1
|
Yun YS, Park DY, Oh IH, Shin WR, Ahn G, Ahn JY, Kim YH. Pathogenic Factors and Recent Study on the Rapid Detection of Shiga Toxin-Producing Escherichia coli (STEC). Mol Biotechnol 2025; 67:16-26. [PMID: 38153662 DOI: 10.1007/s12033-023-00985-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 11/05/2023] [Indexed: 12/29/2023]
Abstract
This comprehensive review delves into the pathogenicity and detection of Shiga Toxin-Producing Escherichia coli (STEC), shedding light on its various genetic and clinical manifestations. STEC originating from E. coli acquires pathogenicity through mobility and genetic elements. The pathogenicity of STEC is explored in terms of clinical progression, complications, and key toxins such as Shiga toxin (Stx). Stx1 and Stx2 are two distinct Stx types exhibiting different toxicities, with Stx2 often associated with severe diseases. This review also delves into Subtilase cytotoxin, an additional cytotoxin produced by some STEC strains. Pathogenic mechanisms of STEC, such as attaching and effacing intestinal lesions, are discussed, with a focus on roles of genetic factors. Plasmids in STEC can confer unique pathogenicity. Hybridization with other pathogenic E. coli can create more lethal pathogens. This review covers a range of detection methods, ranging from DNA amplification to antigen detection techniques, emphasizing the need for innovative approaches to improve the sensitivity and speed of STEC diagnosis. In conclusion, understanding diverse aspects of STEC pathogenicity and exploring enhanced diagnostic methods are critical to addressing this foodborne pathogen effectively.
Collapse
Affiliation(s)
- Young-Sun Yun
- Department of Microbiology, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - Dae-Young Park
- Department of Microbiology, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - In-Hwan Oh
- Department of Microbiology, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - Woo-Ri Shin
- Department of Bioengineering, University of Pennsylvania, 210 S 33rd St., Philadelphia, PA, 19104, USA
| | - Gna Ahn
- Center for Ecology and Environmental Toxicology, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Ji-Young Ahn
- Department of Microbiology, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea.
| | - Yang-Hoon Kim
- Department of Microbiology, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
2
|
Crombé F, van Hoek AHAM, Nailis H, Auvray F, Janssen T, Piérard D. Intestinal Carriage of Two Distinct stx2f-Carrying Escherichia coli Strains by a Child with Uncomplicated Diarrhea. Pathogens 2024; 13:1002. [PMID: 39599555 PMCID: PMC11597368 DOI: 10.3390/pathogens13111002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/05/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
Two distinct stx2f-carrying Escherichia coli (E. coli) strains, isolated from a child with uncomplicated diarrhea fifteen weeks apart, were characterized by combining short- and long-read sequencing to compare their genetic relatedness. One strain was characterized as Shiga toxin-producing E. coli (STEC)/typical enteropathogenic E. coli (tEPEC) O63:H6 with a repertoire of virulence genes including stx2f, eae (α2-subtype), cdt, and bfpA. The other STEC with serotype O157:H16, reported for the first time as stx2f-carrying Escherichia coli in this study, possessed, in addition, eae (ε-subtype) and cdt, amongst other virulence-related genes. BLAST comparison showed that the stx2f-harboring prophage sequences of both strains were highly homologous (99.6% identity and 96.1% coverage). These results were corroborated by core Stx2f phage Multilocus Sequence Typing (cpMLST) as the stx2f-harboring prophages of both isolates clustered together when compared to those of 167 other human stx2f-carrying Escherichia coli. Overall, the stx2f-harboring prophages of the two distinct E. coli strains isolated from the present case were highly similar, suggesting that the stx2f-harboring phage might have been transferred from the STEC/tEPEC O63:H6 strain to the atypical EPEC (aEPEC) O157:H16 strain in the gut of the child.
Collapse
Affiliation(s)
- Florence Crombé
- Department Clinical Biology, Laboratory of Microbiology and Infection Control, Belgian National Reference Centre for STEC/VTEC, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), 1090 Brussels, Belgium;
| | - Angela H. A. M. van Hoek
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), 3721 BA Bilthoven, The Netherlands;
| | - Heleen Nailis
- Department of Laboratory Medicine, AZ Turnhout, 2300 Turnhout, AZ Herentals, 2200 Herentals, Heilig Hart Mol, 2400 Mol, Belgium;
| | - Frédéric Auvray
- IRSD, Faculté des Sciences, Université de Toulouse, INSERM, INRAE, ENVT, UPS, 31000 Toulouse, France;
| | - Toon Janssen
- Brussels Interuniversity Genomics High Throughput Core (BRIGHTcore) Platform, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), 1090 Brussels, Belgium;
| | - Denis Piérard
- Department Clinical Biology, Laboratory of Microbiology and Infection Control, Belgian National Reference Centre for STEC/VTEC, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), 1090 Brussels, Belgium;
| |
Collapse
|
3
|
Yang X, Ma Y, Chu F, Wang H, Sui X, Liu Q, Zhang P, Bai X, Duan B, Xiong Y. Characterization of Escherichia coli strains producing Shiga Toxin 2f subtype from domestic Pigeon. Sci Rep 2024; 14:24481. [PMID: 39424949 PMCID: PMC11489412 DOI: 10.1038/s41598-024-76523-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) can cause mild diarrhea even severe hemolytic uremic syndrome (HUS). Shiga toxin (Stx) is the primary virulence factor. Two Stx types and several subtypes have been identified. STEC strains encoding stx2f (Stx2f-STECs) are frequently identified from pigeons. Stx2f was initially considered to be associated with mild symptoms, more recently Stx2f-STECs have been isolated from HUS cases, indicating their pathogenic potential. Here, we investigated the prevalence of Stx2f-STECs among domestic pigeons in two regions in China, characterized the strains using whole-genome sequencing (WGS), and assessed the Stx2f transcriptions. Thirty-two Stx2f-STECs (4.36%) were culture-positive out of 734 fecal samples (one strain per sample). No other stx subtype-containing strain was isolated. Four serotypes and two sequence types were determined, and a novel sequence type ST15057 was identified. All strains harbored the E. coli attaching and effacing gene eae. Two types of Stx2f prophages were assigned. Stx2f-STECs showed variable Stx transcription levels induced by mitomycin C. Whole genome single-nucleotide polymorphism (wgSNP) analysis revealed different genetic backgrounds between pigeon-derived strains and those from diarrheal or HUS patients. In contrast, pigeon-derived Stx2f-STECs from diverse regions exhibited genetic similarity. Our study reports the prevalence and characteristics of Stx2f-STECs from pigeons in China. The pigeon-derived strains might pose low public health risk.
Collapse
Affiliation(s)
- Xi Yang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Yun Ma
- Branch 103, Sixth Division General Hospital, Xinjiang Production and Construction Corps, Wujiaqv, 831304, China
| | - Fujian Chu
- Shizhong District Center for Disease Control and Prevention, Zaozhuang, 277100, China
| | - Hua Wang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Xinxia Sui
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Qian Liu
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Peihua Zhang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
| | - Xiangning Bai
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China
- Division of Laboratory Medicine, Department of Microbiology, Oslo University Hospital, Oslo, 0372, Norway
| | - Biao Duan
- Yunnan Institute of Endemic Diseases Control and Prevention, Dali, 671000, China.
| | - Yanwen Xiong
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, 102206, China.
