1
|
Hooi YT, Fu TL, Tan SH, Ong KC, Tan CY, Wong KT. Neuroinvasion via Peripheral Nerves in Epidemic Viral Encephalitis Caused by Enterovirus, Orthoflavivirus and SARS-Coronavirus. Neuropathol Appl Neurobiol 2025; 51:e70005. [PMID: 39989030 DOI: 10.1111/nan.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 01/14/2025] [Accepted: 02/12/2025] [Indexed: 02/25/2025]
Abstract
Pathogens invade the central nervous system (CNS) and cause infections either through the haematogenous route or via peripheral nerves. Neuroinvasion via peripheral nerves, involving spinal or cranial somatic nerves, is well-established for certain viral encephalitides such as rabies, herpes simplex encephalitis, and poliomyelitis. Advances in understanding emerging and re-emerging viruses that cause epidemic CNS infections have highlighted the growing importance of peripheral nerve pathways in viral neuroinvasion. This review focuses on epidemic viral encephalitides caused by three groups of RNA viruses, viz., enteroviruses (enterovirus A71 and enterovirus D68), orthoflaviviruses (West Nile virus and Japanese encephalitis virus), and severe acute respiratory syndrome coronaviruses (mainly severe acute respiratory coronavirus-2). We examine evidence supporting the hypothesis that peripheral nerve viral transmission may play an increasingly significant if not more critical role than the haematogenous route in neuroinvasion.
Collapse
Affiliation(s)
- Yuan Teng Hooi
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Tzeh Long Fu
- Department of Pathology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Soon Hao Tan
- Department of Biomedical Sciences, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kien Chai Ong
- Department of Biomedical Sciences, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Chee Yang Tan
- MBBS Class of 2017/2022, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kum Thong Wong
- Department of Pathology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| |
Collapse
|
2
|
Kalam N, Balasubramaniam V. Changing Epidemiology of Hand, Foot, and Mouth Disease Causative Agents and Contributing Factors. Am J Trop Med Hyg 2024; 111:740-755. [PMID: 39106854 PMCID: PMC11448535 DOI: 10.4269/ajtmh.23-0852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 05/18/2024] [Indexed: 08/09/2024] Open
Abstract
Hand, foot, and mouth disease (HFMD) is a common viral infection primarily affecting children. It causes vesicles on the skin and inside the mouth. Although most cases get better on their own, severe cases can lead to complications such as brain stem encephalitis, meningoencephalitis, acute flaccid paralysis, and pulmonary edema. Hand, foot, and mouth disease is caused by various enteroviruses, with enterovirus A71 (EV-A71) and coxsackievirus A16 being the most common. However, recent studies have shown a shift in the molecular epidemiology of HFMD-causing pathogens, with coxsackievirus A6 and coxsackievirus A10 causing more infections. In addition, extensive recombination events have been identified among enterovirus strains, which may have a role in faster evolution and extinction of dominant enterovirus serotypes. Other strains of enterovirus can also cause severe complications, and there has been an increase in mortality associated with brain stem encephalitis in children under 3 years of age and teenagers. Currently, there are no effective antiviral therapies available to treat enterovirus infections. Vaccines against EV-A71 have been approved and are now used in mainland China. Studying the changing epidemiology of HFMD pathogens and the evolution patterns of its causative agents is crucial in developing effective prevention and control strategies. Increased interest in the molecular epidemiology of HFMD causative agents has led to a better understanding of the critical drivers of HFMD outbreaks, which can inform efforts to prevent and control the disease.
Collapse
Affiliation(s)
- Nida Kalam
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Vinod Balasubramaniam
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| |
Collapse
|
3
|
Hu Y, Zhao W, Lv Y, Li H, Li J, Zhong M, Pu D, Jian F, Song J, Zhang Y. NLRP3-dependent pyroptosis exacerbates coxsackievirus A16 and coxsackievirus A10-induced inflammatory response and viral replication in SH-SY5Y cells. Virus Res 2024; 345:199386. [PMID: 38705479 PMCID: PMC11091677 DOI: 10.1016/j.virusres.2024.199386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Coxsackievirus A16 (CV-A16) and coxsackievirus A10 (CV-A10), more commonly etiological agents of hand, foot and mouth disease (HFMD), are capable of causing severe neurological syndromes with high fatalities, but their neuropathogenesis has rarely been studied. Mounting evidence indicated that pyroptosis is an inflammatory form of cell death that might be widely involved in the pathogenic mechanisms of neurotropic viruses. Our study was designed to examine the effects of NLRP3-mediated pyroptosis in CV-A16- and CV-A10-induced inflammatory neuropathologic formation. In this work, it was showed that SH-SY5Y cells were susceptible to CV-A16 and CV-A10, and meanwhile their infections could result in a decreasing cell viability and an increasing LDH release as well as Caspase1 activation. Moreover, CV-A16 and CV-A10 infections triggered NLRP3-mediated pyroptosis and promoted the release of inflammatory cytokines. Additionally, activated NLRP3 accelerated the pyroptosis formation and aggravated the inflammatory response, but inhibited NLRP3 had a dampening effect on the above situation. Finally, it was further revealed that NLRP3 agonist enhanced the viral replication, but NLRP3 inhibitor suppressed the viral replication, suggesting that NLRP3-driven pyroptosis might support CV-A16 and CV-A10 production in SH-SY5Y cells. Together, our findings demonstrated a mechanism by which CV-A16 and CV-A10 induce inflammatory responses by evoking NLRP3 inflammasome-regulated pyroptosis, which in turn further stimulated the viral replication, providing novel insights into the pathogenesis of CV-A16 and CV-A10 infections.
Collapse
Affiliation(s)
- Yajie Hu
- Department of Respiratory Medicine, The First People's Hospital of Yunnan Province, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Wei Zhao
- Department of Respiratory Medicine, The First People's Hospital of Yunnan Province, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yaming Lv
- Department of Respiratory Medicine, The First People's Hospital of Yunnan Province, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Hui Li
- National and Local Engineering Center for Infectious Biological Products, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Jiang Li
- National and Local Engineering Center for Infectious Biological Products, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China
| | - Mingmei Zhong
- Department of Respiratory Medicine, The First People's Hospital of Yunnan Province, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Dandan Pu
- Department of Respiratory Medicine, The First People's Hospital of Yunnan Province, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Fuping Jian
- Department of Respiratory Medicine, The First People's Hospital of Yunnan Province, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jie Song
- National and Local Engineering Center for Infectious Biological Products, Institute of Medical Biology, Chinese Academy of Medical Science and Peking Union Medical College, Kunming, China.
| | - Yunhui Zhang
- Department of Respiratory Medicine, The First People's Hospital of Yunnan Province, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China.
| |
Collapse
|
4
|
Machado RS, Tavares FN, Sousa IP. Global landscape of coxsackieviruses in human health. Virus Res 2024; 344:199367. [PMID: 38561065 PMCID: PMC11002681 DOI: 10.1016/j.virusres.2024.199367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
Coxsackieviruses-induced infections, particularly in infants and young children, are one of the most important public health issues in low- and middle-income countries, where the surveillance system varies substantially, and these manifestations have been disregarded. They are widespread throughout the world and are responsible for a broad spectrum of human diseases, from mildly symptomatic conditions to severe acute and chronic disorders. Coxsackieviruses (CV) have been found to have 27 identified genotypes, with overlaps in clinical phenotypes between genotypes. In this review, we present a concise overview of the most recent studies and findings of coxsackieviruses-associated disorders, along with epidemiological data that provides comprehensive details on the distribution, variability, and clinical manifestations of different CV types. We also highlight the significant roles that CV infections play in the emergence of neurodegenerative illnesses and their effects on neurocognition. The current role of CVs in oncolytic virotherapy is also mentioned. This review provides readers with a better understanding of coxsackieviruses-associated disorders and pointing the impact that CV infections can have on different organs with variable pathogenicity. A deeper knowledge of these infections could have implications in designing current surveillance and prevention strategies related to severe CVs-caused infections, as well as encourage studies to identify the emergence of more pathogenic types and the etiology of the most common and most severe disorders associated with coxsackievirus infection.
Collapse
Affiliation(s)
- Raiana S Machado
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Virologia e Parasitologia Molecular, Rio de Janeiro, 21040-900, Brasil; Programa de Pós-Graduação em Medicina Tropical, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brasil; Laboratório de Referência Regional em Enteroviroses, Seção de Virologia, Instituto Evandro Chagas, Rodovia BR 316‑ KM 07, S/N Bairro Levilândia, Ananindeua, PA 67030000, Brasil
| | - Fernando N Tavares
- Laboratório de Referência Regional em Enteroviroses, Seção de Virologia, Instituto Evandro Chagas, Rodovia BR 316‑ KM 07, S/N Bairro Levilândia, Ananindeua, PA 67030000, Brasil
| | - Ivanildo P Sousa
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Virologia e Parasitologia Molecular, Rio de Janeiro, 21040-900, Brasil.
| |
Collapse
|
5
|
Du R, An C, Yao X, Wang Y, Wang G, Gao F, Bian L, Hu Y, Liu S, Zhao Q, Mao Q, Liang Z. Non-neutralizing monoclonal antibody targeting VP2 EF loop of Coxsackievirus A16 can protect mice from lethal attack via Fc-dependent effector mechanism. Emerg Microbes Infect 2023; 12:2149352. [PMID: 36395069 PMCID: PMC9788719 DOI: 10.1080/22221751.2022.2149352] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
Coxsackievirus A16 (CA16), a main causative agent of hand, foot, and mouth disease (HFMD), has become a serious public health concern in the Asia-Pacific region. Here, we generated an anti-CA16 monoclonal antibody, DMA2017, derived from an epidemic strain CA16. Surprisingly, although DMA2017 could not neutralize the original and circulating CA16 strains in vitro, the passive transfer of DMA2017 (10 μg/g) could protect suckling mice from a lethal challenge with CA16 in vivo. Then, we confirmed the protective effect of DMA2017 relies on the Fc-dependent effector functions, such as antibody-dependent cellular cytotoxicity (ADCC). The linear epitope of DMA2017 was mapped by phage display technique to a conserved patch spanning residues 143-148 (NSHPPY) of the VP2 EF-loop of CA16. DMA2017 could inhibit the binding of the antibodies present in the sera of naturally infected children to CA16, indicating that the epitope of DMA2017 is immunodominant for CA16. Our results confirm, for the first time, that a potential preventive and therapeutic effect could be mediated by a non-neutralizing antibody elicited against CA16. These findings bring a hitherto understudied protective role of non-neutralizing antibodies during viral infections into the spotlight and provide a new perspective on the design and evaluation of CA16 vaccines.
Collapse
Affiliation(s)
- Ruixiao Du
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products; NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
| | - Chaoqiang An
- Beijing minhai Biotechnology Co. Ltd, Beijing, People’s Republic of China
| | - Xin Yao
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products; NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
| | - Yiping Wang
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products; NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
| | - Ge Wang
- Autobio Diagnostics Co. Ltd, Zhengzhou, People’s Republic of China
| | - Fan Gao
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products; NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
| | - Lianlian Bian
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products; NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
| | - Yalin Hu
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products; NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
| | - Siyuan Liu
- Beijing minhai Biotechnology Co. Ltd, Beijing, People’s Republic of China
| | - Qiaohui Zhao
- Autobio Diagnostics Co. Ltd, Zhengzhou, People’s Republic of China
| | - Qunying Mao
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products; NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
| | - Zhenglun Liang
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products; NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, National Institutes for Food and Drug Control, Beijing, People’s Republic of China
| |
Collapse
|
6
|
Tikute S, Lavania M. Hand, Foot, and Mouth Disease (HFMD) in India: A Review on Clinical Manifestations, Molecular Epidemiology, Pathogenesis, and Prevention. Indian Dermatol Online J 2023; 14:475-481. [PMID: 37521225 PMCID: PMC10373810 DOI: 10.4103/idoj.idoj_423_22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/23/2022] [Accepted: 10/08/2022] [Indexed: 08/01/2023] Open
Abstract
HFMD is a childhood viral disease initiated by enteroviruses (EVs). Symptoms are initiated with mild-to-moderate fever of short duration followed by oral and skin lesions. Skin lesions are papulovesicular which appears on palms/soles of feet, hands, knees, and elbows. Oral lesions appear as vesicles producing multiple small superficial ulcers. Disease is usually mild illness but sometimes progresses in severe form as meningitis, encephalitis, and polio-like paralysis. Etiological agents of the disease belong to Picornaviridae family. The causative viral agents are from genus human enterovirus (HEV) such as enterovirus-A 71 (EV-A71), coxsackievirus -A6 (CV-A6), CV-A10, CV-A16. Coxsackievirus A-16 (CV-A16) and enterovirus A-71 (EV-A71) are the major etiological agents of this disease, among children reported globally. In India, studies conducted on HFMD cases revealed CV-A16 as a major EV type and under circulation over a period of time. Molecular studies of different CV-A16 isolates and the viral kinetic studies conducted on organ tissues of experimental mouse model with complete VP1 gene sequencing revealed presence of B1c sub genotype which is currently in circulation. Genetic changes observed at nucleotide and amino acid level in vital organs of experimental infected mice model might predict some targets and can act as markers of virulence. Mice infected with CV-A16 strains revealed progressive pathological changes in mice organs. Major affected organs were to be as brain, heart, intestine, and skeletal muscles. The present review focuses on HFMD caused by CV-A16 with epidemiological, molecular, pathogenesis and need of antivirals against the disease.
