1
|
Du Nguyen D, Shuklin F, Barulina E, Albitskaya H, Novikov S, Chernov AI, Kim I, Barulin A. Recent advances in dynamic single-molecule analysis platforms for diagnostics: Advantages over bulk assays and miniaturization approaches. Biosens Bioelectron 2025; 278:117361. [PMID: 40117897 DOI: 10.1016/j.bios.2025.117361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/06/2025] [Accepted: 03/08/2025] [Indexed: 03/23/2025]
Abstract
Single-molecule science is a unique technique for unraveling molecular biophysical processes. Sensitivity to single molecules provides the capacity for the early diagnosis of low biomarker amounts. Furthermore, the miniaturization of instruments for portable diagnostic tools toward point-of-care testing (POCT) is a crucial development in this field. Herein, we discuss recent developments in single-molecule sensing platforms and their advantages for diagnostics over bulk measurements including molecular size measurements, interaction dynamics, and fast biomarker sensing and sequencing at low concentrations. We highlight the capabilities of dynamic optical and electrical sensing platforms for single-biomolecule and single-vesicle monitoring associated with neurodegenerative disorders, viral diseases, cancers, and more. Current approaches to instrument miniaturization have brought technology closer to portable diagnostics settings via smartphone-based devices, multifunctional portable microscopes, handheld electrical circuit devices, and remote single-molecule assays. Finally, we provide an overview of the clinical applications of single-molecule sensors in POCT assays. Altogether, single-molecule analyses platforms exhibit significant potential for the development of novel portable healthcare devices.
Collapse
Affiliation(s)
- Dang Du Nguyen
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Republic of Korea; Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Fedor Shuklin
- Moscow Center for Advanced Studies, Kulakova str. 20, Moscow, 123592, Russia
| | - Elena Barulina
- Moscow Center for Advanced Studies, Kulakova str. 20, Moscow, 123592, Russia; Russian Quantum Center, Moscow, 121205, Russia
| | - Hristina Albitskaya
- Moscow Center for Advanced Studies, Kulakova str. 20, Moscow, 123592, Russia
| | - Sergey Novikov
- Moscow Center for Advanced Studies, Kulakova str. 20, Moscow, 123592, Russia
| | - Alexander I Chernov
- Russian Quantum Center, Moscow, 121205, Russia; Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Dolgoprudny, 141700, Russia.
| | - Inki Kim
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Republic of Korea; Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea; Department of MetaBioHealth, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Aleksandr Barulin
- Moscow Center for Advanced Studies, Kulakova str. 20, Moscow, 123592, Russia.
| |
Collapse
|
2
|
Larráyoz MJ, Luri-Martin P, Mañu A, Churruca O, Gordillo N, Erdozain I, Esteban-Figuerola A, de Miguel C, Robles D, García-Fortes M, Rifón Roca J, Alfonso-Pierola A, Prósper F, Ariceta B, Calasanz MJ. From Sanger to Oxford Nanopore MinION Technology: The Impact of Third-Generation Sequencing on Genetic Hematological Diagnosis. Cancers (Basel) 2025; 17:1811. [PMID: 40507293 PMCID: PMC12153771 DOI: 10.3390/cancers17111811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2025] [Revised: 05/23/2025] [Accepted: 05/24/2025] [Indexed: 06/16/2025] Open
Abstract
BACKGROUND Sanger sequencing remains the gold standard for characterizing genetic variants in short DNA fragments (<700 bp). However, the increasing demand for short TATs and high sensitivities in variant detection, particularly in oncohematology, is driving the need for more efficient methods. Next-generation sequencing (NGS) has improved sensitivity and allows for the simultaneous analysis of multiple genes, but it is still costly and time-consuming. Consequently, Sanger sequencing continues to be widely used. In this study, we have compared Sanger sequencing with Oxford Nanopore technology (ONT), which offers enhanced sensitivity and faster sequencing, delivering diagnostic results within 24 h. METHODS This study involves 164 samples (for a total of 174 analyzed regions of interest) previously characterized using either Sanger sequencing or a next-generation sequencing (NGS) panel, categorized by their genetic alterations. Validation was conducted on 15 genes crucial for the diagnosis, prognosis, or identification of drug resistance in myeloproliferative neoplasms (MPN), myelodysplastic syndromes (MDS), acute myeloid leukemia (AML), and chronic myeloid leukemia (CML). The primary objective was to assess whether MinION could identify the same variants previously detected in these patients. RESULTS AND CONCLUSIONS With a 99.43% concordance observed in our comparison, our results support the implementation of MinION technology in routine variant detection in MPN, MDS, AML, and CML cases due to its significant advantages over Sanger sequencing.
Collapse
Affiliation(s)
- María José Larráyoz
- Hematological Diseases Laboratory, CIMA LAB Diagnostics, Clinica Universidad de Navarra, 31008 Pamplona, Spain; (M.J.L.); (P.L.-M.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Pablo Luri-Martin
- Hematological Diseases Laboratory, CIMA LAB Diagnostics, Clinica Universidad de Navarra, 31008 Pamplona, Spain; (M.J.L.); (P.L.-M.)
- Traslational Hematology Program, Center for Applied Medical Research (CIMA), Cancer Center University of Navarra (CCUN), 31008 Pamplona, Spain
| | - Amagoia Mañu
- Hematological Diseases Laboratory, CIMA LAB Diagnostics, Clinica Universidad de Navarra, 31008 Pamplona, Spain; (M.J.L.); (P.L.-M.)
| | - Oihane Churruca
- Hematological Diseases Laboratory, CIMA LAB Diagnostics, Clinica Universidad de Navarra, 31008 Pamplona, Spain; (M.J.L.); (P.L.-M.)
| | - Natalia Gordillo
- Hematological Diseases Laboratory, CIMA LAB Diagnostics, Clinica Universidad de Navarra, 31008 Pamplona, Spain; (M.J.L.); (P.L.-M.)
| | - Irache Erdozain
- Hematological Diseases Laboratory, CIMA LAB Diagnostics, Clinica Universidad de Navarra, 31008 Pamplona, Spain; (M.J.L.); (P.L.-M.)
| | - Ada Esteban-Figuerola
- Special Hematology Laboratory, Hematology Department, San Pedro Hospital, 26006 Logroño, Spain
| | - Carlos de Miguel
- Department of Hematology, Hospital Universitario de Álava—Sede Txagorritxu, 01009 Vitoria-Gasteiz, Spain
| | - Diego Robles
- Department of Hematology, Hospital Universitario de Álava—Sede Txagorritxu, 01009 Vitoria-Gasteiz, Spain
| | - María García-Fortes
- Hematology Department, Hospital Universitario Virgen de la Victoria, 29010 Málaga, Spain
| | - José Rifón Roca
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Hematology Department, Clinica Universidad de Navarra (CUN), Cancer Center University of Navarra (CCUN), 31008 Pamplona, Spain
- CIBERONC, 28029 Madrid, Spain
| | - Ana Alfonso-Pierola
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Hematology Department, Clinica Universidad de Navarra (CUN), Cancer Center University of Navarra (CCUN), 31008 Pamplona, Spain
- CIBERONC, 28029 Madrid, Spain
| | - Felipe Prósper
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Traslational Hematology Program, Center for Applied Medical Research (CIMA), Cancer Center University of Navarra (CCUN), 31008 Pamplona, Spain
- Hematology Department, Clinica Universidad de Navarra (CUN), Cancer Center University of Navarra (CCUN), 31008 Pamplona, Spain
- CIBERONC, 28029 Madrid, Spain
| | - Beñat Ariceta
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- Traslational Hematology Program, Center for Applied Medical Research (CIMA), Cancer Center University of Navarra (CCUN), 31008 Pamplona, Spain
- CIBERONC, 28029 Madrid, Spain
| | - María José Calasanz
- Hematological Diseases Laboratory, CIMA LAB Diagnostics, Clinica Universidad de Navarra, 31008 Pamplona, Spain; (M.J.L.); (P.L.-M.)
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
- CIBERONC, 28029 Madrid, Spain
| |
Collapse
|
3
|
Ricaldi JN, Parker JT, Barnes N, Turner H, Santibañez S. An Advanced Molecular Detection Roadmap for Nonlaboratorians. Emerg Infect Dis 2025; 31:3-8. [PMID: 40359007 PMCID: PMC12078549 DOI: 10.3201/eid3113.241506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025] Open
Abstract
This article, aimed at nonlaboratorians such as healthcare providers, public health professionals, and policymakers, provides basic concepts and terminology to enable better understanding of other manuscripts in this advanced molecular detection journal supplement. This article focuses on 3 aspects of advanced molecular detection: pathogen genomics, bioinformatics, and public health application, while providing additional resources for understanding.
Collapse
|
4
|
Goraichuk IV, Suarez DL. Custom barcoded primers for influenza A nanopore sequencing: enhanced performance with reduced preparation time. Front Cell Infect Microbiol 2025; 15:1545032. [PMID: 40302921 PMCID: PMC12037546 DOI: 10.3389/fcimb.2025.1545032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 03/10/2025] [Indexed: 05/02/2025] Open
Abstract
Highly pathogenic avian influenza is endemic and widespread in wild birds and is causing major outbreaks in poultry worldwide and in U.S. dairy cows, with several recent human cases, highlighting the need for reliable and rapid sequencing to track mutations that may facilitate viral replication in different hosts. SNP analysis is a useful molecular epidemiology tool to track outbreaks, but it requires accurate whole-genome sequencing (WGS) with sufficient read depth across all eight segments. In outbreak situations, where timely data is critical for controlling the spread of the virus, reducing sequencing preparation time while maintaining high-quality standards is particularly important. In this study, we optimized a custom barcoded primer strategy for influenza A whole-genome sequencing on the nanopore sequencing platform, combining the high performance of the Native Barcoding Kit with the prompt preparation time of the Rapid Barcoding Kit. Custom barcoded primers were designed to perform barcode attachment during RT-PCR amplification, eliminating the need for separate barcoding and clean-up steps, thus reducing library preparation time. We compared the performance of the custom barcoded primer method with the Native and Rapid barcoding kits in terms of read quality, read depth, and sequencing output. The results show that the custom barcoded primers provided performance comparable to the Native Barcoding Kit while reducing library preparation time by 2.3X compared to the Native kit and being only 15 minutes longer than the Rapid kit with better depth of sequencing. Additionally, the custom barcoded primer method was evaluated on a variety of clinical sample types. This approach offers a promising solution for influenza A sequencing, providing both high throughput and time efficiency, which significantly improves the time-to-result turnaround, making sequencing more accessible for real-time surveillance.
Collapse
Affiliation(s)
- Iryna V. Goraichuk
- Southeast Poultry Research Laboratory, U.S. National Poultry Research Center,
Agriculture Research Service, U.S Department of Agriculture, Athens, GA, United States
| | - David L. Suarez
- Southeast Poultry Research Laboratory, U.S. National Poultry Research Center,
Agriculture Research Service, U.S Department of Agriculture, Athens, GA, United States
| |
Collapse
|
5
|
Castro Márquez SO, Tóth VR, Kolchanova S, Wolfsberger WW, Oleksyk TK. A long-read sequencing approach to high-resolution profiling of bacterioplankton diversity in a shallow freshwater lake. Sci Rep 2025; 15:12224. [PMID: 40210952 PMCID: PMC11986156 DOI: 10.1038/s41598-025-96558-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 03/28/2025] [Indexed: 04/12/2025] Open
Abstract
Lake Balaton, a large shallow freshwater lake in Hungary, exhibits diverse bacterioplankton communities influenced by various environmental factors. This study aims to evaluate the bacterial diversity in Lake Balaton using the long-read approach to 16 S rRNA gene sequencing. Water samples were collected from a wide network of 33 locations across the lake's four basins and analyzed for bacterial community composition. Sequencing results revealed a high taxonomic diversity with significant zonal variations. Dominant families included Comamonadaceae, Burkholderiaceae, and Methylophilaceae. Environmental parameters such as temperature, pH, and CDOM were found to significantly correlate with bacterial abundance and diversity. The study underscores the utility and portability of using the long-read sequencing technology in assessing microbial diversity and provides insights into the ecological dynamics of bacterioplankton in freshwater lakes.
Collapse
Affiliation(s)
- Stephanie O Castro Márquez
- Department of Biological Sciences, Oakland University, Rochester, MI, USA
- Department of Biology, University of Puerto Rico - Mayagüez, Mayagüez, Puerto Rico
| | - Viktor R Tóth
- HUN-REN Balaton Limnological Research Institute, Tihany, Hungary
| | - Sofiia Kolchanova
- Department of Biology, University of Puerto Rico - Mayagüez, Mayagüez, Puerto Rico
| | | | - Taras K Oleksyk
- Department of Biological Sciences, Oakland University, Rochester, MI, USA.
| |
Collapse
|
6
|
Sharma S, Yadav P, Dash PK, Dhankher S. Molecular epidemiology of Kyasanur forest disease employing ONT-NGS a field forward sequencing. J Clin Virol 2025; 177:105783. [PMID: 40168937 DOI: 10.1016/j.jcv.2025.105783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 03/21/2025] [Accepted: 03/26/2025] [Indexed: 04/03/2025]
Abstract
The future of infectious agent detection and molecular characterization lies in field-forward, on-site strategies. The lack of genomic information for recently circulating Kyasanur Forest Disease virus strains is critical. Kyasanur Forest Virus Disease virus PCR-positive samples from 2018 to 2020 were selected for sequencing. Detailed molecular phylogenetic analyses were performed. In this study, we deciphered KFDV whole genomes using the ONT-NGS technique to analyze targeted KFD surveillance from 2018-2020. This study is the first to report recently circulating KFDV strains employing a simple on-site field-forward approach for viral surveillance. Altogether, 19 KFDV genomes were sequenced, and 28 non-synonymous variants were detected in the viral strains circulating from 2018-2020 in the Shivamogga district of Karnataka state in India. The prevailing Variant was detected in more than 10 changes in 80 % of the samples in the viral envelope protein. Recently, circulating KFDV has been the predominant lineage over the past years. India reports seasonal outbreaks almost every year from the Karnataka state of the KFD. The genomic sequences deciphered here belong to the period (2018-2020) that covers the KFDV sequences as the first information. This will contribute to the development and revisiting of diagnostic and vaccine strategies.
Collapse
Affiliation(s)
- Shashi Sharma
- Virology Division, Defence Research Development Establishment, Jhansi Road, Gwalior 474002, India.
| | - Pooja Yadav
- Virology Division, Defence Research Development Establishment, Jhansi Road, Gwalior 474002, India
| | - Paban Kumar Dash
- Virology Division, Defence Research Development Establishment, Jhansi Road, Gwalior 474002, India
| | - Suman Dhankher
- Virology Division, Defence Research Development Establishment, Jhansi Road, Gwalior 474002, India
| |
Collapse
|
7
|
Slavov SN. Routine Detection of Viruses Through Metagenomics: Where Do We Stand? Am J Trop Med Hyg 2025; 112:479-480. [PMID: 39719115 PMCID: PMC11884288 DOI: 10.4269/ajtmh.24-0652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 09/27/2024] [Indexed: 12/26/2024] Open
Affiliation(s)
- Svetoslav Nanev Slavov
- Center for Viral Surveillance and Serological Evaluation (CeVIVAs), Butantan Institute, São Paulo, Brazil
| |
Collapse
|
8
|
Hoßbach J, Tovey S, Ensslen T, Behrends JC, Holm C. Peptide classification from statistical analysis of nanopore sensing experiments. J Chem Phys 2025; 162:084107. [PMID: 39998165 DOI: 10.1063/5.0250399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/28/2025] [Indexed: 02/26/2025] Open
Abstract
Peptide classification using nanopore-based devices promises to be a breakthrough method in basic research, diagnostics, and analytics. However, the measured blockage currents suffer from a low signal-to-noise ratio and a high information density that has hitherto not been fully deciphered. Some simple machine learning approaches using average current blockade depths and dwell-times have been investigated to improve this situation. In this work, a comprehensive statistical analysis of nanopore current signals is performed and demonstrated to be sufficient for classifying up to 42 peptides with over 70% accuracy. Two sets of features, the statistical moments and the catch22 set, are compared both in their representations and after training small classifier neural networks. We demonstrate that complex features of the events, captured in both the catch22 set and the central moments, are key to classifying peptides with otherwise similar mean currents. These results highlight the efficacy of purely statistical analysis of nanopore data and suggest a path forward for more sophisticated classification techniques.