- Hebei Key Laboratory of Intractable Pathogens, Shijiazhuang Center for Disease Control and Prevention, Shijiazhuang, 050011, China.
| |
Collapse
|
4
|
Usein CR, Oprea M, Dinu S, Popa LI, Cristea D, Militaru CM, Ghiță A, Costin M, Popa IL, Croitoru A, Bologa C, Rusu LC. Shiga Toxin-Producing Escherichia coli Strains from Romania: A Whole Genome-Based Description. Microorganisms 2024; 12:1469. [PMID: 39065242 PMCID: PMC11278934 DOI: 10.3390/microorganisms12071469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/05/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The zoonotic Shiga toxin-producing Escherichia coli (STEC) group is unanimously regarded as exceptionally hazardous for humans. This study aimed to provide a genomic perspective on the STEC recovered sporadically from humans and have a foundation of internationally comparable data. Fifty clinical STEC isolates, representing the culture-confirmed infections reported by the STEC Reference Laboratory between 2016 and 2023, were subjected to whole-genome sequencing (WGS) analysis and sequences were interpreted using both commercial and public free bioinformatics tools. The WGS analysis revealed a genetically diverse population of STEC dominated by non-O157 serogroups commonly reported in human STEC infections in the European Union. The O26:H11 strains of ST21 lineage played a major role in the clinical disease resulting in hospitalisation and cases of paediatric HUS in Romania surpassing the O157:H7 strains. The latter were all clade 7 and mostly ST1804. Notably, among the Romanian isolates was a stx2a-harbouring cryptic clade I strain associated with a HUS case, stx2f- and stx2e-positive strains, and hybrid strains displaying a mixture of intestinal and extraintestinal virulence genes were found. As a clearer picture emerges of the STEC strains responsible for infections in Romania, further surveillance efforts are needed to uncover their prevalence, sources, and reservoirs.
Collapse
Affiliation(s)
- Codruța-Romanița Usein
- Cantacuzino National Military Medical Institute of Research and Development, 050096 Bucharest, Romania; (M.O.); (S.D.); (L.-I.P.); (D.C.); (C.-M.M.); (A.G.)
| | - Mihaela Oprea
- Cantacuzino National Military Medical Institute of Research and Development, 050096 Bucharest, Romania; (M.O.); (S.D.); (L.-I.P.); (D.C.); (C.-M.M.); (A.G.)
| | - Sorin Dinu
- Cantacuzino National Military Medical Institute of Research and Development, 050096 Bucharest, Romania; (M.O.); (S.D.); (L.-I.P.); (D.C.); (C.-M.M.); (A.G.)
| | - Laura-Ioana Popa
- Cantacuzino National Military Medical Institute of Research and Development, 050096 Bucharest, Romania; (M.O.); (S.D.); (L.-I.P.); (D.C.); (C.-M.M.); (A.G.)
| | - Daniela Cristea
- Cantacuzino National Military Medical Institute of Research and Development, 050096 Bucharest, Romania; (M.O.); (S.D.); (L.-I.P.); (D.C.); (C.-M.M.); (A.G.)
| | - Cornelia-Mădălina Militaru
- Cantacuzino National Military Medical Institute of Research and Development, 050096 Bucharest, Romania; (M.O.); (S.D.); (L.-I.P.); (D.C.); (C.-M.M.); (A.G.)
| | - Andreea Ghiță
- Cantacuzino National Military Medical Institute of Research and Development, 050096 Bucharest, Romania; (M.O.); (S.D.); (L.-I.P.); (D.C.); (C.-M.M.); (A.G.)
| | - Mariana Costin
- Emergency Clinical Hospital for Children “M.S. Curie”, 041451 Bucharest, Romania; (M.C.); (I.-L.P.); (A.C.); (C.B.)
- Discipline Pediatrics—Emergency Clinical Hospital for Children M.S. Curie, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania
| | - Ionela-Loredana Popa
- Emergency Clinical Hospital for Children “M.S. Curie”, 041451 Bucharest, Romania; (M.C.); (I.-L.P.); (A.C.); (C.B.)
- Discipline Pediatrics—Emergency Clinical Hospital for Children M.S. Curie, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania
| | - Anca Croitoru
- Emergency Clinical Hospital for Children “M.S. Curie”, 041451 Bucharest, Romania; (M.C.); (I.-L.P.); (A.C.); (C.B.)
- Discipline Pediatrics—Emergency Clinical Hospital for Children M.S. Curie, University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania
| | - Cristina Bologa
- Emergency Clinical Hospital for Children “M.S. Curie”, 041451 Bucharest, Romania; (M.C.); (I.-L.P.); (A.C.); (C.B.)
| | - Lavinia-Cipriana Rusu
- National Centre for Communicable Diseases Prevention and Control, National Public Health Institute, 050463 Bucharest, Romania;
| |
Collapse
|
5
|
Wang X, Yu D, Chui L, Zhou T, Feng Y, Cao Y, Zhi S. A Comprehensive Review on Shiga Toxin Subtypes and Their Niche-Related Distribution Characteristics in Shiga-Toxin-Producing E. coli and Other Bacterial Hosts. Microorganisms 2024; 12:687. [PMID: 38674631 PMCID: PMC11052178 DOI: 10.3390/microorganisms12040687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/25/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Shiga toxin (Stx), the main virulence factor of Shiga-toxin-producing E. coli (STEC), was first discovered in Shigella dysenteriae strains. While several other bacterial species have since been reported to produce Stx, STEC poses the most significant risk to human health due to its widespread prevalence across various animal hosts that have close contact with human populations. Based on its biochemical and molecular characteristics, Shiga toxin can be grouped into two types, Stx1 and Stx2, among which a variety of variants and subtypes have been identified in various bacteria and host species. Interestingly, the different Stx subtypes appear to vary in their host distribution characteristics and in the severity of diseases that they are associated with. As such, this review provides a comprehensive overview on the bacterial species that have been recorded to possess stx genes to date, with a specific focus on the various Stx subtype variants discovered in STEC, their prevalence in certain host species, and their disease-related characteristics. This review provides a better understanding of the Stx subtypes and highlights the need for rapid and accurate approaches to toxin subtyping for the proper evaluation of the health risks associated with Shiga-toxin-related bacterial food contamination and human infections.