Collapse
Affiliation(s)
- Sanjaykumar Tikute
- Enteric Viruses Group, ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - Mallika Lavania
- Enteric Viruses Group, ICMR-National Institute of Virology, Pune, Maharashtra, India
| |
Collapse
|
7
|
Ai Y, Zhang W, Wu J, Zhang J, Shen M, Yao S, Deng C, Li X, Wu D, Tian P, Cheng X, Zha H, Wu K. Molecular Epidemiology and Clinical Features of Enteroviruses-Associated Hand, Foot, and Mouth Disease and Herpangina Outbreak in Zunyi, China, 2019. Front Med (Lausanne) 2021; 8:656699. [PMID: 33981716 PMCID: PMC8109248 DOI: 10.3389/fmed.2021.656699] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 03/31/2021] [Indexed: 11/25/2022] Open
Abstract
Background: Hand, foot and mouth disease (HFMD) and herpangina (HA), two of the most common childhood infectious diseases, are associated with enteroviruses (EVs) infection. The aim of this study was to identify the molecular epidemiology of enterovirus causing HFMD/HA in Zunyi, China, during 2019, and to describe the clinical features of the cases. Methods: We collected the information on demographic and clinical characteristics, laboratory data of laboratory-confirmed EVs associated HFMD/HA cases in Zunyi Medical University Third Affiliated Hospital between March 1 and July 31, 2019. EV types were determined by either one-step real time RT-PCR or partial VP1 gene sequencing and sequence alignment. Phylogenetic analysis of CVA6, CVA2, and CVA5 were established based on the partial VP1 gene sequences by neighbor-joining method. Differences in clinical characteristics and laboratory results of the cases were compared among patients infected with the most prevalent EV types. Results: From 1 March to 31 July 2019, 1,377 EVs associated HFMD/HA inpatients were confirmed. Of them, 4 (0.3%, 4/1,377) were EV-A71-associated cases, 84 (6.1%, 84/1,377) were CVA16-associated cases, and 1,289 (93.6%, 1,289/1,377) were non-EV-A71/CVA16-associated cases. Of the randomly selected 372 non-EV-A71/CVA16 cases, EV types have been successfully determined in 273 cases including 166 HFMD and 107 HA cases. For HFMD cases, the three most common types were CVA6 (80.7%, 134/166), CVA2 (5.4%, 9/166) and CVA5 (3.0%, 5/166); similarly, for HA cases, the three most prevalent serotypes were CVA6 (36.5%, 39/107), CVA2 (21.5%, 23/107) and CVA5 (18.7%, 20/107). Phylogenetic analysis showed that subclade D of CVA5, and subclade E of CVA6 and CVA2 were predominant in Zunyi during the outbreak in 2019. Compared with the cases caused by CVA16, the incidence of high fever and severe infection associated with CVA2, CVA5, and CVA6 was higher. Conclusions: The recent HFMD/HA outbreak in Zunyi is due to a larger incidence of CVA6, CVA2, and CVA5. Novel diagnostic reagents and vaccines against these types would be important to monitor and control EV infections.
Collapse
Affiliation(s)
- Yuanhang Ai
- Department of Clinical Laboratory, Zunyi Medical University Third Affiliated Hospital, Zunyi, China
| | - Weiwei Zhang
- Department of Pediatrics and Child Health, Zunyi Medical University Third Affiliated Hospital, Zunyi, China
| | - Jie Wu
- Department of Scientific Research Laboratory, Zunyi Medical University Third Affiliated Hospital, Zunyi, China
| | - Jingzhi Zhang
- Department of Clinical Laboratory, Zunyi Medical University Third Affiliated Hospital, Zunyi, China
| | - Meijing Shen
- Department of Clinical Laboratory, Zunyi Medical University Third Affiliated Hospital, Zunyi, China
| | - Shifei Yao
- Department of Clinical Laboratory, Zunyi Medical University Third Affiliated Hospital, Zunyi, China
| | - Chengmin Deng
- Department of Scientific Research Laboratory, Zunyi Medical University Third Affiliated Hospital, Zunyi, China
| | - Xiaoqian Li
- Department of Scientific Research Laboratory, Zunyi Medical University Third Affiliated Hospital, Zunyi, China
| | - Dejing Wu
- Department of Scientific Research Laboratory, Zunyi Medical University Third Affiliated Hospital, Zunyi, China
| | - Peng Tian
- Department of Scientific Research Laboratory, Zunyi Medical University Third Affiliated Hospital, Zunyi, China
| | - Xiaoju Cheng
- Department of Scientific Research Laboratory, Zunyi Medical University Third Affiliated Hospital, Zunyi, China
| | - He Zha
- Department of Clinical Laboratory, Zunyi Medical University Third Affiliated Hospital, Zunyi, China
| | - Kaifeng Wu
- Department of Clinical Laboratory, Zunyi Medical University Third Affiliated Hospital, Zunyi, China
- Department of Scientific Research Laboratory, Zunyi Medical University Third Affiliated Hospital, Zunyi, China
| |
Collapse
|
8
|
Hooi YT, Ong KC, Tan SH, Perera D, Wong KT. A novel orally infected hamster model for Coxsackievirus A16 hand-foot-and-mouth disease and encephalomyelitis. J Transl Med 2020; 100:1262-1275. [PMID: 32601355 DOI: 10.1038/s41374-020-0456-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/06/2020] [Accepted: 06/11/2020] [Indexed: 12/26/2022] Open
Abstract
Coxsackievirus A16 (CV-A16) is one of the major causes of mild and self-limiting hand-foot-and-mouth disease (HFMD) in young children, which may occasionally leads to serious neurological complications. In this study, we had developed a novel, consistent, orally infected CV-A16 HFMD hamster model with encephalomyelitis. Four groups of 7-day-old hamsters in a kinetic study were orally infected with mouse-adapted CV-A16 strains and sacrificed at 1-4 days post infection (dpi), respectively. Tissues were studied by light microscopy, immunohistochemistry to detect viral antigens, in situ hybridization to detect viral RNA, and by viral titration. In a separate transmission experiment, orally infected index hamsters were housed together with contact hamsters to investigate oral and fecal viral shedding by virus culture and reverse transcription polymerase chain reaction (RT-PCR). At severe infection/death endpoints, index and contact hamster infection were also histopathologically analyzed. In the kinetic study, infected hamsters developed signs of infection at 4 dpi. Viral antigens/RNA were localized to brainstem (medulla/pons; reticular formation and motor trigeminal nucleus) and spinal cord anterior horn neurons, oral squamous epithelia and epidermis from 3 to 4 dpi. Salivary and lacrimal glands, myocardium, brown adipose tissue, intestinal smooth muscle, and skeletal muscle infection was also demonstrated. Viremia at 1 dpi and increasing viral titers in various tissues were observed from 2 dpi. In the transmission study, all contact hamsters developed disease 3-5 days later than index hamsters, but demonstrated similar histopathological findings at endpoint. Viral culture and RT-PCR positive oral washes and feces confirmed viral shedding. Our hamster model, orally infected by the natural route for human infection, confirmed CV-A16 neurotropism and demonstrated squamous epitheliotropism reminiscent of HFMD, attributes not found in other animal models. It should be useful to investigate neuropathogenesis, model person-to-person transmission, and for testing antiviral drugs and vaccines.
Collapse
Affiliation(s)
- Yuan Teng Hooi
- Department of Pathology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kien Chai Ong
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Soon Hao Tan
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - David Perera
- Institute of Health & Community Medicine, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia
| | - Kum Thong Wong
- Department of Pathology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
9
|
Cui B, Cai F, Gao F, Bian L, Wu R, Du R, Wu X, Liu P, Song L, Cui L, Yuan Y, Liu S, Ye X, Cheng T, Mao Q, Gao Q, Liang Z. A uniform quantitative enzyme-linked immunosorbent assay for Coxsackievirus A16 antigen in vaccine. Hum Vaccin Immunother 2020; 17:381-388. [PMID: 32750255 DOI: 10.1080/21645515.2020.1776547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Coxsackievirus A16 (CV-A16), one of major etiological agents of hand, foot and mouth disease (HFMD), causes outbreaks of the disease in young children all over the world. In order to promote the prevention and control of HFMD, the research and development of CV-A16 vaccine have been carried out in China. However, due to lacking of a recognized CV-A16 antigen detection method, the evaluation and quality control (QC) of vaccine effectiveness are greatly limited. In this study, we established a quantitative enzyme-linked immunosorbent assay (Q-ELISA) to determine the antigen concentration in CV-A16 vaccines that can be applied in manufacturing in China. A neutralizing antibody 16E1 was used as a capture antibody that can bind to various CV-A16 antigens of different subgenotypes, and an antiserum from CV-A16-immunized rabbit conjugated by HRP was suitable for detecting and quantifying CV-A16 antigens. The Q-ELISA was validated for specificity, linearity, accuracy, precision and robustness by using the CV-A16 antigen national standard (NS). Furthermore, we utilized the Q-ELISA to quantify antigen contents of vaccine bulks from six manufacturers and other intermediate products from one manufacturer. The results indicated that the Q-ELISA can satisfy the requirements of QC for all manufacturers involved.
Collapse
Affiliation(s)
- Bopei Cui
- Divison of Hepatitis Virus and Enterovirus Vaccine, National Institutes for Food and Drug Control, Institute for Biological Product Control , Beijing, China
| | - Fang Cai
- Research and Development Center, Sinovac Biotech Co., Ltd , Beijing, China
| | - Fan Gao
- Divison of Hepatitis Virus and Enterovirus Vaccine, National Institutes for Food and Drug Control, Institute for Biological Product Control , Beijing, China
| | - Lianlian Bian
- Divison of Hepatitis Virus and Enterovirus Vaccine, National Institutes for Food and Drug Control, Institute for Biological Product Control , Beijing, China
| | - Ruixia Wu
- Research and Development Center, Sinovac Biotech Co., Ltd , Beijing, China
| | - Ruixiao Du
- Divison of Bacterial Vaccine, National Vaccine and Serum Institute , Beijing, PR China
| | - Xing Wu
- Divison of Hepatitis Virus and Enterovirus Vaccine, National Institutes for Food and Drug Control, Institute for Biological Product Control , Beijing, China
| | - Pei Liu
- Divison of Hepatitis Virus and Enterovirus Vaccine, National Institutes for Food and Drug Control, Institute for Biological Product Control , Beijing, China
| | - Lifang Song
- Divison of Hepatitis Virus and Enterovirus Vaccine, National Institutes for Food and Drug Control, Institute for Biological Product Control , Beijing, China
| | - Lisha Cui
- Divison of Hepatitis Virus and Enterovirus Vaccine, National Institutes for Food and Drug Control, Institute for Biological Product Control , Beijing, China.,Research and Development Department, Changchun Institute of Biological Products Co., Ltd , Changchun, PR China
| | - Yadi Yuan
- Divison of Hepatitis Virus and Enterovirus Vaccine, National Institutes for Food and Drug Control, Institute for Biological Product Control , Beijing, China.,Research and Development Department, Changchun Institute of Biological Products Co., Ltd , Changchun, PR China
| | - Siyuan Liu
- Divison of Hepatitis Virus and Enterovirus Vaccine, National Institutes for Food and Drug Control, Institute for Biological Product Control , Beijing, China.,Research and Development Department, Changchun Institute of Biological Products Co., Ltd , Changchun, PR China
| | - Xiangzhong Ye
- Research and Development Center, Beijing Wantai Biological Pharmacy Enterprise , Beijing, China
| | - Tong Cheng
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Life Sciences, Xiamen University , Beijing, China
| | - Qunying Mao
- Divison of Hepatitis Virus and Enterovirus Vaccine, National Institutes for Food and Drug Control, Institute for Biological Product Control , Beijing, China
| | - Qiang Gao
- Research and Development Center, Sinovac Biotech Co., Ltd , Beijing, China
| | - Zhenglun Liang
- Divison of Hepatitis Virus and Enterovirus Vaccine, National Institutes for Food and Drug Control, Institute for Biological Product Control , Beijing, China
| |
Collapse
|
10
|
Majer A, McGreevy A, Booth TF. Molecular Pathogenicity of Enteroviruses Causing Neurological Disease. Front Microbiol 2020; 11:540. [PMID: 32328043 PMCID: PMC7161091 DOI: 10.3389/fmicb.2020.00540] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/12/2020] [Indexed: 12/12/2022] Open
Abstract
Enteroviruses are single-stranded positive-sense RNA viruses that primarily cause self-limiting gastrointestinal or respiratory illness. In some cases, these viruses can invade the central nervous system, causing life-threatening neurological diseases including encephalitis, meningitis and acute flaccid paralysis (AFP). As we near the global eradication of poliovirus, formerly the major cause of AFP, the number of AFP cases have not diminished implying a non-poliovirus etiology. As the number of enteroviruses linked with neurological disease is expanding, of which many had previously little clinical significance, these viruses are becoming increasingly important to public health. Our current understanding of these non-polio enteroviruses is limited, especially with regards to their neurovirulence. Elucidating the molecular pathogenesis of these viruses is paramount for the development of effective therapeutic strategies. This review summarizes the clinical diseases associated with neurotropic enteroviruses and discusses recent advances in the understanding of viral invasion of the central nervous system, cell tropism and molecular pathogenesis as it correlates with host responses.
