1
|
Wu Q, Jiang Y, Lv P, Chen M. Emergence of T4SS-type-ICE-carrying emm28 Streptococcus pyogenes causing invasive infection in Shanghai, China. J Glob Antimicrob Resist 2025; 41:21-28. [PMID: 39675472 DOI: 10.1016/j.jgar.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/25/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024] Open
Abstract
OBJECTIVE Invasive group A streptococcal (iGAS) infections have been increasing in Europe, Australia, and the USA, but few data from China are available. This study intended to provide local data to highlight the characteristics of iGAS infections in China. METHODS A retrospective analysis was performed on clinical iGAS infection data from 2014 to 2023 in a tertiary hospital in Shanghai, China. Genomic analysis was conducted to characterize antimicrobial resistance, virulence, prophages, and integrative and conjugative elements (ICEs), as well as phylogenetic clusters. RESULTS From 2014 to 2023, a total of 21 iGAS cases were discovered, with soft tissue infections accounting for 61.9% (13/21) and 85.7% (18/21) of isolates resistant to erythromycin and clindamycin, respectively. Three iGAS isolates from 2023 underwent genome sequencing, which indicated that two isolates were emm12 and one was emm28. Phylogenetic analysis showed that the two emm12 isolates were assigned to clade II and closely related to Chinese scarlet fever-causing isolates. The emm28 isolate was assigned to subclades of SC1A and discovered to possess a novel ICE (designated as ICE-SHemm28; Tn916-like) that carried both the ermB gene and the type IV secretion system. CONCLUSIONS Emergence of an emm28 iGAS strain harboring a novel macrolide resistance-carrying type IV secretion system ICE was identified in invasive infections in Shanghai.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Laboratory Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Jiang
- Research and Translational Laboratory of Acute Injury and Secondary Infection, Minhang Hospital, Fudan University, Shanghai, China
| | - PanPan Lv
- Department of Laboratory Medicine, Minhang Hospital, Fudan University, Shanghai, China
| | - Mingliang Chen
- Research and Translational Laboratory of Acute Injury and Secondary Infection, Minhang Hospital, Fudan University, Shanghai, China; Department of Laboratory Medicine, Minhang Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
2
|
Shaw PK, Hayes AJ, Langton M, Berkhout A, Grimwood K, Davies MR, Walker MJ, Brouwer S. Clinical Snapshot of Group A Streptococcal Isolates from an Australian Tertiary Hospital. Pathogens 2024; 13:956. [PMID: 39599509 PMCID: PMC11597359 DOI: 10.3390/pathogens13110956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/29/2024] Open
Abstract
Streptococcus pyogenes (Group A Streptococcus, GAS) is a human-restricted pathogen that causes a wide range of diseases from pharyngitis and scarlet fever to more severe, invasive infections such as necrotising fasciitis and streptococcal toxic shock syndrome. There has been a global increase in both scarlet fever and invasive infections during the COVID-19 post-pandemic period. The aim of this study was the molecular characterisation of 17 invasive and non-invasive clinical non-emm1 GAS isolates from an Australian tertiary hospital collected between 2021 and 2022. Whole genome sequencing revealed a total of nine different GAS emm types with the most prevalent being emm22, emm12 and emm3 (each 3/17, 18%). Most isolates (14/17, 82%) carried at least one superantigen gene associated with contemporary scarlet fever outbreaks, and the carriage of these toxin genes was non-emm type specific. Several mutations within key regulatory genes were identified across the different GAS isolates, which may be linked to an increased expression of several virulence factors. This study from a single Australian centre provides a snapshot of non-emm1 GAS clinical isolates that are multiclonal and linked with distinct epidemiological markers commonly observed in high-income settings. These findings highlight the need for continual surveillance to monitor genetic markers that may drive future outbreaks.
Collapse
Affiliation(s)
- Phoebe K. Shaw
- Australian Infectious Diseases Research Centre, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4067, Australia; (P.K.S.); (M.J.W.)
| | - Andrew J. Hayes
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia; (A.J.H.); (M.R.D.)
| | - Maree Langton
- Gold Coast Laboratory, Pathology Queensland, Gold Coast, QLD 4215, Australia;
| | - Angela Berkhout
- Infection Management and Prevention Service, Queensland Specialist Immunisation Service, Children’s Health Queensland, South Brisbane, QLD 4101, Australia;
- Queensland Statewide Antimicrobial Stewardship Program, Department of Paediatrics, Royal Brisbane and Women’s Hospital, Gold Coast University Hospital, Southport, QLD 4215, Australia
| | - Keith Grimwood
- Gold Coast and Departments of Infectious Diseases and Paediatrics, Gold Coast Health, School of Medicine and Dentistry, Griffith University, Gold Coast, QLD 4215, Australia;
| | - Mark R. Davies
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC 3000, Australia; (A.J.H.); (M.R.D.)
| | - Mark J. Walker
- Australian Infectious Diseases Research Centre, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4067, Australia; (P.K.S.); (M.J.W.)
| | - Stephan Brouwer
- Australian Infectious Diseases Research Centre, Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4067, Australia; (P.K.S.); (M.J.W.)
| |
Collapse
|
3
|
Sun L, Xiao Y, Huang W, Lai J, Lyu J, Ye B, Chen H, Gu B. Prevalence and identification of antibiotic-resistant scarlet fever group A Streptococcus strains in some pediatric cases at Shenzhen, China. J Glob Antimicrob Resist 2022; 30:199-204. [PMID: 35618209 DOI: 10.1016/j.jgar.2022.05.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE This study aimed to investigate the annual incidence, molecular epidemiological characteristics, and antimicrobial resistance of group A Streptococcus (GAS) clinical isolates from pediatric patients at Shenzhen Children's Hospital during 2016-2020. METHODS Clinical samples were collected from pediatric patients with a suspected diagnosis of GAS infections. We studied the annual incidence and characteristics of GAS infections using the GAS antigen detection method. Additionally, 250 GAS isolates were randomly selected for genotyping of the emm gene, and antimicrobial susceptibility assay was performed using the Kirby-Bauer paper dispersion strategy. RESULTS Among 43,593 collected samples, 9,313 were positive for the GAS antigen. The main emm type was emm12, followed by emm1, emm6, and emm 4, which were used for distinguishing 90% of the scarlet fever isolated strains. The percentage of emm1 increased from 36% in 2016 to 44% in 2019, whereas the percentage of emm12 decreased from 62% to 50%. Several unusual emm types isolated from scarlet fever patients showed an increase in proportions from 2016 to 2020. These GAS isolates were sensitive to penicillin, ceftriaxone, and vancomycin and were highly resistant to erythromycin and clindamycin. CONCLUSION There was a high incidence of GAS infections during 2016-2020 in Shenzhen, China. The GAS isolates had a high resistance rate to erythromycin and clindamycin; penicillin was the antibiotic of choice for GAS infections. The common emm types were emm12 and emm1. Future studies should investigate the clonal structure and superantigen profiles of the population of GAS isolates associated with scarlet fever.
Collapse
Affiliation(s)
- Lifang Sun
- Laboratory of Shenzhen Children's Hospital, Shenzhen, China
| | - Yunju Xiao
- Division of Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Weilong Huang
- Laboratory of Shenzhen Children's Hospital, Shenzhen, China
| | - Jianwei Lai
- Laboratory of Shenzhen Children's Hospital, Shenzhen, China
| | - Jingwen Lyu
- Division of Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China; Medical Technology School of Xuzhou Medical University, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou, China
| | - Bingjun Ye
- Laboratory of Shenzhen Children's Hospital, Shenzhen, China
| | - Hongyu Chen
- Laboratory of Shenzhen Children's Hospital, Shenzhen, China.
| | - Bing Gu
- Division of Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China; Medical Technology School of Xuzhou Medical University, Xuzhou Key Laboratory of Laboratory Diagnostics, Xuzhou, China.
| |
Collapse
|
4
|
Cubria MB, Delgado J, Shah BJ, Sanson MA, Flores AR. Identification of epidemic scarlet fever group A Streptococcus strains in the paediatric population of Houston, TX, USA. Access Microbiol 2021; 3:000274. [PMID: 34816093 PMCID: PMC8604173 DOI: 10.1099/acmi.0.000274] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 08/23/2021] [Indexed: 11/18/2022] Open
Abstract
Scarlet fever (SF) has recently been associated with group A streptococcal (GAS) strains possessing multidrug resistance and specific streptococcal exotoxins. We screened a local surveillance collection of GAS emm12 strains in Houston, TX, USA for antimicrobial resistance and identified a single isolate matching the antimicrobial resistance pattern previously reported for SF clones. Using whole-genome sequencing and combining genome sequence data derived from national surveillance databases, we identified additional emm12 GAS clones similar to those associated with prior SF outbreaks, emphasizing the need for continued surveillance for epidemic emergence in the USA.
Collapse
Affiliation(s)
- M Belen Cubria
- Division of Infectious Diseases, Department of Pediatrics, McGovern Medical School at the University of Texas Health Sciences Center at Houston, Houston, Texas, USA
| | - Jose Delgado
- Division of Infectious Diseases, Department of Pediatrics, McGovern Medical School at the University of Texas Health Sciences Center at Houston, Houston, Texas, USA
| | - Brittany J Shah
- Division of Infectious Diseases, Department of Pediatrics, McGovern Medical School at the University of Texas Health Sciences Center at Houston, Houston, Texas, USA
| | - Misu A Sanson
- Division of Infectious Diseases, Department of Pediatrics, McGovern Medical School at the University of Texas Health Sciences Center at Houston, Houston, Texas, USA
| | - Anthony R Flores
- Division of Infectious Diseases, Department of Pediatrics, McGovern Medical School at the University of Texas Health Sciences Center at Houston, Houston, Texas, USA.,Center for Antimicrobial Resistance and Microbial Genomics, McGovern Medical School at the University of Texas Health Sciences Center at Houston, Houston, Texas, USA
| |
Collapse
|
5
|
Rao HX, Li DM, Zhao XY, Yu J. Spatiotemporal clustering and meteorological factors affected scarlet fever incidence in mainland China from 2004 to 2017. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 777:146145. [PMID: 33684741 DOI: 10.1016/j.scitotenv.2021.146145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/21/2021] [Accepted: 02/21/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVE To analyze the spatiotemporal dynamic distribution and detect the related meteorological factors of scarlet fever from an ecological perspective, which could provide scientific information for effective prevention and control of this disease. METHODS The data on scarlet fever cases in mainland China were downloaded from the Data Center of the China Public Health Science, while monthly meteorological data were extracted from the official website of the National Bureau of Statistics. Global Moran's I, local Getis-Ord Gi⁎ hotspot statistics, and Kulldorff's retrospective space-time scan statistical analysis were used to detect the spatial and spatiotemporal clusters of scarlet fever across all settings. A spatial panel data model was conducted to estimate the impact of meteorological factors on scarlet fever incidence. RESULTS Scarlet fever in China had obvious spatial, temporal, and spatiotemporal clustering, high-incidence spatial clusters were located mainly in the north and northeast of China. Nine spatiotemporal clusters were identified. A spatial lag fixed effects panel data model was the best fit for regression analysis. After adjusting for spatial individual effects and spatial autocorrelation (ρ = 0.5623), scarlet fever incidence was positively associated with a one-month lag of average temperature, precipitation, and total sunshine hours (all P-values < 0.05). Each 10 °C, 2 cm, and 10 h increase in temperature, precipitation, and sunshine hours, respectively, was associated with a 6.41% increment and 1.04% and 1.41% decrement in scarlet fever incidence, respectively. CONCLUSION The incidence of scarlet fever in China showed an upward trend in recent years. It had obvious spatiotemporal clustering, with the high-risk areas mainly concentrated in the north and northeast of China. Areas with high temperature and with low precipitation and sunshine hours tended to have a higher scarlet fever incidence, and we should pay more attention to prevention and control in these places.
