1
|
Mei Z, Denis M. As pertussis returns to pre-COVID19 endemicity, vaccination remains our best ally against an evolving Bordetella pertussis. Emerg Microbes Infect 2025; 14:2466691. [PMID: 39945669 PMCID: PMC11869333 DOI: 10.1080/22221751.2025.2466691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/01/2025] [Accepted: 02/07/2025] [Indexed: 02/18/2025]
Affiliation(s)
- Zeng Mei
- Children’s Hospital of Fudan University, Shanghai, People’s Republic of China
| | | |
Collapse
|
2
|
Hu Y, Zhou L, Du Q, Shi W, Meng Q, Yuan L, Hu H, Ma L, Li D, Yao K. Sharp rise in high-virulence Bordetella pertussis with macrolides resistance in Northern China. Emerg Microbes Infect 2025; 14:2475841. [PMID: 40042368 PMCID: PMC11921162 DOI: 10.1080/22221751.2025.2475841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 02/14/2025] [Accepted: 03/02/2025] [Indexed: 03/20/2025]
Abstract
OBJECTIVE To elucidate the evolution of antigen genotype and antimicrobial resistance distribution of Bordetella pertussis (B. pertussis) from 2019 to 2023 in northern China. METHODS Polymerase chain reaction (PCR) amplification and sequencing were utilized to identify the seven antigen genotypes (ptxA, ptxC, ptxP, prn, fim2, fim3, tcfA). E-test and Kirby-Bauer (K-B) disc diffusion were employed to determine the minimum inhibitory concentration (MIC) and zone of inhibition for B. pertussis against antimicrobial agents. Subsequently, 50 isolates were chosen for multi-locus variable-number tandem-repeat analysis (MLVA) typing and whole-genome sequencing. RESULTS A total of 442 B. pertussis isolates were determined. The strains with high virulence harbouring ptxP3 allele surged from 13.5% (21/155) in 2019-2021 to 93.0% (267/287) in 2022-2023. Concurrently, the erythromycin resistance B. pertussis (ERBP) in ptxP3 isolates markedly rose from 42.9% (9/21) in 2019-2021 to 100% (267/267) in 2022-2023. The majority of ptxP3 isolates (76.0%,219/288) exhibited the ptxA1/ptxC1/prn2/fim2-1/fim3A/tcfA-2 genotype. Among the 442 confirmed patients, the children aged 3-14 years escalated rapidly from 13.5% in 2019 to 45.6% in 2023. The MT28 strains were responsible for 66.0% (33/50) of the tested ones, in which ERBP was prevalent at 87.9% (29/33). All the present sequenced ptxP3-ERBP strains (31/31) were clustered into the sub-lineage IVd. CONCLUSIONS These results suggested the clonal spread of the ptxP3-ERBP lineage of B. pertussis with high virulence and macrolides resistance could be an important cause of the recent pertussis resurgence in China. Furthermore, the increased cases among pre-school and school-aged children underscore the importance of booster vaccination in this population.
Collapse
Affiliation(s)
- Yahong Hu
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics, Laboratory of Infection and Microbiology, Beijing PaediatricPediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, People’s Republic of China
| | - Lin Zhou
- Department of Clinical Laboratory, Capital Institute of, Beijing, People’s Republic of China
| | - Qianqian Du
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics, Laboratory of Infection and Microbiology, Beijing PaediatricPediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, People’s Republic of China
| | - Wei Shi
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics, Laboratory of Infection and Microbiology, Beijing PaediatricPediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, People’s Republic of China
| | - Qinghong Meng
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics, Laboratory of Infection and Microbiology, Beijing PaediatricPediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, People’s Republic of China
| | - Lin Yuan
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics, Laboratory of Infection and Microbiology, Beijing PaediatricPediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, People’s Republic of China
| | - Huili Hu
- Department of Pediatrics, Beijing Shijingshan Hospital, Shijingshan Teaching Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Lijuan Ma
- Department of Clinical Laboratory, Capital Institute of, Beijing, People’s Republic of China
| | | | - Kaihu Yao
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics, Laboratory of Infection and Microbiology, Beijing PaediatricPediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, People’s Republic of China
| |
Collapse
|
3
|
Li Z, Xiao F, Hou Y, Jia B, Zhuang J, Cao Y, Ma J, Zhao J, Xu Z, Jia Z, Liu F, Pang L, Liu J. Genomic epidemiology and evolution of Bordetella pertussis under the vaccination pressure of acellular vaccines in Beijing, China, 2020-2023. Emerg Microbes Infect 2025; 14:2447611. [PMID: 39725566 PMCID: PMC11721623 DOI: 10.1080/22221751.2024.2447611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/25/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Pertussis (or whooping cough) has experienced a global resurgence despite widespread vaccine efforts. In China, the incidence of pertussis has rapidly increased, particularly following the COVID-19 pandemic. Whole-genome sequencing analysis was performed on 60 Bordetella pertussis strains isolated in Beijing from 2020-2023, and the sequences were compared with those of 635 strains from China and 943 strains from other countries. In this study, the genetic evolution of B. pertussis was investigated, focusing on key virulence genes (ptxP, ptxA, prn, fim2, fim3, tcfA) and the resistance-related locus A2047 across different periods and regions. The dominant antigen genotype among the 60 isolates was ptxP3/prn2/ptxA1/fim2-1/fim3-1/tcfA2 (88.3%), differing from the prevalent genotype ptxP-1/prn-1/ptxA-1 in Beijing prior to 2019 and the vaccine strain genotype ptxP-1/prn-1/ptxA-2/fim2-1/fim3-1/tcfA2. Evolutionary analysis revealed significant genetic shifts associated with the introduction of vaccines, particularly acellular vaccines. Initially, the prevalent genotypes included ptxP-1, prn-1, ptxA-2, fim2-2, and fim3-2. However, currently, ptxP-3, prn-2 and ptxA-1 have become predominant globally, indicating vaccine-induced selection pressure. Additionally, all 60 isolated strains (100%) presented the A2047G mutation associated with erythromycin resistance, of which ptxP3 accounted for 91.7%. Macrolide-resistant Bordetella pertussis (MRBP) is widespread in China, and the prevalence of ptxP3-MRBP may be increasing. The significant changes of dominance of subtypes in Beijing in recent years underscore the need for continuous surveillance and adaptation of pertussis vaccination strategies.
Collapse
Affiliation(s)
- Zhen Li
- Department of Immunization and Prevention, Beijing Chaoyang District Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Fei Xiao
- Experimental research center, Capital Institute of Pediatrics, Beijing, People’s Republic of China
| | - Yue Hou
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Bin Jia
- Department of Immunization and Prevention, Beijing Chaoyang District Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Ji Zhuang
- School of Public Health, Bao Tou Medical College, Baotou, People’s Republic of China
| | - Yang Cao
- Department of Immunization and Prevention, Beijing Chaoyang District Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Jianxin Ma
- Department of Immunization and Prevention, Beijing Chaoyang District Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Jianhong Zhao
- Department of Immunization and Prevention, Beijing Chaoyang District Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Zengquan Xu
- School of Public Health, Hebei Medical University, Shijiazhuang, People’s Republic of China
| | - Zhe Jia
- School of Public Health, Bao Tou Medical College, Baotou, People’s Republic of China
| | - Fang Liu
- Department of Immunization and Prevention, Beijing Chaoyang District Center for Disease Control and Prevention, Beijing, People’s Republic of China
| | - Lin Pang
- Department of Pediatrics, Beijing Ditan Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Jie Liu
- Department of Immunization and Prevention, Beijing Chaoyang District Center for Disease Control and Prevention, Beijing, People’s Republic of China
| |
Collapse
|
4
|
Wang S, Zhang S, Liu J. Resurgence of pertussis: Epidemiological trends, contributing factors, challenges, and recommendations for vaccination and surveillance. Hum Vaccin Immunother 2025; 21:2513729. [PMID: 40491090 DOI: 10.1080/21645515.2025.2513729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 05/17/2025] [Accepted: 05/27/2025] [Indexed: 06/11/2025] Open
Abstract
Pertussis, a respiratory disease caused by Bordetella pertussis, remains a global health challenge despite decades of vaccination. The inclusion of diphtheria, tetanus, and whole-cell pertussis (DTwP) vaccines in the World Health Organization (WHO) Expanded Program on Immunization (EPI) in 1974 significantly reduced incidence worldwide. However, since the 1980s, pertussis resurgence has been observed in both high-income and low- and middle-income nations. The COVID-19 pandemic further disrupted vaccination, exacerbating outbreaks. Contributing factors include genetic mutations in Bordetella pertussis, vaccine differences, waning immunity, inadequate immunization, disease cyclicity, and the impact of the COVID-19 pandemic, coupled with improved surveillance, diagnostics, and awareness. Pertussis continues to impose a substantial disease burden, with infants being the most vulnerable. This review examines pertussis epidemiology from 1980 to 2023, analyzing resurgence drivers and evaluating current progress and persistent challenges in vaccination strategies and surveillance efforts.
Collapse
Affiliation(s)
- Sijia Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Shimo Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Jue Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Institute for Global Health and Development, Peking University, Beijing, China
| |
Collapse
|
5
|
Cameron SK, Preston A. A role for genomics-based studies of Bordetella pertussis adaptation. Curr Opin Infect Dis 2025; 38:201-207. [PMID: 40167049 PMCID: PMC12052047 DOI: 10.1097/qco.0000000000001109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
PURPOSE OF REVIEW Cases of whooping cough (pertussis) have rebounded strongly from the very low incidence observed during the pandemic. This re-emergence is characterized by changes in epidemiology. Here we describe the importance of genomics to monitor and understand the drivers to these changes. RECENT FINDINGS Changes in the genotype of strains isolated during recent outbreaks suggests that the pandemic disturbed the global Bordetella pertussis population structure. The emergence of dominant and antibiotic-resistant clones in China is of concern even though the source of antibiotic selection pressure on B. pertussis is unclear. A recent study illustrates how to use genomic data to go beyond just surveillance, inferring the relative fitness of genotypes and the identification of specific mutations distinguishing such lineages. Such approaches are required to understand the forces driving adaptation. SUMMARY Pertussis is resurgent in many countries, involving changes in epidemiology and strong suggestions of strain adaptation. The continued use of vaccination, and design of new interventions, to control pertussis requires an understanding of these changes. Genomic analyses will be key to this, involving integration of more complete host and pathogen parameters than have been used to date.
Collapse
Affiliation(s)
- Sarah K Cameron
- The Milner Centre for Evolution and Department of Life Sciences, University of Bath, Bath, United Kingdom
| | | |
Collapse
|
6
|
Niinikoski V, Barkoff AM, Mertsola J, Holubova J, Masin J, Sebo P, He Q. Alterations in the expression of Bordetella pertussis antigens in relation to the use of acellular pertussis vaccine in Finland. Vaccine 2025; 58:127279. [PMID: 40383080 DOI: 10.1016/j.vaccine.2025.127279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 05/12/2025] [Accepted: 05/14/2025] [Indexed: 05/20/2025]
Abstract
BACKGROUND Bordetella pertussis isolates which do not express some of acellular pertussis vaccine (aPv) antigens, e.g. pertactin (PRN), have been increasingly reported in countries using aPvs. In Finland, primary pertussis vaccination with whole-cell vaccine was replaced by aPv containing pertussis toxin (PT) and filamentous hemagglutinin (FHA) in 2005 and then by aPv containing PT, FHA, and PRN in 2009. We aimed to study alterations in the expression of FHA, PRN, and PT, three antigens included in aPvs and adenylate cyclase toxin (ACT) not included in current aPvs, among Finnish isolates collected during 1991-2020. METHODS Of 904 isolates collected by the Finnish Reference Laboratory for Pertussis during 1991-2020, 302 were randomly included. An adapted, monoclonal antibody based, antigen expression ELISA, including the culture of B. pertussis in Stainer-Scholte medium, was performed to quantify the expression of ACT, FHA, PRN, and PT of each isolate. ACT activity was also measured for 16 isolates. Arbitrary units were used for comparing levels of each antigen expression of isolates grouped in every five years. FINDINGS Following the implementation of aPv in 2005, B. pertussis isolates exhibited a 1.75-fold increase for FHA (p < 0.001) and a 1.5-fold increase for ACT (p < 0.0041) expression until 2020. No FHA or ACT deficient isolates were detected. As the number of PRN deficient isolates has significantly increased with the time, the amount of PRN produced by the positive isolates has also started to decrease, especially after the use of aPv containing PRN. During this period, fluctuations in PT expression were observed. INTERPRETATION The study demonstrated that in response to aPv-induced selection pressure, different types of selection of B. pertussis has occurred. For FHA and ACT, a steady increase in their production is observed, whereas the frequency of PRN deficient isolates is increased with time.
Collapse
Affiliation(s)
- Vili Niinikoski
- Finnish Reference Laboratory for Pertussis and Diphtheria, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Alex-Mikael Barkoff
- Finnish Reference Laboratory for Pertussis and Diphtheria, Institute of Biomedicine, University of Turku, Turku, Finland; InFLAMES flagship center, University of Turku, Finland
| | - Jussi Mertsola
- Finnish Reference Laboratory for Pertussis and Diphtheria, Institute of Biomedicine, University of Turku, Turku, Finland; InFLAMES flagship center, University of Turku, Finland
| | - Jana Holubova
- Laboratory of Molecular Biology of Bacterial Pathogens, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Jiri Masin
- Laboratory of Molecular Biology of Bacterial Pathogens, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Peter Sebo
- Laboratory of Molecular Biology of Bacterial Pathogens, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Qiushui He
- Finnish Reference Laboratory for Pertussis and Diphtheria, Institute of Biomedicine, University of Turku, Turku, Finland; InFLAMES flagship center, University of Turku, Finland.
| |
Collapse
|
7
|
Juscamayta-López E, Vega-Abad B, Valdivia F, Soto MP, Horna H, García-de-la-Guarda R. Vaccine antigen-based genotyping of Bordetella pertussis by direct Sanger sequencing of clinical samples in Peru from 2018 to 2019. Microbiol Spectr 2025:e0200424. [PMID: 40366145 DOI: 10.1128/spectrum.02004-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 01/30/2025] [Indexed: 05/15/2025] Open
Abstract
Despite widespread vaccination, pertussis (caused by Bordetella pertussis) persists in many countries, frequently causing outbreaks and severe cases in infants. The resurgence of pertussis may be due to genetic changes in the vaccine antigens of circulating B. pertussis strains. However, current typing methods, which depend on bacterial cultures, hinder our understanding of B. pertussis genotypes, especially in developing countries. This study aimed to analyze vaccine antigen-based genotypic variants (ptxP, ptxA, fim3, and prn) of B. pertussis in Peru from 2018 to 2019 via direct Sanger sequencing of nasopharyngeal swabs (n = 96). PCR-based sequencing was successful for the genes ptxP in 86% (83/96), ptxA in 100% (96/96), fim3 in 75% (72/96), and prn in 68% (65/96) of the samples. The ptxP3 variant was found in 100% (83/83), ptxA1 in 100% (96/96), fim3-1 in 97.3% (70/72), fim3-2 in 2.7% (2/72), and prn2 in 100% (65/65) of the samples. Sixty-three samples yielded a complete allelic profile, with genotype VI (ptxP3-ptxA1-fim3-1-prn2) predominating nationwide (96.8%), mainly in Lima (29.5%), Amazonas (13.1%), Callao (11.5%), and La Libertad (11.5%). Genotype VII (ptxP3-ptxA1-fim3-2-prn2) was less common (3.2%), found in Lima (50%) and Callao (50%). The predominance and expansion of genotype VI suggested the presence of biological traits linked to infection, possibly due to the ptxP3 allele, such as high respiratory colonization or increased pertussis toxin production, which could potentially increase disease transmission and severity. These findings will facilitate Peru's ability to monitor and control B. pertussis, improving public health responses and reducing the outbreak incidence and severity. IMPORTANCE Despite widespread vaccination, pertussis (caused by Bordetella pertussis) still causes severe outbreaks in infants worldwide. Genetic changes in the vaccine antigens of B. pertussis strains may drive this resurgence. Current culture-based typing methods limit our understanding of these genotypes, particularly in developing countries. This study provides valuable insights into the genotypic variability of B. pertussis in Peru from 2018 to 2019, employing an isolation-free genotyping method allowing the direct Sanger sequencing of vaccine antigen genes from clinical samples. These findings can enhance public health decision-making by improving our understanding of the genetic changes that drive severe pertussis outbreaks, particularly in developing countries that use whole-cell vaccines. This knowledge enables rapid outbreak responses, improved vaccine strategies, and strengthened surveillance, prevention, and control measures.