Collapse
Affiliation(s)
- Anna Majer
- Viral Diseases Division, National Microbiology Laboratory, Winnipeg, MB, Canada
| | - Alan McGreevy
- Viral Diseases Division, National Microbiology Laboratory, Winnipeg, MB, Canada.,Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada.,Department of Biology, University of Winnipeg, Winnipeg, MB, Canada
| | - Timothy F Booth
- Viral Diseases Division, National Microbiology Laboratory, Winnipeg, MB, Canada.,Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
11
|
Hooi YT, Ong KC, Tan SH, Perera D, Wong KT. Coxsackievirus A16 in a 1-Day-Old Mouse Model of Central Nervous System Infection Shows Lower Neurovirulence than Enterovirus A71. J Comp Pathol 2020; 176:19-32. [PMID: 32359633 DOI: 10.1016/j.jcpa.2020.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/28/2020] [Accepted: 02/03/2020] [Indexed: 02/06/2023]
Abstract
Coxsackievirus A16 (CV-A16) and enterovirus A71 (EV-A71) are the major causes of hand, foot and mouth disease in young children. Although less so with CV-A16, both viruses are associated with serious neurological syndromes, but the differences between their central nervous system infections remain unclear. We conducted a comparative infection study using clinically-isolated CV-A16 and EV-A71 strains in a 1-day-old mouse model to better understand the neuropathology and neurovirulence of the viruses. New serotype-specific probes for in situ hybridization were developed and validated to detect CV-A16 and EV-A71 RNA in infected tissues. Demonstration of CV-A16 virus antigens/RNA, mainly in the brainstem and spinal cord neurons, confirmed neurovirulence, but showed lower densities than in EV-A71 infected animals. A higher lethal dose50 for CV-A16 suggested that CV-A16 is less neurovirulent. Focal virus antigens/RNA in the anterior horn white matter and adjacent efferent motor nerves suggested that neuroinvasion is possibly via retrograde axonal transport in peripheral motor nerves.
Collapse
Affiliation(s)
- Y T Hooi
- Department of Pathology, University of Malaya, Kuala Lumpur, Malaysia
| | - K C Ong
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - S H Tan
- Department of Biomedical Science, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - D Perera
- Institute of Health and Community Medicine, Universiti Malaysia Sarawak, Sarawak, Malaysia
| | - K T Wong
- Department of Pathology, University of Malaya, Kuala Lumpur, Malaysia.
| |
Collapse
|
12
|
Li YP, Wang MQ, Deng HL, Li M, Zhang X, Dang SS, Zhai S. Association of polymorphisms in the vitamin D receptor gene with susceptibility to and severity of hand, foot, and mouth disease caused by coxsackievirus A16. J Med Virol 2020; 92:271-278. [PMID: 31587312 DOI: 10.1002/jmv.25603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Accepted: 10/01/2019] [Indexed: 12/14/2022]
Abstract
Coxsackievirus A16 (CA16) remains the most common causative agent of hand, foot, and mouth disease (HFMD), and is related to high incidence and critical complications. Vitamin D receptor (VDR) activity might affect the outcome of CA16 infection. Our case-control research aims to evaluate the relationship between VDR polymorphisms in the gene encoding and susceptibility to and severity of HFMD due to CA16. Three single-nucleotide polymorphisms (SNPs) of VDR gene were selected according to functional prediction and linkage disequilibrium, and were examined utilizing the SNPscan method to identify possible associations with HFMD caused by CA16. A significant relationship was found in the HFMD cases of polymorphism rs11574129 (GA vs GG: odds ratio (OR) = 0.068, 95% confidence interval (CI) = 0.007-0.693, P = .023; GA + AA vs GG: OR = 0.322, 95%CI = 0.106-0.984, P = .047), and vitamin D levels in genotype AA were significantly higher than those in genotype GG (P < .05). These results suggest that VDR rs11574129 may influence genetic susceptibility to CA16-associated HFMD.
Collapse
Affiliation(s)
- Ya-Ping Li
- Department of Infectious Diseases, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, China
| | - Mu-Qi Wang
- Department of Infectious Diseases, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, China
| | - Hui-Ling Deng
- Department of Infectious Diseases, Xi'an Children's Hospital, Xi'an, China
| | - Mei Li
- Department of Infectious Diseases, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, China
| | - Xin Zhang
- Department of Infectious Diseases, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, China
| | - Shuang-Suo Dang
- Department of Infectious Diseases, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, China
| | - Song Zhai
- Department of Infectious Diseases, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, China
| |
Collapse
|
13
|
Chen BS, Lee HC, Lee KM, Gong YN, Shih SR. Enterovirus and Encephalitis. Front Microbiol 2020; 11:261. [PMID: 32153545 PMCID: PMC7044131 DOI: 10.3389/fmicb.2020.00261] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 02/04/2020] [Indexed: 12/24/2022] Open
Abstract
Enterovirus-induced infection of the central nervous system (CNS) results in acute inflammation of the brain (encephalitis) and constitutes a significant global burden to human health. These viruses are thought to be highly cytolytic, therefore normal brain function could be greatly compromised following enteroviral infection of the CNS. A further layer of complexity is added by evidence showing that some enteroviruses may establish a persistent infection within the CNS and eventually lead to pathogenesis of certain neurodegenerative disorders. Interestingly, enterovirus encephalitis is particularly common among young children, suggesting a potential causal link between the development of the neuroimmune system and enteroviral neuroinvasion. Although the CNS involvement in enterovirus infections is a relatively rare complication, it represents a serious underlying cause of mortality. Here we review a selection of enteroviruses that infect the CNS and discuss recent advances in the characterization of these enteroviruses with regard to their routes of CNS infection, tropism, virulence, and immune responses.
Collapse
Affiliation(s)
- Bo-Shiun Chen
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Hou-Chen Lee
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kuo-Ming Lee
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Nong Gong
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Shin-Ru Shih
- Research Center for Emerging Viral Infections, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.,Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.,Graduate Institute of Health Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| |
Collapse
|
14
|
Yao PP, Miao ZP, Xu F, Lu HJ, Sun YS, Xia Y, Chen C, Yang ZN, Xia SC, Jiang JM, Hu CG, Mao ZA, Gao M, Xu ZY, Ying HN, Yao CH, Zhu ZY, Zhu HP, Xiang HQ. An adult gerbil model for evaluating potential coxsackievirus A16 vaccine candidates. Vaccine 2019; 37:5341-5349. [PMID: 31351798 DOI: 10.1016/j.vaccine.2019.07.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/19/2019] [Accepted: 07/11/2019] [Indexed: 02/07/2023]
Abstract
A suitable animal model of CVA16 infection is crucial in order to understand its pathogenesis and to help develop antiviral vaccines or screen therapeutic drugs. The neonatal mouse model has a short sensitivity period to CA16 infection, which is a major limitation. In this study, we demonstrate that adult (60-day-old) gerbils are susceptible to CVA16 infection at high doses (108.0 TCID50). A clinical isolate strain of CVA16 was inoculated intraperitoneally into adult gerbils, which subsequently developed significant clinical symptoms, including hind limb weakness, paralysis of one or both hind limbs, tremors, and eventual death from neurological disorders. Real-time RT-PCR revealed that viral loads in the spinal cord and brainstem were higher than those in other organs/tissues. Histopathological changes, such as neuronal degeneration, neuronal loss, and neuronophagia, were observed in the spinal cord, brainstem, and heart muscle, along with necrotizing myositis. Gerbils receiving both prime and boost immunizations of alum adjuvant inactivated vaccine exhibited no clinical signs of disease or mortality following challenge by CVA16, whereas 80% of control animals showed obvious clinical signs, including slowness, paralysis of one or both hind limbs, and eventual death, suggesting that the CVA16 vaccine can fully protect gerbils against CVA16 challenge. These results demonstrate that an adult gerbil model provides us with a useful tool for studying the pathogenesis and evaluating antiviral reagents of CVA16 infection. The development of this animal model would also be conducive to screening promising CVA16 vaccine candidates as well as further vaccination evaluation.
Collapse
Affiliation(s)
- Ping-Ping Yao
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Zi-Ping Miao
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Fang Xu
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Hang-Jing Lu
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Yi-Sheng Sun
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Yong Xia
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Chen Chen
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Zhang-Nv Yang
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Shi-Chang Xia
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Jian-Min Jiang
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Chong-Gao Hu
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Zi-An Mao
- Zhejiang Pukang Biotechnology Co.,LTD., China
| | - Meng Gao
- Zhejiang Pukang Biotechnology Co.,LTD., China
| | | | | | | | - Zhi-Yong Zhu
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Han-Ping Zhu
- Key Lab of Vaccine, Prevention and Control of Infectious Disease of Zhejiang Province, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China.
| | - Hai-Qing Xiang
- Health Service Development Center of Hangzhou, Hangzhou, China.
| |
Collapse
|
15
|
Yang CH, Liang CT, Jiang ST, Chen KH, Yang CC, Cheng ML, Ho HY. A Novel Murine Model Expressing a Chimeric mSCARB2/hSCARB2 Receptor Is Highly Susceptible to Oral Infection with Clinical Isolates of Enterovirus 71. J Virol 2019; 93:e00183-19. [PMID: 30894476 PMCID: PMC6532076 DOI: 10.1128/jvi.00183-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 03/15/2019] [Indexed: 01/05/2023] Open
Abstract
Enterovirus 71 (EV71) infection is generally associated with hand-foot-and-mouth disease (HFMD) and may cause severe neurological disorders and even death. An effective murine oral infection model for studying the pathogenesis of various clinical EV71 isolates is lacking. We developed a transgenic (Tg) mouse that expresses an EV71 receptor, that is, human scavenger receptor class B member 2 (hSCARB2), in a pattern highly similar to that of endogenous murine SCARB2 (mSCARB2) protein. A FLAG-tagged SCARB2 cDNA fragment composed of exons 3 to 12 was inserted into a murine Scarb2 gene-containing bacterial artificial chromosome (BAC) clone, and the resulting transgene was used for establishment of chimeric receptor-expressing Tg mice. Tg mice intragastrically (i.g.) infected with clinical isolates of EV71 showed neurological symptoms, such as ataxia and paralysis, and fatality. There was an age-dependent decrease in susceptibility to viral infection. Pathological characteristics of the infected Tg mice resembled those of encephalomyelitis in human patients. Viral infection was accompanied by microglial activation. Clodronate treatment of the brain slices from Tg mice enhanced viral replication, while lipopolysaccharide treatment significantly inhibited it, suggesting an antiviral role for microglia during EV71 infection. Taken together, this Tg mouse provides a model that closely mimics natural infection for studying EV71 pathogenesis and for evaluating the efficacy of vaccines or other antiviral drugs.IMPORTANCE The availability of a murine model of EV71 infection is beneficial for the understanding of pathogenic mechanisms and the development and assessment of vaccines and antiviral drugs. However, the lack of a murine oral infection model thwarted the study of pathogenesis induced by clinically relevant EV71 strains that are transmitted via the oral-oral or oral-fecal route. Our Tg mice could be intragastrically infected with clinically relevant EV71 strains in an efficient way and developed neurological symptoms and pathological changes strikingly resembling those of human infection. Moreover, these mice showed an age-dependent change in susceptibility that is similar to the human case. This Tg mouse, when combined with the use of other genetically modified mice, potentially contributes to studying the relationship between developmental changes in immunity and susceptibility to virus.