Collapse
Affiliation(s)
- Hua-Xiang Rao
- Department of Public Health and Preventive Medicine, Changzhi Medical College, Changzhi 046000, China.
| | - Dong-Mei Li
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Xiao-Yin Zhao
- Department of Public Health and Preventive Medicine, Changzhi Medical College, Changzhi 046000, China.
| | - Juan Yu
- Department of Basic Medical Sciences, Changzhi Medical College, Changzhi 046000, China.
| |
Collapse
|
6
|
Fay K, Onukwube J, Chochua S, Schaffner W, Cieslak P, Lynfield R, Muse A, Smelser C, Harrison LH, Farley M, Petit S, Alden N, Apostal M, Vagnone PS, Nanduri S, Beall B, Van Beneden CA. Patterns of antibiotic nonsusceptibility among invasive group A Streptococcus infections-United States, 2006-2017. Clin Infect Dis 2021; 73:1957-1964. [PMID: 34170310 DOI: 10.1093/cid/ciab575] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Treatment of severe group A streptococcal infections requires timely and appropriate antibiotic therapy. We describe the epidemiology of antimicrobial-resistant invasive group A streptococcal (iGAS) infections in the U.S. METHODS We analyzed population-based iGAS surveillance data at 10 U.S. sites from 2006-2017. Cases were defined as infection with GAS isolated from normally sterile sites or wounds in patients with necrotizing fasciitis or streptococcal toxic shock syndrome. GAS isolates were emm typed. Antimicrobial susceptibility was determined using broth microdilution or whole genome sequencing. We compared characteristics among patients infected with erythromycin nonsusceptible (EryNS) and clindamycin nonsusceptible (CliNS) strains to those with susceptible infections. We analyzed proportions of EryNS and CliNS among isolates by site, year, risk factors and emm type. RESULTS Overall, 17,179 iGAS cases were reported; 14.5% were EryNS. Among isolates tested for both inducible and constitutive CliNS (2011-2017), 14.6% were CliNS. Most (99.8%) CliNS isolates were EryNS. Resistance was highest in 2017 (EryNS: 22.8%; CliNS: 22.0%). All isolates were susceptible to beta-lactams. EryNS and CliNS infections were most frequent among persons aged 18-34 years and in persons residing in long-term care facilities, experiencing homelessness, incarcerated, or who injected drugs. Patterns varied by site. Patients with nonsusceptible infections were significantly less likely to die. Emm types with >30% EryNS or CliNS included: 77, 58, 11, 83, 92. CONCLUSION Increasing prevalence of EryNS and CliNS iGAS infections in the U.S. is predominantly due to expansion of several emm types. Clinicians should consider local resistance patterns when treating iGAS infections.
Collapse
Affiliation(s)
- Katherine Fay
- Respiratory Diseases Branch, CDC, Atlanta, Georgia, USA
| | | | - Sopio Chochua
- Respiratory Diseases Branch, CDC, Atlanta, Georgia, USA
| | | | - Paul Cieslak
- Public Health Division, Oregon Health Authority, Portland, Oregon, USA
| | - Ruth Lynfield
- Minnesota Department of Health, St. Paul, Minnesota, USA
| | - Alison Muse
- New York State Department of Health, Emerging Infections Program, Rochester, New York, USA
| | - Chad Smelser
- New Mexico Department of Health, Santa Fe, New Mexico, USA
| | - Lee H Harrison
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Monica Farley
- Emerging Infections Program, Emory University, Atlanta, Georgia, USA
| | - Susan Petit
- Connecticut Department of Public Health, Hartford Connecticut, USA
| | - Nisha Alden
- Colorado Department of Public Health and Environment, Denver, Colorado, USA
| | | | | | | | - Bernard Beall
- Respiratory Diseases Branch, CDC, Atlanta, Georgia, USA
| | | |
Collapse
|
7
|
Avire NJ, Whiley H, Ross K. A Review of Streptococcus pyogenes: Public Health Risk Factors, Prevention and Control. Pathogens 2021; 10:248. [PMID: 33671684 PMCID: PMC7926438 DOI: 10.3390/pathogens10020248] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 01/10/2023] Open
Abstract
Streptococcus pyogenes, (colloquially named "group A streptococcus" (GAS)), is a pathogen of public health significance, infecting 18.1 million people worldwide and resulting in 500,000 deaths each year. This review identified published articles on the risk factors and public health prevention and control strategies for mitigating GAS diseases. The pathogen causing GAS diseases is commonly transmitted via respiratory droplets, touching skin sores caused by GAS or through contact with contaminated material or equipment. Foodborne transmission is also possible, although there is need for further research to quantify this route of infection. It was found that GAS diseases are highly prevalent in developing countries, and among indigenous populations and low socioeconomic areas in developed countries. Children, the immunocompromised and the elderly are at the greatest risk of S. pyogenes infections and the associated sequelae, with transmission rates being higher in schools, kindergartens, hospitals and residential care homes. This was attributed to overcrowding and the higher level of social contact in these settings. Prevention and control measures should target the improvement of living conditions, and personal and hand hygiene. Adherence to infection prevention and control practices should be emphasized in high-risk settings. Resource distribution by governments, especially in developed countries, should also be considered.
Collapse
Affiliation(s)
| | | | - Kirstin Ross
- Environmental Health, College of Science and Engineering, Flinders University, Adelaide 5001, Australia; (N.J.A.); (H.W.)
| |
Collapse
|
8
|
Valliammai A, Selvaraj A, Sangeetha M, Sethupathy S, Pandian SK. 5-Dodecanolide inhibits biofilm formation and virulence of Streptococcus pyogenes by suppressing core regulons of virulence. Life Sci 2020; 262:118554. [PMID: 33035584 DOI: 10.1016/j.lfs.2020.118554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 09/27/2020] [Accepted: 09/29/2020] [Indexed: 01/01/2023]
Abstract
This study determined the antibiofilm and antivirulence potential of 5-Dodecanolide (DD) against an exclusive human pathogen Streptococcus pyogenes. Biofilm quantification assay showed antibiofilm efficacy of DD with maximum biofilm inhibition of 85% at 225 μg/mL concentration. Efficacy of antibacterial property of DD (225 μg/mL) was confirmed by CFU analysis and Alamar blue assay. Microscopic analyses evidently confirmed micro-colony formation, biofilm thickness and surface coverage were reduced upon DD treatment. In addition, based on the results of in vitro assays, it was noted that DD impaired the synthesis of surface hydrophobicity, slime, hyaluronic acid, hemolysin and protease production. Interestingly, DD increased the autoaggregation of S. pyogenes hence, facilitated enhanced recognition of clumped bacterial cells for innate immune clearance. The results were further validated by the reduced survival of DD treated S. pyogenes in healthy human blood. Consequently, based on the qPCR analysis DD altered the expression of core regulons srv, ropB, mga and genes associated with biofilm formation and virulence such as speB, dltA, srtB, sagA and slo. Hence, the overall results of the present study for the first time revealed the antibiofilm and antivirulence property of DD against clinically important pathogen S. pyogenes and further clinical investigations are required to assess the therapeutic use of DD.
Collapse
Affiliation(s)
- Alaguvel Valliammai
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi 630003, Tamil Nadu, India
| | - Anthonymuthu Selvaraj
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi 630003, Tamil Nadu, India
| | - Murali Sangeetha
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi 630003, Tamil Nadu, India
| | - Sivasamy Sethupathy
- Department of Biotechnology, Alagappa University, Science Campus, Karaikudi 630003, Tamil Nadu, India; Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | | |
Collapse
|
9
|
Brouwer S, Barnett TC, Ly D, Kasper KJ, De Oliveira DMP, Rivera-Hernandez T, Cork AJ, McIntyre L, Jespersen MG, Richter J, Schulz BL, Dougan G, Nizet V, Yuen KY, You Y, McCormick JK, Sanderson-Smith ML, Davies MR, Walker MJ. Prophage exotoxins enhance colonization fitness in epidemic scarlet fever-causing Streptococcus pyogenes. Nat Commun 2020; 11:5018. [PMID: 33024089 PMCID: PMC7538557 DOI: 10.1038/s41467-020-18700-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 09/01/2020] [Indexed: 02/03/2023] Open
Abstract
The re-emergence of scarlet fever poses a new global public health threat. The capacity of North-East Asian serotype M12 (emm12) Streptococcus pyogenes (group A Streptococcus, GAS) to cause scarlet fever has been linked epidemiologically to the presence of novel prophages, including prophage ΦHKU.vir encoding the secreted superantigens SSA and SpeC and the DNase Spd1. Here, we report the molecular characterization of ΦHKU.vir-encoded exotoxins. We demonstrate that streptolysin O (SLO)-induced glutathione efflux from host cellular stores is a previously unappreciated GAS virulence mechanism that promotes SSA release and activity, representing the first description of a thiol-activated bacterial superantigen. Spd1 is required for resistance to neutrophil killing. Investigating single, double and triple isogenic knockout mutants of the ΦHKU.vir-encoded exotoxins, we find that SpeC and Spd1 act synergistically to facilitate nasopharyngeal colonization in a mouse model. These results offer insight into the pathogenesis of scarlet fever-causing GAS mediated by prophage ΦHKU.vir exotoxins.
