1
|
Yan Z, Li Y, Huang S, Wen F. Global distribution, receptor binding, and cross-species transmission of H6 influenza viruses: risks and implications for humans. J Virol 2023; 97:e0137023. [PMID: 37877722 PMCID: PMC10688349 DOI: 10.1128/jvi.01370-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023] Open
Abstract
The H6 subtype of avian influenza virus (AIV) is a pervasive subtype that is ubiquitously found in both wild bird and poultry populations across the globe. Recent investigations have unveiled its capacity to infect mammals, thereby expanding its host range beyond that of other subtypes and potentially facilitating its global transmission. This heightened breadth also endows H6 AIVs with the potential to serve as a genetic reservoir for the emergence of highly pathogenic avian influenza strains through genetic reassortment and adaptive mutations. Furthermore, alterations in key amino acid loci within the H6 AIV genome foster the evolution of viral infection mechanisms, which may enable the virus to surmount interspecies barriers and infect mammals, including humans, thus posing a potential threat to human well-being. In this review, we summarize the origins, dissemination patterns, geographical distribution, cross-species transmission dynamics, and genetic attributes of H6 influenza viruses. This study holds implications for the timely detection and surveillance of H6 AIVs.
Collapse
Affiliation(s)
- Zhanfei Yan
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - You Li
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Shujian Huang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Feng Wen
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, China
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, College of Life Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
2
|
Carnegie L, Raghwani J, Fournié G, Hill SC. Phylodynamic approaches to studying avian influenza virus. Avian Pathol 2023; 52:289-308. [PMID: 37565466 DOI: 10.1080/03079457.2023.2236568] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/23/2023] [Accepted: 07/07/2023] [Indexed: 08/12/2023]
Abstract
Avian influenza viruses can cause severe disease in domestic and wild birds and are a pandemic threat. Phylodynamics is the study of how epidemiological, evolutionary, and immunological processes can interact to shape viral phylogenies. This review summarizes how phylodynamic methods have and could contribute to the study of avian influenza viruses. Specifically, we assess how phylodynamics can be used to examine viral spread within and between wild or domestic bird populations at various geographical scales, identify factors associated with virus dispersal, and determine the order and timing of virus lineage movement between geographic regions or poultry production systems. We discuss factors that can complicate the interpretation of phylodynamic results and identify how future methodological developments could contribute to improved control of the virus.
Collapse
Affiliation(s)
- L Carnegie
- Department of Pathobiology and Population Sciences, Royal Veterinary College (RVC), Hatfield, UK
| | - J Raghwani
- Department of Pathobiology and Population Sciences, Royal Veterinary College (RVC), Hatfield, UK
| | - G Fournié
- Department of Pathobiology and Population Sciences, Royal Veterinary College (RVC), Hatfield, UK
- Université de Lyon, INRAE, VetAgro Sup, UMR EPIA, Marcy l'Etoile, France
- Université Clermont Auvergne, INRAE, VetAgro Sup, UMR EPIA, Saint Genes Champanelle, France
| | - S C Hill
- Department of Pathobiology and Population Sciences, Royal Veterinary College (RVC), Hatfield, UK
| |
Collapse
|
3
|
Lin M, Yao QC, Liu J, Huo M, Zhou Y, Chen M, Li Y, Gao Y, Ge Y. Evolution and Reassortment of H6 Subtype Avian Influenza Viruses. Viruses 2023; 15:1547. [PMID: 37515233 PMCID: PMC10383184 DOI: 10.3390/v15071547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
The H6 subtype of avian influenza virus (H6 AIV) is the most detected AIV subtype in poultry and wild birds. It causes economic losses to the poultry industry, and the most important, H6 AIV may have the ability to infect mammals, which is a great threat to public health security. In addition, the H6 subtype can serve as a precursor to providing internal genes for other highly pathogenic AIVs, posing a potential threat. H6 AIV currently face to the high positive detection rate and harmless nature of H6 AIV and because not highly effective H6 subtype vaccine available on the market. In this study, we focused on the prevalence of H6 AIV in poultry and wild birds, phylogenetic analysis, genetic variation characteristics, selection analysis, and prevention and control to provide relevant references for the scientific prevention and control of H6 AIV in future.
Collapse
Affiliation(s)
- Mingqin Lin
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Qiu-Cheng Yao
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Jing Liu
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Miaotong Huo
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yan Zhou
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Minyi Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yuanguo Li
- Military Veterinary Research Institute of Academy of Military Medical Sciences, Changchun 130000, China
| | - Yuwei Gao
- Military Veterinary Research Institute of Academy of Military Medical Sciences, Changchun 130000, China
| | - Ye Ge
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
4
|
Kim JY, Lee SH, Kim DW, Lee DW, Song CS, Lee DH, Kwon JH. Detection of intercontinental reassortant H6 avian influenza viruses from wild birds in South Korea, 2015 and 2017. Front Vet Sci 2023; 10:1157984. [PMID: 37377949 PMCID: PMC10291271 DOI: 10.3389/fvets.2023.1157984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/10/2023] [Indexed: 06/29/2023] Open
Abstract
Avian influenza viruses (AIVs) in wild birds are phylogenetically separated in Eurasian and North American lineages due to the separated distribution and migration of wild birds. However, AIVs are occasionally dispersed between two continents by migratory wild birds flying across the Bering Strait. In this study, we isolated three AIVs from wild bird feces collected in South Korea that contain gene segments derived from American lineage AIVs, including an H6N2 isolated in 2015 and two H6N1 in 2017. Phylogenetic analysis suggests that the H6N2 virus had American lineage matrix gene and the H6N1 viruses had American lineage nucleoprotein and non-structural genes. These results highlight that novel AIVs have continuously emerged by reassortment between viruses from the two continents. Therefore, continuous monitoring for the emergence and intercontinental spread of novel reassortant AIV is required to prepare for a possible future outbreak.