Collapse
Affiliation(s)
- Xuan Wang
- School of Public Health, Ningbo University, Ningbo 315000, China; (X.W.); (T.Z.); (Y.F.)
| | - Daniel Yu
- School of Public Health, Univeristy of Alberta, Edmonton, AB T6G 2R3, Canada;
| | - Linda Chui
- Alberta Precision Laboratories-ProvLab, Edmonton, AB T6G 2J2, Canada;
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2B7, Canada
| | - Tiantian Zhou
- School of Public Health, Ningbo University, Ningbo 315000, China; (X.W.); (T.Z.); (Y.F.)
| | - Yu Feng
- School of Public Health, Ningbo University, Ningbo 315000, China; (X.W.); (T.Z.); (Y.F.)
| | - Yuhao Cao
- School of Basic Medical Sciences, Ningbo University, Ningbo 315000, China;
| | - Shuai Zhi
- School of Public Health, Ningbo University, Ningbo 315000, China; (X.W.); (T.Z.); (Y.F.)
| |
Collapse
|
6
|
Roy R, Marakkar S, Vayalil MP, Shahanaz A, Anil AP, Kunnathpeedikayil S, Rawal I, Shetty K, Shameer Z, Sathees S, Prasannakumar AP, Mathew OK, Subramanian L, Shameer K, Yadav KK. Drug-food Interactions in the Era of Molecular Big Data, Machine Intelligence, and Personalized Health. RECENT ADVANCES IN FOOD, NUTRITION & AGRICULTURE 2022; 13:27-50. [PMID: 36173075 PMCID: PMC10258917 DOI: 10.2174/2212798412666220620104809] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/04/2022] [Accepted: 03/30/2022] [Indexed: 12/29/2022]
Abstract
The drug-food interaction brings forth changes in the clinical effects of drugs. While favourable interactions bring positive clinical outcomes, unfavourable interactions may lead to toxicity. This article reviews the impact of food intake on drug-food interactions, the clinical effects of drugs, and the effect of drug-food in correlation with diet and precision medicine. Emerging areas in drug-food interactions are the food-genome interface (nutrigenomics) and nutrigenetics. Understanding the molecular basis of food ingredients, including genomic sequencing and pharmacological implications of food molecules, helps to reduce the impact of drug-food interactions. Various strategies are being leveraged to alleviate drug-food interactions; measures including patient engagement, digital health, approaches involving machine intelligence, and big data are a few of them. Furthermore, delineating the molecular communications across dietmicrobiome- drug-food-drug interactions in a pharmacomicrobiome framework may also play a vital role in personalized nutrition. Determining nutrient-gene interactions aids in making nutrition deeply personalized and helps mitigate unwanted drug-food interactions, chronic diseases, and adverse events from their onset. Translational bioinformatics approaches could play an essential role in the next generation of drug-food interaction research. In this landscape review, we discuss important tools, databases, and approaches along with key challenges and opportunities in drug-food interaction and its immediate impact on precision medicine.
Collapse
Affiliation(s)
- Romy Roy
- Molecular Robotics, Cochin, Kerala, India
| | | | | | - Alisha Shahanaz
- Molecular Robotics, Cochin, Kerala, India
- Sanaria Inc, Rockville, MD, USA
| | - Athira Panicker Anil
- Molecular Robotics, Cochin, Kerala, India
- Mar Athanasious College for Advanced Studies, Tiruvalla, India
| | - Shameer Kunnathpeedikayil
- Molecular Robotics, Cochin, Kerala, India
- Thiruvalla, Kerala; People Care Health LLP Thrissur, Kerala, India
| | | | | | | | - Saraswathi Sathees
- Molecular Robotics, Cochin, Kerala, India
- University of Washington Seattle, Washington WA, USA
| | | | | | - Lakshminarayanan Subramanian
- Department of Computer Science, Courant Institute of Mathematical Sciences, New York University, New York, NY, USA
| | - Khader Shameer
- Northwell Health, New York, NY, USA and Faculty of Medicine, Imperial College London, London, UK
| | - Kamlesh K. Yadav
- School of Engineering Medicine, and
- Department of Translational Medical Sciences, Center for Genomic and Precision Medicine, Texas A&M University, Houston, TX 77030, USA
| |
Collapse
|
7
|
Characterisation of atypical Shiga toxin gene sequences and description of Stx2j, a new subtype. J Clin Microbiol 2022; 60:e0222921. [PMID: 35225693 DOI: 10.1128/jcm.02229-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shiga toxin (Stx) is the definitive virulence factor of Shiga toxin-producing Escherichia coli (STEC). Stx variants are currently organised into a taxonomic system of three Stx1 (a,c,d) and seven Stx2 (a,b,c,d,e,f,g) subtypes. In this study, seven STEC isolates from food and clinical samples possessing stx2 sequences that do not fit current Shiga toxin taxonomy were identified. Genome assemblies of the STEC strains was created from Oxford Nanopore and Illumina sequence data. The presence of atypical stx2 sequences were confirmed by Sanger sequencing, as were Stx2 expression and cytotoxicity. A strain of O157:H7 was found to possess stx1a and a truncated stx2a, which were originally misidentified as an atypical stx2. Two strains possessed unreported variants of Stx2a (O8:H28) and Stx2b (O146:H21). In four of the strains we found three Stx-subtypes that are not included in the current taxonomy. Stx2h (O170:H18) was identified in a Canadian sprout isolate; this subtype has only previously been reported in STEC from Tibetan Marmots. Stx2o (O85:H1) was identified in a clinical isolate. Finally, Stx2j (O158:H23 and O33:H14) was found in lettuce and clinical isolates. The results of this study expands the number of known Stx subtypes, the range of STEC serotypes, and isolation sources in which they may be found. The presence of the Stx2j and Stx2o in clinical isolates of STEC indicates that strains carrying these variants are potential human pathogens. Highlights Atypical Shiga toxin (stx) genes in Escherichia coli were sequenced. Two new variants of stx2a and stx2b are described. Two strains carried subtypes Stx2h and Stx2o, which have only one previous report. Two strains carried a previously undescribed subtype, Stx2j.
Collapse
|
8
|
Michelacci V, Montalbano Di Filippo M, Gigliucci F, Arancia S, Chiani P, Minelli F, Roosens NHC, De Keersmaecker SCJ, Bogaerts B, Vanneste K, Morabito S. Population Analysis of O26 Shiga Toxin-Producing Escherichia coli Causing Hemolytic Uremic Syndrome in Italy, 1989-2020, Through Whole Genome Sequencing. Front Cell Infect Microbiol 2022; 12:842508. [PMID: 35223557 PMCID: PMC8864317 DOI: 10.3389/fcimb.2022.842508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) belonging to the O26 serogroup represent an important cause of Hemolitic Uremic Syndrome (HUS) in children worldwide. The localization of STEC virulence genes on mobile genetic elements allowed the emergence of clones showing different assets of this accessory genomic fraction. A novel O26 STEC clone belonging to Sequence Type (ST) 29 and harboring stx2a, ehxA and etpD plasmid-borne genes has emerged and spread in Europe since the mid-1990s, while another ST29 clone positive for stx2d and lacking plasmid-borne virulence genes was recently described as emerging in France. In Italy, O26 has been the most frequently detected STEC serogroup from HUS cases since the late 1990s. In this study we describe the genomic characterization and population structure of 144 O26 STEC strains isolated from human sources in Italy in the period 1989-2020. A total of 89 strains belonged to ST21, 52 to ST29, two to ST396 and one to ST4944. ST29 strains started to be isolated from 1999. 24 strains were shown to harbour stx1a, alone (n=20) or in combination with stx2a (n=4). The majority of the strains (n=118) harbored stx2a genes only and the two ST396 strains harbored stx2d. A Hierarchical Clustering on Principal Components (HCPC) analysis, based on the detection of accessory virulence genes, antimicrobial resistance (AMR) genes and plasmid replicons, classified the strains in seven clusters identified with numbers from 1 to 7, containing two, 13, 39, 63, 16, 10 and one strain, respectively. The majority of the genetic features defining the clusters corresponded to plasmid-borne virulence genes, AMR genes and plasmid replicons, highlighting specific assets of plasmid-borne features associated with different clusters. Core genome Multi Locus Sequence Typing grouped ST21 and ST29 strains in three clades each, with each ST29 clade exactly corresponding to one HCPC cluster. Our results showed high conservation of either the core or the accessory genomic fraction in populations of ST29 O26 STEC, differently from what observed in ST21 strains, suggesting that a different selective pressure could drive the evolution of different populations of these pathogens possibly involving different ecological niches.