Collapse
Affiliation(s)
- Stephan Brouwer
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Timothy C Barnett
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
- Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Nedlands, WA, Australia
| | - Diane Ly
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Katherine J Kasper
- Department of Microbiology and Immunology and the Centre for Human Immunology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - David M P De Oliveira
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Tania Rivera-Hernandez
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Amanda J Cork
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Liam McIntyre
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Magnus G Jespersen
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Johanna Richter
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Benjamin L Schulz
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Gordon Dougan
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Victor Nizet
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, Hong Kong, China
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong Special Administrative Region, Hong Kong, China
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, Guangdong Province, Hong Kong, China
| | - Yuanhai You
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Centre for Disease Control and Prevention, Beijing, 102206, China
| | - John K McCormick
- Department of Microbiology and Immunology and the Centre for Human Immunology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
- Lawson Health Research Institute, London, ON, Canada
| | - Martina L Sanderson-Smith
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Mark R Davies
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Mark J Walker
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia.
| |
Collapse
|
10
|
Vijayakumar K, Manigandan V, Jeyapragash D, Bharathidasan V, Anandharaj B, Sathya M. Eucalyptol inhibits biofilm formation of Streptococcus pyogenes and its mediated virulence factors. J Med Microbiol 2020; 69:1308-1318. [PMID: 32930658 DOI: 10.1099/jmm.0.001253] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Introduction. Streptococcus pyogenes is a diverse virulent synthesis pathogen responsible for invasive systemic infections. Establishment of antibiotic resistance in the pathogen has produced a need for new antibiofilm agents to control the biofilm formation and reduce biofilm-associated resistance development.Aim. The present study investigates the in vitro antibiofilm activity of eucalyptol against S. pyogenes.Methodology. The antibiofilm potential of eucalyptol was assessed using a microdilution method and their biofilm inhibition efficacy was visualized by microscopic analysis. The biochemical assays were performed to assess the influence of eucalyptol on virulence productions. Real-time PCR analysis was performed to evaluate the expression profile of the virulence genes.Results. Eucalyptol showed significant antibiofilm potential in a dose-dependent manner without affecting bacterial growth. Eucalyptol at 300 µg ml-1 (biofilm inhibitory concentration) significantly inhibited the initial stage of biofilm formation in S. pyogenes. However, eucalyptol failed to diminish the mature biofilms of S. pyogenes at biofilm inhibitory concentration and it effectively reduced the biofilm formation on stainless steel, titanium, and silicone surfaces. The biochemical assay results revealed that eucalyptol greatly affects the cell-surface hydrophobicity, auto-aggregation, extracellular protease, haemolysis and hyaluronic acid synthesis. Further, the gene-expression analysis results showed significant downregulation of virulence gene expression upon eucalyptol treatment.Conclusion. The present study suggests that eucalyptol applies its antibiofilm assets by intruding the initial biofilm formation of S. pyogenes. Supplementary studies are needed to understand the mode of action involved in biofilm inhibition.
Collapse
Affiliation(s)
- Karuppiah Vijayakumar
- Centre of advanced study in Marine Biology, Annamalai University, Parangipettai - 608 502, Tamil Nadu, India
| | - Vajravelu Manigandan
- Centre of advanced study in Marine Biology, Annamalai University, Parangipettai - 608 502, Tamil Nadu, India
| | - Danaraj Jeyapragash
- Department of Biotechnology, Karpagam academy of higher education, Eachanari, Coimbatore-641 021, Tamil Nadu, India
| | - Veeraiyan Bharathidasan
- Centre of advanced study in Marine Biology, Annamalai University, Parangipettai - 608 502, Tamil Nadu, India
| | - Balaiyan Anandharaj
- Department of Botany, Annamalai University, Annamalai Nagar, Chidambaram - 608 002, Tamil Nadu, India
| | - Madhavan Sathya
- Department of Botany, Annamalai University, Annamalai Nagar, Chidambaram - 608 002, Tamil Nadu, India
| |
Collapse
|
11
|
Tsai WC, Shen CF, Lin YL, Shen FC, Tsai PJ, Wang SY, Lin YS, Wu JJ, Chi CY, Liu CC. Emergence of macrolide-resistant Streptococcus pyogenes emm12 in southern Taiwan from 2000 to 2019. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2020; 54:1086-1093. [PMID: 32994137 DOI: 10.1016/j.jmii.2020.08.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/26/2020] [Accepted: 08/30/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND Group A Streptococcus (GAS) is an important pathogen causing morbidity and mortality worldwide. Surveillance of resistance and emm type has important implication to provide helpful information on the changing GAS epidemiology and empirical treatment. METHODS To study the emergence of resistant GAS in children with upper respiratory tract infection (URTI), a retrospective study was conducted from 2000 to 2019 in southern Taiwan. Microbiological studies, including antibiotic susceptibility, were performed. GAS emm types and sequences were determined by molecular methods. The population was divided into two separate decades to analyze potential changes over time. The 1st decade was 2000-2009; the 2nd decade was 2010-2019. Multivariate analyses were performed to identify independent risk factors associated with macrolide resistance between these periods. RESULTS A total of 320 GAS from 339 children were enrolled. Most of the children (75%) were under 9 years of age. The most common diagnosis was scarlet fever (225, 66.4%), and the frequency increased from 54.8% in the 1st to 77.9% in the 2nd decade (p < 0.0001). There was a significant increase in resistance to erythromycin and azithromycin from 18.1%, 19.3% in the 1st to 58.4%, 61.0% in the 2nd decade (p < 0.0001). This was associated with clonal expansion of the GAS emm12-ST36 which carrying erm(B) and tet(M) from 3.0% in the 1st to 53.2% in the 2nd decade (p < 0.0001). CONCLUSIONS Significant emergence of macrolide-resistant GAS emm12-ST36 in children supports the need for continuing surveillance and investigation for the clonal virulence.
Collapse
Affiliation(s)
- Wei-Chun Tsai
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Ching-Fen Shen
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Ya-Lan Lin
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Fan-Ching Shen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan
| | - Pei-Jane Tsai
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan City, Taiwan; Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan City, Taiwan
| | - Shu-Ying Wang
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan City, Taiwan; Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Yee-Shin Lin
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan City, Taiwan; Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan City, Taiwan
| | - Jiunn-Jong Wu
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang Ming University, Taipei, Taiwan
| | - Chia-Yu Chi
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City, Taiwan; National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli County, Taiwan; Environmental and Occupational Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Ching-Chuan Liu
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City, Taiwan; Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan City, Taiwan.
| |
Collapse
|
12
|
Increase of emm1 isolates among group A Streptococcus strains causing scarlet fever in Shanghai, China. Int J Infect Dis 2020; 98:305-314. [PMID: 32562850 DOI: 10.1016/j.ijid.2020.06.053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 11/21/2022] Open
Abstract
OBJECTIVE Scarlet fever epidemics caused by group A Streptococcus (GAS) have been ongoing in China since 2011. However, limited data are available on the dynamic molecular characterizations of the epidemic strains. METHOD Epidemiological data of scarlet fever in Shanghai were obtained from the National Notifiable Infectious Disease Surveillance System. Throat swabs of patients with scarlet fever and asymptomatic school-age children were cultured. Illumina sequencing was performed on 39emm1 isolates. RESULTS The annual incidence of scarlet fever was 7.5-19.4/100,000 persons in Shanghai during 2011-2015, with an average GAS carriage rate being 7.6% in school-age children. The proportion ofemm1 GAS strains increased from 3.8% in 2011 to 48.6% in 2014; they harbored a superantigen profile similar to emm12 isolates, except for the speA gene. Two predominant clones, SH001-emm12, and SH002-emm1, circulated in 66.9% of scarlet fever cases and 44.8% of carriers. Genomic analysis showed emm1 isolates throughout China constituted distinct clades, enriched by the presence of mobile genetic elements carrying the multidrug-resistant determinants ermB and tetM and virulence genes speA, speC, and spd1. CONCLUSION A significant increase in the proportion ofemm1 strains occurred in the GAS population, causing scarlet fever in China. Ongoing surveillance is warranted to monitor the dynamic changes of GAS clones.
Collapse
|
13
|
Wang S, Zhao Y, Wang G, Feng S, Guo Z, Gu G. Group A Streptococcus Cell Wall Oligosaccharide-Streptococcal C5a Peptidase Conjugates as Effective Antibacterial Vaccines. ACS Infect Dis 2020; 6:281-290. [PMID: 31872763 DOI: 10.1021/acsinfecdis.9b00347] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Group A streptococcus (GAS) is one of the common Gram-positive pathogenic bacteria accounting for a variety of infectious diseases. Currently, there is no commercial vaccine for GAS. To develop efficient GAS vaccines, synthetic tri-, hexa-, and nonasaccharides of a conserved group A carbohydrate (GAC) were conjugated with an inactive mutant of group A streptococcal C5a peptidase (ScpA), ScpA193, to create bivalent conjugate vaccines, which were compared with the corresponding CRM197 and TT conjugates. Systematic evaluations of these semisynthetic conjugates demonstrated that they could induce robust and comparable T-cell-dependent immune responses in mice. It was further disclosed that antibodies provoked by the ScpA193 conjugates, especially that of hexa- and nonasaccharides, could recognize and bind to GAS cells and mediate GAS opsonophagocytosis in vitro. In vivo evaluations of the hexa- and nonasaccharide-ScpA193 conjugates using a mouse model revealed that immunizing mice with especially the latter conjugate could effectively protect the animals from GAS challenges and GAS-induced pulmonary damage and significantly increase animal survival. Further in vitro studies suggested that the two ScpA193 conjugates could function through activating CD4+ T cells and promoting helper T cells (Th) to differentiate into antigen-specific Th1 and Th2 cells. In conclusion, the nonasaccharide-ScpA193 conjugate was identified as a particularly promising GAS vaccine candidate that is worthy of further investigation and development.
Collapse
Affiliation(s)
- Subo Wang
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Yisheng Zhao
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Guirong Wang
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Shaojie Feng
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Zhongwu Guo
- Department of Chemistry, University of Florida, 214 Leigh Hall, Gainesville, Florida 32611, United States
| | - Guofeng Gu
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| |
Collapse
|
14
|
Kim J, Kim JE, Bae JM. Incidence of Scarlet Fever in Children in Jeju Province, Korea, 2002-2016: An Age-period-cohort Analysis. J Prev Med Public Health 2019; 52:188-194. [PMID: 31163954 PMCID: PMC6549015 DOI: 10.3961/jpmph.18.299] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/02/2019] [Indexed: 11/09/2022] Open
Abstract
Objectives: Outbreaks of scarlet fever in Mexico in 1999, Hong Kong and mainland China in 2011, and England in 2014-2016 have received global attention, and the number of notified cases in Korean children, including in Jeju Province, has also increased since 2010. To identify relevant hypotheses regarding this emerging outbreak, an age-period-cohort (APC) analysis of scarlet fever incidence was conducted among children in Jeju Province, Korea. Methods: This study analyzed data from the nationwide insurance claims database administered by the Korean National Health Insurance Service. The inclusion criteria were children aged ≤14 years residing in Jeju Province, Korea who received any form of healthcare for scarlet fever from 2002 to 2016. The age and year variables were categorized into 5 groups, respectively. After calculating the crude incidence rate (CIR) for age and calendar year groups, the intrinsic estimator (IE) method was applied to conduct the APC analysis. Results: In total, 2345 cases were identified from 2002 to 2016. Scarlet fever was most common in the 0-2 age group, and boys presented more cases than girls. Since the CIR decreased with age between 2002 and 2016, the age and period effect decreased in all observed years. The IE coefficients suggesting a cohort effect shifted from negative to positive in 2009. Conclusions: The results suggest that the recent outbreak of scarlet fever among children in Jeju Province might be explained through the cohort effect. As children born after 2009 showed a higher risk of scarlet fever, further descriptive epidemiological studies are needed.
