1
|
Goig GA, Windels EM, Loiseau C, Stritt C, Biru L, Borrell S, Brites D, Gagneux S. Ecology, global diversity and evolutionary mechanisms in the Mycobacterium tuberculosis complex. Nat Rev Microbiol 2025:10.1038/s41579-025-01159-w. [PMID: 40133503 DOI: 10.1038/s41579-025-01159-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2025] [Indexed: 03/27/2025]
Abstract
With the COVID-19 pandemic receding, tuberculosis (TB) is again the number one cause of human death to a single infectious agent. TB is caused by bacteria that belong to the Mycobacterium tuberculosis complex (MTBC). Recent advances in genome sequencing have provided new insights into the ecology and evolution of the MTBC. This includes the discovery of new phylogenetic lineages within the MTBC, a deeper understanding of the host tropism among the various animal-adapted lineages, enhanced knowledge on the evolutionary dynamics of antimicrobial resistance and transmission, as well as a better grasp of the within-host MTBC diversity. Moreover, advances in long-read sequencing are increasingly highlighting the relevance of structural genomic variation in the MTBC. These findings not only shed new light on the biology and epidemiology of TB, but also give rise to new questions and research avenues. The purpose of this Review is to summarize these new insights and discuss their implications for global TB control.
Collapse
Affiliation(s)
- Galo A Goig
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Etthel M Windels
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- Swiss Institute for Bioinformatics, Lausanne, Switzerland
| | - Chloé Loiseau
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Christoph Stritt
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Loza Biru
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Sonia Borrell
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Daniela Brites
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Sebastien Gagneux
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Allschwil, Switzerland.
- University of Basel, Basel, Switzerland.
| |
Collapse
|
2
|
Guyeux C, Senelle G, Le Meur A, Supply P, Gaudin C, Phelan JE, Clark TG, Rigouts L, de Jong B, Sola C, Refrégier G. Newly Identified Mycobacterium africanum Lineage 10, Central Africa. Emerg Infect Dis 2024; 30:560-563. [PMID: 38407162 PMCID: PMC10902520 DOI: 10.3201/eid3003.231466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Abstract
Analysis of genome sequencing data from >100,000 genomes of Mycobacterium tuberculosis complex using TB-Annotator software revealed a previously unknown lineage, proposed name L10, in central Africa. Phylogenetic reconstruction suggests L10 could represent a missing link in the evolutionary and geographic migration histories of M. africanum.
Collapse
|
3
|
Dos Santos DO, de Paula NF, de Carvalho TP, Dos Reis de Souza L, Tinoco HP, Coelho CM, Sousa AA, Filho PMS, Ferreira LR, da Paixão TA, Oliveira AR, Santos RL. Granulomatous meningoencephalitis and blindness associated with Mycobacterium tuberculosis complex infection in a senile female chimpanzee (Pan troglodytes). J Med Primatol 2024; 53:e12700. [PMID: 38706108 DOI: 10.1111/jmp.12700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/11/2024] [Accepted: 04/24/2024] [Indexed: 05/07/2024]
Abstract
A 40-year old female chimpanzee (Pan troglodytes) developed hyporexia, weight loss, followed by progressive and complete blindness. Tomography demonstrated an intracranial mass in the rostroventral brain involving the optic chiasm, with a presumptive diagnosis of neoplasm. However, histopathology revealed a granulomatous meningoencephalitis, and tissue samples tested positive for Mycobacterium tuberculosis.
Collapse
Affiliation(s)
| | - Nayara Ferreira de Paula
- Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Lucas Dos Reis de Souza
- Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Ana Augusta Sousa
- Visiovet Diagnóstico Veterinário, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Tatiane Alves da Paixão
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ayisa Rodrigues Oliveira
- Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Renato Lima Santos
- Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
4
|
Silva-Pereira TT, Soler-Camargo NC, Guimarães AMS. Diversification of gene content in the Mycobacterium tuberculosis complex is determined by phylogenetic and ecological signatures. Microbiol Spectr 2024; 12:e0228923. [PMID: 38230932 PMCID: PMC10871547 DOI: 10.1128/spectrum.02289-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 12/19/2023] [Indexed: 01/18/2024] Open
Abstract
We analyzed the pan-genome and gene content modulation of the most diverse genome data set of the Mycobacterium tuberculosis complex (MTBC) gathered to date. The closed pan-genome of the MTBC was characterized by reduced accessory and strain-specific genomes, compatible with its clonal nature. However, significantly fewer gene families were shared between MTBC genomes as their phylogenetic distance increased. This effect was only observed in inter-species comparisons, not within-species, which suggests that species-specific ecological characteristics are associated with changes in gene content. Gene loss, resulting from genomic deletions and pseudogenization, was found to drive the variation in gene content. This gene erosion differed among MTBC species and lineages, even within M. tuberculosis, where L2 showed more gene loss than L4. We also show that phylogenetic proximity is not always a good proxy for gene content relatedness in the MTBC, as the gene repertoire of Mycobacterium africanum L6 deviated from its expected phylogenetic niche conservatism. Gene disruptions of virulence factors, represented by pseudogene annotations, are mostly not conserved, being poor predictors of MTBC ecotypes. Each MTBC ecotype carries its own accessory genome, likely influenced by distinct selective pressures such as host and geography. It is important to investigate how gene loss confer new adaptive traits to MTBC strains; the detected heterogeneous gene loss poses a significant challenge in elucidating genetic factors responsible for the diverse phenotypes observed in the MTBC. By detailing specific gene losses, our study serves as a resource for researchers studying the MTBC phenotypes and their immune evasion strategies.IMPORTANCEIn this study, we analyzed the gene content of different ecotypes of the Mycobacterium tuberculosis complex (MTBC), the pathogens of tuberculosis. We found that changes in their gene content are associated with their ecological features, such as host preference. Gene loss was identified as the primary driver of these changes, which can vary even among different strains of the same ecotype. Our study also revealed that the gene content relatedness of these bacteria does not always mirror their evolutionary relationships. In addition, some genes of virulence can be variably lost among strains of the same MTBC ecotype, likely helping them to evade the immune system. Overall, our study highlights the importance of understanding how gene loss can lead to new adaptations in these bacteria and how different selective pressures may influence their genetic makeup.
Collapse
Affiliation(s)
- Taiana Tainá Silva-Pereira
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Naila Cristina Soler-Camargo
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Sciences, University of São Paulo, São Paulo, Brazil
| | - Ana Marcia Sá Guimarães
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
5
|
Roos EO, Loubser J, Kerr TJ, Dippenaar A, Streicher E, Olea-Popelka F, Robbe-Austerman S, Stuber T, Buss P, de Klerk-Lorist LM, Warren RM, van Helden PD, Parsons SD, Miller MA. Whole genome sequencing improves the discrimination between Mycobacterium bovis strains on the southern border of Kruger National Park, South Africa. One Health 2023; 17:100654. [PMID: 38283183 PMCID: PMC10810834 DOI: 10.1016/j.onehlt.2023.100654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 11/08/2023] [Indexed: 01/30/2024] Open
Abstract
Background Mycobacterium bovis forms part of the Mycobacterium tuberculosis complex and has an extensive host range and zoonotic potential. Various genotyping methods (e.g., spoligotyping) have been used to describe the molecular epidemiology of M. bovis. Advances in whole genome sequencing (WGS) have increased resolution to enable detection of genomic variants to the level of single nucleotide polymorphisms. This is especially relevant to One Health research on tuberculosis which benefits by being able to use WGS to identify epidemiologically linked cases, especially recent transmission. The use of WGS in molecular epidemiology has been extensively used in humans and cattle but is limited in wildlife. This approach appears to overcome the limitations of conventional genotyping methods due to lack of genetic diversity in M. bovis. Methods This pilot study investigated the spoligotype and WGS of M. bovis isolates (n = 7) from wildlife in Marloth Park (MP) and compared these with WGS data from other South African M. bovis isolates. In addition, the greater resolution of WGS was used to explore the phylogenetic relatedness of M. bovis isolates in neighbouring wildlife populations. Results The phylogenetic analyses showed the closest relatives to the seven isolates from MP were isolates from wildlife in Kruger National Park (KNP), which shares a border with MP. However, WGS data indicated that the KNP and MP isolates formed two distinct clades, even though they had similar spoligotypes and identical in silico genetic regions of difference profiles. Conclusions Mycobacterium bovis isolates from MP were hypothesized to be directly linked to KNP wildlife, based on spoligotyping. However, WGS indicated more complex epidemiology. The presence of two distinct clades which were genetically distinct (SNP distance of 19-47) and suggested multiple transmission events. Therefore, WGS provided new insight into the molecular epidemiology of the M. bovis isolates from MP and their relationship to isolates from KNP. This approach will facilitate greater understanding of M. bovis transmission at wildlife-livestock-human interfaces and advances One Health research on tuberculosis, especially across different host species.
Collapse
Affiliation(s)
- Eduard O. Roos
- Department of Science and Innovation-National Research Foundation Centre of Excellence for Biomedical TB Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town 8000, South Africa
| | - Johannes Loubser
- Department of Science and Innovation-National Research Foundation Centre of Excellence for Biomedical TB Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town 8000, South Africa
| | - Tanya J. Kerr
- Department of Science and Innovation-National Research Foundation Centre of Excellence for Biomedical TB Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town 8000, South Africa
| | - Anzaan Dippenaar
- Department of Science and Innovation-National Research Foundation Centre of Excellence for Biomedical TB Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town 8000, South Africa
| | - Elizma Streicher
- Department of Science and Innovation-National Research Foundation Centre of Excellence for Biomedical TB Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town 8000, South Africa
| | - Francisco Olea-Popelka
- Department of Pathology and Laboratory Medicine, Schulich Medicine & Dentistry, Western University, London, Ontario N6A 5C1, Canada
| | - Suelee Robbe-Austerman
- National Veterinary Services Laboratories, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Ames, IA, USA
| | - Tod Stuber
- National Veterinary Services Laboratories, Veterinary Services, Animal and Plant Health Inspection Service, United States Department of Agriculture, Ames, IA, USA
| | - Peter Buss
- Veterinary Wildlife Services, South African National Parks, Kruger National Park, Private Bag X402, Skukuza, 1350, South Africa
| | - Lin-Mari de Klerk-Lorist
- Department of Agriculture Land Reform and Rural Development, Office of the State Veterinarian, Kruger National Park, PO Box 12, Skukuza, 1350, South Africa
| | - Robin M. Warren
- Department of Science and Innovation-National Research Foundation Centre of Excellence for Biomedical TB Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town 8000, South Africa
| | - Paul D. van Helden
- Department of Science and Innovation-National Research Foundation Centre of Excellence for Biomedical TB Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town 8000, South Africa
| | - Sven D.C. Parsons
- Department of Science and Innovation-National Research Foundation Centre of Excellence for Biomedical TB Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town 8000, South Africa
| | - Michele A. Miller
- Department of Science and Innovation-National Research Foundation Centre of Excellence for Biomedical TB Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Cape Town 8000, South Africa
| |
Collapse
|
6
|
Ismail N, Dippenaar A, Morgan G, Grobbelaar M, Wells F, Caffry J, Morais C, Gizynski K, McGurk D, Boada E, Murton H, Warren RM, Van Rie A. Microfluidic Capture of Mycobacterium tuberculosis from Clinical Samples for Culture-Free Whole-Genome Sequencing. Microbiol Spectr 2023; 11:e0111423. [PMID: 37358439 PMCID: PMC10433858 DOI: 10.1128/spectrum.01114-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/25/2023] [Indexed: 06/27/2023] Open
Abstract
Mycobacterium tuberculosis whole-genome sequencing (WGS) is a powerful tool as it can provide data on population diversity, drug resistance, disease transmission, and mixed infections. Successful WGS is still reliant on high concentrations of DNA obtained through M. tuberculosis culture. Microfluidics technology plays a valuable role in single-cell research but has not yet been assessed as a bacterial enrichment strategy for culture-free WGS of M. tuberculosis. In a proof-of-principle study, we evaluated the use of Capture-XT, a microfluidic lab-on-chip cleanup and pathogen concentration platform to enrich M. tuberculosis bacilli from clinical sputum specimens for downstream DNA extraction and WGS. Three of the four (75%) samples processed by the microfluidics application passed the library preparation quality control, compared to only one of the four (25%) samples not enriched by the microfluidics M. tuberculosis capture application. WGS data were of sufficient quality, with mapping depth of ≥25× and 9 to 27% of reads mapping to the reference genome. These results suggest that microfluidics-based M. tuberculosis cell capture might be a promising method for M. tuberculosis enrichment in clinical sputum samples, which could facilitate culture-free M. tuberculosis WGS. IMPORTANCE Diagnosis of tuberculosis is effective using molecular methods; however, a comprehensive characterization of the resistance profile of Mycobacterium tuberculosis often requires culturing and phenotypic drug susceptibility testing or culturing followed by whole-genome sequencing (WGS). The phenotypic route can take anywhere from 1 to >3 months to result, by which point the patient may have acquired additional drug resistance. The WGS route is a very attractive option; however, culturing is the rate-limiting step. In this original article, we provide proof-of-principle evidence that microfluidics-based cell capture can be used on high-bacillary-load clinical samples for culture-free WGS.
