dihydropteroate Synthase-Carrying Stenotrophomonas maltophilia. Infect Drug Resist 2022; 15:3039-3046. [PMID: 35720255 PMCID: PMC9205434 DOI: 10.2147/idr.s368338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 06/03/2022] [Indexed: 11/23/2022] Open
Abstract
Background Stenotrophomonas maltophilia (S. maltophilia) is a multidrug-resistant gram-negative bacillus that is known to be an opportunistic pathogen, particularly in a hospital environment. The infection has a high morbidity and mortality. Sulfamethoxazole-trimethoprim (SXT) is the first-line agent recommended for its treatment. The global spread of dihydropteroate synthase (sul) genes has resulted in an increased resistance rate. However, the appropriate therapy for infections caused by sul-carrying S. maltophilia has not yet been established. Objective Our study aimed to identify the optimal antibiotic combinations that could both show high antibacterial activity against sul-carrying S. maltophilia and the ability to prevent the emergence of resistance at clinical dosage regimens. Methods Time-killing experiments and mutant prevention concentration (MPC) experiments were conducted to evaluate the antibacterial effect and ability to prevent resistance to minocycline, tigecycline, moxifloxacin, and ticarcillin/clavulanic acid (T/K), both alone and in combination, at clinically relevant antimicrobial concentrations. Results Minocycline, tigecycline, and T/K all exhibited bacteriostatic activity to sul-carrying S. maltophilia. The combination of minocycline plus T/K and tigecycline plus T/K neither enhanced the bactericidal ability nor prevented drug-resistant mutations. Moxifloxacin, at 2 mg/L, showed good bactericidal activity to most S. maltophilia, but bacterial regrowth at 24 h was observed in two strains. When combined with T/K, moxifloxacin showed good bactericidal activity in all moxifloxacin-sensitive strains. The concentrations of moxifloxacin alone were lower than most MPCs of the tested sul-carrying strains. When combined with T/K, the mean steady-state concentrations (MSC) of moxifloxacin could prevent 70% of resistance, and the peak concentration (Cmax) prevented 95% of resistance. Conclusion The combination of moxifloxacin and T/K can achieve a good in vitro bactericidal effect and prevent the emergence of resistance at clinical dosage regimens, and may be an optimal therapeutic strategy for S. maltophilia infections, especially for vulnerable immunocompromised and critically ill patients.
Collapse
Affiliation(s)
- Jin Zhao
- Department of Pulmonary and Critical Care Medicine, Air Force Medical Center, PLA, Beijing, 100142, People's Republic of China
| | - Yan Huang
- Department of Pulmonary and Critical Care Medicine, Air Force Medical Center, PLA, Beijing, 100142, People's Republic of China
| | - Jian Li
- Department of Pulmonary and Critical Care Medicine, Air Force Medical Center, PLA, Beijing, 100142, People's Republic of China
| | - Bo Zhang
- Department of Pulmonary and Critical Care Medicine, Air Force Medical Center, PLA, Beijing, 100142, People's Republic of China
| | - Zhiwei Dong
- Department of General Surgery, Air Force Medical Center, PLA, Beijing, 100142, People's Republic of China
| | - Dong Wang
- Department of Pulmonary and Critical Care Medicine, Air Force Medical Center, PLA, Beijing, 100142, People's Republic of China
| |
Collapse
|
29
|
Liu D, Wang T, Shao D, Song H, Zhai W, Sun C, Zhang Y, Zhang M, Fu Y, Zhang R, He T, Lv Z, Bai L, Wu C, Ke Y, Wang Y, Shen Z. Structural diversity of the ISCR2-mediated rolling-cycle transferable unit carrying tet(X4). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154010. [PMID: 35218833 DOI: 10.1016/j.scitotenv.2022.154010] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Mobile tigecycline-resistance gene tet(X) variants have emerged as diverse pathogens from animal, human as well as their associated environments, which could potentially threaten public health. The insertion sequence, ISCR2, carries tet(X4) for horizontal transfer by rolling-cycle (RC) transposition. However, the diversity of ISCR2 and tet(X4) isolated from different sources is largely unknown. METHODS The tet(X4)-carrying isolates were collected from human and livestock in several multiple regions of China. The whole genomic sequences of these isolates were either obtained from NCBI GenBank or determined by Illumina Hiseq 2500 and the MinION platform. The intact transposon region, ISCR2-tet(X4)-ISCR2, observed in a small number of isolates as the reference sequence to construct the transposon phylogeny. The diversity of the genetic environments of all ISCR2-tet(X4) elements were analyzed. RESULTS A 2760-bp element encompassing the tet(X4)-hydrolase-encoding gene, catD, located between two ISCR2 elements was highly conserved in all isolates and could form an RC transposable unit (RC-TU). ISCR2 could also capture more resistance genes and formed a larger RC-TU base on RC transposition. However, the ISCR2-mediated RC-TUs were constantly truncated and inserted by other IS elements, indicating frequent recombination events. Of these elements, IS26 disrupted both the upstream and downstream ISCR2-mediated RC-TUs, indicating that IS26 captured tet(X4), thus leading to a wider spread of tet(X4). CONCLUSIONS These results confirmed the critical role of ISCR2 for dissemination and co-transmission of tet(X4) and other resistance genes. More effort is needed to monitor the variation tendencies of tet(X4)-carrying mobile elements and determine the driving factors for disseminating transferable tigecycline resistance.
Collapse
Affiliation(s)
- Dejun Liu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Tao Wang
- Department of Gastroenterology, the fourth Medical Center of PLA General Hospital, 100048, China
| | - Dongyan Shao
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Huangwei Song
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Weishuai Zhai
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Chengtao Sun
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Ying Zhang
- Department of Microbiology, The General Hospital of PLA, Beijing 100853, China
| | - Muchen Zhang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yulin Fu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Rong Zhang
- The Second Affiliated Hospital of Zhejiang University, Zhejiang University, Hangzhou, Zhejiang 310009, China
| | - Tao He
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, Jiangsu 210014, China
| | - Ziquan Lv
- Key Laboratory of Genetics & Molecular, Medicine of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen 518000, China
| | - Li Bai
- Key Laboratory of Food Safety Risk Assessment, National Health Commission of the People's Republic of China, China National Center for Food Safety Risk Assessment, Beijing 100022, China
| | - Congming Wu
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yuebin Ke
- Key Laboratory of Genetics & Molecular, Medicine of Shenzhen, Shenzhen Center for Disease Control and Prevention, Shenzhen 518000, China
| | - Yang Wang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Zhangqi Shen
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
30
|
Mojica MF, Humphries R, Lipuma JJ, Mathers AJ, Rao GG, Shelburne SA, Fouts DE, Van Duin D, Bonomo RA. Clinical challenges treating Stenotrophomonas maltophilia infections: an update. JAC Antimicrob Resist 2022; 4:dlac040. [PMID: 35529051 PMCID: PMC9071536 DOI: 10.1093/jacamr/dlac040] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023] Open
Abstract
Stenotrophomonas maltophilia is a non-fermenting, Gram-negative bacillus that has emerged as an opportunistic nosocomial pathogen. Its intrinsic multidrug resistance makes treating infections caused by S. maltophilia a great clinical challenge. Clinical management is further complicated by its molecular heterogeneity that is reflected in the uneven distribution of antibiotic resistance and virulence determinants among different strains, the shortcomings of available antimicrobial susceptibility tests and the lack of standardized breakpoints for the handful of antibiotics with in vitro activity against this microorganism. Herein, we provide an update on the most recent literature concerning these issues, emphasizing the impact they have on clinical management of S. maltophilia infections.
