1
|
Mendoza MA, Imlay H. Polyomaviruses After Allogeneic Hematopoietic Stem Cell Transplantation. Viruses 2025; 17:403. [PMID: 40143330 PMCID: PMC11946477 DOI: 10.3390/v17030403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/28/2025] [Accepted: 03/07/2025] [Indexed: 03/28/2025] Open
Abstract
Polyomaviruses (PyVs) are non-enveloped double-stranded DNA viruses that can cause significant morbidity in allogeneic hematopoietic stem cell transplant (allo-HSCT) recipients, particularly BK polyomavirus (BKPyV) and JC polyomavirus (JCPyV). BKPyV is primarily associated with hemorrhagic cystitis (HC), while JCPyV causes progressive multifocal leukoencephalopathy (PML). The pathogenesis of these diseases involves viral reactivation under immunosuppressive conditions, leading to replication in tissues such as the kidney, bladder, and central nervous system. BKPyV-HC presents as hematuria and urinary symptoms, graded by severity. PML, though rare after allo-HSCT, manifests as neurological deficits due to JCPyV replication in glial cells. Diagnosis relies on nucleic acid amplification testing for DNAuria or DNAemia as well as clinical criteria. Management primarily involves supportive care, as no antiviral treatments have proven consistently effective for either virus and need further research. This review highlights the virology, clinical presentations, and management challenges of PyV-associated diseases post-allo-HSCT, emphasizing the need for improved diagnostic tools and therapeutic approaches to mitigate morbidity and mortality in this vulnerable population.
Collapse
Affiliation(s)
| | - Hannah Imlay
- Division of Infectious Diseases, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84112, USA;
| |
Collapse
|
2
|
KI and WU Polyomaviruses: Seroprevalence Study and DNA Prevalence in SARS-CoV-2 RNA Positive and Negative Respiratory Samples. Microorganisms 2022; 10:microorganisms10040752. [PMID: 35456801 PMCID: PMC9031565 DOI: 10.3390/microorganisms10040752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 11/17/2022] Open
Abstract
The aim of this work was to study the possible co-infection of KI and WU polyomavirus (KIPyV and WUPyV, respectively) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in respiratory samples and to detect the seroprevalence of KIPyV and WUPyV. A total of 1030 nasopharyngeal samples were analyzed from SARS-CoV-2 RNA positive (n = 680) and negative (n = 350) adults and children (age: 1 day to 94.2 years) collected from August 2020 to October 2021. KIPyV DNA was detected in two SARS-CoV-2-positive samples (2/680, 0.29%) and in three SARS-CoV-2-negative samples (3/350, 0.86%). WUPyV DNA was observed in one-one samples from both groups (1/680, 0.15% vs. 1/350, 0.29%). We did not find an association between SARS-CoV-2 and KIPyV or WUPyV infection, and we found low DNA prevalence of polyomaviruses studied after a long-term lockdown in Hungary. To exclude a geographically different distribution of these polyomaviruses, we studied the seroprevalence of KIPyV and WUPyV by enzyme-linked immunosorbent assay among children and adults (n = 692 for KIPyV and n = 705 for WUPyV). Our data confirmed that primary infections by KIPyV and WUPyV occur mainly during childhood; the overall seropositivity of adults was 93.7% and 89.2% for KIPyV and WUPyV, respectively. Based on our data, we suggest that the spread of KIPyV and WUPyV might have been restricted in Hungary by the lockdown.
Collapse
|
3
|
Zhao H, Xu W, Wang L, Zhu Y, Wang X, Liu Y, Ai J, Feng Q, Deng L, Sun Y, Li C, Jin R, Shang Y, Gao H, Qian S, Xu L, Xie Z. WU Polyomavirus Infection in Children With Acute Lower Respiratory Tract Infections in China, 2017 to 2019: Case Reports and Multicentre Epidemiological Survey. Front Cell Infect Microbiol 2022; 11:835946. [PMID: 35360221 PMCID: PMC8963484 DOI: 10.3389/fcimb.2021.835946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 12/24/2021] [Indexed: 11/13/2022] Open
Abstract
WU polyomavirus (WUPyV) is a novel member of the family Polyomaviridae recently detected in respiratory tract specimens. So far, it has not been proven whether WUPyV is a real causative agent for respiratory diseases. In this study, we described two patients with fatal infection who had WUPyV detected in their nasopharyngeal swabs. Furthermore, we conducted a multicentre study in six hospitals from different districts of China. WUPyV was detected by real-time polymerase chain reaction assays, and the clinical and molecular epidemiological characteristics of WUPyV strains among hospitalized children with acute lower respiratory tract infections all around China from 2017 to 2019 were analysed. Two complete WUPyV genome sequences were assembled from fatal patients’ airway specimens. Phylogenetic tree analysis revealed that they were most closely related to strains derived from Fujian and Chongqing, China, in 2008 and 2013, respectively. In 2017–2019, a total of 1,812 samples from children with acute lower respiratory tract infections were detected for WUPyV, of which 11 (0.6%) were positive. Children aged ≤5 were more susceptible to WUPyV infection. A total of 81.8% of WUPyV-positive patients were coinfected with other viruses, of which rhinovirus enjoyed the highest frequency. The main clinical symptoms of infected patients include fever, coughing and sputum expectoration. Most patients were diagnosed with pneumonia, followed by bronchial surgery. Three patients manifested severe infection, and all patients improved and were discharged. Our results show that WUPyV persistently circulates in China. Further investigations on the clinical role and pathogenicity of WUPyV are necessary.
Collapse
Affiliation(s)
- Hongwei Zhao
- Beijing Key Laboratory of Paediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Paediatrics (Capital Medical University), Beijing Paediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, Beijing, China
| | - Wenmiao Xu
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, Beijing, China
- Department of Paediatric Critical Care Medicine, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Lijuan Wang
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, Beijing, China
- Department of Paediatric Critical Care Medicine, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Yun Zhu
- Beijing Key Laboratory of Paediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Paediatrics (Capital Medical University), Beijing Paediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, Beijing, China
| | - Xiaohui Wang
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, Beijing, China
- Department of Paediatric Critical Care Medicine, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Yingchao Liu
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, Beijing, China
- Department of Paediatric Critical Care Medicine, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Junhong Ai
- Beijing Key Laboratory of Paediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Paediatrics (Capital Medical University), Beijing Paediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, Beijing, China
| | - Qianyu Feng
- Beijing Key Laboratory of Paediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Paediatrics (Capital Medical University), Beijing Paediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, Beijing, China
| | - Li Deng
- Department of Respiration, Guangzhou Women and Children’s Medical Center, Guangzhou, China
| | - Yun Sun
- Department of Pediatrics, Yinchuan Women and Children Healthcare Hospital, Yinchuan, China
| | - Changchong Li
- Department of Pediatric Respiratory Medicine and Sleep Medicine, The Second Afliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Rong Jin
- Department of Pediatrics, Guiyang Maternal and Child Health Hospital, Guiyang, China
| | - Yunxiao Shang
- Department of Pediatric Respiratory, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hengmiao Gao
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, Beijing, China
- Department of Paediatric Critical Care Medicine, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Suyun Qian
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, Beijing, China
- Department of Paediatric Critical Care Medicine, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Lili Xu
- Beijing Key Laboratory of Paediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Paediatrics (Capital Medical University), Beijing Paediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, Beijing, China
- *Correspondence: Lili Xu,
| | - Zhengde Xie
- Beijing Key Laboratory of Paediatric Respiratory Infection Diseases, Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Paediatrics (Capital Medical University), Beijing Paediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- Research Unit of Critical Infection in Children, Chinese Academy of Medical Sciences, 2019RU016, Beijing, China
| |
Collapse
|
4
|
Prezioso C, Moens U, Oliveto G, Brazzini G, Piacentini F, Frasca F, Viscido A, Scordio M, Guerrizio G, Rodio DM, Pierangeli A, d’Ettorre G, Turriziani O, Antonelli G, Scagnolari C, Pietropaolo V. KI and WU Polyomavirus in Respiratory Samples of SARS-CoV-2 Infected Patients. Microorganisms 2021; 9:microorganisms9061259. [PMID: 34207902 PMCID: PMC8229673 DOI: 10.3390/microorganisms9061259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/01/2021] [Accepted: 06/08/2021] [Indexed: 11/19/2022] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) has been declared a global pandemic. Our goal was to determine whether co-infections with respiratory polyomaviruses, such as Karolinska Institutet polyomavirus (KIPyV) and Washington University polyomavirus (WUPyV) occur in SARS-CoV-2 infected patients. Oropharyngeal swabs from 150 individuals, 112 symptomatic COVID-19 patients and 38 healthcare workers not infected by SARS-CoV-2, were collected from March 2020 through May 2020 and tested for KIPyV and WUPyV DNA presence. Of the 112 SARS-CoV-2 positive patients, 27 (24.1%) were co-infected with KIPyV, 5 (4.5%) were positive for WUPyV, and 3 (2.7%) were infected simultaneously by KIPyV and WUPyV. Neither KIPyV nor WUPyV DNA was detected in samples of healthcare workers. Significant correlations were found in patients co-infected with SARS-CoV-2 and KIPyV (p < 0.05) and between SARS-CoV-2 cycle threshold values and KIPyV, WUPyV and KIPyV and WUPyV concurrently detected (p < 0.05). These results suggest that KIPyV and WUPyV may behave as opportunistic respiratory pathogens. Additional investigations are needed to understand the epidemiology and the prevalence of respiratory polyomavirus in COVID-19 patients and whether KIPyV and WUPyV could potentially drive viral interference or influence disease outcomes by upregulating SARS-CoV-2 replicative potential.
Collapse
Affiliation(s)
- Carla Prezioso
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00185 Rome, Italy; (C.P.); (G.B.); (F.P.); (G.d.)
- IRCSS San Raffaele Pisana, Microbiology of Chronic Neuro-Degenerative Pathologies, 00163 Rome, Italy
| | - Ugo Moens
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø—The Arctic University of Norway, 9037 Tromsø, Norway;
| | - Giuseppe Oliveto
- Laboratory of Microbiology and Virology, Department of Molecular Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (G.O.); (F.F.); (A.V.); (M.S.); (G.G.); (D.M.R.); (A.P.); (O.T.); (G.A.); (C.S.)
- Microbiology and Virology Unit, “Sapienza” University Hospital “Policlinico Umberto I”, 00161 Rome, Italy
- Istituto Pasteur Italia, 00161 Rome, Italy
| | - Gabriele Brazzini
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00185 Rome, Italy; (C.P.); (G.B.); (F.P.); (G.d.)
| | - Francesca Piacentini
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00185 Rome, Italy; (C.P.); (G.B.); (F.P.); (G.d.)
| | - Federica Frasca
- Laboratory of Microbiology and Virology, Department of Molecular Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (G.O.); (F.F.); (A.V.); (M.S.); (G.G.); (D.M.R.); (A.P.); (O.T.); (G.A.); (C.S.)
- Istituto Pasteur Italia, 00161 Rome, Italy
| | - Agnese Viscido
- Laboratory of Microbiology and Virology, Department of Molecular Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (G.O.); (F.F.); (A.V.); (M.S.); (G.G.); (D.M.R.); (A.P.); (O.T.); (G.A.); (C.S.)
- Microbiology and Virology Unit, “Sapienza” University Hospital “Policlinico Umberto I”, 00161 Rome, Italy
| | - Mirko Scordio
- Laboratory of Microbiology and Virology, Department of Molecular Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (G.O.); (F.F.); (A.V.); (M.S.); (G.G.); (D.M.R.); (A.P.); (O.T.); (G.A.); (C.S.)
- Istituto Pasteur Italia, 00161 Rome, Italy
| | - Giuliana Guerrizio
- Laboratory of Microbiology and Virology, Department of Molecular Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (G.O.); (F.F.); (A.V.); (M.S.); (G.G.); (D.M.R.); (A.P.); (O.T.); (G.A.); (C.S.)