Collapse
Affiliation(s)
- Ji-Yun Kim
- College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Sun-Hak Lee
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Da-Won Kim
- College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Dong-Wook Lee
- College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Chang-Seon Song
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Dong-Hun Lee
- Wildlife Health Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| | - Jung-Hoon Kwon
- College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
5
|
Rasmussen EA, Czaja A, Cuthbert FJ, Tan GS, Lemey P, Nelson MI, Culhane MR. Influenza A viruses in gulls in landfills and freshwater habitats in Minnesota, United States. Front Genet 2023; 14:1172048. [PMID: 37229191 PMCID: PMC10203411 DOI: 10.3389/fgene.2023.1172048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 04/10/2023] [Indexed: 05/27/2023] Open
Abstract
Introduction: The unpredictable evolution of avian influenza viruses (AIVs) presents an ongoing threat to agricultural production and public and wildlife health. Severe outbreaks of highly pathogenic H5N1 viruses in US poultry and wild birds since 2022 highlight the urgent need to understand the changing ecology of AIV. Surveillance of gulls in marine coastal environments has intensified in recent years to learn how their long-range pelagic movements potentially facilitate inter-hemispheric AIV movements. In contrast, little is known about inland gulls and their role in AIV spillover, maintenance, and long-range dissemination. Methods: To address this gap, we conducted active AIV surveillance in ring-billed gulls (Larus delawarensis) and Franklin's gulls (Leucophaeus pipixcan) in Minnesota's natural freshwater lakes during the summer breeding season and in landfills during fall migration (1,686 samples). Results: Whole-genome AIV sequences obtained from 40 individuals revealed three-lineage reassortants with a mix of genome segments from the avian Americas lineage, avian Eurasian lineage, and a global "Gull" lineage that diverged more than 50 years ago from the rest of the AIV global gene pool. No poultry viruses contained gull-adapted H13, NP, or NS genes, pointing to limited spillover. Geolocators traced gull migration routes across multiple North American flyways, explaining how inland gulls imported diverse AIV lineages from distant locations. Migration patterns were highly varied and deviated far from assumed "textbook" routes. Discussion: Viruses circulating in Minnesota gulls during the summer breeding season in freshwater environments reappeared in autumn landfills, evidence of AIV persistence in gulls between seasons and transmission between habitats. Going forward, wider adoption of technological advances in animal tracking devices and genetic sequencing is needed to expand AIV surveillance in understudied hosts and habitats.
Collapse
Affiliation(s)
- Elizabeth A. Rasmussen
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States
| | - Agata Czaja
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, United States
| | - Francesca J. Cuthbert
- Department of Fisheries, Wildlife and Conservation Biology, College of Food, Agricultural and Natural Resource Sciences, University of Minnesota, Minneapolis, MN, United States
| | - Gene S. Tan
- J. Craig Venter Institute, La Jolla, Division of Infectious Diseases, Department of Medicine, University of California San Diego, La Jolla, CA, United States
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, Leuven, Belgium
| | - Martha I. Nelson
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, United States
| | - Marie R. Culhane
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States
| |
Collapse
|
6
|
Azeem S, Guo B, Sun D, Killian ML, Baroch JA, Yoon KJ. Evaluation of PCR-based hemagglutinin subtyping as a tool to aid in surveillance of avian influenza viruses in migratory wild birds. J Virol Methods 2022; 308:114594. [PMID: 35931229 DOI: 10.1016/j.jviromet.2022.114594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/28/2022] [Accepted: 07/31/2022] [Indexed: 11/16/2022]
Abstract
The surveillance of migratory wild birds (MWBs) for avian influenza virus (AIV) allows detecting the emergence of highly pathogenic AIV that can infect domestic poultry and mammals, new subtypes, and antigenic/genetic variants. The current AIV surveillance system for MWBs in the United States is based on virus isolation (VI) followed by sequencing isolates. This system primarily focuses on the early detection of H5 and H7 AIVs. However, it is suboptimal in assessing diverse AIV subtypes at any given time because of the low VI success rate. To improve such a shortfall, a SYBR® Green-based real-time reverse transcription-polymerase chain reaction (rtRT-PCR) panel was developed for direct HA subtyping of AIVs in oropharyngeal-cloacal (OPC) swabs from MWBs. Under optimal conditions, the PCR panel detected AIVs of all 16 different HA subtypes with an average limit of detection of 102.6 copies/reaction (2 μl of extract). In testing 90 OPC swabs from 13 MWB species, the PCR provided a significantly faster turnaround of results and demonstrated the presence of more subtypes and concurrent infection among MWBs compared to what the current surveillance testing algorithm showed. In conclusion, newly developed SYBR® Green rtRT-PCR panel can be a useful tool for monitoring MWBs for AIVs.
Collapse
Affiliation(s)
- Shahan Azeem
- Veterinary Mirobiology and Preventive Medicine, Iowa State University, Ames, IA, United States.
| | - Baoqing Guo
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States.
| | - Dong Sun
- Veterinary Mirobiology and Preventive Medicine, Iowa State University, Ames, IA, United States.
| | - Mary L Killian
- Diagnostic Virology Laboratory, National Veterinary Services Laboratories, USDA, Ames, IA, United States.
| | - John A Baroch
- National Wildlife Research Center, Fort Collins, CO, United States.
| | - Kyoung-Jin Yoon
- Veterinary Diagnostic and Production Animal Medicine, Iowa State University, Ames, IA, United States.
| |
Collapse
|
7
|
Zhong W, Gao L, Wang X, Su S, Lin Y, Huang K, Zhou S, Fan X, Zhang Z. Influenza A (H6N6) viruses isolated from chickens replicate in mice and human lungs without prior adaptation. J Virus Erad 2022; 8:100086. [PMID: 36189435 PMCID: PMC9516452 DOI: 10.1016/j.jve.2022.100086] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/07/2022] [Indexed: 11/23/2022] Open
Abstract
The H6H6 subtype avian influenza virus (AIV) is currently prevalent in wild birds and poultry. Its host range has gradually expanded to mammals, such as swines. Some strains have even acquired the ability to bind to human-like SAα-2,6 Gal receptors, thus increasing the risk of animal to human transmission. To investigate whether the H6N6 AIV can overcome interspecies barriers from poultry to mammals and even to humans, we have assessed the molecular characteristics, receptor-binding preference, replication in mice and human lungs of three chicken-originated H6N6 strains. Among these, the A/CK/Zhangzhou/346/2014 (ZZ346) virus with the P186T, H156R, and S263G mutations of the hemagglutinin molecule showed the ability to bind to avian-like SAα-2,3 Gal and human-like SAα-2,6 Gal receptors. Moreover, H6N6 viruses, especially the ZZ346 strain, could replicate and infect mice and human lungs. Our study showed the H6N6 virus binding to both avian-like and human-like receptors, confirming its ability to cross the species barrier to infect mice and human lungs without prior adaptation. This study emphasizes the importance of continuous and intense monitoring of the H6N6 evolution in terrestrial birds.