Collapse
Affiliation(s)
- Cheng-Hung Yang
- Graduate Institute of Biomedical Science, Chang Gung University, Guishan, Taoyuan, Taiwan
| | - Chung-Tiang Liang
- Novo Nordisk Research Centre, Department of Animal Facility, Discovery Biology, Beijing, China
| | - Si-Tse Jiang
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kuan-Hsing Chen
- Kidney Research Center, Chang Gung Memorial Hospital at Linkou, Guishan, Taoyuan, Taiwan
| | - Chun-Chiao Yang
- Graduate Institute of Biomedical Science, Chang Gung University, Guishan, Taoyuan, Taiwan
| | - Mei-Ling Cheng
- Graduate Institute of Biomedical Science, Chang Gung University, Guishan, Taoyuan, Taiwan
- Healthy Aging Research Center, Chang Gung University, Guishan, Taoyuan, Taiwan
- Clinical Phenome Center, Chang Gung Memorial Hospital at Linkou, Guishan, Taoyuan, Taiwan
- Department of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Hung-Yao Ho
- Graduate Institute of Biomedical Science, Chang Gung University, Guishan, Taoyuan, Taiwan
- Healthy Aging Research Center, Chang Gung University, Guishan, Taoyuan, Taiwan
- Clinical Phenome Center, Chang Gung Memorial Hospital at Linkou, Guishan, Taoyuan, Taiwan
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Research Center for Emerging Viral Infections, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
16
|
Liu X, Zhang X, Li J, Zhou H, Carr MJ, Xing W, Zhang Z, Shi W. Effects of Acetylshikonin on the Infection and Replication of Coxsackievirus A16 in Vitro and in Vivo. JOURNAL OF NATURAL PRODUCTS 2019; 82:1089-1097. [PMID: 31063370 DOI: 10.1021/acs.jnatprod.8b00735] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Coxsackievirus A16 (CVA16) is one of the most prevalent enteroviral pathogens associated with hand, foot, and mouth disease. In the present study, we have investigated (1) whether the bioactive compound acetylshikonin (AS) inhibits CVA16 infection in vitro and in vivo and (2) the potential antiviral mechanism(s). The results suggest that AS is nontoxic at concentrations of up to 5 μmol/L and could directly inactivate virus particles at relatively low concentrations (0.08 μmol/L), thereby rendering CVA16 incapable of cellular entry. Correspondingly, the expression of viral RNA in vitro was also reduced 100-fold ( P < 0.05) when compared to infected, untreated controls. Results from a CVA16-infected neonatal mouse model indicate that, in comparison to the virus-infected, untreated group, body weights of the mice in the virus-infected, compound-treated group increased more steadily with less severe clinical symptoms. In addition, viral loads in internal organs significantly decreased in treated animals, concomitantly with both reduced pathology and diminished expression of the proinflammatory cytokines IFN-γ and IL-6. In conclusion, AS exerted an inhibitory effect on CVA16 infection in vitro and in vivo. Our study provides a basis for further investigations of AS-type compounds to develop therapeutics to mitigate CVA-associated disease in children.
Collapse
Affiliation(s)
- Xia Liu
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong , Taishan Medical College , Taian , Shandong 271000 , People's Republic of China
| | - Xingcheng Zhang
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong , Taishan Medical College , Taian , Shandong 271000 , People's Republic of China
- School of Public Health , Taishan Medical College , Taian , Shandong 271000 , People's Republic of China
| | - Juan Li
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong , Taishan Medical College , Taian , Shandong 271000 , People's Republic of China
| | - Hong Zhou
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong , Taishan Medical College , Taian , Shandong 271000 , People's Republic of China
| | - Michael J Carr
- Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE) , Hokkaido University , Sapporo 001-0020 , Japan
- National Virus Reference Laboratory, School of Medicine , University College Dublin , Belfield , Dublin 4 , Ireland
| | - Weijia Xing
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong , Taishan Medical College , Taian , Shandong 271000 , People's Republic of China
- School of Public Health , Taishan Medical College , Taian , Shandong 271000 , People's Republic of China
| | - Zhenjie Zhang
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong , Taishan Medical College , Taian , Shandong 271000 , People's Republic of China
| | - Weifeng Shi
- Key Laboratory of Etiology and Epidemiology of Emerging Infectious Diseases in Universities of Shandong , Taishan Medical College , Taian , Shandong 271000 , People's Republic of China
| |
Collapse
|
17
|
Coxsackie B3-induced rhombencephalitis. Arch Pediatr 2019; 26:247-248. [DOI: 10.1016/j.arcped.2019.02.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 02/03/2019] [Accepted: 02/16/2019] [Indexed: 11/20/2022]
|
18
|
Gao E, Wu S, Xu Q, Zeng Y, Tan N, He S, Yang Y, Wei J. Enterovirus type 71-immunized chicken egg yolk immunoglobulin has cross antiviral activity against coxsackievirus A16 in vitro. Exp Ther Med 2019; 18:332-341. [PMID: 31258670 DOI: 10.3892/etm.2019.7529] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 04/16/2019] [Indexed: 12/16/2022] Open
Abstract
To exploit a cross passive immunotherapy for enterovirus-induced hand-foot-and-mouth disease (HFMD), the cross antiviral activity of a neutralizing antibody against enterovirus 71 (EV71) and coxsackievirus A16 (CVA16) was investigated in vitro. White Leghorn specific-pathogen-free chickens were immunized with EV71 antigens and a specific isolated immunoglobulin (IgY) was prepared from the chicken egg yolk. IgY was further purified and characterized by SDS-PAGE, ELISA, western blotting and bidirectional immune agar diffusion testing. The antiviral activity and dose-response of the IgY were determined by assessing the cytopathic effect in rhabdomyosarcoma (RD) cells in vitro. It was indicated that the levels of IgY were increased at day 7, peaked at week 7 and were maintained at a higher level for 4 weeks following immunization when compared with the negative control. The results of western blotting and bidirectional immune agar diffusion testing revealed that the IgY had cross-binding properties in EV71 and CVA16 strains through targeting the envelope proteins (VP0, VP1 and VP3) of EV71 and CVA16. Neutralization assay results indicated that the infectivity of EV71 and CVA16 strains in RD cells was cross-blocked by IgY in a dose-dependent manner. To conclude, these findings indicate that IgY has cross antiviral activity against EV71 and CVA16 in vitro, and could potentially be developed as a passive immunotherapy for EV71- and CVA16-induced HFMD.
Collapse
Affiliation(s)
- Enyi Gao
- Department of Pharmacology, Guilin Medical University, Guilin, Guangxi 541000, P.R. China
| | - Shuwen Wu
- Department of State Key Laboratory of Virology, School of Life Sciences, Wuhan University, Wuhan, Hubei 430000, P.R. China
| | - Qing Xu
- Department of Pharmacology, Guilin Medical University, Guilin, Guangxi 541000, P.R. China
| | - Yonglian Zeng
- Department of Pharmacology, Guilin Medical University, Guilin, Guangxi 541000, P.R. China
| | - Ning Tan
- Department of Pharmacology, Guilin Medical University, Guilin, Guangxi 541000, P.R. China
| | - Songqing He
- Department of Pharmacology, Guilin Medical University, Guilin, Guangxi 541000, P.R. China
| | - Yang Yang
- Department of Pharmacology, Guilin Medical University, Guilin, Guangxi 541000, P.R. China
| | - Jingchen Wei
- Department of Pharmacology, Guilin Medical University, Guilin, Guangxi 541000, P.R. China
| |
Collapse
|
19
|
Li K, Li X, Si W, Liang H, Xia HM, Xu Y. Identifying risk factors for neurological complications and monitoring long-term neurological sequelae: protocol for the Guangzhou prospective cohort study on hand-foot-and-mouth disease. BMJ Open 2019; 9:e027224. [PMID: 30804039 PMCID: PMC6443074 DOI: 10.1136/bmjopen-2018-027224] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
INTRODUCTION Hand-foot-and-mouth disease (HFMD) is a paediatric infectious disease that is particularly prevalent in China. Severe HFMDs characterised by neurological involvement are fatal and survivors who have apparently fully recovered might still be afflicted later in life with neurocognitive impairments. Only when a well-designed, prospective cohort study is in place can we develop clinical tools for early warning of neurological involvement and can we obtain epidemiological evidence regarding the lingering effects of the sequelea. METHODS AND ANALYSIS A prospective, hospital-based cohort study is underway in Guangzhou, China. Clinical data and biosamples from hospitalised children (<14 years of age) with an admission diagnosis of HFMD will be collected to determine risk factors for subsequent neurological involvement. Clinical tools for early detection of severe HFMDs will be developed by integrating clinical and biological information. Questionnaire surveys and neurocognitive assessments will be conducted at discharge and each year in the first 2 years of follow-up and every 2 years afterwards until study participants turn 16 years of age or show no evidence of neurocognitive deficits. The association between childhood enterovirus infection and neurocognitive impairment later in life will be examined. ETHICS AND DISSEMINATION A written informed consent from parents/guardians is a prerequisite for study entry. The protocol of this study has been approved by the hospital's ethics committee. Data usage follows the rules of the hospital's data oversight committee. Findings of this study will be disseminated through publications in international peer-reviewed journals and will be presented in academic conferences. TRIAL REGISTRATION NUMBER ChiCTR-EOC-17013293; Pre-results.
Collapse
Affiliation(s)
- Kuanrong Li
- Institute of Paediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou, China
| | - Xufang Li
- Department of Infectious Diseases, Guangzhou Women and Children’s Medical Center, Guangzhou, China
| | - Wenyue Si
- Institute of Paediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou, China
| | - Huiying Liang
- Institute of Paediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou, China
| | - Hui-Min Xia
- Division of Birth Cohort Study, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yi Xu
- Department of Infectious Diseases, Guangzhou Women and Children’s Medical Center, Guangzhou, China
| |
Collapse
|
20
|
Du R, Mao Q, Hu Y, Lang S, Sun S, Li K, Gao F, Bian L, Yang C, Cui B, Xu L, Cheng T, Liang Z. A potential therapeutic neutralization monoclonal antibody specifically against multi-coxsackievirus A16 strains challenge. Hum Vaccin Immunother 2019; 15:2343-2350. [PMID: 30735461 DOI: 10.1080/21645515.2019.1565266] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Coxsackievirus A16 (CA16) has caused worldwide epidemics of hand, foot and mouth disease (HFMD), particularly in infants and pre-school children. Currently, there are no vaccines or antiviral drugs available for CA16-associated disease. In this study, a CA16-specific monoclonal antibody (MAb) NA11F12 was derived with an epidemic CA16 strain (GenBank no. JX127258). NA11F12 was found to have high cross-neutralization activity against different CA16 subgenotypes but not EV71 using RD cells. The neutralizing titers of NA11F12 ranged from 1:1024 to 1:12288 against A, B1, B2 and C subgenotypes of CA16 and was less than 8 against EV71 strain. In the neonatal mouse model, a single treatment of NA11F12 showed effective protection with a dose- and time-dependent relationship against lethal challenge by CA16 strain (GenBank no. JX481738). At day 1 post-infection, administering more than 0.1 μg/g of NA11F12 could protect 100% newborn mice from mobility and mortality challenged by CA16. With dose of 10 μg/g of NA11F12, a single administration fully protected mice against CA16-associated disease within 4 days post-infection. And there were 80% and 60% mice protected by administering NA11F12 at day 5 post-infection and day 6 post-infection when the control mice had shown clinical symptoms for 1- and 2-day, respectively. Immunohistochemical and histological analysis confirmed that NA11F12 significantly prohibited CA16 VP1 expression in various tissues and prevented CA16-induced necrosis. In conclusion, a CA16-specific MAb NA11F12 with high cross-neutralization activity was identified, which could effectively protect lethal CA16 challenge in mice. It could be a potential therapeutic MAb against CA16 in the future.