Collapse
Affiliation(s)
- Maria F. Mojica
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Case Western Reserve University-Cleveland VA Medical Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH, USA
- Research Service, VA Northeast Ohio Healthcare System, Cleveland, OH, USA
- Grupo de Resistencia Antimicrobiana y Epidemiología Hospitalaria, Universidad El Bosque, Bogotá, Colombia
| | - Romney Humphries
- Department of Pathology, Immunology and Microbiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John J. Lipuma
- University of Michigan Medical School, Pediatric Infectious Disease, Ann Arbor, MI, USA
| | - Amy J. Mathers
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia Health System, Charlottesville, VA, USA
- Clinical Microbiology Laboratory, Department of Pathology, University of Virginia Health System, Charlottesville, VA, USA
| | - Gauri G. Rao
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Samuel A. Shelburne
- Department of Infectious Diseases Infection Control and Employee Health, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for Antimicrobial Resistance and Microbial Genomics, University of Texas Health Science Center McGovern Medical School, Houston, TX, USA
| | - Derrick E. Fouts
- Genomic Medicine, The J. Craig Venter Institute, Rockville, MD, USA
| | - David Van Duin
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Robert A. Bonomo
- Case Western Reserve University-Cleveland VA Medical Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH, USA
- Research Service, VA Northeast Ohio Healthcare System, Cleveland, OH, USA
- Senior Clinician Scientist Investigator, Veterans Affairs Northeast Ohio Healthcare System, Cleveland, OH, USA
- Medical Service and Geriatric Research, Education, and Clinical Center (GRECC), Veterans Affairs Northeast Ohio Healthcare System, Cleveland, OH, USA
- Departments of Medicine, Biochemistry, Pharmacology, Molecular Biology and Microbiology, and Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
31
|
Molecular Insight into Gene Response of Diorcinol- and Rubrolide-Treated Biofilms of the Emerging Pathogen Stenotrophomonas maltophilia. Microbiol Spectr 2022; 10:e0258221. [PMID: 35471093 PMCID: PMC9241881 DOI: 10.1128/spectrum.02582-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stenotrophomonas maltophilia is a multidrug-resistant human opportunistic pathogen. S. maltophilia contributes to disease progression in cystic fibrosis patients and is found in wounds and infected tissues and on catheter surfaces. Due to its well-known multidrug resistance, it is difficult to treat S. maltophilia infections. Strain-specific susceptibility to antimicrobials has also been reported in several studies. Recently, three fungal diorcinols and 14 rubrolides were shown to reduce S. maltophilia K279a biofilm formation. Based on these initial findings, we were interested to extend this approach by testing a larger number of diorcinols and rubrolides and to understand the molecular mechanisms behind the observed antibiofilm effects. Of 52 tested compounds, 30 were able to significantly reduce the biofilm thickness by up to 85% ± 15% and had strong effects on mature biofilms. All compounds with antibiofilm activity also significantly affected the biofilm architecture. Additional RNA-sequencing data of diorcinol- and rubrolide-treated biofilm cells of two clinical isolates (454 and K279) identified a small set of shared genes that were affected by these potent antibiofilm compounds. Among these, genes for iron transport, general metabolism, and membrane biosynthesis were most strongly and differentially regulated. A further hierarchical clustering and detailed structural inspection of the diorcinols and rubrolides implied that a prenyl group as side chain of one of the phenyl groups of the diorcinols and an increasing degree of bromination of chlorinated rubrolides were possibly the cause of the strong antibiofilm effects. This study gives a deep insight into the effects of rubrolides and diorcinols on biofilms formed by the important global pathogen S. maltophilia. IMPORTANCE Combating Stenotrophomonasmaltophilia biofilms in clinical and industrial settings has proven to be challenging. S. maltophilia is multidrug resistant, and occurrence of resistance to commonly used drugs as well as to antibiotic combinations, such as trimethoprim-sulfamethoxazole, is now frequently reported. It is therefore now necessary to look beyond conventional and already existing antimicrobial drugs when battling S. maltophilia biofilms. Our study contains comprehensive and detailed data sets for diorcinol and rubrolide-treated S. maltophilia biofilms. The study defines genes and pathways affected by treatment with these different compounds. These results, together with the identified structural elements that may be crucial for their antibiofilm activity, build a strong backbone for further research on diorcinols and rubrolides as novel and potent antibiofilm compounds.
Collapse
|
32
|
Wassermann B, Abdelfattah A, Müller H, Korsten L, Berg G. The microbiome and resistome of apple fruits alter in the post-harvest period. ENVIRONMENTAL MICROBIOME 2022; 17:10. [PMID: 35256002 PMCID: PMC8900306 DOI: 10.1186/s40793-022-00402-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 02/06/2022] [Indexed: 05/13/2023]
Abstract
BACKGROUND A detailed understanding of antimicrobial resistance trends among all human-related environments is key to combat global health threats. In food science, however, the resistome is still little considered. Here, we studied the apple microbiome and resistome from different cultivars (Royal Gala and Braeburn) and sources (freshly harvested in South Africa and exported apples in Austrian supermarkets) by metagenomic approaches, genome reconstruction and isolate sequencing. RESULTS All fruits harbor an indigenous, versatile resistome composed of 132 antimicrobial resistance genes (ARGs) encoding for 19 different antibiotic classes. ARGs are partially of clinical relevance and plasmid-encoded; however, their abundance within the metagenomes is very low (≤ 0.03%). Post-harvest, after intercontinental transport, the apple microbiome and resistome was significantly changed independently of the cultivar. In comparison to fresh apples, the post-harvest microbiome is characterized by higher abundance of Enterobacteriales, and a more diversified pool of ARGs, especially associated with multidrug resistance, as well as quinolone, rifampicin, fosfomycin and aminoglycoside resistance. The association of ARGs with metagenome-assembled genomes (MAGs) suggests resistance interconnectivity within the microbiome. Bacterial isolates of the phyla Gammaproteobacteria, Alphaproteobacteria and Actinobacteria served as representatives actively possessing multidrug resistance and ARGs were confirmed by genome sequencing. CONCLUSION Our results revealed intrinsic and potentially acquired antimicrobial resistance in apples and strengthen the argument that all plant microbiomes harbor diverse resistance features. Although the apple resistome appears comparatively inconspicuous, we identified storage and transport as potential risk parameters to distribute AMR globally and highlight the need for surveillance of resistance emergence along complex food chains.