- Microbiology and Virology Unit, “Sapienza” University Hospital “Policlinico Umberto I”, 00161 Rome, Italy
| | - Donatella Maria Rodio
- Laboratory of Microbiology and Virology, Department of Molecular Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (G.O.); (F.F.); (A.V.); (M.S.); (G.G.); (D.M.R.); (A.P.); (O.T.); (G.A.); (C.S.)
- Microbiology and Virology Unit, “Sapienza” University Hospital “Policlinico Umberto I”, 00161 Rome, Italy
| | - Alessandra Pierangeli
- Laboratory of Microbiology and Virology, Department of Molecular Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (G.O.); (F.F.); (A.V.); (M.S.); (G.G.); (D.M.R.); (A.P.); (O.T.); (G.A.); (C.S.)
- Istituto Pasteur Italia, 00161 Rome, Italy
| | - Gabriella d’Ettorre
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00185 Rome, Italy; (C.P.); (G.B.); (F.P.); (G.d.)
| | - Ombretta Turriziani
- Laboratory of Microbiology and Virology, Department of Molecular Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (G.O.); (F.F.); (A.V.); (M.S.); (G.G.); (D.M.R.); (A.P.); (O.T.); (G.A.); (C.S.)
- Microbiology and Virology Unit, “Sapienza” University Hospital “Policlinico Umberto I”, 00161 Rome, Italy
| | - Guido Antonelli
- Laboratory of Microbiology and Virology, Department of Molecular Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (G.O.); (F.F.); (A.V.); (M.S.); (G.G.); (D.M.R.); (A.P.); (O.T.); (G.A.); (C.S.)
- Microbiology and Virology Unit, “Sapienza” University Hospital “Policlinico Umberto I”, 00161 Rome, Italy
- Istituto Pasteur Italia, 00161 Rome, Italy
| | - Carolina Scagnolari
- Laboratory of Microbiology and Virology, Department of Molecular Medicine, “Sapienza” University of Rome, 00161 Rome, Italy; (G.O.); (F.F.); (A.V.); (M.S.); (G.G.); (D.M.R.); (A.P.); (O.T.); (G.A.); (C.S.)
- Istituto Pasteur Italia, 00161 Rome, Italy
| | - Valeria Pietropaolo
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00185 Rome, Italy; (C.P.); (G.B.); (F.P.); (G.d.)
- Microbiology and Virology Unit, “Sapienza” University Hospital “Policlinico Umberto I”, 00161 Rome, Italy
- Correspondence: ; Tel.: +39-06-49914439
| |
Collapse
|
5
|
Merkel Cell Polyomavirus DNA Detection in Respiratory Samples: Study of a Cohort of Patients Affected by Cystic Fibrosis. Viruses 2019; 11:v11060571. [PMID: 31234392 PMCID: PMC6631797 DOI: 10.3390/v11060571] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/12/2019] [Accepted: 06/19/2019] [Indexed: 12/18/2022] Open
Abstract
Background: The role of Merkel cell polyomavirus (MCPyV) as a respiratory pathogen is controversial, and it is still unclear in patients with cystic fibrosis (CF). The aim of this study was to define the MCPyV prevalence and epidemiology in CF patients in order to gain new insights into the association between MCPyV infection and respiratory diseases. Methods: A one-year study was conducted testing oropharyngeal aspirate samples from 249 and 124 CF and non-CF patients, respectively. Detection of MCPyV was carried out by nested polymerase chain reaction (PCR). Moreover, a sequence alignment to examine viral capsid protein 1 (VP1) and a phylogenetic analysis were performed. Results: MCPyV DNA was detected in 65 out of 249 samples analyzed CF (26%), a percentage that was higher than that recorded in non-CF patients (0.8%). There were no statistically significant differences in MCPyV prevalence according to gender, while there was a correlation between MCPyV detection and age. Interestingly, an association between the presence of MCPyV and the concurrent isolation of Staphylococcus aureus was found. Sequence analysis of MCPyV VP1 and phylogenetic analysis revealed a 99% homology with the published sequences of these viruses in GenBank. Conclusions: Detection of MCPyV in CF patient specimens pointed out a possible interaction between the virus and CF. Further studies are necessary to fully understand the involvement of MCPyV in the pathogenesis of respiratory disorders.
Collapse
|
6
|
Caldeira DB, de Souza Luna LK, Watanabe A, Perosa AH, Granato C, Bellei N. The occurrence of polyomaviruses WUPyV and KIPyV among patients with severe respiratory infections. Braz J Microbiol 2018; 50:133-137. [PMID: 30637634 PMCID: PMC6863251 DOI: 10.1007/s42770-018-0038-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 10/15/2018] [Indexed: 12/30/2022] Open
Abstract
In 2007, the new polyomaviruses WUPyV and KIPyV were identified in patients with acute respiratory infections. The aim of this study was to investigate these viruses in hospitalized patients with severe acute respiratory infection (SARI). A retrospective study was conducted with 251 patients, from April 2009 to November 2010, using nasopharyngeal aspirates, naso- and oropharyngeal swab samples from hospitalized patients (children < 12 years and adults) who had SARI within 7 days of the onset of symptoms, including fever (> 38.8 °C), dyspnea, and cough. Clinical and epidemiological information was obtained through standardized questionnaire. Enrolled patients were initially suspected to have influenza A(H1N1)pdm09 infections. WUPyV and KIPyV were detected by real-time PCR. Samples were also tested for influenza A and B viruses, human respiratory syncytial virus, rhinovirus, metapneumovirus, coronavirus, adenovirus, and parainfluenza viruses. WUPyV and KIPyV were detected in 6.77% (4.78% and 1.99%, respectively) of hospitalized patients with SARI. All samples from children showed coinfections (rhinovirus was the most commonly detected). Six adults had polyomavirus infection and four (1.6%) had monoinfection. Of them, 3 reported comorbidities including immunosuppression and 1 patient had worse outcome, requiring ICU admission. These preliminary data may suggest a possible role of polyomaviruses in SARI among immunocompromised adult patients.
Collapse
Affiliation(s)
- Débora Bellini Caldeira
- Medicine Department, Clinical Virology Laboratory, Infectious Diseases Unit, Sao Paulo Federal University, Rua Pedro de Toledo, 781, 15 andar, Sao Paulo, Brazil.
| | - Luciano Kleber de Souza Luna
- Medicine Department, Clinical Virology Laboratory, Infectious Diseases Unit, Sao Paulo Federal University, Rua Pedro de Toledo, 781, 15 andar, Sao Paulo, Brazil
| | - Aripuana Watanabe
- Department of parasitology, microbiology and immunology, Biologic Sciences Institute, Federal University of Juiz de Fora, Minas Gerais, Brazil
| | - Ana Helena Perosa
- Medicine Department, Clinical Virology Laboratory, Infectious Diseases Unit, Sao Paulo Federal University, Rua Pedro de Toledo, 781, 15 andar, Sao Paulo, Brazil
| | - Celso Granato
- Medicine Department, Clinical Virology Laboratory, Infectious Diseases Unit, Sao Paulo Federal University, Rua Pedro de Toledo, 781, 15 andar, Sao Paulo, Brazil
| | - Nancy Bellei
- Medicine Department, Clinical Virology Laboratory, Infectious Diseases Unit, Sao Paulo Federal University, Rua Pedro de Toledo, 781, 15 andar, Sao Paulo, Brazil
| |
Collapse
|
7
|
Ligozzi M, Galia L, Carelli M, Piccaluga PP, Diani E, Gibellini D. Duplex real-time polymerase chain reaction assay for the detection of human KIPyV and WUPyV in nasopharyngeal aspirate pediatric samples. Mol Cell Probes 2018; 40:13-18. [PMID: 29883628 PMCID: PMC7172048 DOI: 10.1016/j.mcp.2018.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 05/25/2018] [Accepted: 06/04/2018] [Indexed: 12/09/2022]
Abstract
In this study, we describe a duplex real-time PCR assay for the simultaneous detection of KIPyV and WUPyV polyomaviruses based on TaqMan probes. This assay detected 500 copies/mL both for KIPyV and WUPyV in 100% of tested positive samples. We assessed this technique on 482 nasopharyngeal aspirate specimens from hospitalized pediatric patients with respiratory symptoms, previously analyzed with commercial multiplex assay for 16 major respiratory viruses. Our assay detected KIPyV genome in 15 out of 482 samples (3.1%) and WUPyV genome in 24 out of 482 samples (4.9%), respectively, and in three samples the coinfection of the two viruses was found. Interestingly, 29 out of 36 of samples with KIPyV and/or WUPyV infection exhibited a co-infection with one or more respiratory viruses confirming that KIPyV and WUPyV were often detected in association to other viral infections. Of note, KIPyV and WUPyV were detected singularly in 4 out of 15 cases and 3 out of 24 cases, respectively, suggesting a possible direct role of these viruses in the respiratory diseases. In conclusion, this method could be taken into account as an alternative technical approach to detect KIPyV and/or WUPyV in respiratory samples for epidemiological and diagnostic analyses.
Collapse
Affiliation(s)
- Marco Ligozzi
- Microbiology and Virology Unit, Department of Diagnostics and Public Health, University of Verona, Strada delle Grazie 8, 37134 Verona, Italy.
| | - Liliana Galia
- Microbiology and Virology Unit, Department of Diagnostics and Public Health, University of Verona, Strada delle Grazie 8, 37134 Verona, Italy
| | - Maria Carelli
- Microbiology and Virology Unit, Department of Diagnostics and Public Health, University of Verona, Strada delle Grazie 8, 37134 Verona, Italy
| | - Pier Paolo Piccaluga
- Department of Experimental, Diagnostic, and Specialty Medicine, University of Bologna, Bologna, Italy; Euro-Mediterranean Institute of Science and Technology (IEMEST), Palermo, Italy; Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Erica Diani
- Microbiology and Virology Unit, Department of Diagnostics and Public Health, University of Verona, Strada delle Grazie 8, 37134 Verona, Italy
| | - Davide Gibellini
- Microbiology and Virology Unit, Department of Diagnostics and Public Health, University of Verona, Strada delle Grazie 8, 37134 Verona, Italy
| |
Collapse
|
8
|
Hansen-Estruch C, Coleman KK, Thoon KC, Low JG, Anderson BD, Gray GC. Prevalence of Respiratory Polyomaviruses Among Pediatric Patients With Respiratory Symptoms in Singapore. Front Pediatr 2018; 6:228. [PMID: 30175090 PMCID: PMC6107759 DOI: 10.3389/fped.2018.00228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 07/26/2018] [Indexed: 11/30/2022] Open
Abstract
Background: Although WU polyomavirus (WU) and KI polyomavirus (KI) have been demonstrated to infect the human respiratory tract, it remains unclear if WU or KI cause human disease. We sought to further investigate the relationship between WU and KI infection and respiratory disease in a pediatric population with respiratory symptoms in Singapore. Methods: We conducted a cross-sectional study of pediatric patients with respiratory symptoms in a Singaporean pediatrics hospital. Upon consent, residual respiratory samples from pediatric inpatients, previously screened for common respiratory viruses, were collected and further screened for WU and KI using qPCR. The amplicons of positive samples were sequenced for confirmation. The severity of a patient's illness was assessed by chart review post-discharge looking for clinical markers of respiratory status such as presenting symptoms, diagnoses, and interventions. Results: From December 2016 to April 2017, 201 patients with residual respiratory samples were enrolled in the study. The average age of all participants recruited was 45 months. WU and KI were detected in 13% (26/201) and 3% (6/201) of patients, respectively. Conducting bivariate and multivariate modeling, patients with WU or KI positivity were not at increased risk of SARI, need for additional oxygen, intravenous fluids, and did not receive additional oral antibiotics or bronchodilators during admission. In contrast, patients with RSV detections were at increased risk of requiring supplemental oxygen during hospital admission. Conclusion: While limited in sample size, our pilot study data do not support the hypothesis that molecular evidence of WU or KI was associated with increased morbidity among a sample of general, pediatric patients with respiratory illness in Singapore.