Collapse
Affiliation(s)
- Ruixiao Du
- National Institutes for Food and Drug Control , Beijing , China
| | - Qunying Mao
- National Institutes for Food and Drug Control , Beijing , China
| | - Yalin Hu
- Hualan Biological Engineering Inc ., Henan , China
| | - Shuhui Lang
- Shandong Xinbo Pharmaceutical Co. Ltd ., Dezhou , China
| | - Shiyang Sun
- National Institutes for Food and Drug Control , Beijing , China
| | - Kelei Li
- Beijing Minhai biotechnology Co. Ltd ., Beijing , China
| | - Fan Gao
- National Institutes for Food and Drug Control , Beijing , China
| | - Lianlian Bian
- National Institutes for Food and Drug Control , Beijing , China
| | - Ce Yang
- National Institutes for Food and Drug Control , Beijing , China
| | - Bopei Cui
- National Institutes for Food and Drug Control , Beijing , China
| | - Longfa Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University , Xiamen , China
| | - Tong Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, School of Public Health, Xiamen University , Xiamen , China
| | - Zhenglun Liang
- National Institutes for Food and Drug Control , Beijing , China
| |
Collapse
|
21
|
Siji Antiviral Mixture Protects against CA16 Induced Brain Injury through Inhibiting PERK/STAT3/NF- κB Pathway. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8475463. [PMID: 30186868 PMCID: PMC6116463 DOI: 10.1155/2018/8475463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 06/21/2018] [Accepted: 07/11/2018] [Indexed: 01/21/2023]
Abstract
Coxsackievirus 16 (CA16) causes hand, foot, and mouth disease (HFMD) in young children and infants, and it can lead to fatal neurological complications. This study investigated antiviral effects of Siji Antiviral Mixture (SAM) on CA16 in neonatal mice and the protective effects of SAM on CA16 induced brain injuries. Neonatal BALB/c mice and SH-SY5Y cells were used and injected with CA16 stains to study the efficacy. ELISA and Western blotting were used to measure the cytokines levels and proteins expression. Genes transduction was also used to verify interaction mechanism. As the results shown, SAM could reduce the clinical scores at the beginning and delay disease development in vivo. Treatment with SAM decreased the levels of LDH, CK-MB, caspase 3 and Bax, ER stress, and inflammatory reaction induced by CA16 infection. Further siRNA transfection results showed that CA16 induced ER stress and inflammatory reaction through PERK/STAT3/NF-κB signaling and the protective effects of SAM might be through inhibiting PERK/STAT3/NF-κB signaling. HPLC analysis showed fingerprint profiles of SAM had 42 chromatographic peaks. Collectively, our study highlighted distinct roles of SAM in inhibiting CA16 infection and brain injury. The molecular mechanism of SAM might be through inhibiting PERK/STAT3/NF-κB signaling.
Collapse
|
22
|
Abstract
PURPOSE OF REVIEW The focus of this review is on enterovirus (EV)-associated acute flaccid paralysis (AFP) due to spinal cord anterior horn cell disease. Emphasis is placed on the epidemiology, pathogenesis, diagnosis, treatment, and outcome of AFP caused by polioviruses, vaccine-derived polioviruses, EV-D68, and EV-A71. RECENT FINDINGS Since the launch of The Global Polio Eradication Initiative in 1988, the worldwide incidence of polio has been reduced by 99.9%, with small numbers of poliomyelitis cases being reported only in Afghanistan, Pakistan, and Nigeria. With the planned phaseout of oral polio vaccine, vaccine-associated poliomyelitis is also expected to be eliminated. In their place, other EVs, chiefly EV-D68 and EV-A71, have emerged as the principal causes of AFP. There is evidence that the emergence of EV-D68 as a cause of severe respiratory disease and AFP was due to recent genetic virus evolution. Antiviral medications targeting EV-D68, EV-A71, and other EVs will likely be available in the near future. An effective EV-A71 vaccine has been developed, and preliminary investigations suggest an EV-D68 vaccine could be on the horizon. The eradication of poliomyelitis and vaccine-associated poliomyelitis is near, after which other EVs, presently EV-D68 and EV-A71, will be the principle viral causes of AFP. Moving forward, it is essential that EV outbreaks, in particular those associated with neurologic complications, be investigated carefully and the causal strains identified, so that treatment and prevention efforts can be rapidly developed and implemented.
Collapse
Affiliation(s)
- Ari Bitnun
- Division of Infectious Diseases, The Hospital for Sick Children and Department of Pediatrics, University of Toronto, Toronto, ON, M5G 1X8, Canada.
| | - E Ann Yeh
- Division of Neurology, The Hospital for Sick Children and Department of Pediatrics, Division of Neurosciences and Mental Health, SickKids Research Institute, University of Toronto, Toronto, Canada
| |
Collapse
|
23
|
RSAD2 and AIM2 Modulate Coxsackievirus A16 and Enterovirus A71 Replication in Neuronal Cells in Different Ways That May Be Associated with Their 5' Nontranslated Regions. J Virol 2018; 92:JVI.01914-17. [PMID: 29263272 DOI: 10.1128/jvi.01914-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 11/27/2017] [Indexed: 12/30/2022] Open
Abstract
Coxsackievirus A16 (CV-A16) and enterovirus A71 (EV-A71) are closely related enteroviruses that cause the same hand, foot, and mouth disease (HFMD), but neurological complications occur only very rarely in CV-A16 compared to EV-A71 infections. To elucidate host responses that may be able to explain these differences, we performed transcriptomic analysis and real-time quantitative PCR (RT-qPCR) in CV-A16-infected neuroblastoma cells (SK-N-SH), and the results showed that the radical S-adenosylmethionine domain containing 2 (RSAD2) was the highest upregulated gene in the antimicrobial pathway. Increased RSAD2 expression was correlated with reduced viral replication, while RSAD2 knockdown cells were correlated with increased replication. EV-A71 replication showed no apparent correlation to RSAD2 expressions. Absent in melanoma 2 (AIM2), which is associated with pyroptotic cell death, was upregulated in EV-A71-infected neurons but not in CV-A16 infection, suggesting that the AIM2 inflammasome played a significant role in suppressing EV-A71 replication. Chimeric viruses derived from CV-A16 and EV-A71 but containing swapped 5' nontranslated regions (5' NTRs) showed that RSAD2 expression/viral replication and AIM2 expression/viral replication patterns may be linked to the 5' NTRs of parental viruses. Differences in secondary structure of internal ribosomal entry sites within the 5' NTR may be responsible for these findings. Overall, our results suggest that CV-A16 and EV-A71 elicit different host responses to infection, which may help explain the apparent lower incidence of CV-A16-associated neurovirulence in HFMD outbreaks compared to EV-A71 infection.IMPORTANCE Although coxsackievirus A16 (CV-A16) and enterovirus A17 (EV-A71) both cause hand, foot, and mouth disease, EV-A71 has emerged as a leading cause of nonpolio, enteroviral fatal encephalomyelitis among young children. The significance of our research is in the identification of the possible differing and novel mechanisms of CV-A16 and EV-A71 inhibition in neuronal cells that may impact viral neuropathogenesis. We further showed that viral 5' NTRs may play significant roles in eliciting different host response mechanisms.
Collapse
|
24
|
Anastasina M, Domanska A, Palm K, Butcher S. Human picornaviruses associated with neurological diseases and their neutralization by antibodies. J Gen Virol 2017. [PMID: 28631594 DOI: 10.1099/jgv.0.000780] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Picornaviruses are the most commonly encountered infectious agents in mankind. They typically cause mild infections of the gastrointestinal or respiratory tract, but sometimes also invade the central nervous system. There, they can cause severe diseases with long-term sequelae and even be lethal. The most infamous picornavirus is poliovirus, for which significant epidemics of poliomyelitis were reported from the end of the nineteenth century. A successful vaccination campaign has brought poliovirus close to eradication, but neurological diseases caused by other picornaviruses have increasingly been reported since the late 1990s. In this review we focus on enterovirus 71, coxsackievirus A16, enterovirus 68 and human parechovirus 3, which have recently drawn attention because of their links to severe neurological diseases. We discuss the clinical relevance of these viruses and the primary role of humoral immunity in controlling them, and summarize current knowledge on the neutralization of such viruses by antibodies.
Collapse
Affiliation(s)
- Maria Anastasina
- Institute of Biotechnology and Department of Biosciences, University of Helsinki, Viikinkaari 1, 00790 Helsinki, Finland.,Protobios LLC, Mäealuse 4, 12618 Tallinn, Estonia
| | - Aušra Domanska
- Institute of Biotechnology and Department of Biosciences, University of Helsinki, Viikinkaari 1, 00790 Helsinki, Finland
| | - Kaia Palm
- Protobios LLC, Mäealuse 4, 12618 Tallinn, Estonia.,Institute of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| | - Sarah Butcher
- Institute of Biotechnology and Department of Biosciences, University of Helsinki, Viikinkaari 1, 00790 Helsinki, Finland
| |
Collapse
|
25
|
Fu C, Shen J, Lu L, Li Y, Cao Y, Wang M, Pei S, Yang Z, Guo Q, Shaman J. Pre-vaccination evolution of antibodies among infants 0, 3 and 6months of age: A longitudinal analysis of measles, enterovirus 71 and coxsackievirus 16. Vaccine 2017; 35:3817-3822. [PMID: 28610823 DOI: 10.1016/j.vaccine.2017.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 05/31/2017] [Accepted: 06/01/2017] [Indexed: 12/20/2022]
Abstract
BACKGROUND Due to waning levels of maternal antibodies (measles; enterovirus 71, EV71; and coxsackievirus A16, CoxA16), some infants may lose protection against infection prior to vaccination. Using a longitudinal design, we examine how maternal antibody levels evolve over time in infants prior to vaccination. METHODS In 2013-2014, we collected sera at ages 0, 3 and 6months from infants. We assayed for levels of measles IgG antibody (717, 233 and 75 sample sera tested at months 0, 3 and 6, respectively), and neutralizing antibodies for EV71 and CoxA16 (225, 217, and 72). Demographic and health information were collected, and a linear mixed model (LMM) was used to describe antibody levels over time. RESULTS Pre-vaccination monotonic antibody decreases were observed for measles (1410, 195 and 22mIU/ml, p<0.001), EV71 (1:19.9, 6.3 and 4.5, p<0.001) and CoxA16 (1:16.3, 5.9, and 4.5, p<0.001). At 6months of age, only 2.7% (95%CI, 0.6-8.3), 6.8% (95%CI, 2.7-14.4) and 5.6% (95%CI, 1.9-12.7) of infants were antibody positive for measles, EV71 and CoxA16, respectively. LMM findings indicated that infants with higher antibody titers at birth experienced a greater loss of antibody level. An infection rate of 1.3% (95%CI, 0.1-6.1) was reported for both EV71 and CoxA16. CONCLUSIONS Further modifications of vaccination strategies for measles, earlier vaccination for EV71 infection, and deployment of a CoxA16 vaccine need to be considered to limit infection among the very young.
Collapse
Affiliation(s)
- Chuanxi Fu
- Zhejiang Chinese Medical University, Hangzhou, China; Guangzhou Center for Disease Control and Prevention, Guangzhou, China.
| | - Jichuan Shen
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Long Lu
- Liwan District Maternal and Child Health Hospital, Guangzhou, China
| | - Yajing Li
- Sinovac Biotech Co., Ltd, Beijing, China
| | - Yimin Cao
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Ming Wang
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Sen Pei
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Zhicong Yang
- Guangzhou Center for Disease Control and Prevention, Guangzhou, China
| | - Qing Guo
- Zhejiang Chinese Medical University, Hangzhou, China.
| | - Jeffrey Shaman
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
26
|
Jin J, Li R, Jiang C, Zhang R, Ge X, Liang F, Sheng X, Dai W, Chen M, Wu J, Xiao J, Su W. Transcriptome analysis reveals dynamic changes in coxsackievirus A16 infected HEK 293T cells. BMC Genomics 2017; 18:933. [PMID: 28198671 PMCID: PMC5310284 DOI: 10.1186/s12864-016-3253-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Coxsackievirus A16 (CVA16) and enterovirus 71 (EV71) are two of the major causes of hand, foot and mouth disease (HFMD) world-wide. Although many studies have focused on infection and pathogenic mechanisms, the transcriptome profile of the host cell upon CVA16 infection is still largely unknown. RESULTS In this study, we compared the mRNA and miRNA expression profiles of human embryonic kidney 293T cells infected and non-infected with CVA16. We highlighted that the transcription of SCARB2, a cellular receptor for both CVA16 and EV71, was up-regulated by nearly 10-fold in infected cells compared to non-infected cells. The up-regulation of SCARB2 transcription induced by CVA16 may increase the possibility of subsequent infection of CVA16/EV71, resulting in the co-infection with two viruses in a single cell. This explanation would partly account for the co-circulation and genetic recombination of a great number of EV71 and CVA16 viruses. Based on correlation analysis of miRNAs and genes, we speculated that the high expression of SCARB2 is modulated by down-regulation of miRNA has-miR-3605-5p. At the same time, we found that differentially expressed miRNA target genes were mainly reflected in the extracellular membrane (ECM)-receptor interaction and circadian rhythm pathways, which may be related to clinical symptoms of patients infected with CVA16, such as aphthous ulcers, cough, myocarditis, somnolence and potentially meningoencephalitis. The miRNAs hsa-miR-149-3p and hsa-miR-5001-5p may result in up-regulation of genes in these morbigenous pathways related to CVA16 and further cause clinical symptoms. CONCLUSIONS The present study elucidated the changes in 293T cells upon CVA16 infection at transcriptome level, containing highly up-regulated SCARB2 and genes in ECM-receptor interaction and circadian rhythm pathways, and key miRNAs in gene expression regulation. These results provided novel insight into the pathogenesis of HFMD induced by CVA16 infection.