Collapse
Affiliation(s)
- Birgit Wassermann
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010 Graz, Austria
| | - Ahmed Abdelfattah
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010 Graz, Austria
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth Allee 100, 14469 Potsdam, Germany
| | - Henry Müller
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010 Graz, Austria
| | - Lise Korsten
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, Republic of South Africa
- DSI-NRF Centre of Excellence in Food Security, Pretoria, Republic of South Africa
| | - Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, 8010 Graz, Austria
- Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Max-Eyth Allee 100, 14469 Potsdam, Germany
- Institute for Biochemistry and Biology, University of Postdam, 14476 Potsdam OT Golm, Germany
| |
Collapse
|
33
|
Sarzynski SH, Warner S, Sun J, Matsouaka R, Dekker JP, Babiker A, Li W, Lai YL, Danner RL, Fowler, Jr. VG, Kadri SS. Trimethoprim-Sulfamethoxazole versus Levofloxacin for Stenotrophomonas maltophilia Infections: A Retrospective Comparative Effectiveness Study of Electronic Health Records from 154 U.S. Hospitals. Open Forum Infect Dis 2022; 9:ofab644. [PMID: 35097154 PMCID: PMC8794591 DOI: 10.1093/ofid/ofab644] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/06/2022] [Indexed: 11/13/2022] Open
Abstract
Background Trimethoprim-sulfamethoxazole (TMP-SMX) is considered first-line therapy for Stenotrophomonas maltophilia infections based on observational data from small studies. Levofloxacin has emerged as a popular alternative due to tolerability concerns related to TMP-SMX. Data comparing levofloxacin to TMP-SMX as targeted therapy are lacking. Methods Adult inpatient encounters January 2005 through December 2017 with growth of S maltophilia in blood and/or lower respiratory cultures were identified in the Cerner Healthfacts database. Patients included received targeted therapy with either levofloxacin or TMP-SMX. Overlap weighting was used followed by downstream weighted regression. The primary outcome was adjusted odds ratio (aOR) for in-hospital mortality or discharge to hospice. The secondary outcome was number of days from index S maltophilia culture to hospital discharge. Results Among 1581 patients with S maltophilia infections, levofloxacin (n = 823) displayed statistically similar mortality risk (aOR, 0.76 [95% confidence interval {CI}, .58–1.01]; P = .06) compared to TMP-SMX (n = 758). Levofloxacin (vs TMP-SMX) use was associated with a lower aOR of death in patients with lower respiratory tract infection (n = 1452) (aOR, 0.73 [95% CI, .54–.98]; P = .03) and if initiated empirically (n = 89) (aOR, 0.16 [95% CI, .03–.95]; P = .04). The levofloxacin cohort had fewer hospital days between index culture collection and discharge (weighted median [interquartile range], 7 [4–13] vs 9 [6–16] days; P < .0001). Conclusions Based on observational evidence, levofloxacin is a reasonable alternative to TMP-SMX for the treatment of bloodstream and lower respiratory tract infections caused by S maltophilia.
Collapse
Affiliation(s)
- Sadia H Sarzynski
- Critical Care Medicine Department, National Institutes of Health Clinical Center, Bethesda, Maryland USA
| | - Sarah Warner
- Critical Care Medicine Department, National Institutes of Health Clinical Center, Bethesda, Maryland USA
| | - Junfeng Sun
- Critical Care Medicine Department, National Institutes of Health Clinical Center, Bethesda, Maryland USA
| | - Roland Matsouaka
- Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina & Duke Clinical Research Institute, Durham, North Carolina USA
| | - John P Dekker
- Bacterial Pathogenesis and Antimicrobial Resistance Unit, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland USA
| | - Ahmed Babiker
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta Georgia USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia USA
| | - Willy Li
- Pharmacy Department, National Institutes of Health Clinical Center, Bethesda, Maryland USA
| | - Yi Ling Lai
- Critical Care Medicine Department, National Institutes of Health Clinical Center, Bethesda, Maryland USA
| | - Robert L Danner
- Critical Care Medicine Department, National Institutes of Health Clinical Center, Bethesda, Maryland USA
| | - Vance G Fowler, Jr.
- Department of Biostatistics and Bioinformatics, Duke University, Durham, North Carolina & Duke Clinical Research Institute, Durham, North Carolina USA
| | - Sameer S Kadri
- Critical Care Medicine Department, National Institutes of Health Clinical Center, Bethesda, Maryland USA
| | | |
Collapse
|
34
|
Gavioli EM, Guardado N, Haniff F, Deiab N, Vider E. Does Cefiderocol Have a Potential Role in Cystic Fibrosis Pulmonary Exacerbation Management? Microb Drug Resist 2021; 27:1726-1732. [PMID: 34077286 DOI: 10.1089/mdr.2020.0602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Cystic fibrosis (CF) is associated with frequent pulmonary exacerbations and the need for novel antibiotics against antimicrobial resistance. Cefiderocol is a newly approved therapeutic option active against a variety of multidrug resistant (MDR) bacteria such as gram-negative species commonly encountered by CF patients. This review describes the potential role of cefiderocol against Pseudomonas aeruginosa, Stenotrophomonas maltophilia, Achromobacter xylosoxidans, and Burkholderia cepacia complex. Cefiderocol is a potential therapeutic option for MDR pathogens with minimum inhibitory concentrations (MICs) of ≤4 mg/L. Due to the lack of in vivo evidence in the CF population, cefiderocol may be utilized in patients in which alternative options are lacking due to MDR organisms or rapid pulmonary decline.
Collapse
Affiliation(s)
| | - Nerli Guardado
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Brooklyn, New York, USA
| | - Farah Haniff
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Brooklyn, New York, USA
| | - Nouran Deiab
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Brooklyn, New York, USA
| | - Etty Vider
- Arnold and Marie Schwartz College of Pharmacy and Health Sciences, Brooklyn, New York, USA
| |
Collapse
|
35
|
Zöllner SK, Kampmeier S, Froböse NJ, Herbrüggen H, Masjosthusmann K, van den Heuvel A, Reicherts C, Ranft A, Groll AH. Stenotrophomonas maltophilia Infections in Pediatric Patients - Experience at a European Center for Pediatric Hematology and Oncology. Front Oncol 2021; 11:752037. [PMID: 34712613 PMCID: PMC8547273 DOI: 10.3389/fonc.2021.752037] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/16/2021] [Indexed: 01/26/2023] Open
Abstract
Stenotrophomonas maltophilia is an important nosocomial pathogen in immunocom-promised individuals and characterized by intrinsic resistance to broad-spectrum antibacterial agents. Limited data exists on its clinical relevance in immunocompromised pediatric patients, particularly those with hematological or oncological disorders. In a retrospective single center cohort study in pediatric patients receiving care at a large european pediatric hematology and oncology department, ten cases of invasive S.maltophilia infections (blood stream infections (BSI), 4; BSI and pneumonia, 3, or soft tissue infection, 2; and pneumonia, 1) were identified between 2010 and 2020. Seven patients had lymphoblastic leukemia and/or were post allogeneic hematopoietic cell transplantation. Invasive S.maltophilia infections occurred in a setting of indwelling central venous catheters, granulocytopenia, defective mucocutaneous barriers, treatment with broad-spectrum antibacterial agents, and admission to the intensive care unit. Whole genome sequencing based typing revealed no genetic relationship among four individual S.maltophilia isolates. The case fatality rate and mortality at 100 days post diagnosis were 40 and 50%, respectively, and three patients died from pulmonary hemorrhage. Invasive S.maltophilia infections are an emerging cause of infectious morbidity in patients receiving care at departments of pediatric hematology and oncology and carry a high case fatality rate.