Collapse
Affiliation(s)
- Julian Hoßbach
- Institute for Computational Physics, University of Stuttgart, 70569 Stuttgart, Germany
| | - Samuel Tovey
- Institute for Computational Physics, University of Stuttgart, 70569 Stuttgart, Germany
| | - Tobias Ensslen
- Laboratory for Membrane Physiology and Technology, Department of Physiology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Jan C Behrends
- Laboratory for Membrane Physiology and Technology, Department of Physiology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Christian Holm
- Institute for Computational Physics, University of Stuttgart, 70569 Stuttgart, Germany
| |
Collapse
|
9
|
Kaiser NL, Groschup MH, Sadeghi B. VirDetector: a bioinformatic pipeline for virus surveillance using nanopore sequencing. Bioinformatics 2025; 41:btaf029. [PMID: 39836623 PMCID: PMC11802467 DOI: 10.1093/bioinformatics/btaf029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/14/2025] [Accepted: 01/17/2025] [Indexed: 01/23/2025] Open
Abstract
SUMMARY Virus surveillance programmes are designed to counter the growing threat of viral outbreaks to human health. Nanopore sequencing, in particular, has proven to be suitable for this purpose, as it is readily available and provides rapid results. However, as special bioinformatic programs are required to extract the relevant information from the sequencing data, applications are needed that allow users without extensive bioinformatics knowledge to carry out the relevant analysis steps. We present VirDetector, a bioinformatic pipeline for virus surveillance using nanopore sequencing. The pipeline automatically installs all required programs and databases and allows all its steps to be executed with a single console command. After preprocessing the samples, including the possibility for basecalling, the pipeline classifies each sample taxonomically and reconstructs the viral consensus genomes, which are then used in phylogenetic analyses. This streamlined workflow provides a user-friendly and efficient solution for monitoring viral pathogens. AVAILABILITY AND IMPLEMENTATION VirDetector is freely available at https://github.com/NLKaiser/VirDetector and https://zenodo.org/records/14637302 (10.5281/zenodo.14637302).
Collapse
Affiliation(s)
- Nick Laurenz Kaiser
- Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald, Insel Riems 17493, Germany
| | - Martin H Groschup
- Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald, Insel Riems 17493, Germany
| | - Balal Sadeghi
- Federal Research Institute for Animal Health, Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Greifswald, Insel Riems 17493, Germany
| |
Collapse
|
10
|
Bangratz M, Comte A, Billard E, Guigma AK, Gandolfi G, Kassankogno AI, Sérémé D, Poulicard N, Tollenaere C. Deciphering mixed infections by plant RNA virus and reconstructing complete genomes simultaneously present within-host. PLoS One 2025; 20:e0311555. [PMID: 39808677 PMCID: PMC11731864 DOI: 10.1371/journal.pone.0311555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 09/22/2024] [Indexed: 01/16/2025] Open
Abstract
Local co-circulation of multiple phylogenetic lineages is particularly likely for rapidly evolving pathogens in the current context of globalisation. When different phylogenetic lineages co-occur in the same fields, they may be simultaneously present in the same host plant (i.e. mixed infection), with potentially important consequences for disease outcome. This is the case in Burkina Faso for the rice yellow mottle virus (RYMV), which is endemic to Africa and a major constraint on rice production. We aimed to decipher the distinct RYMV isolates that simultaneously infect a single rice plant and to sequence their genomes. To this end, we tested different sequencing strategies, and we finally combined direct cDNA ONT (Oxford Nanopore Technology) sequencing with the bioinformatics tool RVhaplo. This method was validated by the successful reconstruction of two viral genomes that were less than a hundred nucleotides apart (out of a genome of 4450nt length, i.e. 2-3%), and present in artificial mixes at a ratio of up to a 99/1. We then used this method to subsequently analyze mixed infections from field samples, revealing up to three RYMV isolates within one single rice plant sample from Burkina Faso. In most cases, the complete genome sequences were obtained, which is particularly important for a better estimation of viral diversity and the detection of recombination events. The method described thus allows to identify various haplotypes of RYMV simultaneously infecting a single rice plant, obtaining their full-length sequences, as well as a rough estimate of relative frequencies within the sample. It is efficient, cost-effective, as well as portable, so that it could further be implemented where RYMV is endemic. Prospects include unravelling mixed infections with other RNA viruses that threaten crop production worldwide.
Collapse
Affiliation(s)
- Martine Bangratz
- PHIM, Plant Health Institute of Montpellier, Univ. Montpellier, IRD, CIRAD, INRAE, Institute Agro, Montpellier, France
| | - Aurore Comte
- PHIM, Plant Health Institute of Montpellier, Univ. Montpellier, IRD, CIRAD, INRAE, Institute Agro, Montpellier, France
| | - Estelle Billard
- PHIM, Plant Health Institute of Montpellier, Univ. Montpellier, IRD, CIRAD, INRAE, Institute Agro, Montpellier, France
| | - Abdoul Kader Guigma
- INERA, Institut de l’Environnement et de Recherches Agricoles, Laboratoire de Phytopathologie, Bobo-Dioulasso, Burkina Faso
| | - Guillaume Gandolfi
- PHIM, Plant Health Institute of Montpellier, Univ. Montpellier, IRD, CIRAD, INRAE, Institute Agro, Montpellier, France
| | - Abalo Itolou Kassankogno
- INERA, Institut de l’Environnement et de Recherches Agricoles, Laboratoire de Phytopathologie, Bobo-Dioulasso, Burkina Faso
| | - Drissa Sérémé
- INERA, Institut de l’Environnement et de Recherches Agricoles, Laboratoire de Virologie et de Biologie Végétale, Kamboinsé, Burkina Faso
| | - Nils Poulicard
- PHIM, Plant Health Institute of Montpellier, Univ. Montpellier, IRD, CIRAD, INRAE, Institute Agro, Montpellier, France
| | - Charlotte Tollenaere
- PHIM, Plant Health Institute of Montpellier, Univ. Montpellier, IRD, CIRAD, INRAE, Institute Agro, Montpellier, France
| |
Collapse
|
11
|
Seifert SN. Amplification of Filovirus Genomes from Clinical Samples for Next Generation Sequencing. Methods Mol Biol 2025; 2877:431-437. [PMID: 39585639 DOI: 10.1007/978-1-0716-4256-6_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Viral genome sequencing has become a critical tool in outbreak mitigation. Due to their small size relative to the host genome, viral genomes comprise a small fraction of next generation sequencing reads in clinical samples when using unbiased sequencing approaches. Long-range polymerase chain reaction facilitates the amplification of viral genomes from clinical and environmental samples with minimal primer sites, allowing researchers to target regions of the genome that are conserved across available variants. Here, we describe the amplification and sequencing of the Ebola virus genome from tissue samples collected from infected nonhuman primates. This protocol facilitates full viral genome recovery from as low as 103 median tissue culture infectious doses per milliliter.
Collapse
Affiliation(s)
- Stephanie N Seifert
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA, USA.
| |
Collapse
|
12
|
Adegbola AJ, Ndwiga L, Wamae K, Osoti V, Bolaji OO, Bejon P, Ochola-Oyier LI. ONT sequencing identifies a high prevalence of crt sensitive, triple mutant dhfr and single mutant dhps parasites within an ANC population in Nigeria. Front Genet 2024; 15:1470156. [PMID: 39483850 PMCID: PMC11525066 DOI: 10.3389/fgene.2024.1470156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/30/2024] [Indexed: 11/03/2024] Open
Abstract
Background Malaria in pregnancy is a major public health issue, particularly among vulnerable populations in malaria-endemic sub-Saharan African countries. To mitigate its risks, WHO recommends sulphadoxine-pyrimethamine (SP) for chemoprevention and artemisinin-based combination therapy (ACT) to treat uncomplicated Plasmodium falciparum malaria. These interventions have helped to alleviate the risk associated with malaria in pregnancy; however, in the context of the emergence of SP- and ACT-resistant P. falciparum, maintained efficacy is under threat. Molecular surveillance is a reliable tool to monitor the emergence of resistance where molecular markers are known. Thus, the objective of the study was to use a multiplexed amplicon Oxford Nanopore sequencing approach to assess the molecular markers for antimalarial resistance among pregnant women in Nigeria. Methods Dried blood spots (DBS) were collected from pregnant women who received IPTp-SP at the enrollment and follow-up visits. P. falciparum genomic DNA was extracted by the Chelex® method and Pf18S qPCR was used to detect parasite DNA in each sample. With nested PCR assays, fragments of Pfdhps, Pfdhfr, Pfmdr1, Pfcrt, Pfk13 and Pfama1 genes were amplified and multiplexed amplicon-based sequencing was conducted on the minION Oxford Nanopore Technology. Result In total, 251 pregnant women were enrolled in the study and 457 DBS samples were collected. P. falciparum genomic DNA was detected in 12% (56/457) of the samples, 31 at baseline and the remaining during the follow-up visits. Pfama1, pfk13, Pfdhps, Pfdhfr, Pfmdr1 and Pfcrt were successfully sequenced in a single run. Notably, k13 artemisinin resistance mutations were absent, the frequencies of Pfdhfr and Pfdhps SP resistance haplotypes, IRN for pyrimethamine resistance and ISGKA/IAGKA associated with sulphadoxine resistance were 82% (36/44) and 64% (27/42), respectively, and the Pfcrt CVIET resistant haplotype was at approximately 22% (7/32). Conclusion and recommendations Here a multiplexed amplicon-based ONT assay established that triple mutant Pfdfhr-IRN, double mutant Pfdhps-SG haplotypes and the chloroquine sensitive strain were prevalent among pregnant women in Nigeria.
Collapse
Affiliation(s)
- Adebanjo Jonathan Adegbola
- Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria
- Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme (KWTRP), Kilifi, Kenya
| | - Leonard Ndwiga
- Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme (KWTRP), Kilifi, Kenya
| | - Kevin Wamae
- Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme (KWTRP), Kilifi, Kenya
| | - Victor Osoti
- Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme (KWTRP), Kilifi, Kenya
| | | | - Philip Bejon
- Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme (KWTRP), Kilifi, Kenya
| | | |
Collapse
|
13
|
Hall MB, Wick RR, Judd LM, Nguyen AN, Steinig EJ, Xie O, Davies M, Seemann T, Stinear TP, Coin L. Benchmarking reveals superiority of deep learning variant callers on bacterial nanopore sequence data. eLife 2024; 13:RP98300. [PMID: 39388235 PMCID: PMC11466455 DOI: 10.7554/elife.98300] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024] Open
Abstract
Variant calling is fundamental in bacterial genomics, underpinning the identification of disease transmission clusters, the construction of phylogenetic trees, and antimicrobial resistance detection. This study presents a comprehensive benchmarking of variant calling accuracy in bacterial genomes using Oxford Nanopore Technologies (ONT) sequencing data. We evaluated three ONT basecalling models and both simplex (single-strand) and duplex (dual-strand) read types across 14 diverse bacterial species. Our findings reveal that deep learning-based variant callers, particularly Clair3 and DeepVariant, significantly outperform traditional methods and even exceed the accuracy of Illumina sequencing, especially when applied to ONT's super-high accuracy model. ONT's superior performance is attributed to its ability to overcome Illumina's errors, which often arise from difficulties in aligning reads in repetitive and variant-dense genomic regions. Moreover, the use of high-performing variant callers with ONT's super-high accuracy data mitigates ONT's traditional errors in homopolymers. We also investigated the impact of read depth on variant calling, demonstrating that 10× depth of ONT super-accuracy data can achieve precision and recall comparable to, or better than, full-depth Illumina sequencing. These results underscore the potential of ONT sequencing, combined with advanced variant calling algorithms, to replace traditional short-read sequencing methods in bacterial genomics, particularly in resource-limited settings.
Collapse
Affiliation(s)
- Michael B Hall
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneAustralia
| | - Ryan R Wick
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneAustralia
- Centre for Pathogen Genomics, The University of MelbourneMelbourneAustralia
| | - Louise M Judd
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneAustralia
- Centre for Pathogen Genomics, The University of MelbourneMelbourneAustralia
| | - An N Nguyen
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneAustralia
| | - Eike J Steinig
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneAustralia
| | - Ouli Xie
- Department of Infectious Diseases, The University of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneAustralia
- Monash Infectious Diseases, Monash HealthMelbourneAustralia
| | - Mark Davies
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneAustralia
| | - Torsten Seemann
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneAustralia
- Centre for Pathogen Genomics, The University of MelbourneMelbourneAustralia
| | - Timothy P Stinear
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneAustralia
- Centre for Pathogen Genomics, The University of MelbourneMelbourneAustralia
| | - Lachlan Coin
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and ImmunityMelbourneAustralia
| |
Collapse
|
14
|
Getchell M, Wulandari S, de Alwis R, Agoramurthy S, Khoo YK, Mak TM, Moe L, Stona AC, Pang J, Momin MHFHA, Amir A, Andalucia LR, Azzam G, Chin S, Chookajorn T, Arunkumar G, Hung DT, Ikram A, Jha R, Karlsson EA, Le Thi MQ, Mahasirimongkol S, Malavige GN, Manning JE, Munira SL, Trung NV, Nisar I, Qadri F, Qamar FN, Robinson MT, Saloma CP, Setk S, Shirin T, Tan LV, Dizon TJR, Thayan R, Thu HM, Tissera H, Xangsayarath P, Zaini Z, Lim JCW, Maurer-Stroh S, Smith GJD, Wang LF, Pronyk P. Pathogen genomic surveillance status among lower resource settings in Asia. Nat Microbiol 2024; 9:2738-2747. [PMID: 39317773 PMCID: PMC11445059 DOI: 10.1038/s41564-024-01809-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 08/14/2024] [Indexed: 09/26/2024]
Abstract
Asia remains vulnerable to new and emerging infectious diseases. Understanding how to improve next generation sequencing (NGS) use in pathogen surveillance is an urgent priority for regional health security. Here we developed a pathogen genomic surveillance assessment framework to assess capacity in low-resource settings in South and Southeast Asia. Data collected between June 2022 and March 2023 from 42 institutions in 13 countries showed pathogen genomics capacity exists, but use is limited and under-resourced. All countries had NGS capacity and seven countries had strategic plans integrating pathogen genomics into wider surveillance efforts. Several pathogens were prioritized for human surveillance, but NGS application to environmental and human-animal interface surveillance was limited. Barriers to NGS implementation include reliance on external funding, supply chain challenges, trained personnel shortages and limited quality assurance mechanisms. Coordinated efforts are required to support national planning, address capacity gaps, enhance quality assurance and facilitate data sharing for decision making.
Collapse
Affiliation(s)
- Marya Getchell
- Programme in Health Services and Systems Research, Duke-NUS Medical School, Singapore, Singapore
| | - Suci Wulandari
- Centre for Outbreak Preparedness, Duke-NUS Medical School, Singapore, Singapore
| | - Ruklanthi de Alwis
- Centre for Outbreak Preparedness, Duke-NUS Medical School, Singapore, Singapore.
- SingHealth Duke-NUS Global Health Institute, Singapore, Singapore.