Collapse
Affiliation(s)
- Jun Jin
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Rujiao Li
- BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chunlai Jiang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
- Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Ruosi Zhang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaomeng Ge
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Fang Liang
- BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xin Sheng
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenwen Dai
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Meili Chen
- BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiayan Wu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jingfa Xiao
- BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Weiheng Su
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China.
- Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China.
| |
Collapse
|
27
|
Enterovirus A71 and coxsackievirus A16 show different replication kinetics in human neuronal and non-neuronal cell lines. Arch Virol 2016; 162:727-737. [DOI: 10.1007/s00705-016-3157-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 10/19/2016] [Indexed: 01/15/2023]
|
28
|
Coxsackievirus A16 induced neurological disorders in young gerbils which could serve as a new animal model for vaccine evaluation. Sci Rep 2016; 6:34299. [PMID: 27667023 PMCID: PMC5035925 DOI: 10.1038/srep34299] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 09/09/2016] [Indexed: 11/09/2022] Open
Abstract
Coxsackievirus A16 (CA16) is one of the major pathogens associated with human hand, foot, and mouth disease (HFMD) in the Asia-pacific region. Although CA16 infections are generally mild, severe neurological manifestations or even death has been reported. Studies on CA16 pathogenesis and vaccine development are severely hampered because the small animal models that are currently available show major limitations. In this study, gerbils (Meriones unguiculatus) were investigated for their suitability as an animal model to study CA16 pathogenesis and vaccine development. Our results showed that gerbils up to the age of 21 days were fully susceptible to CA16 and all died within five days post-infection. CA16 showed a tropism towards the skeletal muscle, spinal cord and brainstem of gerbils, and severe lesions, including necrosis, were observed. In addition, an inactivated CA16 whole-virus vaccine administrated to gerbils was able to provide full protection to the gerbils against lethal doses of CA16 strains. These results demonstrate that gerbils are a suitable animal model to study CA16 infection and vaccine development.
Collapse
|
29
|
Zhang C, Liu Q, Ku Z, Hu Y, Ye X, Zhang Y, Huang Z. Coxsackievirus A16-like particles produced in Pichia pastoris elicit high-titer neutralizing antibodies and confer protection against lethal viral challenge in mice. Antiviral Res 2016; 129:47-51. [DOI: 10.1016/j.antiviral.2016.02.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 01/31/2016] [Accepted: 02/17/2016] [Indexed: 10/22/2022]
|
30
|
Yu W, Xu H, Yin C. Molecular epidemiology of human coxsackievirus A16 strains. Biomed Rep 2016; 4:761-764. [PMID: 27284420 DOI: 10.3892/br.2016.663] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/31/2016] [Indexed: 12/11/2022] Open
Abstract
The hand, foot and mouth disease (HFMD) epidemics have mainly been caused by human enterovirus 71 and human coxsackievirus A16 (CA16), which circulated alternatively or together in the epidemic area. The aim of the present study was to provide guidance in the prevention and control of HFMD from CA16 infection. The molecular epidemiology of the human CA16 strains was investigated. Overall, 1,151 specimens (throat swabs) were collected from 1,151 patients with HFMD symptoms. The results of the homology comparison in the VP1 of CA16 strains showed that the CA16 strains belonged to the B1b subgenotype. The difference of the 6 CA16 strains analyzed showed that the most prominent strain was the A genotype, and the most close strains were the B1 gene subtype, particularly the B1b gene subtype. With regards to the amino acids, in addition to the A genotype, the differences of amino acids with other gene subtype was not significant. The present data suggest that more effective and highly targeted intervention mechanisms could be developed for the prevention and control of HFMD.
Collapse
Affiliation(s)
- Wenmin Yu
- The School of Basic Medical Science, Jiujiang University/Key Laboratory of Translational Medicine, Jiujiang, Jiangxi 332000, P.R. China
| | - Huanxin Xu
- The Third People's Hospital of Jiujiang, Jiujiang, Jiangxi 332000, P.R. China
| | - Changchang Yin
- The School of Basic Medical Science, Jiujiang University/Key Laboratory of Translational Medicine, Jiujiang, Jiangxi 332000, P.R. China
| |
Collapse
|
31
|
Zhang A, Xiu B, Zhang H, Li N. Protein microarray-mediated detection of antienterovirus antibodies in serum. J Int Med Res 2016; 44:287-96. [PMID: 26831405 PMCID: PMC5580062 DOI: 10.1177/0300060515604981] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 08/14/2015] [Indexed: 11/16/2022] Open
Abstract
Objective To utilize prokaryotic gene expression and protein microarray to develop and evaluate a sensitive, accurate protein microarray assay for detecting antienterovirus antibodies in serum samples from patients with hand, foot and mouth disease (HFMD). Enterovirus 71 (EV71) and coxsackievirus A16 (CA16), two common causative agents for HFMD, were used for assay development. Methods Serum was collected from patients with HFMD and healthy controls. EV71 and CA16 VP1 and VP3 genes were expressed in transfected Escherichia coli; the resultant VP1 and 3 proteins were used in a microarray assay for human serum EV71 and CA16 immunoglobulin (Ig) M and IgG. To validate the microarray assay, serum samples were tested for EV71 IgM using enzyme-linked immunosorbent assay (ELISA). Results Out of 50 patients with HFMD, EV71 IgM and CA16 IgM was detected in 80% and 44% of serum samples, respectively, using protein microarray, and EV71 IgM was detected in 78% of samples using ELISA. Protein microarray and ELISA showed 100% specificity for EV71-IgM detection. Conclusion The protein microarray assay developed in the present study shows potential as a sensitive technique for detecting EV71 IgM in serum samples from patients with HFMD.
Collapse
Affiliation(s)
- Aiying Zhang
- Beijing Institute of Hepatology, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Bingshui Xiu
- Department of Vaccine Engineering, Institute of Basic Medical Sciences, Beijing, China
| | - Heqiu Zhang
- Department of Vaccine Engineering, Institute of Basic Medical Sciences, Beijing, China
| | - Ning Li
- Beijing Institute of Hepatology, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
32
|
Sun S, Jiang L, Liang Z, Mao Q, Su W, Zhang H, Li X, Jin J, Xu L, Zhao D, Fan P, An D, Yang P, Lu J, Lv X, Sun B, Xu F, Kong W, Jiang C. Evaluation of monovalent and bivalent vaccines against lethal Enterovirus 71 and Coxsackievirus A16 infection in newborn mice. Hum Vaccin Immunother 2015; 10:2885-95. [PMID: 25483672 DOI: 10.4161/hv.29823] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Enterovirus 71 (EV71) and Coxsackievirus A16 (CVA16) have caused severe epidemics of hand, foot and mouth disease (HFMD) in the Asia Pacific in recent years, particularly in infants and young children. This disease has become a serious public health problem, as no vaccines or antiviral drugs have been approved for EV71 and CA16 infections. In this study, we compared four monovalent vaccines, including formalin-inactivated EV71 virus (iEV71), EV71 virus-like particles (VLPs) (vEV71), formalin-inactivated CVA16 virus (iCVA16) and CVA16 VLPs (vCVA16), along with two bivalent vaccines, including equivalent doses of formalin-inactivated EV71+CVA16 virus (iEV71+iCVA16) and EV71+CVA16 VLPs (vEV71+vCVA16). The IgG titers and neutralization antibodies titers demonstrated that there are no immune interference exists between the two immunogens of EV71 and CVA16. IgG subclass isotyping revealed that IgG1 and IgG2b were induced primarily in all vaccine groups. Furthermore, cross-neutralization antibodies were elicited in mouse sera against other sub-genotypes of EV71 and CVA16. In vivo challenge experiments showed that the immune sera from vaccinated animals could confer passive protection to newborn mice against lethal challenge with 14 LD50 of EV71 and 50 LD50 of CVA16. Our results indicated that bivalent vaccination is promising for HFMD vaccine development. With the advantage of having a better safety profile than inactivated virus vaccines, VLPs should be used to combine both EV71 and CVA16 antigens as a candidate vaccine for prevention of HFMD virus transmission.
Collapse
Affiliation(s)
- Shiyang Sun
- a School of Life Sciences ; Jilin University ; Changchun , PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Ong KC, Wong KT. Understanding Enterovirus 71 Neuropathogenesis and Its Impact on Other Neurotropic Enteroviruses. Brain Pathol 2015; 25:614-24. [PMID: 26276025 PMCID: PMC8029433 DOI: 10.1111/bpa.12279] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 06/19/2015] [Indexed: 01/27/2023] Open
Abstract
Enterovirus A71 (EV-A71) belongs to the species group A in the Enterovirus genus within the Picornaviridae family. EV-A71 usually causes self-limiting hand, foot and mouth disease or herpangina but rarely causes severe neurological complications such as acute flaccid paralysis and encephalomyelitis. The pathology and neuropathogenesis of these neurological syndromes is beginning to be understood. EV-A71 neurotropism for motor neurons in the spinal cord and brainstem, and other neurons, is mainly responsible for central nervous system damage. This review on the general aspects, recent developments and advances of EV-A71 infection will focus on neuropathogenesis and its implications on other neurotropic enteroviruses, such as poliovirus and the newly emergent Enterovirus D68. With the imminent eradication of poliovirus, EV-A71 is likely to replace it as an important neurotropic enterovirus of worldwide importance.
Collapse
Affiliation(s)
- Kien Chai Ong
- Department of Biomedical ScienceFaculty of MedicineUniversity of MalayaKuala LumpurMalaysia
| | - Kum Thong Wong
- Department of PathologyFaculty of MedicineUniversity of MalayaKuala LumpurMalaysia
| |
Collapse
|
34
|
A Broadly Cross-protective Vaccine Presenting the Neighboring Epitopes within the VP1 GH Loop and VP2 EF Loop of Enterovirus 71. Sci Rep 2015; 5:12973. [PMID: 26243660 PMCID: PMC4525384 DOI: 10.1038/srep12973] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 07/14/2015] [Indexed: 02/01/2023] Open
Abstract
Human enterovirus 71 (EV71) and coxsackievirus A16 (CA16) are the major etiological agents of hand, foot and mouth disease (HFMD) and are often associated with neurological complications. Currently, several vaccine types are being developed for EV71 and CA16. In this study, we constructed a bivalent chimeric virus-like particle (VLP) presenting the VP1 (aa208-222) and VP2 (aa141-155) epitopes of EV71 using hepatitis B virus core protein (HBc) as a carrier, designated HBc-E1/2. Immunization with the chimeric VLPs HBc-E1/2 induced higher IgG titers and neutralization titers against EV71 and CA16 in vitro than immunization with only one epitope incorporated into HBc. Importantly, passive immunization with the recombinant HBc-E2 particles protected neonatal mice against lethal EV71 and CA16 infections. We demonstrate that anti-VP2 (aa141-155) sera bound authentic CA16 viral particles, whereas anti-VP1 (aa208-222) sera could not. Moreover, the anti-VP2 (aa141-155) antibodies inhibited the binding of human serum to virions, which demonstrated that the VP2 epitope is immunodominant between EV71 and CA16. These results illustrated that the chimeric VLP HBc-E1/2 is a promising candidate for a broad-spectrum HFMD vaccine, and also reveals mechanisms of protection by the neighboring linear epitopes of the VP1 GH and VP2 EF loops.
Collapse
|
35
|
Deng C, Li X, Liu S, Xu L, Ye H, Qin CF, Zhang B. Development and characterization of a clinical strain of Coxsackievirus A16 and an eGFP infectious clone. Virol Sin 2015. [PMID: 26220729 DOI: 10.1007/s12250-015-3610-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Coxsackievirus A16 (CA16) is one of the major causes of hand, foot, and mouth disease (HFMD) worldwide, which is a common illness that affects children. The frequent occurrence of HFMD outbreaks has become a serious public health problem in Asia. Therefore, it is important to understand the pathogenesis and replication of CA16. In this study, a stable infectious cDNA clone of an epidemic strain of Coxsackievirus A16 (CA16) was assembled, and subsequently a reporter virus (eGFP-CA16) was constructed by inserting the eGFP gene between the 5'-UTR and the N-terminus of VP4, with the addition of a 2A protease cleavage site (ITTLG) at its C-terminus. This was transfected into Vero cells to generate infectious recombinant viruses. The growth characteristics and plaque morphology, in vitro, in mammalian cells were found to be indistinguishable between the parental and recombinant viruses. Although the eGFP-CA16 showed smaller plaque size as compared to recombinant CA16, both were found to exhibit similar growth trends and EC50 of NITD008. In summary, this stable infectious cDNA clone should provide a valuable experimental system to study CA16 infection and host response. The eGFP-CA16 is expected to provide a powerful tool to monitor eGFP expression in infected cells and to evaluate the antiviral activity of potential antiviral agents in the treatment of CA16 infections.