Collapse
Affiliation(s)
- Weijuan Zhong
- Department of Microbiology, Guangxi Medical University, Nanning, 530021, China
| | - Lingxi Gao
- Department of Microbiology, Guangxi Medical University, Nanning, 530021, China
| | - Xijing Wang
- Department of Microbiology, Guangxi Medical University, Nanning, 530021, China
| | - Shanggui Su
- Department of Biochemistry, Guangxi Medical University, Nanning, 530021, China
| | - Yugui Lin
- Department of Microbiology, Guangxi Medical University, Nanning, 530021, China
| | - Kai Huang
- Galveston National Laboratory, University of Texas Medical Branch at Galveston, United States
| | - Siyu Zhou
- Department of Microbiology, Guangxi Medical University, Nanning, 530021, China
| | - Xiaohui Fan
- Department of Microbiology, Guangxi Medical University, Nanning, 530021, China
- Corresponding author.
| | - Zengfeng Zhang
- Department of Microbiology, Guangxi Medical University, Nanning, 530021, China
- Corresponding author.
| |
Collapse
|
8
|
Trovão NS, Nolting JM, Slemons RD, Nelson MI, Bowman AS. The Evolutionary Dynamics of Influenza A Viruses Circulating in Mallards in Duck Hunting Preserves in Maryland, USA. Microorganisms 2020; 9:microorganisms9010040. [PMID: 33375548 PMCID: PMC7823399 DOI: 10.3390/microorganisms9010040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 11/16/2022] Open
Abstract
Duck hunting preserves (DHP) have resident populations of farm-raised mallard ducks, which create potential foci for the evolution of novel influenza A viruses (IAVs). Through an eleven-year (2003–2013) IAV surveillance project in seven DHPs in Maryland, USA, we frequently identified IAVs in the resident, free-flying mallard ducks (5.8% of cloacal samples were IAV-positive). The IAV population had high genetic diversity, including 12 HA subtypes and 9 NA subtypes. By sequencing the complete genomes of 290 viruses, we determined that genetically diverse IAVs were introduced annually into DHP ducks, predominantly from wild birds in the Anatidae family that inhabit the Atlantic and Mississippi flyways. The relatively low viral gene flow observed out of DHPs suggests that raised mallards do not sustain long-term viral persistence nor do they serve as important sources of new viruses in wild birds. Overall, our findings indicate that DHPs offer reliable samples of the diversity of IAV subtypes, and could serve as regional sentinel sites that mimic the viral diversity found in local wild duck populations, which would provide a cost-efficient strategy for long-term IAV monitoring. Such monitoring could allow for early identification and characterization of viruses that threaten bird species of high economic and environmental interest.
Collapse
Affiliation(s)
- Nídia S. Trovão
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, MD 20814, USA; (N.S.T.); (M.I.N.)
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jacqueline M. Nolting
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH 43210, USA; (J.M.N.); (R.D.S.)
| | - Richard D. Slemons
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH 43210, USA; (J.M.N.); (R.D.S.)
| | - Martha I. Nelson
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, MD 20814, USA; (N.S.T.); (M.I.N.)
| | - Andrew S. Bowman
- Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH 43210, USA; (J.M.N.); (R.D.S.)
- Correspondence:
| |
Collapse
|
9
|
Everest H, Hill SC, Daines R, Sealy JE, James J, Hansen R, Iqbal M. The Evolution, Spread and Global Threat of H6Nx Avian Influenza Viruses. Viruses 2020; 12:v12060673. [PMID: 32580412 PMCID: PMC7354632 DOI: 10.3390/v12060673] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 12/11/2022] Open
Abstract
Avian influenza viruses of the subtype H6Nx are being detected globally with increasing frequency. Some H6Nx lineages are becoming enzootic in Asian poultry and sporadic incursions into European poultry are occurring more frequently. H6Nx viruses that contain mammalian adaptation motifs pose a zoonotic threat and have caused human cases. Although currently understudied globally, H6Nx avian influenza viruses pose a substantial threat to both poultry and human health. In this review we examine the current state of knowledge of H6Nx viruses including their global distribution, tropism, transmission routes and human health risk.
Collapse
Affiliation(s)
- Holly Everest
- The Pirbright Institute, Woking GU24 0NF, UK
- Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Sarah C Hill
- Department of Zoology, University of Oxford, Oxford OX1 3SZ UK
- Pathobiology and Population Sciences, Royal Veterinary College, Hertfordshire AL9 7TA, UK
| | - Rebecca Daines
- The Pirbright Institute, Woking GU24 0NF, UK
- Pathobiology and Population Sciences, Royal Veterinary College, Hertfordshire AL9 7TA, UK
| | | | - Joe James
- Department of Virology, Animal and Plant Health Agency, Addlestone KT15 3NB, UK
| | - Rowena Hansen
- Department of Virology, Animal and Plant Health Agency, Addlestone KT15 3NB, UK
| | - Munir Iqbal
- The Pirbright Institute, Woking GU24 0NF, UK
| |
Collapse
|
10
|
Genetic evidence for the intercontinental movement of avian influenza viruses possessing North American-origin nonstructural gene allele B into South Korea. INFECTION GENETICS AND EVOLUTION 2018; 66:18-25. [PMID: 30196122 DOI: 10.1016/j.meegid.2018.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/16/2018] [Accepted: 09/05/2018] [Indexed: 01/23/2023]
Abstract
Avian influenza viruses (AIVs) are genetically separated by geographical barriers, resulting in the independent evolution of North American and Eurasian lineages. In the present study, to determine whether AIVs possessing the North American-origin nonstructural (NS) gene were previously introduced into South Korea, we performed a genetic analysis of AIVs isolated from fecal samples of migratory birds. We detected seven viruses possessing the North American-origin NS allele B among 413 AIV-positive samples obtained during AI surveillance between 2012 and 2017. We found evidence for the intercontinental transmission of at least three genetically distinct clusters of the B allele of the North American-origin NS gene into Eurasia at a low frequency. The host species of three viruses were identified as the greater white-fronted goose (Anser albifrons) using a DNA barcoding technique. Moreover, we used GPS-CDMA-based telemetry to determine the migration route of the greater white-fronted goose between the Far East of Russia and South Korea and found that this species may play an important role as an intermediate vector in the intercontinental transmission of AIVs. To improve our understanding of the role of wild birds in the ecology of AIVs, advanced AIV surveillance is required in the Far East of Russia as well as in Alaska region of Beringia accompanied by host identification and wild bird tracking.
