1
|
Brunsch V, Bergmann-Ewert W, Müller-Hilke B, Aleith J. Interleukin-6 overexpression and elevated granulocyte-to-lymphocyte ratio indicate hepatic stress in experimental group a Streptococcus sepsis. Med Microbiol Immunol 2025; 214:17. [PMID: 40178612 PMCID: PMC11968515 DOI: 10.1007/s00430-025-00826-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 03/14/2025] [Indexed: 04/05/2025]
Abstract
Group A Streptococcus (GAS) is a pathogen that is capable of colonizing various infection sites and can potentially elicit an inadequate immune response that will lead to sepsis. The processes underlying this misdirected immune reaction remain poorly understood, and reliable biomarkers for indicating impending organ failure during sepsis are still missing. The present study aims to identify parameters that can predict the onset of end-organ damage in the course of sepsis. To that extent, we investigated key aspects of the immune response in early-phase sepsis following infection of different tissues in a mouse model, using Brefeldin A to link cytokine production to specific cell types through multi-parameter flow cytometry. Subcutaneous and intravenous GAS infections resulted in clinical sepsis, which was paralleled by peripheral blood lymphopenia. Intravenous infection in particular was associated with a higher bacterial burden in the liver that strongly correlated with an increased granulocyte-to-lymphocyte ratio of the peripheral blood. Strikingly, IL-6 overexpression was more pronounced in intravenous infection and strongly correlated with hepatic stress, indicated by elevated bacterial loads in the liver. Collectively, our data highlight the potential utility of IL-6 in conjunction with an elevated granulocyte-to-lymphocyte ratio as promising early indicators of concomitant liver stress in sepsis.
Collapse
Affiliation(s)
- Valerie Brunsch
- Core Facility for Cell Sorting and Cell Analysis, Rostock University Medical Center, Rostock, Germany
| | - Wendy Bergmann-Ewert
- Core Facility for Cell Sorting and Cell Analysis, Rostock University Medical Center, Rostock, Germany
| | - Brigitte Müller-Hilke
- Core Facility for Cell Sorting and Cell Analysis, Rostock University Medical Center, Rostock, Germany
| | - Johann Aleith
- Core Facility for Cell Sorting and Cell Analysis, Rostock University Medical Center, Rostock, Germany.
| |
Collapse
|
2
|
Birhanu A, Amare A, Tigabie M, Bitew G, Cherkos T, Getaneh E, Moges F. Asymptomatic nasopharyngeal carriage of multidrug resistant bacteria among children at University of Gondar Hospital Northwest Ethiopia Revealing Hidden Health Risks. Sci Rep 2024; 14:28994. [PMID: 39578492 PMCID: PMC11584812 DOI: 10.1038/s41598-024-77527-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 10/23/2024] [Indexed: 11/24/2024] Open
Abstract
Gram-negative bacteria in the nasopharynx can eventually invade bacteria-limited sites and cause serious illnesses such as meningitis, otitis media, and pneumonia. However, data related to the carriage of these bacteria in children attending outpatient departments in the study area are limited. To assess nasopharyngeal carriage, antibiotic susceptibility patterns, and associated factors of gram-negative bacteria among children attending the outpatient department at the University of Gondar Comprehensive Specialized Hospital, Northwest Ethiopia. A hospital-based cross-sectional study was conducted from September 1, 2023, to December 30, 2023. A total of 385 children aged 3 to 14 years were enrolled using a systematic random sampling technique. Sociodemographic and clinical data were collected using a semistructured questionnaire. A total of 385 nasopharyngeal samples were collected using a sterile specimen collection nasopharyngeal swab, transported using Amie's transport medium, and subsequently inoculated on chocolate agar, blood agar, modified thayer martin agar, and MacConkey agar plates. Bacterial species were identified by colony morphology, Gram staining, and biochemical tests such as oxidase tests, satellitism tests, and carbohydrate utilization tests. An antibiotic susceptibility test was performed using the Kirby-Bauer and modified Kirby-Bauer methods on Mueller-Hinton agar plates. The data were entered into Epi-Data version 4.6.0.6 and exported to SPSS version 25 for analysis. The adjusted odds ratio at a 95% confidence interval with a P value of < 0.05 in the binary logistic regression model was considered to indicate statistical significance. The overall nasopharyngeal carriage of gram-negative bacteria was 146 (37.9%) (95% CI: 33.2-42.9). Among these, nonfastidious gram-negative bacteria represented 45 (11.7%), followed by M. catarrhalis 41 (10.6%), N. meningitidis 34 (8.8%), and H. influenzae 26 (6.8%). The isolates exhibited high resistance to tetracycline (85; 75.9%), trimethoprim-sulfamethoxazole (105; 71.9%), ampicillin (76; 67.9%), and amoxicillin/clavulanic acid (60; 69.8%) but high susceptibility to meropenem (122; 83.6%), gentamicin (73; 84.9%), and minocycline (87; 72.5%). There were 99 total multidrug-resistant strains (67.8%, 95% CI: 59.7-75.0). Male sex (AOR = 1.785, 95% CI: 1.102-2.892, P = 0.019), smoking (AOR = 2.675, 95% CI: 1.149-6.230, P = 0.022), and large family size (≥ 5) (AOR = 1.857, 95% CI: 1.140-3.023, P = 0.013) were risk factors for nasopharyngeal colonization. Increased nasopharyngeal colonization of multidrug-resistant gram-negative isolates was observed in this study. Gentamicin, minocycline, and meropenem were the most effective antibiotics for the tested isolates. Bacterial colonization increased with increasing family size, smoking status, and male sex. Therefore, a definitive diagnosis in the outpatient pediatric department should be based on culture and susceptibility test results.