Collapse
Affiliation(s)
- Chenglin Deng
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 430071, China
| | | | | | | | | | | | | |
Collapse
|
36
|
Li J, Liu G, Liu X, Yang J, Chang J, Zhang W, Yu XF. Optimization and Characterization of Candidate Strain for Coxsackievirus A16 Inactivated Vaccine. Viruses 2015; 7:3891-909. [PMID: 26193302 PMCID: PMC4517132 DOI: 10.3390/v7072803] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/20/2015] [Accepted: 07/01/2015] [Indexed: 11/16/2022] Open
Abstract
Coxsackievirus A16 (CA16) and enterovirus 71 (EV71), both of which can cause hand, foot and mouth disease (HFMD), are responsible for large epidemics in Asian and Pacific areas. Although inactivated EV71 vaccines have completed testing in phase III clinical trials in Mainland China, CA16 vaccines are still under development. A Vero cell-based inactivated CA16 vaccine was developed by our group. Screening identified a CA16 vaccine strain (CC024) isolated from HFMD patients, which had broad cross-protective abilities and satisfied all requirements for vaccine production. Identification of the biological characteristics showed that the CA16CC024 strain had the highest titer (107.5 CCID50/mL) in Vero cells, which would benefit the development of an EV71/CA16 divalent vaccine. A potential vaccine manufacturing process was established, including the selection of optimal time for virus harvesting, membrane for diafiltration and concentration, gel-filtration chromatography for the down-stream virus purification and virus inactivation method. Altogether, the analyses suggested that the CC-16, a limiting dilution clone of the CC024 strain, with good genetic stability, high titer and broad-spectrum immunogenicity, would be the best candidate strain for a CA16 inactivated vaccine. Therefore, our study provides valuable information for the development of a Vero cell-based CA16 or EV71-CA16 divalent inactivated vaccine.
Collapse
Affiliation(s)
- Jingliang Li
- First Hospital of Jilin University, Institute of Virology and AIDS Research, 130061 Changchun, China.
| | - Guanchen Liu
- First Hospital of Jilin University, Institute of Virology and AIDS Research, 130061 Changchun, China.
| | - Xin Liu
- First Hospital of Jilin University, Institute of Virology and AIDS Research, 130061 Changchun, China.
| | - Jiaxin Yang
- First Hospital of Jilin University, Institute of Virology and AIDS Research, 130061 Changchun, China.
| | - Junliang Chang
- First Hospital of Jilin University, Institute of Virology and AIDS Research, 130061 Changchun, China.
| | - Wenyan Zhang
- First Hospital of Jilin University, Institute of Virology and AIDS Research, 130061 Changchun, China.
| | - Xiao-Fang Yu
- First Hospital of Jilin University, Institute of Virology and AIDS Research, 130061 Changchun, China.
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
37
|
Li JP, Liao Y, Zhang Y, Wang JJ, Wang LC, Feng K, Li QH, Liu LD. Experimental infection of tree shrews (Tupaia belangeri) with Coxsackie virus A16. DONG WU XUE YAN JIU = ZOOLOGICAL RESEARCH 2015; 35:485-91. [PMID: 25465084 DOI: 10.13918/j.issn.2095-8137.2014.6.485] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Coxsackie virus A16 (CA16) is commonly recognized as one of the main human pathogens of hand-foot-mouth disease (HFMD). The clinical manifestations of HFMD include vesicles of hand, foot and mouth in young children and severe inflammatory CNS lesions. In this study, experimentally CA16 infected tree shrews (Tupaia belangeri) were used to investigate CA16 pathogenesis. The results showed that both the body temperature and the percentages of blood neutrophilic granulocytes / monocytes of CA16 infected tree shrews increased at 4-7 days post infection. Dynamic distributions of CA16 in different tissues and stools were found at different infection stages. Moreover, the pathological changes in CNS and other organs were also observed. These findings indicate that tree shrews can be used as a viable animal model to study CA16 infection.
Collapse
Affiliation(s)
- Jian-Ping Li
- Institute of Medical Biology, Chinese Academy of Medicine Science, Peking Union Medical Colleg, Kunming 650118, China
| | - Yun Liao
- Institute of Medical Biology, Chinese Academy of Medicine Science, Peking Union Medical Colleg, Kunming 650118, China
| | - Ying Zhang
- Institute of Medical Biology, Chinese Academy of Medicine Science, Peking Union Medical Colleg, Kunming 650118, China
| | - Jing-Jing Wang
- Institute of Medical Biology, Chinese Academy of Medicine Science, Peking Union Medical Colleg, Kunming 650118, China
| | - Li-Chun Wang
- Institute of Medical Biology, Chinese Academy of Medicine Science, Peking Union Medical Colleg, Kunming 650118, China
| | - Kai Feng
- Institute of Medical Biology, Chinese Academy of Medicine Science, Peking Union Medical Colleg, Kunming 650118, China
| | - Qi-Han Li
- Institute of Medical Biology, Chinese Academy of Medicine Science, Peking Union Medical Colleg, Kunming 650118, China.
| | - Long-Ding Liu
- Institute of Medical Biology, Chinese Academy of Medicine Science, Peking Union Medical Colleg, Kunming 650118,
| |
Collapse
|
38
|
Huang L, Liu X, Li JL, Chang JL, Liu GC, Yu XF, Zhang WY. Comparative pathogenicity of Coxsackievirus A16 circulating and noncirculating strains in vitro and in a neonatal mouse model. ACTA ACUST UNITED AC 2015; 48:420-6. [PMID: 25831207 PMCID: PMC4445665 DOI: 10.1590/1414-431x20144298] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2014] [Accepted: 12/10/2014] [Indexed: 11/22/2022]
Abstract
An enterovirus 71 (EV71) vaccine for the prevention of hand, foot, and mouth disease (HMFD) is available, but it is not known whether the EV71 vaccine cross-protects against Coxsackievirus (CV) infection. Furthermore, although an inactivated circulating CVA16 Changchun 024 (CC024) strain vaccine candidate is effective in newborn mice, the CC024 strain causes severe lesions in muscle and lung tissues. Therefore, an effective CV vaccine with improved pathogenic safety is needed. The aim of this study was to evaluate the in vivo safety and in vitro replication capability of a noncirculating CVA16 SHZH05 strain. The replication capacity of circulating CVA16 strains CC024, CC045, CC090 and CC163 and the noncirculating SHZH05 strain was evaluated by cytopathic effect in different cell lines. The replication capacity and pathogenicity of the CC024 and SHZH05 strains were also evaluated in a neonatal mouse model. Histopathological and viral load analyses demonstrated that the SHZH05 strain had an in vitro replication capacity comparable to the four CC strains. The CC024, but not the SHZH05 strain, became distributed in a variety of tissues and caused severe lesions and mortality in neonatal mice. The differences in replication capacity and in vivo pathogenicity of the CC024 and SHZH05 strains may result from differences in the nucleotide and amino acid sequences of viral functional polyproteins P1, P2 and P3. Our findings suggest that the noncirculating SHZH05 strain may be a safer CV vaccine candidate than the CC024 strain.
Collapse
Affiliation(s)
- L Huang
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, China
| | - X Liu
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, China
| | - J L Li
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, China
| | - J L Chang
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, China
| | - G C Liu
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, China
| | - X F Yu
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, China
| | - W Y Zhang
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
39
|
Ku Z, Liu Q, Ye X, Cai Y, Wang X, Shi J, Li D, Jin X, An W, Huang Z. A virus-like particle based bivalent vaccine confers dual protection against enterovirus 71 and coxsackievirus A16 infections in mice. Vaccine 2014; 32:4296-303. [DOI: 10.1016/j.vaccine.2014.06.025] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 05/22/2014] [Accepted: 06/06/2014] [Indexed: 11/29/2022]
|
40
|
Cai Y, Ku Z, Liu Q, Leng Q, Huang Z. A combination vaccine comprising of inactivated enterovirus 71 and coxsackievirus A16 elicits balanced protective immunity against both viruses. Vaccine 2014; 32:2406-12. [PMID: 24657161 DOI: 10.1016/j.vaccine.2014.03.012] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/25/2014] [Accepted: 03/07/2014] [Indexed: 11/18/2022]
Abstract
Enterovirus 71 (EV71) and coxsackievirus A16 (CA16) are the two major causative agents of hand, foot and mouth disease (HFMD), which is an infectious disease frequently occurring in children. A bivalent vaccine against both EV71 and CA16 is highly desirable. In the present study, we compare monovalent inactivated EV71, monovalent inactivated CA16, and a combination vaccine candidate comprising of both inactivated EV71 and CA16, for their immunogenicity and in vivo protective efficacy. The two monovalent vaccines were found to elicit serum antibodies that potently neutralized the homologous virus but had no or weak neutralization activity against the heterologous one; in contrast, the bivalent vaccine immunized sera efficiently neutralized both EV71 and CA16. More importantly, passive immunization with the bivalent vaccine protected mice against either EV71 or CA16 lethal infections, whereas the monovalent vaccines only prevented the homologous but not the heterologous challenges. Together, our results demonstrate that the experimental bivalent vaccine comprising of inactivated EV71 and CA16 induces a balanced protective immunity against both EV71 and CA16, and thus provide proof-of-concept for further development of multivalent vaccines for broad protection against HFMD.
Collapse
Affiliation(s)
- Yicun Cai
- Center for Vaccine Sciences, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Zhiqiang Ku
- Center for Vaccine Sciences, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Qingwei Liu
- Center for Vaccine Sciences, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Qibin Leng
- Center for Vaccine Sciences, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Zhong Huang
- Center for Vaccine Sciences, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China.
| |
Collapse
|
41
|
|
42
|
Mizuta K, Abiko C, Aoki Y, Ikeda T, Matsuzaki Y, Hongo S, Itagaki T, Katsushima N, Ohmi A, Nishimura H, Ahiko T. Molecular epidemiology of Coxsackievirus A16 strains isolated from children in Yamagata, Japan between 1988 and 2011. Microbiol Immunol 2013; 57:400-5. [PMID: 23668614 DOI: 10.1111/1348-0421.12041] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Revised: 02/03/2013] [Accepted: 02/18/2013] [Indexed: 11/30/2022]
Abstract
To clarify the longitudinal molecular epidemiology of coxsackievirus A16, phylogenetic analysis based on the VP1 region of 220 isolates in Yamagata, Japan was performed. The resultant phylogenetic tree indicates that the Yamagata isolates and reference strains can be readily genotyped into three genogroups, and 0, 12 and 208 isolates belonged to the first, second, and third genogroups, respectively. The first genogroup includes only the prototype strain, the second strains that had disappeared by the end of the 20th century and the third comprises those that have been circulating since then in local communities, such as Yamagata.
Collapse
Affiliation(s)
- Katsumi Mizuta
- Department of Microbiology, Yamagata Prefectural Institute of Public Health, Tokamachi 1-6-6, Yamagata 990-0031, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Mao Q, Wang Y, Yao X, Bian L, Wu X, Xu M, Liang Z. Coxsackievirus A16: epidemiology, diagnosis, and vaccine. Hum Vaccin Immunother 2013; 10:360-7. [PMID: 24231751 DOI: 10.4161/hv.27087] [Citation(s) in RCA: 138] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Coxsackievirus 16 (CA16) is one of the major pathogens associated with hand, foot, and mouth disease (HFMD) in infants and young children. In recent years, CA16 and human enterovirus 71 (EV71) have often circulated alternatively or together in the Western Pacific region, which has become an important public health problem in this region. HFMD caused by CA16 infection is generally thought to be mild and self-limiting. However, recently several severe and fatal cases involving CA16 have been reported. Studies have shown that co-infection with CA16 and EV71 can cause serious complications in the central nervous system (CNS) and increase the chance of genetic recombination, which may be responsible for the large HFMD outbreak in Mainland China in 2008. For these reasons, recent studies have focused on the virological characteristics of CA16 and the development of CA16-related diagnostic reagents and vaccines.