Collapse
Affiliation(s)
| | - Betsabé Vega-Abad
- Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Peru
- Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | - Faviola Valdivia
- Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Peru
| | - María Pía Soto
- Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Peru
| | - Helen Horna
- Centro Nacional de Salud Pública, Instituto Nacional de Salud, Lima, Peru
| | | |
Collapse
|
8
|
Iwasaki T, Koide K, Kido T, Nakagawa S, Goto M, Kenri T, Suzuki H, Otsuka N, Takada H. Fatal case of macrolide-resistant Bordetella pertussis infection, Japan, 2024. J Infect Chemother 2025; 31:102727. [PMID: 40348379 DOI: 10.1016/j.jiac.2025.102727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 04/13/2025] [Accepted: 05/02/2025] [Indexed: 05/14/2025]
Abstract
Here, we present a fatal case of macrolide-resistant Bordetella pertussis (MRBP) infection in a 1-month-old female infant born prematurely at 34 weeks of gestation. The infant, unvaccinated against pertussis, exhibited respiratory failure, bilateral pneumonia, and hyperleukocytosis (109.8 × 109/L) on day 44 of life. Despite initial treatment with azithromycin and a high-flow nasal cannula, her condition deteriorated rapidly, requiring mechanical ventilation and venoarterial extracorporeal membrane oxygenation. The infant passed away four days after symptom onset. Nasopharyngeal swabs confirmed the presence of B. pertussis carrying an A2047G mutation in the 23S rRNA gene, resulting in significant macrolide resistance. Phylogenetic analysis indicated that the isolate was genetically closer to Chinese MT28-MRBP isolates than to previously identified Japanese isolates. The combination of early infancy and delayed administration of effective antimicrobials likely contributed to the unfavorable outcome in this case. It is imperative to monitor the global dissemination of MRBPs and enhance local diagnostic capabilities.
Collapse
Affiliation(s)
- Tomoya Iwasaki
- Department of Pediatrics, University of Tsukuba Hospital, Tsukuba, Japan
| | - Kentaro Koide
- Laboratory of Pertussis Control, Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Takahiro Kido
- Department of Pediatrics, University of Tsukuba Hospital, Tsukuba, Japan.
| | - Sho Nakagawa
- Department of Pediatrics, University of Tsukuba Hospital, Tsukuba, Japan
| | - Masataka Goto
- Laboratory of Pertussis Control, Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tsuyoshi Kenri
- Laboratory of Pertussis Control, Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hiromichi Suzuki
- Department of Infectious Diseases, University of Tsukuba Hospital, Tsukuba, Japan
| | - Nao Otsuka
- Laboratory of Pertussis Control, Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hidetoshi Takada
- Department of Pediatrics, University of Tsukuba Hospital, Tsukuba, Japan; Department of Child Health, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
9
|
Irulappan M, Jacob JJ, Madhumathi J, Lydia Jennifer S, Kumaresan V, Kumar R, Veeraraghavan B, Sangal L, Nithiyanandam S, Mutreja A. Pertussis in India: Vaccine-driven evolution, waning immunity, and the urgent need for Tdap boosters. Indian J Med Microbiol 2025; 55:100846. [PMID: 40221094 DOI: 10.1016/j.ijmmb.2025.100846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND Pertussis, once controlled by whole-cell pertussis (wP) vaccines, has resurged due to the shift to acellular pertussis (aP) vaccines, waning immunity, antigenic variation, and macrolide resistant Bordetella pertussis strains. Despite high DTwP coverage, India continues to face a significant burden and this review synthesizes current knowledge and advocates for enhanced surveillance, updated vaccination strategies, and targeted interventions to reduce the clinical and public health impact of pertussis. METHODS Epidemiological data, genetic studies, and immunological insights from global and Indian contexts were reviewed. Information was obtained from PubMed, MEDLINE, Google Scholar, and WHONET. Particular attention was given to genomic surveillance, vaccine-induced antigenic shifts, and real-world outcomes of DTwP and aP vaccines. RESULTS Despite high DTwP vaccine coverage, India accounts for 26.5 % of global pertussis cases, driven by waning immunity, low booster uptake, and the spread of vaccine-escaped ptxP3 strains. The emergence of macrolide resistance further challenges disease control, with selective pressures influencing genetic shifts in B. pertussis. While wP vaccines provide long-lasting immunity, aP vaccines offer shorter protection and induce linked-epitope suppression, contributing to the resurgence of pertussis. CONCLUSION There is an urgent need for Tdap booster programs in adolescents and adults to address waning immunity and evolving strains. Strengthened genomic and immunological surveillance, alongside innovative vaccine formulations and delivery systems, are critical forsustainable pertussis control in India.
Collapse
Affiliation(s)
- Madhumathi Irulappan
- Department of Clinical Microbiology, Christian Medical College & Hospital, Vellore, India.
| | - Jobin John Jacob
- Department of Clinical Microbiology, Christian Medical College & Hospital, Vellore, India.
| | - Jayaprakasam Madhumathi
- Division of Epidemiology and Communicable Diseases, Indian Council of Medical Research -Headquarters, New Delhi, India.
| | - S Lydia Jennifer
- Department of Clinical Microbiology, Christian Medical College & Hospital, Vellore, India.
| | | | | | - Balaji Veeraraghavan
- Department of Clinical Microbiology, Christian Medical College & Hospital, Vellore, India.
| | - Lucky Sangal
- World Health Organisation South- East Asia Region, India.
| | | | - Ankur Mutreja
- Department of Clinical Microbiology, Christian Medical College & Hospital, Vellore, India; Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, United Kingdom; Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom; PATH - South Asia, New Delhi, India.
| |
Collapse
|
10
|
Leroux P, Matczak S, Bouchez V, Volant S, Ouziel A, Launay E, Faye A, Rabier V, Sarlangue J, Jeziorski E, Maakaroun-Vermesse Z, Madhi F, Pinquier D, Lorrot M, Pouletty M, Cantais A, Javouhey E, Aït Belghiti F, Guillot S, Rodrigues C, Brisse S, Cohen JF, Toubiana J. Association between pertactin-producing Bordetella pertussis and fulminant pertussis in infants: a multicentre study in France, 2008-2019. Clin Microbiol Infect 2025; 31:233-239. [PMID: 39306091 DOI: 10.1016/j.cmi.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/05/2024] [Accepted: 09/15/2024] [Indexed: 10/19/2024]
Abstract
OBJECTIVES Virulence factors of the causative agent, Bordetella pertussis, may be involved in fulminant pertussis, the most severe form of whooping cough (pertussis) in infants. We aimed to assess the association between fulminant pertussis and the status of pertactin (PRN) production of B. pertussis clinical isolates. METHODS Symptomatic infants aged <6 months with a positive B. pertussis culture from 2008-2019 were included. B. pertussis isolates and clinical data were collected from French hospital laboratories through the national pertussis surveillance network. Fulminant pertussis was defined as a case with a leukocyte count >40 × 109/L and at least one of the following criteria: respiratory failure, pulmonary hypertension, shock, or multiple organ failure. PRN production was assessed by western blotting. Baseline characteristics of infants and microbiological findings were compared between patients with and without fulminant pertussis. To identify patient and microbiological features associated with fulminant pertussis, a multivariable modified Poisson regression model was developed with confounders selected using a directed acyclic graph. RESULTS We included 361 infants with pertussis (median age 63 days [interquartile range, 39-86]), of whom 32 (9%) progressed to fulminant pertussis. None of the mothers was vaccinated during pregnancy. Of the 361 implicated B. pertussis isolates, 294 (81%) produced PRN. Patients with fulminant pertussis were more often neonates (adjusted relative risk [aRR]: 3.62, 95% confidence interval [CI]: 1.76-7.44), infants with a history of prematurity (aRR: 7.08, 95% CI: 3.06-16.36), unvaccinated infants (aRR: 4.42, 95% CI: 1.02-19.24), and infants infected by PRN-producing isolates (aRR: 3.76, 95% CI: 1.02-13.83). DISCUSSION PRN-producing B. pertussis was independently associated with an increased risk of fulminant pertussis. In a context where PRN-containing acellular pertussis vaccines favour the emergence of PRN-deficient isolates, our study suggests a positive role for such vaccines in driving the evolution of B. pertussis populations towards reduced virulence.
Collapse
Affiliation(s)
- Pauline Leroux
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
| | - Soraya Matczak
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France
| | - Valérie Bouchez
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France; National Reference Center for Whooping Cough and Other Bordetella Infections, Institut Pasteur, Paris, France
| | - Stevenn Volant
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, Paris, France
| | - Antoine Ouziel
- Department of Pediatric Emergency and Intensive Care Unit, Hospices Civils de Lyon, Lyon, France
| | - Elise Launay
- University Hospital Center of Nantes, Department of General Pediatrics and Pediatric Infectious Diseases, Nantes, France
| | - Albert Faye
- Department of General Pediatrics, Hôpital Robert Debré, APHP, Université Paris Cité, Paris, France
| | - Valérie Rabier
- Department of Internal Medicine and Infectious Diseases, Center of Saint-Brieuc, France
| | - Jean Sarlangue
- Department of General Pediatrics, University Hospital Center of Bordeaux, Bordeaux, France
| | - Eric Jeziorski
- Department of General Pediatrics, University Hospital Center of Montpellier, Montpellier, France
| | | | - Fouad Madhi
- Department of General Pediatrics, Centre Hospitalier Intercommunal Créteil, Université Paris Est, Créteil, France
| | - Didier Pinquier
- Neonatal and Pediatric Intensive Care Department, University Hospital Center Charles Nicolle, Rouen University, Rouen, France
| | - Mathie Lorrot
- Department of General Pediatrics, Hôpital Armand-Trousseau, APHP, Université Paris Sorbonne, Paris, France
| | - Marie Pouletty
- Department of Pediatric Intensive Care Unit, Necker-Enfants Malades Hospital, APHP, Université Paris Cité, Paris, France
| | - Aymeric Cantais
- Department of Pediatric Emergency, University Hospital Center of Saint Etienne, Saint Etienne, France
| | - Etienne Javouhey
- Department of Pediatric Emergency and Intensive Care Unit, Hospices Civils de Lyon, Lyon, France
| | - Fatima Aït Belghiti
- Unité des Infections Respiratoires et Vaccination, Santé publique France, Saint Maurice, France
| | - Sophie Guillot
- National Reference Center for Whooping Cough and Other Bordetella Infections, Institut Pasteur, Paris, France
| | - Carla Rodrigues
- National Reference Center for Whooping Cough and Other Bordetella Infections, Institut Pasteur, Paris, France
| | - Sylvain Brisse
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France; National Reference Center for Whooping Cough and Other Bordetella Infections, Institut Pasteur, Paris, France
| | - Jérémie F Cohen
- Department of General Pediatrics and Pediatric Infectious Diseases, Hôpital Necker-Enfants Malades, APHP, Université Paris Cité, Paris, France; Obstetrical, Perinatal and Pediatric Epidemiology Research Team, Center of Research in Epidemiology and Statistics, INSERM UMR 1153, Université Paris Cité, Paris, France
| | - Julie Toubiana
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, Paris, France; National Reference Center for Whooping Cough and Other Bordetella Infections, Institut Pasteur, Paris, France; Department of General Pediatrics and Pediatric Infectious Diseases, Hôpital Necker-Enfants Malades, APHP, Université Paris Cité, Paris, France.
| |
Collapse
|
11
|
Kardos P, Correia de Sousa J, Heininger U, Konstantopoulos A, MacIntyre CR, Middleton D, Nolan T, Papi A, Rendon A, Rizzo A, Sampson K, Sette A, Sobczyk E, Tan T, Weil-Olivier C, Weinberger B, Wilkinson T, Wirsing von König CH. Understanding the impact of adult pertussis and current approaches to vaccination: A narrative review and expert panel recommendations. Hum Vaccin Immunother 2024; 20:2324547. [PMID: 38564339 PMCID: PMC10989709 DOI: 10.1080/21645515.2024.2324547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/25/2024] [Indexed: 04/04/2024] Open
Abstract
Pertussis has several notable consequences, causing economic burden, increased strain on healthcare facilities, and reductions in quality of life. Recent years have seen a trend toward an increase in pertussis cases affecting older children and adults. To boost immunity, and protect vulnerable populations, an enduring approach to vaccination has been proposed, but gaps remain in the evidence surrounding adult vaccination that are needed to inform such a policy. Gaps include: the true incidence of pertussis and its complications in adults; regional variations in disease recognition and reporting; and incidence of severe disease, hospitalizations, and deaths in older adults. Better data on the efficacy/effectiveness of pertussis vaccination in adults, duration of protection, and factors leading to poor vaccine uptake are needed. Addressing the critical evidence gaps will help highlight important areas of unmet need and justify the importance of adult pertussis vaccination to healthcare professionals, policymakers, and payers.
Collapse
Affiliation(s)
- Peter Kardos
- Group Practice & Center, Allergy, Respiratory and Sleep Medicine, Maingau Hospital of the Red Cross, Frankfurt am Main, Germany
| | - Jaime Correia de Sousa
- Life and Health Sciences Research Institute, School of Medicine, University of Minho School of Medicine, Braga, Portugal
| | - Ulrich Heininger
- Pediatric Infectious Diseases and Vaccinology, University of Basel Children’s Hospital, BaselSwitzerland
| | | | - C. Raina MacIntyre
- Kirby Institute, UNSW Medicine, University of New South Wales, Sydney, Australia
| | - Donald Middleton
- Department of Pediatrics, University of Pittsburgh Medical Center, Pittsburgh, USA
| | - Terry Nolan
- Department of Infectious Diseases, University of Melbourne, Melbourne, Australia
| | - Alberto Papi
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Adrian Rendon
- Pulmonary/Critical Care Division, Autonomous University of Nuevo León, San Nicolás de los Garza, Mexico
| | | | - Kim Sampson
- Immunisation Coalition, Melbourne, Australia
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, San Diego, USA
| | - Elizabeth Sobczyk
- AMDA – The Society for Post-Acute and Long-Term Care Medicine, Denver, USA
| | - Tina Tan
- Feinberg School of Medicine, Northwestern University, Chicago, USA
| | | | - Birgit Weinberger
- Institute for Biomedical Aging Research, Universität Innsbruck, Innsbruck, Austria
| | - Tom Wilkinson
- Faculty of Medicine, University of Southampton, Southampton, UK
| | | |
Collapse
|
12
|
Luu LDW, Rafique R, Payne M, Octavia S, Robson J, Sintchenko V, Lan R. Deciphering Bordetella pertussis epidemiology through culture-independent multiplex amplicon and metagenomic sequencing. J Clin Microbiol 2024; 62:e0117824. [PMID: 39494864 PMCID: PMC11633092 DOI: 10.1128/jcm.01178-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/04/2024] [Indexed: 11/05/2024] Open
Abstract
Whooping cough (pertussis) has re-emerged despite high vaccine coverage in Australia and many other countries worldwide, partly attributable to genetic adaptation of the causative organism, Bordetella pertussis, to vaccines. Therefore, genomic surveillance has become essential to monitor circulating strains for these genetic changes. However, increasing uptake of PCR for the diagnosis of pertussis has affected the availability of cultured isolates for typing. In this study, we evaluated the use of targeted multiplex PCR (mPCR) amplicon sequencing and shotgun metagenomic sequencing for culture-independent typing of B. pertussis directly from respiratory swabs. We developed a nine-target mPCR amplicon assay that could accurately type major lineages [ptxP3/non-ptxpP3, fim3A/B, fhaB3/non-fhaB3, and epidemic lineages (ELs) 1-5] circulating in Australia. Validation using DNA from isolates and 178 residual specimens collected in 2010-2012 (n = 87) and 2019 (n = 91) showed that mPCR amplicon sequencing was highly sensitive with a limit of detection of 4.6 copies [IS481 cycle threshold (Ct) 27.3]. Shotgun metagenomic sequencing was successful in genotyping B. pertussis in 84% of clinical specimens with PCR Ct < 24 and was concordant with mPCR typing results. The results revealed an expansion of EL4 strains from 2010 to 2012 to 2019 in Australia and identified unrecognized co-circulating cases of Bordetella holmesii. This study provides valuable insight into the circulating lineages in Australia prior to the COVID-19 pandemic during which border closure and other interventions reduced pertussis cases to an all-time low, and paves the way for the genomic surveillance of B. pertussis in the era of culture-independent PCR-based diagnosis. IMPORTANCE In this paper, we evaluated the use of targeted multiplex PCR (mPCR) amplicon sequencing and shotgun metagenomic sequencing for culture-independent typing of Bordetella pertussis directly in respiratory swabs. We first developed a novel targeted mPCR amplicon sequencing assay that can type major circulating lineages and validated its accuracy and sensitivity on 178 DNA extracts from clinical swabs. We also demonstrate the feasibility of using deep metagenomic sequencing for determining strain lineage and markers of virulence, vaccine adaptation, macrolide resistance, and co-infections. Our culture-independent typing methods applied to clinical specimens revealed the expansion of a major global epidemic lineage in Australia (termed EL4) just prior to the COVID-19 pandemic. It also detected cases of previously hidden co-infections from another Bordetella species called Bordetella holmesii. These findings offer valuable insight into the circulating pertussis lineages in Australia prior to the COVID-19 pandemic during which border closure and other interventions reduced pertussis cases to an all-time low. It also provides comparative data for future surveillance as pertussis resurgence after the COVID-19 pandemic has been reported this year in Australia and many other countries. Overall, our paper demonstrates the utility, sensitivity, and specificity of mPCR amplicon and metagenomic sequencing-based culture-independent typing of B. pertussis, which not only paves the way for culture-independent genomic surveillance of B. pertussis but also for other pathogens in the era of PCR-based diagnosis.