Collapse
Affiliation(s)
- Nabila Ismail
- Division of Molecular Biology and Human Genetics, South African Medical Research Council Centre for Tuberculosis Research, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Anzaan Dippenaar
- Division of Molecular Biology and Human Genetics, South African Medical Research Council Centre for Tuberculosis Research, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- Tuberculosis Omics Research Consortium, Family Medicine and Population Health, Institute of Global Health, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | | | - Melanie Grobbelaar
- Division of Molecular Biology and Human Genetics, South African Medical Research Council Centre for Tuberculosis Research, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Felicia Wells
- Division of Molecular Biology and Human Genetics, South African Medical Research Council Centre for Tuberculosis Research, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | | | | | | | - David McGurk
- QuantuMDx Ltd., Newcastle upon Tyne, United Kingdom
| | | | | | - Robin M. Warren
- Division of Molecular Biology and Human Genetics, South African Medical Research Council Centre for Tuberculosis Research, DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Annelies Van Rie
- Tuberculosis Omics Research Consortium, Family Medicine and Population Health, Institute of Global Health, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
7
|
Anderson BD, Barnes AN, Umar S, Guo X, Thongthum T, Gray GC. Reverse Zoonotic Transmission (Zooanthroponosis): An Increasing Threat to Animal Health. ZOONOSES: INFECTIONS AFFECTING HUMANS AND ANIMALS 2023:25-87. [DOI: 10.1007/978-3-031-27164-9_59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
8
|
Jäger HY, Maixner F, Pap I, Szikossy I, Pálfi G, Zink AR. Metagenomic analysis reveals mixed Mycobacterium tuberculosis infection in a 18th century Hungarian midwife. Tuberculosis (Edinb) 2022; 137:102181. [PMID: 35210171 DOI: 10.1016/j.tube.2022.102181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/12/2022] [Accepted: 02/03/2022] [Indexed: 01/24/2023]
Abstract
The Vác Mummy Collection comprises 265 well documented mummified individuals from the late 16th to the early 18th century that were discovered in 1994 inside a crypt in Vác, Hungary. This collection offers a unique opportunity to study the relationship between humans and pathogens in the pre-antibiotic era, as previous studies have shown a high proportion of tuberculosis (TB) infections among the individuals. In this study, we recovered ancient DNA with shotgun sequencing from a rib bone sample of a 18th century midwife. This individual is part of the collection and shows clear skeletal changes that are associated with tuberculosis and syphilis. To provide molecular proof, we applied a metagenomic approach to screen for ancient pathogen DNA. While we were unsuccessful to recover any ancient Treponema pallidum DNA, we retrieved high coverage ancient TB DNA and identified a mixed infection with two distinct TB strains by detailed single-nucleotide polymorphism and phylogenetic analysis. Thereby, we have obtained comprehensive results demonstrating the long-time prevalence of mixed infections with the sublineages L4.1.2.1/Haarlem and L4.10/PGG3 within the local community in preindustrial Hungary and put them in context of sociohistorical factors.
Collapse
Affiliation(s)
- Heidi Y Jäger
- Institute for Mummy Studies, Eurac Research, Viale Druso, 1, 39100, Bolzano, Italy.
| | - Frank Maixner
- Institute for Mummy Studies, Eurac Research, Viale Druso, 1, 39100, Bolzano, Italy.
| | - Ildikó Pap
- Department of Biological Anthropology, Faculty of Science and Informatics, University of Szeged, 6726, Szeged, Közép Fasor 52, Hungary; Department of Anthropology, Hungarian Natural History Museum, 1083, Budapest, Ludovika tér 2-6, Hungary; Department of Biological Anthropology, Eötvös Loránd University, Faculty of Science, 1117, Budapest, Pázmány Péter sétány 1/c, Hungary.
| | - Ildikó Szikossy
- Department of Biological Anthropology, Faculty of Science and Informatics, University of Szeged, 6726, Szeged, Közép Fasor 52, Hungary; Department of Anthropology, Hungarian Natural History Museum, 1083, Budapest, Ludovika tér 2-6, Hungary.
| | - György Pálfi
- Department of Biological Anthropology, Faculty of Science and Informatics, University of Szeged, 6726, Szeged, Közép Fasor 52, Hungary.
| | - Albert R Zink
- Institute for Mummy Studies, Eurac Research, Viale Druso, 1, 39100, Bolzano, Italy.
| |
Collapse
|
9
|
Ncube P, Bagheri B, Goosen WJ, Miller MA, Sampson SL. Evidence, Challenges, and Knowledge Gaps Regarding Latent Tuberculosis in Animals. Microorganisms 2022; 10:1845. [PMID: 36144447 PMCID: PMC9503773 DOI: 10.3390/microorganisms10091845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 01/30/2023] Open
Abstract
Mycobacterium bovis and other Mycobacterium tuberculosis complex (MTBC) pathogens that cause domestic animal and wildlife tuberculosis have received considerably less attention than M. tuberculosis, the primary cause of human tuberculosis (TB). Human TB studies have shown that different stages of infection can exist, driven by host-pathogen interactions. This results in the emergence of heterogeneous subpopulations of mycobacteria in different phenotypic states, which range from actively replicating (AR) cells to viable but slowly or non-replicating (VBNR), viable but non-culturable (VBNC), and dormant mycobacteria. The VBNR, VBNC, and dormant subpopulations are believed to underlie latent tuberculosis (LTB) in humans; however, it is unclear if a similar phenomenon could be happening in animals. This review discusses the evidence, challenges, and knowledge gaps regarding LTB in animals, and possible host-pathogen differences in the MTBC strains M. tuberculosis and M. bovis during infection. We further consider models that might be adapted from human TB research to investigate how the different phenotypic states of bacteria could influence TB stages in animals. In addition, we explore potential host biomarkers and mycobacterial changes in the DosR regulon, transcriptional sigma factors, and resuscitation-promoting factors that may influence the development of LTB.
Collapse
Affiliation(s)
| | | | | | | | - Samantha Leigh Sampson
- DSI/NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Department of Biomedical Sciences, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Francie Van Zijl Dr, Parow, Cape Town 7505, South Africa
| |
Collapse
|
10
|
Köster PC, Lapuente J, Cruz I, Carmena D, Ponce-Gordo F. Human-Borne Pathogens: Are They Threatening Wild Great Ape Populations? Vet Sci 2022; 9:356. [PMID: 35878373 PMCID: PMC9323791 DOI: 10.3390/vetsci9070356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 12/04/2022] Open
Abstract
Climate change and anthropic activities are the two main factors explaining wild great ape habitat reduction and population decline. The extent to which human-borne infectious diseases are contributing to this trend is still poorly understood. This is due to insufficient or fragmented knowledge on the abundance and distribution of current wild great ape populations, the difficulty obtaining optimal biological samples for diagnostic testing, and the scarcity of pathogen typing data of sufficient quality. This review summarises current information on the most clinically relevant pathogens of viral, bacterial, parasitic, and fungal nature for which transmission from humans to wild great apes is suspected. After appraising the robustness of available epidemiological and/or molecular typing evidence, we attempt to categorise each pathogen according to its likelihood of truly being of human origin. We further discuss those agents for which anthroponotic transmission is more likely. These include two viral (Human Metapneumovirus and Respiratory Syncytial Virus), one bacterial (diarrhoeagenic Escherichia coli), and two parasitic (Cryptosporidium spp. and Giardia duodenalis) pathogens. Finally, we identify the main drawbacks impairing research on anthroponotic pathogen transmission in wild great apes and propose research lines that may contribute to bridging current knowledge gaps.
Collapse
Affiliation(s)
- Pamela C. Köster
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, Health Institute Carlos III, Majadahonda, 28220 Madrid, Spain;
| | - Juan Lapuente
- Comoé Chimpanzee Conservation Project (CCCP) Comoé N.P., Kakpin, Côte d’Ivoire;
| | - Israel Cruz
- National School of Public Health, Health Institute Carlos III, 28029 Madrid, Spain;
- Center for Biomedical Research Network (CIBER) in Infectious Diseases, Health Institute Carlos III, Majadahonda, 28220 Madrid, Spain
| | - David Carmena
- Parasitology Reference and Research Laboratory, Spanish National Centre for Microbiology, Health Institute Carlos III, Majadahonda, 28220 Madrid, Spain;
- Center for Biomedical Research Network (CIBER) in Infectious Diseases, Health Institute Carlos III, Majadahonda, 28220 Madrid, Spain
| | - Francisco Ponce-Gordo
- Department of Microbiology and Parasitology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
11
|
Shea J, Smith C, Halse TA, Kohlerschmidt D, Rourke AK, Musser KA, Escuyer V, Lapierre P. Novel Mycobacterium tuberculosis Complex Genotype Related to M. caprae. Emerg Infect Dis 2022; 28:1431-1436. [PMID: 35731170 PMCID: PMC9239888 DOI: 10.3201/eid2807.212353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We report the unusual genotypic characterization of a bacterium isolated from a clinical sample of a patient who grew up in Bangladesh and lives in the United States. Using whole-genome sequencing, we identified the bacterium as a member of the Mycobacterium tuberculosis complex (MTBC). Phylogenetic placement of this strain suggests a new MTBC genotype. Even though it had the same spoligotype as M. caprae strains, single-nucleotide polymorphism-based phylogenetic analysis placed the isolate as a sister lineage distinct from M. caprae, most closely related to 5 previously sequenced genomes isolated from primates and elephants in Asia. We propose a new animal-associated lineage, La4, within MTBC.
Collapse
|
12
|
Fagre AC, Cohen LE, Eskew EA, Farrell M, Glennon E, Joseph MB, Frank HK, Ryan SJ, Carlson CJ, Albery GF. Assessing the risk of human-to-wildlife pathogen transmission for conservation and public health. Ecol Lett 2022; 25:1534-1549. [PMID: 35318793 PMCID: PMC9313783 DOI: 10.1111/ele.14003] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 02/22/2022] [Accepted: 03/02/2022] [Indexed: 12/16/2022]
Abstract
The SARS-CoV-2 pandemic has led to increased concern over transmission of pathogens from humans to animals, and its potential to threaten conservation and public health. To assess this threat, we reviewed published evidence of human-to-wildlife transmission events, with a focus on how such events could threaten animal and human health. We identified 97 verified examples, involving a wide range of pathogens; however, reported hosts were mostly non-human primates or large, long-lived captive animals. Relatively few documented examples resulted in morbidity and mortality, and very few led to maintenance of a human pathogen in a new reservoir or subsequent "secondary spillover" back into humans. We discuss limitations in the literature surrounding these phenomena, including strong evidence of sampling bias towards non-human primates and human-proximate mammals and the possibility of systematic bias against reporting human parasites in wildlife, both of which limit our ability to assess the risk of human-to-wildlife pathogen transmission. We outline how researchers can collect experimental and observational evidence that will expand our capacity for risk assessment for human-to-wildlife pathogen transmission.
Collapse
Affiliation(s)
- Anna C. Fagre
- Department of Microbiology, Immunology, and PathologyCollege of Veterinary Medicine and Biomedical SciencesColorado State UniversityFort CollinsColoradoUSA
- Bat Health FoundationFort CollinsColoradoUSA
| | - Lily E. Cohen
- Icahn School of Medicine at Mount SinaiNew YorkNew York CityUSA
| | - Evan A. Eskew
- Department of BiologyPacific Lutheran UniversityTacomaWashingtonUSA
| | - Max Farrell
- Department of Ecology & Evolutionary BiologyUniversity of TorontoTorontoOntarioCanada
| | - Emma Glennon
- Disease Dynamics UnitDepartment of Veterinary MedicineUniversity of CambridgeCambridgeUK
| | | | - Hannah K. Frank
- Department of Ecology and Evolutionary BiologyTulane UniversityNew OrleansLouisinaUSA
| | - Sadie J. Ryan
- Quantitative Disease Ecology and Conservation (QDEC) Lab GroupDepartment of GeographyUniversity of FloridaGainesvilleFloridaUSA
- Emerging Pathogens InstituteUniversity of FloridaGainesvilleFloridaUSA
- School of Life SciencesUniversity of KwaZulu‐NatalDurbanSouth Africa
| | - Colin J Carlson
- Center for Global Health Science and SecurityGeorgetown University Medical CenterWashingtonDistrict of ColumbiaUSA
- Department of Microbiology and ImmunologyGeorgetown University Medical CenterWashingtonDistrict of ColumbiaUSA
| | - Gregory F. Albery
- Department of BiologyGeorgetown UniversityWashingtonDistrict of ColumbiaUSA
| |
Collapse
|
13
|
Sanchez CR, Hidalgo-Hermoso E. Mycobacterium tuberculosis sensu stricto in African Apes, What Is Its True Health Impact? Pathogens 2022; 11:484. [PMID: 35631005 PMCID: PMC9145341 DOI: 10.3390/pathogens11050484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 04/06/2022] [Accepted: 04/14/2022] [Indexed: 11/30/2022] Open
Abstract
Since the Symposium on Mycobacterial Infections of Zoo Animals held at the National Zoological Park, Smithsonian Institution in 1976, our understanding of tuberculosis (TB) in non-domestic animals has greatly expanded. Throughout the past decades, this knowledge has resulted in improved zoo-habitats and facilities design, stricter biosecurity measures, and advanced diagnostic methods, including molecular techniques, that have significantly decreased the number of clinical disease caused by Mycobacterium tuberculosis in apes under human care settings. In the other hand, exponential growth of human populations has led to human encroachment in wildlife habitat which has resulted in increased inter-species contact and recurrent conflict between humans and wild animals. Although it is widely accepted that non-human primates are susceptible to M. tb infection, opinions differ with regard to the susceptibility to develop disease amongst different taxa. Specifically, some authors suggest that African apes are less susceptible to clinical tuberculosis than other species of primates. The aim of this review article is to evaluate the current scientific literature to determine the actual health impact of disease caused by Mycobacterium tuberculosis and more specifically Mycobacterium tuberculosis sensu stricto in African apes. The literature review included literature databases: Web of Science, Pubmed, Scopus, Wiley, Springer and Science direct, without temporal limit and proceedings of annual conferences in the field of wildlife health. Our general inclusion criteria included information about serological, molecular, pathological (macroscopic and/or microscopic), and clinical evidence of TB in African apes; while our, our more stringent inclusion selection criteria required that in addition to a gross pathology, a molecular test confirmed Mycobacterium tuberculosis sensu stricto as the cause of disease or death. We identified eleven reports of tuberculosis in African apes; of those, only four reports met the more stringent selection criteria that confirmed M. tb sensu stricto in six individuals. All reports that confirmed M. tb sensu stricto originated from zoological collections. Our review suggests that there is little evidence of disease or mortality caused by M. tb in the different species of African apes both under human care and free ranging populations. Additional studies are needed in free-ranging, semi-captive populations (sanctuaries) and animals under human care (zoos and rescue centers) to definitely conclude that this mycobacteria has a limited health effect in African ape species.