Collapse
|
11
|
The enigma of the apparent disappearance of Eurasian highly pathogenic H5 clade 2.3.4.4 influenza A viruses in North American waterfowl. Proc Natl Acad Sci U S A 2016; 113:9033-8. [PMID: 27457948 DOI: 10.1073/pnas.1608853113] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
One of the major unresolved questions in influenza A virus (IAV) ecology is exemplified by the apparent disappearance of highly pathogenic (HP) H5N1, H5N2, and H5N8 (H5Nx) viruses containing the Eurasian hemagglutinin 2.3.4.4 clade from wild bird populations in North America. The introduction of Eurasian lineage HP H5 clade 2.3.4.4 H5N8 IAV and subsequent reassortment with low-pathogenic H?N2 and H?N1 North American wild bird-origin IAVs in late 2014 resulted in widespread HP H5Nx IAV infections and outbreaks in poultry and wild birds across two-thirds of North America starting in November 2014 and continuing through June 2015. Although the stamping out strategies adopted by the poultry industry and animal health authorities in Canada and the United States-which included culling, quarantining, increased biosecurity, and abstention from vaccine use-were successful in eradicating the HP H5Nx viruses from poultry, these activities do not explain the apparent disappearance of these viruses from migratory waterfowl. Here we examine current and historical aquatic bird IAV surveillance and outbreaks of HP H5Nx in poultry in the United States and Canada, providing additional evidence of unresolved mechanisms that restrict the emergence and perpetuation of HP avian influenza viruses in these natural reservoirs.
Collapse
|
12
|
Dusek RJ, Hallgrimsson GT, Ip HS, Jónsson JE, Sreevatsan S, Nashold SW, TeSlaa JL, Enomoto S, Halpin RA, Lin X, Fedorova N, Stockwell TB, Dugan VG, Wentworth DE, Hall JS. North Atlantic migratory bird flyways provide routes for intercontinental movement of avian influenza viruses. PLoS One 2014; 9:e92075. [PMID: 24647410 PMCID: PMC3960164 DOI: 10.1371/journal.pone.0092075] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 02/18/2014] [Indexed: 12/25/2022] Open
Abstract
Avian influenza virus (AIV) in wild birds has been of increasing interest over the last decade due to the emergence of AIVs that cause significant disease and mortality in both poultry and humans. While research clearly demonstrates that AIVs can move across the Pacific or Atlantic Ocean, there has been no data to support the mechanism of how this occurs. In spring and autumn of 2010 and autumn of 2011 we obtained cloacal swab samples from 1078 waterfowl, gulls, and shorebirds of various species in southwest and west Iceland and tested them for AIV. From these, we isolated and fully sequenced the genomes of 29 AIVs from wild caught gulls (Charadriiformes) and waterfowl (Anseriformes) in Iceland. We detected viruses that were entirely (8 of 8 genomic segments) of American lineage, viruses that were entirely of Eurasian lineage, and viruses with mixed American-Eurasian lineage. Prior to this work only 2 AIVs had been reported from wild birds in Iceland and only the sequence from one segment was available in GenBank. This is the first report of finding AIVs of entirely American lineage and Eurasian lineage, as well as reassortant viruses, together in the same geographic location. Our study demonstrates the importance of the North Atlantic as a corridor for the movement of AIVs between Europe and North America.
Collapse
Affiliation(s)
- Robert J. Dusek
- National Wildlife Health Center, United States Geological Survey, Madison, Wisconsin, United States of America
| | | | - Hon S. Ip
- National Wildlife Health Center, United States Geological Survey, Madison, Wisconsin, United States of America
| | - Jón E. Jónsson
- Snæfellsnes Research Centre, University of Iceland, Stykkishólmur, Iceland
| | - Srinand Sreevatsan
- Veterinary and Biomedical Sciences Department, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Sean W. Nashold
- National Wildlife Health Center, United States Geological Survey, Madison, Wisconsin, United States of America
| | - Joshua L. TeSlaa
- National Wildlife Health Center, United States Geological Survey, Madison, Wisconsin, United States of America
| | - Shinichiro Enomoto
- Veterinary and Biomedical Sciences Department, College of Veterinary Medicine, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Rebecca A. Halpin
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Xudong Lin
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Nadia Fedorova
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | | | - Vivien G. Dugan
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - David E. Wentworth
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Jeffrey S. Hall
- National Wildlife Health Center, United States Geological Survey, Madison, Wisconsin, United States of America
| |
Collapse
|
13
|
Huang Y, Wille M, Dobbin A, Walzthöni NM, Robertson GJ, Ojkic D, Whitney H, Lang AS. Genetic structure of avian influenza viruses from ducks of the Atlantic flyway of North America. PLoS One 2014; 9:e86999. [PMID: 24498009 PMCID: PMC3907406 DOI: 10.1371/journal.pone.0086999] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 12/16/2013] [Indexed: 11/19/2022] Open
Abstract
Wild birds, including waterfowl such as ducks, are reservoir hosts of influenza A viruses. Despite the increased number of avian influenza virus (AIV) genome sequences available, our understanding of AIV genetic structure and transmission through space and time in waterfowl in North America is still limited. In particular, AIVs in ducks of the Atlantic flyway of North America have not been thoroughly investigated. To begin to address this gap, we analyzed 109 AIV genome sequences from ducks in the Atlantic flyway to determine their genetic structure and to document the extent of gene flow in the context of sequences from other locations and other avian and mammalian host groups. The analyses included 25 AIVs from ducks from Newfoundland, Canada, from 2008–2011 and 84 available reference duck AIVs from the Atlantic flyway from 2006–2011. A vast diversity of viral genes and genomes was identified in the 109 viruses. The genetic structure differed amongst the 8 viral segments with predominant single lineages found for the PB2, PB1 and M segments, increased diversity found for the PA, NP and NS segments (2, 3 and 3 lineages, respectively), and the highest diversity found for the HA and NA segments (12 and 9 lineages, respectively). Identification of inter-hemispheric transmissions was rare with only 2% of the genes of Eurasian origin. Virus transmission between ducks and other bird groups was investigated, with 57.3% of the genes having highly similar (≥99% nucleotide identity) genes detected in birds other than ducks. Transmission between North American flyways has been frequent and 75.8% of the genes were highly similar to genes found in other North American flyways. However, the duck AIV genes did display spatial distribution bias, which was demonstrated by the different population sizes of specific viral genes in one or two neighbouring flyways compared to more distant flyways.