Collapse
Affiliation(s)
- Abebe Birhanu
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia.
| | - Azanaw Amare
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Mitkie Tigabie
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Getachew Bitew
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Tena Cherkos
- Department of Medical Parasitology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Eden Getaneh
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Feleke Moges
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
3
|
Phakey S, Campbell PT, Gibney KB. Epidemiology of scarlet fever in Victoria, Australia, 2007-2017. Epidemiol Infect 2024; 152:e116. [PMID: 39363595 PMCID: PMC11450502 DOI: 10.1017/s0950268824001298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/24/2024] [Accepted: 08/08/2024] [Indexed: 10/05/2024] Open
Abstract
In the last 10-15 years, there has been a global resurgence of scarlet fever, an infection historically associated with significant morbidity and mortality. It is unknown whether scarlet fever incidence has increased in Australia. We aimed to examine the incidence, predictors and severity of scarlet fever in the state of Victoria, Australia from 2007 to 2017, analyzing scarlet fever emergency department (ED) presentations, hospitalizations and deaths. Of the 1 578 scarlet fever cases during the study period, most occurred in children aged <10 years (1 344, 85%), in males (882, 56%), and during winter and spring months (918, 57%). There were no deaths with scarlet fever, however, 374 cases (24%) were admitted to hospital. The annual incidence of scarlet fever was stable during the study period (mean, 2.5; range, 1.9-3.1 cases per 100 000). Annual incidence was highest in children aged <5 years (19.3 per 100 000), and was 21% higher in males than females, adjusting for age and year (incidence rate ratio, 1.21, 95%CI 1.09-1.34). Whilst scarlet fever ED presentations and hospitalizations were stable in Victoria from 2007 to 2017, the recent identification of a Streptococcus pyogenes variant in Australia associated with epidemic scarlet fever overseas highlights the risk of future outbreaks.
Collapse
Affiliation(s)
- Sachin Phakey
- The Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Patricia T. Campbell
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Katherine B. Gibney
- The Royal Melbourne Hospital, Melbourne, VIC, Australia
- Department of Infectious Diseases, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|
4
|
Wu R, Xiong Y, Wang J, Li B, Yang L, Zhao H, Yang J, Yin T, Sun J, Qi L, Long J, Li Q, Zhong X, Tang W, Chen Y, Su K. Epidemiological changes of scarlet fever before, during and after the COVID-19 pandemic in Chongqing, China: a 19-year surveillance and prediction study. BMC Public Health 2024; 24:2674. [PMID: 39350134 PMCID: PMC11443759 DOI: 10.1186/s12889-024-20116-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND This study aimed to investigate the epidemiological changes in scarlet fever before, during and after the COVID-19 pandemic (2005-2023) and predict the incidence of the disease in 2024 and 2025 in Chongqing Municipality, Southwest China. METHODS Descriptive analysis was used to summarize the characteristics of the scarlet fever epidemic. Spatial autocorrelation analysis was utilized to explore the distribution pattern of the disease, and the seasonal autoregressive integrated moving average (SARIMA) model was constructed to predict its incidence in 2024 and 2025. RESULTS Between 2005 and 2023, 9,593 scarlet fever cases were reported in Chongqing, which resulted in an annual average incidence of 1.6694 per 100,000 people. Children aged 3-7 were the primary victims of this disease, with the highest average incidence found among children aged 6 (5.0002 per 100,000 people). Kindergarten children were the dominant infected population, accounting for as much as 54.32% of cases, followed by students (34.09%). The incidence for the male was 1.51 times greater than that for the female. The monthly distribution of the incidence showed a bimodal pattern, with one peak occurring between April and June and another in November or December. The spatial autocorrelation analysis revealed that scarlet fever cases were markedly clustered; the areas with higher incidence were mainly concentrated in Chongqing's urban areas and its adjacent districts, and gradually spreading to remote areas after 2020. The incidence of scarlet fever increased by 106.54% and 39.33% in the post-upsurge period (2015-2019) and the dynamic zero-COVID period (2020-2022), respectively, compared to the pre-upsurge period (2005-2014) (P < 0.001). During the dynamic zero-COVID period, the incidence of scarlet fever decreased by 68.61%, 25.66%, and 10.59% (P < 0.001) in 2020, 2021, and 2022, respectively, compared to the predicted incidence. In 2023, after the dynamic zero-COVID period, the reported cases decreased to 1.5168 per 100,000 people unexpectedly instead of increasing. The cases of scarlet fever are predicted to increase in 2024 (675 cases) and 2025 (705 cases). CONCLUSIONS Children aged 3-7 years are the most affected population, particularly males, and kindergartens and primary schools serving as transmission hotspots. It is predicted that the high incidence of scarlet fever in Chongqing will persist in 2024 and 2025, and the outer districts (counties) beyond urban zone would bear the brunt of the impact. Therefore, imminent public health planning and resource allocation should be focused within those areas.