Collapse
Affiliation(s)
- Laurence Don Wai Luu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Raisa Rafique
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Michael Payne
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Sophie Octavia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Jennifer Robson
- Sullivan Nicolaides Pathology, Brisbane, Queensland, Australia
| | - Vitali Sintchenko
- Centre for Infectious Diseases and Microbiology–Public Health, Institute of Clinical Pathology and Medical Research–New South Wales Health Pathology, Westmead Hospital, Westmead, New South Wales, Australia
- Sydney Institute for Infectious Diseases, University of Sydney, Sydney, New South Wales, Australia
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
13
|
Yahong H, Mengyang G, Meng Q, Yu D, Kaihu Y. Rising pertussis cases and deaths in China: current trends and clinical solutions. Emerg Microbes Infect 2024; 13:2389086. [PMID: 39101270 PMCID: PMC11340210 DOI: 10.1080/22221751.2024.2389086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Pertussis, an acute respiratory infection caused by Bordetella pertussis, has recently experienced a dramatic increase in incidence and associated deaths in China, drawing significant clinical attention. This article retrospectively analyzes national data on pertussis incidence and mortality from 2010 to 2024, exploring potential factors contributing to this trend. It also discusses strategies for enhancing vaccination programs, improving early diagnosis and treatment, and optimizing the clinical management of high-risk infants, with the aim of addressing the challenges posed by the current pertussis epidemic.
Collapse
Affiliation(s)
- Hu Yahong
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics, Laboratory of Infection and Microbiology, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, People’s Republic of China
| | - Guo Mengyang
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics, Laboratory of Infection and Microbiology, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, People’s Republic of China
| | - Qinghong Meng
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics, Laboratory of Infection and Microbiology, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, People’s Republic of China
| | - Dan Yu
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics, Laboratory of Infection and Microbiology, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, People’s Republic of China
| | - Yao Kaihu
- Key Laboratory of Major Diseases in Children, Ministry of Education, National Clinical Research Center for Respiratory Diseases, National Key Discipline of Pediatrics, Laboratory of Infection and Microbiology, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, People’s Republic of China
| |
Collapse
|
14
|
Domenech de Cellès M, Rohani P. Pertussis vaccines, epidemiology and evolution. Nat Rev Microbiol 2024; 22:722-735. [PMID: 38907021 DOI: 10.1038/s41579-024-01064-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2024] [Indexed: 06/23/2024]
Abstract
Pertussis, which is caused by Bordetella pertussis, has plagued humans for at least 800 years, is highly infectious and can be fatal in the unvaccinated, especially very young infants. Although the rollout of whole-cell pertussis (wP) vaccines in the 1940s and 1950s was associated with a drastic drop in incidence, concerns regarding the reactogenicity of wP vaccines led to the development of a new generation of safer, acellular (aP) vaccines that have been adopted mainly in high-income countries. Over the past 20 years, some countries that boast high aP coverage have experienced a resurgence in pertussis, which has led to substantial debate over the basic immunology, epidemiology and evolutionary biology of the bacterium. Controversy surrounds the duration of natural immunity and vaccine-derived immunity, the ability of vaccines to prevent transmission and severe disease, and the impact of evolution on evading vaccine immunity. Resolving these issues is made challenging by incomplete detection of pertussis cases, the absence of a serological marker of immunity, modest sequencing of the bacterial genome and heterogeneity in diagnostic methods of surveillance. In this Review, we lay out the complexities of contemporary pertussis and, where possible, propose a parsimonious explanation for apparently incongruous observations.
Collapse
Affiliation(s)
| | - Pejman Rohani
- Odum School of Ecology, University of Georgia, Athens, GA, USA.
- Center of Ecology of Infectious Diseases, Athens, GA, USA.
- Department of Infectious Diseases, College for Veterinary Medicine, University of Georgia, Athens, GA, USA.
| |
Collapse
|
15
|
Fu P, Yan G, Li Y, Xie L, Ke Y, Qiu S, Wu S, Shi X, Qin J, Zhou J, Lu G, Yang C, Wang C. Pertussis upsurge, age shift and vaccine escape post-COVID-19 caused by ptxP3 macrolide-resistant Bordetella pertussis MT28 clone in China. Clin Microbiol Infect 2024; 30:1439-1446. [PMID: 39209267 DOI: 10.1016/j.cmi.2024.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/12/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
OBJECTIVES China has experienced a notable upsurge in pertussis cases post-COVID-19, alongside an age shift to older children, increased vaccine escape, and a notable rise in the prevalence of macrolide-resistant Bordetella pertussis. Here, we present a genomic epidemiological investigation of these events. METHODS We performed a retrospective observational study using culture-positive B pertussis isolated in Shanghai, China, from 2016 to 2024. We analysed strain and pertussis epidemiology dynamics by integrating whole-genome sequencing of 723 strains with antimicrobial susceptibility, transcriptomic profile, and clinical data. We compared the genome sequences of Shanghai strains with 6450 Chinese and global strains. RESULTS From pre-COVID-19 (before December 2019) to post-COVID-19, patients shifted from predominantly infants (90%, 397/442) to a higher proportion of infections in older children (infant: 16%, 132/844), with the share of vaccinated individuals surging from 31% (107/340) to 88% (664/756). The macrolide-resistant Bordetella pertussis prevalence increased from 60% (267/447) to 98% (830/845). The emergence and expansion of a ptxP3-lineage macrolide-resistant clone, MR-MT28, which is uniquely capable of causing substantial infections among older children and vaccinated individuals, was temporally strongly associated with the pertussis upsurge and epidemiological transition. Although MR-MT28 showed increased expression of genes encoding pertussis toxin, it was associated with significantly milder clinical symptoms and a lower hospitalization rate. MR-MT28 likely originated in China around 2016, after acquiring several key mutations, including a novel prn150 allele, and has been detected across multiple regions in China. In addition, 26% (50/195) of MR-MT28 has evolved into predicted Pertactin (PRN)-deficient strains, with an IS481 insertion being the predominant mechanism. DISCUSSION We report that the post-COVID-19 upsurge of pertussis in China is associated with ptxP3-MR-MT28, and provide evidence that pathogen evolution is likely the primary factor driving + pertussis upsurge, age shift, and vaccine escape. MR-MT28 poses a high risk of global spread and warrants global surveillance.
Collapse
Affiliation(s)
- Pan Fu
- Laboratory of Microbiology, Department of Clinical Laboratory, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China; Nosocomial Infection Control Department, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Gangfen Yan
- Pediatric Intensive Care Unit, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Yijia Li
- Laboratory of Microbiology, Department of Clinical Laboratory, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Li Xie
- The Center for Microbes, Development and Health, Chinese Academy of Sciences (CAS) Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Yuehua Ke
- Department of Bacteriology, Capital Institute of Pediatrics, Beijing, China
| | - Shuxiang Qiu
- Microbiology Laboratory, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Shuang Wu
- Microbiology Laboratory, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Xiaolu Shi
- Microbiology Laboratory, Shenzhen Center for Disease Control and Prevention, Shenzhen, China
| | - Jie Qin
- Laboratory of Microbiology, Department of Clinical Laboratory, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Jinlan Zhou
- Pediatric Intensive Care Unit, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Guoping Lu
- Pediatric Intensive Care Unit, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.
| | - Chao Yang
- The Center for Microbes, Development and Health, Chinese Academy of Sciences (CAS) Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China.
| | - Chuanqing Wang
- Laboratory of Microbiology, Department of Clinical Laboratory, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China; Nosocomial Infection Control Department, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.
| |
Collapse
|
16
|
Liu Y, Yu D, Wang K, Ye Q. Global resurgence of pertussis: A perspective from China. J Infect 2024; 89:106289. [PMID: 39357571 DOI: 10.1016/j.jinf.2024.106289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 10/04/2024]
Abstract
Pertussis (or whooping cough) is a highly infectious acute respiratory disease primarily caused by Bordetella pertussis, which is also one of the most important causes of infant death worldwide. The widespread use of vaccines has greatly reduced the morbidity and mortality of pertussis. However, since the 1980s, in a number of countries with high vaccine coverage, the incidence of pertussis has risen again after remaining low for many years, with outbreaks even occurring in some areas. The peak onset of pertussis is shifting from infancy to adolescence, and adolescence is becoming the main source of infection for infants. Despite the increasing incidence of pertussis, serological findings suggest that the true prevalence of the disease may be significantly underestimated. Therefore, in this narrative review, we summarize the pathogenic process and immune characteristics of bacteria, the diagnosis and treatment of diseases, as well as vaccination and prevalence of pertussis at home and abroad, and attempt to analyze the causes and influencing factors of pertussis resurgence and summarize some prevention and control strategies to assist in improving the understanding of pertussis and preventing unexpected outbreaks.
Collapse
Affiliation(s)
- Ying Liu
- Department of Laboratory Medicine, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China
| | - Daojun Yu
- Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Kaixuan Wang
- Department of Pediatrics, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang, China.
| | - Qing Ye
- Department of Laboratory Medicine, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou, China.
| |
Collapse
|
17
|
Marimón JM, Montes M, Vizuete N, Alvarez Guerrico L, Aginagalde AH, Mir-Cros A, González-López JJ, Vicente D. Pertussis Outbreak During 2023 in Gipuzkoa, North Spain. Vaccines (Basel) 2024; 12:1192. [PMID: 39460357 PMCID: PMC11511359 DOI: 10.3390/vaccines12101192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND Pertussis has re-emerged in many countries despite the wide use of vaccines for over 60 years. During 2023, we observed an increase in the incidence of pertussis in Gipuzkoa, north of Spain (with a population of 657,140 inhabitants), mainly affecting children between 11 and 15 years of age. METHODS This study included all confirmed cases diagnosed by PCR in nasopharyngeal swab samples. The genome of seven isolates collected in 2023 was sequenced. RESULTS Between 2018 and 2023, 884 cases of whooping cough were diagnosed. Pertussis incidence (in cases per 100,000 inhabitants) decreased from 36.7 in 2018 to no cases in 2021, increasing again to 56.8 in 2023. In 2023, the age group of 11-15 years old had the highest incidence rate of 409.3. Only 2 of the 56 children < 6 years old required hospitalization, and there were no deaths. The seven isolates collected in 2023 showed the same BPagST-4 (ptxA1/ptxP3/prn2/fim2-1/fim3-1 allelic combination), with all of them expressing the pertactin antigen. CONCLUSIONS Immunity waning after the last dose of vaccination at 6 years old, together with the lack of circulation of Bordetella pertussis during the COVID-19 pandemic, were probably the main reasons for the high increase in the incidence of pertussis in Gipuzkoa in 2023.
Collapse
Affiliation(s)
- José María Marimón
- Biogipuzkoa Health Research Institute, Infectious Diseases Area, Microbiology Department, Osakidetza Basque Health Service, Donostialdea Integrated Health Organization, Donostia University Hospital, 20014 Donostia-San Sebastian, Spain; (M.M.); (D.V.)
| | - Milagrosa Montes
- Biogipuzkoa Health Research Institute, Infectious Diseases Area, Microbiology Department, Osakidetza Basque Health Service, Donostialdea Integrated Health Organization, Donostia University Hospital, 20014 Donostia-San Sebastian, Spain; (M.M.); (D.V.)
| | - Nahikari Vizuete
- Sub-Directorate for Public Health and Addictions of Gipuzkoa, Ministry of Health of the Basque Government, 20013 Donostia-San Sebastian, Spain (L.A.G.); (A.H.A.)
| | - Lorea Alvarez Guerrico
- Sub-Directorate for Public Health and Addictions of Gipuzkoa, Ministry of Health of the Basque Government, 20013 Donostia-San Sebastian, Spain (L.A.G.); (A.H.A.)
| | - Adrian Hugo Aginagalde
- Sub-Directorate for Public Health and Addictions of Gipuzkoa, Ministry of Health of the Basque Government, 20013 Donostia-San Sebastian, Spain (L.A.G.); (A.H.A.)
- Epidemiology of Chronic and Communicable Diseases Group, Biogipuzkoa Health Research Institute, 20014 Donostia-San Sebastian, Spain
| | - Alba Mir-Cros
- Department of Clinical Microbiology, Vall d’Hebron Hospital Universitari, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (A.M.-C.); (J.J.G.-L.)
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Juan José González-López
- Department of Clinical Microbiology, Vall d’Hebron Hospital Universitari, Passeig Vall d’Hebron 119-129, 08035 Barcelona, Spain; (A.M.-C.); (J.J.G.-L.)
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Department of Genetics and Microbiology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Diego Vicente
- Biogipuzkoa Health Research Institute, Infectious Diseases Area, Microbiology Department, Osakidetza Basque Health Service, Donostialdea Integrated Health Organization, Donostia University Hospital, 20014 Donostia-San Sebastian, Spain; (M.M.); (D.V.)
- Faculty of Medicine, University of the Basque Country, UPV/EHU, 20014 Donostia-San Sebastian, Spain
| |
Collapse
|
18
|
Zhou G, Li Y, Wang H, Wang Y, Gao Y, Xu J, Wang F, Peng T, Zhang M, Shao Z. Emergence of Erythromycin-Resistant and Pertactin- and Filamentous Hemagglutinin-Deficient Bordetella pertussis Strains - Beijing, China, 2022-2023. China CDC Wkly 2024; 6:437-441. [PMID: 38846358 PMCID: PMC11150165 DOI: 10.46234/ccdcw2024.085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/09/2024] [Indexed: 06/09/2024] Open
Abstract
What is already known about this topic? Pertussis has reemerged as a significant public health threat, primarily due to variations in Bordetella pertussis strains, antimicrobial resistance, and vaccine evasion. What is added by this report? All isolated strains were identified as ptxA1/ptxC2/ptxP3/prn150/fim2-1/fim3-1/fhaB1/tcfA2 type and exhibited resistance to erythromycin. Two strains showed a deficiency in Fha, thirty in Prn, and one strain exhibited multiple immunogen deficiencies. What are the implications for public health practice? The emergence and spread of immunogen-deficient strains likely result from prolonged vaccine selection pressure, posing challenges to the efficacy of pertussis vaccines. Additionally, the ongoing dissemination of ptxP3 strains with high-level macrolide resistance presents a significant obstacle to clinical treatment strategies.
Collapse
Affiliation(s)
- Guilan Zhou
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ying Li
- Shunyi District Center for Disease Control and Prevention, Beijing, China
| | - Hairui Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuanyuan Wang
- Shunyi District Center for Disease Control and Prevention, Beijing, China
| | - Yuan Gao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Juan Xu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Fengshuang Wang
- Shunyi District Center for Disease Control and Prevention, Beijing, China
| | - Tao Peng
- Shunyi District Center for Disease Control and Prevention, Beijing, China
| | - Maojun Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhujun Shao
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
19
|
Koide K, Uchitani Y, Yamaguchi T, Otsuka N, Goto M, Kenri T, Kamachi K. Whole-genome comparison of two same-genotype macrolide-resistant Bordetella pertussis isolates collected in Japan. PLoS One 2024; 19:e0298147. [PMID: 38359004 PMCID: PMC10868825 DOI: 10.1371/journal.pone.0298147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/19/2024] [Indexed: 02/17/2024] Open
Abstract
The emergence of macrolide-resistant Bordetella pertussis (MRBP) is a significant problem because it reduces treatment options for pertussis and exacerbates the severity and spread of the disease. MRBP has been widely prevalent in mainland China since the 2010s and has been sporadically detected in other Asian countries. In Japan, two MRBP clinical strains were first isolated in Tokyo and Osaka between June and July 2018. The isolates BP616 in Osaka and BP625 in Tokyo harbored the same virulence-associated allelic genes (including ptxP1, ptxA1, prn1, fim3A, and fhaB3) and MT195 genotype and exhibited similar antimicrobial susceptibility profiles. However, despite their simultaneous occurrence, a distinguishable epidemiological link between these isolates could not be established. To gain further insight into the genetic relationship between these isolates in this study, we performed whole-genome analyses. Phylogenetic analysis based on genome-wide single-nucleotide polymorphisms revealed that the isolates belonged to one of the three clades of Chinese MRBP isolates, but there were 11 single-nucleotide polymorphism differences between BP616 and BP625. Genome structure analysis revealed two large inversions (202 and 523 kbp) and one small transposition (3.8 kbp) between the genomes. These findings indicate that the two Japanese MRBP isolates are closely related to Chinese MRBP isolates but are genomically distinct, suggesting that they were introduced into Japan from mainland China through different transmission routes.
Collapse
Affiliation(s)
- Kentaro Koide
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yumi Uchitani
- Division of Microbiology, Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Takahiro Yamaguchi
- Division of Microbiology, Osaka Institute of Public Health, Osaka, Japan
| | - Nao Otsuka
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masataka Goto
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tsuyoshi Kenri
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kazunari Kamachi
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
20
|
Lecorvaisier F. [Impact of vaccination on the evolution of Bordetella pertussis]. Med Sci (Paris) 2024; 40:161-166. [PMID: 38411424 DOI: 10.1051/medsci/2023219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024] Open
Abstract
Vaccines against pertussis, or whooping cough, have been commercialized and used in most countries worldwide for decades. The history of these vaccines is distinctive, marked by the transition from whole-cell vaccines to acellular vaccines in many developed countries over the last two decades. This particular history has had a significant impact on the evolution of Bordetella pertussis, the etiological agent of whooping cough. Both genetic and phenotypic changes appeared, with the emergence of novel alleles for antigens targeted by the vaccines and changes in the expression of these antigens. The main consequence of these changes is the resurgence of whooping cough in many countries and the appearance of strains capable of evading vaccine-induced immunity. The emergence of novel strains under vaccine pressure underscores the importance of considering biological evolution in the conception of new vaccines and vaccine strategies.