Collapse
Affiliation(s)
- Christophe Hansen-Estruch
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.,Duke University School of Medicine, Durham, NC, United States
| | - Kristen K Coleman
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Koh C Thoon
- Department of Paediatrics, Infectious Disease Service, KK Women's and Children's Hospital, Singapore, Singapore
| | - Jenny G Low
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.,Department of Infectious Diseases, Singapore General Hospital, Singapore, Singapore
| | - Benjamin D Anderson
- Division of Infectious Diseases, Global Health Institute and Nicholas School of the Environment, Duke University, Durham, NC, United States
| | - Gregory C Gray
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.,Division of Infectious Diseases, Global Health Institute and Nicholas School of the Environment, Duke University, Durham, NC, United States
| |
Collapse
|
9
|
Zhu T, Lu QB, Zhang SY, Wo Y, Zhuang L, Zhang PH, Zhang XA, Wei W, Liu W. Molecular epidemiology of WU polyomavirus in hospitalized children with acute respiratory tract infection in China. Future Microbiol 2017; 12:481-489. [PMID: 28481120 DOI: 10.2217/fmb-2016-0144] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
AIM To explore the molecular epidemiology and clinical characteristics of Washington University polyomavirus (WUPyV) infection in pediatric patients with acute respiratory tract infections in China. MATERIALS & METHODS A laboratory surveillance was performed to recruit pediatric patients with acute respiratory tract infections. WUPyV was detected using real-time PCR and complete genome was sequenced for randomly selected positive nasopharyngeal aspirate. RESULTS Altogether 122 (7.5%) of 1617 children found to be infected with WUPyV and 88 (72.1%) were coinfected with other viruses during 2012-2015. The phylogenetic analysis showed that 14 strains from our study formed two new clusters (Id and IIIc) within the Branch I and Branch III, respectively. CONCLUSION WUPyV is persistently circulating in China. Surveillance on WUPyV infection in wider areas and long persistence is warranted.
Collapse
Affiliation(s)
- Teng Zhu
- Graduate School of Anhui Medical University, Hefei 230032, PR China.,State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Beijing 100071, PR China
| | - Qing-Bin Lu
- Department of Laboratorial Science and Technology, School of Public Health, Peking University, Beijing 100191, PR China.,Beijing Key Laboratory of Toxicological Research & Risk Assessment for Food Safety, Beijing 100191, PR China
| | - Shu-Yan Zhang
- Department of Developmental Biology, Affiliated Bayi Children's Hospital, PLA Army General Hospital, Beijing 100700, PR China
| | - Ying Wo
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Beijing 100071, PR China
| | - Lu Zhuang
- Department of Developmental Biology, Affiliated Bayi Children's Hospital, PLA Army General Hospital, Beijing 100700, PR China
| | - Pan-He Zhang
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Beijing 100071, PR China
| | - Xiao-Ai Zhang
- State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Beijing 100071, PR China
| | - Wei Wei
- Department of Epidemiology, Tong Zhou Institute of Infectious Disease & Epidemiology, Beijing 101113, PR China
| | - Wei Liu
- Graduate School of Anhui Medical University, Hefei 230032, PR China.,State Key Laboratory of Pathogen & Biosecurity, Beijing Institute of Microbiology & Epidemiology, Beijing 100071, PR China
| |
Collapse
|
10
|
Dehority WN, Eickman MM, Schwalm KC, Gross SM, Schroth GP, Young SA, Dinwiddie DL. Complete genome sequence of a KI polyomavirus isolated from an otherwise healthy child with severe lower respiratory tract infection. J Med Virol 2016; 89:926-930. [PMID: 27704585 DOI: 10.1002/jmv.24706] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2016] [Indexed: 11/11/2022]
Abstract
Unbiased, deep sequencing of a nasal specimen from an otherwise healthy 13-month-old boy hospitalized in intensive care revealed high gene expression and the complete genome of a novel isolate of KI polyomavirus (KIPyV). Further investigation detected minimal gene expression of additional viruses, suggesting that KIPyV was potentially the causal agent. Analysis of the complete genome of isolate NMKI001 revealed it is different from all previously reported genomes and contains two amino acid differences as compared to the closest virus isolate, Stockholm 380 (EF127908). J. Med. Virol. 89:926-930, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Walter N Dehority
- Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Megan M Eickman
- Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | - Kurt C Schwalm
- Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| | | | | | | | - Darrell L Dinwiddie
- Department of Pediatrics, University of New Mexico Health Sciences Center, Albuquerque, New Mexico.,Clinical Translational Science Center, University of New Mexico Health Sciences Center, Albuquerque, New Mexico
| |
Collapse
|
11
|
Rao S, Lucero MG, Nohynek H, Tallo V, Lupisan SP, Garcea RL, Simões EAF. WU and KI polyomavirus infections in Filipino children with lower respiratory tract disease. J Clin Virol 2016; 82:112-118. [PMID: 27479174 DOI: 10.1016/j.jcv.2016.07.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 07/13/2016] [Accepted: 07/24/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND WU and KI are human polyomaviruses initially detected in the respiratory tract, whose clinical significance remains uncertain. OBJECTIVES To determine the epidemiology, viral load and clinical characteristics of WU and KI polyomaviruses. STUDY DESIGN We tested respiratory specimens collected during a randomized, placebo-controlled pneumococcal conjugate vaccine trial and related epidemiological study in the Philippines. We analyzed 1077 nasal washes from patients aged 6 weeks to 5 years who developed lower respiratory tract illness using quantitative real-time PCR for WU and KI. We collected data regarding presenting symptoms, signs, radiographic findings, laboratory data and coinfection. RESULTS The prevalence and co-infection rates for WU were 5.3% and 74% respectively and 4.2% and 84% respectively for KI. Higher KI viral loads were observed in patients with severe or very severe pneumonia, those presenting with chest indrawing, hypoxia without wheeze, convulsions, and with KI monoinfection compared with co-infection. There was no significant association between viral load and clinical presentation for WU. CONCLUSIONS These findings suggest a potential pathogenic role for KI, and that there is an association between KI viral load and illness severity.
Collapse
Affiliation(s)
- Suchitra Rao
- University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, USA
| | - Marilla G Lucero
- Research Institute for Tropical Medicine, Department of Health, Muntinlupa City, Metro Manila, Philippines
| | - Hanna Nohynek
- National Institute for Health and Welfare, Helsinki, Finland
| | - Veronica Tallo
- Research Institute for Tropical Medicine, Department of Health, Muntinlupa City, Metro Manila, Philippines
| | | | | | - Eric A F Simões
- University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, USA; Center for Global Health, Colorado School of Public Health, Aurora, CO, USA.
| | | |
Collapse
|
12
|
Rahiala J, Koskenvuo M, Sadeghi M, Waris M, Vuorinen T, Lappalainen M, Saarinen-Pihkala U, Allander T, Söderlund-Venermo M, Hedman K, Ruuskanen O, Vettenranta K. Polyomaviruses BK, JC, KI, WU, MC, and TS in children with allogeneic hematopoietic stem cell transplantation. Pediatr Transplant 2016; 20:424-31. [PMID: 27038301 DOI: 10.1111/petr.12659] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/19/2015] [Indexed: 11/29/2022]
Abstract
Timely and reliable detection of viruses is of key importance in early diagnosis of infection(s) following allogeneic HSCT. Among the immunocompetent, infections with BKPyV and JCPyV are mostly subclinical, while post-HSCT, the former may cause HC and the latter PML. The epidemiology and clinical impact of the newly identified KIPyV, WUPyV, MCPyV, and TSPyV in this context remain to be defined. To assess the incidence and clinical impact of BKPyV, JCPyV, KIPyV, WUPyV, MCPyV, and TSPyV infections, we performed longitudinal molecular surveillance for DNAemias of these HPyVs among 53 pediatric HSCT recipients. Surveillance pre-HSCT and for three months post-HSCT revealed BKPyV DNAemia in 20 (38%) patients. Our data demonstrate frequent BKPyV DNAemia among pediatric patients with HSCT and the confinement of clinical symptoms to high copy numbers alone. MCPyV and JCPyV viremias occurred at low and TSPyV viremia at very low prevalences. KIPyV or WUPyV viremias were not demonstrable in this group of immunocompromised patients.
Collapse
Affiliation(s)
- Jaana Rahiala
- Division of Hematology-Oncology and Stem Cell Transplantation, Children's Hospital, University of Helsinki, Helsinki, Finland.,Department of Pediatrics, Porvoo Hospital, Porvoo, Finland
| | - Minna Koskenvuo
- Division of Hematology-Oncology and Stem Cell Transplantation, Children's Hospital, University of Helsinki, Helsinki, Finland.,Department of Pediatrics, Turku University Hospital, Turku, Finland
| | | | - Matti Waris
- Division of Microbiology and Genetics, Department of Clinical Virology, Turku University Hospital, Turku, Finland.,Department of Virology, University of Turku, Turku, Finland
| | - Tytti Vuorinen
- Division of Microbiology and Genetics, Department of Clinical Virology, Turku University Hospital, Turku, Finland.,Department of Virology, University of Turku, Turku, Finland
| | - Maija Lappalainen
- Department of Virology and Immunology, Helsinki University Hospital Laboratory Services (HUSLAB), Helsinki, Finland
| | - Ulla Saarinen-Pihkala
- Division of Hematology-Oncology and Stem Cell Transplantation, Children's Hospital, University of Helsinki, Helsinki, Finland
| | - Tobias Allander
- Department of Clinical Microbiology, Karolinska University Hospital, Stockholm, Sweden
| | | | - Klaus Hedman
- Department of Virology, University of Helsinki, Helsinki, Finland.,Department of Virology and Immunology, Helsinki University Hospital Laboratory Services (HUSLAB), Helsinki, Finland
| | - Olli Ruuskanen
- Department of Pediatrics, Turku University Hospital, Turku, Finland
| | - Kim Vettenranta
- Division of Hematology-Oncology and Stem Cell Transplantation, Children's Hospital, University of Helsinki, Helsinki, Finland
| |
Collapse
|
13
|
Song X, Van Ghelue M, Ludvigsen M, Nordbø SA, Ehlers B, Moens U. Characterization of the non-coding control region of polyomavirus KI isolated from nasopharyngeal samples from patients with respiratory symptoms or infection and from blood from healthy blood donors in Norway. J Gen Virol 2016; 97:1647-1657. [PMID: 27031170 DOI: 10.1099/jgv.0.000473] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Seroepidemiological studies showed that the human polyomavirus KI (KIPyV) is common in the human population, with age-specific seroprevalence ranging from 40-90 %. Genome epidemiological analyses demonstrated that KIPyV DNA is predominantly found in respiratory tract samples of immunocompromised individuals and children suffering from respiratory diseases, but viral sequences have also been detected in brain, tonsil, lymphoid tissue studies, plasma, blood and faeces. Little is known about the sequence variation in the non-coding control region of KIPyV variants residing in different sites of the human body and whether specific strains dominate in certain parts of the world. In this study, we sequenced the non-coding control region (NCCR) of naturally occurring KIPyV variants in nasopharyngeal samples from patients with respiratory symptoms or infection and in blood from healthy donors in Norway. In total 86 sequences were obtained, 44 of which were identical to the original isolated Stockholm 60 variant. The remaining NCCRs contained one or several mutations, none of them previously reported. The same mutations were detected in NCCRs amplified from blood and nasopharyngeal samples. Some patients had different variants in their specimens. Transient transfection studies in HEK293 cells with a luciferase reporter plasmid demonstrated that some single mutations had a significant effect on the relative early and late promoter strength compared with the Stockholm 60 promoter. The effect of the NCCR mutations on viral replication and possible virulence properties remains to be established.