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.
| | - Shreya Agoramurthy
- Centre for Outbreak Preparedness, Duke-NUS Medical School, Singapore, Singapore
| | - Yoong Khean Khoo
- Centre for Outbreak Preparedness, Duke-NUS Medical School, Singapore, Singapore
- Centre of Regulatory Excellence, Duke-NUS Medical School, Singapore, Singapore
| | - Tze-Minn Mak
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - La Moe
- Centre for Outbreak Preparedness, Duke-NUS Medical School, Singapore, Singapore
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Anne-Claire Stona
- Centre for Outbreak Preparedness, Duke-NUS Medical School, Singapore, Singapore
- Centre of Regulatory Excellence, Duke-NUS Medical School, Singapore, Singapore
| | - Junxiong Pang
- Centre for Outbreak Preparedness, Duke-NUS Medical School, Singapore, Singapore
- SingHealth Duke-NUS Global Health Institute, Singapore, Singapore
| | | | | | | | - Ghows Azzam
- Malaysia Genome and Vaccine Institute (MGVI), Selangor, Malaysia
- School of Biological Sciences, Universiti Sains Malaysia, Gelugor, Penang, Malaysia
| | - Savuth Chin
- National Institute of Public Health, Phnom Penh, Cambodia
| | - Thanat Chookajorn
- Mahidol University, Nakhon Pathom, Thailand
- Umeå University, Umeå, Sweden
| | | | | | - Aamer Ikram
- National Institute of Health (NIH), Islamabad, Pakistan
| | - Runa Jha
- National Public Health Laboratory, Kathmandu, Nepal
| | | | - Mai Quynh Le Thi
- National Institute of Hygien and Epidemiology (NIHE), Nha Trang, Vietnam
| | | | | | - Jessica E Manning
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Phnom Penh, Cambodia
| | | | | | | | - Firdausi Qadri
- International Centre for Diarrhoeal Disease Research (icddr,b), Dhaka, Bangladesh
| | | | - Matthew T Robinson
- Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit (LOMWRU), Microbiology Laboratory, Mahosot Hospital, Quai Fa Ngum, Vientiane, Laos
- Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Cynthia P Saloma
- Philippine Genome Center, University of the Philippines, Luzon, Philippines
| | - Swe Setk
- National Health Laboratory, Department of Medical Service, Ministry of Health, Yangon, Myanmar
| | - Tahmina Shirin
- Institute of Epidemiology, Disease Control and Research (IEDCR), Dhaka, Bangladesh
| | - Le Van Tan
- Oxford University Clinical Research Unit (OUCRU), Ho Chi Minh City, Vietnam
| | | | | | - Hlaing Myat Thu
- Department of Medical Research, Ministry of Health, Yangon, Myanmar
| | | | | | - Zainun Zaini
- Department of Laboratory Services, Ministry of Health, Bandar Seri Begawan, Brunei
| | - John C W Lim
- SingHealth Duke-NUS Global Health Institute, Singapore, Singapore
- Centre of Regulatory Excellence, Duke-NUS Medical School, Singapore, Singapore
| | - Sebastian Maurer-Stroh
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Infectious Diseases Labs, Agency for Science, Technology and Research, Singapore, Singapore
- Yong Loo Lin School of Medicine and Department of Biology, National University of Singapore, Singapore, Singapore
| | - Gavin J D Smith
- Centre for Outbreak Preparedness, Duke-NUS Medical School, Singapore, Singapore
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - Lin-Fa Wang
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
- SingHealth Duke-NUS Global Health Institute, Singapore, Singapore
| | - Paul Pronyk
- Centre for Outbreak Preparedness, Duke-NUS Medical School, Singapore, Singapore
- SingHealth Duke-NUS Global Health Institute, Singapore, Singapore
| |
Collapse
|
15
|
Liu Y, Liu Z, Li J, Yan X, Xu W, Yi L, Tu C, He B. Rapid diagnosis of a fox's death case using nanopore sequencing reveals the infection with an Artic-like rabies virus. Virol Sin 2024; 39:840-842. [PMID: 39209109 PMCID: PMC11738774 DOI: 10.1016/j.virs.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
•We detected a rabies virus (RABV) in a fox's death case within 6 h upon sample receipt using nanopore direct sequencing. •The virus belongs to AL2 sub-lineage, suggesting a high risk of fox-related AL2 RABV on the northeastern border of China. •Nanopore sequencing showed less sensitivity and accuracy, though it helped us rapidly identify the cause of death.
Collapse
Affiliation(s)
- Yuhang Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, 130122, China
| | - Zhiqiang Liu
- Provincial Wildlife Disease Monitoring Station of Shuanghe, Xunke, 164400, China
| | - Jian Li
- Provincial Wildlife Disease Monitoring Station of Shuanghe, Xunke, 164400, China
| | - Xiaomin Yan
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, 130122, China
| | - Weidi Xu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, 130122, China
| | - Le Yi
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, 130122, China
| | - Changchun Tu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, 130122, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Biao He
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, State Key Laboratory of Pathogen and Biosecurity, Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, 130122, China.
| |
Collapse
|
16
|
Zaatry R, Herren R, Gefen T, Geva-Zatorsky N. Microbiome and infectious disease: diagnostics to therapeutics. Microbes Infect 2024; 26:105345. [PMID: 38670215 DOI: 10.1016/j.micinf.2024.105345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 04/22/2024] [Accepted: 04/22/2024] [Indexed: 04/28/2024]
Abstract
Over 300 years of research on the microbial world has revealed their importance in human health and disease. This review explores the impact and potential of microbial-based detection methods and therapeutic interventions, integrating research of early microbiologists, current findings, and future perspectives.
Collapse
Affiliation(s)
- Rawan Zaatry
- Rappaport Faculty of Medicine, Rappaport Technion Integrated Cancer Center, Technion, Haifa, Israel
| | - Rachel Herren
- Rappaport Faculty of Medicine, Rappaport Technion Integrated Cancer Center, Technion, Haifa, Israel
| | - Tal Gefen
- Rappaport Faculty of Medicine, Rappaport Technion Integrated Cancer Center, Technion, Haifa, Israel
| | - Naama Geva-Zatorsky
- Rappaport Faculty of Medicine, Rappaport Technion Integrated Cancer Center, Technion, Haifa, Israel; CIFAR, Humans & the Microbiome, Toronto, Canada.
| |
Collapse
|
17
|
Jansz N, Faulkner GJ. Viral genome sequencing methods: benefits and pitfalls of current approaches. Biochem Soc Trans 2024; 52:1431-1447. [PMID: 38747720 PMCID: PMC11346438 DOI: 10.1042/bst20231322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/30/2024] [Accepted: 05/02/2024] [Indexed: 06/27/2024]
Abstract
Whole genome sequencing of viruses provides high-resolution molecular insights, enhancing our understanding of viral genome function and phylogeny. Beyond fundamental research, viral sequencing is increasingly vital for pathogen surveillance, epidemiology, and clinical applications. As sequencing methods rapidly evolve, the diversity of viral genomics applications and catalogued genomes continues to expand. Advances in long-read, single molecule, real-time sequencing methodologies present opportunities to sequence contiguous, haplotype resolved viral genomes in a range of research and applied settings. Here we present an overview of nucleic acid sequencing methods and their applications in studying viral genomes. We emphasise the advantages of different viral sequencing approaches, with a particular focus on the benefits of third-generation sequencing technologies in elucidating viral evolution, transmission networks, and pathogenesis.
Collapse
Affiliation(s)
- Natasha Jansz
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia
| | - Geoffrey J. Faulkner
- Mater Research Institute - University of Queensland, TRI Building, Woolloongabba, QLD 4102, Australia
- Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
18
|
Luo Y, Zhang J, Ni M, Mei Z, Ye Q, Guo B, Fang L, Feng D, Wang L, Yan J, Wang G. Pilot validation of on-field STR typing and human identity testing by MinION nanopore sequencing. Electrophoresis 2024; 45:885-896. [PMID: 38356010 DOI: 10.1002/elps.202300234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/16/2024]
Abstract
Nanopore sequencing technology has broad application prospects in forensic medicine due to its small size, portability, fast speed, real-time result analysis capabilities, single-molecule sequencing abilities, and simple operation. Here, we demonstrate for the first time that nanopore sequencing platforms can be used to identify individuals in the field. Through scientific and reasonable design, a nanopore MinION MK1B device and other auxiliary devices are integrated into a portable detection box conducive to individual identification at the accident site. Individual identification of 12 samples could be completed within approximately 24 h by jointly detecting 23 short tandem repeat (STR) loci. Through double-blinded experiments, the genotypes of 49 samples were successfully determined, and the accuracy of the STR genotyping was verified by the gold standard. Specifically, the typing success rate for 1150 genotypes was 95.3%, and the accuracy rate was 86.87%. Although this study focused primarily on demonstrating the feasibility of full-process testing, it can be optimistically predicted that further improvements in bioinformatics workflows and nanopore sequencing technology will help enhance the feasibility of Oxford Nanopore Technologies equipment for real-time individual identification at accident sites.
Collapse
Affiliation(s)
- Yuan Luo
- Laboratory of Clinical Medicine, Air Force Medical Center, Air Force Medical University, PLA, Beijing, P. R. China
| | - Jiarong Zhang
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, P. R. China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, Shanxi, P. R. China
| | - Ming Ni
- Institute of Health Service and Transfusion Medicine, Beijing, P. R. China
| | - Zhusong Mei
- Laboratory of Clinical Medicine, Air Force Medical Center, Air Force Medical University, PLA, Beijing, P. R. China
| | - Qiao Ye
- Laboratory of Clinical Medicine, Air Force Medical Center, Air Force Medical University, PLA, Beijing, P. R. China
| | - Bingqian Guo
- Laboratory of Clinical Medicine, Air Force Medical Center, Air Force Medical University, PLA, Beijing, P. R. China
| | - Longmei Fang
- Laboratory of Clinical Medicine, Air Force Medical Center, Air Force Medical University, PLA, Beijing, P. R. China
| | - Dongyun Feng
- Laboratory of Clinical Medicine, Air Force Medical Center, Air Force Medical University, PLA, Beijing, P. R. China
| | - Lu Wang
- Laboratory of Clinical Medicine, Air Force Medical Center, Air Force Medical University, PLA, Beijing, P. R. China
| | - Jiangwei Yan
- School of Forensic Medicine, Shanxi Medical University, Jinzhong, Shanxi, P. R. China
- Shanxi Key Laboratory of Forensic Medicine, Jinzhong, Shanxi, P. R. China
| | - Guangyun Wang
- Laboratory of Clinical Medicine, Air Force Medical Center, Air Force Medical University, PLA, Beijing, P. R. China
| |
Collapse
|
19
|
Kudjordjie EN, Schmidt-Høier AS, Brøndum MB, Johnsen MG, Nicolaisen M, Vestergård M. Early assessment of fungal and oomycete pathogens in greenhouse irrigation water using Oxford nanopore amplicon sequencing. PLoS One 2024; 19:e0300381. [PMID: 38489283 PMCID: PMC10942031 DOI: 10.1371/journal.pone.0300381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/26/2024] [Indexed: 03/17/2024] Open
Abstract
Water-borne plant pathogenic fungi and oomycetes are a major threat in greenhouse production systems. Early detection and quantification of these pathogens would enable us to ascertain both economic and biological thresholds required for a timely treatment, thus improving effective disease management. Here, we used Oxford nanopore MinION amplicon sequencing to analyze microbial communities in irrigation water collected from greenhouses used for growing tomato, cucumber and Aeschynanthus sp. Fungal and oomycete communities were characterized using primers that amplify the full internal transcribed spacer (ITS) region. To assess the sensitivity of the MinION sequencing, we spiked serially diluted mock DNA into the DNA isolated from greenhouse water samples prior to library preparation. Relative abundances of fungal and oomycete reads were distinct in the greenhouse irrigation water samples and in water samples from setups with tomato that was inoculated with Fusarium oxysporum. Sequence reads derived from fungal and oomycete mock communities were proportionate in the respective serial dilution samples, thus confirming the suitability of MinION amplicon sequencing for environmental monitoring. By using spike-ins as standards to test the reliability of quantification using the MinION, we found that the detection of spike-ins was highly affected by the background quantities of fungal or oomycete DNA in the sample. We observed that spike-ins having shorter length (538bp) produced reads across most of our dilutions compared to the longer spikes (>790bp). Moreover, the sequence reads were uneven with respect to dilution series and were least retrievable in the background samples having the highest DNA concentration, suggesting a narrow dynamic range of performance. We suggest continuous benchmarking of the MinION sequencing to improve quantitative metabarcoding efforts for rapid plant disease diagnostic and monitoring in the future.
Collapse
Affiliation(s)
- Enoch Narh Kudjordjie
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Slagelse, Denmark
| | | | | | | | - Mogens Nicolaisen
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Slagelse, Denmark
| | - Mette Vestergård
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Slagelse, Denmark
| |
Collapse
|
20
|
Guan X, Shao W, Zhang D. T-S2Inet: Transformer-based sequence-to-image network for accurate nanopore sequence recognition. Bioinformatics 2024; 40:btae083. [PMID: 38366607 PMCID: PMC10902682 DOI: 10.1093/bioinformatics/btae083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 02/01/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024] Open
Abstract
MOTIVATION Nanopore sequencing is a new macromolecular recognition and perception technology that enables high-throughput sequencing of DNA, RNA, even protein molecules. The sequences generated by nanopore sequencing span a large time frame, and the labor and time costs incurred by traditional analysis methods are substantial. Recently, research on nanopore data analysis using machine learning algorithms has gained unceasing momentum, but there is often a significant gap between traditional and deep learning methods in terms of classification results. To analyze nanopore data using deep learning technologies, measures such as sequence completion and sequence transformation can be employed. However, these technologies do not preserve the local features of the sequences. To address this issue, we propose a sequence-to-image (S2I) module that transforms sequences of unequal length into images. Additionally, we propose the Transformer-based T-S2Inet model to capture the important information and improve the classification accuracy. RESULTS Quantitative and qualitative analysis shows that the experimental results have an improvement of around 2% in accuracy compared to previous methods. The proposed method is adaptable to other nanopore platforms, such as the Oxford nanopore. It is worth noting that the proposed method not only aims to achieve the most advanced performance, but also provides a general idea for the analysis of nanopore sequences of unequal length. AVAILABILITY AND IMPLEMENTATION The main program is available at https://github.com/guanxiaoyu11/S2Inet.
Collapse
Affiliation(s)
- Xiaoyu Guan
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, Nanjing 211106, China
- Key Laboratory of Brain-Machine Intelligence Technology, Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Wei Shao
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, Nanjing 211106, China
- Key Laboratory of Brain-Machine Intelligence Technology, Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| | - Daoqiang Zhang
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, Nanjing 211106, China
- Key Laboratory of Brain-Machine Intelligence Technology, Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
| |
Collapse
|
21
|
Judson SD, Munster VJ. The Multiple Origins of Ebola Disease Outbreaks. J Infect Dis 2023; 228:S465-S473. [PMID: 37592878 PMCID: PMC10651193 DOI: 10.1093/infdis/jiad352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND The origins of Ebola disease outbreaks remain enigmatic. Historically outbreaks have been attributed to spillover events from wildlife. However, recent data suggest that some outbreaks may originate from human-to-human transmission of prior outbreak strains instead of spillover. Clarifying the origins of Ebola disease outbreaks could improve detection and mitigation of future outbreaks. METHODS We reviewed the origins of all Ebola disease outbreaks from 1976 to 2022 to analyze the earliest cases and characteristics of each outbreak. The epidemiology and phylogenetic relationships of outbreak strains were used to further identify the likely source of each outbreak. RESULTS From 1976 to 2022 there were 35 Ebola disease outbreaks with 48 primary/index cases. While the majority of outbreaks were associated with wildlife spillover, resurgence of human-to-human transmission could account for roughly a quarter of outbreaks caused by Ebola virus. Larger outbreaks were more likely to lead to possible resurgence, and nosocomial transmission was associated with the majority of outbreaks. CONCLUSIONS While spillover from wildlife has been a source for many Ebola disease outbreaks, multiple outbreaks may have originated from flare-ups of prior outbreak strains. Improving access to diagnostics as well as identifying groups at risk for resurgence of ebolaviruses will be crucial to preventing future outbreaks.