Collapse
Affiliation(s)
- Jinhee Kim
- Jeju Center for Infection Control, Jeju, Korea
| | - Ji-Eun Kim
- Jeju Center for Infection Control, Jeju, Korea
| | - Jong-Myon Bae
- Jeju Center for Infection Control, Jeju, Korea.,Department of Preventive Medicine, Jeju National University School of Medicine, Jeju, Korea
| |
Collapse
|
15
|
Lu JY, Chen ZQ, Liu YH, Liu WH, Ma Y, Li TG, Zhang ZB, Yang ZC. Effect of meteorological factors on scarlet fever incidence in Guangzhou City, Southern China, 2006-2017. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 663:227-235. [PMID: 30711589 DOI: 10.1016/j.scitotenv.2019.01.318] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/19/2018] [Accepted: 01/24/2019] [Indexed: 06/09/2023]
Abstract
OBJECTIVE To explore the relationship between meteorological factors and scarlet fever incidence from 2006 to 2017 in Guangzhou, the largest subtropical city of Southern China, and assist public health prevention and control measures. METHODS Data for weekly scarlet fever incidence and meteorological variables from 2006 to 2017 in Guangzhou were collected from the National Notifiable Disease Report System (NNDRS) and the Guangzhou Meteorological Bureau (GZMB). Distributed lag nonlinear models (DLNMs) were conducted to estimate the effect of meteorological factors on weekly scarlet fever incidence in Guangzhou. RESULTS We observed nonlinear effects of temperature, relative humidity, and wind velocity. The risk was the highest when the weekly mean temperature was 31 °C during lag week 14, yielding a relative risk (RR) of 1.48 (95% CI: 1.01-2.17). When relative humidity was 43.5% during lag week 0, the RR was 1.49 (95% CI: 1.04-2.12); the highest RR (1.55, 95% CI: 1.20-1.99) was reached when relative humidity was 93.5% during lag week 20. When wind velocity was 4.4 m/s during lag week 13, the RR was highest at 3.41 (95% CI: 1.57-7.44). Positive correlations were observed among weekly temperature ranges and atmospheric pressure with scarlet fever incidence, while a negative correlation was detected with aggregate rainfall. The cumulative extreme effect of meteorological variables on scarlet fever incidence was statistically significant, except for the high effect of wind velocity. CONCLUSION Weekly mean temperature, relative humidity, and wind velocity had double-trough effects on scarlet fever incidence; high weekly temperature range, high atmospheric pressure, and low aggregate rainfall were risk factors for scarlet fever morbidity. Our findings provided preliminary, but fundamental, information that may be useful for a better understanding of epidemic trends of scarlet fever and for developing an early warning system. Laboratory surveillance for scarlet fever should be strengthened in the future.
Collapse
Affiliation(s)
- Jian-Yun Lu
- Department of Infectious Disease Control and Prevention, Guangzhou Center For Disease Control and Prevention, Baiyun District Qi De Road, Guangzhou, Guangdong Province 510440, China
| | - Zong-Qiu Chen
- Department of Infectious Disease Control and Prevention, Guangzhou Center For Disease Control and Prevention, Baiyun District Qi De Road, Guangzhou, Guangdong Province 510440, China
| | - Yan-Hui Liu
- Department of Infectious Disease Control and Prevention, Guangzhou Center For Disease Control and Prevention, Baiyun District Qi De Road, Guangzhou, Guangdong Province 510440, China
| | - Wen-Hui Liu
- Department of Infectious Disease Control and Prevention, Guangzhou Center For Disease Control and Prevention, Baiyun District Qi De Road, Guangzhou, Guangdong Province 510440, China
| | - Yu Ma
- Department of Infectious Disease Control and Prevention, Guangzhou Center For Disease Control and Prevention, Baiyun District Qi De Road, Guangzhou, Guangdong Province 510440, China
| | - Tie-Gang Li
- Department of Infectious Disease Control and Prevention, Guangzhou Center For Disease Control and Prevention, Baiyun District Qi De Road, Guangzhou, Guangdong Province 510440, China.
| | - Zhou-Bin Zhang
- Guangzhou Center For Disease Control and Prevention, Baiyun District Qi De Road, Guangzhou, Guangdong Province 510440, China
| | - Zhi-Cong Yang
- Guangzhou Center For Disease Control and Prevention, Baiyun District Qi De Road, Guangzhou, Guangdong Province 510440, China
| |
Collapse
|
16
|
Zhang Q, Liu W, Ma W, Zhang L, Shi Y, Wu Y, Zhu Y, Zhou M. Impact of meteorological factors on scarlet fever in Jiangsu province, China. Public Health 2018; 161:59-66. [DOI: 10.1016/j.puhe.2018.02.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 01/27/2018] [Accepted: 02/18/2018] [Indexed: 10/14/2022]
|
17
|
Liu Y, Chan TC, Yap LW, Luo Y, Xu W, Qin S, Zhao N, Yu Z, Geng X, Liu SL. Resurgence of scarlet fever in China: a 13-year population-based surveillance study. THE LANCET. INFECTIOUS DISEASES 2018; 18:903-912. [PMID: 29858148 PMCID: PMC7185785 DOI: 10.1016/s1473-3099(18)30231-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 03/09/2018] [Accepted: 03/27/2018] [Indexed: 12/25/2022]
Abstract
Background A re-emergence of scarlet fever has been noted in Hong Kong, South Korea, and England, UK, since 2008. China also had a sudden increase in the incidence of the disease in 2011. In this study, we aimed to assess the epidemiological changes before and after the upsurge. We also aimed to explore the reasons for the upsurge in disease in 2011, the epidemiological factors that contributed to it, and assess how these could be managed to prevent future epidemics. Methods In this observational study, we extracted the epidemiological data for all cases of scarlet fever between 2004 and 2016 in China from the Chinese Public Health Science Data Center, the official website of National Health Commission of the People's Republic of China, and the National Notifiable Infectious Disease Surveillance System. These data had been collected from 31 provinces and regions in China and included geographical, seasonal, and patient demographic information. We used descriptive statistical methods and joinpoint regression to examine the spatiotemporal patterns and annual percentage change in incidence of the upsurge of disease across China. Findings Between Jan 1, 2004, and Dec 31, 2016, 502 723 cases of scarlet fever, with ten fatalities, were reported in China, resulting in an annualised average incidence of 2·8807 per 100 000 people. The annual average incidence increased from 1·457 per 100 000 people in 2004 to 4·7638 per 100 000 people in 2011 (incidence rate ratio [IRR] 3·27, 95% CI 3·22–3·32; p<0·0001), peaking in 2015 (5·0092 per 100 000 people). The annual incidence after the 2011 upsurge of scarlet fever, between 2011 and 2016, was twice the average annual incidence reported between 2004 and 2010 (4·0125 vs 1·9105 per 100 000 people; IRR 2·07, 95% CI 2·06–2·09; p<0·0001). Most cases were distributed in the north, northeast, and northwest of the country. Semi-annual patterns were observed in May–June and November–December. The median age at onset of disease was 6 years, with the annual highest incidence observed in children aged 6 years (49·4675 per 100 000 people). The incidence among boys and men was 1·54 greater than that among girls and women before the upsurge, and 1·51 times greater after the upsurge (p<0·0001 for both). The median time from disease onset to reporting of the disease was shorter after the upsurge in disease than before (3 days vs 4 days; p=0·001). Interpretation To our knowledge, this is the largest epidemiological study of scarlet fever worldwide. The patterns of infection across the country were similar before and after the 2011 upsurge, but the incidence of disease was substantially higher after 2011. Prevention and control strategies being implemented in response to this threat include improving disease surveillance and emergency response systems. In particular, the school absenteeism and symptom monitoring and early-warning system will contribute to the early diagnosis and report of the scarlet fever. This approach will help combat scarlet fever and other childhood infectious diseases in China. Funding National Key R&D Plan of China Science and key epidemiological disciplines of Zhejiang Provincial Health of China.
Collapse
Affiliation(s)
- Yonghong Liu
- School of Engineering, Sun Yat-sen University, Guangzhou, Guangdong Province, China; Guangdong Provincial Key Laboratory of Intelligent Transport System, Guangzhou, Guangdong Province, China
| | - Ta-Chien Chan
- Research Center for Humanities and Social Sciences, Academia Sinica, Taipei, Taiwan
| | - Li-Wei Yap
- Research Center for Humanities and Social Sciences, Academia Sinica, Taipei, Taiwan
| | - Yinping Luo
- School of Engineering, Sun Yat-sen University, Guangzhou, Guangdong Province, China; Guangdong Provincial Key Laboratory of Intelligent Transport System, Guangzhou, Guangdong Province, China
| | - Weijia Xu
- School of Engineering, Sun Yat-sen University, Guangzhou, Guangdong Province, China; Guangdong Provincial Key Laboratory of Intelligent Transport System, Guangzhou, Guangdong Province, China
| | - Shuwen Qin
- Department of Infectious Diseases, Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, Zhejiang Province, China
| | - Na Zhao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zhao Yu
- Department of Infectious Diseases, Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, Zhejiang Province, China
| | - Xingyi Geng
- Emergency Offices, Jinan Centre for Disease Control and Prevention, Jinan, Shandong Province, China
| | - She-Lan Liu
- Department of Infectious Diseases, Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
18
|
Lapek JD, Mills RH, Wozniak JM, Campeau A, Fang RH, Wei X, van de Groep K, Perez-Lopez A, van Sorge NM, Raffatellu M, Knight R, Zhang L, Gonzalez DJ. Defining Host Responses during Systemic Bacterial Infection through Construction of a Murine Organ Proteome Atlas. Cell Syst 2018; 6:579-592.e4. [PMID: 29778837 PMCID: PMC7868092 DOI: 10.1016/j.cels.2018.04.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 01/30/2018] [Accepted: 04/12/2018] [Indexed: 12/18/2022]
Abstract
Group A Streptococcus (GAS) remains one of the top 10 deadliest human pathogens worldwide despite its sensitivity to penicillin. Although the most common GAS infection is pharyngitis (strep throat), it also causes life-threatening systemic infections. A series of complex networks between host and pathogen drive invasive infections, which have not been comprehensively mapped. Attempting to map these interactions, we examined organ-level protein dynamics using a mouse model of systemic GAS infection. We quantified over 11,000 proteins, defining organ-specific markers for all analyzed tissues. From this analysis, an atlas of dynamically regulated proteins and pathways was constructed. Through statistical methods, we narrowed organ-specific markers of infection to 34 from the defined atlas. We show these markers are trackable in blood of infected mice, and a subset has been observed in plasma samples from GAS-infected clinical patients. This proteomics-based strategy provides insight into host defense responses, establishes potentially useful targets for therapeutic intervention, and presents biomarkers for determining affected organs during bacterial infection.