Collapse
Affiliation(s)
- Yanyan Huang
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Michelle Wille
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Ashley Dobbin
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Natasha M. Walzthöni
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| | - Gregory J. Robertson
- Wildlife Research Division, Environment Canada, Mount Pearl, Newfoundland and Labrador, Canada
| | - Davor Ojkic
- Animal Health Laboratory, University of Guelph, Guelph, Ontario, Canada
| | - Hugh Whitney
- Newfoundland and Labrador Department of Natural Resources, St. John's, Newfoundland and Labrador, Canada
| | - Andrew S. Lang
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
- * E-mail:
| |
Collapse
|
14
|
Wille M, Tolf C, Avril A, Latorre-Margalef N, Wallerström S, Olsen B, Waldenström J. Frequency and patterns of reassortment in natural influenza A virus infection in a reservoir host. Virology 2013; 443:150-60. [DOI: 10.1016/j.virol.2013.05.004] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 02/04/2013] [Accepted: 05/03/2013] [Indexed: 11/16/2022]
|
15
|
Tønnessen R, Kristoffersen AB, Jonassen CM, Hjortaas MJ, Hansen EF, Rimstad E, Hauge AG. Molecular and epidemiological characterization of avian influenza viruses from gulls and dabbling ducks in Norway. Virol J 2013; 10:112. [PMID: 23575317 PMCID: PMC3639200 DOI: 10.1186/1743-422x-10-112] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Accepted: 04/03/2013] [Indexed: 11/10/2022] Open
Abstract
Background Wild aquatic birds constitute the natural reservoir for avian influenza viruses (AIVs). Separate Eurasian and American AIV gene pools exist. Here, the prevalence and diversity of AIVs in gulls and dabbling ducks in Norway were described. The influence of host species and temporal changes on AIV prevalence was examined. Five AIVs from Norway, including three from common gull (Larus canus), were analyzed along with 10 available AIV genomes from gulls in Eurasia to search for evidence of intracontinental and intercontinental reassortment of gene segments encoding the internal viral proteins. Methods Swabs collected from 2417 dabbling ducks and gulls in the south-west of Norway during five ordinary hunting seasons (August-December) in the period 2005–2010 were analyzed for presence of AIV. Multivariate linear regression was used to identify associations between AIV prevalence, host species and sampling time. Five AIVs from mallard (Anas platyrhynchos) (H3N8, H9N2) and common gull (H6N8, H13N2, H16N3) were full-length characterized and phylogenetically analyzed together with GenBank reference sequences. Results Low pathogenic AIVs were detected in 15.5% (CI: 14.1–17.0) of the samples. The overall AIV prevalence was lower in December compared to that found in August to November (p = 0.003). AIV was detected in 18.7% (CI: 16.8–20.6) of the dabbling ducks. A high AIV prevalence of 7.8% (CI; 5.9–10.0) was found in gulls. A similar temporal pattern in AIV prevalence was found in both bird groups. Thirteen hemagglutinin and eight neuraminidase subtypes were detected. No evidence of intercontinental reassortment was found. Eurasian avian (non H13 and H16) PB2 or PA genes were identified in five reference Eurasian gull (H13 and H16) AIV genomes from GenBank. The NA gene from the Norwegian H13N2 gull isolate was of Eurasian avian origin. Conclusions The similar temporal pattern in AIV prevalence found in dabbling ducks and gulls, the relatively high virus prevalence detected in gulls and the evidence of intracontinental reassortment in AIVs from gulls indicate that gulls that interact with dabbling ducks are likely to be mixing vessels for AIVs from waterfowl and gulls. Our results support that intercontinental reassortment is rare in AIVs from gulls in Eurasia.
Collapse
Affiliation(s)
- Ragnhild Tønnessen
- Department of Food Safety & Infection Biology, Norwegian School of Veterinary Science, P.O. Box 8146 Dep N-0033, Oslo, Norway.
| | | | | | | | | | | | | |
Collapse
|
16
|
Runstadler J, Hill N, Hussein ITM, Puryear W, Keogh M. Connecting the study of wild influenza with the potential for pandemic disease. INFECTION GENETICS AND EVOLUTION 2013; 17:162-87. [PMID: 23541413 DOI: 10.1016/j.meegid.2013.02.020] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 02/25/2013] [Accepted: 02/28/2013] [Indexed: 01/08/2023]
Abstract
Continuing outbreaks of pathogenic (H5N1) and pandemic (SOIVH1N1) influenza have underscored the need to understand the origin, characteristics, and evolution of novel influenza A virus (IAV) variants that pose a threat to human health. In the last 4-5years, focus has been placed on the organization of large-scale surveillance programs to examine the phylogenetics of avian influenza virus (AIV) and host-virus relationships in domestic and wild animals. Here we review the current gaps in wild animal and environmental surveillance and the current understanding of genetic signatures in potentially pandemic strains.