Collapse
Affiliation(s)
- Qunying Mao
- National Institutes for Food and Drug Control; Beijing, PR China
| | - Yiping Wang
- National Institutes for Food and Drug Control; Beijing, PR China
| | - Xin Yao
- National Institutes for Food and Drug Control; Beijing, PR China
| | - Lianlian Bian
- National Institutes for Food and Drug Control; Beijing, PR China
| | - Xing Wu
- National Institutes for Food and Drug Control; Beijing, PR China
| | - Miao Xu
- National Institutes for Food and Drug Control; Beijing, PR China
| | - Zhenglun Liang
- National Institutes for Food and Drug Control; Beijing, PR China
| |
Collapse
|
44
|
Han JF, Yu N, Pan YX, He SJ, Xu LJ, Cao RY, Li YX, Zhu SY, Zhang Y, Qin ED, Che XY, Qin CF. Phenotypic and genomic characterization of human coxsackievirus A16 strains with distinct virulence in mice. Virus Res 2013; 179:212-9. [PMID: 24211607 DOI: 10.1016/j.virusres.2013.10.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 10/21/2013] [Accepted: 10/22/2013] [Indexed: 01/18/2023]
Abstract
Human coxsackievirus A16 (CA16) infection results in hand, foot, and mouth disease (HFMD) along with other severe neurological diseases in children and poses an important public health threat in Asian countries. During an HFMD epidemic in 2009 in Guangdong, China, two CA16 strains (GD09/119 and GD09/24) were isolated and characterized. Although both strains were similar in plaque morphology and growth properties in vitro, the two isolates exhibited distinct pathogenicity in neonatal mice upon intraperitoneal or intracranial injection. Complete genome sequences of both CA16 strains were determined, and the possible virulence determinants were analyzed and predicted. Phylogenetic analysis revealed that these CA16 isolates from Guangdong belonged to the B1b genotype and were closely related to other recent CA16 strains isolated in mainland China. Similarity and bootscanning analyses of these CA16 strains detected homologous recombination with the EV71 prototype strain BrCr in the non-structural gene regions and the 3'-untranslated regions. Together, the phenotypic and genomic characterizations of the two clinical CA16 isolates circulating in China were compared in detail, and the potential amino acid residues responsible for CA16 virulence in mice were predicted. These findings will help explain the evolutionary relationship of the CA16 strains circulating in China, warranting future studies investigating enterovirus virulence.
Collapse
Affiliation(s)
- Jian-Feng Han
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Nan Yu
- Laboratory of Emerging Infectious Disease and Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, No. 253 Gong ye da dao zhong, Guangzhou, Guangdong 510282, China
| | - Yu-Xian Pan
- Laboratory of Emerging Infectious Disease and Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, No. 253 Gong ye da dao zhong, Guangzhou, Guangdong 510282, China
| | - Si-Jie He
- Laboratory of Emerging Infectious Disease and Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, No. 253 Gong ye da dao zhong, Guangzhou, Guangdong 510282, China
| | - Li-Juan Xu
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Rui-Yuan Cao
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yue-Xiang Li
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Shun-Ya Zhu
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yu Zhang
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - E-De Qin
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Xiao-Yan Che
- Laboratory of Emerging Infectious Disease and Division of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, No. 253 Gong ye da dao zhong, Guangzhou, Guangdong 510282, China
| | - Cheng-Feng Qin
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China.
| |
Collapse
|
45
|
Shi J, Huang X, Liu Q, Huang Z. Identification of conserved neutralizing linear epitopes within the VP1 protein of coxsackievirus A16. Vaccine 2013; 31:2130-6. [PMID: 23499595 DOI: 10.1016/j.vaccine.2013.02.051] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 02/04/2013] [Accepted: 02/25/2013] [Indexed: 12/13/2022]
Abstract
Coxsackievirus A16 (CA16) is a major causative agent of hand, foot, and mouth disease. Immunization with inactivated whole-virus or recombinant virus-like particles (VLP) of CA16 elicits neutralizing antibodies that protect mice against lethal challenge. However, the epitope/s responsible for this induction has not been determined. In this investigation, we identified six neutralizing linear epitopes of CA16. A panel of 95 synthetic peptides spanning the entire VP1 protein of CA16 were screened by ELISA for reactivity with neutralizing antisera against CA16 VLPs, which were generated in a previous study (Vaccine 30:6642-6648). Fifteen high-binding peptides were selected and further examined for their inhibitory effect on neutralization by anti-VLP sera. Among them, six peptides with no overlap significantly inhibited neutralization. Mice immunized with these six peptides generated peptide-specific serum antibodies. The anti-peptide antisera positively detected CA16 via immunofluorescent staining and Western blot assays. More importantly, they neutralized both homologous and heterologous CA16 strains, indicating that these six peptides represented neutralizing epitopes. Sequence alignment also showed that these epitopes are extremely conserved among CA16 strains of different genotypes. These findings have important implications for the development of peptide-based broadly protective CA16 vaccines.
Collapse
Affiliation(s)
- Jinping Shi
- Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 411 Hefei Road, Shanghai 200025, China
| | | | | | | |
Collapse
|
46
|
Cai Y, Liu Q, Huang X, Li D, Ku Z, Zhang Y, Huang Z. Active immunization with a Coxsackievirus A16 experimental inactivated vaccine induces neutralizing antibodies and protects mice against lethal infection. Vaccine 2013; 31:2215-21. [PMID: 23499596 DOI: 10.1016/j.vaccine.2013.03.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Revised: 03/01/2013] [Accepted: 03/05/2013] [Indexed: 10/27/2022]
Abstract
Coxsackievirus A16 (CA16) is one of the main pathogens that cause hand, foot and mouth disease, which frequently occurs in young children. A small percentage of patients infected with CA16 may suffer from severe neurological complications that could also lead to death. Recent epidemiological data shows the increase in both the total number and the incidence rate of severe CA16-associated cases in China, indicating that CA16 should be targeted for vaccine development. In this article, we report the immunogenicity and protective efficacy of experimental inactivated CA16 vaccines in mice. We show that immunization with β-propiolactone-inactivated whole-virus vaccines derived from two CA16 clinical isolates were able to induce CA16-specific antibody and IFN-secreting T-cell responses in mice. The resulting anti-CA16 mouse sera neutralized both homologous and heterologous CA16 clinical isolates, as well as a mouse-adapted strain called CA16-MAV, which is capable of infecting 14-day-old mice. Passive transfer of anti-CA16 neutralizing sera partially protected neonatal mice from lethal challenge by a clinical isolate CA16-G08. More significantly, active immunization of mice with the inactivated vaccines conferred complete protection against lethal infection with CA16-MAV. Collectively, these results provide a solid foundation for further development of inactivated whole-virus CA16 vaccines for human use.
Collapse
Affiliation(s)
- Yicun Cai
- Key laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, 411 Hefei Road, Shanghai 200025, China
| | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
To evaluate vaccine efficacy in protecting against coxsackievirus A16 (CA16), which causes human hand, foot, and mouth disease (HFMD), we established the first neonatal mouse model. In this article, we report data concerning CA16-induced pathological changes, and we demonstrate that anti-CA16 antibody can protect mice against lethal challenge and that the neonatal mouse model could be used to evaluate vaccine efficacy. To establish a mouse model, a BJCA08/CA16 strain (at 260 50% lethal doses [LD(50)]) was isolated from a patient and used to intracerebrally (i.c.) inoculate neonatal mice. The infection resulted in wasting, hind-limb paralysis, and even death. Pathological examination and immunohistochemistry (IHC) staining indicated that BJCA08 had a strong tropism to muscle and caused severe necrosis in skeletal and cardiac muscles. We then found that BJCA08 pretreated with goat anti-G10/CA16 serum could significantly lose its lethal effect in neonatal mice. When the anti-G10 serum was intraperitoneally (i.p.) injected into the neonatal mice and, within 1 h, the same mice were intracerebrally inoculated with BJCA08, there was significant passive immunization protection. In a separate experiment, female mice were immunized with formaldehyde-inactivated G10/CA16 and BJCA08/CA16 and then allowed to mate 1 h after the first immunization. We found that there was significant protection against BJCA08 for neonatal mice born to the immunized dams. These data demonstrated that anti-CA16 antibody may block virus invasion and protect mice against lethal challenge, and that the neonatal mouse model was a viable tool for evaluating vaccine efficacy.
Collapse
|
48
|
DeSalvo MN. Radiation necrosis of the pons after radiotherapy for nasopharyngeal carcinoma: diagnosis and treatment. J Radiol Case Rep 2012; 6:9-16. [PMID: 23365707 DOI: 10.3941/jrcr.v6i7.1108] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
We report a case of radiation necrosis in an unusual location, the pons, in a patient who had received chemoradiation for nasopharyngeal carcinoma (NPC) over one year prior to presentation. This patient presented with subacute onset of ataxic hemiparesis and slurred speech. Initial magnetic resonance imaging (MRI) studies showed two 1-2 cm peripherally contrast-enhancing lesions in the pons with extensive surrounding edema. Proton magnetic resonance spectroscopy (MRS) played a key role in narrowing the differential diagnosis to radiation necrosis. The patient underwent biweekly bevacizumab therapy and has remained clinically stable with radiologic improvement of his lesion. In addition to this case, we present an overview of the use of advanced neuroimaging in distinguishing radiation necrosis of the central nervous system (CNS) from other entities as well as the role of bevacizumab in treatment.
Collapse
|
49
|
A comparative study of the characteristics of two Coxsackie A virus type 16 strains (genotype B). SCIENCE CHINA-LIFE SCIENCES 2012; 55:336-42. [PMID: 22566090 DOI: 10.1007/s11427-012-4313-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Accepted: 03/08/2012] [Indexed: 10/28/2022]
Abstract
Coxsackie A virus is one of the major pathogens associated with hand, foot and mouth disease (HFMD). The etiological characteristics of Coxsackie A virus type 16 (CA16) are thought to correlate with the pathological process of its infection. Two CA16 strains that were isolated from a severe HFMD patient presented with different plaque forms. This observation, along with biological analysis, indicated that the differences in the strains' biological characteristics, such as proliferation kinetics and immunogenicity, correlate with differences in their pathogenicity toward neonatal mice. Furthermore, these differences are thought to be associated with the sequence of the 5' non-coding region of the viral genome and the VP1 structural region sequence. The results suggest that the biological and genetic characteristics of the CA16 viral strains are relevant to their pathogenicity.
Collapse
|
50
|
Abstract
Rhombencephalitis (RE) is a syndrome of multiple causes and multiple outcomes. Most authors now use the terms "rhombencephalitis" and "brainstem encephalitis" interchangeably even though anatomically they are slightly different. The etiologic categories of RE include infections, autoimmune diseases, and paraneoplastic syndromes (PNS). Listeria is the most common cause of infectious RE. Listeria RE primary occurs in healthy young adults. It usually occurs as a biphasic time course with a flu-like syndrome followed by brainstem dysfunction; 75% of patients have a cerebrospinal fluid (CSF) pleocytosis, and almost 100% have an abnormal brain MRI scan. Positive CSF and blood cultures are the most specific for diagnosis. Treatment primarily is with ampicillin. Enterovirus 71 is probably the second most common infectious cause of RE; however, 95% of cases have occurred in the Asian-Pacific region and there is no specific treatment. Herpes simplex virus (HSV) is the third most common infectious cause of RE, and about 80% of cases are caused by HSV1 and 20% by HSV2. About 50% only had involvement of the brainstem whereas the other 50% also had supratentorial involvement of the temporal and frontal lobes. Mortality with acyclovir treatment was 22% versus those not on acyclovir 75%. Epstein-Barr virus (EBV) and human herpesvirus 6 (HHV6) have caused a few cases. The most common autoimmune etiology is Behçet disease. Over 90% of those with Behçet RE had abnormal MRI scans and 94% had a CSF pleocytosis. Treatment is with corticosteroids and immunosuppressive agents, but only 25% have complete recovery. Paraneoplastic causes are the third category of RE. Brain MRIs are usually normal; there is usually a CSF pleocytosis but the protein is usually normal. Often anti-neuronal antibodies can be found. Prognosis is poor and treatment is only partially beneficial. Because Listeria and HSV are the most common treatable acute causes of RE, we recommend empiric therapy with ampicillin and acyclovir for all cases after samples have been obtained from CSF and blood for cultures and the polymerase chain reaction (PCR). Antibiotics can be changed based upon MRI, culture results, PCR results, and antibody studies.
Collapse
Affiliation(s)
- Burk Jubelt
- Departments of Neurology, Microbiology/Immunology and Neuroscience, SUNY Upstate Medical University, 750 E. Adams Street, Syracuse, NY 13210, USA.
| | | | | | | |
Collapse
|