Collapse
Affiliation(s)
- Valeria Michelacci
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | | | - Federica Gigliucci
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Silvia Arancia
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Paola Chiani
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Fabio Minelli
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Nancy H. C. Roosens
- Sciensano, Biological Health Risks, Transversal Activities in Applied Genomics, Brussels, Belgium
| | | | - Bert Bogaerts
- Sciensano, Biological Health Risks, Transversal Activities in Applied Genomics, Brussels, Belgium
| | - Kevin Vanneste
- Sciensano, Biological Health Risks, Transversal Activities in Applied Genomics, Brussels, Belgium
| | - Stefano Morabito
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
9
|
Nakamura K, Tokuda C, Arimitsu H, Etoh Y, Hamasaki M, Deguchi Y, Taniguchi I, Gotoh Y, Ogura Y, Hayashi T. Development of a homogeneous time-resolved FRET (HTRF) assay for the quantification of Shiga toxin 2 produced by E. coli. PeerJ 2021; 9:e11871. [PMID: 34395095 PMCID: PMC8325423 DOI: 10.7717/peerj.11871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/06/2021] [Indexed: 11/20/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a major intestinal pathogen and causes serious gastrointestinal illness, which includes diarrhea, hemorrhagic colitis, and life-threatening hemolytic uremic syndrome. The major virulence factors of STEC are Shiga toxins (Stx1 and Stx2), which belong to the AB-type toxin family. Among several subtypes of Stx1 and Stx2, the production of Stx2a is thought to be a risk factor for severe STEC infections, but Stx2a production levels vary markedly between STEC strains, even strains with the same serotype. Therefore, quantitative analyses of Stx2 production by STEC strains are important to understand the virulence potential of specific lineages or sublineages. In this study, we developed a novel Stx2 quantification method by utilizing homogeneous time-resolved fluorescence resonance energy transfer (HTRF) technology. To determine suitable “sandwich” assay conditions, we tested 6 combinations of fluorescence-labeled monoclonal antibodies (mAbs) specific to Stx2 and compared the HTRF signal intensities obtained at various incubation times. Through this analysis, we selected the most suitable mAb pair, one recognizing the A subunit and the other recognizing the B subunit, thus together detecting Stx holotoxins. The optimal incubation time was also determined (18 h). Then, we optimized the concentrations of the two mAbs based on the range for linearity. The established HTRF assay detected 0.5 ng/ml of the highly purified recombinant Stx2a and Stx2e proteins and the working range was 1–64 ng/ml for both Stx2a and Stx2e. Through the quantification analysis of Stx proteins in STEC cell lysates, we confirmed that other Stx2 subtypes (Stx2b, Stx2c, Stx2d and Stx2g) can also be quantified at a certain level of accuracy, while this assay system does not detect Stx2f, which is highly divergent in sequence from other Stx2 subtypes, and Stx1. As the HTRF protocol we established is simple, this assay system should prove useful for the quantitative analysis of Stx2 production levels of a large number of STEC strains.
Collapse
Affiliation(s)
- Keiji Nakamura
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Hideyuki Arimitsu
- School of Human Science and Environment, University of Hyogo, Himeji, Japan
| | - Yoshiki Etoh
- Fukuoka Institute of Health and Environmental Sciences, Dazaifu, Japan
| | | | - Yuichiro Deguchi
- Production Medicine Center, Agricultural Mutual Aid Association in Miyazaki Prefecture, Koyugun-Shintomicho, Japan
| | - Itsuki Taniguchi
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yasuhiro Gotoh
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshitoshi Ogura
- Division of Microbiology, Department of Infectious Medicine, Kurume University School of Medicine, Kurume, Japan
| | - Tetsuya Hayashi
- Department of Bacteriology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
10
|
McMAHON T, Bastian J, Alshawa I, Gill A. PCR Primers for Screening Food for Verotoxin-Producing Escherichia coli, Inclusive of Three vt1 and Seven vt2 Subtypes. J Food Prot 2021; 84:296-302. [PMID: 32977337 DOI: 10.4315/jfp-20-233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/21/2020] [Indexed: 11/11/2022]
Abstract
ABSTRACT Verotoxin-producing Escherichia coli (VTEC; also known as Shiga toxin-producing E. coli) is a significant cause of foodborne illnesses around the world. Due to the serological and genomic diversity of VTEC, methods of detection for VTEC in food samples require detection of verotoxin or its gene vt (also known as stx). The current taxonomy of vt identifies three vt1 (a, c, d) and seven vt2 (a to g) subtypes. PCR detection of vt is convenient and rapid, but protocols may not detect all currently identified variants or subtypes of vt. The Health Canada Compendium of Analytical Methods protocol for the analysis of food for VTEC is MFLP-52. MFLP-52 includes a VT Screening PCR that is used to determine the presumptive presence of VTEC by the detection of vt in food enrichments and to differentiate VTEC from other isolates. The VT Screening PCR was developed prior to the establishment of the current vt taxonomy. An evaluation of VT Screening PCR for detection of the 10 established vt subtypes was performed, and it was discovered that the method could not detect subtypes vt1d and vt2f. Additional primers and a modified protocol were developed, and the modified VT Screening PCR was tested against an inclusivity panel of 50 VTEC strains, including representatives of 10 vt subtypes, and an exclusivity panel of 30 vt-negative E. coli from various sources, to ensure specificity. The reliability of MFLP-52 with the modified VT Screening PCR was assessed by analysis of four priority food matrices (ground beef, lettuce, cheese, and apple cider) inoculated with a VTEC strain at 2 to 5 CFU/25 g. The modified VT Screening PCR was determined to be able to detect all 10 vt subtypes and reliably detect the presence of VTEC in all tested food enrichments. HIGHLIGHTS
Collapse
Affiliation(s)
- Tanis McMAHON
- Health Canada, Bureau of Microbial Hazards, 251 Sir Frederick Banting Driveway, Ottawa, Ontario, Canada K1A 0K9
| | - Jillian Bastian
- Health Canada, Bureau of Microbial Hazards, 251 Sir Frederick Banting Driveway, Ottawa, Ontario, Canada K1A 0K9
| | - Inas Alshawa
- Health Canada, Bureau of Microbial Hazards, 251 Sir Frederick Banting Driveway, Ottawa, Ontario, Canada K1A 0K9
| | - Alexander Gill
- Health Canada, Bureau of Microbial Hazards, 251 Sir Frederick Banting Driveway, Ottawa, Ontario, Canada K1A 0K9.,(ORCID: https://orcid.org/0000-0003-2380-2148 [A.G.])
| |
Collapse
|
11
|
Morabito S, Minelli F, Tozzoli R. Integrated Approach for the Diagnosis of Shiga Toxin-Producing Escherichia coli Infections in Humans. Methods Mol Biol 2021; 2291:1-17. [PMID: 33704747 DOI: 10.1007/978-1-0716-1339-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Shiga toxin-producing Escherichia coli (STEC) are human pathogens causing severe diseases, such as hemorrhagic colitis and the hemolytic uremic syndrome. The prompt diagnosis of STEC infection is of primary importance to drive the most appropriate patient's management procedures. The methods to diagnose STEC infections include both direct isolation of the STEC from stool samples and the identification of indirect evidences based on molecular, phenotypic, and serological applications. Here, the procedures in use at the Italian Reference Laboratory for E. coli infections are described.