Collapse
Affiliation(s)
- Xiaobo Song
- University of Tromsø, Faculty of Health Sciences, Institute of Medical Biology, NO-9037 Tromsø, Norway
| | - Marijke Van Ghelue
- Department of Medical Genetics, University Hospital of North Norway, NO-9038 Tromsø, Norway.,University of Tromsø, Faculty of Health Sciences, Institute of Clinical Biology, NO-9037 Tromsø, Norway
| | - Maria Ludvigsen
- University of Tromsø, Faculty of Health Sciences, Institute of Medical Biology, NO-9037 Tromsø, Norway
| | - Svein Arne Nordbø
- Department of Medical Microbiology, Trondheim University Hospital, NO-7489 Trondheim, Norway.,Institute of Laboratory Medicine, Children's and Women's Health, Norwegian University of Science and Technology, Trondheim, Norway
| | - Bernhard Ehlers
- Division 12 Measles, Mumps, Rubella and Viruses Affecting Immunocompromised Patients, Robert Koch Institute, Berlin, Germany
| | - Ugo Moens
- University of Tromsø, Faculty of Health Sciences, Institute of Medical Biology, NO-9037 Tromsø, Norway
| |
Collapse
|
14
|
Fischer SA. Emerging and Rare Viral Infections in Transplantation. TRANSPLANT INFECTIONS 2016. [PMCID: PMC7122901 DOI: 10.1007/978-3-319-28797-3_49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Immunocompromised patients such as those undergoing solid organ or hematopoietic stem cell transplantation are at substantial risk for infection with numerous pathogens. Infections with cytomegalovirus (CMV), herpes simplex virus (HSV), Epstein–Barr virus (EBV), and human herpesvirus-6 (HHV-6) are well-described complications of transplantation. As viruses previously believed to be quiescent through widespread vaccination (e.g., measles and mumps) reemerge and molecular diagnostic techniques are refined, rare and emerging viral infections are increasingly diagnosed in transplant recipients. This chapter will review the clinical manifestations, diagnosis, and potential antiviral therapies for these viruses in the transplant population.
Collapse
|
15
|
Gozalo-Margüello M, Agüero-Balbín J, Martínez-Martínez L. WU and KI polyomavirus prevalence in invasive respiratory samples from transplant recipients in Cantabria, Spain. Transplant Proc 2015; 47:67-9. [PMID: 25645772 PMCID: PMC7173059 DOI: 10.1016/j.transproceed.2014.11.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Background WU and KI polyomaviruses were discovered in 2007 in samples of respiratory secretions of children with acute respiratory symptoms. Seroepidemiologic studies have shown that these viruses are widely distributed throughout the world, but their incidence in Spain has not been determined. In transplant patients, early detection and treatment of viral infections may influence prognosis and survival, because they are associated with increased morbidity and mortality, including graft failure. Methods We aimed to determine the prevalence and clinical characteristics of WU and KI polyomaviruses among patients undergoing hematologic or solid organ transplant in the Hospital Marqués de Valdecilla (Santander, Spain). An in-house polymerase chain reaction with the use of specific primers was carried out in invasive lower respiratory samples from hospitalized patients with suspected respiratory infection and/or graft dysfunction and compared with asymptomatic transplant patients. Results Overall, we obtained 5.5% KI-positive samples and 1.4% WU-positive samples, with a higher prevalence of WU and KI polyomaviruses in the symptomatic population compared with the control group. Although the data suggest that their detection in respiratory samples is sporadic and often associated with other microorganisms, we should pay special attention to their association with cases of graft failure. Studies are needed with a larger number of samples to explore the potential clinical impact of these emerging polyomaviruses in transplant recipients.
Collapse
Affiliation(s)
- M Gozalo-Margüello
- Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla-IDIVAL, Santander, Spain.
| | - J Agüero-Balbín
- Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla-IDIVAL, Santander, Spain
| | - L Martínez-Martínez
- Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla-IDIVAL, Santander, Spain
| |
Collapse
|
16
|
Lewandowska DW, Zagordi O, Zbinden A, Schuurmans MM, Schreiber P, Geissberger FD, Huder JB, Böni J, Benden C, Mueller NJ, Trkola A, Huber M. Unbiased metagenomic sequencing complements specific routine diagnostic methods and increases chances to detect rare viral strains. Diagn Microbiol Infect Dis 2015; 83:133-8. [PMID: 26231254 PMCID: PMC7172999 DOI: 10.1016/j.diagmicrobio.2015.06.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 06/01/2015] [Accepted: 06/25/2015] [Indexed: 02/09/2023]
Abstract
Multiplex PCR assays for respiratory viruses are widely used in routine diagnostics, as they are highly sensitive, rapid, and cost effective. However, depending on the assay system, cross-reactivity between viruses that share a high sequence homology as well as detection of rare virus isolates with sequence variations can be problematic. Virus sequence-independent metagenomic high-throughput sequencing allows for accurate detection of all virus species in a given sample, as we demonstrate here for human Enterovirus and Rhinovirus in a lung transplant patient. While early in infection a commercial PCR assay recorded Rhinovirus, high-throughput sequencing correctly identified human Enterovirus C104 as the source of infection, highlighting the potential of the technology and the benefit of applying open assay formats in complex diagnostic situations. Commercial test produced ambivalent results regarding Enterovirus/Rhinovirus infection. To resolve etiology of infection, we performed unbiased metagenomic sequencing. We detected HEV-C104 and other coinfecting viruses. We identified sequence variations in HEV-C104 responsible for low sensitivity. Metagenomics can complement specific routine diagnostics in complex cases.
Collapse
Affiliation(s)
- Dagmara W Lewandowska
- Institute of Medical Virology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Osvaldo Zagordi
- Institute of Medical Virology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Andrea Zbinden
- Institute of Medical Virology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Macé M Schuurmans
- Division of Pulmonary Medicine, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Peter Schreiber
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | | | - Jon B Huder
- Institute of Medical Virology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Jürg Böni
- Institute of Medical Virology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Christian Benden
- Division of Pulmonary Medicine, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland
| | - Nicolas J Mueller
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Rämistrasse 100, 8091 Zurich, Switzerland.
| | - Alexandra Trkola
- Institute of Medical Virology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| | - Michael Huber
- Institute of Medical Virology, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland.
| |
Collapse
|
17
|
Li K, Zhang C, Zhao R, Xue Y, Yang J, Peng J, Jin Q. The prevalence of STL polyomavirus in stool samples from Chinese children. J Clin Virol 2015; 66:19-23. [PMID: 25866330 DOI: 10.1016/j.jcv.2015.02.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 02/11/2015] [Accepted: 02/25/2015] [Indexed: 11/15/2022]
Abstract
BACKGROUND Over the past 7 years, eleven novel human polyomaviruses (HPyVs) have been identified. The frequent discovery of human polyomaviruses (HPyVs) in the gastrointestinal tract and stool samples suggests a potential involvement in gastroenteritis. OBJECTIVE In this study we want to explore the prevalence of STL polyomavirus (STLPyV) in China and delineate the clinical role played by STLPyV. STUDY DESIGN Stool samples from 508 hospitalized children with diarrhea and 271 healthy children were screened to detect STLPyV. Human polyomavirus 12(HPyV12), New Jersey polyomavirus (NJPyV-2013) and six common enteric viruses (including rotaviruses, adenovirus, norovirus GI and GII, astrovirus and sapovirus) were also screened in this study. RESULTS 348 of the 508 (68.5%) specimens from the hospitalized children with diarrhea contained at least 1 common enteric virus. STLPyV was identified in 11 specimens in the case group (2.2%), among which 4 specimens were negative for those common enteric viruses. STLPyV was not more prevalent among the case group than the control group (2.2% versus 3.0%; p = 0.50, χ(2) test). In case group, when common enteric viruses' positive and negative groups were compared, the difference in detection rate of STLPyV was not statistically significant (2.5% versus 2.0%; p = 0.98, χ(2) test). Two whole genome sequences of STLPyV were obtained. CONCLUSIONS We are the first to report the prevalence of STLPyV in Chinese children and obtained whole genome sequences of STLPyV strains isolated in China. Our results of phylogenetic analysis support the hypothesis that STLPyV is geographically widespread.
Collapse
Affiliation(s)
- Ke Li
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Chi Zhang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Rong Zhao
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Ying Xue
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Jian Yang
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | - Junping Peng
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China.
| | - Qi Jin
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China.
| |
Collapse
|
18
|
Iaria M, Caccuri F, Apostoli P, Giagulli C, Pelucchi F, Padoan RF, Caruso A, Fiorentini S. Detection of KI WU and Merkel cell polyomavirus in respiratory tract of cystic fibrosis patients. Clin Microbiol Infect 2015; 21:603.e9-15. [PMID: 25677628 DOI: 10.1016/j.cmi.2015.01.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 11/16/2014] [Accepted: 01/23/2015] [Indexed: 12/20/2022]
Abstract
In the last few years, many reports have confirmed the presence of WU, KI and Merkel cell (MC) polyomaviruses (PyV) in respiratory samples wordwide, but their pathogenic role in patients with underlying conditions such as cystic fibrosis is still debated. To determine the prevalence of MCPyV, WUPyV and KIPyV, we conducted a 1-year-long microbiological testing of respiratory specimens from 93 patients with cystic fibrosis in Brescia, Italy. We detected PyV DNA in 94 out of 337 analysed specimens. KIPyV was the most common virus detected (12.1%), followed by WUPyV (8.9%) and MCPyV (6.8%). We found an intriguing association between the presence of MCPyV and the concurrent isolation of Pseudomonas aeruginosa, as well as with the patient status, classified as chronically colonized with P. aeruginosa. Our study adds perspective on the prevalence and the potential pathogenic role of PyV infections.
Collapse
Affiliation(s)
- M Iaria
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - F Caccuri
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - P Apostoli
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - C Giagulli
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - F Pelucchi
- Cystic Fibrosis Centre, Paediatric Department, Children's Hospital, AO Spedali Civili Brescia, Brescia, Italy
| | - R F Padoan
- Cystic Fibrosis Centre, Paediatric Department, Children's Hospital, AO Spedali Civili Brescia, Brescia, Italy
| | - A Caruso
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, Italy
| | - S Fiorentini
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, Italy.
| |
Collapse
|
19
|
Csoma E, Mészáros B, Asztalos L, Gergely L. WU and KI polyomaviruses in respiratory, blood and urine samples from renal transplant patients. J Clin Virol 2014; 64:28-33. [PMID: 25728075 DOI: 10.1016/j.jcv.2014.12.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 12/13/2014] [Accepted: 12/27/2014] [Indexed: 11/16/2022]
Abstract
BACKGROUND It is suggested that immunosuppression due to transplantation might be a risk for human polyomavirus KI (KIPyV) and WU (WUPyV) infection. Most of the publications report data about stem cell transplant patients, little is known about these virus infections in renal transplant patients. OBJECTIVES To study the presence of KIPyV and WUPyV in upper respiratory, plasma and urine samples from renal transplant patients. To analyse clinical and personal data. STUDY DESIGN 532 respiratory, 503 plasma and 464 urine samples were collected from 77 renal transplant patients. KIPyV and WUPyV were detected by nested and quantitative real-time PCR. Patient and clinical data from medical records were analyzed. RESULTS KIPyV was detected in respiratory, plasma and urine samples from 14.3%, 3.9% and 4.1% of renal transplant patients. WUPyV was found in respiratory and plasma specimens from 9.1% and 5.3% of the patients. Significant association was revealed between the detection of KIPyV and WUPyV and the time of samples collection and the age of the patients. KIPyV was presented in respiratory and plasma sample at the same time. KIPyV was detected in plasma samples from two patients and in urine samples of three other patients providing also KIPyV positive respiratory samples at the same time. No clinical consequences of KIPyV or WUPyV infection were found. CONCLUSION Although no clinical consequences of KIPyV and WUPyV infections were found in renal transplant patients, it is suggested that renal transplantation might result in higher susceptibility or reactivation of these infection.