Collapse
Affiliation(s)
- Seth D Judson
- Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Vincent J Munster
- Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| |
Collapse
|
22
|
Hare D, Dembicka KM, Brennan C, Campbell C, Sutton-Fitzpatrick U, Stapleton PJ, De Gascun CF, Dunne CP. Whole-genome sequencing to investigate transmission of SARS-CoV-2 in the acute healthcare setting: a systematic review. J Hosp Infect 2023; 140:139-155. [PMID: 37562592 DOI: 10.1016/j.jhin.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/03/2023] [Accepted: 08/04/2023] [Indexed: 08/12/2023]
Abstract
BACKGROUND Whole-genome sequencing (WGS) has been used widely to elucidate transmission of SARS-CoV-2 in acute healthcare settings, and to guide infection, prevention, and control (IPC) responses. AIM To systematically appraise available literature, published between January 1st, 2020 and June 30th, 2022, describing the implementation of WGS in acute healthcare settings to characterize nosocomial SARS-CoV-2 transmission. METHODS Searches of the PubMed, Embase, Ovid MEDLINE, EBSCO MEDLINE, and Cochrane Library databases identified studies in English reporting the use of WGS to investigate SARS-CoV-2 transmission in acute healthcare environments. Publications involved data collected up to December 31st, 2021, and findings were reported in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement. FINDINGS In all, 3088 non-duplicate records were retrieved; 97 met inclusion criteria, involving 62 outbreak analyses and 35 genomic surveillance studies. No publications from low-income countries were identified. In 87/97 (90%), WGS supported hypotheses for nosocomial transmission, while in 46 out of 97 (47%) suspected transmission events were excluded. An IPC intervention was attributed to the use of WGS in 18 out of 97 (18%); however, only three (3%) studies reported turnaround times ≤7 days facilitating near real-time IPC action, and none reported an impact on the incidence of nosocomial COVID-19 attributable to WGS. CONCLUSION WGS can elucidate transmission of SARS-CoV-2 in acute healthcare settings to enhance epidemiological investigations. However, evidence was not identified to support sequencing as an intervention to reduce the incidence of SARS-CoV-2 in hospital or to alter the trajectory of active outbreaks.
Collapse
Affiliation(s)
- D Hare
- UCD National Virus Reference Laboratory, University College Dublin, Ireland; School of Medicine, University of Limerick, Limerick, Ireland.
| | - K M Dembicka
- School of Medicine, University of Limerick, Limerick, Ireland
| | - C Brennan
- UCD National Virus Reference Laboratory, University College Dublin, Ireland
| | - C Campbell
- UCD National Virus Reference Laboratory, University College Dublin, Ireland
| | | | | | - C F De Gascun
- UCD National Virus Reference Laboratory, University College Dublin, Ireland
| | - C P Dunne
- School of Medicine, University of Limerick, Limerick, Ireland; Centre for Interventions in Infection, Inflammation & Immunity (4i), University of Limerick, Limerick, Ireland
| |
Collapse
|
23
|
Yu R, Abdullah SMU, Sun Y. HMMPolish: a coding region polishing tool for TGS-sequenced RNA viruses. Brief Bioinform 2023; 24:bbad264. [PMID: 37478372 PMCID: PMC10516367 DOI: 10.1093/bib/bbad264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/05/2023] [Accepted: 06/29/2023] [Indexed: 07/23/2023] Open
Abstract
Access to accurate viral genomes is important to downstream data analysis. Third-generation sequencing (TGS) has recently become a popular platform for virus sequencing because of its long read length. However, its per-base error rate, which is higher than next-generation sequencing, can lead to genomes with errors. Polishing tools are thus needed to correct errors either before or after sequence assembly. Despite promising results of available polishing tools, there is still room to improve the error correction performance to perform more accurate genome assembly. The errors, particularly those in coding regions, can hamper analysis such as linage identification and variant monitoring. In this work, we developed a novel pipeline, HMMPolish, for correcting (polishing) errors in protein-coding regions of known RNA viruses. This tool can be applied to either raw TGS reads or the assembled sequences of the target virus. By utilizing profile Hidden Markov Models of protein families/domains in known viruses, HMMPolish can correct errors that are ignored by available polishers. We extensively validated HMMPolish on 34 datasets that covered four clinically important viruses, including HIV-1, influenza-A, norovirus, and severe acute respiratory syndrome coronavirus 2. These datasets contain reads with different properties, such as sequencing depth and platforms (PacBio or Nanopore). The benchmark results against popular/representative polishers show that HMMPolish competes favorably on error correction in coding regions of known RNA viruses.
Collapse
Affiliation(s)
- Runzhou Yu
- Electrical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | | | - Yanni Sun
- Electrical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| |
Collapse
|
24
|
Oehler JB, Wright H, Stark Z, Mallett AJ, Schmitz U. The application of long-read sequencing in clinical settings. Hum Genomics 2023; 17:73. [PMID: 37553611 PMCID: PMC10410870 DOI: 10.1186/s40246-023-00522-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023] Open
Abstract
Long-read DNA sequencing technologies have been rapidly evolving in recent years, and their ability to assess large and complex regions of the genome makes them ideal for clinical applications in molecular diagnosis and therapy selection, thereby providing a valuable tool for precision medicine. In the third-generation sequencing duopoly, Oxford Nanopore Technologies and Pacific Biosciences work towards increasing the accuracy, throughput, and portability of long-read sequencing methods while trying to keep costs low. These trades have made long-read sequencing an attractive tool for use in research and clinical settings. This article provides an overview of current clinical applications and limitations of long-read sequencing and explores its potential for point-of-care testing and health care in remote settings.
Collapse
Affiliation(s)
- Josephine B Oehler
- Biomedical Sciences and Molecular Biology, College of Public Health, Medical & Vet Sciences, James Cook University, Townsville, Australia
- College of Medicine and Dentistry, James Cook University, Townsville, Australia
| | - Helen Wright
- Nursing and Midwifery, College of Healthcare Sciences, James Cook University, Townsville, Australia
| | - Zornitza Stark
- Victorian Clinical Genetics Services, Murdoch Children's Research Institute, Melbourne, Australia
- University of Melbourne, Melbourne, Australia
- Australian Genomics, Melbourne, Australia
| | - Andrew J Mallett
- College of Medicine and Dentistry, James Cook University, Townsville, Australia
- Department of Renal Medicine, Townsville University Hospital, Townsville, Australia
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Ulf Schmitz
- Biomedical Sciences and Molecular Biology, College of Public Health, Medical & Vet Sciences, James Cook University, Townsville, Australia.
- Centre for Tropical Bioinformatics and Molecular Biology, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia.
- Computational BioMedicine Lab Centenary Institute, The University of Sydney, Camperdown, Australia.
- Faculty of Medicine & Health, The University of Sydney, Camperdown, Australia.
| |
Collapse
|
25
|
Li X, Li Z, Wang M, Fu A, Hao X, Guo X, Gu J, Jin W, Yang A. The diagnostic utility of nanopore targeted sequencing in suspected endophthalmitis. Int Ophthalmol 2023; 43:2653-2668. [PMID: 36941506 PMCID: PMC10371907 DOI: 10.1007/s10792-023-02665-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/19/2023] [Indexed: 03/23/2023]
Abstract
PURPOSE This paper aimed to assess the diagnostic utility of a newly developed gene-based technology-nanopore targeted sequencing (NTS) in suspected endophthalmitis patients. METHODS This retrospective study included 43 patients (44 eyes) with suspected endophthalmitis. NTS was applied along with microbiological culture to detect unknown pathogens in intraocular fluid samples. The diagnostic utility of NTS was mainly evaluated from three aspects, including the positivity rate of bacterial/fungal presence, diagnostic turnaround time and the frequency of change in treatment based on etiology test results. Non-parametric, two-sided Wilcoxon rank sum test, the McNemar's test and the kappa statistic were used for statistical comparisons. RESULTS NTS showed significant advantages over traditional culture in positivity rates and diagnostic time (P < 0.001, kappa = 0.082; Z = -5.805, P < 0. 001). As regards antibiotic strategy, 17 patients (39.53%) and 5 patients (11.63%) underwent medication change following NTS and culture results respectively (P < 0.001, kappa = 0.335). With reasonable use of antibiotic and surgical intervention, most patients responded favorably, judged by significantly improved visual acuity (Z = -4.249, P < 0.001). The mean duration of hospitalization was 8.49 ± 2.45 days (range, 1-16 days). CONCLUSION The high efficiency feature of NTS in pathogen detection renders it a valuable supplementary to traditional culture. Additionally, it has facilitated patients' management for the early and precise diagnosis of endophthalmitis.
Collapse
Affiliation(s)
- Xuejie Li
- Eye Center, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan, 430060, Hubei Province, China
| | - Ziyue Li
- Eye Center, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan, 430060, Hubei Province, China
| | - Ming Wang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, Hubei Province, China
| | - Aisi Fu
- Wuhan Dgensee Clinical Laboratory Co, Ltd. Wuhan 430075, Hubei Province, China
| | - Xinlei Hao
- Eye Center, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan, 430060, Hubei Province, China
| | - Xinyang Guo
- Eye Center, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan, 430060, Hubei Province, China
| | - Jiashuang Gu
- Wuhan Dgensee Clinical Laboratory Co, Ltd. Wuhan 430075, Hubei Province, China
| | - Wei Jin
- Eye Center, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan, 430060, Hubei Province, China.
| | - Anhuai Yang
- Eye Center, Renmin Hospital of Wuhan University, Jiefang Road 238#, Wuhan, 430060, Hubei Province, China.
| |
Collapse
|
26
|
Zhan L, Gui C, Wei W, Liu J, Gui B. Third generation sequencing transforms the way of the screening and diagnosis of thalassemia: a mini-review. Front Pediatr 2023; 11:1199609. [PMID: 37484768 PMCID: PMC10357962 DOI: 10.3389/fped.2023.1199609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023] Open
Abstract
Thalassemia is an inherited blood disorder imposing a significant social and economic burden. Comprehensive screening strategies are essential for the prevention and management of this disease. Third-generation sequencing (TGS), a breakthrough technology, has shown great potential for screening and diagnostic applications in various diseases, while its application in thalassemia detection is still in its infancy. This review aims to understand the latest and most widespread uses, advantages of TGS technologies, as well as the challenges and solutions associated with their incorporation into routine screening and diagnosis of thalassemia. Overall, TGS has exhibited higher rates of positive detection and diagnostic accuracy compared to conventional methods and next-generation sequencing technologies, indicating that TGS will be a feasible option for clinical laboratories conducting in-house thalassemia testing. The implementation of TGS technology in thalassemia diagnosis will facilitate the development of effective prevention and management strategies, thereby reducing the burden of this disease on individuals and society.
Collapse
Affiliation(s)
- Lixia Zhan
- The Second School of Medicine, Guangxi Medical University, Nanning, China
- Child Healthcare Department, The Second People's Hospital of Beihai, Beihai, China
| | - Chunrong Gui
- Center for Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- The Guangxi Health Commission Key Laboratory of Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wei Wei
- Center for Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- The Guangxi Health Commission Key Laboratory of Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Juliang Liu
- Center for Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- The Guangxi Health Commission Key Laboratory of Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Baoheng Gui
- The Second School of Medicine, Guangxi Medical University, Nanning, China
- Center for Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
- The Guangxi Health Commission Key Laboratory of Medical Genetics and Genomics, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
27
|
Fomsgaard AS, Tahas SA, Spiess K, Polacek C, Fonager J, Belsham GJ. Unbiased Virus Detection in a Danish Zoo Using a Portable Metagenomic Sequencing System. Viruses 2023; 15:1399. [PMID: 37376698 DOI: 10.3390/v15061399] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Metagenomic next-generation sequencing (mNGS) is receiving increased attention for the detection of new viruses and infections occurring at the human-animal interface. The ability to actively transport and relocate this technology enables in situ virus identification, which could reduce response time and enhance disease management. In a previous study, we developed a straightforward mNGS procedure that greatly enhances the detection of RNA and DNA viruses in human clinical samples. In this study, we improved the mNGS protocol with transportable battery-driven equipment for the portable, non-targeted detection of RNA and DNA viruses in animals from a large zoological facility, to simulate a field setting for point-of-incidence virus detection. From the resulting metagenomic data, we detected 13 vertebrate viruses from four major virus groups: (+)ssRNA, (+)ssRNA-RT, dsDNA and (+)ssDNA, including avian leukosis virus in domestic chickens (Gallus gallus), enzootic nasal tumour virus in goats (Capra hircus) and several small, circular, Rep-encoding, ssDNA (CRESS DNA) viruses in several mammal species. More significantly, we demonstrate that the mNGS method is able to detect potentially lethal animal viruses, such as elephant endotheliotropic herpesvirus in Asian elephants (Elephas maximus) and the newly described human-associated gemykibivirus 2, a human-to-animal cross-species virus, in a Linnaeus two-toed sloth (Choloepus didactylus) and its enclosure, for the first time.
Collapse
Affiliation(s)
- Anna S Fomsgaard
- Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, 5 Artillerivej, 2300 Copenhagen, Denmark
- Department of Veterinary and Animal Sciences, University of Copenhagen, 4 Stigboejlen, 1870 Frederiksberg, Denmark
| | | | - Katja Spiess
- Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, 5 Artillerivej, 2300 Copenhagen, Denmark
| | - Charlotta Polacek
- Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, 5 Artillerivej, 2300 Copenhagen, Denmark
| | - Jannik Fonager
- Department of Virus & Microbiological Special Diagnostics, Statens Serum Institut, 5 Artillerivej, 2300 Copenhagen, Denmark
| | - Graham J Belsham
- Department of Veterinary and Animal Sciences, University of Copenhagen, 4 Stigboejlen, 1870 Frederiksberg, Denmark
| |
Collapse
|
28
|
Mastrorosa FK, Miller DE, Eichler EE. Applications of long-read sequencing to Mendelian genetics. Genome Med 2023; 15:42. [PMID: 37316925 PMCID: PMC10266321 DOI: 10.1186/s13073-023-01194-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 05/18/2023] [Indexed: 06/16/2023] Open
Abstract
Advances in clinical genetic testing, including the introduction of exome sequencing, have uncovered the molecular etiology for many rare and previously unsolved genetic disorders, yet more than half of individuals with a suspected genetic disorder remain unsolved after complete clinical evaluation. A precise genetic diagnosis may guide clinical treatment plans, allow families to make informed care decisions, and permit individuals to participate in N-of-1 trials; thus, there is high interest in developing new tools and techniques to increase the solve rate. Long-read sequencing (LRS) is a promising technology for both increasing the solve rate and decreasing the amount of time required to make a precise genetic diagnosis. Here, we summarize current LRS technologies, give examples of how they have been used to evaluate complex genetic variation and identify missing variants, and discuss future clinical applications of LRS. As costs continue to decrease, LRS will find additional utility in the clinical space fundamentally changing how pathological variants are discovered and eventually acting as a single-data source that can be interrogated multiple times for clinical service.
Collapse
Affiliation(s)
| | - Danny E Miller
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, WA, 98195, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, 98195, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
29
|
Napit R, Manandhar P, Chaudhary A, Shrestha B, Poudel A, Raut R, Pradhan S, Raut S, Rajbhandari PG, Gurung A, Rajbhandari RM, Dixit SM, Schwind JS, Johnson CK, Mazet JK, Karmacharya DB. Rapid genomic surveillance of SARS-CoV-2 in a dense urban community of Kathmandu Valley using sewage samples. PLoS One 2023; 18:e0283664. [PMID: 36996055 PMCID: PMC10062583 DOI: 10.1371/journal.pone.0283664] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
Understanding disease burden and transmission dynamics in resource-limited, low-income countries like Nepal are often challenging due to inadequate surveillance systems. These issues are exacerbated by limited access to diagnostic and research facilities throughout the country. Nepal has one of the highest COVID-19 case rates (915 cases per 100,000 people) in South Asia, with densely-populated Kathmandu experiencing the highest number of cases. Swiftly identifying case clusters (hotspots) and introducing effective intervention programs is crucial to mounting an effective containment strategy. The rapid identification of circulating SARS-CoV-2 variants can also provide important information on viral evolution and epidemiology. Genomic-based environmental surveillance can help in the early detection of outbreaks before clinical cases are recognized and identify viral micro-diversity that can be used for designing real-time risk-based interventions. This research aimed to develop a genomic-based environmental surveillance system by detecting and characterizing SARS-CoV-2 in sewage samples of Kathmandu using portable next-generation DNA sequencing devices. Out of 22 sites in the Kathmandu Valley from June to August 2020, sewage samples from 16 (80%) sites had detectable SARS-CoV-2. A heatmap was created to visualize the presence of SARS-CoV-2 infection in the community based on viral load intensity and corresponding geospatial data. Further, 47 mutations were observed in the SARS-CoV-2 genome. Some detected mutations (n = 9, 22%) were novel at the time of data analysis and yet to be reported in the global database, with one indicating a frameshift deletion in the spike gene. SNP analysis revealed possibility of assessing circulating major/minor variant diversity on environmental samples based on key mutations. Our study demonstrated the feasibility of rapidly obtaining vital information on community transmission and disease dynamics of SARS-CoV-2 using genomic-based environmental surveillance.