Collapse
Affiliation(s)
- Stefan K Zöllner
- Infectious Disease Research Program, Center for Bone Marrow Transplantation and Department of Pediatric Hematology/Oncology, University Children's Hospital Münster, Münster, Germany.,Intensive Care Medicine, Department of General Pediatrics, University Children's Hospital Münster, Münster, Germany.,Pediatric Oncology & Hematology, Pediatrics III, University Hospital of Essen, Essen, Germany
| | | | - Neele J Froböse
- Institute of Medical Microbiology, University Hospital Münster, Münster, Germany
| | - Heidrun Herbrüggen
- Infectious Disease Research Program, Center for Bone Marrow Transplantation and Department of Pediatric Hematology/Oncology, University Children's Hospital Münster, Münster, Germany
| | - Katja Masjosthusmann
- Intensive Care Medicine, Department of General Pediatrics, University Children's Hospital Münster, Münster, Germany
| | - Alijda van den Heuvel
- Intensive Care Medicine, Department of General Pediatrics, University Children's Hospital Münster, Münster, Germany
| | - Christian Reicherts
- Center for Bone Marrow Transplantation and Department of Medicine A, University Hospital Münster, Münster, Germany
| | - Andreas Ranft
- Pediatric Oncology & Hematology, Pediatrics III, University Hospital of Essen, Essen, Germany
| | - Andreas H Groll
- Infectious Disease Research Program, Center for Bone Marrow Transplantation and Department of Pediatric Hematology/Oncology, University Children's Hospital Münster, Münster, Germany
| |
Collapse
|
36
|
Elsheredy A, Elsheikh A, Ghazal A, Shawky S. Prevalence of trimethoprim/sulfamethoxazole resistance genes among Stenotrophomonas maltophilia clinical isolates in Egypt. Acta Microbiol Immunol Hung 2021; 69:56-60. [PMID: 34546967 DOI: 10.1556/030.2021.01568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/02/2021] [Indexed: 11/19/2022]
Abstract
Stenotrophomonas maltophilia is an important multidrug resistant nosocomial pathogen. Trimethoprim/sulfamethoxazole (TMP/SMX) is considered the drug of choice for treatment of S. maltophilia infections, thus emerging resistance to TMP/SMX poses a serious threat. In the present study we aimed to investigate the frequency of TMP/SMX resistance genes (sul1, sul2, dfrA), and to evaluate their relatedness with integron 1 (int1), and insertion sequence common regions (ISCR) among 100 S. maltophilia from different clinical isolates in Egypt. Isolates were identified biochemically and confirmed by VITEK2. Detection of sul1, sul2, and dfrA genes, int1 and ISCR elements was performed by PCR. Among the 16 TMP/SMX resistant isolates, sul1 gene was detected in all of them, and it was associated with int1 gene presence in all resistant isolates. The sul2 gene was detected in 6 out of 16 resistant isolates (37.5%), and only 2 of the 16 resistant isolates (12.5%) harboured dfrA gene. ISCR was detected in 10 of the resistant isolates (62.5%) and in 4 of them it was associated with the presence of sul2 gene. Among the 84 TMP/SMX sensitive isolates, sul1 gene was detected in 15 (17.8%), int1 in 16 (19%) and ISCR in 6 (7.1%). None of the susceptible isolates had sul2 or dfrA genes. These findings point out an increasing frequency of TMP/SMX resistance genes among S. maltophilia clinical isolates in our region, so the adoption of prudent use of S. maltophilia antimicrobial agents and the establishment of a surveillance system are desperately needed.
Collapse
Affiliation(s)
- Amel Elsheredy
- Department of Microbiology, Medical Research Institute, Alexandria University, Alexandria, 21561, Egypt
| | - Azza Elsheikh
- Department of Microbiology, Medical Research Institute, Alexandria University, Alexandria, 21561, Egypt
| | - Abeer Ghazal
- Department of Microbiology, Medical Research Institute, Alexandria University, Alexandria, 21561, Egypt
| | - Sherine Shawky
- Department of Microbiology, Medical Research Institute, Alexandria University, Alexandria, 21561, Egypt
| |
Collapse
|
37
|
Gomes VCL, Del Piero F, Langohr IM, Aguiar LH, Anderson A, Sones JL, Pinto CR. Equine focal mucopurulent placentitis associated with
Stenotrophomonas maltophilia. EQUINE VET EDUC 2021. [DOI: 10.1111/eve.13310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- V. C. L. Gomes
- Department of Veterinary Clinical Sciences Louisiana State University Baton Rouge LouisianaUSA
| | - F. Del Piero
- Department of Pathobiological Sciences School of Veterinary Medicine Louisiana State University Baton Rouge Louisiana USA
| | - I. M. Langohr
- Department of Pathobiological Sciences School of Veterinary Medicine Louisiana State University Baton Rouge Louisiana USA
| | - L. H. Aguiar
- Department of Veterinary Clinical Sciences Louisiana State University Baton Rouge LouisianaUSA
| | - A. Anderson
- Department of Pathobiological Sciences School of Veterinary Medicine Louisiana State University Baton Rouge Louisiana USA
| | - J. L. Sones
- Department of Veterinary Clinical Sciences Louisiana State University Baton Rouge LouisianaUSA
| | - C. R. Pinto
- Department of Veterinary Clinical Sciences Louisiana State University Baton Rouge LouisianaUSA
| |
Collapse
|
38
|
Antimicrobial Susceptibility, Minimum Inhibitory Concentrations, and Clinical Profiles of Stenotrophomonas maltophilia Endophthalmitis. Microorganisms 2021; 9:microorganisms9091840. [PMID: 34576735 PMCID: PMC8467546 DOI: 10.3390/microorganisms9091840] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/21/2021] [Accepted: 08/28/2021] [Indexed: 11/22/2022] Open
Abstract
Stenotrophomonas maltophilia has been reported in various ocular infections, including keratitis, conjunctivitis, preseptal cellulitis, and endophthalmitis, all of which may lead to vision loss. However, the S. maltophilia strain is resistant to a wide variety of antibiotics, including penicillins, third-generation cephalosporins, aminoglycosides, and imipenem. In this study, we retrospectively reviewed the clinical characteristics, antibiotic susceptibility, antimicrobial minimum inhibitory concentrations (MICs), and visual outcomes for S. maltophilia endophthalmitis. The data of 9 patients with positive S. maltophilia cultures in a tertiary referral center from 2010 to 2019 were reviewed. Cataract surgery (n = 8, 89%) was the most common etiology, followed by intravitreal injection (n = 1, 11%). S. maltophilia’s susceptibility to levofloxacin and moxifloxacin was observed in 6 cases (67%). Seven isolates were resistant to sulfamethoxazole-trimethoprim (78%). The MIC90 for S. maltophilia was 256, 256, 256, 8, 12, 12, 12, and 8 μg/mL for amikacin, cefuroxime, ceftazidime, tigecycline, sulfamethoxazole-trimethoprim, levofloxacin, galtifloxacin, and moxifloxacin, respectively. Final visual acuity was 20/200 or better in 5 patients (56%). Fluoroquinolones and tigecycline exhibited low antibiotic MIC90. Therefore, the results suggest that fluoroquinolones can be used as first-line antibiotics for S. maltophilia endophthalmitis.