Collapse
Affiliation(s)
- Eszter Csoma
- Department of Medical Microbiology, University of Debrecen, Nagyerdei krt. 98., H-4032 Debrecen, Hungary.
| | - Beáta Mészáros
- Department of Medical Microbiology, University of Debrecen, Nagyerdei krt. 98., H-4032 Debrecen, Hungary
| | - László Asztalos
- First Department of Surgery, University of Debrecen, Nagyerdei krt. 98., H-4032 Debrecen, Hungary
| | - Lajos Gergely
- Department of Medical Microbiology, University of Debrecen, Nagyerdei krt. 98., H-4032 Debrecen, Hungary
| |
Collapse
|
20
|
Nunes MC, Kuschner Z, Rabede Z, Cutland CL, Madimabe R, Kuwanda L, Klugman KP, Adrian PV, Madhi SA. Polyomaviruses-associated respiratory infections in HIV-infected and HIV-uninfected children. J Clin Virol 2014; 61:571-8. [PMID: 25467863 PMCID: PMC7173307 DOI: 10.1016/j.jcv.2014.10.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Revised: 10/15/2014] [Accepted: 10/20/2014] [Indexed: 12/15/2022]
Abstract
BACKGROUND Two recently discovered polyomaviruses (PyV), WU and KI, have been identified in respiratory-tract specimens from children with acute respiratory infections, although there are limited data in HIV-infected children. OBJECTIVES To determine the prevalence and clinical manifestations of WUPyV and KIPyV-associated lower respiratory tract infections (LRTIs) hospitalization in HIV-infected and -uninfected children; and probe the role of pneumococcal co-infection. STUDY DESIGN Nasopharyngeal aspirates were collected from a cohort of 39,836 children randomized to receive 9-valent pneumococcal conjugate vaccine (PCV9) or placebo when hospitalized for LRTIs, and were screened by PCR for WUPyV, KIPyV and other respiratory viruses. RESULTS In placebo-recipients the prevalence of WUPyV was 6.3% (18/285) in HIV-infected and 13.9% (66/476) in HIV-uninfected children (p=0.002). In WUPyV-positive LRTIs HIV-infected children had lower oxygen saturation at admission and a higher case fatality rate (11.1% vs. 0%; p=0.04). KIPyV was identified in 10.2% (29/285) of HIV-infected and in 7.4% (35/476) of HIV-uninfected placebo-recipients with LRTIs (p=0.13). HIV-infected compared to HIV-uninfected children with KIPyV-positive LRTIs had lower oxygen saturation, higher respiratory rate and longer duration of hospitalization. Co-infections with other respiratory-viruses were detected in 65.5% of WUPyV-positive LRTIs and in 75.0% of KIPyV-positive LRTIs. Among HIV-uninfected children, there was a lower incidence of hospitalization for clinical pneumonia episodes in which KIPyV (80%; 95% CI: 41, 93) and WUPyV (49%; 95% CI: 9, 71) were identified among PCV9-recipients compared to placebo-recipients. CONCLUSIONS Polyomaviruses were commonly identified in HIV-infected and -uninfected children hospitalized for LRTIs, frequently in association with other viruses and may contribute to the pathogenesis of pneumococcal pneumonia.
Collapse
Affiliation(s)
- Marta C Nunes
- Department of Science and Technology/National Research Foundation: Vaccine Preventable Diseases, University of the Witwatersrand, Johannesburg, South Africa; Medical Research Council: Respiratory and Meningeal Pathogens Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Zachary Kuschner
- Stony Brook School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Zelda Rabede
- Medical Research Council: Respiratory and Meningeal Pathogens Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Clare L Cutland
- Department of Science and Technology/National Research Foundation: Vaccine Preventable Diseases, University of the Witwatersrand, Johannesburg, South Africa; Medical Research Council: Respiratory and Meningeal Pathogens Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Richard Madimabe
- Department of Science and Technology/National Research Foundation: Vaccine Preventable Diseases, University of the Witwatersrand, Johannesburg, South Africa; Medical Research Council: Respiratory and Meningeal Pathogens Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Locadiah Kuwanda
- Department of Science and Technology/National Research Foundation: Vaccine Preventable Diseases, University of the Witwatersrand, Johannesburg, South Africa; Medical Research Council: Respiratory and Meningeal Pathogens Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Keith P Klugman
- Medical Research Council: Respiratory and Meningeal Pathogens Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; Hubert Department of Global Health, Rollins School of Public Health and Division of Infectious Diseases, Emory University School of Medicine, Atlanta, GA, USA
| | - Peter V Adrian
- Department of Science and Technology/National Research Foundation: Vaccine Preventable Diseases, University of the Witwatersrand, Johannesburg, South Africa; Medical Research Council: Respiratory and Meningeal Pathogens Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Shabir A Madhi
- Department of Science and Technology/National Research Foundation: Vaccine Preventable Diseases, University of the Witwatersrand, Johannesburg, South Africa; Medical Research Council: Respiratory and Meningeal Pathogens Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa; National Institute for Communicable Diseases: a division of National Health Laboratory Service, Centre for Vaccines and Immunology, Johannesburg, South Africa.
| |
Collapse
|
21
|
Gustafsson B, Priftakis P, Rubin J, Giraud G, Ramqvist T, Dalianis T. Human polyomaviruses were not detected in cerebrospinal fluid of patients with neurological complications after hematopoietic stem cell transplantation. Future Virol 2013. [DOI: 10.2217/fvl.13.55] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Background: Neurological complications after allogeneic hematopoietic stem cell transplantation (HSCT) are associated with increased mortality. Reactivation of JC virus, a well-known human polyomavirus (HPyV), can be associated with progressive multifocal leukoencephalopathy after HSCT. Aim: To investigate whether reactivation of the newly discovered HPyVs KIPyV, WUPyV, Merkel cell polyomavirus, HPyV6, HPyV7, trichodysplasia spinulosa polyomavirus, HPyV9 or HPyV10 (MWPyV) is associated with neurological complications after HSCT. Materials & methods: Cerebrospinal fluid from 32 HSCT patients with neurological symptoms was analyzed for the presence of the above HPyVs, including BK virus and JC virus, as well as the primate polyomaviruses lymphotropic polyomavirus and simian virus 40. Results & conclusion: No HPyV DNA was detected or associated with the neurological symptoms the patients showed post-HSCT.
Collapse
Affiliation(s)
- Britt Gustafsson
- Astrid Lindgren Children’s Hospital, Karolinska University Hospital-Huddinge, Department of Clinical Science, Intervention & Technology, CLINTEC, Karolinska Institutet, Stockholm, Sweden.
| | - Peter Priftakis
- Astrid Lindgren Children’s Hospital, Karolinska University Hospital-Huddinge, Department of Clinical Science, Intervention & Technology, CLINTEC, Karolinska Institutet, Stockholm, Sweden
| | - Johanna Rubin
- Astrid Lindgren Children’s Hospital, Karolinska University Hospital-Huddinge, Department of Clinical Science, Intervention & Technology, CLINTEC, Karolinska Institutet, Stockholm, Sweden
| | - Geraldine Giraud
- Mälarsjukhuset, Eskilstuna, Sweden
- Department of Oncology–Pathology, Karolinska Institutet, Cancer Center Karolinska, Karolinska University Hospital, Stockholm, Sweden
| | - Torbjörn Ramqvist
- Department of Oncology–Pathology, Karolinska Institutet, Cancer Center Karolinska, Karolinska University Hospital, Stockholm, Sweden
| | - Tina Dalianis
- Department of Oncology–Pathology, Karolinska Institutet, Cancer Center Karolinska, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
22
|
Anthony SJ, St. Leger JA, Navarrete-Macias I, Nilson E, Sanchez-Leon M, Liang E, Seimon T, Jain K, Karesh W, Daszak P, Briese T, Lipkin WI. Identification of a novel cetacean polyomavirus from a common dolphin (Delphinus delphis) with Tracheobronchitis. PLoS One 2013; 8:e68239. [PMID: 23874559 PMCID: PMC3707911 DOI: 10.1371/journal.pone.0068239] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 05/27/2013] [Indexed: 01/20/2023] Open
Abstract
A female short-beaked common dolphin calf was found stranded in San Diego, California in October 2010, presenting with multifocal ulcerative lesions in the trachea and bronchi. Viral particles suggestive of polyomavirus were detected by EM, and subsequently confirmed by PCR and sequencing. Full genome sequencing (Ion Torrent) revealed a circular dsDNA genome of 5,159 bp that was shown to form a distinct lineage within the genus Polyomavirus based on phylogenetic analysis of the early and late transcriptomes. Viral infection and distribution in laryngeal mucosa was characterised using in-situ hybridisation, and apoptosis observed in the virus-infected region. These results demonstrate that polyomaviruses can be associated with respiratory disease in cetaceans, and expand our knowledge of their diversity and clinical significance in marine mammals.
Collapse
Affiliation(s)
- Simon J. Anthony
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, United States of America
- EcoHealth Alliance, New York, New York, United States of America
- * E-mail: (SJA); (JASL)
| | - Judy A. St. Leger
- Department of Pathology and Research, SeaWorld Parks, San Diego, California, United States of America
- * E-mail: (SJA); (JASL)
| | - Isamara Navarrete-Macias
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Erica Nilson
- Department of Pathology and Research, SeaWorld Parks, San Diego, California, United States of America
| | - Maria Sanchez-Leon
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - Eliza Liang
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, United States of America
- EcoHealth Alliance, New York, New York, United States of America
| | - Tracie Seimon
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, United States of America
- Wildlife Conservation Society, Bronx Zoo, New York, New York, United States of America
| | - Komal Jain
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - William Karesh
- EcoHealth Alliance, New York, New York, United States of America
| | - Peter Daszak
- EcoHealth Alliance, New York, New York, United States of America
| | - Thomas Briese
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| | - W. Ian Lipkin
- Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, New York, United States of America
| |
Collapse
|
23
|
Touinssi M, Galicher V, de Micco P, Biagini P. Molecular epidemiology of KI and WU polyomaviruses in healthy blood donors, south-eastern France. J Med Virol 2013; 85:1444-6. [DOI: 10.1002/jmv.23602] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Mhammed Touinssi
- UMR 7268, Viral Emergence and Co-evolution Unit, French Blood Agency; Aix-Marseille University and CNRS; Marseille France
| | - Vital Galicher
- UMR 7268, Viral Emergence and Co-evolution Unit, French Blood Agency; Aix-Marseille University and CNRS; Marseille France
| | - Philippe de Micco
- UMR 7268, Viral Emergence and Co-evolution Unit, French Blood Agency; Aix-Marseille University and CNRS; Marseille France
| | - Philippe Biagini
- UMR 7268, Viral Emergence and Co-evolution Unit, French Blood Agency; Aix-Marseille University and CNRS; Marseille France
| |
Collapse
|
24
|
Rockett RJ, Sloots TP, Bowes S, O'Neill N, Ye S, Robson J, Whiley DM, Lambert SB, Wang D, Nissen MD, Bialasiewicz S. Detection of novel polyomaviruses, TSPyV, HPyV6, HPyV7, HPyV9 and MWPyV in feces, urine, blood, respiratory swabs and cerebrospinal fluid. PLoS One 2013; 8:e62764. [PMID: 23667518 PMCID: PMC3648528 DOI: 10.1371/journal.pone.0062764] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 03/24/2013] [Indexed: 11/28/2022] Open
Abstract
Eight novel human polyomaviruses have been discovered since 2007. Prevalence rates and tissue tropism for the most recent members HPyV 6, 7, 9, TSPyV and MWPyV are largely unknown. We used real-time PCR to determine the presence of HPyV 6, 7, 9, TSPyV and MWPyV in feces (n = 263), urine (n = 189), blood (n = 161), respiratory swabs (n = 1385) and cerebrospinal fluid (n = 171) from both healthy control children and children and adults undergoing diagnostic testing. Whole genome sequencing was able to be performed on 9 MWPyV positive specimens. Novel polyomaviruses were only detected in respiratory swabs and feces, with no detections of HPyV 9 in any sample type. MWPyV was found to be the most prevalent novel polyomavirus, being detected in 18 (1.5%) respiratory specimens from symptomatic patients, 16 (9.8%) respiratory sample from healthy control children, 11 (5.9%) fecal specimens from patient suffering gastrointestinal illness, and in 13 (15.3%) of feces from healthy control children. MWPyV was found only in respiratory and fecal specimens from children, the oldest being 9 years old. HPyV 6, 7, 9 and TSPyV were also detected in respiratory specimens and fecal specimens at low prevalence (<1.3%). The majority of these detections were found in immunocompromised patients. Our findings suggest that MWPyV can result in a subclinical infection, persistent or intermittent shedding, particularly in young children. The other novel polyomaviruses were also found in respiratory and fecal specimens, but at lower prevalence and most commonly in immunocompromised individuals.