Collapse
Affiliation(s)
- Florian Lecorvaisier
- Université Claude Bernard Lyon 1 LBBE, UMR 5558, CNRS, VAS, Villeurbanne, France
| |
Collapse
|
21
|
Avdonin PP, Blinova MS, Generalova GA, Emirova KM, Avdonin PV. The Role of the Complement System in the Pathogenesis of Infectious Forms of Hemolytic Uremic Syndrome. Biomolecules 2023; 14:39. [PMID: 38254639 PMCID: PMC10813406 DOI: 10.3390/biom14010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/24/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Hemolytic uremic syndrome (HUS) is an acute disease and the most common cause of childhood acute renal failure. HUS is characterized by a triad of symptoms: microangiopathic hemolytic anemia, thrombocytopenia, and acute kidney injury. In most of the cases, HUS occurs as a result of infection caused by Shiga toxin-producing microbes: hemorrhagic Escherichia coli and Shigella dysenteriae type 1. They account for up to 90% of all cases of HUS. The remaining 10% of cases grouped under the general term atypical HUS represent a heterogeneous group of diseases with similar clinical signs. Emerging evidence suggests that in addition to E. coli and S. dysenteriae type 1, a variety of bacterial and viral infections can cause the development of HUS. In particular, infectious diseases act as the main cause of aHUS recurrence. The pathogenesis of most cases of atypical HUS is based on congenital or acquired defects of complement system. This review presents summarized data from recent studies, suggesting that complement dysregulation is a key pathogenetic factor in various types of infection-induced HUS. Separate links in the complement system are considered, the damage of which during bacterial and viral infections can lead to complement hyperactivation following by microvascular endothelial injury and development of acute renal failure.
Collapse
Affiliation(s)
- Piotr P. Avdonin
- Koltzov Institute of Developmental Biology RAS, ul. Vavilova, 26, 119334 Moscow, Russia; (M.S.B.); (P.V.A.)
| | - Maria S. Blinova
- Koltzov Institute of Developmental Biology RAS, ul. Vavilova, 26, 119334 Moscow, Russia; (M.S.B.); (P.V.A.)
| | - Galina A. Generalova
- Saint Vladimir Moscow City Children’s Clinical Hospital, 107014 Moscow, Russia; (G.A.G.); (K.M.E.)
- Department of Pediatrics, A.I. Evdokimov Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
| | - Khadizha M. Emirova
- Saint Vladimir Moscow City Children’s Clinical Hospital, 107014 Moscow, Russia; (G.A.G.); (K.M.E.)
- Department of Pediatrics, A.I. Evdokimov Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
| | - Pavel V. Avdonin
- Koltzov Institute of Developmental Biology RAS, ul. Vavilova, 26, 119334 Moscow, Russia; (M.S.B.); (P.V.A.)
| |
Collapse
|
22
|
Abu-Raya B, Esser MJ, Nakabembe E, Reiné J, Amaral K, Diks AM, Imede E, Way SS, Harandi AM, Gorringe A, Le Doare K, Halperin SA, Berkowska MA, Sadarangani M. Antibody and B-cell Immune Responses Against Bordetella Pertussis Following Infection and Immunization. J Mol Biol 2023; 435:168344. [PMID: 37926426 DOI: 10.1016/j.jmb.2023.168344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/07/2023]
Abstract
Neither immunization nor recovery from natural infection provides life-long protection against Bordetella pertussis. Replacement of a whole-cell pertussis (wP) vaccine with an acellular pertussis (aP) vaccine, mutations in B. pertussis strains, and better diagnostic techniques, contribute to resurgence of number of cases especially in young infants. Development of new immunization strategies relies on a comprehensive understanding of immune system responses to infection and immunization and how triggering these immune components would ensure protective immunity. In this review, we assess how B cells, and their secretory products, antibodies, respond to B. pertussis infection, current and novel vaccines and highlight similarities and differences in these responses. We first focus on antibody-mediated immunity. We discuss antibody (sub)classes, elaborate on antibody avidity, ability to neutralize pertussis toxin, and summarize different effector functions, i.e. ability to activate complement, promote phagocytosis and activate NK cells. We then discuss challenges and opportunities in studying B-cell immunity. We highlight shared and unique aspects of B-cell and plasma cell responses to infection and immunization, and discuss how responses to novel immunization strategies better resemble those triggered by a natural infection (i.e., by triggering responses in mucosa and production of IgA). With this comprehensive review, we aim to shed some new light on the role of B cells and antibodies in the pertussis immunity to guide new vaccine development.
Collapse
Affiliation(s)
- Bahaa Abu-Raya
- Vaccine Evaluation Center, BC Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada.
| | - Mirjam J Esser
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Eve Nakabembe
- Centre for Neonatal and Paediatric Infectious Diseases Research, St George's, University of London, Cranmer Terrace, London SW17 0RE, UK; Department of Obstetrics and Gynaecology, Makerere University College of Health Sciences, Upper Mulago Hill Road, Kampala, P.O. Box 7072, Uganda
| | - Jesús Reiné
- Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom; Oxford Vaccine Group, University of Oxford, Oxford, United Kingdom
| | - Kyle Amaral
- Vaccine Evaluation Center, BC Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| | - Annieck M Diks
- Department of Immunology, Leiden University Medical Center, Albinusdreef 2, Leiden ZA 2333, the Netherlands
| | - Esther Imede
- MRC/UVRI and LSHTM Uganda Research Unit, Entebbe, Uganda
| | - Sing Sing Way
- Department of Pediatrics, Division of Infectious Diseases, Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Ali M Harandi
- Vaccine Evaluation Center, BC Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Microbiology and Immunology, University of Gothenburg, Gothenburg, Sweden
| | - Andrew Gorringe
- UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
| | - Kirsty Le Doare
- Centre for Neonatal and Paediatric Infectious Diseases Research, St George's, University of London, Cranmer Terrace, London SW17 0RE, UK; Makerere University-Johns Hopkins University Research Collaboration, MU-JHU, Upper Mulago Hill, Kampala, P.O. Box 23491, Uganda
| | - Scott A Halperin
- Canadian Center for Vaccinology, Departments of Pediatrics and Microbiology and Immunology, Dalhousie University, Izaak Walton Killam Health Centre, and Nova Scotia Health Authority, Halifax, NS, Canada
| | - Magdalena A Berkowska
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, the Netherlands
| | - Manish Sadarangani
- Vaccine Evaluation Center, BC Children's Hospital Research Institute, Vancouver, BC, Canada; Department of Pediatrics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
23
|
Matczak S, Bouchez V, Leroux P, Douché T, Collinet N, Landier A, Gianetto QG, Guillot S, Chamot-Rooke J, Hasan M, Matondo M, Brisse S, Toubiana J. Biological differences between FIM2 and FIM3 fimbriae of Bordetella pertussis: not just the serotype. Microbes Infect 2023; 25:105152. [PMID: 37245862 DOI: 10.1016/j.micinf.2023.105152] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/17/2023] [Accepted: 05/19/2023] [Indexed: 05/30/2023]
Abstract
INTRODUCTION Bordetella pertussis still circulates worldwide despite vaccination. Fimbriae are components of some acellular pertussis vaccines. Population fluctuations of B. pertussis fimbrial serotypes (FIM2 and FIM3) are observed, and fim3 alleles (fim3-1 [clade 1] and fim3-2 [clade 2]) mark a major phylogenetic subdivision of B. pertussis. OBJECTIVES To compare microbiological characteristics and expressed protein profiles between fimbrial serotypes FIM2 and FIM3 and genomic clades. METHODS A total of 19 isolates were selected. Absolute protein abundance of the main virulence factors, autoagglutination and biofilm formation, bacterial survival in whole blood, induced blood cell cytokine secretion, and global proteome profiles were assessed. RESULTS Compared to FIM3, FIM2 isolates produced more fimbriae, less cellular pertussis toxin subunit 1 and more biofilm, but auto-agglutinated less. FIM2 isolates had a lower survival rate in cord blood, but induced higher levels of IL-4, IL-8 and IL-1β secretion. Global proteome comparisons uncovered 15 differentially produced proteins between FIM2 and FIM3 isolates, involved in adhesion and metabolism of metals. FIM3 isolates of clade 2 produced more FIM3 and more biofilm compared to clade 1. CONCLUSION FIM serotype and fim3 clades are associated with proteomic and other biological differences, which may have implications on pathogenesis and epidemiological emergence.
Collapse
Affiliation(s)
- Soraya Matczak
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, 28, Rue Du Docteur Roux, 75015, Paris, France
| | - Valérie Bouchez
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, 28, Rue Du Docteur Roux, 75015, Paris, France; National Reference Center for Whooping Cough and Other Bordetella Infections, Institut Pasteur, 28, Rue Du Docteur Roux, 75015, Paris, France
| | - Pauline Leroux
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, 28, Rue Du Docteur Roux, 75015, Paris, France
| | - Thibaut Douché
- Institut Pasteur, Université Paris Cité, CNRS UAR2024, Proteomics Platform, Mass Spectrometry for Biology Unit, 28, Rue Du Docteur Roux, 75015, Paris, France
| | - Nils Collinet
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, 28, Rue Du Docteur Roux, 75015, Paris, France
| | - Annie Landier
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, 28, Rue Du Docteur Roux, 75015, Paris, France; National Reference Center for Whooping Cough and Other Bordetella Infections, Institut Pasteur, 28, Rue Du Docteur Roux, 75015, Paris, France
| | - Quentin Giai Gianetto
- Institut Pasteur, Université Paris Cité, CNRS UAR2024, Proteomics Platform, Mass Spectrometry for Biology Unit, 28, Rue Du Docteur Roux, 75015, Paris, France; Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, 28, Rue Du Docteur Roux, 75015, Paris, France
| | - Sophie Guillot
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, 28, Rue Du Docteur Roux, 75015, Paris, France; National Reference Center for Whooping Cough and Other Bordetella Infections, Institut Pasteur, 28, Rue Du Docteur Roux, 75015, Paris, France
| | - Julia Chamot-Rooke
- Institut Pasteur, Université Paris Cité, CNRS UAR2024, Proteomics Platform, Mass Spectrometry for Biology Unit, 28, Rue Du Docteur Roux, 75015, Paris, France
| | - Milena Hasan
- Institut Pasteur, Université Paris Cité, Cytometry and Biomarkers Unit of Technology and Service (CB UTechS), 28, Rue Du Docteur Roux, 75015, Paris, France
| | - Mariette Matondo
- Institut Pasteur, Université Paris Cité, CNRS UAR2024, Proteomics Platform, Mass Spectrometry for Biology Unit, 28, Rue Du Docteur Roux, 75015, Paris, France
| | - Sylvain Brisse
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, 28, Rue Du Docteur Roux, 75015, Paris, France; National Reference Center for Whooping Cough and Other Bordetella Infections, Institut Pasteur, 28, Rue Du Docteur Roux, 75015, Paris, France
| | - Julie Toubiana
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, 28, Rue Du Docteur Roux, 75015, Paris, France; National Reference Center for Whooping Cough and Other Bordetella Infections, Institut Pasteur, 28, Rue Du Docteur Roux, 75015, Paris, France; Department of General Pediatrics and Pediatric Infectious Diseases, Hôpital Necker-Enfants Malades, APHP, Université Paris Cité, 149, Rue de Sèvres, 75015, Paris, France.
| |
Collapse
|
24
|
Kamachi K, Koide K, Otsuka N, Goto M, Kenri T. Whole-Genome Analysis of Bordetella pertussis MT27 Isolates from School-Associated Outbreaks: Single-Nucleotide Polymorphism Diversity and Threshold of the Outbreak Strains. Microbiol Spectr 2023; 11:e0406522. [PMID: 37191540 PMCID: PMC10269452 DOI: 10.1128/spectrum.04065-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 04/24/2023] [Indexed: 05/17/2023] Open
Abstract
Bordetella pertussis, the causative agent of whooping cough, can cause pertussis outbreaks in humans, especially in school-aged children. Here, we performed whole-genome sequencing of 51 B. pertussis isolates (epidemic strain MT27) collected from patients infected during 6 school-associated outbreaks lasting less than 4 months. We compared their genetic diversity with that of 28 sporadic isolates (non-outbreak MT27 isolates) based on single-nucleotide polymorphisms (SNPs). Our temporal SNP diversity analysis revealed a mean SNP accumulation rate (time-weighted average) of 0.21 SNPs/genome/year during the outbreaks. The outbreak isolates showed a mean of 0.74 SNP differences (median, 0; range, 0 to 5) between 238 isolate pairs, whereas the sporadic isolates had a mean of 16.12 SNP differences (median, 17; range 0 to 36) between 378 isolate pairs. A low SNP diversity was observed in the outbreak isolates. Receiver operating characteristic analysis demonstrated that the optimal cutoff value to distinguish between the outbreak and sporadic isolates was 3 SNPs (Youden's index of 0.90 with a true-positive rate of 0.97 and a false-positive rate of 0.07). Based on these results, we propose an epidemiological threshold of ≤3 SNPs per genome as a reliable marker of B. pertussis strain identity during pertussis outbreaks that span less than 4 months. IMPORTANCE Bordetella pertussis is a highly infectious bacterium that easily causes pertussis outbreaks in humans, especially in school-aged children. In detection and investigation of outbreaks, excluding non-outbreak isolates is important for understanding the bacterial transmission routes. Currently, whole-genome sequencing is widely used for outbreak investigations, and the genetic relatedness of outbreak isolates is assessed based on differences in the number of single-nucleotide polymorphisms (SNPs) in the genomes of different isolates. The optimal SNP threshold defining strain identity has been proposed for many bacterial pathogens, but not for B. pertussis. In this study, we performed whole-genome sequencing of 51 B. pertussis outbreak isolates and identified a genetic threshold of ≤3 SNPs per genome as a marker defining the strain identity during pertussis outbreaks. This study provides a useful marker for identifying and analyzing pertussis outbreaks and can serve as a basis for future epidemiological studies on pertussis.
Collapse
Affiliation(s)
- Kazunari Kamachi
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kentaro Koide
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Nao Otsuka
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masataka Goto
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tsuyoshi Kenri
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
25
|
Fu P, Zhou J, Meng J, Liu Z, Nijiati Y, He L, Li C, Chen S, Wang A, Yan G, Lu G, Zhou L, Zhai X, Wang C. Emergence and spread of MT28 ptxP3 allele macrolide-resistant Bordetella pertussis from 2021 to 2022 in China. Int J Infect Dis 2023; 128:205-211. [PMID: 36632892 DOI: 10.1016/j.ijid.2023.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/05/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
OBJECTIVES To reveal the clinical and molecular characteristics of Bordetella pertussis (BP) prevalent in Shanghai, China. METHODS A total of 9430 children with suspected pertussis from 2021 to 2022 were included, and nasopharyngeal swab samples were collected for polymerase chain reaction detection, culture, antimicrobial susceptibility testing, and 23S rRNA gene A2047G detection. BP strains were typed using multilocus variable-number tandem-repeat analysis and virulence genotyping. RESULTS Of 9430 cases, 5.1% and 1.6% were confirmed by polymerase chain reaction and culture, respectively. Infants (aged <1 year) accounted for 24.7% and presented much more severe symptoms than noninfants. Pertussis was most frequently detected in infants aged 0-6 months (11.3∼14.0%) and children aged >6-10 years (10.8∼21.7%). Macrolide-resistant BP (MRBP) accounted for 89.3%, and all carried the A2047G mutation. There were six multilocus variable-number tandem-repeat analysis types (MTs), including MT28 (62.0%), MT195 (20%), MT27 (10.0%), MT104 (4.7%), MT55 (2.7%), and MT32 (0.7%). BP strains with pertussis toxin (ptx)P3/(pertactin) prn2/ptxC2/ptxA1/(fimbrial proteins) fim2-1/fim3-1, including MT27, MT28, and MT32, accounted for 72.7%, among which MT27 and MT32 were macrolide-sensitive BP, whereas most (94.6∼100%) of MT28 were MRBP. Strains harboring ptxP1/prn1/ptxC1/ptxA1/fim2-1/fim3-1, including MT55, MT104, and MT195, belonged to macrolide-sensitive BP. CONCLUSION The emergence and spread of MT28 ptxP3-MRBP was first reported in China, highlighting the importance of continuous surveillance of ptxP3-MRBP to prevent its potential circulation.