Collapse
Affiliation(s)
- Rui Wu
- Chongqing Center for Disease Control and Prevention, No. 187 Tongxing North Road, Beibei district, Chongqing Municipality, China
| | - Yu Xiong
- Chongqing Center for Disease Control and Prevention, No. 187 Tongxing North Road, Beibei district, Chongqing Municipality, China
| | - Ju Wang
- Chongqing Center for Disease Control and Prevention, No. 187 Tongxing North Road, Beibei district, Chongqing Municipality, China
| | - Baisong Li
- Chongqing Center for Disease Control and Prevention, No. 187 Tongxing North Road, Beibei district, Chongqing Municipality, China
| | - Lin Yang
- Chongqing Center for Disease Control and Prevention, No. 187 Tongxing North Road, Beibei district, Chongqing Municipality, China
| | - Han Zhao
- Chongqing Center for Disease Control and Prevention, No. 187 Tongxing North Road, Beibei district, Chongqing Municipality, China
| | - Jule Yang
- Chongqing Center for Disease Control and Prevention, No. 187 Tongxing North Road, Beibei district, Chongqing Municipality, China
| | - Tao Yin
- Chongqing Center for Disease Control and Prevention, No. 187 Tongxing North Road, Beibei district, Chongqing Municipality, China
| | - Jun Sun
- Chongqing Center for Disease Control and Prevention, No. 187 Tongxing North Road, Beibei district, Chongqing Municipality, China
| | - Li Qi
- Chongqing Center for Disease Control and Prevention, No. 187 Tongxing North Road, Beibei district, Chongqing Municipality, China
| | - Jiang Long
- Chongqing Center for Disease Control and Prevention, No. 187 Tongxing North Road, Beibei district, Chongqing Municipality, China
| | - Qin Li
- Chongqing Center for Disease Control and Prevention, No. 187 Tongxing North Road, Beibei district, Chongqing Municipality, China
| | - Xiaoni Zhong
- School of Public Health and Management, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong district, Chongqing Municipality, China
| | - Wenge Tang
- Chongqing Center for Disease Control and Prevention, No. 187 Tongxing North Road, Beibei district, Chongqing Municipality, China.
| | - Yaokai Chen
- Chongqing Public Health Medical Center, No. 109 Baoyu Road, Shapingba district, Chongqing Municipality, China.
| | - Kun Su
- Chongqing Center for Disease Control and Prevention, No. 187 Tongxing North Road, Beibei district, Chongqing Municipality, China.
- Chongqing Public Health Medical Center, No. 109 Baoyu Road, Shapingba district, Chongqing Municipality, China.
- School of Public Health and Management, Chongqing Medical University, No. 1 Yixueyuan Road, Yuzhong district, Chongqing Municipality, China.
| |
Collapse
|
5
|
Gebre AB, Fenta DA, Negash AA, Hayile BJ. Prevalence, Antibiotic Susceptibility Pattern and Associated Factors of Streptococcus pyogenes among Pediatric Patients with Acute Pharyngitis in Sidama, Southern Ethiopia. Int J Microbiol 2024; 2024:9282571. [PMID: 39319095 PMCID: PMC11421939 DOI: 10.1155/2024/9282571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 08/12/2024] [Accepted: 09/04/2024] [Indexed: 09/26/2024] Open
Abstract
Background Streptococcus pyogenes is the most frequent cause of pharyngitis and skin infections in children and causes immune complications like rheumatic fever and rheumatoid heart disease (RHD), particularly in developing countries like Ethiopia. The aim of this study was to determine the prevalence, antibiotic resistance pattern, and associated factors of Streptococcus pyogenes among pediatric patients suspected of acute pharyngitis in Sidama Region, Southern Ethiopia. Methods A cross-sectional study was conducted on 213 acute pharyngitis suspected pediatric patients from April to September 2022 at Hawassa University Compressive Specialized Hospital and Yirgalem Hospital. Sociodemographic and clinical data were collected using a structured questionnaire. A throat swab was cultured to isolate S. pyogenes, and antimicrobial susceptibility testing was done using standard bacteriological techniques. Data were analyzed using SPSS version 25, and P value of <0.05 was considered as statistically significant. Result Out of 213 throat swabs cultured, 22 (10.3%) with 95% CI (6.6-14.6%) were S. pyogenes positive. All isolates of S. pyogenes were sensitive to penicillin and amoxicillin. In contrast, 8 (36.4%) isolates exhibited resistance to tetracycline, 7 (31.8%) to ceftriaxone, 6 (27.3%) to erythromycin, and 5 (22.7%) isolates showed multidrug resistance. The presence of palatal petechiae (P=0.037) and tonsillar swelling or exudate (P=0.007) were significantly associated with S. pyogenes carriage in children suspected of having acute pharyngitis. Conclusion In this study, the prevalence of S. pyogenes among children suspected with acute pharyngitis was low compared to other studies. The isolates showed a high level of resistance to commonly used antibiotics. Therefore, the treatment of pediatric acute S. pyogenes pharyngitis should depend on an antimicrobial susceptibility test. Furthermore, evaluation of S. pyogenes pediatric acute pharyngitis risk factors and tracking of antibiotic resistance are crucial in the controlling of pediatric acute S. pyogenes pharyngitis.