Collapse
|
17
|
Piaggio AJ, Shriner SA, VanDalen KK, Franklin AB, Anderson TD, Kolokotronis SO. Molecular surveillance of low pathogenic avian influenza viruses in wild birds across the United States: inferences from the hemagglutinin gene. PLoS One 2012; 7:e50834. [PMID: 23226543 PMCID: PMC3514193 DOI: 10.1371/journal.pone.0050834] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 10/29/2012] [Indexed: 11/18/2022] Open
Abstract
A United States interagency avian influenza surveillance plan was initiated in 2006 for early detection of highly pathogenic avian influenza viruses (HPAIV) in wild birds. The plan included a variety of wild bird sampling strategies including the testing of fecal samples from aquatic areas throughout the United States from April 2006 through December 2007. Although HPAIV was not detected through this surveillance effort we were able to obtain 759 fecal samples that were positive for low pathogenic avian influenza virus (LPAIV). We used 136 DNA sequences obtained from these samples along with samples from a public influenza sequence database for a phylogenetic assessment of hemagglutinin (HA) diversity in the United States. We analyzed sequences from all HA subtypes except H5, H7, H14 and H15 to examine genetic variation, exchange between Eurasia and North America, and geographic distribution of LPAIV in wild birds in the United States. This study confirms intercontinental exchange of some HA subtypes (including a newly documented H9 exchange event), as well as identifies subtypes that do not regularly experience intercontinental gene flow but have been circulating and evolving in North America for at least the past 20 years. These HA subtypes have high levels of genetic diversity with many lineages co-circulating within the wild birds of North America. The surveillance effort that provided these samples demonstrates that such efforts, albeit labor-intensive, provide important information about the ecology of LPAIV circulating in North America.
Collapse
Affiliation(s)
- Antoinette J Piaggio
- National Wildlife Research Center, Wildlife Services, United States Department of Agriculture, Fort Collins, Colorado, United States of America.
| | | | | | | | | | | |
Collapse
|
18
|
Hill NJ, Takekawa JY, Ackerman JT, Hobson KA, Herring G, Cardona CJ, Runstadler JA, Boyce WM. Migration strategy affects avian influenza dynamics in mallards (Anas platyrhynchos). Mol Ecol 2012; 21:5986-99. [PMID: 22971007 DOI: 10.1111/j.1365-294x.2012.05735.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 06/02/2012] [Accepted: 06/18/2012] [Indexed: 11/30/2022]
Abstract
Studies of pathogen transmission typically overlook that wildlife hosts can include both migrant and resident populations when attempting to model circulation. Through the application of stable isotopes in flight feathers, we estimated the migration strategy of mallards (Anas platyrhynchos) occurring on California wintering grounds. Our study demonstrates that mallards- a principal host of avian influenza virus (AIV) in nature, contribute differently to virus gene flow depending on migration strategy. No difference in AIV prevalence was detected between resident (9.6%), intermediate-distance (9.6%) and long-distance migrants (7.4%). Viral diversity among the three groups was also comparable, possibly owing to viral pool mixing when birds converge at wetlands during winter. However, migrants and residents contributed differently to the virus gene pool at wintering wetlands. Migrants introduced virus from northern breeding grounds (Alaska and the NW Pacific Rim) into the wintering population, facilitating gene flow at continental scales, but circulation of imported virus appeared to be limited. In contrast, resident mallards acted as AIV reservoirs facilitating year-round circulation of limited subtypes (i.e. H5N2) at lower latitudes. This study supports a model of virus exchange in temperate regions driven by the convergence of wild birds with separate geographic origins and exposure histories.
Collapse
Affiliation(s)
- Nichola J Hill
- US Geological Survey, Western Ecological Research Center, San Francisco Bay Estuary Field Station, Vallejo, CA 94592, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Van Borm S, Rosseel T, Vangeluwe D, Vandenbussche F, van den Berg T, Lambrecht B. Phylogeographic analysis of avian influenza viruses isolated from Charadriiformes in Belgium confirms intercontinental reassortment in gulls. Arch Virol 2012; 157:1509-22. [PMID: 22580556 DOI: 10.1007/s00705-012-1323-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 03/22/2012] [Indexed: 11/28/2022]
Abstract
Nine influenza viruses isolated from gulls and shorebirds in Belgium (2008-2010), including H3N8, H5N2, H6N1, H11N9, H13N6, H13N8, and H16N3 subtypes, were targeted using random amplification and next-generation sequencing. The gene segments of these viruses segregated into three phylogeographic lineage types: (1) segments circulating in waterfowl in Eurasia with sporadic introduction in other species and in the Americas ("Eurasian avian"), (2) segments circulating in American waterfowl with sporadic introduction to other species and regions ("American avian"), and (3) segments circulating exclusively in gulls and shorebirds and having increased connectivity between the two hemispheres ("Charadriiformes specific"). Notably, an H6N1 and an H5N2 isolated from L. argentatus had mainly Eurasian avian genes but shared a matrix segment of American avian origin (first documentation in European gulls of transhemispheric reassortment). These data support the growing evidence of an important role of Charadriiformes birds in the dynamic nature of avian influenza ecology.
Collapse
Affiliation(s)
- Steven Van Borm
- Department of Virology, Veterinary and Agrochemical Research Center, Groeselenbergstraat 99, 1180 Uccle, Belgium.
| | | | | | | | | | | |
Collapse
|
20
|
Zell R, Scholtissek C, Ludwig S. Genetics, evolution, and the zoonotic capacity of European Swine influenza viruses. Curr Top Microbiol Immunol 2012; 370:29-55. [PMID: 23011571 DOI: 10.1007/82_2012_267] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The European swine influenza virus lineage differs genetically from the classical swine influenza viruses and the triple reassortants found in North America and Asia. The avian-like swine H1N1 viruses emerged in 1979 after an avian-to-swine transmission and spread to all major European pig-producing countries. Reassortment of these viruses with seasonal H3N2 viruses led to human-like swine H3N2 viruses which appeared in 1984. Finally, human-like swine H1N2 viruses emerged in 1994. These are triple reassortants comprising genes of avian-like H1N1, seasonal H1N1, and seasonal H3N2 viruses. All three subtypes established persistent infection chains and became prevalent in the European pig population. They successively replaced the circulating classical swine H1N1 viruses of that time and gave rise to a number of reassortant viruses including the pandemic (H1N1) 2009 virus. All three European lineages have the capacity to infect humans but zoonotic infections are benign.