Collapse
Affiliation(s)
- Pan Fu
- Department of Clinical Microbiology Laboratory, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China; Nosocomial Infection Control Department, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Jinlan Zhou
- Pediatric intensive care unit, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Jianhua Meng
- Department of Hematology and Oncology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Zhiwei Liu
- Department of Clinical Laboratory, Taian Maternity and Child Health Hospital, Taian, Shandong Province, China
| | - Yaxier Nijiati
- Orthopedics Department, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Leiyan He
- Department of Clinical Microbiology Laboratory, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Chunling Li
- Department of Clinical Microbiology Laboratory, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Saige Chen
- Department of Clinical Microbiology Laboratory, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Aimin Wang
- Department of Clinical Microbiology Laboratory, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Gangfeng Yan
- Pediatric intensive care unit, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Guoping Lu
- Pediatric intensive care unit, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China
| | - Lijun Zhou
- Outpatient and Emergency Management Office, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.
| | - Xiaowen Zhai
- Department of Hematology and Oncology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.
| | - Chuanqing Wang
- Department of Clinical Microbiology Laboratory, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China; Nosocomial Infection Control Department, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, China.
| |
Collapse
|
26
|
Fu P, Zhou J, Yang C, Nijiati Y, Zhou L, Yan G, Lu G, Zhai X, Wang C. Molecular Evolution and Increasing Macrolide Resistance of Bordetella pertussis, Shanghai, China, 2016-2022. Emerg Infect Dis 2023; 30:29-38. [PMID: 38146984 PMCID: PMC10756392 DOI: 10.3201/eid3001.221588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023] Open
Abstract
Resurgence and spread of macrolide-resistant Bordetella pertussis (MRBP) threaten global public health. We collected 283 B. pertussis isolates during 2016-2022 in Shanghai, China, and conducted 23S rRNA gene A2047G mutation detection, multilocus variable-number tandem-repeat analysis, and virulence genotyping analysis. We performed whole-genome sequencing on representative strains. We detected pertussis primarily in infants (0-1 years of age) before 2020 and older children (>5-10 years of age) after 2020. The major genotypes were ptxP1/prn1/fhaB3/ptxA1/ptxC1/fim2-1/fim3-1 (48.7%) and ptxP3/prn2/fhaB1/ptxA1/ptxC2/fim2-1/fim3-1 (47.7%). MRBP increased remarkably from 2016 (36.4%) to 2022 (97.2%). All MRBPs before 2020 harbored ptxP1, and 51.4% belonged to multilocus variable-number tandem-repeat analysis type (MT) 195, whereas ptxP3-MRBP increased from 0% before 2020 to 66.7% after 2020, and all belonged to MT28. MT28 ptxP3-MRBP emerged only after 2020 and replaced the resident MT195 ptxP1-MRBP, revealing that 2020 was a watershed in the transformation of MRBP.
Collapse
Affiliation(s)
| | | | - Chao Yang
- National Children's Medical Center, Shanghai, China (P. Fu, J. Zhou, Y. Nijiati, L. Zhou, G. Yan, G. Lu, X. Zhai, C. Wang)
- Chinese Academy of Sciences, Shanghai (C. Yang)
| | - Yaxier Nijiati
- National Children's Medical Center, Shanghai, China (P. Fu, J. Zhou, Y. Nijiati, L. Zhou, G. Yan, G. Lu, X. Zhai, C. Wang)
- Chinese Academy of Sciences, Shanghai (C. Yang)
| | - Lijun Zhou
- National Children's Medical Center, Shanghai, China (P. Fu, J. Zhou, Y. Nijiati, L. Zhou, G. Yan, G. Lu, X. Zhai, C. Wang)
- Chinese Academy of Sciences, Shanghai (C. Yang)
| | - Gangfen Yan
- National Children's Medical Center, Shanghai, China (P. Fu, J. Zhou, Y. Nijiati, L. Zhou, G. Yan, G. Lu, X. Zhai, C. Wang)
- Chinese Academy of Sciences, Shanghai (C. Yang)
| | - Guoping Lu
- National Children's Medical Center, Shanghai, China (P. Fu, J. Zhou, Y. Nijiati, L. Zhou, G. Yan, G. Lu, X. Zhai, C. Wang)
- Chinese Academy of Sciences, Shanghai (C. Yang)
| | - Xiaowen Zhai
- National Children's Medical Center, Shanghai, China (P. Fu, J. Zhou, Y. Nijiati, L. Zhou, G. Yan, G. Lu, X. Zhai, C. Wang)
- Chinese Academy of Sciences, Shanghai (C. Yang)
| | - Chuanqing Wang
- National Children's Medical Center, Shanghai, China (P. Fu, J. Zhou, Y. Nijiati, L. Zhou, G. Yan, G. Lu, X. Zhai, C. Wang)
- Chinese Academy of Sciences, Shanghai (C. Yang)
| |
Collapse
|
27
|
Szwejser-Zawislak E, Wilk MM, Piszczek P, Krawczyk J, Wilczyńska D, Hozbor D. Evaluation of Whole-Cell and Acellular Pertussis Vaccines in the Context of Long-Term Herd Immunity. Vaccines (Basel) 2022; 11:vaccines11010001. [PMID: 36679846 PMCID: PMC9863224 DOI: 10.3390/vaccines11010001] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/04/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
After the pertussis vaccine had been introduced in the 1940s and was shown to be very successful in reducing the morbidity and mortality associated with the disease, the possibility of improving both vaccine composition and vaccination schedules has become the subject of continuous interest. As a result, we are witnessing a considerable heterogeneity in pertussis vaccination policies, which remains beyond universal consensus. Many pertussis-related deaths still occur in low- and middle-income countries; however, these deaths are attributable to gaps in vaccination coverage and limited access to healthcare in these countries, rather than to the poor efficacy of the first generation of pertussis vaccine consisting in inactivated and detoxified whole cell pathogen (wP). In many, particularly high-income countries, a switch was made in the 1990s to the use of acellular pertussis (aP) vaccine, to reduce the rate of post-vaccination adverse events and thereby achieve a higher percentage of children vaccinated. However the epidemiological data collected over the past few decades, even in those high-income countries, show an increase in pertussis prevalence and morbidity rates, triggering a wide-ranging debate on the causes of pertussis resurgence and the effectiveness of current pertussis prevention strategies, as well as on the efficacy of available pertussis vaccines and immunization schedules. The current article presents a systematic review of scientific reports on the evaluation of the use of whole-cell and acellular pertussis vaccines, in the context of long-term immunity and vaccines efficacy.
Collapse
Affiliation(s)
- Ewa Szwejser-Zawislak
- Institute of Biotechnology of Serums and Vaccines Biomed, Al. Sosnowa 8, 30-224 Krakow, Poland
| | - Mieszko M. Wilk
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387 Krakow, Poland
| | - Piotr Piszczek
- Institute of Biotechnology of Serums and Vaccines Biomed, Al. Sosnowa 8, 30-224 Krakow, Poland
| | - Justyna Krawczyk
- Institute of Biotechnology of Serums and Vaccines Biomed, Al. Sosnowa 8, 30-224 Krakow, Poland
| | - Daria Wilczyńska
- Institute of Biotechnology of Serums and Vaccines Biomed, Al. Sosnowa 8, 30-224 Krakow, Poland
| | - Daniela Hozbor
- VacSal Laboratory, Institute of Biotechnology and Molecular Biology, Faculty of Sciences, National University of La Plata (UNLP), National Council for Scientific and Technical Research (CONICET), La Plata 1900, Argentina
- Correspondence:
| |
Collapse
|
28
|
Xu Z, Hu D, Luu LDW, Octavia S, Keil AD, Sintchenko V, Tanaka MM, Mooi FR, Robson J, Lan R. Genomic dissection of the microevolution of Australian epidemic Bordetella pertussis. Emerg Microbes Infect 2022; 11:1460-1473. [PMID: 35543519 PMCID: PMC9176669 DOI: 10.1080/22221751.2022.2077129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Whooping cough (pertussis) is a highly contagious respiratory disease caused by the bacterium Bordetella pertussis. Despite high vaccine coverage, pertussis has re-emerged in many countries including Australia and caused two large epidemics in Australia since 2007. Here, we undertook a genomic and phylogeographic study of 385 Australian B. pertussis isolates collected from 2008 to 2017. The Australian B. pertussis population was found to be composed of mostly ptxP3 strains carrying different fim3 alleles, with ptxP3-fim3A genotype expanding far more than ptxP3-fim3B. Within the former, there were six co-circulating epidemic lineages (EL1 to EL6). The multiple ELs emerged, expanded, and then declined at different time points over the two epidemics. In population genetics terms, both hard and soft selective sweeps through vaccine selection pressures have determined the population dynamics of Australian B. pertussis. Relative risk estimation suggests that once a new B. pertussis lineage emerged, it was more likely to spread locally within the first 1.5 years. However, after 1.5 years, any new lineage was likely to expand to a wider region. Phylogenetic analysis revealed the expansion of ptxP3 strains was also associated with replacement of the type III secretion system allele bscI1 with bscI3. bscI3 is associated with decreased T3SS secretion and may allow B. pertussis to reduce immune recognition. This study advanced our understanding of the epidemic population structure and spatial and temporal dynamics of B. pertussis in a highly immunized population.
Collapse
Affiliation(s)
- Zheng Xu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Dalong Hu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Laurence Don Wai Luu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Sophie Octavia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Anthony D Keil
- Department of Microbiology, PathWest Laboratory Medicine WA, Perth Children's Hospital, Perth, Australia
| | - Vitali Sintchenko
- Centre for Infectious Diseases and Microbiology-Public Health, Institute of Clinical Pathology and Medical Research, NSW Health Pathology and Westmead Hospital, Sydney, Australia.,Sydney Institute for Infectious Diseases, The University of Sydney, Sydney, Australia
| | - Mark M Tanaka
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Frits R Mooi
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Jenny Robson
- Sullivan Nicolaides Pathology, Queensland, Australia
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|
29
|
Wu X, Du Q, Li D, Yuan L, Meng Q, Fu Z, Xu H, Yao K, Zhao R. A Cross-Sectional Study Revealing the Emergence of Erythromycin-Resistant Bordetella pertussis Carrying ptxP3 Alleles in China. Front Microbiol 2022; 13:901617. [PMID: 35923401 PMCID: PMC9342848 DOI: 10.3389/fmicb.2022.901617] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/15/2022] [Indexed: 11/13/2022] Open
Abstract
Background Previous limited studies have identified that Bordetella pertussis (B. pertussis) isolates circulating in China possess distinct molecular features and high rates of erythromycin-resistance (ER). Their evolution and potential impact on the prevention and control of global pertussis are worthy of attention. Methods The present cross-sectional study involved 311 non-duplicate and unrelated B. pertussis strains isolated from Chinese children from 2017 to 2019. Their antimicrobial susceptibilities were assessed using both E-test strips and Kirby-Bauer (KB) disk diffusion methods. Seven virulence-related genes (ptxA, ptxC, ptxP, prn, fim2, fim3, and tcfA2) and the A2047G mutation in the 23S rRNA gene were detected by PCR. Based on the susceptibilities and genotypes, 50 isolates were selected for multi-locus variable-number tandem-repeat analysis (MLVA) typing and whole-genome sequencing. Results A total of 311 B. pertussis strains were isolated from children with a median age of 4 months (interquartile range: 2–9 months). Strains carrying the ptxP1 allele were more frequent (84.9%, 264/311), were always ER (except for one strain), and were mainly related to ptxA1/ptxC1/prn1 alleles (99.6%, 263/264). The remaining 47 (15.1%) strains carried the ptxP3 allele, mainly harboring the ptxA1/ptxC2/prn2 alleles (93.6%, 44/47), and were sensitive to erythromycin (except for two strains). The two ER-ptxP3 isolates were first identified in China, belonged to MT27 and MT28 according to MLVA, and were classified into sub-lineage IVd by phylogenetic analysis of their genome sequences. This sub-lineage also includes many strains carrying the ptxP3 allele spreading in developed countries. For each tested antimicrobial, the susceptibilities judged by KB disks were consistent with those determined by E-test strips. Conclusion The present results reveal that B. pertussis strains with the ptxP1-ER profile still dominate in China, and a few strains carrying the ptxP3 allele have acquired the A2047G mutation in the 23S rRNA gene and the ER phenotype. The surveillance of the drug susceptibility of B. pertussis is necessary for all countries, and the KB disk method can be adopted as a screening test.
Collapse
Affiliation(s)
- Xiaoying Wu
- Department of Infectious Diseases, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Qianqian Du
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Dongfang Li
- BGI Pathogenesis Pharmaceutical Technology, BGI-Shenzhen, Shenzhen, China
| | - Lin Yuan
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Qinghong Meng
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
| | - Zhou Fu
- Department of Respiratory Diseases, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Hongmei Xu
- Department of Infectious Diseases, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
| | - Kaihu Yao
- Beijing Key Laboratory of Pediatric Respiratory Infection Diseases, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children’s Hospital, Capital Medical University, National Center for Children’s Health, Beijing, China
- *Correspondence: Kaihu Yao,
| | - Ruiqiu Zhao
- Department of Infectious Diseases, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Chongqing, China
- Ruiqiu Zhao,
| |
Collapse
|
30
|
Characterization of Bordetella pertussis Strains Isolated from India. Pathogens 2022; 11:pathogens11070794. [PMID: 35890038 PMCID: PMC9322502 DOI: 10.3390/pathogens11070794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/11/2022] [Accepted: 06/16/2022] [Indexed: 11/25/2022] Open
Abstract
Despite high level vaccination and the availability of two different types of vaccines, whole cell (wP) and acellular vaccines (aP), the resurgence of pertussis has been reported in many countries. Antigenic variation within circulating and vaccine strains is the most documented reason reported for the resurgence of pertussis. Research on genetic divergence among circulating and vaccine strains has largely been reported in countries using aP vaccines. There are inadequate data available for antigenic variation in B. pertussis from wP-using countries. India has used wP for more than 40 years in their primary immunization program. The present study reports five clinical isolates of B. pertussis from samples of pediatric patients with pertussis symptoms observed in India. Genotypic and phenotypic characterization of clinical isolates were performed by serotyping, genotyping, whole genome analyses and comparative genomics. All clinical isolates showed serotype 1, 2 and 3 based on the presence of fimbriae 2 and 3. Genotyping showed genetic similarities in allele types for five aP genes within vaccine strains and clinical isolates reported from India. The presence of the ptxP3 genotype was observed in two out of five clinical isolates. Whole-genome sequencing was performed for clinical isolates using the hybrid strategy of combining Illumina (short reads) and oxford nanopore (long reads) sequencing strategies. Clinical isolates (n = 5) and vaccine strains (n = 7) genomes of B. pertussis from India were compared with 744 B. pertussis closed genomes available in the public databases. The phylogenomic comparison of B. pertussis genomes reported from India will be advantageous in better understanding pertussis resurgence reported globally with respect to pathogen adaptation.
Collapse
|
31
|
McLeod DV, Gandon S. Effects of epistasis and recombination between vaccine-escape and virulence alleles on the dynamics of pathogen adaptation. Nat Ecol Evol 2022; 6:786-793. [PMID: 35437006 DOI: 10.1038/s41559-022-01709-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 02/22/2022] [Indexed: 11/09/2022]
Abstract
Pathogen adaptation to public health interventions such as vaccination may take tortuous routes and involve multiple mutations at different locations in the pathogen genome, acting on distinct phenotypic traits. Yet how these multi-locus adaptations jointly evolve is poorly understood. Here we consider the joint evolution of two adaptations: pathogen escape from the vaccine-induced immune response and adjustments to pathogen virulence affecting transmission or clearance. We elucidate the role played by epistasis and recombination, with an emphasis on the different protective effects of vaccination. We show that vaccines blocking infection, reducing transmission and/or increasing clearance generate positive epistasis between the vaccine-escape and virulence alleles, favouring strains that carry both mutations, whereas vaccines reducing virulence mortality generate negative epistasis, favouring strains that carry either mutation but not both. High rates of recombination can affect these predictions. If epistasis is positive, frequent recombination can prevent the transient build-up of more virulent escape strains. If epistasis is negative, frequent recombination between loci can create an evolutionary bistability, favouring whichever adaptation is more accessible. Our work provides a timely alternative to the variant-centred perspective on pathogen adaptation and captures the effect of different types of vaccine on the interference between multiple adaptive mutations.
Collapse
Affiliation(s)
- David V McLeod
- CEFE, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France. .,Institute of Ecology and Evolution, Universität Bern, Bern, Switzerland. .,Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | - Sylvain Gandon
- CEFE, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France.
| |
Collapse
|
32
|
Brandal LT, Vestrheim DF, Bruvik T, Roness RB, Bjørnstad ML, Greve-Isdahl M, Steens A, Brynildsrud OB. Evolution of Bordetella pertussis in the acellular vaccine era in Norway, 1996 to 2019. Eur J Clin Microbiol Infect Dis 2022; 41:913-924. [PMID: 35543837 PMCID: PMC9135841 DOI: 10.1007/s10096-022-04453-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/28/2022] [Indexed: 01/16/2023]
Abstract
We described the population structure of Bordetella pertussis (B. pertussis) in Norway from 1996 to 2019 and determined if there were evolutionary shifts and whether these correlated with changes in the childhood immunization program. We selected 180 B. pertussis isolates, 22 from the whole cell vaccine (WCV) era (1996-1997) and 158 from the acellular vaccine (ACV) era (1998-2019). We conducted whole genome sequencing and determined the distribution and frequency of allelic variants and temporal changes of ACV genes. Norwegian B. pertussis isolates were evenly distributed across a phylogenetic tree that included global strains. We identified seven different allelic profiles of ACV genes (A-F), in which profiles A1, A2, and B dominated (89%), all having pertussis toxin (ptxA) allele 1, pertussis toxin promoter (ptxP) allele 3, and pertactin (prn) allele 2 present. Isolates with ptxP1 and prn1 were not detected after 2007, whereas the prn2 allele likely emerged prior to 1972, and ptxP3 before the early 1980s. Allele conversions of ACV genes all occurred prior to the introduction of ACV. Sixteen percent of our isolates showed mutations within the prn gene. ACV and its booster doses (implemented for children in 2007 and adolescents in 2013) might have contributed to evolvement of a more uniform B. pertussis population, with recent circulating strains having ptxA1, ptxP3, and prn2 present, and an increasing number of prn mutations. These strains clearly deviate from ACV strains (ptxA1, ptxP1, prn1), and this could have implications for vaccine efficiency and, therefore, prevention and control of pertussis.