Collapse
Affiliation(s)
- Alemitu Beyene Gebre
- Hawassa University College of Medicine and Health ScienceSchool of Medical Laboratory Science, Hawassa, Ethiopia
| | - Demissie Assegu Fenta
- Hawassa University College of Medicine and Health ScienceSchool of Medical Laboratory Science, Hawassa, Ethiopia
| | | | - Betelihem Jima Hayile
- Hawassa University College of Medicine and Health ScienceSchool of Medical Laboratory Science, Hawassa, Ethiopia
| |
Collapse
|
6
|
Cui J, Zhang Y, Ge H, Cao Y, Su X. Patterns in the Incidence of Scarlet Fever Among Children Aged 0-9 Years - China, 2010-2019. China CDC Wkly 2023; 5:756-762. [PMID: 37692760 PMCID: PMC10485360 DOI: 10.46234/ccdcw2023.143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/22/2023] [Indexed: 09/12/2023] Open
Abstract
Introduction This study investigates the patterns of scarlet fever among Chinese children aged 0-9 years from 2010 to 2019. The objective is to provide insights that may inform potential adjustments to China's current prevention and control tactics for this illness. Methods The present study utilized data on the occurrence of scarlet fever in children from 2010 to 2019, sourced from the National Notifiable Disease Reporting System database, managed by the Chinese Center for Disease Control and Prevention. This research implemented SAS9.4 software to construct trajectory models representing the temporal incidence of scarlet fever, accounting for key variables such as sex, geographic region, urban versus rural dwellings, and various age brackets. Results From 2010 to 2019, a total of 554,695 scarlet fever cases were reported among children aged 0-9 years in the 31 mainland Chinese provincial-level administrative divisions, signifying a rate of 35.36 per 100,000 individuals. An inconsistent yet generally rising trend was observed, evidenced by a 3.17-fold increase in reported cases and a 3.02-fold escalation in incidence rate over this period. Examination of these trends revealed three distinctive developmental patterns for both males and females, with the lowest prevalence in the first trajectory and the highest in the third. The incidence was consistently higher among males than females in all trajectories. The urban and northern regions displayed equal or greater trajectory rates than their rural and southern counterparts, respectively. In terms of age groups, the lowest incidence was observed in the 0-1-year age group, while the highest was recorded in the 4-5 and 6-7-year age groups. Conclusions Between 2010 and 2019, there was a marked increase in the incidence of scarlet fever among children in China. The disease predominantly impacts urban-dwelling children, ranging from 4 to 7 years old, in the northern regions of the country. The incidence is reported to be higher among boys compared to girls.
Collapse
Affiliation(s)
- Jinyu Cui
- Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yewu Zhang
- Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hui Ge
- Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yu Cao
- Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xuemei Su
- Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
7
|
Boeddha NP, Atkins L, de Groot R, Driessen G, Hazelzet J, Zenz W, Carrol ED, Anderson ST, Martinon-Torres F, Agyeman PKA, Galassini R, Herberg J, Levin M, Schlapbach LJ, Emonts M. Group A streptococcal disease in paediatric inpatients: a European perspective. Eur J Pediatr 2023; 182:697-706. [PMID: 36449079 PMCID: PMC9709363 DOI: 10.1007/s00431-022-04718-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/13/2022] [Accepted: 11/14/2022] [Indexed: 12/05/2022]
Abstract
Group A streptococcal (GAS) disease shows increasing incidence worldwide. We characterised children admitted with GAS infection to European hospitals and studied risk factors for severity and disability. This is a prospective, multicentre, cohort study (embedded in EUCLIDS and the Swiss Pediatric Sepsis Study) including 320 children, aged 1 month to 18 years, admitted with GAS infection to 41 hospitals in 6 European countries from 2012 to 2016. Demographic, clinical, microbiological and outcome data were collected. A total of 195 (61%) patients had sepsis. Two hundred thirty-six (74%) patients had GAS detected from a normally sterile site. The most common infection sites were the lower respiratory tract (LRTI) (22%), skin and soft tissue (SSTI) (23%) and bone and joint (19%). Compared to patients not admitted to PICU, patients admitted to PICU more commonly had LRTI (39 vs 8%), infection without a focus (22 vs 8%) and intracranial infection (9 vs 3%); less commonly had SSTI and bone and joint infections (p < 0.001); and were younger (median 40 (IQR 21-83) vs 56 (IQR 36-85) months, p = 0.01). Six PICU patients (2%) died. Sequelae at discharge from hospital were largely limited to patients admitted to PICU (29 vs 3%, p < 0.001; 12% overall) and included neurodisability, amputation, skin grafts, hearing loss and need for surgery. More patients were recruited in winter and spring (p < 0.001). CONCLUSION In an era of observed marked reduction in vaccine-preventable infections, GAS infection requiring hospital admission is still associated with significant severe disease in younger children, and short- and long-term morbidity. Further advances are required in the prevention and early recognition of GAS disease. WHAT IS KNOWN • Despite temporal and geographical variability, there is an increase of incidence of infection with group A streptococci. However, data on the epidemiology of group A streptococcal infections in European children is limited. WHAT IS NEW • In a large, prospective cohort of children with community-acquired bacterial infection requiring hospitalisation in Europe, GAS was the most frequent pathogen, with 12% disability at discharge, and 2% mortality in patients with GAS infection. • In children with GAS sepsis, IVIG was used in only 4.6% of patients and clindamycin in 29% of patients.