Collapse
Affiliation(s)
- Rajindra Napit
- One Health Research Division, Center for Molecular Dynamics Nepal, Thapathali-11, Kathmandu, Nepal
- Virology Division, BIOVAC Nepal Pvt. Ltd., Nala, Banepa, Nepal
| | - Prajwol Manandhar
- One Health Research Division, Center for Molecular Dynamics Nepal, Thapathali-11, Kathmandu, Nepal
- Virology Division, BIOVAC Nepal Pvt. Ltd., Nala, Banepa, Nepal
| | - Ashok Chaudhary
- One Health Research Division, Center for Molecular Dynamics Nepal, Thapathali-11, Kathmandu, Nepal
| | - Bishwo Shrestha
- One Health Research Division, Center for Molecular Dynamics Nepal, Thapathali-11, Kathmandu, Nepal
| | - Ajit Poudel
- One Health Research Division, Center for Molecular Dynamics Nepal, Thapathali-11, Kathmandu, Nepal
- Virology Division, BIOVAC Nepal Pvt. Ltd., Nala, Banepa, Nepal
| | - Roji Raut
- One Health Research Division, Center for Molecular Dynamics Nepal, Thapathali-11, Kathmandu, Nepal
| | - Saman Pradhan
- One Health Research Division, Center for Molecular Dynamics Nepal, Thapathali-11, Kathmandu, Nepal
- Virology Division, BIOVAC Nepal Pvt. Ltd., Nala, Banepa, Nepal
| | - Samita Raut
- One Health Research Division, Center for Molecular Dynamics Nepal, Thapathali-11, Kathmandu, Nepal
| | - Pragun G. Rajbhandari
- One Health Research Division, Center for Molecular Dynamics Nepal, Thapathali-11, Kathmandu, Nepal
| | - Anupama Gurung
- One Health Research Division, Center for Molecular Dynamics Nepal, Thapathali-11, Kathmandu, Nepal
| | - Rajesh M. Rajbhandari
- One Health Research Division, Center for Molecular Dynamics Nepal, Thapathali-11, Kathmandu, Nepal
- Virology Division, BIOVAC Nepal Pvt. Ltd., Nala, Banepa, Nepal
| | - Sameer M. Dixit
- One Health Research Division, Center for Molecular Dynamics Nepal, Thapathali-11, Kathmandu, Nepal
| | - Jessica S. Schwind
- Institute for Health Logistics & Analytics, Georgia Southern University, Statesboro, GA, United States of America
| | - Christine K. Johnson
- One Health Institute, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States of America
| | - Jonna K. Mazet
- One Health Institute, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States of America
| | - Dibesh B. Karmacharya
- One Health Research Division, Center for Molecular Dynamics Nepal, Thapathali-11, Kathmandu, Nepal
- Virology Division, BIOVAC Nepal Pvt. Ltd., Nala, Banepa, Nepal
- The School of Biological Sciences, University of Queensland, Brisbane, Australia
| |
Collapse
|
30
|
Kobayashi S, Maldonado JE, Gaete A, Araya I, Aguado-Norese C, Cumplido N, Díaz S, Espinoza A, Fernández E, Gajardo F, González-Ordenes F, Hauyon K, Maldonado P, Maldonado R, Pochet I, Riveros A, Sandoval P, Sepúlveda-González A, Stuardo C, Tapia-Reyes P, Thornton C, Undurraga S, Varas M, Valdivieso C, School Earwig Genome Consortium PhillipsAlanArosAlejandroAlarcónAlexandraMendiboureAlonsoSepúlvedaAlysonZepedaAmaliaBustamanteAngelaRussuAngeloMartínezAnselmoInostrozaAntoniaPalmaAntonioPonceBárbaraBáezBelénDiantaBelénZentenoBenjamínJelvezBereniceHenríquezBrisaConchaCamilaFuentesCatalinaMoralesCatalinaInostrosaClaudiaValenzuelaClaudioDercoltoConstanzaMalebránCristianGonzálezDamiánVenegasDanielAlvearDayhanneMartínezDeynaSilvaDianaAbarcaDiegoFuentesElíasInzunzaElizabethAlfaroFabiánAquevequeFernandaCartesFernandaDelgadoFernandaSandovalFernandaTamayoFernandaEspinozaFranciscoEspinozaGladysInzunzaGonzaloVidalGonzaloRocaGriselSánchezHileinnDefaurJaredSazoJonathanFuentesJosé ManuelCañeteJosé MiguelVásquezJuan PabloReyesKarinPiñaKarinaOrellanaKatherienVegaLisandroLagosLoretoPonceMagdalenaMaldonadoCatalinaGonzálezMaría AlejandraTorresMaría IgnaciaIrribarraMarianaSanguinettiMariangelaLeivaMarioIbacacheMarjorieYañezMartínPalamaraMartinaMagnaniMassimoPadillaMaykolArancibiaMillarayAcevedoMilovanMoralesGénesisCastilloNallelyCarvajalNélidaGonzálezOmarAlvaradoPaolaMuñozPíaErazoRenataSilvaRocíoSepúlvedaRodrigoValdésRodrigoMolinaRonnyCostaSaraíAlvearSebastiánAcuñaSofíaMendozaSofíaSáezSofiaTapiaSofíaCerdaTamaraZamoranoTomásArayaValentinaCortezValentinaPereiraValentinaPinoValentinaYáñezVictoriaJaramilloVivianaRiveraYavannaUrbinaYerkoUzcáteguiZuleimy, Gutiérrez RA, Orellana A, Montecino M, Maass A, González M, Allende ML, Hodar C, Irles P. DNA sequencing in the classroom: complete genome sequence of two earwig (Dermaptera; Insecta) species. Biol Res 2023; 56:6. [PMID: 36797803 PMCID: PMC9935246 DOI: 10.1186/s40659-023-00414-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 01/16/2023] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND Despite representing the largest fraction of animal life, the number of insect species whose genome has been sequenced is barely in the hundreds. The order Dermaptera (the earwigs) suffers from a lack of genomic information despite its unique position as one of the basally derived insect groups and its importance in agroecosystems. As part of a national educational and outreach program in genomics, a plan was formulated to engage the participation of high school students in a genome sequencing project. Students from twelve schools across Chile were instructed to capture earwig specimens in their geographical area, to identify them and to provide material for genome sequencing to be carried out by themselves in their schools. RESULTS The school students collected specimens from two cosmopolitan earwig species: Euborellia annulipes (Fam. Anisolabididae) and Forficula auricularia (Fam. Forficulidae). Genomic DNA was extracted and, with the help of scientific teams that traveled to the schools, was sequenced using nanopore sequencers. The sequence data obtained for both species was assembled and annotated. We obtained genome sizes of 1.18 Gb (F. auricularia) and 0.94 Gb (E. annulipes) with the number of predicted protein coding genes being 31,800 and 40,000, respectively. Our analysis showed that we were able to capture a high percentage (≥ 93%) of conserved proteins indicating genomes that are useful for comparative and functional analysis. We were also able to characterize structural elements such as repetitive sequences and non-coding RNA genes. Finally, functional categories of genes that are overrepresented in each species suggest important differences in the process underlying the formation of germ cells, and modes of reproduction between them, features that are one of the distinguishing biological properties that characterize these two distant families of Dermaptera. CONCLUSIONS This work represents an unprecedented instance where the scientific and lay community have come together to collaborate in a genome sequencing project. The versatility and accessibility of nanopore sequencers was key to the success of the initiative. We were able to obtain full genome sequences of two important and widely distributed species of insects which had not been analyzed at this level previously. The data made available by the project should illuminate future studies on the Dermaptera.
Collapse
Affiliation(s)
- Sanae Kobayashi
- Millennium Institute Center for Genome Regulation, 7800003 Santiago, Chile ,grid.443909.30000 0004 0385 4466Facultad de Ciencias, Universidad de Chile, 7800003 Santiago, Chile
| | - Jonathan E. Maldonado
- Millennium Institute Center for Genome Regulation, 7800003 Santiago, Chile ,grid.412179.80000 0001 2191 5013Facultad de Química y Biología, Universidad de Santiago de Chile, 9170022 Santiago, Chile
| | - Alexis Gaete
- Millennium Institute Center for Genome Regulation, 7800003 Santiago, Chile ,grid.443909.30000 0004 0385 4466INTA, Universidad de Chile, 7830490 Santiago, Chile
| | - Ingrid Araya
- Millennium Institute Center for Genome Regulation, 7800003 Santiago, Chile ,grid.512263.1Advanced Center for Chronic Diseases (ACCDiS), Sergio Livingstone 1007, 8380494 Independencia, Santiago Chile
| | - Constanza Aguado-Norese
- Millennium Institute Center for Genome Regulation, 7800003 Santiago, Chile ,grid.443909.30000 0004 0385 4466INTA, Universidad de Chile, 7830490 Santiago, Chile
| | - Nicolás Cumplido
- Millennium Institute Center for Genome Regulation, 7800003 Santiago, Chile ,grid.443909.30000 0004 0385 4466Facultad de Ciencias, Universidad de Chile, 7800003 Santiago, Chile
| | - Sebastián Díaz
- Millennium Institute Center for Genome Regulation, 7800003 Santiago, Chile ,grid.443909.30000 0004 0385 4466Facultad de Ciencias, Universidad de Chile, 7800003 Santiago, Chile
| | - Alonso Espinoza
- Millennium Institute Center for Genome Regulation, 7800003 Santiago, Chile ,grid.412848.30000 0001 2156 804XFacultad de Ciencias de la Vida, Centro de Biotecnología Vegetal, Universidad Andres Bello, Santiago, Chile
| | - Edelmira Fernández
- Millennium Institute Center for Genome Regulation, 7800003 Santiago, Chile ,grid.443909.30000 0004 0385 4466Facultad de Ciencias, Universidad de Chile, 7800003 Santiago, Chile
| | - Felipe Gajardo
- Millennium Institute Center for Genome Regulation, 7800003 Santiago, Chile ,grid.443909.30000 0004 0385 4466Facultad de Ciencias, Universidad de Chile, 7800003 Santiago, Chile
| | - Felipe González-Ordenes
- Millennium Institute Center for Genome Regulation, 7800003 Santiago, Chile ,grid.443909.30000 0004 0385 4466Facultad de Ciencias, Universidad de Chile, 7800003 Santiago, Chile
| | - Khantati Hauyon
- Millennium Institute Center for Genome Regulation, 7800003 Santiago, Chile ,grid.443909.30000 0004 0385 4466INTA, Universidad de Chile, 7830490 Santiago, Chile
| | - Piedad Maldonado
- Millennium Institute Center for Genome Regulation, 7800003 Santiago, Chile ,grid.443909.30000 0004 0385 4466Facultad de Ciencias, Universidad de Chile, 7800003 Santiago, Chile
| | - Rodrigo Maldonado
- Millennium Institute Center for Genome Regulation, 7800003 Santiago, Chile ,grid.412848.30000 0001 2156 804XFacultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Isabel Pochet
- Millennium Institute Center for Genome Regulation, 7800003 Santiago, Chile ,grid.7870.80000 0001 2157 0406Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Aníbal Riveros
- Millennium Institute Center for Genome Regulation, 7800003 Santiago, Chile ,grid.424112.00000 0001 0943 9683ANID-Millennium Science Initiative Program—Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, Chile
| | - Paula Sandoval
- Millennium Institute Center for Genome Regulation, 7800003 Santiago, Chile ,grid.7870.80000 0001 2157 0406Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ailynne Sepúlveda-González
- Millennium Institute Center for Genome Regulation, 7800003 Santiago, Chile ,grid.443909.30000 0004 0385 4466INTA, Universidad de Chile, 7830490 Santiago, Chile
| | - Camila Stuardo
- Millennium Institute Center for Genome Regulation, 7800003 Santiago, Chile ,grid.443909.30000 0004 0385 4466INTA, Universidad de Chile, 7830490 Santiago, Chile
| | - Patricio Tapia-Reyes
- Millennium Institute Center for Genome Regulation, 7800003 Santiago, Chile ,grid.7870.80000 0001 2157 0406Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carolina Thornton
- Millennium Institute Center for Genome Regulation, 7800003 Santiago, Chile ,grid.7870.80000 0001 2157 0406Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Soledad Undurraga
- Millennium Institute Center for Genome Regulation, 7800003 Santiago, Chile ,grid.412199.60000 0004 0487 8785Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
| | - Macarena Varas
- Millennium Institute Center for Genome Regulation, 7800003 Santiago, Chile ,grid.443909.30000 0004 0385 4466Facultad de Ciencias, Universidad de Chile, 7800003 Santiago, Chile
| | - Camilo Valdivieso
- Millennium Institute Center for Genome Regulation, 7800003 Santiago, Chile ,grid.443909.30000 0004 0385 4466Facultad de Ciencias, Universidad de Chile, 7800003 Santiago, Chile
| | | | - Rodrigo A. Gutiérrez
- Millennium Institute Center for Genome Regulation, 7800003 Santiago, Chile ,grid.7870.80000 0001 2157 0406Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ariel Orellana
- Millennium Institute Center for Genome Regulation, 7800003 Santiago, Chile ,grid.412848.30000 0001 2156 804XFacultad de Ciencias de la Vida, Centro de Biotecnología Vegetal, Universidad Andres Bello, Santiago, Chile
| | - Martín Montecino
- Millennium Institute Center for Genome Regulation, 7800003 Santiago, Chile ,grid.412848.30000 0001 2156 804XFacultad de Medicina y Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Alejandro Maass
- Millennium Institute Center for Genome Regulation, 7800003 Santiago, Chile ,grid.443909.30000 0004 0385 4466Departamento de Ingeniería Matemática, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile
| | - Mauricio González
- Millennium Institute Center for Genome Regulation, 7800003 Santiago, Chile ,grid.443909.30000 0004 0385 4466INTA, Universidad de Chile, 7830490 Santiago, Chile
| | - Miguel L. Allende
- Millennium Institute Center for Genome Regulation, 7800003 Santiago, Chile ,grid.443909.30000 0004 0385 4466Facultad de Ciencias, Universidad de Chile, 7800003 Santiago, Chile
| | - Christian Hodar
- Millennium Institute Center for Genome Regulation, 7800003, Santiago, Chile. .,INTA, Universidad de Chile, 7830490, Santiago, Chile.
| | - Paula Irles
- Institute of Agri-food, Animal and Environmental Sciences, Universidad de O´Higgins, Rancagua, Chile.
| |
Collapse
|
31
|
Kipp EJ, Lindsey LL, Milstein MS, Blanco CM, Baker JP, Faulk C, Oliver JD, Larsen PA. Nanopore adaptive sampling for targeted mitochondrial genome sequencing and bloodmeal identification in hematophagous insects. Parasit Vectors 2023; 16:68. [PMID: 36788607 PMCID: PMC9930342 DOI: 10.1186/s13071-023-05679-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/19/2023] [Indexed: 02/16/2023] Open
Abstract
BACKGROUND Blood-feeding insects are important vectors for an array of zoonotic pathogens. While previous efforts toward generating molecular resources have largely focused on major vectors of global medical and veterinary importance, molecular data across a large number of hematophagous insect taxa remain limited. Advancements in long-read sequencing technologies and associated bioinformatic pipelines provide new opportunities for targeted sequencing of insect mitochondrial (mt) genomes. For engorged hematophagous insects, such technologies can be leveraged for both insect mitogenome genome assembly and identification of vertebrate blood-meal sources. METHODS We used nanopore adaptive sampling (NAS) to sequence genomic DNA from four species of field-collected, blood-engorged mosquitoes (Aedes and Culex spp.) and one deer fly (Chrysops sp.). NAS was used for bioinformatical enrichment of mtDNA reads of hematophagous insects and potential vertebrate blood-meal hosts using publically available mt genomes as references. We also performed an experimental control to compare results of traditional non-NAS nanopore sequencing to the mt genome enrichment by the NAS method. RESULTS Complete mitogenomes were assembled and annotated for all five species sequenced with NAS: Aedes trivittatus, Aedes vexans, Culex restuans, Culex territans and the deer fly, Chrysops niger. In comparison to data generated during our non-NAS control experiment, NAS yielded a substantially higher proportion of reference-mapped mtDNA reads, greatly streamlining downstream mitogenome assembly and annotation. The NAS-assembled mitogenomes ranged in length from 15,582 to 16,045 bp, contained between 78.1% and 79.0% A + T content and shared the anticipated arrangement of 13 protein-coding genes, two ribosomal RNAs, and 22 transfer RNAs. Maximum likelihood phylogenies were generated to further characterize each insect species. Additionally, vertebrate blood-meal analysis was successful in three samples sequenced, with mtDNA-based phylogenetic analyses revealing that blood-meal sources for Chrysops niger, Culex restuans and Aedes trivittatus were human, house sparrow (Passer domesticus) and eastern cottontail rabbit (Sylvilagus floridanus), respectively. CONCLUSIONS Our findings show that NAS has dual utility to simultaneously molecularly identify hematophagous insects and their blood-meal hosts. Moreover, our data indicate NAS can facilitate a wide array of mitogenomic systematic studies through novel 'phylogenetic capture' methods. We conclude that the NAS approach has great potential for broadly improving genomic resources used to identify blood-feeding insects, answer phylogenetic questions and elucidate complex pathways for the transmission of vector-borne pathogens.