Collapse
Affiliation(s)
- Lin T Brandal
- Norwegian Institute of Public Health, Oslo, Norway.
- European Program for Public Health Microbiology Training (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden.
| | | | | | | | | | | | | | - Ola B Brynildsrud
- Norwegian Institute of Public Health, Oslo, Norway
- Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
33
|
Lefrancq N, Bouchez V, Fernandes N, Barkoff AM, Bosch T, Dalby T, Åkerlund T, Darenberg J, Fabianova K, Vestrheim DF, Fry NK, González-López JJ, Gullsby K, Habington A, He Q, Litt D, Martini H, Piérard D, Stefanelli P, Stegger M, Zavadilova J, Armatys N, Landier A, Guillot S, Hong SL, Lemey P, Parkhill J, Toubiana J, Cauchemez S, Salje H, Brisse S. Global spatial dynamics and vaccine-induced fitness changes of Bordetella pertussis. Sci Transl Med 2022; 14:eabn3253. [PMID: 35476597 DOI: 10.1126/scitranslmed.abn3253] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
As with other pathogens, competitive interactions between Bordetella pertussis strains drive infection risk. Vaccines are thought to perturb strain diversity through shifts in immune pressures; however, this has rarely been measured because of inadequate data and analytical tools. We used 3344 sequences from 23 countries to show that, on average, there are 28.1 transmission chains circulating within a subnational region, with the number of chains strongly associated with host population size. It took 5 to 10 years for B. pertussis to be homogeneously distributed throughout Europe, with the same time frame required for the United States. Increased fitness of pertactin-deficient strains after implementation of acellular vaccines, but reduced fitness otherwise, can explain long-term genotype dynamics. These findings highlight the role of vaccine policy in shifting local diversity of a pathogen that is responsible for 160,000 deaths annually.
Collapse
Affiliation(s)
- Noémie Lefrancq
- Insitut Pasteur, Université Paris Cité, Mathematical Modelling of Infectious Diseases Unit, UMR2000, CNRS, 75015 Paris, France.,Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Valérie Bouchez
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, 75724 Paris, France.,National Reference Center for Whooping Cough and Other Bordetella Infections, 75724 Paris, France
| | - Nadia Fernandes
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, 75724 Paris, France
| | - Alex-Mikael Barkoff
- University of Turku UTU, Institute of Biomedicine, Research Center for Infections and Immunity, FI-20520 Turku, Finland
| | - Thijs Bosch
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3720 BA Bilthoven, Netherlands
| | - Tine Dalby
- Statens Serum Institut, Bacteria, Parasites and Fungi/Infectious Disease Preparedness, 2300 Copenhagen, Denmark
| | - Thomas Åkerlund
- The Public Health Agency of Sweden, Unit for Laboratory Surveillance of Bacterial Pathogens, SE-171 82 Solna, Sweden
| | - Jessica Darenberg
- The Public Health Agency of Sweden, Unit for Laboratory Surveillance of Bacterial Pathogens, SE-171 82 Solna, Sweden
| | - Katerina Fabianova
- National Institute of Public Health, Department of Infectious Diseases Epidemiology, CZ-10000 Prague, Czech Republic
| | - Didrik F Vestrheim
- Norwegian Institute of Public Health, Department of Infectious Disease Control and Vaccine, N-0213 Oslo, Norway
| | - Norman K Fry
- Respiratory and Vaccine Preventable Bacteria Reference Unit, Public Health England-National Infection Service, London NW9 5EQ, UK.,Immunisation and Countermeasures Division, Public Health England-National Infection Service, London NW9 5EQ, UK
| | - Juan José González-López
- University Hospital Vall d'Hebron, Microbiology Department, 08035 Barcelona, Spain.,Universitat Autònoma de Barcelona, Department of Genetics and Microbiology, 08193 Barcelona, Spain
| | - Karolina Gullsby
- Centre for Research and Development, Uppsala University/Region Gävleborg, 80187 Gävle, Sweden
| | - Adele Habington
- Molecular Microbiology Laboratory, Children's Health Ireland, Crumlin, D12 N512 Dublin, Ireland
| | - Qiushui He
- University of Turku UTU, Institute of Biomedicine, Research Center for Infections and Immunity, FI-20520 Turku, Finland.,InFLAMES Research Flagship Center, University of Turku, FI-20520 Turku, Finland
| | - David Litt
- Respiratory and Vaccine Preventable Bacteria Reference Unit, Public Health England-National Infection Service, London NW9 5EQ, UK
| | - Helena Martini
- Department of Microbiology, National Reference Centre for Bordetella pertussis, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel (VUB), B-1090 Brussels, Belgium
| | - Denis Piérard
- Department of Microbiology, National Reference Centre for Bordetella pertussis, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel (VUB), B-1090 Brussels, Belgium
| | - Paola Stefanelli
- Department of Infectious Diseases, Istituto Superiore di Sanità, IT-00161 Rome, Italy
| | - Marc Stegger
- Statens Serum Institut, Bacteria, Parasites and Fungi/Infectious Disease Preparedness, 2300 Copenhagen, Denmark
| | - Jana Zavadilova
- National Institute of Public Health, National Reference Laboratory for Pertussis and Diphtheria, 100 00 Prague, Czech Republic
| | - Nathalie Armatys
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, 75724 Paris, France.,National Reference Center for Whooping Cough and Other Bordetella Infections, 75724 Paris, France
| | - Annie Landier
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, 75724 Paris, France.,National Reference Center for Whooping Cough and Other Bordetella Infections, 75724 Paris, France
| | - Sophie Guillot
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, 75724 Paris, France.,National Reference Center for Whooping Cough and Other Bordetella Infections, 75724 Paris, France
| | - Samuel L Hong
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| | - Philippe Lemey
- Department of Microbiology, Immunology and Transplantation, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Julie Toubiana
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, 75724 Paris, France.,National Reference Center for Whooping Cough and Other Bordetella Infections, 75724 Paris, France.,Université Paris Cité, Department of General Paediatrics and Paediatric Infectious Diseases, Necker-Enfants Malades Hospital, APHP, 75015 Paris, France
| | - Simon Cauchemez
- Insitut Pasteur, Université Paris Cité, Mathematical Modelling of Infectious Diseases Unit, UMR2000, CNRS, 75015 Paris, France
| | - Henrik Salje
- Insitut Pasteur, Université Paris Cité, Mathematical Modelling of Infectious Diseases Unit, UMR2000, CNRS, 75015 Paris, France.,Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK
| | - Sylvain Brisse
- Institut Pasteur, Université Paris Cité, Biodiversity and Epidemiology of Bacterial Pathogens, 75724 Paris, France.,National Reference Center for Whooping Cough and Other Bordetella Infections, 75724 Paris, France
| |
Collapse
|
34
|
Sakari M, Tran MT, Rossjohn J, Pulliainen AT, Beddoe T, Littler DR. Crystal structures of pertussis toxin with NAD+ and analogs provide structural insights into the mechanism of its cytosolic ADP-ribosylation activity. J Biol Chem 2022; 298:101892. [PMID: 35378130 PMCID: PMC9079181 DOI: 10.1016/j.jbc.2022.101892] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 11/19/2022] Open
Abstract
Bordetella pertussis is the causative agent of whooping cough, a highly contagious respiratory disease. Pertussis toxin (PT), a major virulence factor secreted by B. pertussis, is an AB5-type protein complex topologically related to cholera toxin. The PT protein complex is internalized by host cells and follows a retrograde trafficking route to the endoplasmic reticulum, where it subsequently dissociates. The released enzymatic S1 subunit is then translocated from the endoplasmic reticulum into the cytosol and subsequently ADP-ribosylates the inhibitory alpha-subunits (Gαi) of heterotrimeric G proteins, thus promoting dysregulation of G protein–coupled receptor signaling. However, the mechanistic details of the ADP-ribosylation activity of PT are not well understood. Here, we describe crystal structures of the S1 subunit in complex with nicotinamide adenine dinucleotide (NAD+), with NAD+ hydrolysis products ADP-ribose and nicotinamide, with NAD+ analog PJ34, and with a novel NAD+ analog formed upon S1 subunit crystallization with 3-amino benzamide and NAD+, which we name benzamide amino adenine dinucleotide. These crystal structures provide unprecedented insights into pre- and post-NAD+ hydrolysis steps of the ADP-ribosyltransferase activity of PT. We propose that these data may aid in rational drug design approaches and further development of PT-specific small-molecule inhibitors.
Collapse
Affiliation(s)
- Moona Sakari
- Institute of Biomedicine, Research Unit for Infection and Immunity, University of Turku, Turku, Finland
| | - Mai T Tran
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia; Institute of Infection and Immunity, School of Medicine, Cardiff University, Heath Park, Cardiff, Wales, United Kingdom
| | - Arto T Pulliainen
- Institute of Biomedicine, Research Unit for Infection and Immunity, University of Turku, Turku, Finland.
| | - Travis Beddoe
- Department of Animal, Plant and Soil Science and Centre for AgriBioscience, La Trobe University, Bundoora, Victoria, Australia.
| | - Dene R Littler
- Infection and Immunity Program & Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
35
|
Zhang J, Zhang D, Wang X, Wei X, Li H. Macrolide susceptibility and molecular characteristics of Bordetella pertussis. J Int Med Res 2022; 50:3000605221078782. [PMID: 35225710 PMCID: PMC8894965 DOI: 10.1177/03000605221078782] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Objective To analyse macrolide resistance and molecular characteristics of Bordetella pertussis clinical isolates from western China, and to explore the relationship between macrolide-resistance and genotypes. Methods Susceptibilities of B. pertussis clinical isolates to erythromycin, azithromycin and clarithromycin were determined by epsilometer test (E-test). Isolated strains were sequenced to ascertain the presence of the 23S rRNA gene A2047G mutation. Strains were typed using multilocus antigen sequence typing, multilocus variable-number tandem-repeat analysis (MLVA) and pulsed-field gel electrophoresis (PFGE). Results Of 58 B. pertussis strains isolated in this study, 46 were macrolide-resistant and 12 were macrolide sensitive. All macrolide-resistant strains carried the A2047G mutation and were the prn1/ptxP1/ptxA1/fim3-1/fim2-1 genotype; the MLVA types were MT195 (19/58), MT55 (13/58) and MT104 (14/58), and the PFGE profiles were classified into BpSR23 (17/58) and BpFINR9 (29/58) types. None of the macrolide-sensitive strains carried the A2047G mutation; genotypes were (prn9 or prn2)/ptxP3/ptxA1/fim3-1/fim2-1, and all were MT27. PFGE profiles differed from the macrolide-resistant strains. Conclusions B. pertussis clinical isolates from western China were severely resistant to macrolides. Genotypes differed between macrolide-resistant and macrolide-sensitive strains, and there may be a correlation between acquisition of macrolide resistance and changes in specific molecular types.
Collapse
Affiliation(s)
- Juansheng Zhang
- Microbiology laboratory, Xi'an Centre for Disease Control and Prevention, Xi'an, Shaanxi Province, China
| | - Diqiang Zhang
- Department of Obstetrics and Gynaecology, Pingchuan District People's Hospital, Baiyin, Gansu Province, China
| | - Xiaoqiang Wang
- Microbiology laboratory, Xi'an Centre for Disease Control and Prevention, Xi'an, Shaanxi Province, China
| | - Xiaoguang Wei
- Microbiology laboratory, Xi'an Centre for Disease Control and Prevention, Xi'an, Shaanxi Province, China
| | - Hao Li
- Microbiology laboratory, Xi'an Centre for Disease Control and Prevention, Xi'an, Shaanxi Province, China
| |
Collapse
|
36
|
Zhang J, Lin C, Chang L, Wang X, Wei X, Li H. Genotypes of Bordetella pertussis isolated from infants in Xi'an and Shanghai. Zhejiang Da Xue Xue Bao Yi Xue Ban 2022; 51:47-52. [PMID: 35462464 PMCID: PMC9109763 DOI: 10.3724/zdxbyxb-2021-0282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
OBJECTIVE To compare the genotypes of Bordetella pertussis isolated from infants in Xi'an and Shanghai. METHODS Samples were collected by nasopharyngeal swab from infants aged <1 year hospitalized with suspected pertussis in Xi'an and Shanghai during 2018 and 2019. Bordetella pertussis was isolated, and multilocus antigen sequence typing (MAST) and multilocus variable-number tandem repeat analysis (MLVA) were used to analyse the genotypes. RESULTS A total of 1200 samples were collected from infants suspected of pertussis and 60 strains of Bordetella pertussis were isolated, including 34 strains in Xi'an and 26 strains in Shanghai. There were significant differences in the MAST types between Xi'an and Shanghai ( χ 2=18.642, P<0.01); the prn1/ ptxP1/ ptxA1/ fim3-1/ fim2-1 strains dominated in Xi'an (32/34, 94.12%), while the dominated MAST types in Shanghai were prn1/ ptxP1/ ptxA1/ fim3-1/ fim2-1 (13/26, 50.00%) and prn2/ ptxP3/ ptxA1/ fim3-1/ fim2-1 (11/26, 42.31%). The composition of MLVA type of pertussis strains was also significantly different between Xi'an and Shanghai ( χ 2=15.866, P<0.01); the MT195 (13/34, 38.24%), MT55 (10/34, 29.41%) and MT104 (9/34, 26.47%) strains dominated in Xi'an, while the MT27 (12/26, 46.15%) strain was most common in Shanghai. CONCLUSION There are differences in molecular types of Bordetella pertussis isolated from infants with suspected persussis in Xi'an and Shanghai, indicating that further monitoring of Bordetella pertussis is necessary for better understanding the pathogen evolution in China.
Collapse
Affiliation(s)
- Juansheng Zhang
- 1. Xi'an Center for Disease Control and Prevention, Xi'an 710054, China
| | - Chen Lin
- 2. Shanghai Pudong New Area Center for Disease Control and Prevention, Shanghai 200136, China
| | - Ling Chang
- 1. Xi'an Center for Disease Control and Prevention, Xi'an 710054, China
| | - Xiaoqiang Wang
- 1. Xi'an Center for Disease Control and Prevention, Xi'an 710054, China
| | - Xiaoguang Wei
- 1. Xi'an Center for Disease Control and Prevention, Xi'an 710054, China
| | - Hao Li
- 1. Xi'an Center for Disease Control and Prevention, Xi'an 710054, China
| |
Collapse
|
37
|
Schultz BM, Acevedo OA, Kalergis AM, Bueno SM. Role of Extracellular Trap Release During Bacterial and Viral Infection. Front Microbiol 2022; 13:798853. [PMID: 35154050 PMCID: PMC8825568 DOI: 10.3389/fmicb.2022.798853] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/04/2022] [Indexed: 12/20/2022] Open
Abstract
Neutrophils are innate immune cells that play an essential role during the clearance of pathogens that can release chromatin structures coated by several cytoplasmatic and granular antibacterial proteins, called neutrophil extracellular traps (NETs). These supra-molecular structures are produced to kill or immobilize several types of microorganisms, including bacteria and viruses. The contribution of the NET release process (or NETosis) to acute inflammation or the prevention of pathogen spreading depends on the specific microorganism involved in triggering this response. Furthermore, studies highlight the role of innate cells different from neutrophils in triggering the release of extracellular traps during bacterial infection. This review summarizes the contribution of NETs during bacterial and viral infections, explaining the molecular mechanisms involved in their formation and the relationship with different components of such pathogens.
Collapse
Affiliation(s)
- Bárbara M Schultz
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Orlando A Acevedo
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
38
|
Age and Primary Vaccination Background Influence the Plasma Cell Response to Pertussis Booster Vaccination. Vaccines (Basel) 2022; 10:vaccines10020136. [PMID: 35214595 PMCID: PMC8878388 DOI: 10.3390/vaccines10020136] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/07/2022] [Accepted: 01/12/2022] [Indexed: 02/08/2023] Open
Abstract
Pertussis is a vaccine-preventable disease caused by the bacterium Bordetella pertussis. Over the past years, the incidence and mortality of pertussis increased significantly. A possible cause is the switch from whole-cell to acellular pertussis vaccines, although other factors may also contribute. Here, we applied high-dimensional flow cytometry to investigate changes in B cells in individuals of different ages and distinct priming backgrounds upon administration of an acellular pertussis booster vaccine. Participants were divided over four age cohorts. We compared longitudinal kinetics within each cohort and between the different cohorts. Changes in the B-cell compartment were correlated to numbers of vaccine-specific B- and plasma cells and serum Ig levels. Expansion and maturation of plasma cells 7 days postvaccination was the most prominent cellular change in all age groups and was most pronounced for more mature IgG1+ plasma cells. Plasma cell responses were stronger in individuals primed with whole-cell vaccine than in individuals primed with acellular vaccine. Moreover, IgG1+ and IgA1+ plasma cell expansion correlated with FHA-, Prn-, or PT- specific serum IgG or IgA levels. Our study indicates plasma cells as a potential early cellular marker of an immune response and contributes to understanding differences in immune responses between age groups and primary vaccination backgrounds.