Collapse
Affiliation(s)
- Rebecca J Rockett
- Queensland Paediatric Infectious Diseases Laboratory, Queensland Children's Medical Research Institute, The University of Queensland, Brisbane, Queensland, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Human polyomavirus reactivation: disease pathogenesis and treatment approaches. Clin Dev Immunol 2013; 2013:373579. [PMID: 23737811 PMCID: PMC3659475 DOI: 10.1155/2013/373579] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/27/2013] [Accepted: 03/27/2013] [Indexed: 02/07/2023]
Abstract
JC and BK polyomaviruses were discovered over 40 years ago and have become increasingly prevalent causes of morbidity and mortality in a variety of distinct, immunocompromised patient cohorts. The recent discoveries of eight new members of the Polyomaviridae family that are capable of infecting humans suggest that there are more to be discovered and raise the possibility that they may play a more significant role in human disease than previously understood. In spite of this, there remains a dearth of specific therapeutic options for human polyomavirus infections and an incomplete understanding of the relationship between the virus and the host immune system. This review summarises the human polyomaviruses with particular emphasis on pathogenesis in those directly implicated in disease aetiology and the therapeutic options available for treatment in the immunocompromised host.
Collapse
|
26
|
Abstract
During the past 6 years, focused virus hunting has led to the discovery of nine new human polyomaviruses, including Merkel cell polyomavirus, which has been linked to Merkel cell carcinoma, a lethal skin cell cancer. The discovery of so many new and highly divergent human polyomaviruses raises key questions regarding their evolution, tropism, latency, reactivation, immune evasion and contribution to disease. This Review describes the similarities and differences among the new human polyomaviruses and discusses how these viruses might interact with their human host.
Collapse
Affiliation(s)
- James A DeCaprio
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts 02215, USA.
| | | |
Collapse
|
27
|
Kuypers J, Campbell AP, Guthrie KA, Wright NL, Englund JA, Corey L, Boeckh M. WU and KI polyomaviruses in respiratory samples from allogeneic hematopoietic cell transplant recipients. Emerg Infect Dis 2013; 18:1580-8. [PMID: 23017213 PMCID: PMC3471632 DOI: 10.3201/eid1810.120477] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Routine testing for these viruses in immunocompromised patients is not recommended. Data are limited regarding 2 new human polyomaviruses, KI polyomavirus (KIPyV) and WU polyomavirus (WUPyV), in immunocompromised patients. We used real-time PCR to test for these and 12 respiratory viruses in 2,732 nasal wash samples collected during the first year after allogeneic hematopoietic cell transplantation from 222 patients. Specimens were collected weekly until day 100; then at least every 3 months. One year after hematopoietic cell transplantation, the cumulative incidence estimate was 26% for KIPyV and 8% for WUPyV. Age <20 years predicted detection of KIPyV (hazard ratio [HR] 4.6) and WUPyV (HR 4.4), and detection of a respiratory virus in the previous 2 weeks predicted KIPyV detection (HR 3.4). Sputum production and wheezing were associated with detection of KIPyV in the past week and WUPyV in the past month. There were no associations with polyomavirus detection and acute graft versus host disease, cytomegalovirus reactivation, neutropenia, lymphopenia, hospitalization, or death.
Collapse
Affiliation(s)
- Jane Kuypers
- University of Washington, Seattle, Washington 98102, USA.
| | | | | | | | | | | | | |
Collapse
|
28
|
Moal V, Zandotti C, Colson P. Emerging viral diseases in kidney transplant recipients. Rev Med Virol 2012; 23:50-69. [PMID: 23132728 PMCID: PMC7169126 DOI: 10.1002/rmv.1732] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Revised: 09/13/2012] [Accepted: 09/20/2012] [Indexed: 12/22/2022]
Abstract
Viruses are the most important cause of infections and a major source of mortality in Kidney Transplant Recipients (KTRs). These patients may acquire viral infections through exogenous routes including community exposure, donor organs, and blood products or by endogenous reactivation of latent viruses. Beside major opportunistic infections due to CMV and EBV and viral hepatitis B and C, several viral diseases have recently emerged in KTRs. New medical practices or technologies, implementation of new diagnostic tools, and improved medical information have contributed to the emergence of these viral diseases in this special population. The purpose of this review is to summarize the current knowledge on emerging viral diseases and newly discovered viruses in KTRs over the last two decades. We identified viruses in the field of KT that had shown the greatest increase in numbers of citations in the NCBI PubMed database. BKV was the most cited in the literature and linked to an emerging disease that represents a great clinical concern in KTRs. HHV-8, PVB19, WNV, JCV, H1N1 influenza virus A, HEV, and GB virus were the main other emerging viruses. Excluding HHV8, newly discovered viruses have been infrequently linked to clinical diseases in KTRs. Nonetheless, pathogenicity can emerge long after the discovery of the causative agent, as has been the case for BKV. Overall, antiviral treatments are very limited, and reducing immunosuppressive therapy remains the cornerstone of management.
Collapse
Affiliation(s)
- Valérie Moal
- Centre de Néphrologie et Transplantation Rénale, APHM, CHU Conception, Marseille, France.
| | | | | |
Collapse
|
29
|
Debiaggi M, Canducci F, Ceresola ER, Clementi M. The role of infections and coinfections with newly identified and emerging respiratory viruses in children. Virol J 2012; 9:247. [PMID: 23102237 PMCID: PMC3573994 DOI: 10.1186/1743-422x-9-247] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 10/18/2012] [Indexed: 02/03/2023] Open
Abstract
Acute respiratory infections are a major cause of morbidity in children both in developed and developing countries. A wide range of respiratory viruses, including respiratory syncytial virus (RSV), influenza A and B viruses, parainfluenza viruses (PIVs), adenovirus, rhinovirus (HRV), have repeatedly been detected in acute lower respiratory tract infections (LRTI) in children in the past decades. However, in the last ten years thanks to progress in molecular technologies, newly discovered viruses have been identified including human Metapneumovirus (hMPV), coronaviruses NL63 (HcoV-NL63) and HKU1 (HcoV-HKU1), human Bocavirus (HBoV), new enterovirus (HEV), parechovirus (HpeV) and rhinovirus (HRV) strains, polyomaviruses WU (WUPyV) and KI (KIPyV) and the pandemic H1N1v influenza A virus. These discoveries have heavily modified previous knowledge on respiratory infections mainly highlighting that pediatric population is exposed to a variety of viruses with similar seasonal patterns. In this context establishing a causal link between a newly identified virus and the disease as well as an association between mixed infections and an increase in disease severity can be challenging. This review will present an overview of newly recognized as well as the main emerging respiratory viruses and seek to focus on the their contribution to infection and co-infection in LRTIs in childhood.
Collapse
Affiliation(s)
- Maurizia Debiaggi
- Dipartimento di Scienze Clinico-Chirurgiche, Diagnostiche e Pediatriche, Sezione di Microbiologia, 20132 Milan, Italy
| | | | | | | |
Collapse
|
30
|
Hirsch HH, Martino R, Ward KN, Boeckh M, Einsele H, Ljungman P. Fourth European Conference on Infections in Leukaemia (ECIL-4): guidelines for diagnosis and treatment of human respiratory syncytial virus, parainfluenza virus, metapneumovirus, rhinovirus, and coronavirus. Clin Infect Dis 2012; 56:258-66. [PMID: 23024295 PMCID: PMC3526251 DOI: 10.1093/cid/cis844] [Citation(s) in RCA: 228] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Community-acquired respiratory virus (CARV) infections have been recognized as a significant cause of morbidity and mortality in patients with leukemia and those undergoing hematopoietic stem cell transplantation (HSCT). Progression to lower respiratory tract infection with clinical and radiological signs of pneumonia and respiratory failure appears to depend on the intrinsic virulence of the specific CARV as well as factors specific to the patient, the underlying disease, and its treatment. To better define the current state of knowledge of CARVs in leukemia and HSCT patients, and to improve CARV diagnosis and management, a working group of the Fourth European Conference on Infections in Leukaemia (ECIL-4) 2011 reviewed the literature on CARVs, graded the available quality of evidence, and made recommendations according to the Infectious Diseases Society of America grading system. Owing to differences in screening, clinical presentation, and therapy for influenza and adenovirus, ECIL-4 recommendations are summarized for CARVs other than influenza and adenovirus.
Collapse
Affiliation(s)
- Hans H Hirsch
- Division of Infectious Diseases and Hospital Epidemiology, University Hospital Basel, Switzerland.
| | | | | | | | | | | |
Collapse
|
31
|
Motamedi N, Mairhofer H, Nitschko H, Jäger G, Koszinowski UH. The polyomaviruses WUPyV and KIPyV: a retrospective quantitative analysis in patients undergoing hematopoietic stem cell transplantation. Virol J 2012; 9:209. [PMID: 22988938 PMCID: PMC3463464 DOI: 10.1186/1743-422x-9-209] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 09/13/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The polyomaviruses WUPyV and KIPyV have been detected in various sample types including feces indicating pathogenicity in the gastrointestinal (GI) system. However, quantitative viral load data from other simultaneously collected sample types are missing. As a consequence, primary replication in the GI system cannot be differentiated from swallowed virus from the respiratory tract. Here we present a retrospective quantitative longitudinal analysis in simultaneously harvested specimens from different organ sites of patients undergoing hematopoietic stem cell transplantation (HSCT). This allows the definition of sample types where deoxyribonucleic acid (DNA) detection can be expected and, as a consequence, the identification of their primary replication site. FINDINGS Viral DNA loads from 37 patients undergoing HSCT were quantified in respiratory tract secretions (RTS), stool and urine samples as well as in leukocytes (n = 449). Leukocyte-associated virus could not be found. WUPyV was found in feces, RTS and urine samples of an infant, while KIPyV was repeatedly detected in RTS and stool samples of 4 adult patients.RTS and stool samples were matched to determine the viral load difference showing a mean difference of 2.3 log copies/ml (p < 0.001). CONCLUSIONS The data collected in this study suggest that virus detection in the GI tract results from swallowed virus from the respiratory tract (RT). We conclude that shedding from the RT should be ruled out before viral DNA detection in the feces can be correlated to GI symptoms.