Collapse
Affiliation(s)
- Navin P Boeddha
- Department of Pediatrics, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands
- Department of Pediatrics, Maasstad Hospital, Rotterdam, the Netherlands
| | - Lucy Atkins
- Paediatric Immunology, Infectious Diseases & Allergy Dept., Great North Children's Hospital, Newcastle Upon Tyne Hospitals NHS Foundation Trust, RVI, Clinical Resources Building, Queen Victoria Road, Newcastle Upon Tyne, NE1 4LP, UK
| | - Ronald de Groot
- Division of Pediatric Infectious Diseases and Immunology and Laboratory of Infectious Diseases, Department of Pediatrics, Radboud Institute of Molecular Life Sciences, Radboudumc, Nijmegen, the Netherlands
| | - Gertjan Driessen
- Department of Pediatrics, Erasmus MC-Sophia Children's Hospital, Rotterdam, the Netherlands
- Department of Paediatrics, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Jan Hazelzet
- Department of Public Health, Erasmus MC, Rotterdam, the Netherlands
| | - Werner Zenz
- Department of General Pediatrics, Medical University of Graz, Graz, Austria
| | - Enitan D Carrol
- Institute of Infection, Veterinary and Ecological Sciences Global Health, University of Liverpool, Liverpool, UK
- Alder Hey Children's NHS Foundation Trust, Liverpool, UK
| | | | - Federico Martinon-Torres
- Translational Pediatrics and Infectious Diseases Section, Pediatrics Department, Santiago de Compostela, Spain
| | - Philipp K A Agyeman
- Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Rachel Galassini
- Section of Paediatrics Division of Infectious Disease, Imperial College of London, London, UK
| | - Jethro Herberg
- Section of Paediatrics Division of Infectious Disease, Imperial College of London, London, UK
| | - Michael Levin
- Section of Paediatrics Division of Infectious Disease, Imperial College of London, London, UK
| | - Luregn J Schlapbach
- Neonatal and Pediatric Intensive Care Unit, University Children`s Hospital Zürich and Children`s Research Center, Zurich, Switzerland
| | - Marieke Emonts
- Paediatric Immunology, Infectious Diseases & Allergy Dept., Great North Children's Hospital, Newcastle Upon Tyne Hospitals NHS Foundation Trust, RVI, Clinical Resources Building, Queen Victoria Road, Newcastle Upon Tyne, NE1 4LP, UK.
- Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne, UK.
- NIHR Newcastle Biomedical Research Centre Based at Newcastle Upon Tyne Hospitals NHS Trust and Newcastle University, Newcastle Upon Tyne, UK.
| | | |
Collapse
|
8
|
McDonald SA, van Wijhe M, de Gier B, Korthals Altes H, Vlaminckx BJM, Hahné S, Wallinga J. The dynamics of scarlet fever in The Netherlands, 1906-1920: a historical analysis. ROYAL SOCIETY OPEN SCIENCE 2022; 9:220030. [PMID: 36397968 PMCID: PMC9626260 DOI: 10.1098/rsos.220030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 10/13/2022] [Indexed: 06/09/2023]
Abstract
Background. Scarlet fever, an infectious disease caused by Streptococcus pyogenes, largely disappeared in developed countries during the twentieth century. In recent years, scarlet fever is on the rise again, and there is a need for a better understanding of possible factors driving transmission. Methods. Using historical case notification data from the three largest cities in The Netherlands (Amsterdam, Rotterdam and The Hague) from 1906 to 1920, we inferred the transmission rate for scarlet fever using time-series susceptible-infected-recovered (TSIR) methods. Through additive regression modelling, we investigated the contributions of meteorological variables and school term times to transmission rates. Results. Estimated transmission rates varied by city, and were highest overall for Rotterdam, the most densely populated city at that time. High temperature, seasonal precipitation levels and school term timing were associated with transmission rates, but the roles of these factors were limited and not consistent over all three cities. Conclusions. While weather factors alone can only explain a small portion of the variability in transmission rates, these results help understand the historical dynamics of scarlet fever infection in an era with less advanced sanitation and no antibiotic treatment and may offer insights into the driving factors associated with its recent resurgence.
Collapse
Affiliation(s)
- Scott A. McDonald
- Centre for Infectious Disease Control, Netherlands National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | | | - Brechje de Gier
- Centre for Infectious Disease Control, Netherlands National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Hester Korthals Altes
- Centre for Infectious Disease Control, Netherlands National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | | | - Susan Hahné
- Centre for Infectious Disease Control, Netherlands National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Jacco Wallinga
- Centre for Infectious Disease Control, Netherlands National Institute for Public Health and the Environment, Bilthoven, The Netherlands
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
9
|
He Y, Ma C, Guo X, Pan J, Xu W, Liu S. Collateral Impact of COVID-19 Prevention Measures on Re-Emergence of Scarlet Fever and Pertussis in Mainland China and Hong Kong China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:9909. [PMID: 36011545 PMCID: PMC9407746 DOI: 10.3390/ijerph19169909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
The incidence of scarlet fever and pertussis has increased significantly in China in recent years. During the COVID-19 pandemic, stringent non-pharmaceutical intervention measures were widely adopted to contain the spread of the virus, which may also have essential collateral impacts on other infectious diseases, such as scarlet fever and pertussis. We compared the incidence data of scarlet fever and pertussis in Mainland China and Hong Kong from 2004 to 2021 before and after the COVID-19 pandemic. The results show that the incidence of both diseases decreased significantly in 2020-2021 compared to the after-re-emergence stage in these two locations. Specifically, in 2020, scarlet fever decreased by 73.13% and pertussis by 76.63% in Mainland China, and 83.70% and 76.10%, respectively, in Hong Kong. In the absence of COVID-19, the predicted incidence of both diseases was much higher than the actual incidence in Mainland China and Hong Kong in 2020-2021. This study demonstrates that non-pharmaceutical measures implemented during the COVID-19 pandemic can partially reduce scarlet fever and pertussis re-emergence in Mainland China and Hong Kong.