Collapse
|
12
|
Be aware of Shiga-toxin 2f-producing Escherichia coli: case report and false-negative results with certain rapid molecular panels. Diagn Microbiol Infect Dis 2020; 98:115177. [PMID: 32966946 DOI: 10.1016/j.diagmicrobio.2020.115177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/07/2020] [Accepted: 08/09/2020] [Indexed: 11/21/2022]
Abstract
We report a hemolytic uremic syndrome (HUS) case due to Stx2f-producing E. coli illustrating the diagnostic difficulty of this Shiga-toxin subtype. Clinicians should be aware of limits of certain rapid molecular panels that are increasingly being used and may play a role in underestimating the global burden of such infections.
Collapse
|
13
|
Zuppi M, Tozzoli R, Chiani P, Quiros P, Martinez-Velazquez A, Michelacci V, Muniesa M, Morabito S. Investigation on the Evolution of Shiga Toxin-Converting Phages Based on Whole Genome Sequencing. Front Microbiol 2020; 11:1472. [PMID: 32754128 PMCID: PMC7366253 DOI: 10.3389/fmicb.2020.01472] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/05/2020] [Indexed: 12/25/2022] Open
Abstract
Bacteriophages are pivotal elements in the dissemination of virulence genes. The main virulence determinants of Shiga Toxin producing E. coli, Shiga Toxins (Stx), are encoded by genes localized in the genome of lambdoid bacteriophages. Stx comprise two antigenically different types, Stx1 and Stx2, further divided into subtypes. Among these, certain Stx2 subtypes appear to be more commonly occurring in the most severe forms of the STEC disease, haemorrhagic colitis and haemolytic uremic syndrome (HUS). This study aimed at obtaining insights on the evolution of Stx2 bacteriophages, due to their relevance in public health, and we report here on the analysis of the genomic structure of Stx2 converting phages in relation with the known reservoir of the E. coli strains harboring them. Stx2-converting phages conveying the genes encoding different stx2 subtypes have been isolated from STEC strains and their whole genomes have been sequenced, analyzed and compared to those of other Stx2 phages available in the public domain. The phages' regions containing the stx2 genes have been analyzed in depth allowing to make inference on the possible mechanisms of selection and maintenance of certain Stx2 phages in the reservoir. The "stx regions" of different stx2 gene subtypes grouped into three different evolutionary lines in the comparative analysis, reflecting the frequency with which these subtypes are found in different animal niches, suggesting that the colonization of specific reservoir by STEC strains could be influenced by the Stx phage that they carry. Noteworthy, we could identify the presence of nanS-p gene exclusively in the "stx regions" of the phages identified in STEC strains commonly found in cattle. As a matter of fact, this gene encodes an esterase capable of metabolizing sialic acids produced by submaxillary glands of bovines and present in great quantities in their gastrointestinal tract.
Collapse
Affiliation(s)
- Michele Zuppi
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Rosangela Tozzoli
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Paola Chiani
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Pablo Quiros
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - Adan Martinez-Velazquez
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - Valeria Michelacci
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| | - Maite Muniesa
- Department of Genetics, Microbiology and Statistics, University of Barcelona, Barcelona, Spain
| | - Stefano Morabito
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
14
|
Wieczorek K, Osek J. Identification and molecular characteristics of verotoxin-producing Escherichia coli (VTEC) from bovine and pig carcasses isolated in Poland during 2014-2018. Food Microbiol 2020; 92:103587. [PMID: 32950170 DOI: 10.1016/j.fm.2020.103587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/04/2020] [Accepted: 06/24/2020] [Indexed: 11/16/2022]
Abstract
The presence of verotoxin-producing Escherichia coli (VTEC) on bovine (n = 330) and pig (n = 120) carcasses in Poland was investigated using the ISO/TS 13136 standard. A total of 115 (34.8%) and 37 (30.8%) cattle and pig samples were positive in real-time PCR, respectively. Isolation of the bacteria revealed that from bovine carcasses 37 (32.2%) VTEC were obtained whereas only 5 (13.5%) pig carcasses were positive for the stx gene. The VTEC were characterized using whole genome sequencing (WGS) and bovine isolates were classified into 25 serotypes with the most prevalent O113:H21 (5 strains) whereas pig strains belonged to 5 different serotypes which were not identified among cattle strains. The majority of bovine VTEC (35; 94.6% isolates) were positive for the stx2 gene, either alone or together with the stx1 gene. All strains isolated from pig carcasses resulted positive for the stx2 gene only. Only two isolates of bovine origin contained the eaeA intimin gene, together with the ehxA and lpfA markers. VTEC were highly molecularly diverse as shown by classification into 29 different MLST STs. The obtained results suggest that further studies related to cattle and pig carcasses are needed to assess the role of these sources for human VTEC infections.
Collapse
Affiliation(s)
- Kinga Wieczorek
- Department of Hygiene of Food of Animal Origin, National Veterinary Research Institute, Partyzantow 57, 24-100, Pulawy, Poland
| | - Jacek Osek
- Department of Hygiene of Food of Animal Origin, National Veterinary Research Institute, Partyzantow 57, 24-100, Pulawy, Poland.
| |
Collapse
|
15
|
Koutsoumanis K, Allende A, Alvarez‐Ordóñez A, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Jenkins C, Monteiro Pires S, Morabito S, Niskanen T, Scheutz F, da Silva Felício MT, Messens W, Bolton D. Pathogenicity assessment of Shiga toxin‐producing Escherichia coli (STEC) and the public health risk posed by contamination of food with STEC. EFSA J 2020. [DOI: 10.2903/j.efsa.2020.5967] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
16
|
Abstract
This report of the European Food Safety Authority and the European Centre for Disease Prevention and Control presents the results of zoonoses monitoring activities carried out in 2018 in 36 European countries (28 Member States (MS) and 8 non‐MS). The first and second most commonly reported zoonoses in humans were campylobacteriosis and salmonellosis, respectively. The European Union (EU) trend for confirmed human cases of these two diseases was stable during 2014–2018. The proportion of human salmonellosis cases due to Salmonella Enteritidis was at the same level in 2018 as in 2017. Of the 27 reporting MS, 16 met all Salmonella reduction targets for poultry, whereas 11 MS failed meeting at least one. The EU flock prevalence of target Salmonella serovars in breeding hens, laying hens, broilers and fattening turkeys decreased during recent years but stalled in breeding turkeys. Salmonella results from Competent Authorities for pig carcasses and for poultry tested through National Control Programmes were more frequently positive compared with food business operators. Shiga toxin‐producing Escherichia coli (STEC) infections in humans were the third most commonly reported zoonosis in the EU and increased from 2014 to 2018. Yersiniosis was the fourth most frequently reported zoonosis in humans in 2018 with a stable trend in 2014–2018. The number of reported confirmed listeriosis cases further increased in 2018, despite Listeria rarely exceeding the EU food safety limit tested in ready‐to‐eat food. In total, 5,146 food‐ and waterborne outbreaks were reported. Salmonella was the most commonly detected agent with S. Enteritidis causing one in five outbreaks. Salmonella in eggs and egg products was the highest risk agent/food pair. A large increase of human West Nile virus infections was reported in 2018. The report further updates on bovine tuberculosis, Brucella, Trichinella, Echinococcus, Toxoplasma, rabies, Coxiella burnetii (Q fever) and tularaemia.