Collapse
|
39
|
Soltani MS, Eftekhar F, Noofeli M, Banihashemi SR, Shahcheraghi F. Comparison of Two Different Methods for the Extraction of Outer Membrane Vesicles from the Bordetella pertussis as a Vaccine Candidate. ARCHIVES OF RAZI INSTITUTE 2021; 76:411-419. [PMID: 34824734 DOI: 10.22092/ari.2020.342861.1487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 06/13/2020] [Indexed: 09/30/2022]
Abstract
Despite the availability of a vaccine, pertussis is still a worldwide health problem. Outer membrane vesicles (OMVs) in gram-negative bacteria can stimulate the immune system due to several outer membrane proteins and are very good candidates in vaccine development. OMVs obtained from Bordetella pertussis contain several antigens, which are considered immunogenic, and could make them a potential candidate for vaccine production. The current study aimed to compare the current OMV extraction method (with ultracentrifuge) and a modified extraction method (without ultracentrifuge) and to evaluate the physicochemical properties as well as the expression of their main virulence factors. Vaccinal strain BP134 grown on Bordet Gengo agar were inoculated in Modified Stainer-Scholte medium for mass cultivation. OMVs were prepared using two different methods. They were then stained and examined with a transmission electron microscope. Protein contents were measured by the Bradford method, and then the protein profile was evaluated by SDS-PAGE. The presence of immunogenic antigens was detected by Western blotting. The size and shape of the OMVs obtained from the modified method without the use of ultracentrifuge were similar to the current method and had a size between 40 and 200 nm. The total protein yields of the OMV isolated using the current and modified methods were 800 and 600 µg/ml, respectively. Evaluating the protein profile of extracted OMVs showed the presence of different proteins. Finally, the presence of PTX, PRN, and FHA was observed in OMVs extracted from both methods. Comparison of the two OMV extraction methods showed that the obtained vesicles have a suitable and similar shape and size as well as the expression of three important pathogenic factors as immunogens. Despite the relatively low reduction in protein yield as the modified method does not require ultracentrifuge, this extraction method can be used as a suitable alternative for extracting the outer membrane vesicles from B. pertussis, especially in developing countries. It should be noted that further experiments including immunogenicity determination of OMVs obtained as vaccine candidates in animal models are required.
Collapse
Affiliation(s)
- M S Soltani
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - F Eftekhar
- Department of Microbiology and Microbial Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - M Noofeli
- Department of Human Bacterial Vaccines Production and Research, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - S R Banihashemi
- Department of Immunology, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - F Shahcheraghi
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
40
|
Hall JM, Kang J, Kenney SM, Wong TY, Bitzer GJ, Kelly CO, Kisamore CA, Boehm DT, DeJong MA, Wolf MA, Sen-Kilic E, Horspool AM, Bevere JR, Barbier M, Damron FH. Reinvestigating the Coughing Rat Model of Pertussis To Understand Bordetella pertussis Pathogenesis. Infect Immun 2021; 89:e0030421. [PMID: 34125597 PMCID: PMC8594615 DOI: 10.1128/iai.00304-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 06/05/2021] [Indexed: 12/04/2022] Open
Abstract
Bordetella pertussis is a highly contagious bacterium that is the causative agent of whooping cough (pertussis). Currently, acellular pertussis vaccines (aP, DTaP, and Tdap) are used to prevent pertussis disease. However, it is clear that the aP vaccine efficacy quickly wanes, resulting in the reemergence of pertussis. Furthermore, recent work performed by the CDC suggest that current circulating strains are genetically distinct from strains of the past. The emergence of genetically diverging strains, combined with waning aP vaccine efficacy, calls for reevaluation of current animal models of pertussis. In this study, we used the rat model of pertussis to compare two genetically divergent strains Tohama 1 and D420. We intranasally challenged 7-week-old Sprague-Dawley rats with 108 viable Tohama 1 and D420 and measured the hallmark signs/symptoms of B. pertussis infection such as neutrophilia, pulmonary inflammation, and paroxysmal cough using whole-body plethysmography. Onset of cough occurred between 2 and 4 days after B. pertussis challenge, averaging five coughs per 15 min, with peak coughing occurring at day 8 postinfection, averaging upward of 13 coughs per 15 min. However, we observed an increase of coughs in rats infected with clinical isolate D420 through 12 days postchallenge. The rats exhibited increased bronchial restriction following B. pertussis infection. Histology of the lung and flow cytometry confirm both cellular infiltration and pulmonary inflammation. D420 infection induced higher production of anti-B. pertussis IgM antibodies compared to Tohama 1 infection. The coughing rat model provides a way of characterizing disease manifestation differences between B. pertussis strains.
Collapse
Affiliation(s)
- Jesse M. Hall
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, WVU Health Sciences Center, Morgantown, West Virginia, USA
| | - Jason Kang
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, WVU Health Sciences Center, Morgantown, West Virginia, USA
| | - Sophia M. Kenney
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, WVU Health Sciences Center, Morgantown, West Virginia, USA
| | - Ting Y. Wong
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, WVU Health Sciences Center, Morgantown, West Virginia, USA
| | - Graham J. Bitzer
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, WVU Health Sciences Center, Morgantown, West Virginia, USA
| | - Claire O. Kelly
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, WVU Health Sciences Center, Morgantown, West Virginia, USA
| | - Caleb A. Kisamore
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, WVU Health Sciences Center, Morgantown, West Virginia, USA
| | - Dylan T. Boehm
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, WVU Health Sciences Center, Morgantown, West Virginia, USA
| | - Megan A. DeJong
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, WVU Health Sciences Center, Morgantown, West Virginia, USA
| | - M. Allison Wolf
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, WVU Health Sciences Center, Morgantown, West Virginia, USA
| | - Emel Sen-Kilic
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, WVU Health Sciences Center, Morgantown, West Virginia, USA
| | - Alexander M. Horspool
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, WVU Health Sciences Center, Morgantown, West Virginia, USA
| | - Justin R. Bevere
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, WVU Health Sciences Center, Morgantown, West Virginia, USA
| | - Mariette Barbier
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, WVU Health Sciences Center, Morgantown, West Virginia, USA
| | - F. Heath Damron
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, WVU Health Sciences Center, Morgantown, West Virginia, USA
| |
Collapse
|
41
|
Evaluation of Outer Membrane Vesicles Obtained from Predominant Local Isolate of Boredetella pertussis as a Vaccine Candidate. IRANIAN BIOMEDICAL JOURNAL 2021; 25:399-407. [PMID: 34719226 PMCID: PMC8744696 DOI: 10.52547/ibj.25.6.399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Background: Pertussis is a current contagious bacterial disease caused by Bp. Given the prevalence of pertussis, development of new vaccines is important. This study was attempted to evaluate the expression of main virulence factors (PTX, PRN, and FHA) from Bp predominant strains and also compare the expression of these factors in the OMVs obtained from predominant circulating Bp isolate. Methods: The physicochemical features of the prepared OMVs were analyzed by electron microscopy and SDS-PAGE. The presence of the mentioned virulence factors was confirmed by Western blotting. BALB/c mice (n = 21) immunized with characterized OMVs were challenged intranasally with sublethal doses of Bp, to examine their protective capacity. Results: Electron microscopic examination of the OMVs indicated vesicles within the range of 40 to 200 nm. SDS-PAGE and Western blotting demonstrated the expression of all three main protective immunogens (PTX, PRN, and FHA), prevalent in the predominant, challenge, and vaccine strains, and OMVs of the predominant IR37 strain and BP134 vaccine strain. Significant differences were observed in lung bacterial counts between the immunized mice with OMV (30 CFU/lung) compared to the negative control group ((6 104 CFU/lung; p < 0.001). In mice immunized with OMVs (3 µg), the number of lungs recovered colonies after five days dropped at least five orders of magnitude compared to the control group. Conclusion: OMVs obtained from circulating isolates with the predominant profile may constitute a highly promising vaccine quality. They also can be proposed as a potential basic material for the development of new pertussis vaccine candidate.
Collapse
|
42
|
Kang KR, Huh DH, Kim JA, Kang JH. Immunogenicity of a new enhanced tetanus-reduced dose diphtheria-acellular pertussis (Tdap) vaccine against Bordetella pertussis in a murine model. BMC Immunol 2021; 22:68. [PMID: 34641798 PMCID: PMC8506493 DOI: 10.1186/s12865-021-00457-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 09/28/2021] [Indexed: 11/13/2022] Open
Abstract
Background The necessity of the tetanus-reduced dose diphtheria-acellular pertussis (Tdap) vaccine in adolescence and adults has been emphasized since the resurgence of small-scale pertussis in Korea and worldwide due to the waning effect of the vaccine and variant pathogenic stains in the late 1990s. GreenCross Pharma (GC Pharma), a Korean company, developed the Tdap vaccine GC3111 in 2010. Recently, they enhanced the vaccine, GC3111, produced previously in 2010 to reinforce the antibody response against filamentous hemagglutinin (FHA). In this study, immunogenicity and efficacy of the enhanced Tdap vaccine compared and evaluated with two Tdap vaccines, GC3111 vaccine produced in 2010 previously and commercially available Tdap vaccine in a murine model. Methods Two tests groups and positive control group of Balb/c mice were primed with two doses of the diphtheria-tetanus-acellular pertussis (DTaP) vaccine followed by a single booster Tdap vaccine at 9 week using the commercially available Tdap vaccine or 2 Tdap vaccines from GC Pharma (GC3111, enhanced GC3111). Humoral response was assessed 1 week before and 2 and 4 weeks after Tdap booster vaccination. The enhanced GC3111 generated similar humoral response compare to the commercial vaccine for filamentous hemagglutinin (FHA). The interferon gamma (IFN-γ) (Th1), interleukin 5 (IL-5) (Th2) and interleukin 17 (IL-17) (Th17) cytokines were assessed 4 weeks after booster vaccination by stimulation with three simulators: heat inactivated Bordetella pertussis (hBp), vaccine antigens, and hBp mixed with antigens (hBp + antigen). A bacterial challenge test was performed 4 weeks after booster vaccination. Results Regarding cell-mediated immunity, cytokine secretion differed among the three simulators. However, no difference was found between two test groups and positive control group. All the vaccinated groups indicated a Th1 or Th1/Th2 response. On Day 5 post-bacterial challenge, B. pertussis colonies were absent in the lungs in two test groups and positive control group. Conclusions Our results confirmed the immunogenicity of GC Pharma’s Tdap vaccine; enhanced GC3111 was equivalent to the presently used commercial vaccine in terms of humoral response as well as cell-mediated cytokine expression. Supplementary Information The online version contains supplementary material available at 10.1186/s12865-021-00457-1.
Collapse
Affiliation(s)
- Kyu Ri Kang
- The Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Annex to Seoul Saint Mary Hospital, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Korea
| | - Dong Ho Huh
- The Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Annex to Seoul Saint Mary Hospital, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Korea
| | - Ji Ahn Kim
- The Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Annex to Seoul Saint Mary Hospital, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Korea
| | - Jin Han Kang
- The Vaccine Bio Research Institute, College of Medicine, The Catholic University of Korea, Seoul, Annex to Seoul Saint Mary Hospital, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Korea. .,Department of Pediatrics, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Korea.
| |
Collapse
|
43
|
Belcher T, Dubois V, Rivera-Millot A, Locht C, Jacob-Dubuisson F. Pathogenicity and virulence of Bordetella pertussis and its adaptation to its strictly human host. Virulence 2021; 12:2608-2632. [PMID: 34590541 PMCID: PMC8489951 DOI: 10.1080/21505594.2021.1980987] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The highly contagious whooping cough agent Bordetella pertussis has evolved as a human-restricted pathogen from a progenitor which also gave rise to Bordetella parapertussis and Bordetella bronchiseptica. While the latter colonizes a broad range of mammals and is able to survive in the environment, B. pertussis has lost its ability to survive outside its host through massive genome decay. Instead, it has become a highly successful human pathogen by the acquisition of tightly regulated virulence factors and evolutionary adaptation of its metabolism to its particular niche. By the deployment of an arsenal of highly sophisticated virulence factors it overcomes many of the innate immune defenses. It also interferes with vaccine-induced adaptive immunity by various mechanisms. Here, we review data from invitro, human and animal models to illustrate the mechanisms of adaptation to the human respiratory tract and provide evidence of ongoing evolutionary adaptation as a highly successful human pathogen.
Collapse
Affiliation(s)
- Thomas Belcher
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Violaine Dubois
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Alex Rivera-Millot
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Camille Locht
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Françoise Jacob-Dubuisson
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| |
Collapse
|
44
|
Structural basis for antibody binding to adenylate cyclase toxin reveals RTX linkers as neutralization-sensitive epitopes. PLoS Pathog 2021; 17:e1009920. [PMID: 34547035 PMCID: PMC8486122 DOI: 10.1371/journal.ppat.1009920] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/01/2021] [Accepted: 08/27/2021] [Indexed: 11/19/2022] Open
Abstract
RTX leukotoxins are a diverse family of prokaryotic virulence factors that are secreted by the type 1 secretion system (T1SS) and target leukocytes to subvert host defenses. T1SS substrates all contain a C-terminal RTX domain that mediates recruitment to the T1SS and drives secretion via a Brownian ratchet mechanism. Neutralizing antibodies against the Bordetella pertussis adenylate cyclase toxin, an RTX leukotoxin essential for B. pertussis colonization, have been shown to target the RTX domain and prevent binding to the αMβ2 integrin receptor. Knowledge of the mechanisms by which antibodies bind and neutralize RTX leukotoxins is required to inform structure-based design of bacterial vaccines, however, no structural data are available for antibody binding to any T1SS substrate. Here, we determine the crystal structure of an engineered RTX domain fragment containing the αMβ2-binding site bound to two neutralizing antibodies. Notably, the receptor-blocking antibodies bind to the linker regions of RTX blocks I–III, suggesting they are key neutralization-sensitive sites within the RTX domain and are likely involved in binding the αMβ2 receptor. As the engineered RTX fragment contained these key epitopes, we assessed its immunogenicity in mice and showed that it elicits similar neutralizing antibody titers to the full RTX domain. The results from these studies will support the development of bacterial vaccines targeting RTX leukotoxins, as well as next-generation B. pertussis vaccines. Diverse bacterial pathogens use the type 1 secretion system (T1SS) to secrete RTX leukotoxins, which target host leukocytes during infection. T1SS substrates all contain a repetitive C-terminal ‘RTX’ domain that adopts a characteristic β-roll fold and is involved in secretion. Notably, The RTX domain of Bordetella pertussis adenylate cyclase toxin (ACT) mediates leukocyte targeting via binding to the αMβ2 integrin receptor, and antibodies that block receptor binding neutralize toxin activity. However, ACT also contains multiple non-neutralizing epitopes, and precise knowledge of the sites targeted by neutralizing antibodies is desirable for vaccine design. Here we determine the crystal structure of an ACT fragment in complex with two neutralizing antibodies and define the key neutralization-sensitive sites within the RTX domain. This first structure of a heterotypic protein–protein interaction formed by an RTX domain suggests the linker regions between β-roll segments engage binding partners.