Collapse
Affiliation(s)
- Yiran He
- Center for Applied Statistics, School of Statistics, Renmin University of China, Beijing 100872, China
| | - Chenjin Ma
- College of Statistics and Data Science, Faculty of Science, Beijing University of Technology, Beijing 100124, China
| | - Xiangyu Guo
- Center for Applied Statistics, School of Statistics, Renmin University of China, Beijing 100872, China
| | - Jinren Pan
- Department of Infectious Diseases, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| | - Wangli Xu
- Center for Applied Statistics, School of Statistics, Renmin University of China, Beijing 100872, China
| | - Shelan Liu
- Department of Infectious Diseases, Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou 310051, China
| |
Collapse
|
10
|
Abstract
The incidence of scarlet fever has increased dramatically in recent years in Chongqing, China, but there has no effective method to forecast it. This study aimed to develop a forecasting model of the incidence of scarlet fever using a seasonal autoregressive integrated moving average (SARIMA) model. Monthly scarlet fever data between 2011 and 2019 in Chongqing, China were retrieved from the Notifiable Infectious Disease Surveillance System. From 2011 to 2019, a total of 5073 scarlet fever cases were reported in Chongqing, the male-to-female ratio was 1.44:1, children aged 3–9 years old accounted for 81.86% of the cases, while 42.70 and 42.58% of the reported cases were students and kindergarten children, respectively. The data from 2011 to 2018 were used to fit a SARIMA model and data in 2019 were used to validate the model. The normalised Bayesian information criterion (BIC), the coefficient of determination (R2) and the root mean squared error (RMSE) were used to evaluate the goodness-of-fit of the fitted model. The optimal SARIMA model was identified as (3, 1, 3) (3, 1, 0)12. The RMSE and mean absolute per cent error (MAPE) were used to assess the accuracy of the model. The RMSE and MAPE of the predicted values were 19.40 and 0.25 respectively, indicating that the predicted values matched the observed values reasonably well. Taken together, the SARIMA model could be employed to forecast scarlet fever incidence trend, providing support for scarlet fever control and prevention.
Collapse
|
11
|
Jiang F, Wei T, Hu X, Han Y, Jia J, Pan B, Ni W. The association between ambient air pollution and scarlet fever in Qingdao, China, 2014-2018: a quantitative analysis. BMC Infect Dis 2021; 21:987. [PMID: 34548016 PMCID: PMC8456591 DOI: 10.1186/s12879-021-06674-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 09/08/2021] [Indexed: 12/16/2022] Open
Abstract
Background We conducted a distributed lag non-linear time series analysis to quantify the association between air pollution and scarlet fever in Qingdao city during 2014–2018. Methods A distributed lag non-linear model (DLNM) combined with a generalized additive mixed model (GAMM) was applied to quantify the distributed lag effects of air pollutions on scarlet fever, with daily incidence of scarlet fever as the dependent variable and air pollutions as the independent variable adjusted for potential confounders. Results A total of 6316 cases of scarlet fever were notified, and there were 376 days occurring air pollution during the study period. Scarlet fever was significantly associated with air pollutions at a lag of 7 days with different relative risk (RR) of air pollution degrees [1.172, 95% confidence interval (CI): 1.038–1.323 in mild air pollution; 1.374, 95% CI 1.078–1.749 in moderate air pollution; 1.610, 95% CI 1.163–2.314 in severe air pollution; 1.887, 95% CI 1.163–3.061 in most severe air pollution]. Conclusions Our findings show that air pollution is positively associated with scarlet fever in Qingdao, and the risk of scarlet fever could be increased along with the degrees of air pollution. It contributes to developing strategies to prevent and reduce health impact from scarlet fever and other non-vaccine-preventable respiratory infectious diseases in air polluted areas. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-021-06674-8.
Collapse
Affiliation(s)
- Fachun Jiang
- Department of Acute Infectious Diseases, Qingdao Municipal Center for Disease Control and Prevention, Qingdao Institute of Prevention Medicine, Qingdao City, Shandong Province, People's Republic of China
| | - Tao Wei
- Qingdao Women and Children's Hospital, Qingdao University, No.6 Tongfu Road, Qingdao City, 266000, Shandong Province, People's Republic of China
| | - Xiaowen Hu
- Department of Acute Infectious Diseases, Qingdao Municipal Center for Disease Control and Prevention, Qingdao Institute of Prevention Medicine, Qingdao City, Shandong Province, People's Republic of China
| | - Yalin Han
- Department of Acute Infectious Diseases, Qingdao Municipal Center for Disease Control and Prevention, Qingdao Institute of Prevention Medicine, Qingdao City, Shandong Province, People's Republic of China
| | - Jing Jia
- Department of Acute Infectious Diseases, Qingdao Municipal Center for Disease Control and Prevention, Qingdao Institute of Prevention Medicine, Qingdao City, Shandong Province, People's Republic of China
| | - Bei Pan
- Department of Acute Infectious Diseases, Qingdao Municipal Center for Disease Control and Prevention, Qingdao Institute of Prevention Medicine, Qingdao City, Shandong Province, People's Republic of China
| | - Wei Ni
- Qingdao Women and Children's Hospital, Qingdao University, No.6 Tongfu Road, Qingdao City, 266000, Shandong Province, People's Republic of China.