Collapse
|
17
|
Koutsoumanis K, Allende A, Alvarez-Ordóñez A, Bolton D, Bover-Cid S, Chemaly M, Davies R, De Cesare A, Hilbert F, Lindqvist R, Nauta M, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Jenkins C, Malorny B, Ribeiro Duarte AS, Torpdahl M, da Silva Felício MT, Guerra B, Rossi M, Herman L. Whole genome sequencing and metagenomics for outbreak investigation, source attribution and risk assessment of food-borne microorganisms. EFSA J 2019; 17:e05898. [PMID: 32626197 PMCID: PMC7008917 DOI: 10.2903/j.efsa.2019.5898] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
This Opinion considers the application of whole genome sequencing (WGS) and metagenomics for outbreak investigation, source attribution and risk assessment of food‐borne pathogens. WGS offers the highest level of bacterial strain discrimination for food‐borne outbreak investigation and source‐attribution as well as potential for more precise hazard identification, thereby facilitating more targeted risk assessment and risk management. WGS improves linking of sporadic cases associated with different food products and geographical regions to a point source outbreak and can facilitate epidemiological investigations, allowing also the use of previously sequenced genomes. Source attribution may be favoured by improved identification of transmission pathways, through the integration of spatial‐temporal factors and the detection of multidirectional transmission and pathogen–host interactions. Metagenomics has potential, especially in relation to the detection and characterisation of non‐culturable, difficult‐to‐culture or slow‐growing microorganisms, for tracking of hazard‐related genetic determinants and the dynamic evaluation of the composition and functionality of complex microbial communities. A SWOT analysis is provided on the use of WGS and metagenomics for Salmonella and Shigatoxin‐producing Escherichia coli (STEC) serotyping and the identification of antimicrobial resistance determinants in bacteria. Close agreement between phenotypic and WGS‐based genotyping data has been observed. WGS provides additional information on the nature and localisation of antimicrobial resistance determinants and on their dissemination potential by horizontal gene transfer, as well as on genes relating to virulence and biological fitness. Interoperable data will play a major role in the future use of WGS and metagenomic data. Capacity building based on harmonised, quality controlled operational systems within European laboratories and worldwide is essential for the investigation of cross‐border outbreaks and for the development of international standardised risk assessments of food‐borne microorganisms.
Collapse
|
18
|
van Hoek AHAM, van Veldhuizen JNJ, Friesema I, Coipan C, Rossen JWA, Bergval IL, Franz E. Comparative genomics reveals a lack of evidence for pigeons as a main source of stx 2f-carrying Escherichia coli causing disease in humans and the common existence of hybrid Shiga toxin-producing and enteropathogenic E. coli pathotypes. BMC Genomics 2019; 20:271. [PMID: 30953471 PMCID: PMC6451237 DOI: 10.1186/s12864-019-5635-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/21/2019] [Indexed: 12/13/2022] Open
Abstract
Background Wild birds, in particular pigeons are considered a natural reservoir for stx2f-carrying E. coli. An extensive comparison of isolates from pigeons and humans from the same region is lacking, which hampers justifiable conclusions on the epidemiology of these pathogens. Over two hundred human and pigeon stx2f-carrying E. coli isolates predominantly from the Netherlands were analysed by whole genome sequencing and comparative genomic analysis including in silico MLST, serotyping, virulence genes typing and whole genome MLST (wgMLST). Results Serotypes and sequence types of stx2f-carrying E. coli showed a strong non-random distribution among the human and pigeon isolates with O63:H6/ST583, O113:H6/ST121 and O125:H6/ST583 overrepresented among the human isolates and not found among pigeons. Pigeon isolates were characterized by an overrepresentation of O4:H2/ST20 and O45:H2/ST20. Nearly all isolates harboured the locus of enterocyte effacement (LEE) but different eae and tir subtypes were non-randomly distributed among human and pigeon isolates. Phylogenetic core genome comparison demonstrated that the pigeon isolates and clinical isolates largely occurred in separated clusters. In addition, serotypes/STs exclusively found among humans generally were characterized by high level of clonality, smaller genome sizes and lack of several non-LEE-encoded virulence genes. A bundle-forming pilus operon, including bfpA, indicative for typical enteropathogenic E. coli (tEPEC) was demonstrated in 72.0% of the stx2f-carrying serotypes but with distinct operon types between the main pigeon and human isolate clusters. Conclusions Comparative genomics revealed that isolates from mild human disease are dominated by serotypes not encountered in the pigeon reservoir. It is therefore unlikely that zoonotic transmission from this reservoir plays an important role in the contribution to the majority of human disease associated with stx2f-producing E. coli in the Netherlands. Unexpectedly, this study identified the common occurrence of STEC2f/tEPEC hybrid pathotype in various serotypes and STs. Further research should focus on the possible role of human-to-human transmission of Stx2f-producing E. coli. Electronic supplementary material The online version of this article (10.1186/s12864-019-5635-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Angela H A M van Hoek
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands.
| | - Janieke N J van Veldhuizen
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Ingrid Friesema
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Claudia Coipan
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - John W A Rossen
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Indra L Bergval
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| | - Eelco Franz
- Centre for Infectious Disease Control (CIb), National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands
| |
Collapse
|
19
|
Sánchez S, Llorente MT, Ramiro R, Herrera-León L, Herrera-León S. Evaluation of the SHIGA TOXIN QUIK CHEK after overnight enrichment as screening tool for Shiga toxin-producing Escherichia coli detection in human fecal samples. Diagn Microbiol Infect Dis 2019; 94:218-222. [PMID: 30885395 DOI: 10.1016/j.diagmicrobio.2019.01.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 01/17/2019] [Accepted: 01/20/2019] [Indexed: 12/18/2022]
Abstract
We evaluated the SHIGA TOXIN QUIK CHEK (STQC) on its suitability for Shiga toxin-producing Escherichia coli (STEC) testing on human fecal samples after overnight enrichment. Our in-house PCR-based protocol for STEC detection was used as the standard for comparison. STQC detected all described Shiga toxin subtypes with the only exception of Stx2f. In comparison to PCR, STQC performed with an overall sensitivity of 55.4%, specificity of 100.0%, positive predictive value of 100.0%, negative predictive value of 73.0%, infinite positive likelihood ratio, and negative likelihood ratio of 0.45. We conclude that STQC may not be considered a suitable screening tool for STEC detection in human fecal samples, although it could be useful for laboratories where PCR is not a routine tool for STEC screening yet, subject to the confirmation of negative samples by a reference laboratory with full diagnostic capabilities.