Collapse
Affiliation(s)
- Nasim Motamedi
- Max von Pettenkofer-Institute, Ludwig-Maximilians-University, Department of Virology, Pettenkoferstr, 9a, Munich D-80336, Germany.
| | | | | | | | | |
Collapse
|
32
|
Csoma E, Sápy T, Mészáros B, Gergely L. Novel human polyomaviruses in pregnancy: higher prevalence of BKPyV, but no WUPyV, KIPyV and HPyV9. J Clin Virol 2012; 55:262-5. [PMID: 22902204 DOI: 10.1016/j.jcv.2012.07.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 07/05/2012] [Accepted: 07/18/2012] [Indexed: 11/17/2022]
Abstract
BACKGROUND Immunosuppression due to pregnancy may lead to higher susceptibility to infections and reactivation of latent infections, such as BK polyomavirus (BKPyV). There is lack of information about the prevalence of novel human polyomavirus 9 (HPyV9), WU (WUPyV) and KI (KIPyV) during pregnancy. OBJECTIVES To study whether pregnancy results in higher prevalence of HPyV9, WUPyV, KIPyV and their correlation with BKPyV. STUDY DESIGN Plasma, urine and throat swab samples from 100 pregnant and 100 non pregnant women were screened for the presence of WUPyV, KIPyV, HPyV9 and BKPyV by PCR. RESULTS No WUPyV DNA was detected in plasma, urine and respiratory samples from pregnant and non pregnant women. KIPyV DNA was found in two plasma samples from non pregnant women (2%) and not detected in other samples from neither pregnant nor non pregnant women. HPyV9 DNA was determined in all sample types of pregnant and non pregnant women, respectively. There were no significant differences between pregnant and non pregnant women in HPyV9 DNA frequencies for plasma (2% vs. 6%), urine (3% vs. 2%) and respiratory samples (2% vs. 2%). Prevalence of BKPyV in urine samples was significantly higher (p=0.039) in pregnant women (13%) then in non pregnant women (4%); co infection with KIPyV and/or HPyV9 was not detected. CONCLUSIONS In contrast with BKPyV, infection with WUPyV, KIPyV and HPyV9 was not detected more frequently during pregnancy. To the best of our knowledge HPyV9 was detected first in respiratory samples in our study.
Collapse
Affiliation(s)
- Eszter Csoma
- Department of Medical Microbiology, Medical and Health Science Centre, University of Debrecen, Nagyerdei krt. 98, H-4032 Debrecen, Hungary.
| | | | | | | |
Collapse
|
33
|
Falcone V, Panning M, Strahm B, Vraetz T, Bierbaum S, Neumann-Haefelin D, Huzly D. Prolonged KI polyomavirus infection in immunodeficient child. Emerg Infect Dis 2012; 18:706-8. [PMID: 22469436 PMCID: PMC3309672 DOI: 10.3201/eid1804.111588] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
34
|
Mekouchinov K, Kunchev M, Tsekov I, Kalvatchev Z. KIPolyomavirus Sequenses in Respiratory Specimens from Bulgarian Children. BIOTECHNOL BIOTEC EQ 2012. [DOI: 10.5504/bbeq.2012.0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
35
|
Teramoto S, Kaiho M, Takano Y, Endo R, Kikuta H, Sawa H, Ariga T, Ishiguro N. Detection of KI polyomavirus and WU polyomavirus DNA by real-time polymerase chain reaction in nasopharyngeal swabs and in normal lung and lung adenocarcinoma tissues. Microbiol Immunol 2011; 55:525-30. [PMID: 21545509 PMCID: PMC7168359 DOI: 10.1111/j.1348-0421.2011.00346.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Polyomaviruses KI (KIPyV) and WU (WUPyV) were detected from 7 (3.0%) and 38 (16.4%) of 232 children with respiratory tract infections by real-time PCR. The rates of infection by KIPyV and WUPyV alone were 3 of 7 (42.9%) and 20 of 38 (52.6%), respectively. In the other samples, various viruses (human respiratory syncytial virus, human metapneumovirus, human rhinovirus, parainfluenza virus 1 and human bocavirus) were detected simultaneously. One case was positive for KIPyV, WUPyV and hMPV. There was no obvious difference in clinical symptoms between KIPyV-positive and WUPyV-positive patients with or without coinfection. KIPyV was detected in one of 30 specimens of lung tissue (3.3%). Neither of the viruses was detected in 30 samples of lung adenocarcinoma tissue.
Collapse
Affiliation(s)
- Shinobu Teramoto
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Renaud C, Campbell AP. Changing epidemiology of respiratory viral infections in hematopoietic cell transplant recipients and solid organ transplant recipients. Curr Opin Infect Dis 2011; 24:333-43. [PMID: 21666460 PMCID: PMC3210111 DOI: 10.1097/qco.0b013e3283480440] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW New respiratory viruses have been discovered in recent years and new molecular diagnostic assays have been developed that improve our understanding of respiratory virus infections. This article will review the changing epidemiology of these viruses after hematopoietic stem cell and solid organ transplantation. RECENT FINDINGS Respiratory viruses are frequently detected in transplant recipients. A number of viruses have been newly discovered or emerged in the last decade, including human metapneumovirus, human bocavirus, new human coronaviruses and rhinoviruses, human polyomaviruses, and a new 2009 pandemic strain of influenza A/H1N1. The potential for these viruses to cause lower respiratory tract infections after transplantation varies, and is greatest for human metapneumovirus and H1N1 influenza, but appears to be limited for the other new viruses. Acute and long-term complications in hematopoietic and solid organ transplant recipients are active areas of research. SUMMARY Respiratory viral infections are frequently associated with significant morbidity following transplantation and are therefore of great clinical and epidemiologic interest. As new viruses are discovered, and more sensitive diagnostic methods are developed, defining the full impact of emerging respiratory viruses in transplant recipients must be elucidated by well designed clinical studies.
Collapse
Affiliation(s)
- Christian Renaud
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle Children's Hospital, and Department of Pediatrics, University of Washington, Seattle, Washington 98105, USA
| | | |
Collapse
|
37
|
Rao S, Garcea RL, Robinson CC, Simões EA. WU and KI polyomavirus infections in pediatric hematology/oncology patients with acute respiratory tract illness. J Clin Virol 2011; 52:28-32. [PMID: 21705268 PMCID: PMC3816538 DOI: 10.1016/j.jcv.2011.05.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 05/13/2011] [Accepted: 05/23/2011] [Indexed: 11/24/2022]
Abstract
Background WU and KI polyomaviruses (PyV) were discovered in 2007 in respiratory tract samples in adults and children. Other polyomaviruses (BKPyV and JCPyV) have been associated with illness in immunocompromised patients, and some studies suggest a higher prevalence of WUPyV and KIPyV in this population. Objective To determine whether a higher prevalence or viral load for WUPyV and KIPyV exists in immunocompromised children compared with immunocompetent children. Study design We measured the prevalence and viral load of WU and KI PyV by quantitative real-time PCR of viral DNA in respiratory tract specimens from pediatric hematology/oncology patients and immunocompetent controls with acute respiratory illnesses. Results The prevalence of WUPyV in the immunocompromised population was 5/161 (3%) versus 14/295 (5%) in the control population (P = 0.5), and 9/161 (5.6%) versus 7/295 (2.3%) respectively for KIPyV (P = 0.13). The mean viral load (in copies per cell or mL of sample) for KIPyV, was higher in the immunocompromised group compared to the control group (P = 0.019), but was not statistically different for WUPyV. A higher prevalence was seen in the hematopoietic stem cell transplant recipients compared with other immunocompromised patients (6/26 versus 3/43, P = 0.054). Viral persistence was demonstrated only in 1/25 (4%) of sequential samples for KIPyV, and no persistence was seen for WUPyV. Conclusions A higher prevalence of WUPyV or KIPyV in the immunocompromised population compared with the immunocompetent group was not demonstrated. Higher viral loads for KIPyV in the immunocompromised group may suggest an increased pathogenic potential in this population.
Collapse
Affiliation(s)
- Suchitra Rao
- Department of Pediatrics, B158 The Children's Hospital and University of Colorado School of Medicine, 13123 E 16th Ave, Aurora, CO 80045, United States
| | - Robert L. Garcea
- Department of Molecular, Cellular, and Developmental Biology, Porter Science Bldg. B249C, 347 UCB, University of Colorado Boulder, CO 80309-0347, United States
| | - Christine C. Robinson
- Department of Virology, B120, The Children's Hospital and University of Colorado School of Medicine, 13123 E 16th Ave, Aurora, CO 80045, United States
| | - Eric A.F. Simões
- Department of Pediatrics, B055 The Children's Hospital and University of Colorado School of Medicine, 13123 E 16th Ave, Aurora, CO 80045, United States
- Corresponding author. Tel.: +1 720 777 6977; fax: +1 720 777 7295.
| |
Collapse
|
38
|
Huijskens EGW, van Erkel AJM, Peeters MF, Rossen JWA. Human polyomavirus KI and WU in adults with community acquired pneumonia in The Netherlands, 2008-2009. J Clin Virol 2011; 49:306-7. [PMID: 20889371 PMCID: PMC7129940 DOI: 10.1016/j.jcv.2010.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2010] [Revised: 08/30/2010] [Accepted: 09/03/2010] [Indexed: 11/17/2022]
|
39
|
Abstract
PURPOSE OF REVIEW Several viruses have recently gained importance for the transplant recipient. The purpose of this review is to give an update on emerging viruses in transplantation. RECENT FINDINGS BK virus-associated nephropathy (BKVAN) causes graft loss after kidney transplantation. Immunosuppression lowering strategies have now been shown to have benefit in decreasing the incidence of BKVAN. Guidelines for screening, prevention, and therapy have also been developed. Another polyomavirus, JC virus, is a cause of progressive multifocal leukoencephalopathy and has also gained prominence due to the increasing use of monoclonal antibodies in transplant recipients. The significance of human herpesvirus-6 and -7 continues to be debated in the literature, and new data is available on their association with clinical disease. Finally, newly discovered respiratory viruses, such as human metapneumovirus, bocavirus, KI and WU viruses, have also been described in transplant recipients. Human metapneumovirus appears to cause significant respiratory disease whereas the significance of bocavirus, KI and WU viruses in transplant recipients remains uncertain. SUMMARY Viral infections, such as polyomaviruses, human herpesvirus-6 and -7 and respiratory viruses, are emerging as causes of significant disease in transplantation. Antiviral options for these viruses are limited, and decreasing immunosuppression is the cornerstone of therapy.
Collapse
Affiliation(s)
- Deepali Kumar
- Transplant Infectious Diseases, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
40
|
Babakir-Mina M, Ciccozzi M, Farchi F, Bergallo M, Cavallo R, Adorno G, Perno CF, Ciotti M. KI and WU polyomaviruses and CD4+ cell counts in HIV-1-infected patients, Italy. Emerg Infect Dis 2010; 16:1482-1485. [PMID: 20735940 PMCID: PMC3294973 DOI: 10.3201/eid1609.100211] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
To investigate an association between KI and WU polyomavirus (KIPyV and WUPyV) infections and CD4+ cell counts, we tested HIV-1-positive patients and blood donors. No association was found between cell counts and virus infections in HIV-1-positive patients. Frequency of KIPyV infection was similar for both groups. WUPyV was more frequent in HIV-1-positive patients.