Collapse
Affiliation(s)
- Roland Zell
- Department of Virology and Antiviral Therapy, Jena University Hospital, Friedrich Schiller University, Germany.
| | | | | |
Collapse
|
21
|
Hill NJ, Takekawa JY, Cardona CJ, Meixell BW, Ackerman JT, Runstadler JA, Boyce WM. Cross-seasonal patterns of avian influenza virus in breeding and wintering migratory birds: a flyway perspective. Vector Borne Zoonotic Dis 2011; 12:243-53. [PMID: 21995264 DOI: 10.1089/vbz.2010.0246] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The spread of avian influenza viruses (AIV) in nature is intrinsically linked with the movements of wild birds. Wild birds are the reservoirs for the virus and their migration may facilitate the circulation of AIV between breeding and wintering areas. This cycle of dispersal has become widely accepted; however, there are few AIV studies that present cross-seasonal information. A flyway perspective is critical for understanding how wild birds contribute to the persistence of AIV over large spatial and temporal scales, with implications for how to focus surveillance efforts and identify risks to public health. This study characterized spatio-temporal infection patterns in 10,389 waterfowl at two important locations within the Pacific Flyway--breeding sites in Interior Alaska and wintering sites in California's Central Valley during 2007-2009. Among the dabbling ducks sampled, the northern shoveler (Anas clypeata) had the highest prevalence of AIV at both breeding (32.2%) and wintering (5.2%) locations. This is in contrast to surveillance studies conducted in other flyways that have identified the mallard (Anas platyrhynchos) and northern pintail (Anas acuta) as hosts with the highest prevalence. A higher diversity of AIV subtypes was apparent at wintering (n=42) compared with breeding sites (n=17), with evidence of mixed infections at both locations. Our study suggests that wintering sites may act as an important mixing bowl for transmission among waterfowl in a flyway, creating opportunities for the reassortment of the virus. Our findings shed light on how the dynamics of AIV infection of wild bird populations can vary between the two ends of a migratory flyway.
Collapse
Affiliation(s)
- Nichola J Hill
- Western Ecological Research Center, San Francisco Bay Estuary Field Station, U.S. Geological Survey, Vallejo, California, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Wille M, Robertson GJ, Whitney H, Bishop MA, Runstadler JA, Lang AS. Extensive geographic mosaicism in avian influenza viruses from gulls in the northern hemisphere. PLoS One 2011; 6:e20664. [PMID: 21697989 PMCID: PMC3115932 DOI: 10.1371/journal.pone.0020664] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 05/08/2011] [Indexed: 12/27/2022] Open
Abstract
Due to limited interaction of migratory birds between Eurasia and America, two independent avian influenza virus (AIV) gene pools have evolved. There is evidence of low frequency reassortment between these regions, which has major implications in global AIV dynamics. Indeed, all currently circulating lineages of the PB1 and PA segments in North America are of Eurasian origin. Large-scale analyses of intercontinental reassortment have shown that viruses isolated from Charadriiformes (gulls, terns, and shorebirds) are the major contributor of these outsider events. To clarify the role of gulls in AIV dynamics, specifically in movement of genes between geographic regions, we have sequenced six gull AIV isolated in Alaska and analyzed these along with 142 other available gull virus sequences. Basic investigations of host species and the locations and times of isolation reveal biases in the available sequence information. Despite these biases, our analyses reveal a high frequency of geographic reassortment in gull viruses isolated in America. This intercontinental gene mixing is not found in the viruses isolated from gulls in Eurasia. This study demonstrates that gulls are important as vectors for geographically reassorted viruses, particularly in America, and that more surveillance effort should be placed on this group of birds.
Collapse
Affiliation(s)
- Michelle Wille
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Gregory J. Robertson
- Wildlife Research Division, Environment Canada, Mount Pearl, Newfoundland, Canada
| | - Hugh Whitney
- Animal Health Division, Department of Natural Resources, St. John's, Newfoundland, Canada
| | - Mary Anne Bishop
- Prince William Sound Science Centre, Cordova, Alaska, United States of America
| | - Jonathan A. Runstadler
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska, United States of America
| | - Andrew S. Lang
- Department of Biology, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| |
Collapse
|
23
|
Snoeck CJ, Adeyanju AT, De Landtsheer S, Ottosson U, Manu S, Hagemeijer W, Mundkur T, Muller CP. Reassortant low-pathogenic avian influenza H5N2 viruses in African wild birds. J Gen Virol 2011; 92:1172-1183. [PMID: 21248176 DOI: 10.1099/vir.0.029728-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
To investigate the presence and persistence of avian influenza virus in African birds, we monitored avian influenza in wild and domestic birds in two different regions in Nigeria. We found low-pathogenic avian influenza (LPAI) H5N2 viruses in three spur-winged geese (Plectropterus gambensis) in the Hadejia-Nguru wetlands. Phylogenetic analyses revealed that all of the genes, except the non-structural (NS) genes, of the LPAI H5N2 viruses were more closely related to genes recently found in wild and domestic birds in Europe. The NS genes formed a sister group to South African and Zambian NS genes. This suggested that the Nigerian LPAI H5N2 viruses found in wild birds were reassortants exhibiting an NS gene that circulated for at least 7 years in African birds and is part of the African influenza gene pool, and genes that were more recently introduced into Africa from Eurasia, most probably by intercontinental migratory birds. Interestingly the haemagglutinin and neuraminidase genes formed a sister branch to highly pathogenic avian influenza (HPAI) H5N2 strains found in the same wild bird species in the same wetland only 1 year earlier. However, they were not the closest known relatives of each other, suggesting that their presence in the wetland resulted from two separate introductions. The presence of LPAI H5N2 in wild birds in the Hadejia-Nguru wetlands, where wild birds and poultry occasionally mix, provides ample opportunity for infection across species boundaries, with the potential risk of generating HPAI viruses after extensive circulation in poultry.