Collapse
Affiliation(s)
- Carlos R. Sanchez
- Veterinary Medical Center, Oregon Zoo, Portland, 4001 SW Canyon Rd., Portland, OR 97221, USA
| | - Ezequiel Hidalgo-Hermoso
- Conservation and Research Department, Parque Zoologico Buin Zoo, Panamericana Sur Km 32, Buin 01730, Chile;
| |
Collapse
|
14
|
Vågene ÅJ, Honap TP, Harkins KM, Rosenberg MS, Giffin K, Cárdenas-Arroyo F, Leguizamón LP, Arnett J, Buikstra JE, Herbig A, Krause J, Stone AC, Bos KI. Geographically dispersed zoonotic tuberculosis in pre-contact South American human populations. Nat Commun 2022; 13:1195. [PMID: 35256608 PMCID: PMC8901693 DOI: 10.1038/s41467-022-28562-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 01/25/2022] [Indexed: 12/30/2022] Open
Abstract
Previous ancient DNA research has shown that Mycobacterium pinnipedii, which today causes tuberculosis (TB) primarily in pinnipeds, infected human populations living in the coastal areas of Peru prior to European colonization. Skeletal evidence indicates the presence of TB in several pre-colonial South and North American populations with minimal access to marine resources- a scenario incompatible with TB transmission directly from infected pinnipeds or their tissues. In this study, we investigate the causative agent of TB in ten pre-colonial, non-coastal individuals from South America. We reconstruct M. pinnipedii genomes (10- to 15-fold mean coverage) from three contemporaneous individuals from inland Peru and Colombia, demonstrating the widespread dissemination of M. pinnipedii beyond the coast, either through human-to-human and/or animal-mediated routes. Overall, our study suggests that TB transmission in the pre-colonial era Americas involved a more complex transmission pathway than simple pinniped-to-human transfer.
Collapse
Affiliation(s)
- Åshild J Vågene
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany.
- Institute for Archaeological Sciences, University of Tübingen, Tübingen, Germany.
- Section for Evolutionary Genomics, GLOBE Institute, University of Copenhagen, Copenhagen, Denmark.
| | - Tanvi P Honap
- School of Life Sciences, Arizona State University, Tempe, AZ, USA.
- Department of Anthropology, University of Oklahoma, Norman, OK, USA.
- Laboratories of Molecular Anthropology and Microbiome Research, University of Oklahoma, Norman, OK, USA.
| | - Kelly M Harkins
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA
| | - Michael S Rosenberg
- School of Life Sciences, Arizona State University, Tempe, AZ, USA
- Center for Biological Data Science, Virginia Commonwealth University, Richmond, VA, USA
| | - Karen Giffin
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | | | | | - Judith Arnett
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA
- University of the Andes, School of Medicine, Bogotá, Colombia
| | - Jane E Buikstra
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA
| | - Alexander Herbig
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
- Institute for Archaeological Sciences, University of Tübingen, Tübingen, Germany
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Johannes Krause
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany.
- Institute for Archaeological Sciences, University of Tübingen, Tübingen, Germany.
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| | - Anne C Stone
- School of Human Evolution and Social Change, Arizona State University, Tempe, AZ, USA.
- Center for Evolution and Medicine, Arizona State University, Tempe, AZ, USA.
- Institute of Human Origins, Arizona State University, Tempe, AZ, USA.
| | - Kirsten I Bos
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany.
- Institute for Archaeological Sciences, University of Tübingen, Tübingen, Germany.
- Department of Archaeogenetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany.
| |
Collapse
|
15
|
Harouna Hamidou Z, Mamadou S, Saad J. Molecular detection of Mycobacterium tuberculosis sensu stricto in the soil of Niger. New Microbes New Infect 2021; 44:100939. [PMID: 34621525 PMCID: PMC8479474 DOI: 10.1016/j.nmni.2021.100939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 11/22/2022] Open
Abstract
Mycobacterium tuberculosis (MTB) complex is comprising of pathogenic mycobacteria responsible for human and animal tuberculosis, a major public health problem in Niger. Although infected individuals are paramount sources of contamination, nevertheless alternative, neglected sources may play some role in minority forms of the infection. Accordingly, we investigated the presence of Mycobacterium tuberculosis complex in soil samples in Niger. A total of 103 soil samples were collected in six different areas in Niger in October and November 2018 and April and May 2020 from residential areas of tuberculosis patients. Screening PCR targeting M. tuberculosis complex CRISPR-Csm4 and Xpert MTB/RIF Ultra assay were applied to detect the M. tuberculosis complex. M. tuberculosis DNA was positively detected in five of 103 (5/103; 4.8%) soil samples (Dosso: one sample, Zinder: one sample and Niamey: three samples) using the CRISPR-Csm4 system. CRISPR-Csm4 gene sequence identified four M. tuberculosis sensu stricto (may be lineages 1, 3 or 4) and one M. tuberculosis L2 lineage (Beijing). Moreover, the five positive samples were confirmed by Xpert MTB/RIF Ultra assay as rifampicin-susceptible M. tuberculosis complex strains. However, culture remained negative after 42 days. In this study, we announced for the first time the presence of M. tuberculosis sensu stricto in the soil of Niger. Moreover, these detected lineages were identical to the dominant M. tuberculosis lineages in patients. The presence of common lineages of M. tuberculosis between the soil and human highlight the risk of transmission from the soil to human.
Collapse
Affiliation(s)
- Z Harouna Hamidou
- IHU Méditerranée Infection, Marseille, France
- Aix-Marseille-Université, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
- Laboratoire National de Référence des IST/VIH et de la Tuberculose, Niamey, Niger
| | - S Mamadou
- Laboratoire National de Référence des IST/VIH et de la Tuberculose, Niamey, Niger
| | - J Saad
- IHU Méditerranée Infection, Marseille, France
| |
Collapse
|
16
|
Reis AC, Ramos B, Pereira AC, Cunha MV. The hard numbers of tuberculosis epidemiology in wildlife: A meta-regression and systematic review. Transbound Emerg Dis 2021; 68:3257-3276. [PMID: 33296141 DOI: 10.1111/tbed.13948] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/08/2020] [Accepted: 12/04/2020] [Indexed: 12/11/2022]
Abstract
Tuberculosis (TB) is a widespread disease that crosses the human and animal health boundaries, with infection being reported in wildlife, from temperate and subtropical to arctic regions. Often, TB in wild species is closely associated with disease occurrence in livestock but the TB burden in wildlife remains poorly quantified on a global level. Through meta-regression and systematic review, this study aimed to summarize global information on TB prevalence in commonly infected wildlife species and to draw a global picture of the scientific knowledge accumulated in wildlife TB. For these purposes, a literature search was conducted through the Web of Science and Google Scholar. The 223 articles retrieved, concerning a 39-year period, were submitted to bibliometric analysis and 54 publications regarding three wildlife hosts fulfilled the criteria for meta-regression. Using a random-effects model, the worldwide pooled TB prevalence in wild boar is higher than for any other species and estimated as 21.98%, peaking in Spain (31.68%), Italy (23.84%) and Hungary (18.12%). The pooled prevalence of TB in red deer is estimated at 13.71%, with Austria (31.58%), Portugal (27.75%), New Zealand (19.26%) and Spain (12.08%) positioning on the top, while for European badger it was computed 11.75%, peaking in the UK (16.43%) and Ireland (22.87%). Despite these hard numbers, a declining trend in wildlife TB prevalence is apparent over the last decades. The overall heterogeneity calculated by multivariable regression ranged from 28.61% (wild boar) to 60.92% (red deer), indicating that other unexplored moderators could explain disease burden. The systematic review shows that the most prolific countries contributing to knowledge related with wildlife TB are settled in Europe and Mycobacterium bovis is the most reported pathogen (89.5%). This study provides insight into the global epidemiology of wildlife TB, ascertaining research gaps that need to be explored and informing how should surveillance be refined.
Collapse
Affiliation(s)
- Ana C Reis
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Beatriz Ramos
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - André C Pereira
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Mónica V Cunha
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
17
|
Ambaw M, Gelalcha BD, Bayissa B, Worku A, Yohannis A, Zewude A, Ameni G. Pathology of Bovine Tuberculosis in Three Breeds of Dairy Cattle and Spoligotyping of the Causative Mycobacteria in Ethiopia. Front Vet Sci 2021; 8:715598. [PMID: 34621807 PMCID: PMC8491842 DOI: 10.3389/fvets.2021.715598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/12/2021] [Indexed: 11/29/2022] Open
Abstract
Different breeds of cattle were observed to have a variable degree of susceptibility to bovine tuberculosis (bTB). The screening of bTB was conducted on 720 dairy cattle consisting of three breeds using the single intradermal cervical comparative tuberculin (SICCT) test. Besides this, 43 SICCT test-positive cattle were used to compare the severity of the pathology of bTB among the three breeds and to identify the causative mycobacteria using spoligotyping. The overall SICCT test positivity was 17.92% (129/720) by pooling all animals in the three farms. There was a significant difference in SICCT test positivity among the three breeds (χ2 = 71.06; p < 0.001); the highest (25.34%) was recorded in the crossbreed followed by the Boran breed (10.08%), while the least (3.14%) was recorded in the Jersey breed. On other hand, the highest median pathology score (10.0, interquartile range, IQR = 6.0-17.0) was recorded in Boran followed by cross (5.0, IQR = 3.5-7.5), while the least (3.0, IQR = 2.25-3.0) was recorded in Jersey. Thus, the difference in the median pathology scores was significant [Kruskal Wallisχ ( 2 ) 2 = 18.78, p < 0.001] among the three breeds. Furthermore, multivariate analysis using ordinal logistic regression by considering age, sex, breed, reproductive status, and location of the farms also showed a significant [χ ( 2 ) 2 = 11.97, p < 0.01] difference in pathology scores among the three breeds of cattle. Even at a single-herd level at Holeta, the difference in severity of pathology between the Boran and crossbreeds was significant (U = 33.5; p < 0.01). Culture positivity was 39% in 108 suspicious tissues. Fourteen Mycobacterium bovis (M. bovis) and two Mycobacterium tuberculosis (M. tuberculosis) were isolated from the lesions. All the 14 M. bovis isolates belonged to SB0912, while the two M. tuberculosis belonged to SIT54. In conclusion, although the frequency of the SICCT test positivity was high in the crossbreed, a more severe pathology was observed on the Boran (zebu) breed. In addition M. tuberculosis was isolated from TB lesions of dairy cattle, demonstrating the role of M. tuberculosis in causing TB in cattle.
Collapse
Affiliation(s)
- Mulualem Ambaw
- Ethiopian Institute of Agricultural Research, Kulumsa Agricultural Research Center, Assela, Ethiopia
- School of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Jimma University, Jimma, Ethiopia
| | - Benti Deresa Gelalcha
- School of Veterinary Medicine, College of Agriculture and Veterinary Medicine, Jimma University, Jimma, Ethiopia
| | - Berecha Bayissa
- Vaccine Production and Drug Formulation Directorate, National Veterinary Institute, Bishoftu, Ethiopia
| | - Adane Worku
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Aster Yohannis
- Ethiopian Institutes of Agricultural Research, Holeta Agricultural Research Center, Holeta, Ethiopia
| | - Aboma Zewude
- Malaria and Neglected Tropical Diseases, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Gobena Ameni
- Vaccine Production and Drug Formulation Directorate, National Veterinary Institute, Bishoftu, Ethiopia
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
18
|
Asare P, Asante-Poku A, Osei-Wusu S, Otchere ID, Yeboah-Manu D. The Relevance of Genomic Epidemiology for Control of Tuberculosis in West Africa. Front Public Health 2021; 9:706651. [PMID: 34368069 PMCID: PMC8342769 DOI: 10.3389/fpubh.2021.706651] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 06/29/2021] [Indexed: 12/30/2022] Open
Abstract
Tuberculosis (TB), an airborne infectious disease caused by Mycobacterium tuberculosis complex (MTBC), remains a global health problem. West Africa has a unique epidemiology of TB that is characterized by medium- to high-prevalence. Moreover, the geographical restriction of M. africanum to the sub-region makes West Africa have an extra burden to deal with a two-in-one pathogen. The region is also burdened with low case detection, late reporting, poor treatment adherence leading to development of drug resistance and relapse. Sporadic studies conducted within the subregion report higher burden of drug resistant TB (DRTB) than previously thought. The need for more sensitive and robust tools for routine surveillance as well as to understand the mechanisms of DRTB and transmission dynamics for the design of effective control tools, cannot be overemphasized. The advancement in molecular biology tools including traditional fingerprinting and next generation sequencing (NGS) technologies offer reliable tools for genomic epidemiology. Genomic epidemiology provides in-depth insight of the nature of pathogens, circulating strains and their spread as well as prompt detection of the emergence of new strains. It also offers the opportunity to monitor treatment and evaluate interventions. Furthermore, genomic epidemiology can be used to understand potential emergence and spread of drug resistant strains and resistance mechanisms allowing the design of simple but rapid tools. In this review, we will describe the local epidemiology of MTBC, highlight past and current investigations toward understanding their biology and spread as well as discuss the relevance of genomic epidemiology studies to TB control in West Africa.
Collapse
Affiliation(s)
- Prince Asare
- College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Adwoa Asante-Poku
- College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Stephen Osei-Wusu
- College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Isaac Darko Otchere
- College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Dorothy Yeboah-Manu
- College of Health Sciences, Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| |
Collapse
|
19
|
Lonsdorf EV, Travis DA, Raphael J, Kamenya S, Lipende I, Mwacha D, Collins DA, Wilson M, Mjungu D, Murray C, Bakuza J, Wolf TM, Parsons MB, Deere JR, Lantz E, Kinsel MJ, Santymire R, Pintea L, Terio KA, Hahn BH, Pusey AE, Goodall J, Gillespie TR. The Gombe Ecosystem Health Project: 16 years of program evolution and lessons learned. Am J Primatol 2021; 84:e23300. [PMID: 34223656 PMCID: PMC8727649 DOI: 10.1002/ajp.23300] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 06/01/2021] [Accepted: 06/15/2021] [Indexed: 12/30/2022]
Abstract
Infectious disease outbreaks pose a significant threat to the conservation of chimpanzees (Pan troglodytes) and all threatened nonhuman primates. Characterizing and mitigating these threats to support the sustainability and welfare of wild populations is of the highest priority. In an attempt to understand and mitigate the risk of disease for the chimpanzees of Gombe National Park, Tanzania, we initiated a long-term health-monitoring program in 2004. While the initial focus was to expand the ongoing behavioral research on chimpanzees to include standardized data on clinical signs of health, it soon became evident that the scope of the project would ideally include diagnostic surveillance of pathogens for all primates (including people) and domestic animals, both within and surrounding the National Park. Integration of these data, along with in-depth post-mortem examinations, have allowed us to establish baseline health indicators to inform outbreak response. Here, we describe the development and expansion of the Gombe Ecosystem Health project, review major findings from the research and summarize the challenges and lessons learned over the past 16 years. We also highlight future directions and present the opportunities and challenges that remain when implementing studies of ecosystem health in a complex, multispecies environment.