Collapse
Affiliation(s)
- Evan J. Kipp
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN USA
| | - Laramie L. Lindsey
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN USA
| | - Marissa S. Milstein
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN USA
| | - Cristina M. Blanco
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN USA
| | - Julia P. Baker
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN USA
| | - Christopher Faulk
- Department of Animal Science, University of Minnesota, St. Paul, MN USA
| | - Jonathan D. Oliver
- Division of Environmental Health Sciences, School of Public Health, University of Minnesota, Minneapolis, MN USA
| | - Peter A. Larsen
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN USA
| |
Collapse
|
32
|
Chen P, Sun Z, Wang J, Liu X, Bai Y, Chen J, Liu A, Qiao F, Chen Y, Yuan C, Sha J, Zhang J, Xu LQ, Li J. Portable nanopore-sequencing technology: Trends in development and applications. Front Microbiol 2023; 14:1043967. [PMID: 36819021 PMCID: PMC9929578 DOI: 10.3389/fmicb.2023.1043967] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/03/2023] [Indexed: 02/04/2023] Open
Abstract
Sequencing technology is the most commonly used technology in molecular biology research and an essential pillar for the development and applications of molecular biology. Since 1977, when the first generation of sequencing technology opened the door to interpreting the genetic code, sequencing technology has been developing for three generations. It has applications in all aspects of life and scientific research, such as disease diagnosis, drug target discovery, pathological research, species protection, and SARS-CoV-2 detection. However, the first- and second-generation sequencing technology relied on fluorescence detection systems and DNA polymerization enzyme systems, which increased the cost of sequencing technology and limited its scope of applications. The third-generation sequencing technology performs PCR-free and single-molecule sequencing, but it still depends on the fluorescence detection device. To break through these limitations, researchers have made arduous efforts to develop a new advanced portable sequencing technology represented by nanopore sequencing. Nanopore technology has the advantages of small size and convenient portability, independent of biochemical reagents, and direct reading using physical methods. This paper reviews the research and development process of nanopore sequencing technology (NST) from the laboratory to commercially viable tools; discusses the main types of nanopore sequencing technologies and their various applications in solving a wide range of real-world problems. In addition, the paper collates the analysis tools necessary for performing different processing tasks in nanopore sequencing. Finally, we highlight the challenges of NST and its future research and application directions.
Collapse
Affiliation(s)
- Pin Chen
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Zepeng Sun
- China Mobile (Chengdu) Industrial Research Institute, Chengdu, China
| | - Jiawei Wang
- School of Computer Science and Technology, Southeast University, Nanjing, China
| | - Xinlong Liu
- China Mobile (Chengdu) Industrial Research Institute, Chengdu, China
| | - Yun Bai
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Jiang Chen
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Anna Liu
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Feng Qiao
- China Mobile (Chengdu) Industrial Research Institute, Chengdu, China
| | - Yang Chen
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China
| | - Chenyan Yuan
- Clinical Laboratory, Southeast University Zhongda Hospital, Nanjing, China
| | - Jingjie Sha
- School of Mechanical Engineering, Southeast University, Nanjing, China
| | - Jinghui Zhang
- School of Computer Science and Technology, Southeast University, Nanjing, China
| | - Li-Qun Xu
- China Mobile (Chengdu) Industrial Research Institute, Chengdu, China,*Correspondence: Li-Qun Xu, ✉
| | - Jian Li
- Key Laboratory of DGHD, MOE, School of Life Science and Technology, Southeast University, Nanjing, China,Jian Li, ✉
| |
Collapse
|
33
|
Wilson CN, Musicha P, Beale MA. Genomic epidemiology on the move. Nat Rev Microbiol 2023; 21:69. [PMID: 36536144 PMCID: PMC9762618 DOI: 10.1038/s41579-022-00836-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This Genome Watch article explores how portable sequencing technology is re-shaping the field of genomic epidemiology.
Collapse
Affiliation(s)
| | - Patrick Musicha
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Mathew A Beale
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| |
Collapse
|
34
|
Senanayake A, Gamaarachchi H, Herath D, Ragel R. DeepSelectNet: deep neural network based selective sequencing for oxford nanopore sequencing. BMC Bioinformatics 2023; 24:31. [PMID: 36709261 PMCID: PMC9883605 DOI: 10.1186/s12859-023-05151-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/17/2023] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Nanopore sequencing allows selective sequencing, the ability to programmatically reject unwanted reads in a sample. Selective sequencing has many present and future applications in genomics research and the classification of species from a pool of species is an example. Existing methods for selective sequencing for species classification are still immature and the accuracy highly varies depending on the datasets. For the five datasets we tested, the accuracy of existing methods varied in the range of [Formula: see text] 77 to 97% (average accuracy < 89%). Here we present DeepSelectNet, an accurate deep-learning-based method that can directly classify nanopore current signals belonging to a particular species. DeepSelectNet utilizes novel data preprocessing techniques and improved neural network architecture for regularization. RESULTS For the five datasets tested, DeepSelectNet's accuracy varied between [Formula: see text] 91 and 99% (average accuracy [Formula: see text] 95%). At its best performance, DeepSelectNet achieved a nearly 12% accuracy increase compared to its deep learning-based predecessor SquiggleNet. Furthermore, precision and recall evaluated for DeepSelectNet on average were always > 89% (average [Formula: see text] 95%). In terms of execution performance, DeepSelectNet outperformed SquiggleNet by [Formula: see text] 13% on average. Thus, DeepSelectNet is a practically viable method to improve the effectiveness of selective sequencing. CONCLUSIONS Compared to base alignment and deep learning predecessors, DeepSelectNet can significantly improve the accuracy to enable real-time species classification using selective sequencing. The source code of DeepSelectNet is available at https://github.com/AnjanaSenanayake/DeepSelectNet .
Collapse
Affiliation(s)
- Anjana Senanayake
- Department of Computer Engineering, University of Peradeniya, Peradeniya, Sri Lanka.
| | - Hasindu Gamaarachchi
- Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst, Australia
- School of Computer Science and Engineering, University of New South Wales, Sydney, Australia
| | - Damayanthi Herath
- Department of Computer Engineering, University of Peradeniya, Peradeniya, Sri Lanka
| | - Roshan Ragel
- Department of Computer Engineering, University of Peradeniya, Peradeniya, Sri Lanka
| |
Collapse
|
35
|
Guan X, Li Z, Zhou Y, Shao W, Zhang D. Active learning for efficient analysis of high-throughput nanopore data. Bioinformatics 2022; 39:6851141. [PMID: 36445037 PMCID: PMC9825740 DOI: 10.1093/bioinformatics/btac764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/25/2022] [Accepted: 11/28/2022] [Indexed: 11/30/2022] Open
Abstract
MOTIVATION As the third-generation sequencing technology, nanopore sequencing has been used for high-throughput sequencing of DNA, RNA, and even proteins. Recently, many studies have begun to use machine learning technology to analyze the enormous data generated by nanopores. Unfortunately, the success of this technology is due to the extensive labeled data, which often suffer from enormous labor costs. Therefore, there is an urgent need for a novel technology that can not only rapidly analyze nanopore data with high-throughput, but also significantly reduce the cost of labeling. To achieve the above goals, we introduce active learning to alleviate the enormous labor costs by selecting the samples that need to be labeled. This work applies several advanced active learning technologies to the nanopore data, including the RNA classification dataset (RNA-CD) and the Oxford Nanopore Technologies barcode dataset (ONT-BD). Due to the complexity of the nanopore data (with noise sequence), the bias constraint is introduced to improve the sample selection strategy in active learning. Results: The experimental results show that for the same performance metric, 50% labeling amount can achieve the best baseline performance for ONT-BD, while only 15% labeling amount can achieve the best baseline performance for RNA-CD. Crucially, the experiments show that active learning technology can assist experts in labeling samples, and significantly reduce the labeling cost. Active learning can greatly reduce the dilemma of difficult labeling of high-capacity nanopore data. We hope active learning can be applied to other problems in nanopore sequence analysis. AVAILABILITY AND IMPLEMENTATION The main program is available at https://github.com/guanxiaoyu11/AL-for-nanopore. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Xiaoyu Guan
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, Nanjing 211106, China
| | - Zhongnian Li
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, Nanjing 211106, China,School of Computer Science, China University of Mining Technology, Xuzhou 221116, China
| | - Yueying Zhou
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, Nanjing 211106, China
| | - Wei Shao
- College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, MIIT Key Laboratory of Pattern Analysis and Machine Intelligence, Nanjing 211106, China
| | | |
Collapse
|
36
|
Khan MAA, Ghosh P, Chowdhury R, Hossain F, Mahmud A, Faruque ASG, Ahmed T, Abd El Wahed A, Mondal D. Feasibility of MinION Nanopore Rapid Sequencing in the Detection of Common Diarrhea Pathogens in Fecal Specimen. Anal Chem 2022; 94:16658-16666. [DOI: 10.1021/acs.analchem.2c02771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Md Anik Ashfaq Khan
- Nutrition and Clinical Services Division, International Centre for Diarrheal Disease Research, Bangladesh, Dhaka-1212, Bangladesh
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, An den Tierkliniken 1, 04103Leipzig, Germany
| | - Prakash Ghosh
- Nutrition and Clinical Services Division, International Centre for Diarrheal Disease Research, Bangladesh, Dhaka-1212, Bangladesh
| | - Rajashree Chowdhury
- Nutrition and Clinical Services Division, International Centre for Diarrheal Disease Research, Bangladesh, Dhaka-1212, Bangladesh
| | - Faria Hossain
- Nutrition and Clinical Services Division, International Centre for Diarrheal Disease Research, Bangladesh, Dhaka-1212, Bangladesh
| | - Araf Mahmud
- Laboratory Sciences and Services Division, International Centre for Diarrheal Disease Research, Bangladesh, Dhaka-1212, Bangladesh
| | - Abu S. G. Faruque
- Nutrition and Clinical Services Division, International Centre for Diarrheal Disease Research, Bangladesh, Dhaka-1212, Bangladesh
| | - Tahmeed Ahmed
- Nutrition and Clinical Services Division, International Centre for Diarrheal Disease Research, Bangladesh, Dhaka-1212, Bangladesh
| | - Ahmed Abd El Wahed
- Nutrition and Clinical Services Division, International Centre for Diarrheal Disease Research, Bangladesh, Dhaka-1212, Bangladesh
| | - Dinesh Mondal
- Nutrition and Clinical Services Division, International Centre for Diarrheal Disease Research, Bangladesh, Dhaka-1212, Bangladesh
- Laboratory Sciences and Services Division, International Centre for Diarrheal Disease Research, Bangladesh, Dhaka-1212, Bangladesh
| |
Collapse
|
37
|
MinION Whole-Genome Sequencing in Resource-Limited Settings: Challenges and Opportunities. CURRENT CLINICAL MICROBIOLOGY REPORTS 2022; 9:52-59. [DOI: 10.1007/s40588-022-00183-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2022] [Indexed: 11/18/2022]
Abstract
Abstract
Purpose of Review
The introduction of MinION whole-genome sequencing technology greatly increased and simplified complete genome sequencing in various fields of science across the globe. Sequences have been generated from complex organisms to microorganisms and are stored in genome databases that are readily accessible by researchers. Various new software for genome analysis, along with upgrades to older software packages, are being generated. New protocols are also being validated that enable WGS technology to be rapidly and increasingly used for sequencing in field settings.
Recent Findings
MinION WGS technology has been implemented in developed countries due to its advantages: portability, real-time analysis, and lower cost compared to other sequencing technologies. While these same advantages are critical in developing countries, MinION WGS technology is still under-utilized in resource-limited settings.
Summary
In this review, we look at the applications, advantages, challenges, and opportunities of using MinION WGS in resource-limited settings.
Collapse
|
38
|
Nykrynova M, Jakubicek R, Barton V, Bezdicek M, Lengerova M, Skutkova H. Using deep learning for gene detection and classification in raw nanopore signals. Front Microbiol 2022; 13:942179. [PMID: 36187947 PMCID: PMC9520528 DOI: 10.3389/fmicb.2022.942179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/24/2022] [Indexed: 11/27/2022] Open
Abstract
Recently, nanopore sequencing has come to the fore as library preparation is rapid and simple, sequencing can be done almost anywhere, and longer reads are obtained than with next-generation sequencing. The main bottleneck still lies in data postprocessing which consists of basecalling, genome assembly, and localizing significant sequences, which is time consuming and computationally demanding, thus prolonging delivery of crucial results for clinical practice. Here, we present a neural network-based method capable of detecting and classifying specific genomic regions already in raw nanopore signals—squiggles. Therefore, the basecalling process can be omitted entirely as the raw signals of significant genes, or intergenic regions can be directly analyzed, or if the nucleotide sequences are required, the identified squiggles can be basecalled, preferably to others. The proposed neural network could be included directly in the sequencing run, allowing real-time squiggle processing.
Collapse
Affiliation(s)
- Marketa Nykrynova
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czechia
- *Correspondence: Marketa Nykrynova
| | - Roman Jakubicek
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czechia
| | - Vojtech Barton
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czechia
| | - Matej Bezdicek
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno, Brno, Czechia
| | - Martina Lengerova
- Department of Internal Medicine - Hematology and Oncology, University Hospital Brno, Brno, Czechia
| | - Helena Skutkova
- Department of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno, Czechia
| |
Collapse
|
39
|
Ahmed YW, Alemu BA, Bekele SA, Gizaw ST, Zerihun MF, Wabalo EK, Teklemariam MD, Mihrete TK, Hanurry EY, Amogne TG, Gebrehiwot AD, Berga TN, Haile EA, Edo DO, Alemu BD. Epigenetic tumor heterogeneity in the era of single-cell profiling with nanopore sequencing. Clin Epigenetics 2022; 14:107. [PMID: 36030244 PMCID: PMC9419648 DOI: 10.1186/s13148-022-01323-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 08/12/2022] [Indexed: 11/29/2022] Open
Abstract
Nanopore sequencing has brought the technology to the next generation in the science of sequencing. This is achieved through research advancing on: pore efficiency, creating mechanisms to control DNA translocation, enhancing signal-to-noise ratio, and expanding to long-read ranges. Heterogeneity regarding epigenetics would be broad as mutations in the epigenome are sensitive to cause new challenges in cancer research. Epigenetic enzymes which catalyze DNA methylation and histone modification are dysregulated in cancer cells and cause numerous heterogeneous clones to evolve. Detection of this heterogeneity in these clones plays an indispensable role in the treatment of various cancer types. With single-cell profiling, the nanopore sequencing technology could provide a simple sequence at long reads and is expected to be used soon at the bedside or doctor's office. Here, we review the advancements of nanopore sequencing and its use in the detection of epigenetic heterogeneity in cancer.