Collapse
Affiliation(s)
- Chantal J Snoeck
- Institute of Immunology, CRP-Santé and Laboratoire National de Santé, Luxembourg
| | - Adeniyi T Adeyanju
- A. P. Leventis Ornithological Research Institute, University of Jos, Jos, Plateau State, Nigeria
| | | | - Ulf Ottosson
- Ottenby Bird Observatory, Degerhamn, Sweden.,A. P. Leventis Ornithological Research Institute, University of Jos, Jos, Plateau State, Nigeria
| | - Shiiwua Manu
- A. P. Leventis Ornithological Research Institute, University of Jos, Jos, Plateau State, Nigeria
| | | | - Taej Mundkur
- Wetlands International, Wageningen, The Netherlands
| | - Claude P Muller
- Institute of Immunology, CRP-Santé and Laboratoire National de Santé, Luxembourg
| |
Collapse
|
24
|
Ramey AM, Pearce JM, Ely CR, Guy LMS, Irons DB, Derksen DV, Ip HS. Transmission and reassortment of avian influenza viruses at the Asian-North American interface. Virology 2010; 406:352-9. [PMID: 20709346 DOI: 10.1016/j.virol.2010.07.031] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 06/28/2010] [Accepted: 07/20/2010] [Indexed: 01/23/2023]
Abstract
Twenty avian influenza viruses were isolated from seven wild migratory bird species sampled at St. Lawrence Island, Alaska. We tested predictions based on previous phylogenetic analyses of avian influenza viruses that support spatially dependent trans-hemispheric gene flow and frequent interspecies transmission at a location situated at the Asian-North American interface. Through the application of phylogenetic and genotypic approaches, our data support functional dilution by distance of trans-hemispheric reassortants and interspecific virus transmission. Our study confirms infection of divergent avian taxa with nearly identical avian influenza strains in the wild. Findings also suggest that H16N3 viruses may contain gene segments with unique phylogenetic positions and that further investigation of how host specificity may impact transmission of H13 and H16 viruses is warranted.
Collapse
Affiliation(s)
- Andrew M Ramey
- US Geological Survey, Alaska Science Center, 4210 University Drive, Anchorage, AK 99508, USA.
| | | | | | | | | | | | | |
Collapse
|
25
|
Ramey AM, Pearce JM, Flint PL, Ip HS, Derksen DV, Franson JC, Petrula MJ, Scotton BD, Sowl KM, Wege ML, Trust KA. Intercontinental reassortment and genomic variation of low pathogenic avian influenza viruses isolated from northern pintails (Anas acuta) in Alaska: Examining the evidence through space and time. Virology 2010; 401:179-89. [DOI: 10.1016/j.virol.2010.02.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 01/20/2010] [Accepted: 02/04/2010] [Indexed: 11/27/2022]
|
26
|
Pearce JM, Ramey AM, Ip HS, Gill RE. Limited evidence of trans-hemispheric movement of avian influenza viruses among contemporary North American shorebird isolates. Virus Res 2009; 148:44-50. [PMID: 19995585 DOI: 10.1016/j.virusres.2009.12.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 11/30/2009] [Accepted: 12/02/2009] [Indexed: 11/15/2022]
Abstract
Migratory routes of gulls, terns, and shorebirds (Charadriiformes) are known to cross hemispheric boundaries and intersect with outbreak areas of highly pathogenic avian influenza (HPAI). Prior assessments of low pathogenic avian influenza (LPAI) among species of this taxonomic order found some evidence for trans-hemispheric movement of virus genes. To specifically clarify the role of shorebird species in the trans-hemispheric movement of influenza viruses, assess the temporal variation of Eurasian lineages observed previously among North American shorebirds, and evaluate the necessity for continued sampling of these birds for HPAI in North America, we conducted a phylogenetic analysis of >700 contemporary sequences isolated between 2000 and 2008. Evidence for trans-hemispheric reassortment among North American shorebird LPAI gene segments was lower (0.88%) than previous assessments and occurred only among eastern North American isolates. Furthermore, half of the reassortment events occurred in just two isolates. Unique phylogenetic placement of these samples suggests secondary infection and or involvement of other migratory species, such as gulls. Eurasian lineages observed in North American shorebirds before 2000 were not detected among contemporary samples, suggesting temporal variation of LPAI lineages. Results suggest that additional bird migration ecology and virus phylogenetics research is needed to determine the exact mechanisms by which shorebirds in eastern North America become infected with LPAI that contain Eurasian lineage genes. Because of the low prevalence of avian influenza in non-eastern North America sites, thousands more shorebirds will need to be sampled to sufficiently examine genetic diversity and trans-hemispheric exchange of LPAI viruses in these areas. Alternatively, other avian taxa with higher virus prevalence could serve as surrogates to shorebirds for optimizing regional surveillance programs for HPAI through the LPAI phylogenetic approach.
Collapse
Affiliation(s)
- John M Pearce
- Alaska Science Center, U.S. Geological Survey, Anchorage, AK 99508, USA.
| | | | | | | |
Collapse
|
27
|
Kim HR, Lee YJ, Lee KK, Oem JK, Kim SH, Lee MH, Lee OS, Park CK. Genetic relatedness of H6 subtype avian influenza viruses isolated from wild birds and domestic ducks in Korea and their pathogenicity in animals. J Gen Virol 2009; 91:208-19. [DOI: 10.1099/vir.0.015800-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
28
|
Identifying errors in avian influenza virus gene sequences and implications for data usage of public databases. Genomics 2009; 95:29-36. [PMID: 19766711 DOI: 10.1016/j.ygeno.2009.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 09/08/2009] [Accepted: 09/11/2009] [Indexed: 11/25/2022]
Abstract
Public gene sequence databases have become important research tools to understand viruses and other organisms. Evidence suggests that the identifying information for some of the sequences in these databases might not belong to the sequences they are associated with. We developed two tests to conduct a comprehensive analysis of all published sequences of the hemaglutinin and neuramidase genes of avian influenza viruses (AIVs) to identify sequences that may have been misclassified. One test identified sequence pairs with highly similar nucleotide sequences despite a difference of several years between their sampling dates. Another test, which was applied to samples sequenced and deposited more than once, detected sequences with more nucleotide differences to their own than to their closest relatives. All sequences identified as misclassified were further traced to relevant publications to assess the likelihood of contamination and determine if any conclusions were associated with the use of these sequences. Our results suggested that among 4040 published gene sequences examined, approximately 0.8% might be misclassified and that publications using these sequences may include inaccurate statements. Findings from this report suggest that using laboratory-adapted strains and handling multiple samples simultaneously increases the risk of contamination. The tests reported here may be useful for screening new submissions to public sequence databases.
Collapse
|