Collapse
|
39
|
Sanz-García F, Gil-Gil T, Laborda P, Ochoa-Sánchez LE, Martínez JL, Hernando-Amado S. Coming from the Wild: Multidrug Resistant Opportunistic Pathogens Presenting a Primary, Not Human-Linked, Environmental Habitat. Int J Mol Sci 2021; 22:8080. [PMID: 34360847 PMCID: PMC8347278 DOI: 10.3390/ijms22158080] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/22/2021] [Accepted: 07/24/2021] [Indexed: 12/24/2022] Open
Abstract
The use and misuse of antibiotics have made antibiotic-resistant bacteria widespread nowadays, constituting one of the most relevant challenges for human health at present. Among these bacteria, opportunistic pathogens with an environmental, non-clinical, primary habitat stand as an increasing matter of concern at hospitals. These organisms usually present low susceptibility to antibiotics currently used for therapy. They are also proficient in acquiring increased resistance levels, a situation that limits the therapeutic options for treating the infections they cause. In this article, we analyse the most predominant opportunistic pathogens with an environmental origin, focusing on the mechanisms of antibiotic resistance they present. Further, we discuss the functions, beyond antibiotic resistance, that these determinants may have in the natural ecosystems that these bacteria usually colonize. Given the capacity of these organisms for colonizing different habitats, from clinical settings to natural environments, and for infecting different hosts, from plants to humans, deciphering their population structure, their mechanisms of resistance and the role that these mechanisms may play in natural ecosystems is of relevance for understanding the dissemination of antibiotic resistance under a One-Health point of view.
Collapse
Affiliation(s)
| | | | | | | | - José L. Martínez
- Centro Nacional de Biotecnología, CSIC, 28049 Madrid, Spain; (F.S.-G.); (T.G.-G.); (P.L.); (L.E.O.-S.); (S.H.-A.)
| | | |
Collapse
|
40
|
The Molecular Epidemiology of Resistance to Antibiotics among Klebsiella pneumoniae Isolates in Azerbaijan, Iran. J Trop Med 2021; 2021:9195184. [PMID: 34335793 PMCID: PMC8294964 DOI: 10.1155/2021/9195184] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/19/2021] [Accepted: 07/05/2021] [Indexed: 12/27/2022] Open
Abstract
Introduction Klebsiella pneumoniae (K. pneumoniae) is one of the leading causes of hospital-acquired and community-acquired infections in the world. This study was conducted to investigate the molecular epidemiology of drug resistance in clinical isolates of K. pneumoniae in Azerbaijan, Iran. Materials and Methods A total of 100 nonduplicated isolates were obtained from the different wards of Azerbaijan state hospitals, Iran, from 2019 to 2020. Antibiotic susceptibility testing was done. The DNA was extracted, and the PCR for evaluation of the resistance genes was carried out. Results The highest antibiotic resistance was shown to ampicillin (96%), and the highest susceptibility was shown to tigecycline (9%), and 85% of isolates were multidrug resistant. The most frequent ESBL gene in the tested isolates was bla SHV-1 in 58%, followed by bla CTXM-15 (55%) and bla SHV-11 (42%). The qepA, oqxB, and oqxA genes were found to be 95%, 87.5%, and 70%, respectively. We detected tetB in 42%, tetA in 32%, tetD in 21%, and tetC in 16%. Seventy isolates were resistant to co-trimoxazole, and the rate of resistance genes was sul1 in 71%, followed by sul2 (43%), dfr (29%), and sul3 (7%). The most common aminoglycoside resistance genes were ant3Ia, aac6Ib, aph3Ib, and APHs in 44%, 32%, 32%, and 31.4%, respectively. The most frequent resistance gene to fosfomycin was fosA (40%) and fosX (40%) followed by fosC (20%). Conclusion The results of this study indicate the high frequency of drug resistance among K. pneumoniae isolated from hospitals of Azerbaijan state. The present study shows the presence of high levels of drug-resistant genes in various antibiotics, which are usually used in the treatment of infections due to K. pneumoniae.
Collapse
|
41
|
Recombinant Ax21 protein is a promising subunit vaccine candidate against Stenotrophomonas maltophilia in a murine infection model. Vaccine 2021; 39:4471-4480. [PMID: 34187706 DOI: 10.1016/j.vaccine.2021.06.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 06/14/2021] [Accepted: 06/19/2021] [Indexed: 11/21/2022]
Abstract
Stenotrophomonas maltophilia is an emerging pathogen that can cause several disease manifestations such as bacteremia, meningitis, respiratory tract infections and others. More seriously, this pathogen has a highly evolving antibiotic resistance profile. Antibiotic misuse is further aggravating the situation by inducing the development of multi- and even pan-resistance. Thus, employing diverse strategies to overcome this increasing antibiotic resistance is of paramount importance. In general, vaccination is one of these strategies that prevents the onset of infection, provides long term protection against infection, and most importantly diminishes the antibiotic consumption, thus, resulting in controlling resistance. Unfortunately, vaccine research concerning S. maltophilia is very scarce in the literature. Ax21 protein is an outer membrane protein implicated in several virulence mechanisms of S. maltophilia such as quorum sensing, biofilm formation, and antibiotic resistance. Our computational analysis of Ax21 revealed its potential immunogenicity. In the current study, Ax21 protein of S. maltophilia was cloned and heterologously expressed in Escherichia coli. Mice were immunized with the purified recombinant antigen using Bacillus Calmette-Guérin(BCG) and incomplete Freund's adjuvant (IFA) as immune-adjuvants. Enzyme-linked immunosorbent assay (ELISA) revealed significant antigen-specific IgG1, IgG2a and total IgG levels in immunized mice which reflected successful immune stimulation. Immunized mice that were challenged with S. maltophilia showed a substantialreduction in bacterial bioburden in lungs, liver, kidneys, and heart. In addition, liver histological examination demonstrated a remarkable decrease in pathological signs such as necrosis, vacuolation, bile duct fibrosis and necrosis, infiltration of inflammatory cells, and hemorrhage. Whole cell ELISA and opsonophagocytic assay confirmed the ability of serum antibodies from immunized mice to bind and facilitate phagocytosis of S. maltophilia, respectively. To our knowledge, this is the first report to demonstrate the vaccine protective efficacy of Ax21 outer membrane protein against S. maltophilia infection.