| |
Collapse
|
12
|
Rao HX, Li DM, Zhao XY, Yu J. Spatiotemporal clustering and meteorological factors affected scarlet fever incidence in mainland China from 2004 to 2017. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 777:146145. [PMID: 33684741 DOI: 10.1016/j.scitotenv.2021.146145] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/21/2021] [Accepted: 02/21/2021] [Indexed: 06/12/2023]
Abstract
OBJECTIVE To analyze the spatiotemporal dynamic distribution and detect the related meteorological factors of scarlet fever from an ecological perspective, which could provide scientific information for effective prevention and control of this disease. METHODS The data on scarlet fever cases in mainland China were downloaded from the Data Center of the China Public Health Science, while monthly meteorological data were extracted from the official website of the National Bureau of Statistics. Global Moran's I, local Getis-Ord Gi⁎ hotspot statistics, and Kulldorff's retrospective space-time scan statistical analysis were used to detect the spatial and spatiotemporal clusters of scarlet fever across all settings. A spatial panel data model was conducted to estimate the impact of meteorological factors on scarlet fever incidence. RESULTS Scarlet fever in China had obvious spatial, temporal, and spatiotemporal clustering, high-incidence spatial clusters were located mainly in the north and northeast of China. Nine spatiotemporal clusters were identified. A spatial lag fixed effects panel data model was the best fit for regression analysis. After adjusting for spatial individual effects and spatial autocorrelation (ρ = 0.5623), scarlet fever incidence was positively associated with a one-month lag of average temperature, precipitation, and total sunshine hours (all P-values < 0.05). Each 10 °C, 2 cm, and 10 h increase in temperature, precipitation, and sunshine hours, respectively, was associated with a 6.41% increment and 1.04% and 1.41% decrement in scarlet fever incidence, respectively. CONCLUSION The incidence of scarlet fever in China showed an upward trend in recent years. It had obvious spatiotemporal clustering, with the high-risk areas mainly concentrated in the north and northeast of China. Areas with high temperature and with low precipitation and sunshine hours tended to have a higher scarlet fever incidence, and we should pay more attention to prevention and control in these places.
Collapse
Affiliation(s)
- Hua-Xiang Rao
- Department of Public Health and Preventive Medicine, Changzhi Medical College, Changzhi 046000, China.
| | - Dong-Mei Li
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Xiao-Yin Zhao
- Department of Public Health and Preventive Medicine, Changzhi Medical College, Changzhi 046000, China.
| | - Juan Yu
- Department of Basic Medical Sciences, Changzhi Medical College, Changzhi 046000, China.
| |
Collapse
|
13
|
Avire NJ, Whiley H, Ross K. A Review of Streptococcus pyogenes: Public Health Risk Factors, Prevention and Control. Pathogens 2021; 10:248. [PMID: 33671684 PMCID: PMC7926438 DOI: 10.3390/pathogens10020248] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 01/10/2023] Open
Abstract
Streptococcus pyogenes, (colloquially named "group A streptococcus" (GAS)), is a pathogen of public health significance, infecting 18.1 million people worldwide and resulting in 500,000 deaths each year. This review identified published articles on the risk factors and public health prevention and control strategies for mitigating GAS diseases. The pathogen causing GAS diseases is commonly transmitted via respiratory droplets, touching skin sores caused by GAS or through contact with contaminated material or equipment. Foodborne transmission is also possible, although there is need for further research to quantify this route of infection. It was found that GAS diseases are highly prevalent in developing countries, and among indigenous populations and low socioeconomic areas in developed countries. Children, the immunocompromised and the elderly are at the greatest risk of S. pyogenes infections and the associated sequelae, with transmission rates being higher in schools, kindergartens, hospitals and residential care homes. This was attributed to overcrowding and the higher level of social contact in these settings. Prevention and control measures should target the improvement of living conditions, and personal and hand hygiene. Adherence to infection prevention and control practices should be emphasized in high-risk settings. Resource distribution by governments, especially in developed countries, should also be considered.