Collapse
Affiliation(s)
- John D Lapek
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Robert H Mills
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Computer Science and Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Center for Microbiome Innovation, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Jacob M Wozniak
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Anaamika Campeau
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Ronnie H Fang
- Department of Nanoengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Xiaoli Wei
- Department of Nanoengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Kirsten van de Groep
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Heidelberglaan 100, G04.614, 3584 CX Utrecht, the Netherlands; Department of Intensive Care Medicine, University Medical Center Utrecht, Heidelberglaan 100, G04.614, 3584 CX Utrecht, the Netherlands
| | - Araceli Perez-Lopez
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Nina M van Sorge
- Department of Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, G04.614, 3584 CX Utrecht, the Netherlands
| | - Manuela Raffatellu
- Chiba University-UC San Diego Center for Mucosal Immunology, Allergy, and Vaccines, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Center for Microbiome Innovation, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Rob Knight
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Department of Computer Science and Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Center for Microbiome Innovation, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Liangfang Zhang
- Department of Nanoengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - David J Gonzalez
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA; Center for Microbiome Innovation, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
19
|
Shen Y, Cai J, Davies MR, Zhang C, Gao K, Qiao D, Jiang H, Yao W, Li Y, Zeng M, Chen M. Identification and Characterization of Fluoroquinolone Non-susceptible Streptococcus pyogenes Clones Harboring Tetracycline and Macrolide Resistance in Shanghai, China. Front Microbiol 2018; 9:542. [PMID: 29628918 PMCID: PMC5876283 DOI: 10.3389/fmicb.2018.00542] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 03/09/2018] [Indexed: 12/18/2022] Open
Abstract
Streptococcus pyogenes, also known as group A Streptococcus (GAS), is one of the top 10 infectious causes of death worldwide. Macrolide and tetracycline resistant GAS has emerged as a major health concern in China coinciding with an ongoing scarlet fever epidemic. Furthermore, increasing rates of fluoroquinolone (FQ) non-susceptibility within GAS from geographical regions outside of China has also been reported. Fluoroquinolones are the third most commonly prescribed antibiotic in China and is an therapeutic alternative for multi-drug resistant GAS. The purpose of this study was to investigate the epidemiological and molecular features of GAS fluoroquinolone (FQ) non-susceptibility in Shanghai, China. GAS (n = 2,258) recovered between 2011 and 2016 from children and adults were tested for FQ-non-susceptibility. Efflux phenotype and mutations in parC, parE, gyrA, and gyrB were investigated and genetic relationships were determined by emm typing, pulsed-field gel electrophoresis and phylogenetic analysis. The frequency of GAS FQ-non-susceptibility was 1.3% (30/2,258), with the phenotype more prevalent in GAS isolated from adults (14.3%) than from children (1.2%). Eighty percent (24/30) of FQ-non-susceptible isolates were also resistant to both macrolides (ermB) and tetracycline (tetM) including the GAS sequence types emm12, emm6, emm11, and emm1. Genomic fingerprinting analysis of the 30 isolates revealed that non-susceptibility may arise in various genetic backgrounds even within a single emm type. No efflux phenotype was observed in FQ non-susceptible isolates, and molecular analysis of the quinolone resistance-determining regions (QRDRs) identified several sequence polymorphisms in ParC and ParE, and none in GyrA and GyrB. Expansion of this analysis to 152 publically available GAS whole genome sequences from Hong Kong predicted 7.9% (12/152) of Hong Kong isolates harbored a S79F ParC mutation, of which 66.7% (8/12) were macrolide and tetracycline resistant. Phylogenetic analysis of the parC QRDR sequences suggested the possibility that FQ resistance may be acquired through inter-species lateral gene transfer. This study reports the emergence of macrolide, tetracycline, and fluoroquinolone multidrug-resistant clones across several GAS emm types including emm1 and emm12, warranting continual surveillance given the extensive use of fluoroquinolones in clinical use.
Collapse
Affiliation(s)
- Yinfang Shen
- Department of Infectious Diseases, Children's Hospital of Fudan University, Shanghai, China.,Department of Pediatrics, Jinshan Hospital, Fudan University, Shanghai, China
| | - Jiehao Cai
- Department of Infectious Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Mark R Davies
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Chi Zhang
- Department of Microbiology, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Kun Gao
- Department of Clinical Laboratory, Xuhui Dahua Hospital, Shanghai, China
| | - Dan Qiao
- Department of Clinical Laboratory, Ruijin Hospital (North), Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Haoqin Jiang
- Department of Laboratory Medicine, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
| | - Weilei Yao
- Department of Infectious Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Yuefang Li
- Department of Infectious Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Mei Zeng
- Department of Infectious Diseases, Children's Hospital of Fudan University, Shanghai, China
| | - Mingliang Chen
- Department of Microbiology, Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China.,Department of Microbiology, Shanghai Institutes of Preventive Medicine, Shanghai, China
| |
Collapse
|
20
|
Park DW, Kim SH, Park JW, Kim MJ, Cho SJ, Park HJ, Jung SH, Seo MH, Lee YS, Kim BH, Min H, Lee SY, Ha DR, Kim ES, Hong Y, Chung JK. Incidence and Characteristics of Scarlet Fever, South Korea, 2008-2015. Emerg Infect Dis 2018; 23:658-661. [PMID: 28322696 PMCID: PMC5367408 DOI: 10.3201/eid2304.160773] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The incidence rate for scarlet fever in South Korea is rising. During 2008–2015, we collected group A Streptococcus isolates and performed emm and exotoxin genotyping and disk-diffusion antimicrobial tests. Scarlet fever in South Korea was most closely associated with emm types emm4, emm28, emm1, and emm3. In 2015, tetracycline resistance started increasing.
Collapse
|
21
|
Scarlet Fever Epidemic in China Caused by Streptococcus pyogenes Serotype M12: Epidemiologic and Molecular Analysis. EBioMedicine 2018; 28:128-135. [PMID: 29342444 PMCID: PMC5835554 DOI: 10.1016/j.ebiom.2018.01.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/10/2018] [Accepted: 01/10/2018] [Indexed: 12/31/2022] Open
Abstract
From 2011, Hong Kong and mainland China have witnessed a sharp increase in reported cases, with subsequent reports of epidemic scarlet fever in North Asia and the United Kingdom. Here we examine epidemiological data and investigate the genomic context of the predominantly serotype M12 Streptococcus pyogenes scarlet fever isolates from mainland China. Incident case data was obtained from the Chinese Nationwide Notifiable Infectious Diseases Reporting Information System. The relative risk of scarlet fever in recent outbreak years 2011–2016 was calculated using the median age-standardised incidence rate, compared to years 2003–2010 prior this outbreak. Whole genome sequencing was performed on 32 emm12 scarlet fever isolates and 13 emm12 non-scarlet fever isolates collected from different geographic regions of China, and compared with 203 published emm12 S. pyogenes genomes predominantly from scarlet fever outbreaks in Hong Kong (n = 134) and the United Kingdom (n = 63). We found during the outbreak period (2011–2016), the median age-standardised incidence in China was 4.14/100,000 (95% confidence interval (CI) 4.11-4.18), 2.62-fold higher (95% CI 2.57-2.66) than that of 1.58/100,000 (95% CI 1.56-1.61) during the baseline period prior to the outbreak (2003 − 2010). Highest incidence was reported for children 5 years of age (80.5/100,000). Streptococcal toxin encoding prophage φHKU.vir and φHKU.ssa in addition to the macrolide and tetracycline resistant ICE-emm12 and ICE-HKU397 elements were found amongst mainland China multi-clonal emm12 isolates suggesting a role in selection and expansion of scarlet fever lineages in China. Global dissemination of toxin encoded prophage has played a role in the expansion of scarlet fever emm12 clones. These findings emphasize the role of comprehensive surveillance approaches for monitoring of epidemic human disease. The study used all epidemiological data from 1950 to 2016, and describe increased incidence levels for the current outbreak. Using global emm12 scarlet fever isolate genome sequences, the multiclonal nature of the outbreak was confirmed. Global surveillance of GAS toxin and drug resistance mobile genes in the scarlet fever outbreak is necessary.
Our study provides a detailed report of scarlet fever epidemiology and genomic analysis for mainland China since the 2011 outbreak began. We also provide a comprehensive comparison of the genomic relationship of scarlet fever outbreak emm12 isolates from China, Hong Kong and the United Kingdom, countries experiencing an unparalleled re-emergence of scarlet fever. Our observations implicate an important role for GAS toxin and drug resistance related mobile genes in the outbreak and reveal different evolutionary patterns, and identify common themes relating to the acquisition of toxin carrying prophage elements. This work emphasizes the importance of comprehensive nationwide surveillance to track scarlet fever, GAS emm types, exotoxin-encoding prophage and antibiotic resistance genes in a global context.
Collapse
|
22
|
Zhang Q, Liu W, Ma W, Shi Y, Wu Y, Li Y, Liang S, Zhu Y, Zhou M. Spatiotemporal epidemiology of scarlet fever in Jiangsu Province, China, 2005-2015. BMC Infect Dis 2017; 17:596. [PMID: 28854889 PMCID: PMC5576110 DOI: 10.1186/s12879-017-2681-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 08/14/2017] [Indexed: 11/15/2022] Open
Abstract
Background A marked increase in the incidence rate of scarlet fever imposed a considerable burden on the health of children aged 5 to 15 years. The main purpose of this study was to depict the spatiotemporal epidemiological characteristics of scarlet fever in Jiangsu Province, China in order to develop and implement effective scientific prevention and control strategies. Methods Smoothed map was used to demonstrate the spatial distribution of scarlet fever in Jiangsu Province. In addition, a retrospective space-time analysis based on a discrete Poisson model was utilized to detect clusters of scarlet fever from 2005 to 2015. Results During the years 2005–2015, a total of 15,873 scarlet fever cases occurred in Jiangsu Province, with an average annual incidence rate of 1.87 per 100,000. A majority of the cases (83.67%) occurred in children aged 3 to 9 years. Each year, two seasonal incidence peaks were observed, the higher occurring between March and July, the lower between November and the following January. The incidence in the southern regions of the province was generally higher than that in the northern regions. Seven clusters, all of which occurred during incidence peaks, were detected via space-time scan statistical analysis. The most likely cluster and one of the secondary clusters were detected in the southern and northern high endemic regions, respectively. Conclusion The prevalence of scarlet fever in Jiangsu Province had a marked seasonality variation and was relatively endemic in some regions. Children aged 3 to 9 years were the major victims of this disease, and kindergartens and primary schools were the focus of surveillance and control. Targeted strategies and measures should be taken to reduce the incidence.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Wendong Liu
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China
| | - Wang Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Yingying Shi
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China
| | - Ying Wu
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China
| | - Yuan Li
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China
| | - Shuyi Liang
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China
| | - Yefei Zhu
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Minghao Zhou
- Department of Epidemiology and Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, 211166, China. .,Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China.