Collapse
Affiliation(s)
- Yohannis Wondwosen Ahmed
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia.
| | - Berhan Ababaw Alemu
- Department of Medical Biochemistry, School of Medicine, St. Paul's Hospital, Millennium Medical College, Addis Ababa, Ethiopia
| | - Sisay Addisu Bekele
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Solomon Tebeje Gizaw
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Muluken Fekadie Zerihun
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Endriyas Kelta Wabalo
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Maria Degef Teklemariam
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Tsehayneh Kelemu Mihrete
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Endris Yibru Hanurry
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Tensae Gebru Amogne
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Assaye Desalegne Gebrehiwot
- Department of Medical Anatomy, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Tamirat Nida Berga
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Ebsitu Abate Haile
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Dessiet Oma Edo
- Department of Medical Biochemistry, School of Medicine, College of Health Sciences, Addis Ababa University, P.O. Box: 9086, Addis Ababa, Ethiopia
| | - Bizuwork Derebew Alemu
- Department of Statistics, College of Natural and Computational Sciences, Mizan Tepi University, Tepi, Ethiopia
| |
Collapse
|
40
|
Yek C, Pacheco AR, Vanaerschot M, Bohl JA, Fahsbender E, Aranda-Díaz A, Lay S, Chea S, Oum MH, Lon C, Tato CM, Manning JE. Metagenomic Pathogen Sequencing in Resource-Scarce Settings: Lessons Learned and the Road Ahead. FRONTIERS IN EPIDEMIOLOGY 2022; 2:926695. [PMID: 36247976 PMCID: PMC9558322 DOI: 10.3389/fepid.2022.926695] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/29/2022] [Indexed: 06/16/2023]
Abstract
Metagenomic next-generation sequencing (mNGS) is the process of sequencing all genetic material in a biological sample. The technique is growing in popularity with myriad applications including outbreak investigation, biosurveillance, and pathogen detection in clinical samples. However, mNGS programs are costly to build and maintain, and additional obstacles faced by low- and middle-income countries (LMICs) may further widen global inequities in mNGS capacity. Over the past two decades, several important infectious disease outbreaks have highlighted the importance of establishing widespread sequencing capacity to support rapid disease detection and containment at the source. Using lessons learned from the COVID-19 pandemic, LMICs can leverage current momentum to design and build sustainable mNGS programs, which would form part of a global surveillance network crucial to the elimination of infectious diseases.
Collapse
Affiliation(s)
- Christina Yek
- Department of Critical Care Medicine, National Institutes of Health Clinical Center, Bethesda, MD, United States
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, MD, United States
| | - Andrea R. Pacheco
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, Phnom Penh, Cambodia
| | | | - Jennifer A. Bohl
- Vaccine Immunology Program, Vaccine Research Center, National Institute of Allergy and Infectious Diseases, Bethesda, MD, United States
| | | | - Andrés Aranda-Díaz
- Chan Zuckerberg Initiative, Redwood City, CA, United States
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Sreyngim Lay
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, Phnom Penh, Cambodia
| | - Sophana Chea
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, Phnom Penh, Cambodia
| | - Meng Heng Oum
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, Phnom Penh, Cambodia
| | - Chanthap Lon
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, Phnom Penh, Cambodia
| | | | - Jessica E. Manning
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, Rockville, MD, United States
- International Center of Excellence in Research, National Institute of Allergy and Infectious Diseases, Phnom Penh, Cambodia
| |
Collapse
|
41
|
Wan Y, Zong C, Li X, Wang A, Li Y, Yang T, Bao Q, Dubow M, Yang M, Rodrigo LA, Mao C. New Insights for Biosensing: Lessons from Microbial Defense Systems. Chem Rev 2022; 122:8126-8180. [PMID: 35234463 DOI: 10.1021/acs.chemrev.1c01063] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Microorganisms have gained defense systems during the lengthy process of evolution over millions of years. Such defense systems can protect them from being attacked by invading species (e.g., CRISPR-Cas for establishing adaptive immune systems and nanopore-forming toxins as virulence factors) or enable them to adapt to different conditions (e.g., gas vesicles for achieving buoyancy control). These microorganism defense systems (MDS) have inspired the development of biosensors that have received much attention in a wide range of fields including life science research, food safety, and medical diagnosis. This Review comprehensively analyzes biosensing platforms originating from MDS for sensing and imaging biological analytes. We first describe a basic overview of MDS and MDS-inspired biosensing platforms (e.g., CRISPR-Cas systems, nanopore-forming proteins, and gas vesicles), followed by a critical discussion of their functions and properties. We then discuss several transduction mechanisms (optical, acoustic, magnetic, and electrical) involved in MDS-inspired biosensing. We further detail the applications of the MDS-inspired biosensors to detect a variety of analytes (nucleic acids, peptides, proteins, pathogens, cells, small molecules, and metal ions). In the end, we propose the key challenges and future perspectives in seeking new and improved MDS tools that can potentially lead to breakthrough discoveries in developing a new generation of biosensors with a combination of low cost; high sensitivity, accuracy, and precision; and fast detection. Overall, this Review gives a historical review of MDS, elucidates the principles of emulating MDS to develop biosensors, and analyzes the recent advancements, current challenges, and future trends in this field. It provides a unique critical analysis of emulating MDS to develop robust biosensors and discusses the design of such biosensors using elements found in MDS, showing that emulating MDS is a promising approach to conceptually advancing the design of biosensors.
Collapse
Affiliation(s)
- Yi Wan
- State Key Laboratory of Marine Resource Utilization in the South China Sea, School of Pharmaceutical Sciences, Marine College, Hainan University, Haikou 570228, P. R. China
| | - Chengli Zong
- State Key Laboratory of Marine Resource Utilization in the South China Sea, School of Pharmaceutical Sciences, Marine College, Hainan University, Haikou 570228, P. R. China
| | - Xiangpeng Li
- Department of Bioengineering and Therapeutic Sciences, Schools of Medicine and Pharmacy, University of California, San Francisco, 1700 Fourth Street, Byers Hall 303C, San Francisco, California 94158, United States
| | - Aimin Wang
- State Key Laboratory of Marine Resource Utilization in the South China Sea, School of Pharmaceutical Sciences, Marine College, Hainan University, Haikou 570228, P. R. China
| | - Yan Li
- College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Tao Yang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Qing Bao
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Michael Dubow
- Institute for Integrative Biology of the Cell (I2BC), UMR 9198 CNRS, CEA, Université Paris-Saclay, Campus C.N.R.S, Bâtiment 12, Avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Mingying Yang
- College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Ledesma-Amaro Rodrigo
- Imperial College Centre for Synthetic Biology, Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Chuanbin Mao
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States.,School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| |
Collapse
|
42
|
Habibi N, Uddin S, Behbehani M, Abdul Razzack N, Zakir F, Shajan A. SARS-CoV-2 in hospital air as revealed by comprehensive respiratory viral panel sequencing. Infect Prev Pract 2022; 4:100199. [PMID: 34977533 PMCID: PMC8711137 DOI: 10.1016/j.infpip.2021.100199] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Nosocomially acquired severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection has become the most significant pandemic of our lifetime. Though its transmission was essentially attributed to droplets from an infected person, with recent advancements in knowledge, aerosol transmission seems to be a viable pathway, as well. Because of the lower biological load in ambient aerosol, detection of SARS-CoV-2 is challenging. A few recent attempts of sampling large aerosol volumes and using next-generation sequencing (NGS) to detect the presence of SARS-CoV-2 in the air at very low levels gave positive results. These results suggest the potential of using this technique to detect the presence of SARS-CoV-2 and use it as an early warning signal for possible outbreak or recurrence of coronavirus disease 2019 (COVID-19). AIM To assess efficacy of comprehensive respiratory viral panel (CRVP) sequencing and RT-PCR for low-level identification of SARS-CoV-2 and other respiratory viruses in indoor air. METHODS A large volume of indoor aerosol samples from three major hospitals involved in COVID-19 care in Kuwait was collected. Viral RNA was isolated and subjected to comprehensive respiratory viral panel sequencing (CRVP) as per the standard protocol to detect the SARS-CoV-2 and other respiratory viruses in the hospital aerosol and monitor variations within the sequences. RT-PCR was also employed to estimate the viral load of SARS-CoV-2. FINDINGS 13 of 15 (86.7%) samples exhibited SARS-CoV-2 with a relative abundance of 0.2-33.3%. The co-occurrence of human adenoviruses (type C1, C2, C5, C4), respiratory syncytial virus (RSV), influenza B, and non-SARS-CoV-229E were also recorded. Alignment of SARS-CoV-2 sequences against the reference strain of Wuhan China revealed variations in the form of single nucleotide polymorphisms (SNPs-17), insertions and deletions (indels-1). These variations were predicted to create missense (16), synonymous (15), frameshift (1) and stop-gained (1) mutations with a high (2), low (15), and moderate (16) impact. CONCLUSIONS Our results suggest that using CRVP on a large volume aerosol sample was a valuable tool for detecting SARS-CoV-2 in indoor aerosols of health care settings. Owing to its higher sensitivity, it can be employed as a surveillance strategy in the post COVID times to act as an early warning system to possibly control future outbreaks.
Collapse
Affiliation(s)
- Nazima Habibi
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait
| | - Saif Uddin
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait
| | - Montaha Behbehani
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait
| | - Nasreem Abdul Razzack
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait
| | - Farhana Zakir
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait
| | - Anisha Shajan
- Environment and Life Sciences Research Center, Kuwait Institute for Scientific Research, Kuwait
| |
Collapse
|
43
|
Yonkus JA, Whittle E, Alva-Ruiz R, Abdelrahman AM, Horsman SE, Suh GA, Cunningham SA, Nelson H, Grotz TE, Smoot RL, Cleary SP, Nagorney DM, Kendrick ML, Patel R, Truty MJ, Chia N. "Answers in hours": A prospective clinical study using nanopore sequencing for bile duct cultures. Surgery 2022; 171:693-702. [PMID: 34973809 DOI: 10.1016/j.surg.2021.09.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/17/2021] [Accepted: 09/07/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Surgical site infection is a major source of morbidity in patients undergoing pancreatic head resection and is often from organisms in intraoperative bile duct cultures. As such, many institutions use prolonged prophylactic antibiotics and tailor based on bile duct cultures. However, standard cultures take days, leaving many patients unnecessarily on prolonged antibiotics. Nanopore sequencing can provide data in hours and, thus, has the potential to improve antibiotic stewardship. The present study investigates the feasibility of nanopore sequencing in intraoperative bile samples. METHODS Patients undergoing pancreatic head resection were included. Intra-operative bile microbial profiles were determined with standard cultures and nanopore sequencing. Antibiotic recommendations were generated, and time-to-results determined for both methods. Organism yields, resistance patterns, antibiotic recommendations, and costs were compared. RESULTS Out of 42 patients, 22 (52%) had samples resulting in positive standard cultures. All positive standard cultures had microbes detected using nanopore sequencing. All 20 patients with negative standard cultures had negative nanopore sequencing. Nanopore sequencing detected more bacterial species compared to standard cultures (10.5 vs 4.4, p < 0.05) and more resistance genotypes (10.3 vs 2.7, p < 0.05). Antimicrobial recommendations based on nanopore sequencing provided coverage for standard cultures in 27 out of 44 (61%) samples, with broader coverage recommended by nanopore sequencing in 13 out of 27 (48%) of these samples. Nanopore sequencing results were faster (8 vs 98 hours) than standard cultures but had higher associated costs ($165 vs $38.49). CONCLUSION Rapid microbial profiling with nanopore sequencing is feasible with broader organism and resistance profiling compared to standard cultures. Nanopore sequencing has perfect negative predictive value and can potentially improve antibiotic stewardship; thus, a randomized control trial is under development.
Collapse
Affiliation(s)
- Jennifer A Yonkus
- Division of Hepatobiliary & Pancreatic Surgery, Department of Surgery, Mayo Clinic, Rochester, MN
| | - Emma Whittle
- Division of Surgical Research, Department of Surgery; Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN
| | - Roberto Alva-Ruiz
- Division of Hepatobiliary & Pancreatic Surgery, Department of Surgery, Mayo Clinic, Rochester, MN
| | - Amro M Abdelrahman
- Division of Hepatobiliary & Pancreatic Surgery, Department of Surgery, Mayo Clinic, Rochester, MN
| | - Susan E Horsman
- Department of Pharmacy, College of Medicine, Mayo Clinic, Rochester, MN
| | - Gina A Suh
- Division of Infectious Disease, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Scott A Cunningham
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Heidi Nelson
- Division of Research and Optimal Patient Care, Cancer Programs, American College of Surgeons, Rochester, MN
| | - Travis E Grotz
- Division of Hepatobiliary & Pancreatic Surgery, Department of Surgery, Mayo Clinic, Rochester, MN
| | - Rory L Smoot
- Division of Hepatobiliary & Pancreatic Surgery, Department of Surgery, Mayo Clinic, Rochester, MN
| | - Sean P Cleary
- Division of Hepatobiliary & Pancreatic Surgery, Department of Surgery, Mayo Clinic, Rochester, MN
| | - David M Nagorney
- Division of Hepatobiliary & Pancreatic Surgery, Department of Surgery, Mayo Clinic, Rochester, MN
| | - Michael L Kendrick
- Division of Hepatobiliary & Pancreatic Surgery, Department of Surgery, Mayo Clinic, Rochester, MN
| | - Robin Patel
- Division of Infectious Disease, Department of Medicine, Mayo Clinic, Rochester, MN
| | - Mark J Truty
- Division of Hepatobiliary & Pancreatic Surgery, Department of Surgery, Mayo Clinic, Rochester, MN
| | - Nicholas Chia
- Division of Surgical Research, Department of Surgery; Microbiome Program, Center for Individualized Medicine, Mayo Clinic, Rochester, MN.
| |
Collapse
|
44
|
Whittle E, Yonkus JA, Jeraldo P, Alva-Ruiz R, Nelson H, Kendrick ML, Grys TE, Patel R, Truty MJ, Chia N. Optimizing Nanopore Sequencing for Rapid Detection of Microbial Species and Antimicrobial Resistance in Patients at Risk of Surgical Site Infections. mSphere 2022; 7:e0096421. [PMID: 35171692 PMCID: PMC8849348 DOI: 10.1128/msphere.00964-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Surgical site infections (SSI) are a significant burden to patients and health care systems. We evaluated the use of Nanopore sequencing (NS) to rapidly detect microbial species and antimicrobial resistance (AMR) genes present in intraoperative bile aspirates. Bile aspirates from 42 patients undergoing pancreatic head resection were included. Three methods of DNA extraction using mechanical cell lysis or protease cell lysis were compared to determine the optimum method of DNA extraction. The impact of host DNA depletion, sequence run duration, and use of different AMR gene databases was also assessed. To determine clinical value, NS results were compared to standard culture (SC) results. NS identified microbial species in all culture positive samples. Mechanical lysis improved NS detection of cultured species from 60% to 76%, enabled detection of fungal species, and increased AMR predictions. Host DNA depletion improved detection of streptococcal species and AMR correlation with SC. Selection of AMR database influenced the number of AMR hits and resistance profile of 13 antibiotics. AMR prediction using CARD and ResFinder 4.1 correctly predicted 79% and 81% of the bile antibiogram, respectively. Sequence run duration positively correlated with detection of AMR genes. A minimum of 6 h was required to characterize the biliary microbes, resulting in a turnaround time of 14 h. Rapid identification of microbial species and AMR genes can be achieved by NS. NS results correlated with SC, suggesting that NS may be useful in guiding early antimicrobial therapy postsurgery. IMPORTANCE Surgical site infections (SSI) are a significant burden to patients and health care systems. They increase mortality rates, length of hospital stays, and associated health care costs. To reduce the risk of SSI, surgical patients are administered broad-spectrum antibiotics that are later adapted to target microbial species detected at the site of surgical incision. Use of broad-spectrum antibiotics can be harmful to the patient. We wanted to develop a rapid method of detecting microbial species and their antimicrobial resistance phenotypes. We developed a method of detecting microbial species and predicting resistance phenotypes using Nanopore sequencing. Results generated using Nanopore sequencing were similar to current methods of detection but were obtained in a significantly shorter amount of time. This suggests that Nanopore sequencing could be used to tailor antibiotics in surgical patients and reduce use of broad-spectrum antibiotics.