Collapse
|
42
|
The Potential of Phage Therapy against the Emerging Opportunistic Pathogen Stenotrophomonas maltophilia. Viruses 2021; 13:v13061057. [PMID: 34204897 PMCID: PMC8228603 DOI: 10.3390/v13061057] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/28/2021] [Accepted: 05/31/2021] [Indexed: 12/22/2022] Open
Abstract
The isolation and characterization of bacteriophages for the treatment of infections caused by the multidrug resistant pathogen Stenotrophomonas maltophilia is imperative as nosocomial and community-acquired infections are rapidly increasing in prevalence. This increase is largely due to the numerous virulence factors and antimicrobial resistance genes encoded by this bacterium. Research on S. maltophilia phages to date has focused on the isolation and in vitro characterization of novel phages, often including genomic characterization, from the environment or by induction from bacterial strains. This review summarizes the clinical significance, virulence factors, and antimicrobial resistance mechanisms of S. maltophilia, as well as all phages isolated and characterized to date and strategies for their use. We further address the limited in vivo phage therapy studies conducted against this bacterium and discuss the future research needed to spearhead phages as an alternative treatment option against multidrug resistant S. maltophilia.
Collapse
|
43
|
Clinical outcomes of Stenotrophomonas maltophilia infection treated with trimethoprim/sulfamethoxazole, minocycline, or fluoroquinolone monotherapy. Int J Antimicrob Agents 2021; 58:106367. [PMID: 34058337 DOI: 10.1016/j.ijantimicag.2021.106367] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/12/2021] [Accepted: 05/19/2021] [Indexed: 11/24/2022]
Abstract
OBJECTIVES The historical treatment of choice for Stenotrophomonas maltophilia infection is trimethoprim/sulfamethoxazole and this is primarily based on preclinical studies. The objective of this study was to examine the clinical outcomes of patients receiving monotherapy with different agents. METHODS This was a retrospective study of adult patients receiving monotherapy for S. maltophilia infection with trimethoprim/sulfamethoxazole (TMP/SMX), a fluoroquinolone, or minocycline from 2010 to 2016. The primary outcome was clinical failure, a composite of recurrence, alteration of therapy due to adverse reaction or concern for clinical failure, or 30-day in-hospital mortality. The secondary outcome was 30-day in-hospital mortality. To account for treatment selection bias, multivariate regression and propensity score weighting were conducted. RESULTS 284 patients were included (217 received TMP/SMX, 28 received a fluoroquinolone, and 39 received minocycline). The TMP/SMX and minocycline groups appeared to include similar patients whereas the fluoroquinolone group appeared to represent a slightly less severely ill population. Clinical failure was similar between groups (36%, 29%, and 31% in the TMP/SMX, fluoroquinolone, and minocycline groups, respectively, P=0.69) as was 30-day mortality (15%, 7%, and 5% in the TMP/SMX, fluoroquinolone, and minocycline groups, respectively, P=0.16). After controlling for confounding factors, receipt of minocycline (adjusted odds ratio [OR]=0.2 [0.1-0.7]) but not a fluoroquinolone (adjusted OR=0.3 [0.1 to 2.1]) was associated with lower mortality compared with TMP/SMX. This association persisted after propensity score weighting. CONCLUSIONS Outcomes were similar or better with alternatives to TMP/SMX monotherapy, which indicates this may not be the treatment of choice for infections caused by S. maltophilia.
Collapse
|
44
|
Sannathimmappa MB, Nambiar V, Aravindakshan R, Al-Kasaby NM. Stenotrophomonas maltophilia: An emerging opportunistic nosocomial pathogen in a tertiary care hospital in Al Batinah North Governorate, Oman. Sultan Qaboos Univ Med J 2021; 21:e66-e71. [PMID: 33777425 PMCID: PMC7968916 DOI: 10.18295/squmj.2021.21.01.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/27/2020] [Accepted: 06/25/2020] [Indexed: 01/09/2023] Open
Abstract
Objectives Stenotrophomonas maltophilia, a Gram-negative non-fermentative bacillus, has emerged as an important nosocomial pathogen in recent years. It is intrinsically resistant to many antibiotics and has the ability to acquire antibiotic resistance by multiple mechanisms. Treating Stenotrophomonas infections, therefore, is a serious challenge for physicians. This study aimed to investigate the antibiotic susceptibility patterns and risk factors contributing to S. maltophilia infections. Methods A retrospective cross-sectional study was conducted at Sohar Hospital in Sohar, Oman. The demographic, clinical and microbiological data of individuals from whom S. maltophilia was isolated between September 2016 and August 2019 were reviewed. Descriptive statistics were presented as frequencies and percentages. Results A total of 41 S. maltophilia isolates from clinical specimens of 41 patients were studied. Infection occurred predominantly in males (73%) and the majority of patients (88%) were either ≤5 years old or >60 years old. All inpatients had at least one comorbidity while 50% had more than one. All inpatients were exposed to various medical interventions such as intensive care (44%), mechanical ventilation (41%), haemodialysis (25%), Foley's catheterisation (13%) and central venous lines (6%). Most patients (81%) were in hospital longer than two weeks. The susceptibility rates of S. maltophilia to minocycline (97%), trimethoprim-sulfamethoxazole (93%) and levofloxacin (92%) were high; the rate was lowest for ceftazidime (50%). Conclusion S. maltophilia was found to be an important nosocomial opportunistic pathogen. Prolonged hospital stay and exposure to various medical interventions were key factors contributing to the development of infection. Minocycline and ceftazidime were found to be the most and least susceptible drugs, respectively.