Collapse
Affiliation(s)
- Sergio Sánchez
- Reference and Research Laboratory of Food and Waterborne Bacterial Infections, National Center for Microbiology, Institute of Health Carlos III, Majadahonda, Madrid, Spain.
| | - María Teresa Llorente
- Reference and Research Laboratory of Food and Waterborne Bacterial Infections, National Center for Microbiology, Institute of Health Carlos III, Majadahonda, Madrid, Spain
| | - Raquel Ramiro
- Reference and Research Laboratory of Food and Waterborne Bacterial Infections, National Center for Microbiology, Institute of Health Carlos III, Majadahonda, Madrid, Spain
| | - Laura Herrera-León
- Reference and Research Laboratory of Food and Waterborne Bacterial Infections, National Center for Microbiology, Institute of Health Carlos III, Majadahonda, Madrid, Spain
| | - Silvia Herrera-León
- Reference and Research Laboratory of Food and Waterborne Bacterial Infections, National Center for Microbiology, Institute of Health Carlos III, Majadahonda, Madrid, Spain
| |
Collapse
|
20
|
Hazard Identification and Characterization: Criteria for Categorizing Shiga Toxin-Producing Escherichia coli on a Risk Basis †. J Food Prot 2019; 82:7-21. [PMID: 30586326 DOI: 10.4315/0362-028x.jfp-18-291] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Shiga toxin-producing Escherichia coli (STEC) comprise a large, highly diverse group of strains. Since the emergence of STEC serotype O157:H7 as an important foodborne pathogen, serotype data have been used for identifying STEC strains, and this use continued as other serotypes were implicated in human infections. An estimated 470 STEC serotypes have been identified, which can produce one or more of the 12 known Shiga toxin (Stx) subtypes. The number of STEC serotypes that cause human illness varies but is probably higher than 100. However, many STEC virulence genes are mobile and can be lost or transferred to other bacteria; therefore, STEC strains that have the same serotype may not carry the same virulence genes or pose the same risk. Although serotype information is useful in outbreak investigations and surveillance studies, it is not a reliable means of assessing the human health risk posed by a particular STEC serotype. To contribute to the development of a set of criteria that would more reliably support hazard identification, this review considered each of the factors contributing to a negative human health outcome: mild diarrhea, bloody diarrhea, and hemolytic uremic syndrome (HUS). STEC pathogenesis involves entry into the human gut (often via ingestion), attachment to the intestinal epithelial cells, and elaboration of Stx. Production of Stx, which disrupts normal cellular functions and causes cell damage, alone without adherence of bacterial cells to gut epithelial cells is insufficient to cause severe illness. The principal adherence factor in STEC is the intimin protein coded by the eae gene. The aggregative adherence fimbriae adhesins regulated by the aggR gene of enteroaggregative E. coli strains are also effective adherence factors. The stx2a gene is most often present in locus of enterocyte effacement ( eae)-positive STEC strains and has consistently been associated with HUS. The stx2a gene has also been found in eae-negative, aggR-positive STEC that have caused HUS. HUS cases where other stx gene subtypes were identified indicate that other factors such as host susceptibility and the genetic cocktail of virulence genes in individual isolates may affect their association with severe diseases.
Collapse
Affiliation(s)
-
- The Joint FAO/WHO Expert Meetings on Microbiological Risk Assessment (JEMRA) Secretariat, * Food Safety and Quality Unit, Agriculture and Consumer Protection Department, Food and Agriculture Organization of the United Nations, Viale delle Terme di Caracalla, 00153 Rome, Italy
| |
Collapse
|
21
|
Varcasia BM, Tomassetti F, De Santis L, Di Giamberardino F, Lovari S, Bilei S, De Santis P. Presence of Shiga Toxin-Producing Escherichia coli (STEC) in Fresh Beef Marketed in 13 Regions of ITALY (2017). Microorganisms 2018; 6:E126. [PMID: 30563244 PMCID: PMC6313577 DOI: 10.3390/microorganisms6040126] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/30/2018] [Accepted: 12/05/2018] [Indexed: 01/02/2023] Open
Abstract
The aim of this study was to determine the prevalence of Shiga toxin-producing Escherichia coli in fresh beef marketed in 2017 in 13 regions of Italy, to evaluate the potential risk to human health. According to the ISO/TS 13136:2012 standard, 239 samples were analysed and nine were STEC positive, from which 20 strains were isolated. The STEC-positive samples were obtained from Calabria (n = 1), Campania (n = 1), Lazio (n = 2), Liguria (n = 1), Lombardia (n = 1) and Veneto (n = 3). All STEC strains were analysed for serogroups O26, O45, O55, O91, O103, O104, O111, O113, O121, O128, O145, O146 and O157, using Real-Time PCR. Three serogroups were identified amongst the 20 strains: O91 (n = 5), O113 (n = 2), and O157 (n = 1); the O-group for each of the 12 remaining STEC strains was not identified. Six stx subtypes were detected: stx1a, stx1c, stx2a, stx2b, stx2c and stx2d. Subtype stx2c was the most common, followed by stx2d and stx2b. Subtype stx2a was identified in only one eae-negative strain and occurred in combination with stx1a, stx1c and stx2b. The presence in meat of STEC strains being potentially harmful to human health shows the importance, during harvest, of implementing additional measures to reduce contamination risk.
Collapse
Affiliation(s)
- Bianca Maria Varcasia
- Istituto Zooprofilattico Sperimentale Lazio e Toscana, "M. Aleandri", 00178 Rome, Italy.
| | - Francesco Tomassetti
- Istituto Zooprofilattico Sperimentale Lazio e Toscana, "M. Aleandri", 00178 Rome, Italy.
| | - Laura De Santis
- Istituto Zooprofilattico Sperimentale Lazio e Toscana, "M. Aleandri", 00178 Rome, Italy.
| | | | - Sarah Lovari
- Istituto Zooprofilattico Sperimentale Lazio e Toscana, "M. Aleandri", 00178 Rome, Italy.
| | - Stefano Bilei
- Istituto Zooprofilattico Sperimentale Lazio e Toscana, "M. Aleandri", 00178 Rome, Italy.
| | - Paola De Santis
- Istituto Zooprofilattico Sperimentale Lazio e Toscana, "M. Aleandri", 00178 Rome, Italy.
| |
Collapse
|
22
|
The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2017. EFSA J 2018; 16:e05500. [PMID: 32625785 PMCID: PMC7009540 DOI: 10.2903/j.efsa.2018.5500] [Citation(s) in RCA: 536] [Impact Index Per Article: 76.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
This report of the European Food Safety Authority and the European Centre for Disease Prevention and Control presents the results of zoonoses monitoring activities carried out in 2017 in 37 European countries (28 Member States (MS) and nine non-MS). Campylobacteriosis was the commonest reported zoonosis and its EU trend for confirmed human cases increasing since 2008 stabilised during 2013-2017. The decreasing EU trend for confirmed human salmonellosis cases since 2008 ended during 2013-2017, and the proportion of human Salmonella Enteritidis cases increased, mostly due to one MS starting to report serotype data. Sixteen MS met all Salmonella reduction targets for poultry, whereas 12 MS failed meeting at least one. The EU flock prevalence of target Salmonella serovars in breeding hens, laying hens, broilers and fattening turkeys decreased or remained stable compared to 2016, and slightly increased in breeding turkeys. Salmonella results on pig carcases and target Salmonella serovar results for poultry from competent authorities tended to be generally higher compared to those from food business operators. The notification rate of human listeriosis further increased in 2017, despite Listeria seldom exceeding the EU food safety limit in ready-to-eat food. The decreasing EU trend for confirmed yersiniosis cases since 2008 stabilised during 2013-2017. The number of confirmed shiga toxin-producing Escherichia coli (STEC) infections in humans was stable. A total of 5,079 food-borne (including waterborne) outbreaks were reported. Salmonella was the commonest detected agent with S. Enteritidis causing one out of seven outbreaks, followed by other bacteria, bacterial toxins and viruses. The agent was unknown in 37.6% of all outbreaks. Salmonella in eggs and Salmonella in meat and meat products were the highest risk agent/food pairs. The report further summarises trends and sources for bovine tuberculosis, Brucella, Trichinella, Echinococcus, Toxoplasma, rabies, Coxiella burnetii (Q fever), West Nile virus and tularaemia.