Collapse
Affiliation(s)
- Elizabeth V Lonsdorf
- Department of Psychology and Biological Foundations of Behavior Program, Franklin & Marshall College, Lancaster, Pennsylvania, USA
| | - Dominic A Travis
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Jane Raphael
- Gombe National Park, Tanzania Nationals Park, Kigoma, Tanzania
| | - Shadrack Kamenya
- Gombe Stream Research Center, The Jane Goodall Institute, Kigoma, Tanzania
| | - Iddi Lipende
- Tanzania Wildlife Research Institute, Arusha, Tanzania
| | - Dismas Mwacha
- Gombe Stream Research Center, The Jane Goodall Institute, Kigoma, Tanzania
| | - D Anthony Collins
- Gombe Stream Research Center, The Jane Goodall Institute, Kigoma, Tanzania
| | - Michael Wilson
- Departments of Anthropology and Ecology, Evolution and Behavior, University of Minnesota, St. Paul, Minnesota, USA
| | - Deus Mjungu
- Gombe Stream Research Center, The Jane Goodall Institute, Kigoma, Tanzania
| | - Carson Murray
- Center for the Advanced Study of Human Paleobiology, George Washington University, Washington, District of Columbia, USA
| | - Jared Bakuza
- College of Education, University of Dar es Salaam, Dar es Salaam, Tanzania
| | - Tiffany M Wolf
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Michele B Parsons
- Division of Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jessica R Deere
- Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Emma Lantz
- California Department of Fish and Wildlife, Rancho Cordova, California, USA
| | - Michael J Kinsel
- Zoological Pathology Program, University of Illinois, Brookfield, Illinois, USA
| | - Rachel Santymire
- Davee Center for Epidemiology and Endocrinology, Lincoln Park Zoo, Chicago, Illinois, USA
| | | | - Karen A Terio
- Zoological Pathology Program, University of Illinois, Brookfield, Illinois, USA
| | - Beatrice H Hahn
- Departments of Medicine and Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Anne E Pusey
- Department of Evolutionary Anthropology, Duke University, Durham, North Carolina, USA
| | - Jane Goodall
- The Jane Goodall Institute, Vienna, Virginia, USA
| | - Thomas R Gillespie
- Departments of Environmental Sciences and Environmental Health and Program in Population Biology, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
20
|
Comín J, Monforte ML, Samper S, Otal I. Analysis of Mycobacterium africanum in the last 17 years in Aragon identifies a specific location of IS6110 in Lineage 6. Sci Rep 2021; 11:10359. [PMID: 33990628 PMCID: PMC8121931 DOI: 10.1038/s41598-021-89511-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/23/2021] [Indexed: 11/12/2022] Open
Abstract
The purpose of this study was to increase our knowledge about Mycobacterium africanum and report the incidence and characteristics of tuberculosis (TB) due to their lineages in Aragon, Spain, over the period 2003-2019. The study includes all the cases in our region, where all the M. tuberculosis complex isolates are systematically characterised. We detected 31 cases of M. africanum among 2598 cases of TB in the period studied. TB caused by M. africanum is rare (1.19%) in our population, and it affects mainly men of economically productive age coming from West African countries. Among the isolates, Lineage (L) 6 was more frequent than L5. The genotyping of these strains identified five clusters and 13 strains with a unique pattern. The isolates' characterisation identified a copy of IS6110 within the moaX gene, which turned out to be specific for L6. It will allow the differentiation of this lineage from the rest of MTBC with a simple PCR reaction. It remains to be established whether this polymorphism may limit M. africanum transmission. Furthermore, a mutation in the mutT2 promoter was found as specific for L6 strains, which could be related to the high variability found for L6 compared to L5.
Collapse
Affiliation(s)
- Jessica Comín
- Instituto Aragonés de Ciencias de la Salud, Zaragoza, Spain
- Fundación IIS Aragón, Zaragoza, Spain
| | | | - Sofía Samper
- Instituto Aragonés de Ciencias de la Salud, Zaragoza, Spain.
- Fundación IIS Aragón, Zaragoza, Spain.
- CIBER de Enfermedades Respiratorias, Zaragoza, Spain.
- Laboratorio de Investigación Molecular-UIT, Hospital Universitario Miguel Servet, Pº Isabel la Católica 1-3, planta calle, 50009, Zaragoza, Aragón, Spain.
| | - Isabel Otal
- Fundación IIS Aragón, Zaragoza, Spain
- CIBER de Enfermedades Respiratorias, Zaragoza, Spain
- Universidad de Zaragoza, Zaragoza, Spain
| |
Collapse
|
21
|
Bryant JM, Brown KP, Burbaud S, Everall I, Belardinelli JM, Rodriguez-Rincon D, Grogono DM, Peterson CM, Verma D, Evans IE, Ruis C, Weimann A, Arora D, Malhotra S, Bannerman B, Passemar C, Templeton K, MacGregor G, Jiwa K, Fisher AJ, Blundell TL, Ordway DJ, Jackson M, Parkhill J, Floto RA. Stepwise pathogenic evolution of Mycobacterium abscessus. Science 2021; 372:372/6541/eabb8699. [PMID: 33926925 DOI: 10.1126/science.abb8699] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 03/08/2021] [Indexed: 12/13/2022]
Abstract
Although almost all mycobacterial species are saprophytic environmental organisms, a few, such as Mycobacterium tuberculosis, have evolved to cause transmissible human infection. By analyzing the recent emergence and spread of the environmental organism M. abscessus through the global cystic fibrosis population, we have defined key, generalizable steps involved in the pathogenic evolution of mycobacteria. We show that epigenetic modifiers, acquired through horizontal gene transfer, cause saltational increases in the pathogenic potential of specific environmental clones. Allopatric parallel evolution during chronic lung infection then promotes rapid increases in virulence through mutations in a discrete gene network; these mutations enhance growth within macrophages but impair fomite survival. As a consequence, we observe constrained pathogenic evolution while person-to-person transmission remains indirect, but postulate accelerated pathogenic adaptation once direct transmission is possible, as observed for M. tuberculosis Our findings indicate how key interventions, such as early treatment and cross-infection control, might restrict the spread of existing mycobacterial pathogens and prevent new, emergent ones.
Collapse
Affiliation(s)
- Josephine M Bryant
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC Laboratory of Molecular Biology, Cambridge, UK.,University of Cambridge Centre for AI in Medicine, Cambridge, UK
| | - Karen P Brown
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC Laboratory of Molecular Biology, Cambridge, UK.,Cambridge Centre for Lung Infection, Royal Papworth Hospital, Cambridge, UK
| | - Sophie Burbaud
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Isobel Everall
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC Laboratory of Molecular Biology, Cambridge, UK.,Wellcome Sanger Institute, Hinxton, UK
| | - Juan M Belardinelli
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins CO, USA
| | - Daniela Rodriguez-Rincon
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Dorothy M Grogono
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC Laboratory of Molecular Biology, Cambridge, UK.,Cambridge Centre for Lung Infection, Royal Papworth Hospital, Cambridge, UK
| | - Chelsea M Peterson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins CO, USA
| | - Deepshikha Verma
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins CO, USA
| | - Ieuan E Evans
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC Laboratory of Molecular Biology, Cambridge, UK.,Cambridge Centre for Lung Infection, Royal Papworth Hospital, Cambridge, UK
| | - Christopher Ruis
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC Laboratory of Molecular Biology, Cambridge, UK.,University of Cambridge Centre for AI in Medicine, Cambridge, UK
| | - Aaron Weimann
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC Laboratory of Molecular Biology, Cambridge, UK.,University of Cambridge Centre for AI in Medicine, Cambridge, UK
| | - Divya Arora
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Sony Malhotra
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK.,Scientific Computing Department, Science and Technology Facilities Council, Harwell, UK
| | - Bridget Bannerman
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC Laboratory of Molecular Biology, Cambridge, UK.,University of Cambridge Centre for AI in Medicine, Cambridge, UK
| | - Charlotte Passemar
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Kerra Templeton
- Queen Elizabeth University Hospital, NHS Greater Glasgow & Clyde, Glasgow, Scotland, UK
| | - Gordon MacGregor
- Queen Elizabeth University Hospital, NHS Greater Glasgow & Clyde, Glasgow, Scotland, UK
| | - Kasim Jiwa
- Newcastle University Translational and Clinical Research Institute and Institute of Transplantation, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Andrew J Fisher
- Newcastle University Translational and Clinical Research Institute and Institute of Transplantation, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Tom L Blundell
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | - Diane J Ordway
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins CO, USA
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins CO, USA
| | - Julian Parkhill
- Wellcome Sanger Institute, Hinxton, UK. .,Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - R Andres Floto
- Molecular Immunity Unit, University of Cambridge Department of Medicine, MRC Laboratory of Molecular Biology, Cambridge, UK. .,University of Cambridge Centre for AI in Medicine, Cambridge, UK.,Cambridge Centre for Lung Infection, Royal Papworth Hospital, Cambridge, UK
| |
Collapse
|
22
|
Fellag M, Loukil A, Drancourt M. The puzzle of the evolutionary natural history of tuberculosis. New Microbes New Infect 2021; 41:100712. [PMID: 33996102 PMCID: PMC8094893 DOI: 10.1016/j.nmni.2020.100712] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 12/02/2022] Open
Abstract
Several pieces of the puzzle of the natural history of tuberculosis are assembled in this review to illustrate the potential reservoirs and sources of the Mycobacterium tuberculosis complex (MTBC) mycobacteria, their transmission to animals and humans, and their fate in populations, in a co-evolutionary perspective. Millennia-old companions of mammalian and human populations, MTBC are detected in the soil, in which they infect and survive within vegetative amoebae and cysts, except for Mycobacterium canettii. Never detected in the sphere of plants, they are transmissible by transcutaneous, digestive and respiratory routes and cause an infection of the lymphatic system with secondary dissemination in most tissues, in which they determine a specific and non-pathognomonic granulomatous inflammatory reaction; in which MTBC survives in dormant form irrespective of MTBC species and mammalian species; indicating that the current epidemiology in mammalian populations is essentially governed by the probabilities of contact between mammalian species and MTBC species. Individual variabilities in clinical expression of tuberculosis are related to MTBC species, strain and inoculum; host genetic factors; acquired modulations of the inflammatory response; and probably human microbiota. This review of the literature suggests an evolutionary natural history of telluric environmental mycobacteria, satellites of unicellular eukaryotes, transmissible to mammals via the digestive and then respiratory tracts, in which they determine a fatal contagious infection that is primarily lymphatic and a quiescence-mimicking encysted form. This review opens perspectives for microbiological and translational medical research.
Collapse
Affiliation(s)
- M. Fellag
- Aix-Marseille-Université, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - A. Loukil
- Aix-Marseille-Université, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
| | - M. Drancourt
- Aix-Marseille-Université, IRD, MEPHI, IHU Méditerranée Infection, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| |
Collapse
|
23
|
Reis AC, Ramos B, Pereira AC, Cunha MV. Global trends of epidemiological research in livestock tuberculosis for the last four decades. Transbound Emerg Dis 2021; 68:333-346. [PMID: 32748511 DOI: 10.1111/tbed.13763] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 07/22/2020] [Accepted: 07/28/2020] [Indexed: 11/27/2022]
Abstract
Animal tuberculosis (TB) caused by Mycobacterium tuberculosis complex (MTC) bacteria remains as one of the most significant infectious diseases of livestock, despite decades of eradication programmes and research efforts, in an era where the livestock sector is among the most important and rapidly expanding commercial agricultural segments worldwide. This work provides a global overview of the spatial and temporal trends of reported scientific knowledge of TB in livestock, aiming to gain insights into research subtopics within the animal TB epidemiology domain and to highlight territorial inequalities regarding data reporting and research outputs over the years. To deliver such information, peer-reviewed reports of TB studies in livestock were retrieved from the Web of Science and Google Scholar, systematized and dissected. The validated data set contained 443 occurrence observations, covering the 1981-2020 period (39 years). We highlight a clear move towards transdisciplinary areas and the One Health approach, with a global temporal increase in publications combining livestock with wildlife and/or human components, which reflect the importance of non-prototypical hosts as key to understanding animal TB. It becomes evident that cattle is the main host across works from all continents; however, many regions remain poorly surveyed. TB research in livestock in low-/middle-income countries is markedly growing, reflecting changes in animal husbandry, but also mirroring the globalization era, with a marked increase in international collaboration and capacitation programmes for scientific and technological development. This review gives an overview of the most prolific continents, countries and research fields in animal TB epidemiology, clearly outlining knowledge gaps and key priority topics. The estimated growth trend of livestock production until 2050, particularly in Asia and Africa, in response to human population growth and animal-protein demand, will require further investment in early surveillance and adaptive research to accommodate the higher diversity of livestock species and MTC members and raising the possibility to fine-tune funding schemes.
Collapse
Affiliation(s)
- Ana C Reis
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Beatriz Ramos
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - André C Pereira
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| | - Mónica V Cunha
- Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
- Biosystems & Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
24
|
Macedo Couto R, Ranzani OT, Waldman EA. Zoonotic Tuberculosis in Humans: Control, Surveillance, and the One Health Approach. Epidemiol Rev 2020; 41:130-144. [PMID: 32294188 DOI: 10.1093/epirev/mxz002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2019] [Indexed: 11/12/2022] Open
Abstract
Zoonotic tuberculosis is a reemerging infectious disease in high-income countries and a neglected one in low- and middle-income countries. Despite major advances in its control as a result of milk pasteurization, its global burden is unknown, especially due the lack of surveillance data. Additionally, very little is known about control strategies. The purpose of this review was to contextualize the current knowledge about the epidemiology of zoonotic tuberculosis and to describe the available evidence regarding surveillance and control strategies in high-, middle-, and low-income countries. We conducted this review enriched by a One Health perspective, encompassing its inherent multifaceted characteristics. We found that the burden of zoonotic tuberculosis is likely to be underreported worldwide, with higher incidence in low-income countries, where the surveillance systems are even more fragile. Together with the lack of specific political commitment, surveillance data is affected by lack of a case definition and limitations of diagnostic methods. Control measures were dependent on risk factors and varied greatly between countries. This review supports the claim that a One Health approach is the most valuable concept to build capable surveillance systems, resulting in effective control measures. The disease characteristics and suggestions to implement surveillance and control programs are discussed.