Collapse
|
45
|
Wu S, Hu Q, Yang C, Zhou H, Chen H, Zhang Y, Jiang M, He Y, Shi X. Molecular epidemiology of Bordetella pertussis and analysis of vaccine antigen genes from clinical isolates from Shenzhen, China. Ann Clin Microbiol Antimicrob 2021; 20:53. [PMID: 34407803 PMCID: PMC8371876 DOI: 10.1186/s12941-021-00458-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/28/2021] [Indexed: 11/10/2022] Open
Abstract
Background Although pertussis cases globally have been controlled through the Expanded Programme on Immunization (EPI), the incidence of pertussis has increased significantly in recent years, with a “resurgence” of pertussis occurring in developed countries with high immunization coverage. Attracted by its fast-developing economy, the population of Shenzhen has reached 14 million and has become one of the top five largest cities by population size in China. The incidence of pertussis here was about 2.02/100,000, far exceeding that of the whole province and the whole country (both < 1/100,000). There are increasing numbers of reports demonstrating variation in Bordetella pertussis antigens and genes, which may be associated with the increased incidence. Fifty strains of Bordetella pertussis isolated from 387 suspected cases were collected in Shenzhen in 2018 for genotypic and molecular epidemiological analysis. Methods There were 387 suspected cases of pertussis enrolled at surveillance sites in Shenzhen from June to August 2018. Nasopharyngeal swabs from suspected pertussis cases were collected for bacterial culture and the identity of putative Bordetella pertussis isolates was confirmed by real-time PCR. The immunization history of each patient was taken. The acellular pertussis vaccine (APV) antigen genes for pertussis toxin (ptxA, ptxC), pertactin (prn) and fimbriae (fim2 and fim3) together with the pertussis toxin promoter region (ptxP) were analyzed by second-generation sequencing. Genetic and phylogenetic analysis was performed using sequences publicly available from GenBank, National Institutes of Health, Bethesda, MD, USA (https://www.ncbi.nlm.nih.gov/genbank/). The antimicrobial susceptibility was test by Kirby-Bauer disk diffusion. Results Fifty strains of Bordetella pertussis were successfully isolated from nasopharyngeal swabs of 387 suspected cases, with a positivity rate of 16.79%, including 28 males and 22 females, accounting for 56.0% and 44.0% respectively. Thirty-eight of the 50 (76%) patients were found to be positive for B. pertussis by culture. Among the positive cases with a history of vaccination, 30 of 42 (71.4%) cases had an incomplete pertussis vaccination history according to the national recommendation. Three phylogenetic groups (PG1-PG3) were identified each containing a predominant genotype. The two vaccines strains, CS and Tohama I, were distantly related to these three groups. Thirty-one out of fifty (62%) isolates belonged to genotype PG1, with the allelic profile prn2/ptxC2/ptxP3/ptxA1/fim3-1/fim2-1. Eighteen out of fifty (36%) isolates contained the A2047G mutation and were highly resistant to erythromycin, and all belonged to genotype PG3 (prn1/ptxA1/ptxP1/ptxC1/fim3-1/fim2-1), which is closely related to the recent epidemic strains found in northern China. Conclusions The positive rate of cases under one-year-old was significantly higher than that of other age groups and should be monitored. The dominant antigen genotypes of 50 Shenzhen isolates are closely related to the epidemic strains in the United States, Australia and many countries in Europe. Despite high rates of immunization with APV, epidemics of pertussis have recently occurred in these countries. Therefore, genomic analysis of circulating isolates of B. pertussis should be continued, for it will benefit the control of whooping cough and development of improved vaccines and therapeutic strategies.
Collapse
Affiliation(s)
- Shuang Wu
- Shenzhen Center for Disease Control and Prevention, 8 Longyuan Road, Nanshan District, Shenzhen, China
| | - Qinghua Hu
- Shenzhen Center for Disease Control and Prevention, 8 Longyuan Road, Nanshan District, Shenzhen, China
| | - Chao Yang
- Shenzhen Center for Disease Control and Prevention, 8 Longyuan Road, Nanshan District, Shenzhen, China
| | - Haijian Zhou
- National Institute for Communicable Disease Control and Prevention (ICDC) of China CDC, Beijing, China
| | - Hongyu Chen
- Shenzhen Children's Hospital, Shenzhen, China
| | - Yanwei Zhang
- Shenzhen Center for Disease Control and Prevention, 8 Longyuan Road, Nanshan District, Shenzhen, China
| | - Min Jiang
- Shenzhen Center for Disease Control and Prevention, 8 Longyuan Road, Nanshan District, Shenzhen, China
| | - Yuxiang He
- Shenzhen Center for Disease Control and Prevention, 8 Longyuan Road, Nanshan District, Shenzhen, China
| | - Xiaolu Shi
- Shenzhen Center for Disease Control and Prevention, 8 Longyuan Road, Nanshan District, Shenzhen, China.
| |
Collapse
|
46
|
Sanchez-Alvarez K, Rosales-Mendoza S, Reyes-Barrera KL, Moreno-Fierros L, Soria-Guerra RE, Castillo-Collazo R, Monreal-Escalente E, Alpuche-Solis AG. Antibodies induced by oral immunization of mice with a recombinant protein produced in tobacco plants harboring Bordetella pertussis epitopes. PLANT CELL, TISSUE AND ORGAN CULTURE 2021; 147:85-96. [PMID: 34276113 PMCID: PMC8272453 DOI: 10.1007/s11240-021-02107-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/19/2021] [Indexed: 06/13/2023]
Abstract
UNLABELLED Bordetella pertusis causes whooping cough or pertussis, disease that has not been eradicated and is reemerging despite the availability and massive application for decades of vaccines, such as Boostrix® which is an acellular vaccine harboring two regions of S1 subunit of the pertussis toxin, one region of filamentous hemagglutinin and one region of pertactin. In 2008, the World Health Organization estimated 16 million new cases and 95% occurred in developing countries with 195,000 children's deaths. We attempt to improve the vaccine against whooping cough and reduce its production costs by obtaining plants and bacteria expressing a heterologous protein harboring pertactin, pertussis toxin, and filamentous hemagglutinin epitopes from B. pertussis and assessing its immunogenicity after oral administration to mice. First, we designed a synthetic gene that encodes a multiepitope, then it was cloned into a vector for transient transformation by infiltration of tobacco plants with low amounts of nicotine; the codon bias-optimized construct was also cloned into an Escherichia coli expression vector. Recombinant proteins from E. coli cells (PTF) and tobacco leaves (PTF-M3') were purified by nickel affinity with a yield of 0.740 mg of recombinant protein per g dry weight. Purified recombinant proteins were administered orally to groups of Balb/c mice using the Boostrix® vaccine and vehicle (PBS) as positive and negative controls, respectively. A higher mucosal and systemic antibody responses were obtained in mice receiving the PTF and PTF-M3' proteins than Boostrix® or PBS. These findings prove the concept that oral administration of multiepitope recombinant proteins expressed in plants may be a potential edible vaccine. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11240-021-02107-1.
Collapse
Affiliation(s)
- Karla Sanchez-Alvarez
- División de Biología Molecular, IPICYT, Camino a la Presa San José 2055, 78216 San Luis Potosí, S.L.P. México
| | - Sergio Rosales-Mendoza
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, 78210 San Luis Potosí, S.L.P. México
| | - Karen L. Reyes-Barrera
- División de Biología Molecular, IPICYT, Camino a la Presa San José 2055, 78216 San Luis Potosí, S.L.P. México
| | - Leticia Moreno-Fierros
- Inmunidad en Mucosas, UBIMED, FES-Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios 1, 54090 Tlalnepantla, México
| | - Ruth E. Soria-Guerra
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, 78210 San Luis Potosí, S.L.P. México
| | - Rosalba Castillo-Collazo
- División de Biología Molecular, IPICYT, Camino a la Presa San José 2055, 78216 San Luis Potosí, S.L.P. México
| | - Elizabeth Monreal-Escalente
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, 78210 San Luis Potosí, S.L.P. México
| | - Angel G. Alpuche-Solis
- División de Biología Molecular, IPICYT, Camino a la Presa San José 2055, 78216 San Luis Potosí, S.L.P. México
| |
Collapse
|
47
|
Jiang W, Wei C, Mou D, Zuo W, Liang J, Ma X, Wang L, Gao N, Gu Q, Luo P, Ma Y, Li J, Liu S, Shi L, Sun M. Infant rhesus macaques as a non-human primate model of Bordetella pertussis infection. BMC Infect Dis 2021; 21:407. [PMID: 33941094 PMCID: PMC8091708 DOI: 10.1186/s12879-021-06090-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/20/2021] [Indexed: 11/10/2022] Open
Abstract
Background The prevalent resurgence of pertussis has recently become a critical public health problem worldwide. To understand pertussis pathogenesis and the host response to both the pathogen and vaccines, a suitable pertussis animal model, particularly a non-human primate model, is necessary. Recently, a non-human primate pertussis model was successfully established with baboons. Rhesus macaques have been shown to be ideal animal models for several infectious diseases, but a model of infectious pertussis has not been established in these organisms. Studies on rhesus macaque models of pertussis were performed in the 1920s–1930s, but limited experimental details are available. Recent monkey pertussis models have not been successful because the typical clinical symptoms and transmission have not been achieved. Methods In the present study, infant rhesus macaques were challenged with Bordetella pertussis (B.p) using an aerosol method to evaluate the feasibility of this system as an animal model of pertussis. Results Upon aerosol infection, monkeys infected with the recently clinically isolated B.p strain 2016-CY-41 developed the typical whooping cough, leukocytosis, bacteria-positive nasopharyngeal wash (NPW), and interanimal transmission of pertussis. Both systemic and mucosal humoral responses were induced by B.p. Conclusion These results demonstrate that a model of pertussis was successfully established in infant rhesus macaques. This model provides a valuable platform for research on pertussis pathogenesis and evaluation of vaccine candidates. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-021-06090-y.
Collapse
Affiliation(s)
- Wenwen Jiang
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, 650118, Yunnan, China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, 650118, Yunnan, China
| | - Chen Wei
- Department of Diphtheria, Tetanus and Pertussis Vaccine and Toxins, National Institute for Food and Drug Control, Beijing, China
| | - Dachao Mou
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, 650118, Yunnan, China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, 650118, Yunnan, China
| | - Weilun Zuo
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, 650118, Yunnan, China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, 650118, Yunnan, China
| | - Jiangli Liang
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, 650118, Yunnan, China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, 650118, Yunnan, China
| | - Xiao Ma
- Department of Diphtheria, Tetanus and Pertussis Vaccine and Toxins, National Institute for Food and Drug Control, Beijing, China
| | - Lichan Wang
- Department of Diphtheria, Tetanus and Pertussis Vaccine and Toxins, National Institute for Food and Drug Control, Beijing, China
| | - Na Gao
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, 650118, Yunnan, China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, 650118, Yunnan, China
| | - Qin Gu
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, 650118, Yunnan, China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, 650118, Yunnan, China
| | - Peng Luo
- Department of Diphtheria, Tetanus and Pertussis Vaccine and Toxins, National Institute for Food and Drug Control, Beijing, China
| | - Yan Ma
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, 650118, Yunnan, China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, 650118, Yunnan, China
| | - Jingyan Li
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, 650118, Yunnan, China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, 650118, Yunnan, China
| | - Shuyuan Liu
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, 650118, Yunnan, China
| | - Li Shi
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, 650118, Yunnan, China.
| | - Mingbo Sun
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, 650118, Yunnan, China. .,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, 650118, Yunnan, China.
| |
Collapse
|
48
|
Emerging macrolide resistance in Bordetella pertussis in mainland China: Findings and warning from the global pertussis initiative. LANCET REGIONAL HEALTH-WESTERN PACIFIC 2021; 8:100098. [PMID: 34327426 PMCID: PMC8315362 DOI: 10.1016/j.lanwpc.2021.100098] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/10/2021] [Accepted: 01/14/2021] [Indexed: 11/22/2022]
Abstract
Whooping cough, or pertussis, is a highly communicable infectious disease caused by the bacterium Bordetella pertussis. Vaccination once reduced the incidence of the disease, but a global resurgence of the infection happened during the past two decades, likely due to the waning immunity of vaccination. Macrolides such as erythromycin and azithromycin are the drugs of primary choice for treatment. In this personal view, we call for attention to macrolide-resistant B. pertussis (MRBP), which has emerged and prevailed in mainland China for years and are exclusively mediated by mutations in the 23S rRNA gene. Whether the prevalence of MRBP in China results from overuse of azithromycin in clinical medicine remains unknown. The incidence of MRBP is low in other countries, but this could be a technical illusion since China employs culture as the mainstream diagnostic method whereas nucleic-acid amplification test being widely used in other countries fail to test antimicrobial susceptibility. Given the increasingly frequent global travel that facilitates microbial transmission worldwide, there is a pressing need to perform international surveillance on MRBP to prevent the potential circulation of the organism. Finding alternative agents that possess good activity against B. pertussis is also urgently required.
Collapse
|
49
|
Chasaide CN, Mills KH. Next-Generation Pertussis Vaccines Based on the Induction of Protective T Cells in the Respiratory Tract. Vaccines (Basel) 2020; 8:E621. [PMID: 33096737 PMCID: PMC7711671 DOI: 10.3390/vaccines8040621] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/13/2020] [Accepted: 10/16/2020] [Indexed: 12/11/2022] Open
Abstract
Immunization with current acellular pertussis (aP) vaccines protects against severe pertussis, but immunity wanes rapidly after vaccination and these vaccines do not prevent nasal colonization with Bordetella pertussis. Studies in mouse and baboon models have demonstrated that Th1 and Th17 responses are integral to protective immunity induced by previous infection with B. pertussis and immunization with whole cell pertussis (wP) vaccines. Mucosal Th17 cells, IL-17 and secretory IgA (sIgA) are particularly important in generating sustained sterilizing immunity in the nasal cavity. Current aP vaccines induce potent IgG and Th2-skewed T cell responses but are less effective at generating Th1 and Th17 responses and fail to prime respiratory tissue-resident memory T (TRM) cells, that maintain long-term immunity at mucosal sites. In contrast, a live attenuated pertussis vaccine, pertussis outer membrane vesicle (OMV) vaccines or aP vaccines formulated with novel adjuvants do induce cellular immune responses in the respiratory tract, especially when delivered by the intranasal route. An increased understanding of the mechanisms of sustained protective immunity, especially the role of respiratory TRM cells, will facilitate the development of next generation pertussis vaccines that not only protect against pertussis disease, but prevent nasal colonization and transmission of B. pertussis.
Collapse
Affiliation(s)
| | - Kingston H.G. Mills
- School of Biochemistry and Immunology, Trinity College Dublin, 2, D02 PN40 Dublin, Ireland;
| |
Collapse
|
50
|
Yao K, Deng J, Ma X, Dai W, Chen Q, Zhou K, Ye J, Shi W, Wang H, Li D, Wang H, Wang J, Zhang J, Wu D, Xie G, Shen K, Zheng Y, Yang Y. The epidemic of erythromycin-resistant Bordetella pertussis with limited genome variation associated with pertussis resurgence in China. Expert Rev Vaccines 2020; 19:1093-1099. [PMID: 33034224 DOI: 10.1080/14760584.2020.1831916] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND The resurgence of Bordetella pertussis infections leading to whooping cough is a concern in many parts of the world. The number of pertussis cases in China has increased significantly since 2013. RESEARCH DESIGN AND METHODS In this study, whole-genome sequencing analysis was performed for 388 B. pertussis strains isolated in China from the 1970s to 2018, combining 594 published strains from around the world. RESULTS This study revealed that lineage V diverged about 50 years ago in China, while lineage IV is dominant in the other countries. It also revealed that the erythromycin-resistant sub-lineages Va, Vb, and Vc with limited genomic variation emerged 11 ~ 12 years ago. These three sub-lineages were identified after the co-purified acellular vaccines (cp-ACVs) completely replaced the previous whole cell vaccines (WCVs) after the national immunization program of 2012. It suggests that the cp-ACVs cannot induce immunity that is potent enough to restrict the spread of the lineage V, antibiotic abuse further favors the spread of this lineage in China. CONCLUSIONS These findings demand a reassessment of the immunization strategy and development of new vaccines in China to stop the resurgence and drug resistance of B. pertussis.
Collapse
Affiliation(s)
- Kaihu Yao
- Beijing Pediatric Research Institute of Beijing Children's Hospital Affiliated to Capital Medical University , Beijing, China
| | - Jikui Deng
- Department of Infectious Disease and Department of Pulmonology, Shenzhen Children's Hospital , Shenzhen, China
| | - Xiang Ma
- Pediatric Department, Jinan Children's Hospital , Jinan, China
| | - Wenkui Dai
- WeHealthGene Institute , Shenzhen, China
| | - Qiang Chen
- Department of Pulmonology, Jiangxi Provincial Children's Hospital , Nanchang, China
| | - Kai Zhou
- Department of Infectious Disease, Nanjing Children's Hospital , Nanjing, China
| | - Jinyan Ye
- Clinical Laboratory, Jiaxing University Affiliated Women and Children Hospital , Jiaxing, China
| | - Wei Shi
- Beijing Pediatric Research Institute of Beijing Children's Hospital Affiliated to Capital Medical University , Beijing, China
| | - Heping Wang
- Department of Infectious Disease and Department of Pulmonology, Shenzhen Children's Hospital , Shenzhen, China
| | | | - Hongmei Wang
- Department of Infectious Disease and Department of Pulmonology, Shenzhen Children's Hospital , Shenzhen, China
| | - Jingmin Wang
- Beijing Pediatric Research Institute of Beijing Children's Hospital Affiliated to Capital Medical University , Beijing, China.,Pediatric Department, Peking University First Hospital , Beijing, China
| | - Jiaosheng Zhang
- Department of Infectious Disease and Department of Pulmonology, Shenzhen Children's Hospital , Shenzhen, China
| | - Danxia Wu
- Department of Pulmonology, Jiangxi Provincial Children's Hospital , Nanchang, China
| | - Gan Xie
- Beijing Pediatric Research Institute of Beijing Children's Hospital Affiliated to Capital Medical University , Beijing, China.,Department of Infectious Disease and Department of Pulmonology, Shenzhen Children's Hospital , Shenzhen, China
| | - Kunling Shen
- Beijing Pediatric Research Institute of Beijing Children's Hospital Affiliated to Capital Medical University , Beijing, China
| | - Yuejie Zheng
- Department of Infectious Disease and Department of Pulmonology, Shenzhen Children's Hospital , Shenzhen, China
| | - Yonghong Yang
- Beijing Pediatric Research Institute of Beijing Children's Hospital Affiliated to Capital Medical University , Beijing, China.,Department of Infectious Disease and Department of Pulmonology, Shenzhen Children's Hospital , Shenzhen, China.,WeHealthGene Institute , Shenzhen, China
| |
Collapse
|