Collapse
|
23
|
Llarena A, Ribeiro‐Gonçalves BF, Nuno Silva D, Halkilahti J, Machado MP, Da Silva MS, Jaakkonen A, Isidro J, Hämäläinen C, Joenperä J, Borges V, Viera L, Gomes JP, Correia C, Lunden J, Laukkanen‐Ninios R, Fredriksson‐Ahomaa M, Bikandi J, Millan RS, Martinez‐Ballesteros I, Laorden L, Mäesaar M, Grantina‐Ievina L, Hilbert F, Garaizar J, Oleastro M, Nevas M, Salmenlinna S, Hakkinen M, Carriço JA, Rossi M. INNUENDO: A cross‐sectoral platform for the integration of genomics in the surveillance of food‐borne pathogens. ACTA ACUST UNITED AC 2018. [DOI: 10.2903/sp.efsa.2018.en-1498] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
24
|
Karnisova L, Marejkova M, Hrbackova H, Mellmann A, Karch H, Fruth A, Drevinek P, Blahova K, Bielaszewska M, Nunvar J. Attack of the clones: whole genome-based characterization of two closely related enterohemorrhagic Escherichia coli O26 epidemic lineages. BMC Genomics 2018; 19:647. [PMID: 30170539 PMCID: PMC6119250 DOI: 10.1186/s12864-018-5045-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/27/2018] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Enterohemorrhagic Escherichia coli (EHEC) O26:H11/H-, the most common non-O157 serotype causing hemolytic uremic syndrome worldwide, are evolutionarily highly dynamic with new pathogenic clones emerging rapidly. Here, we investigated the population structure of EHEC O26 isolated from patients in several European countries using whole genome sequencing, with emphasis on a detailed analysis of strains of the highly virulent new European clone (nEC) which has spread since 1990s. RESULTS Genome-wide single nucleotide polymorphism (SNP)-based analysis of 32 EHEC O26 isolated in the Czech Republic, Germany, Austria and Italy demonstrated a split of the nEC (ST29C2 clonal group) into two distinct lineages, which we termed, based on their temporal emergence, as "early" nEC and "late" nEC. The evolutionary divergence of the early nEC and late nEC is marked by the presence of 59 and 70 lineage-specific SNPs (synapomorphic mutations) in the genomes of the respective lineages. In silico analyses of publicly available E. coli O26 genomic sequences identified the late nEC lineage worldwide. Using a PCR designed to target the late nEC synapomorphic mutation in the sen/ent gene, we identified the early nEC decline accompanied by the late nEC rise in Germany and the Czech Republic since 2004 and 2013, respectively. Most of the late nEC strains harbor one of two major types of Shiga toxin 2a (Stx2a)-encoding prophages. The type I stx2a-phage is virtually identical to stx2a-phage of EHEC O104:H4 outbreak strain, whereas the type II stx2a-phage is a hybrid of EHEC O104:H4 and EHEC O157:H7 stx2a-phages and carries a novel mutation in Stx2a. Strains harboring these two phage types do not differ by the amounts and biological activities of Stx2a produced. CONCLUSIONS Using SNP-level analyses, we provide the evidence of the evolutionary split of EHEC O26:H11/H- nEC into two distinct lineages, and a recent replacement of the early nEC by the late nEC in Germany and the Czech Republic. PCR targeting the late nEC synapomorphic mutation in ent/sen enables the discrimination of early nEC strains and late nEC strains in clinical and environmental samples, thereby facilitating further investigations of their geographic distribution, prevalence, clinical significance and epidemiology.
Collapse
Affiliation(s)
- Lucia Karnisova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Monika Marejkova
- National Reference Laboratory for E. coli and Shigella, National Institute of Public Health, Prague, Czech Republic
| | - Hana Hrbackova
- Laboratory for Tissue Cultures, National Institute of Public Health, Prague, Czech Republic
| | - Alexander Mellmann
- Institute for Hygiene and the National Consulting Laboratory on Hemolytic Uremic Syndrome, University of Münster, Münster, Germany
| | - Helge Karch
- Institute for Hygiene and the National Consulting Laboratory on Hemolytic Uremic Syndrome, University of Münster, Münster, Germany
| | - Angelika Fruth
- National Reference Center for Salmonella and Other Enteric Pathogens, Robert Koch Institute, Wernigerode, Germany
| | - Pavel Drevinek
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Kveta Blahova
- Department of Paediatrics, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Martina Bielaszewska
- National Reference Laboratory for E. coli and Shigella, National Institute of Public Health, Prague, Czech Republic
| | - Jaroslav Nunvar
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| |
Collapse
|
25
|
Characterization of a novel plasmid encoding F4-like fimbriae present in a Shiga-toxin producing enterotoxigenic Escherichia coli isolated during the investigation on a case of hemolytic-uremic syndrome. Int J Med Microbiol 2018; 308:947-955. [PMID: 30030028 DOI: 10.1016/j.ijmm.2018.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/06/2018] [Accepted: 07/10/2018] [Indexed: 11/21/2022] Open
Abstract
In February 2017 a case of Hemolytic-Uremic Syndrome (HUS) was reported to the National Registry of HUS in an adult living in Northern Italy. Stool specimens from the patient and his family contacts were collected and the analyses led to the isolation of a Locus of Enterocyte Effacement (LEE)-negative Shiga toxin 2 (Stx2)-producing Escherichia coli. The epidemiological investigations performed brought to collect fecal samples from the animals reared in a farm held by the case's family and a mixture of bovine and swine feces proved positive for Shiga toxin-producing E. coli (STEC) and yielded the isolation of a LEE-negative stx2-positive E. coli strain. Further characterization by whole genome sequencing led to identify the isolates as two identical O2:H27 hybrid Enterotoxigenic Shiga toxin-producing E. coli (ETEC-STEC). Sequencing of a high molecular weight plasmid present in the human isolate disclosed a peculiar plasmid harboring virulence genes characteristic for both pathotypes, including the enterohemolysin-coding gene and sta1, encoding the heat stable enterotoxin. Moreover, a complete fae locus encoding the ETEC F4 fimbriae could be identified, including a novel variant of faeG gene responsible for the production of the main structural subunit of the fimbriae. This novel faeG showed great diversity in the nucleotidic sequence when compared with the reference genes encoding the swine F4 allelic variants, whereas at the amino acid sequence level the predicted protein sequence showed some similarity with FaeG from E. coli strains of bovine origin. Further investigation on the plasmid region harboring the newly identified faeG allelic variant allowed to identify similar plasmids in NCBI sequence database, as part of the genome of other previously uncharacterized ETEC-STEC strains of bovine origin, suggesting that the novel F4-like fimbriae may play a role in bovine host specificity.
Collapse
|
26
|
Precision food safety: A systems approach to food safety facilitated by genomics tools. Trends Analyt Chem 2017. [DOI: 10.1016/j.trac.2017.06.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|