Collapse
Affiliation(s)
- Rodrigo Macedo Couto
- Department of Epidemiology, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, Brazil
| | - Otavio T Ranzani
- Pulmonary Division, Heart Institute (InCor), Hospital das Clinicas (HCFMUSP), Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Eliseu Alves Waldman
- Department of Epidemiology, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
25
|
Guimaraes AMS, Zimpel CK. Mycobacterium bovis: From Genotyping to Genome Sequencing. Microorganisms 2020; 8:E667. [PMID: 32375210 PMCID: PMC7285088 DOI: 10.3390/microorganisms8050667] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 04/17/2020] [Accepted: 04/21/2020] [Indexed: 12/15/2022] Open
Abstract
Mycobacterium bovis is the main pathogen of bovine, zoonotic, and wildlife tuberculosis. Despite the existence of programs for bovine tuberculosis (bTB) control in many regions, the disease remains a challenge for the veterinary and public health sectors, especially in developing countries and in high-income nations with wildlife reservoirs. Current bTB control programs are mostly based on test-and-slaughter, movement restrictions, and post-mortem inspection measures. In certain settings, contact tracing and surveillance has benefited from M. bovis genotyping techniques. More recently, whole-genome sequencing (WGS) has become the preferential technique to inform outbreak response through contact tracing and source identification for many infectious diseases. As the cost per genome decreases, the application of WGS to bTB control programs is inevitable moving forward. However, there are technical challenges in data analyses and interpretation that hinder the implementation of M. bovis WGS as a molecular epidemiology tool. Therefore, the aim of this review is to describe M. bovis genotyping techniques and discuss current standards and challenges of the use of M. bovis WGS for transmission investigation, surveillance, and global lineages distribution. We compiled a series of associated research gaps to be explored with the ultimate goal of implementing M. bovis WGS in a standardized manner in bTB control programs.
Collapse
Affiliation(s)
- Ana M. S. Guimaraes
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, University of São Paulo, São Paulo 01246-904, Brazil;
| | - Cristina K. Zimpel
- Laboratory of Applied Research in Mycobacteria, Department of Microbiology, University of São Paulo, São Paulo 01246-904, Brazil;
- Department of Preventive Veterinary Medicine and Animal Health, University of São Paulo, São Paulo 01246-904, Brazil
| |
Collapse
|
26
|
Klopper M, Heupink TH, Hill-Cawthorne G, Streicher EM, Dippenaar A, de Vos M, Abdallah AM, Limberis J, Merker M, Burns S, Niemann S, Dheda K, Posey J, Pain A, Warren RM. A landscape of genomic alterations at the root of a near-untreatable tuberculosis epidemic. BMC Med 2020; 18:24. [PMID: 32014024 PMCID: PMC6998097 DOI: 10.1186/s12916-019-1487-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/24/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Atypical Beijing genotype Mycobacterium tuberculosis strains are widespread in South Africa and have acquired resistance to up to 13 drugs on multiple occasions. It is puzzling that these strains have retained fitness and transmissibility despite the potential fitness cost associated with drug resistance mutations. METHODS We conducted Illumina sequencing of 211 Beijing genotype M. tuberculosis isolates to facilitate the detection of genomic features that may promote acquisition of drug resistance and restore fitness in highly resistant atypical Beijing forms. Phylogenetic and comparative genomic analysis was done to determine changes that are unique to the resistant strains that also transmit well. Minimum inhibitory concentration (MIC) determination for streptomycin and bedaquiline was done for a limited number of isolates to demonstrate a difference in MIC between isolates with and without certain variants. RESULTS Phylogenetic analysis confirmed that two clades of atypical Beijing strains have independently developed resistance to virtually all the potent drugs included in standard (pre-bedaquiline) drug-resistant TB treatment regimens. We show that undetected drug resistance in a progenitor strain was likely instrumental in this resistance acquisition. In this cohort, ethionamide (ethA A381P) resistance would be missed in first-line drug-susceptible isolates, and streptomycin (gidB L79S) resistance may be missed due to an MIC close to the critical concentration. Subsequent inadequate treatment historically led to amplification of resistance and facilitated spread of the strains. Bedaquiline resistance was found in a small number of isolates, despite lack of exposure to the drug. The highly resistant clades also carry inhA promoter mutations, which arose after ethA and katG mutations. In these isolates, inhA promoter mutations do not alter drug resistance, suggesting a possible alternative role. CONCLUSION The presence of the ethA mutation in otherwise susceptible isolates from ethionamide-naïve patients demonstrates that known exposure is not an adequate indicator of drug susceptibility. Similarly, it is demonstrated that bedaquiline resistance can occur without exposure to the drug. Inappropriate treatment regimens, due to missed resistance, leads to amplification of resistance, and transmission. We put these results into the context of current WHO treatment regimens, underscoring the risks of treatment without knowledge of the full drug resistance profile.
Collapse
Affiliation(s)
- Marisa Klopper
- South African Medical Research Council Centre for Tuberculosis Research, DST NRF Centre of Excellence for Biomedical Tuberculosis research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
| | - Tim Hermanus Heupink
- Global Health Institute, Epidemiology and Social Medicine, University of Antwerp, Antwerp, Belgium
| | - Grant Hill-Cawthorne
- Sydney School of Public Health, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia.,Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Elizabeth Maria Streicher
- South African Medical Research Council Centre for Tuberculosis Research, DST NRF Centre of Excellence for Biomedical Tuberculosis research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Anzaan Dippenaar
- South African Medical Research Council Centre for Tuberculosis Research, DST NRF Centre of Excellence for Biomedical Tuberculosis research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Margaretha de Vos
- South African Medical Research Council Centre for Tuberculosis Research, DST NRF Centre of Excellence for Biomedical Tuberculosis research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Abdallah Musa Abdallah
- Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Jason Limberis
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine and UCT Lung Institute & South African MRC/UCT Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa
| | - Matthias Merker
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
| | - Scott Burns
- Division of Tuberculosis Elimination, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Stefan Niemann
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany.,German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Borstel, Germany
| | - Keertan Dheda
- Centre for Lung Infection and Immunity, Division of Pulmonology, Department of Medicine and UCT Lung Institute & South African MRC/UCT Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa.,Faculty of Infectious and Tropical Diseases, Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - James Posey
- Division of Tuberculosis Elimination, National Center for HIV/AIDS, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, GA, 30329, USA
| | - Arnab Pain
- Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.,Center for Zoonosis Control, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo, Japan
| | - Robin Mark Warren
- South African Medical Research Council Centre for Tuberculosis Research, DST NRF Centre of Excellence for Biomedical Tuberculosis research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| |
Collapse
|
27
|
Ates LS. New insights into the mycobacterial PE and PPE proteins provide a framework for future research. Mol Microbiol 2020; 113:4-21. [PMID: 31661176 PMCID: PMC7028111 DOI: 10.1111/mmi.14409] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2019] [Indexed: 12/30/2022]
Abstract
The PE and PPE proteins of Mycobacterium tuberculosis have been studied with great interest since their discovery. Named after the conserved proline (P) and glutamic acid (E) residues in their N-terminal domains, these proteins are postulated to perform wide-ranging roles in virulence and immune modulation. However, technical challenges in studying these proteins and their encoding genes have hampered the elucidation of molecular mechanisms and leave many open questions regarding the biological functions mediated by these proteins. Here, I review the shared and unique characteristics of PE and PPE proteins from a molecular perspective linking this information to their functions in mycobacterial virulence. I discuss how the different subgroups (PE_PGRS, PPE-PPW, PPE-SVP and PPE-MPTR) are defined and why this classification of paramount importance to understand the PE and PPE proteins as individuals and or groups. The goal of this MicroReview is to summarize and structure the existing information on this gene family into a simplified framework of thinking about PE and PPE proteins and genes. Thereby, I hope to provide helpful starting points in studying these genes and proteins for researchers with different backgrounds. This has particular implications for the design and monitoring of novel vaccine candidates and in understanding the evolution of the M. tuberculosis complex.
Collapse
Affiliation(s)
- Louis S. Ates
- Department of Experimental ImmunologyAmsterdam Infection & Immunity InstituteAmsterdam UMCUniversity of AmsterdamMeibergdreef 9Amsterdamthe Netherlands
| |
Collapse
|
28
|
Cerezo-Cortés MI, Rodríguez-Castillo JG, Hernández-Pando R, Murcia MI. Circulation of M. tuberculosis Beijing genotype in Latin America and the Caribbean. Pathog Glob Health 2019; 113:336-351. [PMID: 31903874 PMCID: PMC7006823 DOI: 10.1080/20477724.2019.1710066] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Lineage 2 (East Asian), which includes the Beijing genotype, is one of the most prevalent lineages of Mycobacterium tuberculosis (Mtb) throughout the world. The Beijing family is associated to hypervirulence and drug-resistant tuberculosis. The study of this genotype's circulation in Latin America is crucial for achieving total control of TB, the goal established by the World Health Organization, for the American sub-continent, before 2035. In this sense, the present work presents an overview of the status of the Beijing genotype for this region, with a bibliographical review, and data analysis of MIRU-VNTRs for available Beijing isolates. Certain countries present a prevalent trend of <5%, suggesting low transmissibility for the region, with the exception of Cuba (17.2%), Perú (16%) and Colombia (5%). Minimum Spanning Tree analysis, obtained from MIRU-VNTR data, shows distribution of specific clonal complex strains in each country. From this data, in most countries, we found that molecular epidemiology has not been a tool used for the control of TB, suggesting that the Beijing genotype may be underestimated in Latin America. It is recommended that countries with the highest incidence of the Beijing genotype use effective control strategies and increased care, as a requirement for public health systems.
Collapse
Affiliation(s)
- MI Cerezo-Cortés
- Grupo MICOBAC-UN, Departamento de Microbiología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| | - JG Rodríguez-Castillo
- Grupo MICOBAC-UN, Departamento de Microbiología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| | - R Hernández-Pando
- Experimental Pathology Section, Department of Pathology, National Institute of Medical Sciences and Nutrition, México D.F., Mexico
| | - MI Murcia
- Grupo MICOBAC-UN, Departamento de Microbiología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
29
|
Cá B, Fonseca KL, Sousa J, Maceiras AR, Machado D, Sanca L, Rabna P, Rodrigues PNS, Viveiros M, Saraiva M. Experimental Evidence for Limited in vivo Virulence of Mycobacterium africanum. Front Microbiol 2019; 10:2102. [PMID: 31552007 PMCID: PMC6746983 DOI: 10.3389/fmicb.2019.02102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 08/26/2019] [Indexed: 02/03/2023] Open
Abstract
Tuberculosis remains a public health problem and a main cause of death to humans. Both Mycobacterium tuberculosis and Mycobacterium africanum cause tuberculosis. In contrast to M. tuberculosis, which is geographically spread, M. africanum is restricted to West Africa. Differences have also been found in the growth rate and type of disease caused by M. africanum, globally suggesting an attenuation of this bacteria. In this study, we used the mouse model of infection to follow the dynamics of M. africanum infection in terms of bacterial burdens and tissue pathology, as well as the immune response triggered. Our findings support a lower virulence of M. africanum as compared to M. tuberculosis, including in mice lacking IFN-γ, a major protective cytokine in tuberculosis. Furthermore, the lung immune response triggered by M. africanum infection in wild-type animals was characterized by a discrete influx of leukocytes and a modest transcriptional upregulation of inflammatory mediators. Our findings contribute to elucidate the pathogenesis of M. africanum, supporting the hypothesis that this is an attenuated member of the tuberculosis-causing bacteria. Understanding the biology of M. africanum and how it interacts with the host to establish infection will have implications for our knowledge of TB and for the development of novel and better tools to control this devastating disease.
Collapse
Affiliation(s)
- Baltazar Cá
- i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,Programa de Pós-Graduação Ciência para o Desenvolvimento, Instituto Gulbenkian de Ciência, Oeiras, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal.,Instituto Nacional de Saúde Pública/Projeto de Saúde de Bandim, Bissau, Guinea-Bissau
| | - Kaori L Fonseca
- i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,Programa de Pós-Graduação Ciência para o Desenvolvimento, Instituto Gulbenkian de Ciência, Oeiras, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Jeremy Sousa
- i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Ana Raquel Maceiras
- i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Diana Machado
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Lilica Sanca
- Instituto Nacional de Saúde Pública/Projeto de Saúde de Bandim, Bissau, Guinea-Bissau
| | - Paulo Rabna
- Instituto Nacional de Saúde Pública/Projeto de Saúde de Bandim, Bissau, Guinea-Bissau
| | - Pedro N S Rodrigues
- i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Miguel Viveiros
- Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisbon, Portugal
| | - Margarida Saraiva
- i3S - Instituto de Investigação e Inovação em Saúde, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| |
Collapse
|
30
|
Chiner-Oms Á, Comas I. Large genomics datasets shed light on the evolution of the Mycobacterium tuberculosis complex. INFECTION GENETICS AND EVOLUTION 2019; 72:10-15. [DOI: 10.1016/j.meegid.2019.02.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/21/2019] [Accepted: 02/25/2019] [Indexed: 01/21/2023]
|
31
|
Fieweger RA, Wilburn KM, VanderVen BC. Comparing the Metabolic Capabilities of Bacteria in the Mycobacterium tuberculosis Complex. Microorganisms 2019; 7:E177. [PMID: 31216777 PMCID: PMC6617402 DOI: 10.3390/microorganisms7060177] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 06/10/2019] [Accepted: 06/15/2019] [Indexed: 02/06/2023] Open
Abstract
Pathogenic mycobacteria are known for their ability to maintain persistent infections in various mammals. The canonical pathogen in this genus is Mycobacterium tuberculosis and this bacterium is particularly successful at surviving and replicating within macrophages. Here, we will highlight the metabolic processes that M. tuberculosis employs during infection in macrophages and compare these findings with what is understood for other pathogens in the M. tuberculosis complex.