| |
Collapse
|
23
|
Chen M, Wang W, Tu L, Zheng Y, Pan H, Wang G, Chen Y, Zhang X, Zhu L, Chen J, Chen M. An emm5 Group A Streptococcal Outbreak Among Workers in a Factory Manufacturing Telephone Accessories. Front Microbiol 2017; 8:1156. [PMID: 28680421 PMCID: PMC5478724 DOI: 10.3389/fmicb.2017.01156] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 06/07/2017] [Indexed: 01/06/2023] Open
Abstract
Ranked among the top10 infectious causes of death worldwide, group A Streptococcus (GAS) causes small- and large-scale outbreaks, depending on the trigger as transmission of a GAS strain or expansion of predominant clones. In China, GAS infections other than scarlet fever are not notifiable. In Shanghai, an epidemiological investigation was initiated after two successive severe pneumonia cases with one death in a digital factory, from where outbreaks are less widely reported. The investigation was performed using emm typing, pulsed-field gel electrophoresis (PFGE) typing, superantigen profiling, and genome analysis. This enabled characterization of relatedness among the outbreak isolates and identification of the mobile genetic elements present. Among 57 patients with respiratory symptoms investigated in the factory, emm5 GAS strains were isolated from 8 patients. The eight GAS infection cases comprising one fatal severe pneumonia case, six influenza-like illness cases, and one pharyngitis case. Two risk factors were identified: adult with an age of 18–20 years and close contact with a GAS patient or carrier. GAS attack rate was 14.0% (8/57), and GAS carriage rate was probably around 2.7% (14/521) based on surveys in two nearby districts. All the 10 outbreak associated isolates were assigned to emm5 and sequence type ST-99 (emm5/ST-99), harbored superantigen genes speC, speG, and smeZ, and were assigned to two similar PFGE patterns (clones). Among the outbreak associated isolates, all carried ermA with resistance to erythromycin and inducible resistance to clindamycin, and eight (80%) carried a tetM gene with resistance to tetracycline. Among the 14 carriage isolates, 12 were emm12/ST-36, and 2 were emm1/ST-28, all with superantigen genes speC, speG, ssa, and smeZ. All the carriage isolates harbored ermB and tetM with resistance to erythromycin, clindamycin, and tetracycline. Genome analysis showed the two outbreak clones were closely related and possessed new prophages carrying virulence gene sdc and antibiotic resistance genes of ermA and tetM, which were not found in the emm5 reference strain Manfredo. This is the first report of a GAS outbreak in this type of workplace. The outbreak was caused by two closely related emm5 clones that differed from the predominant emm types circulating in China.
Collapse
Affiliation(s)
- Mingliang Chen
- Shanghai Municipal Center for Disease Control and PreventionShanghai, China.,Shanghai Institutes of Preventive MedicineShanghai, China
| | - Wenqing Wang
- Pudong New Area Center for Disease Control and PreventionShanghai, China
| | - Lihong Tu
- Shanghai Municipal Center for Disease Control and PreventionShanghai, China
| | - Yaxu Zheng
- Shanghai Municipal Center for Disease Control and PreventionShanghai, China
| | - Hao Pan
- Shanghai Municipal Center for Disease Control and PreventionShanghai, China
| | - Gangyi Wang
- Shanghai Municipal Center for Disease Control and PreventionShanghai, China
| | - Yanxin Chen
- Shanghai Municipal Center for Disease Control and PreventionShanghai, China
| | - Xi Zhang
- Shanghai Municipal Center for Disease Control and PreventionShanghai, China
| | - Linying Zhu
- Pudong New Area Center for Disease Control and PreventionShanghai, China
| | - Jian Chen
- Shanghai Municipal Center for Disease Control and PreventionShanghai, China
| | - Min Chen
- Shanghai Municipal Center for Disease Control and PreventionShanghai, China
| |
Collapse
|
24
|
Lu B, Fang Y, Fan Y, Chen X, Wang J, Zeng J, Li Y, Zhang Z, Huang L, Li H, Li D, Zhu F, Cui Y, Wang D. High Prevalence of Macrolide-resistance and Molecular Characterization of Streptococcus pyogenes Isolates Circulating in China from 2009 to 2016. Front Microbiol 2017. [PMID: 28642756 PMCID: PMC5463034 DOI: 10.3389/fmicb.2017.01052] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Streptococcus pyogenes, or group A Streptococcus, is a pathogen responsible for a wide range of clinical manifestations, from mild skin and soft tissue infections and pharyngitis to severe diseases. Its epidemiological characteristics should be comprehensively under surveillance for regulating the national prevention and treatment practice. Herein, a total of 140 S. pyogenes, including 38 invasive and 102 noninvasive isolates, were collected from infected patients in 10 tertiary general hospitals from 7 cities/provinces in China during the years 2009–2016. All strains were characterized by classical and molecular techniques for its emm types/subtypes, virulent factors and antibiotic resistance profiling. Of 140 isolates, 15 distinct emm types and 31 subtypes were detected, dominated by emm12 (60 isolates, 42.9%), emm1(43, 30.7%), and emm89 (10, 7.1%), and 8 new emm variant subtypes were identified. All strains, invasive or not, harbored the superantigenic genes, speB and slo. The other virulence genes, smeZ, speF, and speC accounted for 96.4, 91.4, and 87.1% of collected isolates, respectively. Further multilocus sequence typing (MLST) placed all strains into 22 individual sequence types (STs), including 4 newly-identified STs (11, 7.9%). All isolates were phenotypically susceptible to penicillin, ampicillin, cefotaxime, and vancomycin, whereas 131(93.5%), 132(94.2%), and 121(86.4%) were resistant to erythromycin, clindamycin, and tetracycline, respectively. Our study highlights high genotypic diversity and high prevalence of macrolide resistance of S. pyogenes among clinical isolates circulating in China.
Collapse
Affiliation(s)
- Binghuai Lu
- Department of Laboratory Medicine, Civil Aviation General Hospital, Peking University Civil Aviation School of Clinical MedicineBeijing, China
| | - Yujie Fang
- State Key Laboratory for Infectious Disease Prevention and Control, Chinese Centre for Disease Control and Prevention, National Institute for Communicable Disease Control and PreventionBeijing, China.,Collaborative Innovation Centre for Diagnosis and Treatment of Infectious DiseasesHangzhou, China
| | - Yanyan Fan
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, China-Japan Friendship HospitalBeijing, China
| | - Xingchun Chen
- Department of Laboratory Medicine, People's Hospital of Guangxi Zhuang Autonomous RegionNanning, China
| | - Junrui Wang
- Department of Clinical Laboratory, Affiliated Hospital of Inner Mongolia Medical UniversityHohhot, China
| | - Ji Zeng
- Department of Laboratory Medicine, Wuhan Pu Ai Hospital of Huazhong, University of Science and TechnologyWuhan, China
| | - Yi Li
- Department of Laboratory Medicine, Henan Provincial People's HospitalZhengzhou, China
| | - Zhijun Zhang
- Department of Laboratory Medicine, Tai'an City Central Hospital (Tai'an)Shandong, China
| | - Lei Huang
- Department of Laboratory Medicine, First Hospital, Peking UniversityBeijing, China
| | - Hongxia Li
- Department of Laboratory Medicine, Chengdu First People's Hospital (Chengdu)Sichuan, China
| | - Dong Li
- Department of Laboratory Medicine, Civil Aviation General Hospital, Peking University Civil Aviation School of Clinical MedicineBeijing, China
| | - Fengxia Zhu
- Department of Laboratory Medicine, Civil Aviation General Hospital, Peking University Civil Aviation School of Clinical MedicineBeijing, China
| | - Yanchao Cui
- Department of Laboratory Medicine, Civil Aviation General Hospital, Peking University Civil Aviation School of Clinical MedicineBeijing, China
| | - Duochun Wang
- State Key Laboratory for Infectious Disease Prevention and Control, Chinese Centre for Disease Control and Prevention, National Institute for Communicable Disease Control and PreventionBeijing, China.,Collaborative Innovation Centre for Diagnosis and Treatment of Infectious DiseasesHangzhou, China
| |
Collapse
|
25
|
The Association between Environmental Factors and Scarlet Fever Incidence in Beijing Region: Using GIS and Spatial Regression Models. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13111083. [PMID: 27827946 PMCID: PMC5129293 DOI: 10.3390/ijerph13111083] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 10/18/2016] [Accepted: 10/21/2016] [Indexed: 11/16/2022]
Abstract
(1) Background: Evidence regarding scarlet fever and its relationship with meteorological, including air pollution factors, is not very available. This study aimed to examine the relationship between ambient air pollutants and meteorological factors with scarlet fever occurrence in Beijing, China. (2) Methods: A retrospective ecological study was carried out to distinguish the epidemic characteristics of scarlet fever incidence in Beijing districts from 2013 to 2014. Daily incidence and corresponding air pollutant and meteorological data were used to develop the model. Global Moran’s I statistic and Anselin’s local Moran’s I (LISA) were applied to detect the spatial autocorrelation (spatial dependency) and clusters of scarlet fever incidence. The spatial lag model (SLM) and spatial error model (SEM) including ordinary least squares (OLS) models were then applied to probe the association between scarlet fever incidence and meteorological including air pollution factors. (3) Results: Among the 5491 cases, more than half (62%) were male, and more than one-third (37.8%) were female, with the annual average incidence rate 14.64 per 100,000 population. Spatial autocorrelation analysis exhibited the existence of spatial dependence; therefore, we applied spatial regression models. After comparing the values of R-square, log-likelihood and the Akaike information criterion (AIC) among the three models, the OLS model (R2 = 0.0741, log likelihood = −1819.69, AIC = 3665.38), SLM (R2 = 0.0786, log likelihood = −1819.04, AIC = 3665.08) and SEM (R2 = 0.0743, log likelihood = −1819.67, AIC = 3665.36), identified that the spatial lag model (SLM) was best for model fit for the regression model. There was a positive significant association between nitrogen oxide (p = 0.027), rainfall (p = 0.036) and sunshine hour (p = 0.048), while the relative humidity (p = 0.034) had an adverse association with scarlet fever incidence in SLM. (4) Conclusions: Our findings indicated that meteorological, as well as air pollutant factors may increase the incidence of scarlet fever; these findings may help to guide scarlet fever control programs and targeting the intervention.