Collapse
Affiliation(s)
- Emma Whittle
- Division of Surgical Research, Department of Surgery, Mayo Clinicgrid.66875.3a, Rochester, Minnesota, USA
| | - Jennifer A. Yonkus
- Division of Hepatobiliary & Pancreatic Surgery, Department of Surgery, Mayo Clinicgrid.66875.3a, Rochester, Minnesota, USA
| | - Patricio Jeraldo
- Division of Surgical Research, Department of Surgery, Mayo Clinicgrid.66875.3a, Rochester, Minnesota, USA
| | - Roberto Alva-Ruiz
- Division of Hepatobiliary & Pancreatic Surgery, Department of Surgery, Mayo Clinicgrid.66875.3a, Rochester, Minnesota, USA
| | - Heidi Nelson
- Division of Research and Optimal Patient Care, Cancer Programs, American College of Surgeonsgrid.417954.a, Chicago, Illinois, USA
| | - Michael L. Kendrick
- Division of Hepatobiliary & Pancreatic Surgery, Department of Surgery, Mayo Clinicgrid.66875.3a, Rochester, Minnesota, USA
| | - Thomas E. Grys
- Department of Laboratory Medicine and Pathology, Mayo Clinicgrid.66875.3a, Phoenix, Arizona, USA
| | - Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinicgrid.66875.3a, Rochester, Minnesota, USA
| | - Mark J. Truty
- Division of Hepatobiliary & Pancreatic Surgery, Department of Surgery, Mayo Clinicgrid.66875.3a, Rochester, Minnesota, USA
| | - Nicholas Chia
- Division of Surgical Research, Department of Surgery, Mayo Clinicgrid.66875.3a, Rochester, Minnesota, USA
| |
Collapse
|
45
|
Sherwood LJ, Hayhurst A. Generating Uniformly Cross-Reactive Ebolavirus spp. Anti-nucleoprotein Nanobodies to Facilitate Forward Capable Detection Strategies. ACS Infect Dis 2022; 8:343-359. [PMID: 34994194 DOI: 10.1021/acsinfecdis.1c00478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
It is often challenging for a single monoclonal antibody to cross-react equally with all species of a particular viral genus that are separated by time and geographies to ensure broad long-term global immunodiagnostic use. Here, we set out to isolate nanobodies or single-domain antibodies (sdAbs) with uniform cross-reactivity to the genus Ebolavirus by immunizing a llama with recombinant nucleoprotein (NP) representing the 5 cultivated species to assemble a phage display repertoire for mining. Screening sdAbs for reactivity against the C-terminal domain of NP guided the isolation of clones that could perform as both captor and tracer for polyvalent antigen in sandwich assays. Two promising sdAbs had equivalent reactivities across all 5 species and greatly enhanced the equilibrium concentration at 50% (EC50) for recombinant NP when compared with a differentially cross-reactive nonimmune sdAb isolated previously. Uniform reactivity and enhanced sensitivity were relayed to live virus titrations, resulting in lower limits of detection of 2-5 pfu for the best sdAbs, representing 10-, 20-, and 100-fold improvements for Zaire, Sudan/Reston, and Taï Forest viruses, respectively. Fusions of the sdAbs with ascorbate peroxidase (APEX2) and mNeonGreen generated one-step immunoreagents useful for colorimetric and fluorescent visualization of cellular NP. Both sdAbs were also able to recognize recombinant NPs from the recently discovered Bombali virus, a putative sixth Ebolavirus species unknown at the start of these experiments, validating the forward capabilities of the sdAbs. The simplicity and modularity of these sdAbs should enable advances in antigen-based diagnostic technologies to be retuned toward filoviral detection relatively easily, thereby proactively safeguarding human health.
Collapse
Affiliation(s)
- Laura Jo Sherwood
- Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, Texas 78227, United States
| | - Andrew Hayhurst
- Disease Intervention and Prevention, Texas Biomedical Research Institute, San Antonio, Texas 78227, United States
| |
Collapse
|
46
|
Dippenaar A, Goossens SN, Grobbelaar M, Oostvogels S, Cuypers B, Laukens K, Meehan CJ, Warren RM, van Rie A. Nanopore Sequencing for Mycobacterium tuberculosis: a Critical Review of the Literature, New Developments, and Future Opportunities. J Clin Microbiol 2022; 60:e0064621. [PMID: 34133895 PMCID: PMC8769739 DOI: 10.1128/jcm.00646-21] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The next-generation, short-read sequencing technologies that generate comprehensive, whole-genome data with single nucleotide resolution have already advanced tuberculosis diagnosis, treatment, surveillance, and source investigation. Their high costs, tedious and lengthy processes, and large equipment remain major hurdles for research use in high tuberculosis burden countries and implementation into routine care. The portable next-generation sequencing devices developed by Oxford Nanopore Technologies (ONT) are attractive alternatives due to their long-read sequence capability, compact low-cost hardware, and continued improvements in accuracy and throughput. A systematic review of the published literature demonstrated limited uptake of ONT sequencing in tuberculosis research and clinical care. Of the 12 eligible articles presenting ONT sequencing data on at least one Mycobacterium tuberculosis sample, four addressed software development for long-read ONT sequencing data with potential applications for M. tuberculosis. Only eight studies presented results of ONT sequencing of M. tuberculosis, of which five performed whole-genome and three did targeted sequencing. Based on these findings, we summarize the standard processes, reflect on the current limitations of ONT sequencing technology, and the research needed to overcome the main hurdles. The low capital cost, portable nature and continued improvement in the performance of ONT sequencing make it an attractive option for sequencing for research and clinical care, but limited data are available on its application in the tuberculosis field. Important research investment is needed to unleash the full potential of ONT sequencing for tuberculosis research and care.
Collapse
Affiliation(s)
- Anzaan Dippenaar
- Tuberculosis Omics Research Consortium, Family Medicine and Population Health, Institute of Global Health, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
- Unit of Mycobacteriology, Institute of Tropical Medicine, Antwerp, Belgium
| | - Sander N. Goossens
- Tuberculosis Omics Research Consortium, Family Medicine and Population Health, Institute of Global Health, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Melanie Grobbelaar
- Department of Science and Innovation-National Research Foundation Centre for Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Selien Oostvogels
- Tuberculosis Omics Research Consortium, Family Medicine and Population Health, Institute of Global Health, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Bart Cuypers
- Department of Computer Science, University of Antwerp, Antwerp, Belgium
- Molecular Parasitology Group, Institute of Tropical Medicine, Antwerp, Belgium
| | - Kris Laukens
- Molecular Parasitology Group, Institute of Tropical Medicine, Antwerp, Belgium
| | - Conor J. Meehan
- Unit of Mycobacteriology, Institute of Tropical Medicine, Antwerp, Belgium
- School of Chemistry and Bioscience, Faculty of Life Science, University of Bradford, Bradford, West Yorkshire, United Kingdom
| | - Robin M. Warren
- Department of Science and Innovation-National Research Foundation Centre for Excellence for Biomedical Tuberculosis Research, SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa
| | - Annelies van Rie
- Tuberculosis Omics Research Consortium, Family Medicine and Population Health, Institute of Global Health, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
47
|
Hoang MTV, Irinyi L, Hu Y, Schwessinger B, Meyer W. Long-Reads-Based Metagenomics in Clinical Diagnosis With a Special Focus on Fungal Infections. Front Microbiol 2022; 12:708550. [PMID: 35069461 PMCID: PMC8770865 DOI: 10.3389/fmicb.2021.708550] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 12/03/2021] [Indexed: 12/12/2022] Open
Abstract
Identification of the causative infectious agent is essential in the management of infectious diseases, with the ideal diagnostic method being rapid, accurate, and informative, while remaining cost-effective. Traditional diagnostic techniques rely on culturing and cell propagation to isolate and identify the causative pathogen. These techniques are limited by the ability and the time required to grow or propagate an agent in vitro and the facts that identification based on morphological traits are non-specific, insensitive, and reliant on technical expertise. The evolution of next-generation sequencing has revolutionized genomic studies to generate more data at a cheaper cost. These are divided into short- and long-read sequencing technologies, depending on the length of reads generated during sequencing runs. Long-read sequencing also called third-generation sequencing emerged commercially through the instruments released by Pacific Biosciences and Oxford Nanopore Technologies, although relying on different sequencing chemistries, with the first one being more accurate both platforms can generate ultra-long sequence reads. Long-read sequencing is capable of entirely spanning previously established genomic identification regions or potentially small whole genomes, drastically improving the accuracy of the identification of pathogens directly from clinical samples. Long-read sequencing may also provide additional important clinical information, such as antimicrobial resistance profiles and epidemiological data from a single sequencing run. While initial applications of long-read sequencing in clinical diagnosis showed that it could be a promising diagnostic technique, it also has highlighted the need for further optimization. In this review, we show the potential long-read sequencing has in clinical diagnosis of fungal infections and discuss the pros and cons of its implementation.
Collapse
Affiliation(s)
- Minh Thuy Vi Hoang
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, The University of Sydney, Sydney, NSW, Australia
- Westmead Institute for Medical Research, Westmead, NSW, Australia
| | - Laszlo Irinyi
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, The University of Sydney, Sydney, NSW, Australia
- Westmead Institute for Medical Research, Westmead, NSW, Australia
- Sydney Infectious Disease Institute, The University of Sydney, Sydney, NSW, Australia
| | - Yiheng Hu
- Research School of Biology, Australia National University, Canberra, ACT, Australia
| | | | - Wieland Meyer
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, The University of Sydney, Sydney, NSW, Australia
- Westmead Institute for Medical Research, Westmead, NSW, Australia
- Sydney Infectious Disease Institute, The University of Sydney, Sydney, NSW, Australia
- Westmead Hospital (Research and Education Network), Westmead, NSW, Australia
| |
Collapse
|
48
|
Fang Y, Changavi A, Yang M, Sun L, Zhang A, Sun D, Sun Z, Zhang B, Xu M. Nanopore Whole Transcriptome Analysis and Pathogen Surveillance by a Novel Solid-Phase Catalysis Approach. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103373. [PMID: 34837482 PMCID: PMC8787394 DOI: 10.1002/advs.202103373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/28/2021] [Indexed: 06/13/2023]
Abstract
The requirement of a large input amount (500 ng) for Nanopore direct RNA-seq presents a major challenge for low input transcriptomic analysis and early pathogen surveillance. The high RNA input requirement is attributed to significant sample loss associated with library preparation using solid-phase reversible immobilization (SPRI) beads. A novel solid-phase catalysis strategy for RNA library preparation to circumvent the need for SPRI bead purification to remove enzymes is reported here. This new approach leverages concurrent processing of non-polyadenylated transcripts with immobilized poly(A) polymerase and T4 DNA ligase, followed by directly loading the prepared library onto a flow cell. Whole transcriptome sequencing, using a human pathogen Listeria monocytogenes as a model, demonstrates this new method displays little sample loss, takes much less time, and generates higher sequencing throughput correlated with reduced nanopore fouling compared to the current library preparation for 500 ng input. Consequently, this approach enables Nanopore low-input direct RNA-seq, improving pathogen detection and transcript identification in a microbial community standard with spike-in transcript controls. Besides, as evident in the bioinformatic analysis, the new method provides accurate RNA consensus with high fidelity and identifies higher numbers of expressed genes for both high and low input RNA amounts.
Collapse
Affiliation(s)
- Yi Fang
- New England Biolabs, Inc.IpswichMA01938USA
| | | | - Manyun Yang
- Department of Microbiology and ImmunologyCornell UniversityIthacaNY14853USA
| | - Luo Sun
- New England Biolabs, Inc.IpswichMA01938USA
| | | | - Daniel Sun
- New England Biolabs, Inc.IpswichMA01938USA
| | - Zhiyi Sun
- New England Biolabs, Inc.IpswichMA01938USA
| | - Boce Zhang
- Department of Food Science and Human NutritionUniversity of FloridaGainesvilleFL32603USA
| | | |
Collapse
|
49
|
Dzobo M, Musuka G, Mashe T, Dzinamarira T. Inadequate SARS-CoV-2 Genetic Sequencing capacity in Zimbabwe: A call to urgently address this key gap to control current and future waves. IJID REGIONS 2021; 1:3-4. [PMID: 35721771 PMCID: PMC8556873 DOI: 10.1016/j.ijregi.2021.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/10/2021] [Accepted: 09/13/2021] [Indexed: 12/28/2022]
Abstract
Zimbabwe is battling a third wave of COVID-19 infections There is an urgent need for the rapid scale-up of genomic surveillance efforts Laboratory infrastructural deficiencies hinder SARS-CoV-2 genomic surveillance There is need for urgent funding of genomic surveillance in Zimbabwe Genomic surveillance will help guide public health responses accordingly
Zimbabwe continues to confront the COVID-19 pandemic; there is an urgent need for the rapid scale-up of genomic surveillance efforts. In this piece, we express concern on the limited capacity for SARS-CoV-2 genomic surveillance in Zimbabwe due to limited skillsets and laboratory infrastructural deficiencies. We call for an urgent need for funding from the government of Zimbabwe to set up a robust genomic surveillance program to detect SARS-CoV-2 variants of concern in Zimbabwe and guide public health responses accordingly.
Collapse
Affiliation(s)
- Mathias Dzobo
- Department of Laboratory Diagnostics and Investigative Science, Faculty of Medicine and Health Sciences, University of Zimbabwe, Harare, Zimbabwe
- School of Health Systems & Public Health, University of Pretoria, Pretoria, 0002, South Africa
| | | | | | - Tafadzwa Dzinamarira
- School of Health Systems & Public Health, University of Pretoria, Pretoria, 0002, South Africa
- ICAP at Columbia University, Harare, Zimbabwe
- Corresponding Author: Dr Tafadzwa Dzinamarira, School of Health Systems & Public Health, University of Pretoria, Pretoria, 0002, South Africa.
| |
Collapse
|
50
|
Delamare‐Deboutteville J, Taengphu S, Gan HM, Kayansamruaj P, Debnath PP, Barnes A, Wilkinson S, Kawasaki M, Vishnumurthy Mohan C, Senapin S, Dong HT. Rapid genotyping of tilapia lake virus (TiLV) using Nanopore sequencing. JOURNAL OF FISH DISEASES 2021; 44:1491-1502. [PMID: 34101853 PMCID: PMC8518713 DOI: 10.1111/jfd.13467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 05/23/2023]
Abstract
Infectious diseases represent one of the major challenges to sustainable aquaculture production. Rapid, accurate diagnosis and genotyping of emerging pathogens during early-suspected disease cases is critical to facilitate timely response to deploy adequate control measures and prevent or reduce spread. Currently, most laboratories use PCR to amplify partial pathogen genomic regions, occasionally combined with sequencing of PCR amplicon(s) using conventional Sanger sequencing services for confirmatory diagnosis. The main limitation of this approach is the lengthy turnaround time. Here, we report an innovative approach using a previously developed specific PCR assay for pathogen diagnosis combined with a new Oxford Nanopore Technologies (ONT)-based amplicon sequencing method for pathogen genotyping. Using fish clinical samples, we applied this approach for the rapid confirmation of PCR amplicon sequences identity and genotyping of tilapia lake virus (TiLV), a disease-causing virus affecting tilapia aquaculture globally. The consensus sequences obtained after polishing exhibit strikingly high identity to references derived by Illumina and Sanger methods (99.83%-100%). This study suggests that ONT-based amplicon sequencing is a promising platform to deploy in regional aquatic animal health diagnostic laboratories in low- and medium-income countries, for fast identification and genotyping of emerging infectious pathogens from field samples within a single day.
Collapse
Affiliation(s)
| | - Suwimon Taengphu
- Fish Health PlatformCenter of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp)Faculty of ScienceMahidol UniversityBangkokThailand
| | | | - Pattanapon Kayansamruaj
- Center of Excellence in Aquatic Animal Health ManagementFaculty of FisheriesKasetsart UniversityBangkokThailand
| | | | - Andrew Barnes
- School of Biological Sciences and Centre for Marine ScienceThe University of QueenslandBrisbaneQLDAustralia
| | - Shaun Wilkinson
- School of Biological SciencesVictoria University of WellingtonWellingtonNew Zealand
- Wilderlab NZ LtdWellingtonNew Zealand
| | - Minami Kawasaki
- School of Biological Sciences and Centre for Marine ScienceThe University of QueenslandBrisbaneQLDAustralia
| | | | - Saengchan Senapin
- Fish Health PlatformCenter of Excellence for Shrimp Molecular Biology and Biotechnology (Centex Shrimp)Faculty of ScienceMahidol UniversityBangkokThailand
- National Center for Genetic Engineering and Biotechnology (BIOTEC)National Science and Technology Development Agency (NSTDA)Pathum ThaniThailand
| | - Ha Thanh Dong
- Faculty of Science and TechnologySuan Sunandha Rajabhat UniversityBangkokThailand
| |
Collapse
|