Collapse
Affiliation(s)
- Rachael A Fieweger
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850, USA.
| | - Kaley M Wilburn
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850, USA.
| | - Brian C VanderVen
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY 14850, USA.
| |
Collapse
|
32
|
Ruangkiattikul N, Rys D, Abdissa K, Rohde M, Semmler T, Tegtmeyer PK, Kalinke U, Schwarz C, Lewin A, Goethe R. Type I interferon induced by TLR2-TLR4-MyD88-TRIF-IRF3 controls Mycobacterium abscessus subsp. abscessus persistence in murine macrophages via nitric oxide. Int J Med Microbiol 2019; 309:307-318. [PMID: 31178418 DOI: 10.1016/j.ijmm.2019.05.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/08/2019] [Accepted: 05/31/2019] [Indexed: 12/15/2022] Open
Abstract
Mycobacterium abscessus (MAB) is an emerging, rapidly growing non-tuberculous Mycobacterium causing therapy-resistant pulmonary disease especially in patients with cystic fibrosis (CF). Smooth and rough colony type MAB can be isolated from infected patients whereby rough colony type MAB are more often associated with severe disease. Disease severity is also associated with an alternated type I interferon (IFN-I) response of the MAB-infected patients. However the relevance of this response for the outcome of MAB infection is still unknown. In this study, we analyzed the IFNβ expression of murine macrophages infected with a MAB rough colony strain (MAB-R) isolated from a patient with progressive CF and compared it to macrophages infected with the MAB smooth colony type reference strain (MAB-S). We found that MAB-R infected macrophages expressed significantly more IFNβ mRNA and protein than MAB-S infected macrophages. Higher IFNβ induction by MAB-R was associated with higher TNF expression and intracellular killing while low IFNβ induction was associated with lower TNF expression and persistence of MAB-S. IFNβ induction was independent of the intracellular cGAS-STING recognition pathway. MAB appeared to be recognized extracellularly and induced IFNβ expression via TLR2-TLR4-MyD88-TRIF-IRF3 dependent pathways. By using macrophages lacking the IFN-I receptor we demonstrate that MAB induced IFN-I response essentially contributed to restricting MAB-R and MAB-S infections by activating macrophage Nos2 expression and nitric oxide production. Thus IFN-I seem to influence the intrinsic ability of macrophages to control MAB infections. As MAB persists over long time periods in susceptible patients, our findings suggest that virulence of MAB strains is promoted by an insufficient IFN-I response of the host.
Collapse
Affiliation(s)
| | - Doris Rys
- Institute for Microbiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Ketema Abdissa
- Institute for Microbiology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Torsten Semmler
- NG1 Microbial Genomics, Robert Koch Institute, Berlin, Germany
| | - Pia-K Tegtmeyer
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between The Helmholtz Centre for Infection Research, Braunschweig, and The Hannover Medical School, Hannover, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between The Helmholtz Centre for Infection Research, Braunschweig, and The Hannover Medical School, Hannover, Germany
| | - Carsten Schwarz
- Department of Pediatric Pneumonology and Immunology, Division of Cystic Fibrosis, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Astrid Lewin
- FG16 Mycotic and Parasitic Agents and Mycobacteria, Robert Koch Institute, Berlin, Germany
| | - Ralph Goethe
- Institute for Microbiology, University of Veterinary Medicine Hannover, Hannover, Germany.
| |
Collapse
|
33
|
Brites D, Loiseau C, Menardo F, Borrell S, Boniotti MB, Warren R, Dippenaar A, Parsons SDC, Beisel C, Behr MA, Fyfe JA, Coscolla M, Gagneux S. A New Phylogenetic Framework for the Animal-Adapted Mycobacterium tuberculosis Complex. Front Microbiol 2018; 9:2820. [PMID: 30538680 PMCID: PMC6277475 DOI: 10.3389/fmicb.2018.02820] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/02/2018] [Indexed: 11/22/2022] Open
Abstract
Tuberculosis (TB) affects humans and other animals and is caused by bacteria from the Mycobacterium tuberculosis complex (MTBC). Previous studies have shown that there are at least nine members of the MTBC infecting animals other than humans; these have also been referred to as ecotypes. However, the ecology and the evolution of these animal-adapted MTBC ecotypes are poorly understood. Here we screened 12,886 publicly available MTBC genomes and newly sequenced 17 animal-adapted MTBC strains, gathering a total of 529 genomes of animal-adapted MTBC strains. Phylogenomic and comparative analyses confirm that the animal-adapted MTBC members are paraphyletic with some members more closely related to the human-adapted Mycobacterium africanum Lineage 6 than to other animal-adapted strains. Furthermore, we identified four main animal-adapted MTBC clades that might correspond to four main host shifts; two of these clades are hypothesized to reflect independent cattle domestication events. Contrary to what would be expected from an obligate pathogen, MTBC nucleotide diversity was not positively correlated with host phylogenetic distances, suggesting that host tropism in the animal-adapted MTBC seems to be driven by contact rates and demographic aspects of the host population rather by than host relatedness. By combining phylogenomics with ecological data, we propose an evolutionary scenario in which the ancestor of Lineage 6 and all animal-adapted MTBC ecotypes was a generalist pathogen that subsequently adapted to different host species. This study provides a new phylogenetic framework to better understand the evolution of the different ecotypes of the MTBC and guide future work aimed at elucidating the molecular mechanisms underlying host range.
Collapse
Affiliation(s)
- Daniela Brites
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Chloé Loiseau
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Fabrizio Menardo
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Sonia Borrell
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Maria Beatrice Boniotti
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia-Romagna: Centro Nazionale di Referenza per la Tubercolosi Bovina, Brescia, Italy
| | - Robin Warren
- SAMRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Anzaan Dippenaar
- SAMRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Sven David Charles Parsons
- SAMRC Centre for TB Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Christian Beisel
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Marcel A Behr
- McGill International TB Centre, Infectious Diseases and Immunity in Global Health, McGill University Health Centre and Research Institute, Montréal, QC, Canada
| | - Janet A Fyfe
- Mycobacterium Reference Laboratory, Victoria Infectious Diseases Reference Laboratory, Peter Doherty Institute, Melbourne, VIC, Australia
| | - Mireia Coscolla
- Institute for Integrative Systems Biology (I2SysBio), University of Valencia-CSIC, Valencia, Spain
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| |
Collapse
|
34
|
Ates LS, Dippenaar A, Sayes F, Pawlik A, Bouchier C, Ma L, Warren RM, Sougakoff W, Majlessi L, van Heijst JWJ, Brossier F, Brosch R. Unexpected Genomic and Phenotypic Diversity of Mycobacterium africanum Lineage 5 Affects Drug Resistance, Protein Secretion, and Immunogenicity. Genome Biol Evol 2018; 10:1858-1874. [PMID: 30010947 PMCID: PMC6071665 DOI: 10.1093/gbe/evy145] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2018] [Indexed: 01/19/2023] Open
Abstract
Mycobacterium africanum consists of Lineages L5 and L6 of the Mycobacterium tuberculosis complex (MTBC) and causes human tuberculosis in specific regions of Western Africa, but is generally not transmitted in other parts of the world. Since M. africanum is evolutionarily closely placed between the globally dispersed Mycobacterium tuberculosis and animal-adapted MTBC-members, these lineages provide valuable insight into M. tuberculosis evolution. Here, we have collected 15 M. africanum L5 strains isolated in France over 4 decades. Illumina sequencing and phylogenomic analysis revealed a previously underappreciated diversity within L5, which consists of distinct sublineages. L5 strains caused relatively high levels of extrapulmonary tuberculosis and included multi- and extensively drug-resistant isolates, especially in the newly defined sublineage L5.2. The specific L5 sublineages also exhibit distinct phenotypic characteristics related to in vitro growth, protein secretion and in vivo immunogenicity. In particular, we identified a PE_PGRS and PPE-MPTR secretion defect specific for sublineage L5.2, which was independent of PPE38. Furthermore, L5 isolates were able to efficiently secrete and induce immune responses against ESX-1 substrates contrary to previous predictions. These phenotypes of Type VII protein secretion and immunogenicity provide valuable information to better link genome sequences to phenotypic traits and thereby understand the evolution of the MTBC.
Collapse
Affiliation(s)
- Louis S Ates
- Department of Genomes and Genetics, Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, CNRS UMR3525, Paris, France
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam, The Netherlands
| | - Anzaan Dippenaar
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Fadel Sayes
- Department of Genomes and Genetics, Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, CNRS UMR3525, Paris, France
| | - Alexandre Pawlik
- Department of Genomes and Genetics, Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, CNRS UMR3525, Paris, France
| | - Christiane Bouchier
- Department of Genomes and Genetics, Institut Pasteur, Genomics Platform, Paris, France
| | - Laurence Ma
- Department of Genomes and Genetics, Institut Pasteur, Genomics Platform, Paris, France
| | - Robin M Warren
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research; South African Medical Research Council Centre for Tuberculosis Research; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Wladimir Sougakoff
- Sorbonne Universités, INSERM, Centre d'Immunologie et des Maladies Infectieuses, CIMI-Paris, Team 13 (Bacteriology), Paris, France
- Laboratoire de Bactériologie-Hygiène, Centre National de Référence des Mycobactéries (NRC MyRMA), Hôpitaux Universitaires Pitié-Salpêtrière – Charles Foix, Paris, France
| | - Laleh Majlessi
- Department of Genomes and Genetics, Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, CNRS UMR3525, Paris, France
| | - Jeroen W J van Heijst
- Department of Experimental Immunology, Amsterdam UMC, University of Amsterdam, Amsterdam Infection & Immunity Institute, Amsterdam, The Netherlands
| | - Florence Brossier
- Department of Genomes and Genetics, Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, CNRS UMR3525, Paris, France
- Sorbonne Universités, INSERM, Centre d'Immunologie et des Maladies Infectieuses, CIMI-Paris, Team 13 (Bacteriology), Paris, France
- Laboratoire de Bactériologie-Hygiène, Centre National de Référence des Mycobactéries (NRC MyRMA), Hôpitaux Universitaires Pitié-Salpêtrière – Charles Foix, Paris, France
| | - Roland Brosch
- Department of Genomes and Genetics, Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, CNRS UMR3525, Paris, France
| |
Collapse
|
35
|
Ates LS, Sayes F, Frigui W, Ummels R, Damen MPM, Bottai D, Behr MA, van Heijst JWJ, Bitter W, Majlessi L, Brosch R. RD5-mediated lack of PE_PGRS and PPE-MPTR export in BCG vaccine strains results in strong reduction of antigenic repertoire but little impact on protection. PLoS Pathog 2018; 14:e1007139. [PMID: 29912964 PMCID: PMC6023246 DOI: 10.1371/journal.ppat.1007139] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/28/2018] [Accepted: 06/05/2018] [Indexed: 01/03/2023] Open
Abstract
Tuberculosis is the deadliest infectious disease worldwide. Although the BCG vaccine is widely used, it does not efficiently protect against pulmonary tuberculosis and an improved tuberculosis vaccine is therefore urgently needed. Mycobacterium tuberculosis uses different ESX/Type VII secretion (T7S) systems to transport proteins important for virulence and host immune responses. We recently reported that secretion of T7S substrates belonging to the mycobacteria-specific Pro-Glu (PE) and Pro-Pro-Glu (PPE) proteins of the PGRS (polymorphic GC-rich sequences) and MPTR (major polymorphic tandem repeat) subfamilies required both a functional ESX-5 system and a functional PPE38/71 protein for secretion. Inactivation of ppe38/71 and the resulting loss of PE_PGRS/PPE-MPTR secretion were linked to increased virulence of M. tuberculosis strains. Here, we show that a predicted total of 89 PE_PGRS/PPE-MPTR surface proteins are not exported by certain animal-adapted strains of the M. tuberculosis complex including M. bovis. This Δppe38/71-associated secretion defect therefore also occurs in the M. bovis-derived tuberculosis vaccine BCG and could be partially restored by introduction of the M. tuberculosis ppe38-locus. Epitope mapping of the PPE-MPTR protein PPE10, further allowed us to monitor T-cell responses in splenocytes from BCG/M. tuberculosis immunized mice, confirming the dependence of PPE10-specific immune-induction on ESX-5/PPE38-mediated secretion. Restoration of PE_PGRS/PPE-MPTR secretion in recombinant BCG neither altered global antigenic presentation or activation of innate immune cells, nor protective efficacy in two different mouse vaccination-infection models. This unexpected finding stimulates a reassessment of the immunomodulatory properties of PE_PGRS/PPE-MPTR proteins, some of which are contained in vaccine formulations currently in clinical evaluation. One of the major findings of the pioneering Mycobacterium tuberculosis H37Rv genome sequencing project was the identification of the highly abundant PE and PPE proteins, named after their N-terminal motifs Pro–Glu (PE) or Pro–Pro–Glu (PPE). Within the 20 years of research since then, many claims were made that PE/PPE proteins, including the two large subgroups encoded by repetitive sequences with very high GC content (PE_PGRS and PPE-MPTR families), are exported to the bacterial surface or beyond, and show broad immunomodulatory impact on host-pathogen interaction. We thus screened strains from different branches of the M. tuberculosis complex, including the attenuated Mycobacterium bovis BCG vaccine strains, for their capacity to export PE_PGRS/PPE-MPTR proteins. Strikingly, we found that BCG strains were unable to export the plethora of PE_PGRS/PPE-MPTR proteins due to the absence of the region of difference RD5, which in M. tuberculosis encodes PPE38, required for PE_PGRS/PPE-MPTR export. Surprisingly, the restoration of PE_PGRS/PPE-MPTR export by genetic complementation in recombinant BCG did not result in immunomodulatory changes or altered protection in mouse models. Our results thus put into perspective the numerous reports on virulence-associated immunomodulatory impact of individual PE_PGRS and PPE-MPTR proteins and open novel questions on their biological function(s).