Collapse
|
41
|
Kumar D, Humar A. Respiratory viral infections in transplant and oncology patients. Infect Dis Clin North Am 2010; 24:395-412. [PMID: 20466276 PMCID: PMC7135290 DOI: 10.1016/j.idc.2010.01.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Deepali Kumar
- Department of Medicine, Transplant Infectious Diseases, University of Alberta, 6-030 Katz-Rexall Center for Health Research, Edmonton, Alberta T6G 2E1, Canada.
| | | |
Collapse
|
42
|
Bofill-Mas S, Rodriguez-Manzano J, Calgua B, Carratala A, Girones R. Newly described human polyomaviruses Merkel cell, KI and WU are present in urban sewage and may represent potential environmental contaminants. Virol J 2010; 7:141. [PMID: 20584272 PMCID: PMC2907336 DOI: 10.1186/1743-422x-7-141] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 06/28/2010] [Indexed: 12/31/2022] Open
Abstract
Recently, three new polyomaviruses (KI, WU and Merkel cell polyomavirus) have been reported to infect humans. It has also been suggested that lymphotropic polyomavirus, a virus of simian origin, infects humans. KI and WU polyomaviruses have been detected mainly in specimens from the respiratory tract while Merkel cell polyomavirus has been described in a very high percentage of Merkel cell carcinomas. The distribution, excretion level and transmission routes of these viruses remain unknown. Here we analyzed the presence and characteristics of newly described human polyomaviruses in urban sewage and river water in order to assess the excretion level and the potential role of water as a route of transmission of these viruses. Nested-PCR assays were designed for the sensitive detection of the viruses studied and the amplicons obtained were confirmed by sequencing analysis. The viruses were concentrated following a methodology previously developed for the detection of JC and BK human polyomaviruses in environmental samples. JC polyomavirus and human adenoviruses were used as markers of human contamination in the samples. Merkel cell polyomavirus was detected in 7/8 urban sewage samples collected and in 2/7 river water samples. Also one urine sample from a pregnant woman, out of 4 samples analyzed, was positive for this virus. KI and WU polyomaviruses were identified in 1/8 and 2/8 sewage samples respectively. The viral strains detected were highly homologous with other strains reported from several other geographical areas. Lymphotropic polyomavirus was not detected in any of the 13 sewage neither in 9 biosolid/sludge samples analyzed. This is the first description of a virus isolated from sewage and river water with a strong association with cancer. Our data indicate that the Merkel cell polyomavirus is prevalent in the population and that it may be disseminated through the fecal/urine contamination of water. The procedure developed may constitute a useful tool for studying the excreted strains, prevalence and transmission of these recently described polyomaviruses.
Collapse
Affiliation(s)
- Sílvia Bofill-Mas
- Department of Microbiology, Faculty of Biology, Universitat de Barcelona, Av, Diagonal 645, 08028 Barcelona, Spain.
| | | | | | | | | |
Collapse
|
43
|
Chatzidimitriou D, Gavriilaki E, Sakellari I, Diza E. Hematopoietic cell transplantation and emerging viral infections. J Med Virol 2010; 82:528-38. [PMID: 20087928 PMCID: PMC7166846 DOI: 10.1002/jmv.21696] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2009] [Indexed: 12/11/2022]
Abstract
Viral infections remain important causes of morbidity and mortality in hematopoietic cell transplant recipients. More recent developments in preparative regimens and graft manipulations, as well as the control of well-recognized post-transplant infections by the introduction of prophylaxis and preemptive strategies, have influenced the timing and the epidemiology of infections. As new pathogens, such as human metapneumovirus (HMPV), human bocavirus, human coronaviruses HCoV-NL63 and HCoV-HKU1, human herpesviruses HHV-6 and HHV-7, and polyomaviruses, have emerged, it is fundamental to determine the significance of the newly discovered viruses and their role in the transplantation field. This article summarizes recent data on epidemiology and laboratory diagnosis of new pathogens, as well as clinical features and management of the associated infectious complications. J. Med. Virol. 82:528-538, 2010. (c) 2010 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- D Chatzidimitriou
- 2nd Department of Microbiology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | | | | | | |
Collapse
|
44
|
Zhao L, Qian Y, Zhu R, Deng J, Wang F, Sun Y, Ding Y. Identification of WU polyomavirus from pediatric patients with acute respiratory infections in Beijing, China. Arch Virol 2010; 155:181-6. [PMID: 19946716 PMCID: PMC7086632 DOI: 10.1007/s00705-009-0558-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Accepted: 11/12/2009] [Indexed: 02/06/2023]
Abstract
A novel polyomavirus (WU virus) has been identified in pediatric patients with acute respiratory tract infections (ARI), but its role as a respiratory pathogen has not yet been demonstrated. To investigate if WU virus is related to acute respiratory infections in infants and children in Beijing, specimens collected from 674 pediatric patients with ARI from April 2007 to May 2008 and from 202 children without ARI were used for this investigation. Common respiratory viruses were tested by virus isolation and/or antigen detection by indirect immunofluorescent assay followed by RT-PCR or PCR for other viruses associated with respiratory infections in specimens collected from patients with ARI before WU virus DNA was detected. WU virus DNA was detected by initial screening and secondary confirmation PCR for all specimens. The region encoding the VP2 gene of the virus was amplified from 17 WU-virus-positive clinical specimens, and sequence analysis was performed. Thirty-eight of 674 (5.6%) specimens from patients with ARI and 3 of 202 (1.5%) specimens from children without ARI yielded PCR products with the predicted molecular weight, using either screening or confirmation primer sets, indicating that these specimens were WU virus positive. However, more than 60% of the 38 WU-virus-positive specimens from patients with ARI were also positive for one or more respiratory viruses. The nucleotide and deduced amino acid sequences of the region encoding the VP2 gene from 17 Beijing WU viruses shared high homology (>98.5%) with sequences from GenBank and among themselves. The data indicated that WU virus in Beijing occurred 3.7 times more frequently in pediatric patients with ARI than in those without ARI (p < 0.05).
Collapse
Affiliation(s)
- Linqing Zhao
- Laboratory of Virology, Capital Institute of Pediatrics, 100020 Beijing, China
| | - Yuan Qian
- Laboratory of Virology, Capital Institute of Pediatrics, 100020 Beijing, China
| | - Runan Zhu
- Laboratory of Virology, Capital Institute of Pediatrics, 100020 Beijing, China
| | - Jie Deng
- Laboratory of Virology, Capital Institute of Pediatrics, 100020 Beijing, China
| | - Fang Wang
- Laboratory of Virology, Capital Institute of Pediatrics, 100020 Beijing, China
| | - Yu Sun
- Laboratory of Virology, Capital Institute of Pediatrics, 100020 Beijing, China
| | - Yaxin Ding
- Laboratory of Virology, Capital Institute of Pediatrics, 100020 Beijing, China
| |
Collapse
|
45
|
Debiaggi M, Canducci F, Brerra R, Sampaolo M, Marinozzi MC, Parea M, Arghittu M, Alessandrino EP, Nava S, Nucleo E, Romero E, Clementi M. Molecular epidemiology of KI and WU polyomaviruses in infants with acute respiratory disease and in adult hematopoietic stem cell transplant recipients. J Med Virol 2010; 82:153-6. [PMID: 19950241 PMCID: PMC7166565 DOI: 10.1002/jmv.21659] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2009] [Indexed: 12/17/2022]
Abstract
Polyomaviruses KI (KIPyV) and WU (WUPyV) were described recently in children with acute respiratory disease. The pathogenic potential of these human viruses has not been determined completely, but a correlation between immunosuppression and virus reactivation has been suggested. In the present study, the association between KI/WUPyV infection and immunosuppression was investigated using sequential nasopharyngeal aspirates from asymptomatic adult hematopoietic stem cell transplant recipients. In parallel, an investigation on the WU/KIPyV prevalence in children with acute respiratory disease was also carried out. Two of the 126 samples obtained from the 31 hematopoietic transplant recipients were positive for KIPyV (1 sample, 0.79%) and WUPyV (1 sample, 0.79%). Both samples were obtained 15 days after allogeneic transplantation and virus persistence was not observed in subsequent samples. In symptomatic children, 7 of the 486 nasopharyngeal aspirates were positive for WUPyV (1.4%) and 1 for KIPyV (0.2%). Single polyomavirus infection was detected in four patients, whereas the remaining patients were co-infected with respiratory syncityal virus (three patients) or adenovirus (one patient). The results suggest that WU/KIPyVs have a limited circulation in Italy and a low pathogenic potential in young children. Brief and asymptomatic infection can occur in hematopoietic transplant recipients.
Collapse
Affiliation(s)
- Maurizia Debiaggi
- Department of Morphological and Clinical Sciences, Section of Microbiology, University of Pavia, Pavia, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Nguyen NL, Le BM, Wang D. Serologic evidence of frequent human infection with WU and KI polyomaviruses. Emerg Infect Dis 2009; 15:1199-205. [PMID: 19751580 PMCID: PMC2815979 DOI: 10.3201/eid1508.090270] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
WU polyomavirus (WUPyV) and KI polyomavirus (KIPyV) are novel human polyomaviruses. They were originally identified in human respiratory secretions, but the extent of human infection caused by these viruses has not been described to date. To determine the seroepidemiology of WUPyV and KIpyIV, we used an ELISA to screen serum samples from 419 patients at the St. Louis Children's Hospital and Barnes-Jewish Hospital during 2007-2008. The age-stratified deidentified samples were examined for antibodies to the major capsid proteins of WUPyV and KIPyV. Seropositivity for each virus was similar; antibody levels were high in the youngest age group (<6 months), decreased to a nadir in the next age group (6 to <12 months), and then steadily increased with subsequent age groups, eventually reaching a plateau of approximate, equals 80% for WUPyV and approximate, equals 70% for KIPyV. These results demonstrate that both KIPyV and WUPyV cause widespread infection in the human population.
Collapse
Affiliation(s)
- Nang L Nguyen
- Washington University in St. Louis, Missouri 63110, USA
| | | | | |
Collapse
|
47
|
Babakir-Mina M, Ciccozzi M, Trento E, Perno CF, Ciotti M. KI and WU polyomaviruses in patients infected with HIV-1, Italy. Emerg Infect Dis 2009; 15:1323-1325. [PMID: 19751608 PMCID: PMC2815986 DOI: 10.3201/eid1508.090424] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
48
|
Kantola K, Sadeghi M, Lahtinen A, Koskenvuo M, Aaltonen LM, Möttönen M, Rahiala J, Saarinen-Pihkala U, Riikonen P, Jartti T, Ruuskanen O, Söderlund-Venermo M, Hedman K. Merkel cell polyomavirus DNA in tumor-free tonsillar tissues and upper respiratory tract samples: implications for respiratory transmission and latency. J Clin Virol 2009; 45:292-5. [PMID: 19464943 PMCID: PMC7172143 DOI: 10.1016/j.jcv.2009.04.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Accepted: 04/20/2009] [Indexed: 11/23/2022]
Abstract
Background Merkel cell polyomavirus (MCPyV) was discovered recently. It is considered a potential causative agent of Merkel cell carcinoma, a life-threatening skin cancer. Objectives To study the prevalence of MCPyV in a large number of clinical samples of various types. Most of the samples were examined also for the other newly found polyomaviruses KI (KIPyV) and WU (WUPyV). Study design Altogether 1390 samples from immunocompetent or immunocompromised patients, including (i) tonsillar tissues and sera from tonsillectomy patients; (ii) nasopharyngeal aspirates (NPAs) and sera from wheezing children and (iii) nasal swabs, sera and stools from febrile leukemic children were studied for MCPyV. The tonsils, nasal swabs and stools were also studied for KIPyV and WUPyV. Results MCPyV DNA was detected in 14 samples altogether; 8 of 229 (3.5%) tonsillar tissues, 3 of 140 (2.1%) NPAs, 2 of 106 (1.9%) nasal swabs and 1 of 840 (0.1%) sera. WUPyV and KIPyV were detected in 5 (2.2%) and 0 tonsils, 1 (0.9%) and 4 (3.8%) nasal swabs and 0 and 2 (2.7%) fecal samples, respectively. The patients carrying in tonsils MCPyV were of significantly higher age (median 42 years) than those carrying WUPyV (4 years, p < 0.001). Conclusions MCPyV DNA occurs in tonsils more frequently in adults than in children. By contrast, WUPyV DNA is found preferentially in children. MCPyV occurs also in nasal swabs and NPAs, in a frequency similar to that of KIPyV and WUPyV. The tonsil may be an initial site of WUPyV infection and a site of MCPyV persistence.
Collapse
Affiliation(s)
- Kalle Kantola
- Department of Virology, Haartman Institute, University of Helsinki, P.O. Box 21, FIN-00014, Helsinki, Finland.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|