Collapse
Affiliation(s)
- Mohan B Sannathimmappa
- Departments of Microbiology & Immunology, National University of Science and Technology, Sohar, Oman
| | - Vinod Nambiar
- Departments of Microbiology & Immunology, National University of Science and Technology, Sohar, Oman
| | - Rajeev Aravindakshan
- Department of Epidemiology and Public Health, All India Institute of Medical Sciences, Mangalgiri, India
| | - Nashwa M Al-Kasaby
- Department of Pathology, Sohar Hospital, Sohar, Oman.,Department of Medical Microbiology and Immunology, Faculty of Medicine, Mansoura University, Egypt
| |
Collapse
|
45
|
Mendes ET, Paez JIG, Ferraz JR, Marchi AP, Silva ILAFE, Batista MV, de Lima ALM, Rossi F, Levin AS, Costa SF. Clinical and microbiological characteristics of patients colonized or infected by Stenotrophomonas maltophilia : is resistance to sulfamethoxazole/trimethoprim a problem? Rev Inst Med Trop Sao Paulo 2020; 62:e96. [PMID: 33295480 PMCID: PMC7723352 DOI: 10.1590/s1678-9946202062096] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/11/2020] [Indexed: 12/15/2022] Open
Abstract
Stenotrophomonas maltophilia has emerged as an important opportunistic pathogen in the last decade. Increased resistance to sulfamethoxazole/trimethoprim (SMX/TMP) has been reported in S. maltophilia strains in the past few years, leading to few therapeutic options. We conducted a prospective multicenter study at two Brazilian teaching hospitals that identified S. maltophilia isolates and evaluated their antimicrobial susceptibility profile, SMX/TMP resistance genes and their clonality profile. A total of 106 non-repeated clinical samples of S. maltophilia were evaluated. Resistance to SMX/TMP was identified in 21.6% of the samples, and previous use of SMX/TMP occurred in 19 (82.6%). PCR detected the sul1 gene in 14 of 106 strains (13.2%). Of these isolates, nine displayed resistance to SMX/TMP. The resistant strains presented a polyclonal profile. This opportunistic pathogen has emerged in immunocompromised hosts, with few therapeutic options, which is aggravated by the description of emerging resistance mechanisms, although with a polyclonal distribution profile.
Collapse
Affiliation(s)
- Elisa Teixeira Mendes
- Pontifícia Universidade Católica de Campinas, Programa de
Pós-Graduação em Ciências da Vida, Campinas, São Paulo, Brazil
| | - Jorge Isaac Garcia Paez
- Universidade de São Paulo, Faculdade de Medicina, Hospital das
Clínicas, Laboratório de Protozoologia, Bacteriologia e Resistência
Antimicrobiana (LIM 49), São Paulo, São Paulo, Brazil
| | - Juliana Rosa Ferraz
- Universidade de São Paulo, Faculdade de Medicina, Hospital das
Clínicas, Laboratório de Protozoologia, Bacteriologia e Resistência
Antimicrobiana (LIM 49), São Paulo, São Paulo, Brazil
| | - Ana Paula Marchi
- Universidade de São Paulo, Faculdade de Medicina, Hospital das
Clínicas, Laboratório de Protozoologia, Bacteriologia e Resistência
Antimicrobiana (LIM 49), São Paulo, São Paulo, Brazil
| | | | - Marjorie Vieira Batista
- Hospital do Câncer A. C. Camargo, Departamento de Controle de
Infecção, São Paulo, São Paulo, Brazil
| | - Ana Lucia Munhoz de Lima
- Universidade de São Paulo, Faculdade de Medicina, Departamento
de Ortopedia e Traumatologia, São Paulo, São Paulo, Brazil
| | - Flávia Rossi
- Universidade de São Paulo, Faculdade de Medicina, Hospital das
Clínicas, Laboratório Central, Divisão de Microbiologia, São Paulo, São Paulo,
Brazil
| | - Anna Sara Levin
- Universidade de São Paulo, Faculdade de Medicina, Departamento
de Moléstias Infecciosas, São Paulo, São Paulo, Brazil
- Universidade de São Paulo, Faculdade de Medicina, Hospital das
Clínicas, Laboratório Central, Divisão de Microbiologia, São Paulo, São Paulo,
Brazil
| | - Silvia Figueiredo Costa
- Universidade de São Paulo, Faculdade de Medicina, Departamento
de Moléstias Infecciosas, São Paulo, São Paulo, Brazil
- Universidade de São Paulo, Faculdade de Medicina, Hospital das
Clínicas, Laboratório Central, Divisão de Microbiologia, São Paulo, São Paulo,
Brazil
- Universidade de São Paulo, Instituto de Medicina Tropical de São
Paulo, Divisão Científica, São Paulo, São Paulo, Brazil
| |
Collapse
|
46
|
Activity of Aztreonam in Combination with Avibactam, Clavulanate, Relebactam, and Vaborbactam against Multidrug-Resistant Stenotrophomonas maltophilia. Antimicrob Agents Chemother 2020; 64:AAC.00297-20. [PMID: 32928733 DOI: 10.1128/aac.00297-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 09/04/2020] [Indexed: 12/26/2022] Open
Abstract
The intrinsic L1 metallo- and L2 serine-β-lactamases in Stenotrophomonas maltophilia make it naturally multidrug resistant and difficult to treat. There is a need to identify novel treatment strategies for this pathogen, especially against isolates resistant to first-line agents. Aztreonam in combination with avibactam has demonstrated potential, although data on other aztreonam-β-lactamase inhibitor (BLI) combinations are lacking. Additionally, molecular mechanisms for reduced susceptibility to these combinations have not been explored. The objectives of this study were to evaluate and compare the in vitro activities and to understand the mechanisms of resistance to aztreonam in combination with avibactam, clavulanate, relebactam, and vaborbactam against S. maltophilia A panel of 47 clinical S. maltophilia strains nonsusceptible to levofloxacin and/or trimethoprim-sulfamethoxazole were tested against each aztreonam-BLI combination via broth microdilution, and 6 isolates were then evaluated in time-kill analyses. Three isolates with various aztreonam-BLI MICs were subjected to whole-genome sequencing and quantitative reverse transcriptase PCR. Avibactam restored aztreonam susceptibility in 98% of aztreonam-resistant isolates, compared to 61, 71, and 15% with clavulanate, relebactam, and vaborbactam, respectively. The addition of avibactam to aztreonam resulted in a ≥2-log10-CFU/ml decrease at 24 h versus aztreonam alone against 5/6 isolates compared to 1/6 with clavulanate, 4/6 with relebactam, and 2/6 with vaborbactam. Molecular analyses revealed that decreased susceptibility to aztreonam-avibactam was associated with increased expression of genes encoding L1 and L2, as well as the efflux pump (smeABC). Aztreonam-avibactam is the most promising BLI-combination against multidrug-resistant S. maltophilia Decreased susceptibility may be due to the combination of overexpressed β-lactamases and efflux pumps. Further studies evaluating this combination against S. maltophilia are warranted.