Collapse
Affiliation(s)
- Louis S. Ates
- Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, CNRS UMR3525, Paris, France
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- * E-mail: (LSA); (RB)
| | - Fadel Sayes
- Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, CNRS UMR3525, Paris, France
| | - Wafa Frigui
- Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, CNRS UMR3525, Paris, France
| | - Roy Ummels
- Department of Medical Microbiology and Infection Prevention, VU University Medical Center, Amsterdam, the Netherlands
| | - Merel P. M. Damen
- Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, CNRS UMR3525, Paris, France
- Section Molecular Microbiology, Amsterdam Institute of Molecules, Medicine & Systems, Vrije Universiteit, Amsterdam, the Netherlands
| | - Daria Bottai
- University of Pisa, Department of Biology, Pisa, Italy
| | - Marcel A. Behr
- McGill International TB Centre, Infectious Diseases and Immunity in Global Health Program at the McGill University Health Centre Research Institute, Montreal, Canada
| | - Jeroen W. J. van Heijst
- Department of Experimental Immunology, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Wilbert Bitter
- Department of Medical Microbiology and Infection Prevention, VU University Medical Center, Amsterdam, the Netherlands
- Section Molecular Microbiology, Amsterdam Institute of Molecules, Medicine & Systems, Vrije Universiteit, Amsterdam, the Netherlands
| | - Laleh Majlessi
- Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, CNRS UMR3525, Paris, France
| | - Roland Brosch
- Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, CNRS UMR3525, Paris, France
- * E-mail: (LSA); (RB)
| |
Collapse
|
36
|
Mycobacterium tuberculosis Complex Members Adapted to Wild and Domestic Animals. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1019:135-154. [PMID: 29116633 DOI: 10.1007/978-3-319-64371-7_7] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Mycobacterium tuberculosis complex (MTBC) is composed of several highly genetically related species that can be broadly classified into those that are human-host adapted and those that possess the ability to propagate and transmit in a variety of wild and domesticated animals. Since the initial description of the bovine tubercle bacillus, now known as Mycobacterium bovis, by Theobald Smith in the late 1800's, isolates originating from a wide range of animal hosts have been identified and characterized as M. microti, M. pinnipedii, the Dassie bacillus, M. mungi, M. caprae, M. orygis and M. suricattae. This chapter outlines the events resulting in the identification of each of these animal-adapted species, their close genetic relationships, and how genome-based phylogenetic analyses of species-specific variation amongst MTBC members is beginning to unravel the events that resulted in the evolution of the MTBC and the observed host tropism between the human- and animal-adapted member species.
Collapse
|
37
|
The most common spoligotype of Mycobacterium bovis isolated in the world and the recommended loci for VNTR typing; A systematic review. Microb Pathog 2018; 118:310-315. [PMID: 29578066 DOI: 10.1016/j.micpath.2018.03.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 02/12/2018] [Accepted: 03/21/2018] [Indexed: 12/15/2022]
Abstract
Mycobacterium bovis is a neglected zoonotic organism that epidemiological studies are of crucial importance in identifying its source, control it and prevent it from spreading. The aim of this study was to investigate the most common spoligotypes of Mycobacterium bovis circulating around the world and introduce the most and least strong determine powers of loci for VNTR. We have used different databases such as ISC, science direct, Embase (Elsevier), Web of Science, Scopus and Medline via PubMed. Searches were performed by key words including: Mycobacterium bovis, MIRU -VNTR, spoligotyping and discrimination power. Finally, thirty-one articles were selected after filtering out some titles, abstracts and full texts. Spoligotype SB0120 was the most common circulating type on several continents while SB0121 existed in Europe, Africa and America. SB0140 was also detected in Asia, Europe and America. QUB3232 and QUB11b were more appropriate loci among the loci with high discriminatory power. MIRU 10 and MIRU4 were among the loci with poor discriminatory power. Taking the published data into consideration, SB0120 and SB0121 are predominant spoligotypes of M. bovis circulating among animals around the world. Determining the most common spoligotype of M. bovis is the key to find source of infection, control and prevent the disease.
Collapse
|
38
|
Evolution of virulence in the Mycobacterium tuberculosis complex. Curr Opin Microbiol 2018; 41:68-75. [DOI: 10.1016/j.mib.2017.11.021] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 10/27/2017] [Accepted: 11/04/2017] [Indexed: 01/16/2023]
|
39
|
Practice Guidelines for Clinical Microbiology Laboratories: Mycobacteria. Clin Microbiol Rev 2018; 31:31/2/e00038-17. [PMID: 29386234 DOI: 10.1128/cmr.00038-17] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mycobacteria are the causative organisms for diseases such as tuberculosis (TB), leprosy, Buruli ulcer, and pulmonary nontuberculous mycobacterial disease, to name the most important ones. In 2015, globally, almost 10 million people developed TB, and almost half a million patients suffered from its multidrug-resistant form. In 2016, a total of 9,287 new TB cases were reported in the United States. In 2015, there were 174,608 new case of leprosy worldwide. India, Brazil, and Indonesia reported the most leprosy cases. In 2015, the World Health Organization reported 2,037 new cases of Buruli ulcer, with most cases being reported in Africa. Pulmonary nontuberculous mycobacterial disease is an emerging public health challenge. The U.S. National Institutes of Health reported an increase from 20 to 47 cases/100,000 persons (or 8.2% per year) of pulmonary nontuberculous mycobacterial disease among adults aged 65 years or older throughout the United States, with 181,037 national annual cases estimated in 2014. This review describes contemporary methods for the laboratory diagnosis of mycobacterial diseases. Furthermore, the review considers the ever-changing health care delivery system and stresses the laboratory's need to adjust and embrace molecular technologies to provide shorter turnaround times and a higher quality of care for the patients who we serve.
Collapse
|
40
|
|
41
|
Alexander KA, Laver PN, Williams MC, Sanderson CE, Kanipe C, Palmer MV. Pathology of the Emerging Mycobacterium tuberculosis Complex Pathogen, Mycobacterium mungi, in the Banded Mongoose ( Mungos mungo). Vet Pathol 2017; 55:303-309. [PMID: 29258402 DOI: 10.1177/0300985817741730] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Wild banded mongooses ( Mungos mungo) in northeastern Botswana and northwest Zimbabwe are infected with a novel Mycobacterium tuberculosis complex (MTC) pathogen, Mycobacterium mungi. We evaluated gross and histologic lesions in 62 infected mongooses (1999-2017). Many tissues contained multifocal irregular, lymphohistiocytic to granulomatous infiltrates and/or multifocal or coalescing noncaseating to caseating granulomas with variable numbers of intralesional acid-fast bacilli. Over one-third of nasal turbinates examined had submucosal lymphohistiocytic to granulomatous infiltrates, erosion and ulceration of the nasal mucosa, bony remodeling, and nasal distortion. Similar inflammatory cell infiltrates expanded the dermis of the nasal planum with frequent ulceration. However, even in cases with intact epidermis, acid-fast bacilli were present in variable numbers among dermal infiltrates and on the epidermal surface among desquamated cells and debris, most commonly in small crevices or folds. In general, tissue involvement varied among cases but was highest in lymph nodes (50/54, 93%), liver (39/53, 74%), spleen (37/51, 73%), and anal glands/sacs (6/8, 75%). Pulmonary lesions were present in 67% of sampled mongooses (35/52) but only in advanced disseminated disease. The pathological presentation of M. mungi in the banded mongoose is consistent with pathogen shedding occurring through scent-marking behaviors (urine and anal gland secretions) with new infections arising from contact with these contaminated olfactory secretions and percutaneous movement of the pathogen through breaks in the skin, nasal planum, and/or skin of the snout. Given the character and distribution of lesions and the presence of intracellular acid-fast bacilli, we hypothesize that pathogen spread occurs within the body through a hematogenous and/or lymphatic route. Features of prototypical granulomas such as multinucleated giant cells and peripheral fibrosis were rarely present in affected mongooses. Acid-fast bacilli were consistently found intracellularly, even in regions of necrosis. The mongoose genome has a unique deletion (RD1mon) that includes part of the encoding region for PPE68 (Rv3873), a gene co-operonic with PE35. These proteins can influence the host's cellular immune response to mycobacterial infections, and it remains uncertain how this deletion might contribute to observed patterns of pathology. M. mungi infection in banded mongooses is characterized by both a unique transmission and exposure route, as well as accompanying pathological features, providing an opportunity to increase our understanding of MTC pathogenesis across host-pathogen systems.
Collapse
Affiliation(s)
- Kathleen A Alexander
- 1 Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA, USA
- 2 CARACAL, Centre for Conservation of African Resources, Animals, Communities, and Land Use, Kasane, Botswana
| | - Peter N Laver
- 1 Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA, USA
| | - Mark C Williams
- 3 Section of Pathology, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Onderstepoort, South Africa
| | - Claire E Sanderson
- 1 Department of Fish and Wildlife Conservation, Virginia Tech, Blacksburg, VA, USA
- 2 CARACAL, Centre for Conservation of African Resources, Animals, Communities, and Land Use, Kasane, Botswana
| | - Carly Kanipe
- 4 Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
- 5 Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Ames, IA, USA
| | - Mitchell V Palmer
- 5 Bacterial Diseases of Livestock Research Unit, National Animal Disease Center, Ames, IA, USA
| |
Collapse
|
42
|
Brites D, Gagneux S. The Nature and Evolution of Genomic Diversity in the Mycobacterium tuberculosis Complex. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1019:1-26. [DOI: 10.1007/978-3-319-64371-7_1] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
43
|
Abstract
The tuberculosis agent Mycobacterium tuberculosis has undergone a long and selective evolution toward human infection and represents one of the most widely spread pathogens due to its efficient aerosol-mediated human-to-human transmission. With the availability of more and more genome sequences, the evolutionary trajectory of this obligate pathogen becomes visible, which provides us with new insights into the molecular events governing evolution of the bacterium and its ability to accumulate drug-resistance mutations. In this review, we summarize recent developments in mycobacterial research related to this matter that are important for a better understanding of the current situation and future trends and developments in the global epidemiology of tuberculosis, as well as for possible public health intervention possibilities.
Collapse
|
44
|
Dippenaar A, Parsons SDC, Miller MA, Hlokwe T, Gey van Pittius NC, Adroub SA, Abdallah AM, Pain A, Warren RM, Michel AL, van Helden PD. Progenitor strain introduction of Mycobacterium bovis at the wildlife-livestock interface can lead to clonal expansion of the disease in a single ecosystem. INFECTION GENETICS AND EVOLUTION 2017; 51:235-238. [PMID: 28412523 DOI: 10.1016/j.meegid.2017.04.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 04/05/2017] [Accepted: 04/11/2017] [Indexed: 10/19/2022]
Abstract
Mycobacterium bovis infects multiple wildlife species and domesticated cattle across South Africa, and negatively impacts on livestock trade and movement of wildlife for conservation purposes. M. bovis infection was first reported in the Kruger National Park (KNP) in South Africa during the 1990s, and has since spread to infect numerous animal host species throughout the park and across South Africa. Whole genome sequencing data of 17 M. bovis isolates were analyzed to investigate the genomic diversity among M. bovis isolates causing disease in different animal host species from various locations in South Africa. M. bovis strains analyzed in this study are geographic rather than host species-specific. The clonal expansion of M. bovis in the KNP highlights the effect of an introduction of a transmissible infectious disease leading to a rising epidemic in wildlife, and emphasizes the importance of disease control and movement restriction of species that serve as disease reservoirs. In conclusion, the point source introduction of a single M. bovis strain type in the KNP ecosystem lead to an M. bovis outbreak in this area that affects various host species and poses an infection risk in neighboring rural communities where HIV prevalence is high.
Collapse
Affiliation(s)
- Anzaan Dippenaar
- DST/NRF Centre of Excellence in Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Francie van Zijl Drive, Cape Town 8000, South Africa.
| | - Sven David Charles Parsons
- DST/NRF Centre of Excellence in Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Francie van Zijl Drive, Cape Town 8000, South Africa.
| | - Michele Ann Miller
- DST/NRF Centre of Excellence in Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Francie van Zijl Drive, Cape Town 8000, South Africa.
| | - Tiny Hlokwe
- Tuberculosis Laboratory, ARC-Onderstepoort Veterinary Institute, South Africa.
| | - Nicolaas Claudius Gey van Pittius
- DST/NRF Centre of Excellence in Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Francie van Zijl Drive, Cape Town 8000, South Africa.
| | - Sabir Abdu Adroub
- Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Abdallah Musa Abdallah
- Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Arnab Pain
- Pathogen Genomics Laboratory, BESE Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia.
| | - Robin Mark Warren
- DST/NRF Centre of Excellence in Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Francie van Zijl Drive, Cape Town 8000, South Africa.
| | - Anita Luise Michel
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, South Africa.
| | - Paul David van Helden
- DST/NRF Centre of Excellence in Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, PO Box 241, Francie van Zijl Drive, Cape Town 8000, South Africa.
| |
Collapse
|
45
|
Yeboah-Manu D, de Jong BC, Gehre F. The Biology and Epidemiology of Mycobacterium africanum. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1019:117-133. [PMID: 29116632 DOI: 10.1007/978-3-319-64371-7_6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
West Africa is the only region in the world where six out of seven mycobacterial lineages of human importance are endemic. In particular, two evolutionary ancient lineages, Mycobacterium africanum West Africa 1 (MTBC Lineage 5) and M. africanum West Africa 2 (MTBC Lineage 6) are of interest as they cause up to 40% of all pulmonary TB cases in some West African countries. Although these M. africanum lineages are closely related to M. tuberculosis sensu stricto lineages, they differ significantly in respect to biology, epidemiology and in their potential to cause disease in humans. Most importantly the M. africanum lineages are exclusive to West Africa. Although the exact mechanisms underlying this geographical restriction are still not understood, it is increasingly suspected that this is due to an adaptation of the bacteria to West African host populations. In this chapter, we summarize the geographical distribution of the M. africanum lineages within the region, describe biological and clinical differences and the consequent implications for TB control in West Africa. We also try to shed light on the geographical restriction, based on recently published analyses on whole genomes of M. africanum isolates.
Collapse
Affiliation(s)
- Dorothy Yeboah-Manu
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana.
| | | | - Florian Gehre
- Institute for Tropical Medicine, Antwerp, Belgium
- Medical Research Council (MRC) Unit, The Gambia Serrekunda, Gambia
| |
Collapse
|
46
|
Biological and Epidemiological Consequences of MTBC Diversity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1019:95-116. [PMID: 29116631 DOI: 10.1007/978-3-319-64371-7_5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tuberculosis is caused by different groups of bacteria belonging to the Mycobacterium tuberculosis complex (MTBC). The combined action of human factors, environmental conditions and bacterial virulence determine the extent and form of human disease. MTBC virulence is a composite of different clinical phenotypes such as transmission rate and disease severity among others. Clinical phenotypes are also influenced by cellular and immunological phenotypes. MTBC phenotypes are determined by the genotype, therefore finding genotypes responsible for clinical phenotypes would allow discovering MTBC virulence factors. Different MTBC strains display different cellular and clinical phenotypes. Strains from Lineage 5 and Lineage 6 are metabolically different, grow slower, and are less virulent. Also, at least certain groups of Lineage 2 and Lineage 4 strains are more virulent in terms of disease severity and human-to-human transmission. Because phenotypic differences are ultimately caused by genotypic differences, different genomic loci have been related to various cellular and clinical phenotypes. However, defining the impact of specific bacterial genomic loci on virulence when other bacterial determinants, human and environmental factors are also impacting the phenotype would contribute to a better knowledge of tuberculosis virulence and ultimately benefit tuberculosis control.