Collapse
|
26
|
Viszwapriya D, Subramenium GA, Prithika U, Balamurugan K, Pandian SK. Betulin inhibits virulence and biofilm ofStreptococcus pyogenesby suppressingropBcore regulon,sagAanddltA. Pathog Dis 2016; 74:ftw088. [DOI: 10.1093/femspd/ftw088] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2016] [Indexed: 12/21/2022] Open
|
27
|
Wu S, Peng X, Yang Z, Ma C, Zhang D, Wang Q, Yang P. Estimated burden of group a streptococcal pharyngitis among children in Beijing, China. BMC Infect Dis 2016; 16:452. [PMID: 27566251 PMCID: PMC5002216 DOI: 10.1186/s12879-016-1775-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 08/11/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Burden of Group A streptococcus (GAS) pharyngitis is scarce in developing countries, still unknown in China. The objective of this study was to determine the incidence of clinical cases of pharyngitis and GAS culture-positive pharyngitis, and their outpatient visits among children aged 0-14 years in Beijing, the capital of China. METHODS Multiplier model was used to estimate the numbers of pharyngitis cases, based on reported numbers of clinical cases and GAS culture-positive rates from GAS surveillances in Beijing, consultation rate, population coverage of GAS surveillances, sampling success rate, and test sensitivity of GAS culture from previous studies, surveys and surveillances. RESULTS An average of 29804.6 (95 % CI: 28333.2-31276.0) clinical cases of pharyngitis per 100,000 person-years occurred among children aged 0-14 years, resulting in correspondingly 19519.0 (95 % CI: 18516.7-20521.2) outpatient visits per 100,000 person-years from 2012 to 2014 in Beijing. On average, there were 2685.1 (95 % CI: 2039.6-3330.6) GAS culture-positive cases of pharyngitis and 1652.7 (95 % CI: 1256.5-2049.0) outpatient visits per 100,000 person-years during the same period. The estimated burden of GAS pharyngitis was significantly higher than that of scarlet fever. Children aged 5-14 years had a higher burden of GAS pharyngitis than those aged 0-4 years. CONCLUSIONS The present data suggests that GAS pharyngitis is very common in children in China. Further studies and surveillances are needed to monitor trends and the effectiveness of control measures.
Collapse
Affiliation(s)
- Shuangsheng Wu
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control, No. 16 Hepingli Middle Street, Dongcheng District, Beijing, 100013, China.,School of Public Health, Captial Medical University, Beijing, China
| | - Xiaomin Peng
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control, No. 16 Hepingli Middle Street, Dongcheng District, Beijing, 100013, China.,School of Public Health, Captial Medical University, Beijing, China
| | - Zuyao Yang
- Division of Epidemiology, The Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, SAR China
| | - Chunna Ma
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control, No. 16 Hepingli Middle Street, Dongcheng District, Beijing, 100013, China.,School of Public Health, Captial Medical University, Beijing, China
| | - Daitao Zhang
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control, No. 16 Hepingli Middle Street, Dongcheng District, Beijing, 100013, China.,School of Public Health, Captial Medical University, Beijing, China
| | - Quanyi Wang
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control, No. 16 Hepingli Middle Street, Dongcheng District, Beijing, 100013, China.,School of Public Health, Captial Medical University, Beijing, China
| | - Peng Yang
- Institute for Infectious Disease and Endemic Disease Control, Beijing Center for Disease Prevention and Control, No. 16 Hepingli Middle Street, Dongcheng District, Beijing, 100013, China. .,School of Public Health, Captial Medical University, Beijing, China.
| |
Collapse
|
28
|
Spatiotemporal Pattern Analysis of Scarlet Fever Incidence in Beijing, China, 2005-2014. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13010131. [PMID: 26784213 PMCID: PMC4730522 DOI: 10.3390/ijerph13010131] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/04/2016] [Accepted: 01/06/2016] [Indexed: 11/17/2022]
Abstract
Objective: To probe the spatiotemporal patterns of the incidence of scarlet fever in Beijing, China, from 2005 to 2014. Methods: A spatiotemporal analysis was conducted at the district/county level in the Beijing region based on the reported cases of scarlet fever during the study period. Moran’s autocorrelation coefficient was used to examine the spatial autocorrelation of scarlet fever, whereas the Getis-Ord Gi* statistic was used to determine the hotspot incidence of scarlet fever. Likewise, the space-time scan statistic was used to detect the space-time clusters, including the relative risk of scarlet fever incidence across all settings. Results: A total of 26,860 scarlet fever cases were reported in Beijing during the study period (2005–2014). The average annual incidence of scarlet fever was 14.25 per 100,000 population (range, 6.76 to 32.03 per 100,000). The incidence among males was higher than that among females, and more than two-thirds of scarlet fever cases (83.8%) were among children 3–8 years old. The seasonal incidence peaks occurred from March to July. A higher relative risk area was mainly in the city and urban districts of Beijing. The most likely space-time clusters and secondary clusters were detected to be diversely distributed in every study year. Conclusions: The spatiotemporal patterns of scarlet fever were relatively unsteady in Beijing from 2005 to 2014. The at-risk population was mainly scattered in urban settings and dense districts with high population, indicating a positive relationship between population density and increased risk of scarlet fever exposure. Children under 15 years of age were the most susceptible to scarlet fever.
Collapse
|
29
|
Transfer of scarlet fever-associated elements into the group A Streptococcus M1T1 clone. Sci Rep 2015; 5:15877. [PMID: 26522788 PMCID: PMC4629146 DOI: 10.1038/srep15877] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 09/22/2015] [Indexed: 11/30/2022] Open
Abstract
The group A Streptococcus (GAS) M1T1 clone emerged in the 1980s as a leading cause of epidemic invasive infections worldwide, including necrotizing fasciitis and toxic shock syndrome123. Horizontal transfer of mobile genetic elements has played a central role in the evolution of the M1T1 clone45, with bacteriophage-encoded determinants DNase Sda16 and superantigen SpeA27 contributing to enhanced virulence and colonization respectively. Outbreaks of scarlet fever in Hong Kong and China in 2011, caused primarily by emm12 GAS8910, led to our investigation of the next most common cause of scarlet fever, emm1 GAS89. Genomic analysis of 18 emm1 isolates from Hong Kong and 16 emm1 isolates from mainland China revealed the presence of mobile genetic elements associated with the expansion of emm12 scarlet fever clones1011 in the M1T1 genomic background. These mobile genetic elements confer expression of superantigens SSA and SpeC, and resistance to tetracycline, erythromycin and clindamycin. Horizontal transfer of mobile DNA conferring multi-drug resistance and expression of a new superantigen repertoire in the M1T1 clone should trigger heightened public health awareness for the global dissemination of these genetic elements.
Collapse
|
30
|
Esposito S, Bianchini S, Fastiggi M, Fumagalli M, Andreozzi L, Rigante D. Geoepidemiological hints about Streptococcus pyogenes strains in relationship with acute rheumatic fever. Autoimmun Rev 2015; 14:616-621. [PMID: 25772310 DOI: 10.1016/j.autrev.2015.03.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 03/08/2015] [Indexed: 12/24/2022]
Abstract
Group A Streptococcus (GAS) strains are lately classified on the basis of sequence variations in the emm gene encoding the M protein, but despite the high number of distinct emm genotypes, the spectrum of phenotypes varying from invasive suppurative to non-suppurative GAS-related disorders has still to be defined. The relationship of GAS types with the uprising of acute rheumatic fever (ARF), a multisystemic disease caused by misdirected anti-GAS response in predisposed people, is also obscure. Studies published over the last 15 years were retrieved from PubMed using the keywords: "Streptococcus pyogenes" or "group A Streptococcus" and "acute rheumatic fever": the prevalence of peculiar emm types across different countries of the world is highly variable, depending on research designs, year of observation, country involved, patients' age, and gender. Most studies revealed that a relatively small number of specific emm/M protein types can be considered "rheumatogenic", as potentially characterized by the possibility of inducing ARF, with remarkable differences between developing and developed countries. The association between emm types and post-streptococcal manifestations is challenging, however surveillance of disease-causing variants in a specific community with high rate of ARF should be reinforced with the final goal of developing a potential primary prophylaxis against GAS infections.
Collapse
Affiliation(s)
- Susanna Esposito
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Sonia Bianchini
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Michele Fastiggi
- Institute of Pediatrics, Università Cattolica Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli, Rome, Italy
| | - Monica Fumagalli
- Neonatology and Neonatal Intensive Care Unit, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Laura Andreozzi
- Institute of Pediatrics, Università Cattolica Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli, Rome, Italy
| | - Donato Rigante
- Institute of Pediatrics, Università Cattolica Sacro Cuore, Fondazione Policlinico Universitario A. Gemelli, Rome, Italy.
| |
Collapse
|
31
|
Silva-Costa C, Friães A, Ramirez M, Melo-Cristino J. Macrolide-resistant Streptococcus pyogenes: prevalence and treatment strategies. Expert Rev Anti Infect Ther 2015; 13:615-28. [PMID: 25746210 DOI: 10.1586/14787210.2015.1023292] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Although penicillin remains the first-choice treatment for Streptococcus pyogenes infection, macrolides are important alternatives for allergic patients and lincosamides are recommended together with β-lactams in invasive infections. S. pyogenes may exhibit macrolide resistance because of active efflux (mef genes) or target modification (erm genes), the latter conferring cross resistance to lincosamides and streptogramin B. Worldwide, resistance is restricted to a limited number of genetic lineages, despite resistance genes being encoded on mobile genetic elements. For reasons that are not completely clear, resistance and the associated phenotypes are highly variable across countries. Although resistance remains high in several countries, particularly in Asia, an overall decreasing trend of resistance has been noted in recent years, mostly in Europe. This decrease is not always accompanied by declines in macrolide consumption, suggesting significant roles of other factors in determining the dynamics of macrolide-resistant clones. Continued surveillance is needed to obtain further insights into the forces governing macrolide resistance in S. pyogenes.
Collapse
Affiliation(s)
- Catarina Silva-Costa
- Faculdade de Medicina, Instituto de Microbiologia, Instituto de Medicina Molecular, Universidade de Lisboa, Av. Prof. Egas Moniz, PT 1649-028 Lisboa, Portugal
| | | | | | | |
Collapse
|
32
|
Davies MR, Holden MT, Coupland P, Chen JHK, Venturini C, Barnett TC, Zakour NLB, Tse H, Dougan G, Yuen KY, Walker MJ. Emergence of scarlet fever Streptococcus pyogenes emm12 clones in Hong Kong is associated with toxin acquisition and multidrug resistance. Nat Genet 2014; 47:84-7. [PMID: 25401300 DOI: 10.1038/ng.3147] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 10/24/2014] [Indexed: 11/10/2022]
Abstract
A scarlet fever outbreak began in mainland China and Hong Kong in 2011 (refs. 1-6). Macrolide- and tetracycline-resistant Streptococcus pyogenes emm12 isolates represent the majority of clinical cases. Recently, we identified two mobile genetic elements that were closely associated with emm12 outbreak isolates: the integrative and conjugative element ICE-emm12, encoding genes for tetracycline and macrolide resistance, and prophage ΦHKU.vir, encoding the superantigens SSA and SpeC, as well as the DNase Spd1 (ref. 4). Here we sequenced the genomes of 141 emm12 isolates, including 132 isolated in Hong Kong between 2005 and 2011. We found that the introduction of several ICE-emm12 variants, ΦHKU.vir and a new prophage, ΦHKU.ssa, occurred in three distinct emm12 lineages late in the twentieth century. Acquisition of ssa and transposable elements encoding multidrug resistance genes triggered the expansion of scarlet fever-associated emm12 lineages in Hong Kong. The occurrence of multidrug-resistant ssa-harboring scarlet fever strains should prompt heightened surveillance within China and abroad for the dissemination of these mobile genetic elements.