Collapse
|
47
|
Kumar S, Bansal K, Patil PP, Kaur A, Kaur S, Jaswal V, Gautam V, Patil PB. Genomic insights into evolution of extensive drug resistance in Stenotrophomonas maltophilia complex. Genomics 2020; 112:4171-4178. [DOI: 10.1016/j.ygeno.2020.06.049] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/28/2020] [Accepted: 06/28/2020] [Indexed: 11/24/2022]
|
48
|
Blanco P, Corona F, Martinez JL. Mechanisms and phenotypic consequences of acquisition of tigecycline resistance by Stenotrophomonas maltophilia. J Antimicrob Chemother 2020; 74:3221-3230. [PMID: 31369109 DOI: 10.1093/jac/dkz326] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/17/2019] [Accepted: 07/02/2019] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVES To elucidate the potential mutation-driven mechanisms involved in the acquisition of tigecycline resistance by the opportunistic pathogen Stenotrophomonas maltophilia. The mutational trajectories and their effects on bacterial fitness, as well as cross-resistance and/or collateral susceptibility to other antibiotics, were also addressed. METHODS S. maltophilia populations were submitted to experimental evolution in the presence of increasing concentrations of tigecycline for 30 days. The genetic mechanisms involved in the acquisition of tigecycline resistance were determined by WGS. Resistance was evaluated by performing MIC assays. Fitness of the evolved populations and individual clones was assessed by measurement of the maximum growth rates. RESULTS All the tigecycline-evolved populations attained high-level resistance to tigecycline following different mutational trajectories, yet with some common elements. Among the mechanisms involved in low susceptibility to tigecycline, mutations in the SmeDEF efflux pump negative regulator smeT, changes in proteins involved in the biogenesis of the ribosome and modifications in the LPS biosynthesis pathway seem to play a major role. Besides tigecycline resistance, the evolved populations presented cross-resistance to other antibiotics, such as aztreonam and quinolones, and they were hypersusceptible to fosfomycin, suggesting a possible combination treatment. Further, we found that the selected resistance mechanisms impose a relevant fitness cost when bacteria grow in the absence of antibiotic. CONCLUSIONS Mutational resistance to tigecycline was easily selected during exposure to this antibiotic. However, the fitness cost may compromise the maintenance of S. maltophilia tigecycline-resistant populations in the absence of antibiotic.
Collapse
Affiliation(s)
- Paula Blanco
- Centro Nacional de Biotecnología, CSIC, Madrid, Spain
| | | | | |
Collapse
|
49
|
Shen S, Wu W, Grimes DJ, Saillant EA, Griffitt RJ. Community composition and antibiotic resistance of bacteria in bottlenose dolphins Tursiops truncatus - Potential impact of 2010 BP Oil Spill. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 732:139125. [PMID: 32438143 DOI: 10.1016/j.scitotenv.2020.139125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
Aquatic contamination, oil spills in particular, could lead to the accumulation of antibiotic resistance by promoting selection for and/or transfer of resistance genes. However, there have been few studies on antibiotic resistance in marine mammals in relation to environmental disturbances, specifically oil contaminations. Here we initiated a study on antibiotic resistance bacteria in bottlenose dolphins Tursiops truncatus in relation to oil contamination following the 2010 BP Oil Spill in the northern Gulf of Mexico. Bacterial communities and antibiotic resistance prevalence one year after the 2010 BP Oil Spill were compared between Barataria Bay (BB) and Sarasota Bay (SB) by applying the rarefaction curve method, and (generalized) linear mixed models. The results showed that the most common bacteria included Vibrio, Shewanella, Bacillus and Pseudomonas. The prevalence of antibiotic resistance was high in the bacterial isolates at both bays. Though bacterial diversity did not differ significantly among water or dolphin samples, and antibiotic resistance did not differ significantly among water samples between the two bays, antibiotic resistance and multi-drug resistance in dolphin samples was significantly higher in the BB than in the SB, mainly attributed to the resistance to E, CF, FEP and SXT. We also found sulfamethoxazole-trimethoprim-resistant Stenotrophomonas maltophilia the first time in the natural aquatic environment. The higher antibiotic resistance in the dolphins in BB is likely attributed to 2010 BP Oil Spill as we expected SB, a more urbanized bay area, would have had higher antibiotic resistance based on the previous studies. The antibiotic resistance data gathered in this research will fill in the important data gaps and contributes to the broader spatial-scale emerging studies on antibiotic resistance in aquatic environments.
Collapse
Affiliation(s)
- Shuo Shen
- Division of Coastal Sciences, School of Ocean Science and Engineering, The University of Southern Mississippi, 703 East Beach Drive, Ocean Springs, MS 39564, United States of America.
| | - Wei Wu
- Division of Coastal Sciences, School of Ocean Science and Engineering, The University of Southern Mississippi, 703 East Beach Drive, Ocean Springs, MS 39564, United States of America.
| | - D Jay Grimes
- Division of Coastal Sciences, School of Ocean Science and Engineering, The University of Southern Mississippi, 703 East Beach Drive, Ocean Springs, MS 39564, United States of America.
| | - Eric A Saillant
- Division of Coastal Sciences, School of Ocean Science and Engineering, The University of Southern Mississippi, 703 East Beach Drive, Ocean Springs, MS 39564, United States of America.
| | - Robert J Griffitt
- Division of Coastal Sciences, School of Ocean Science and Engineering, The University of Southern Mississippi, 703 East Beach Drive, Ocean Springs, MS 39564, United States of America.
| |
Collapse
|
50
|
Chi T, Zhang A, Zhang X, Li AD, Zhang H, Zhao Z. Characteristics of the antibiotic resistance genes in the soil of medical waste disposal sites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 730:139042. [PMID: 32402966 DOI: 10.1016/j.scitotenv.2020.139042] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 04/15/2020] [Accepted: 04/25/2020] [Indexed: 06/11/2023]
Abstract
The inappropriate disposal of medical waste allows bacteria to acquire antibiotic resistance, which results in a threat to public health. Antibiotic resistance gene (ARG) profiles were determined for 45 different soil samples containing medical waste and 15 nearby soil samples as controls. Besides physical and chemical analyses (i.e., dry matter content, pH value, and metal content), the genomes of microorganisms from the soil samples were extracted for high-throughput sequencing. ARG abundances of these samples were obtained by searching the metagenomic sequences against the antibiotic resistance gene database and the copies of ARGs per copy of the 16S rRNA gene at different levels were assessed. The results showed medical waste accumulation significantly enriched the contents of Cu, Cr, Pb, and As in the tested soil samples. Compared to the controls, the samples collected from areas containing medical waste were significantly enriched (p < 0.05, t-test) with ARGs annotated as sulfonamide and multidrug resistance genes, and in particular, the subtypes sul1 and sul2 (sulfonamide resistance genes), and multidrug_transporter (multidrug resistance gene). Moreover, the ARGs of the samples from the polluted areas were more diverse than those of the control samples (p < 0.05, t-test). The comparatively higher abundance and diversity of ARGs in contaminated soil pose a potential risk to human health.
Collapse
Affiliation(s)
- Ting Chi
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, China
| | - Aiguo Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, China
| | - Xiaofei Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, China
| | - An-Dong Li
- Medical School of Nanjing University, Nanjing, China
| | - Houhu Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, China.
| | - Zhenqian Zhao
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, China
| |
Collapse
|