Collapse
|
47
|
Supply P, Brosch R. The Biology and Epidemiology of Mycobacterium canettii. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1019:27-41. [PMID: 29116628 DOI: 10.1007/978-3-319-64371-7_2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Genome-based insights into the evolution of Mycobacterium tuberculosis and other tuberculosis-causing mycobacteria are constantly increasing. In particular, the recent genomic and functional characterization of several Myocbacterium canettii strains, which are thought to resemble in many aspects the putative common ancestor of the members of the M. tuberculosis complex (MTBC), has consolidated a plausible scenario of the early evolution of tuberculosis-causing mycobacteria, in which the clonal MTBC, comprising numerous key pathogens of mammalian hosts, has evolved from a generalist mycobacterium living in the environment. These studies also have considerably enriched our knowledge on selected molecular events that likely have contributed to the incursion, maintenance and spread of the MTBC members in diverse mammalian hosts. Here, we summarize and discuss recently revealed molecular and evolutionary aspects and emphasize the vast utility of M. canettii strains for identifying the mechanisms that contributed to the global emergence of M. tuberculosis as one of the most important human pathogens.
Collapse
Affiliation(s)
- Philip Supply
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, F-59000, Lille, France
| | - Roland Brosch
- Institut Pasteur, Unit for Integrated Mycobacterial Pathogenomics, 75724, Paris Cedex 15, France.
| |
Collapse
|
48
|
Stucki D, Brites D, Jeljeli L, Coscolla M, Liu Q, Trauner A, Fenner L, Rutaihwa L, Borrell S, Luo T, Gao Q, Kato-Maeda M, Ballif M, Egger M, Macedo R, Mardassi H, Moreno M, Tudo Vilanova G, Fyfe J, Globan M, Thomas J, Jamieson F, Guthrie JL, Asante-Poku A, Yeboah-Manu D, Wampande E, Ssengooba W, Joloba M, Henry Boom W, Basu I, Bower J, Saraiva M, Vaconcellos SEG, Suffys P, Koch A, Wilkinson R, Gail-Bekker L, Malla B, Ley SD, Beck HP, de Jong BC, Toit K, Sanchez-Padilla E, Bonnet M, Gil-Brusola A, Frank M, Penlap Beng VN, Eisenach K, Alani I, Wangui Ndung'u P, Revathi G, Gehre F, Akter S, Ntoumi F, Stewart-Isherwood L, Ntinginya NE, Rachow A, Hoelscher M, Cirillo DM, Skenders G, Hoffner S, Bakonyte D, Stakenas P, Diel R, Crudu V, Moldovan O, Al-Hajoj S, Otero L, Barletta F, Jane Carter E, Diero L, Supply P, Comas I, Niemann S, Gagneux S. Mycobacterium tuberculosis lineage 4 comprises globally distributed and geographically restricted sublineages. Nat Genet 2016; 48:1535-1543. [PMID: 27798628 PMCID: PMC5238942 DOI: 10.1038/ng.3704] [Citation(s) in RCA: 266] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 09/27/2016] [Indexed: 12/30/2022]
Abstract
Generalist and specialist species differ in the breadth of their ecological niches. Little is known about the niche width of obligate human pathogens. Here we analyzed a global collection of Mycobacterium tuberculosis lineage 4 clinical isolates, the most geographically widespread cause of human tuberculosis. We show that lineage 4 comprises globally distributed and geographically restricted sublineages, suggesting a distinction between generalists and specialists. Population genomic analyses showed that, whereas the majority of human T cell epitopes were conserved in all sublineages, the proportion of variable epitopes was higher in generalists. Our data further support a European origin for the most common generalist sublineage. Hence, the global success of lineage 4 reflects distinct strategies adopted by different sublineages and the influence of human migration.
Collapse
Affiliation(s)
- David Stucki
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| | - Daniela Brites
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| | - Leïla Jeljeli
- Forschungszentrum Borstel, Germany.,Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | - Mireia Coscolla
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| | - Qingyun Liu
- The Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Institutes of Biomedical Sciences and Institute of Medical Microbiology, School of Basic Medical Science of Fudan University, Shanghai, China
| | - Andrej Trauner
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| | - Lukas Fenner
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland.,Institute for Social and Preventive Medicine, University of Bern, Switzerland
| | - Liliana Rutaihwa
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| | - Sonia Borrell
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| | - Tao Luo
- Laboratory of Infection and Immunity, School of Basic Medical Science, West China Center of Medical Sciences, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qian Gao
- The Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Institutes of Biomedical Sciences and Institute of Medical Microbiology, School of Basic Medical Science of Fudan University, Shanghai, China
| | | | - Marie Ballif
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland.,Institute for Social and Preventive Medicine, University of Bern, Switzerland
| | - Matthias Egger
- Institute for Social and Preventive Medicine, University of Bern, Switzerland
| | - Rita Macedo
- Laboratòrio de Saùde Publica, Lisbon, Portugal
| | - Helmi Mardassi
- Institut Pasteur de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | | | | | - Janet Fyfe
- Victorian Infectious Diseases Reference Laboratory, Victoria, Australia
| | - Maria Globan
- Victorian Infectious Diseases Reference Laboratory, Victoria, Australia
| | | | | | | | - Adwoa Asante-Poku
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Dorothy Yeboah-Manu
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Eddie Wampande
- Department of Medical Microbiology, Makerere University, Kampala, Uganda
| | - Willy Ssengooba
- Department of Medical Microbiology, Makerere University, Kampala, Uganda.,Department of Global Health, University of Amsterdam, Amsterdam, the Netherlands
| | - Moses Joloba
- Department of Medical Microbiology, Makerere University, Kampala, Uganda
| | - W Henry Boom
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, USA
| | - Indira Basu
- LabPlus, Auckland City Hospital, Auckland, New Zealand
| | - James Bower
- LabPlus, Auckland City Hospital, Auckland, New Zealand
| | - Margarida Saraiva
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | | | | | - Anastasia Koch
- Institute of Infectious Disease and Molecular Medicine and Department of Clinical Laboratory Sciences, University of Cape Town, South Africa
| | - Robert Wilkinson
- Institute of Infectious Disease and Molecular Medicine and Department of Clinical Laboratory Sciences, University of Cape Town, South Africa.,Department of Medicine, Imperial College London, UK.,The Francis Crick Institute Mill Hill Laboratory, London, UK
| | - Linda Gail-Bekker
- Institute of Infectious Disease and Molecular Medicine and Department of Clinical Laboratory Sciences, University of Cape Town, South Africa
| | - Bijaya Malla
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| | - Serej D Ley
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland.,Papua New Guinea Institute of Medical Research, Goroka, PNG
| | - Hans-Peter Beck
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| | | | - Kadri Toit
- Tartu University Hospital United Laboratories, Mycobacteriology, Tartu, Estonia
| | | | | | - Ana Gil-Brusola
- Department of Microbiology, University Hospital La Fe, Valencia, Spain
| | - Matthias Frank
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Veronique N Penlap Beng
- Institute Laboratory for Tuberculosis Research (LTR), Biotechnology Center (BTC), University of Yaoundé I, Yaoundé, Cameroon
| | - Kathleen Eisenach
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Issam Alani
- Department of Medical Laboratory Technology, Faculty of Medical Technology, Baghdad, Iraq
| | - Perpetual Wangui Ndung'u
- Institute of Tropical Medicine and Infectious Diseases (ITROMID), Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya
| | - Gunturu Revathi
- Department of Pathology, Aga Khan University Hospital (AKUH), Nairobi, Kenya
| | - Florian Gehre
- Insitute of Tropical Medicine, Antwerp, Belgium.,Medical Research Council, Fajara, the Gambia
| | | | - Francine Ntoumi
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany.,Fondation Congolaise pour la Recherche Médicale, Université Marien Gouabi, Brazzaville, Congo
| | - Lynsey Stewart-Isherwood
- Right to Care and the Clinical HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Nyanda E Ntinginya
- National Institute of Medical Research, Mbeya Medical Research Centre (NIMR-MMRC), Mbeya, Tanzania
| | - Andrea Rachow
- Division of Infectious Diseases and Tropical Medicine, Medical Centre of the University of Munich, Munich, Germany; German Centre for Infection Research (DZIF), partner site Munich, Germany
| | - Michael Hoelscher
- Division of Infectious Diseases and Tropical Medicine, Medical Centre of the University of Munich, Munich, Germany; German Centre for Infection Research (DZIF), partner site Munich, Germany
| | - Daniela Maria Cirillo
- Emerging Bacterial Pathogens Unit, IRCCS, San Raffaele Scientific Institute, Milan, Italy
| | - Girts Skenders
- Riga East University Hospital, Centre of Tuberculosis and Lung Diseases, Riga, Latvia
| | - Sven Hoffner
- WHO Supranational TB Reference Laboratory, Department of Microbiology, The Public Health Agency of Sweden, Solna, Sweden
| | - Daiva Bakonyte
- Department of Immunology and Cell Biology, Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
| | - Petras Stakenas
- Department of Immunology and Cell Biology, Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
| | - Roland Diel
- Institute for Epidemiology, Schleswig-Holstein University Hospital, Kiel, Germany
| | - Valeriu Crudu
- National Tuberculosis Reference Laboratory, Phthysiopneumology Institute, Chisinau, Republic of Moldova
| | - Olga Moldovan
- 'Marius Nasta' Pneumophtisiology Institute, Bucharest, Romania
| | - Sahal Al-Hajoj
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Larissa Otero
- Instituto de Medicina Tropical Alexander von Humboldt, Molecular Epidemiology Unit-Tuberculosis, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Francesca Barletta
- Instituto de Medicina Tropical Alexander von Humboldt, Molecular Epidemiology Unit-Tuberculosis, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - E Jane Carter
- Alpert School of Medicine at Brown University, Providence, Rhode Island, USA.,Moi University School of Medicine, Eldoret, Kenya
| | - Lameck Diero
- Moi University School of Medicine, Eldoret, Kenya
| | - Philip Supply
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France
| | - Iñaki Comas
- Institute of Biomedicine of Valencia (IBV-CSIC), 46010, Valencia, Spain.,CIBER Epidemiology and Public Health, Madrid, Spain
| | - Stefan Niemann
- Forschungszentrum Borstel, Germany.,German Center for Infection Research, Borstel Site, Borstel, Germany
| | - Sebastien Gagneux
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Switzerland
| |
Collapse
|
49
|
Asante-Poku A, Otchere ID, Osei-Wusu S, Sarpong E, Baddoo A, Forson A, Laryea C, Borrell S, Bonsu F, Hattendorf J, Ahorlu C, Koram KA, Gagneux S, Yeboah-Manu D. Molecular epidemiology of Mycobacterium africanum in Ghana. BMC Infect Dis 2016; 16:385. [PMID: 27506391 PMCID: PMC4977717 DOI: 10.1186/s12879-016-1725-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 07/20/2016] [Indexed: 11/30/2022] Open
Abstract
Background Mycobacterium africanum comprises two phylogenetic lineages within the M. tuberculosis complex (MTBC) and is an important cause of human tuberculosis (TB) in West Africa. The reasons for this geographic restriction of M. africanum remain unclear. Here, we performed a prospective study to explore associations between the characteristics of TB patients and the MTBC lineages circulating in Ghana. Method We genotyped 1,211 MTBC isolates recovered from pulmonary TB patients recruited between 2012 and 2014 using single nucleotide polymorphism typing and spoligotyping. Associations between patient and pathogen variables were assessed using univariate and multivariate logistic regression. Results Of the 1,211 MTBC isolates analysed, 71.9 % (871) belonged to Lineage 4; 12.6 % (152) to Lineage 5 (also known as M. africanum West-Africa 1), 9.2 % (112) to Lineage 6 (also known as M. africanum West-Africa 2) and 0.6 % (7) to Mycobacterium bovis. Univariate analysis revealed that Lineage 6 strains were less likely to be isoniazid resistant compared to other strains (odds ratio = 0.25, 95 % confidence interval (CI): 0.05–0.77, P < 0.01). Multivariate analysis showed that Lineage 5 was significantly more common in patients from the Ewe ethnic group (adjusted odds ratio (adjOR): 2.79; 95 % CI: 1.47–5.29, P < 0.001) and Lineage 6 more likely to be found among HIV-co-infected TB patients (adjOR = 2.2; 95 % confidence interval (CI: 1.32–3.7, P < 0.001). Conclusion Our findings confirm the importance of M. africanum in Ghana and highlight the need to differentiate between Lineage 5 and Lineage 6, as these lineages differ in associated patient variables. Electronic supplementary material The online version of this article (doi:10.1186/s12879-016-1725-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Adwoa Asante-Poku
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana.,Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Isaac Darko Otchere
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Stephen Osei-Wusu
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Esther Sarpong
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Akosua Baddoo
- Department of Chest Diseases, Korle-Bu Teaching Hospital, Korle-bu, Accra, Ghana
| | - Audrey Forson
- Department of Chest Diseases, Korle-Bu Teaching Hospital, Korle-bu, Accra, Ghana
| | | | - Sonia Borrell
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Frank Bonsu
- National Tuberculosis Programme, Ghana health Service, Accra, Ghana
| | - Jan Hattendorf
- University of Basel, Basel, Switzerland.,Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Collins Ahorlu
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Kwadwo A Koram
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Sebastien Gagneux
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Dorothy Yeboah-Manu
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana.
| |
Collapse
|
50
|
Draft Genome Sequence of the Mycobacterium tuberculosis Complex Pathogen M. mungi, Identified in a Banded Mongoose (Mungos mungo) in Northern Botswana. GENOME ANNOUNCEMENTS 2016; 4:4/4/e00471-16. [PMID: 27469947 PMCID: PMC4966451 DOI: 10.1128/genomea.00471-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mycobacterium mungi, a Mycobacterium tuberculosis complex pathogen, has emerged in banded mongoose in northern Botswana and Northwest Zimbabwe. The pathogen is transmitted through infected secretions used in olfactory communication behavior (K. A. Alexander, C. E. Sanderson, M. H. Larsen, S. Robbe-Austerman, M. C. Williams, and M. V. Palmer, mBio 7(3):e00281-16, 2016, http://dx.doi.org/10.1128/mBio.00281-16). We announce here the draft genome sequence of this emerging pathogen.
Collapse
|