Collapse
Affiliation(s)
- Mark R Davies
- 1] Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia. [2] Wellcome Trust Sanger Institute, Hinxton, UK
| | | | | | | | - Carola Venturini
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Timothy C Barnett
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Nouri L Ben Zakour
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| | - Herman Tse
- 1] Department of Microbiology, Queen Mary Hospital, Hong Kong, China. [2] Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China. [3] State Key Laboratory for Emerging Infectious Diseases, Hong Kong, China
| | | | - Kwok-Yung Yuen
- 1] Department of Microbiology, Queen Mary Hospital, Hong Kong, China. [2] Carol Yu Centre for Infection, The University of Hong Kong, Hong Kong, China. [3] State Key Laboratory for Emerging Infectious Diseases, Hong Kong, China
| | - Mark J Walker
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St. Lucia, Queensland, Australia
| |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW Increasing disease caused by beta-haemolytic streptococci indicates the need for improved understanding of pathogenesis. RECENT FINDINGS Streptococcus pyogenes, or group A Streptococcus (GAS), causes significant disease worldwide. The closely related Streptococcus dysgalactiae subspecies equisimilis (SDSE) is increasingly recognized as causing a similar disease spectrum. Whole-genome sequencing applied to the study of outbreaks may reveal factors that contribute to pathogenesis and changes in epidemiology. The role of quorum sensing in biofilm formation, and interspecies communication with other streptococci, is discussed. GAS has evolved multiple mechanisms to evade the humoral arm of innate immunity, including complement, which is well known in protecting the host from bacteria, and the coagulation-fibrinolytic system, which is increasingly recognized as an innate immune effector. SUMMARY Molecular biology has enhanced our understanding of the intricate balance of host-pathogen interactions that result in clearance or establishment of invasive streptococcal infection. Although the skin and oropharynx remain the usual ecological niche of GAS and SDSE, occasionally the bacteria find themselves within deeper tissues and blood. Recent research has armed us with better knowledge of bacterial adaptations to this alternative environment. However, the challenge is to translate this knowledge into clinical practice, through the development of novel therapeutic options and ultimately a vaccine against GAS.
Collapse
|
34
|
Oliver J, Pierse N, Baker MG. Improving rheumatic fever surveillance in New Zealand: results of a surveillance sector review. BMC Public Health 2014; 14:528. [PMID: 24885018 PMCID: PMC4049392 DOI: 10.1186/1471-2458-14-528] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 05/06/2014] [Indexed: 12/17/2022] Open
Abstract
Background The New Zealand (NZ) Government has made a strong commitment to reduce the incidence of rheumatic fever (RF) by two thirds, to 1.4 cases per 100,000, by mid-2017. We reviewed the NZ RF surveillance sector, aiming to identify potential improvements which would support optimal RF control and prevention activities. Methods This review used a recently developed surveillance sector review method. Interviews with 36 key informants were used to describe the sector, assess it and identify its gaps. Priorities for improvement and implementation strategies were determined following discussion with these key informants, with policy advisors and within the research team. Results Key improvements identified included the need for a comprehensive RF surveillance strategy, integrated reporting and an online national RF register. At a managerial level this review provided evidence for system change and built support for this across the surveillance sector. Conclusions The surveillance sector review approach can be added to the small set of tools currently available for developing and evaluating surveillance systems. This new approach is likely to prove useful as we confront the challenges of combating new emerging infectious diseases, responding to global environmental changes, and reducing health inequalities.
Collapse
Affiliation(s)
- Jane Oliver
- University of Otago, PO Box 7343, 23A Mein Street, Newtown, Wellington 6242, New Zealand.
| | | | | |
Collapse
|
35
|
Berman HF, Tartof SY, Reis JN, Reis MG, Riley LW. Distribution of superantigens in group A streptococcal isolates from Salvador, Brazil. BMC Infect Dis 2014; 14:294. [PMID: 24885209 PMCID: PMC4045995 DOI: 10.1186/1471-2334-14-294] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 04/24/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Group A streptococcus (GAS) causes invasive disease, superficial disease, and can asymptomatically colonize humans. Superantigens are one virulence factor found in GAS. Previous studies found associations between the genes that encode superantigens and emm type of GAS. It is unknown if these associations are due to underlying biological factors that limit the distribution of superantigens or, alternatively, if these associations are due to the expansion of local GAS linages where these studies took place. To further address this question we screened GAS isolates collected from Salvador, Brazil for 11 known superantigen genes. METHODS Seventy-seven GAS isolates were screened by PCR for superantigen genes. These superantigen genes were speA, speC, speG, speH, speI, speJ, speK, speL, speM, ssa, and smeZ. We used Fisher's two-sided exact test to identify associations between superantigens and GAS emm type. We then compared our results to previous reports of superantigen prevalence and superantigen association with emm type. RESULTS In our collection we found several emm type and superantigen genotype combinations that have previously been reported in isolates from Europe and Australia. We also found that speA was significantly associated with emm type 1, and that speC was significantly associated with emm type 12. CONCLUSIONS Our study reports superantigen genotypes of GAS from a region of the world that is lacking this information. We found evidence of common GAS superantigen genotypes that are spread worldwide as well as novel superantigen genotypes that, so far, are unique to Brazil.
Collapse
Affiliation(s)
| | | | | | | | - Lee W Riley
- Division of Infectious Disease and Vaccinology, School of Public Health, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
36
|
Disease manifestations and pathogenic mechanisms of Group A Streptococcus. Clin Microbiol Rev 2014. [PMID: 24696436 DOI: 10.1128/cmr.00101-13)] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Streptococcus pyogenes, also known as group A Streptococcus (GAS), causes mild human infections such as pharyngitis and impetigo and serious infections such as necrotizing fasciitis and streptococcal toxic shock syndrome. Furthermore, repeated GAS infections may trigger autoimmune diseases, including acute poststreptococcal glomerulonephritis, acute rheumatic fever, and rheumatic heart disease. Combined, these diseases account for over half a million deaths per year globally. Genomic and molecular analyses have now characterized a large number of GAS virulence determinants, many of which exhibit overlap and redundancy in the processes of adhesion and colonization, innate immune resistance, and the capacity to facilitate tissue barrier degradation and spread within the human host. This improved understanding of the contribution of individual virulence determinants to the disease process has led to the formulation of models of GAS disease progression, which may lead to better treatment and intervention strategies. While GAS remains sensitive to all penicillins and cephalosporins, rising resistance to other antibiotics used in disease treatment is an increasing worldwide concern. Several GAS vaccine formulations that elicit protective immunity in animal models have shown promise in nonhuman primate and early-stage human trials. The development of a safe and efficacious commercial human vaccine for the prophylaxis of GAS disease remains a high priority.
Collapse
|
37
|
Walker MJ, Barnett TC, McArthur JD, Cole JN, Gillen CM, Henningham A, Sriprakash KS, Sanderson-Smith ML, Nizet V. Disease manifestations and pathogenic mechanisms of Group A Streptococcus. Clin Microbiol Rev 2014; 27:264-301. [PMID: 24696436 PMCID: PMC3993104 DOI: 10.1128/cmr.00101-13] [Citation(s) in RCA: 609] [Impact Index Per Article: 55.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Streptococcus pyogenes, also known as group A Streptococcus (GAS), causes mild human infections such as pharyngitis and impetigo and serious infections such as necrotizing fasciitis and streptococcal toxic shock syndrome. Furthermore, repeated GAS infections may trigger autoimmune diseases, including acute poststreptococcal glomerulonephritis, acute rheumatic fever, and rheumatic heart disease. Combined, these diseases account for over half a million deaths per year globally. Genomic and molecular analyses have now characterized a large number of GAS virulence determinants, many of which exhibit overlap and redundancy in the processes of adhesion and colonization, innate immune resistance, and the capacity to facilitate tissue barrier degradation and spread within the human host. This improved understanding of the contribution of individual virulence determinants to the disease process has led to the formulation of models of GAS disease progression, which may lead to better treatment and intervention strategies. While GAS remains sensitive to all penicillins and cephalosporins, rising resistance to other antibiotics used in disease treatment is an increasing worldwide concern. Several GAS vaccine formulations that elicit protective immunity in animal models have shown promise in nonhuman primate and early-stage human trials. The development of a safe and efficacious commercial human vaccine for the prophylaxis of GAS disease remains a high priority.
Collapse
Affiliation(s)
- Mark J. Walker
- School of Chemistry and Molecular Biosciences and the Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, Australia
| | - Timothy C. Barnett
- School of Chemistry and Molecular Biosciences and the Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, Australia
| | - Jason D. McArthur
- School of Biological Sciences and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - Jason N. Cole
- School of Chemistry and Molecular Biosciences and the Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, Australia
- Department of Pediatrics and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, USA
| | - Christine M. Gillen
- School of Chemistry and Molecular Biosciences and the Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, Australia
| | - Anna Henningham
- School of Chemistry and Molecular Biosciences and the Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, QLD, Australia
- Department of Pediatrics and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, USA
| | - K. S. Sriprakash
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, QLD, Australia
| | - Martina L. Sanderson-Smith
- School of Biological Sciences and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW, Australia
| | - Victor Nizet
- Department of Pediatrics and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, California, USA
- Rady Children's Hospital, San Diego, California, USA
| |
Collapse
|
38
|
Detection of Streptococcus pyogenes by use of Illumigene group A Streptococcus assay. J Clin Microbiol 2013; 51:4207-9. [PMID: 24048538 DOI: 10.1128/jcm.01892-13] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The performance of the Illumigene group A Streptococcus assay was evaluated by comparing it to culture using 437 consecutive throat swabs. The Illumigene assay was also directly compared to PCR with 161 samples. This Illumigene assay is rapid and easy to perform. The assay also has high sensitivity (100%) compared to culture or PCR and high specificity (99.2%) compared to PCR. A total of 8.8% of the isolates were erythromycin resistant, and 6.9% were clindamycin resistant.
Collapse
|