Collapse
Affiliation(s)
| | | | - Kirstin Ross
- Environmental Health, College of Science and Engineering, Flinders University, Adelaide 5001, Australia; (N.J.A.); (H.W.)
| |
Collapse
|
14
|
Wang Y, Xu C, Ren J, Li Y, Wu W, Yao S. Use of meteorological parameters for forecasting scarlet fever morbidity in Tianjin, Northern China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:7281-7294. [PMID: 33026621 DOI: 10.1007/s11356-020-11072-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
The scarlet fever incidence has increased drastically in recent years in China. However, the long-term relationship between climate variation and scarlet fever remains contradictory, and an early detection system is lacking. In this study, we aim to explore the potential long-term effects of variations in monthly climatic parameters on scarlet fever and to develop an early scarlet-fever detection tool. Data comprising monthly scarlet fever cases and monthly average climatic variables from 2004 to 2017 were retrieved from the Notifiable Infectious Disease Surveillance System and National Meteorological Science Center, respectively. We used a negative binomial multivariable regression to assess the long-term impacts of weather parameters on scarlet fever and then built a novel forecasting technique by integrating an autoregressive distributed lag (ARDL) method with a nonlinear autoregressive neural network (NARNN) based on the significant meteorological drivers. Scarlet fever was a seasonal disease that predominantly peaked in spring and winter. The regression results indicated that a 1 °C increment in the monthly average temperature and a 1-h increment in the monthly aggregate sunshine hours were associated with 17.578% (95% CI 7.674 to 28.393%) and 0.529% (95% CI 0.035 to 1.025%) increases in scarlet fever cases, respectively; a 1-hPa increase in the average atmospheric pressure at a 1-month lag was associated with 12.996% (95% CI 9.972 to 15.919%) decrements in scarlet fever cases. Based on the model evaluation criteria, the best-performing basic and combined approaches were ARDL(1,0,0,1) and ARDL(1,0,0,1)-NARNN(5, 22), respectively, and this hybrid approach comprised smaller performance measures in both the training and testing stages than those of the basic model. Climate variability has a significant long-term influence on scarlet fever. The ARDL-NARNN technique with the incorporation of meteorological drivers can be used to forecast the future epidemic trends of scarlet fever. These findings may be of great help for the prevention and control of scarlet fever.
Collapse
Affiliation(s)
- Yongbin Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Xinxiang Medical University, No. 601 Jinsui road, Hongqi District, Xinxiang City, 453003, Henan Province, People's Republic of China.
| | - Chunjie Xu
- Department of Occupational and Environmental Health, School of Public Health, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Jingchao Ren
- Department of Epidemiology and Health Statistics, School of Public Health, Xinxiang Medical University, No. 601 Jinsui road, Hongqi District, Xinxiang City, 453003, Henan Province, People's Republic of China
| | - Yuchun Li
- Department of Epidemiology and Health Statistics, School of Public Health, Xinxiang Medical University, No. 601 Jinsui road, Hongqi District, Xinxiang City, 453003, Henan Province, People's Republic of China
| | - Weidong Wu
- Department of Epidemiology and Health Statistics, School of Public Health, Xinxiang Medical University, No. 601 Jinsui road, Hongqi District, Xinxiang City, 453003, Henan Province, People's Republic of China
| | - Sanqiao Yao
- Department of Epidemiology and Health Statistics, School of Public Health, Xinxiang Medical University, No. 601 Jinsui road, Hongqi District, Xinxiang City, 453003, Henan Province, People's Republic of China
| |
Collapse
|
15
|
Liu Y, Ding H, Chang ST, Lu R, Zhong H, Zhao N, Lin TH, Bao Y, Yap L, Xu W, Wang M, Li Y, Qin S, Zhao Y, Geng X, Wang S, Chen E, Yu Z, Chan TC, Liu S. Exposure to air pollution and scarlet fever resurgence in China: a six-year surveillance study. Nat Commun 2020; 11:4229. [PMID: 32843631 PMCID: PMC7447791 DOI: 10.1038/s41467-020-17987-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 07/27/2020] [Indexed: 02/02/2023] Open
Abstract
Scarlet fever has resurged in China starting in 2011, and the environment is one of the potential reasons. Nationwide data on 655,039 scarlet fever cases and six air pollutants were retrieved. Exposure risks were evaluated by multivariate distributed lag nonlinear models and a meta-regression model. We show that the average incidence in 2011-2018 was twice that in 2004-2010 [RR = 2.30 (4.40 vs. 1.91), 95% CI: 2.29-2.31; p < 0.001] and generally lower in the summer and winter holiday (p = 0.005). A low to moderate correlation was seen between scarlet fever and monthly NO2 (r = 0.21) and O3 (r = 0.11). A 10 μg/m3 increase of NO2 and O3 was significantly associated with scarlet fever, with a cumulative RR of 1.06 (95% CI: 1.02-1.10) and 1.04 (95% CI: 1.01-1.07), respectively, at a lag of 0 to 15 months. In conclusion, long-term exposure to ambient NO2 and O3 may be associated with an increased risk of scarlet fever incidence, but direct causality is not established.
Collapse
Affiliation(s)
- Yonghong Liu
- School of Intelligent Systems Engineering, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Hui Ding
- School of Intelligent Systems Engineering, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Shu-Ting Chang
- Research Center for Humanities and Social Sciences, Academia Sinica, Taipei, Taiwan
| | - Ran Lu
- Division of Infectious Disease, Key Laboratory of Surveillance and Early-Warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hui Zhong
- School of Intelligent Systems Engineering, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Na Zhao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Tzu-Hsuan Lin
- Research Center for Humanities and Social Sciences, Academia Sinica, Taipei, Taiwan
| | - Yiming Bao
- National Genomics Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences & China National Center for Bioinformation, Beijing, China
| | - Liwei Yap
- Research Center for Humanities and Social Sciences, Academia Sinica, Taipei, Taiwan
| | - Weijia Xu
- Guangdong Provincial Key Laboratory of Intelligent Transport System, Guangzhou, Guangdong Province, China
| | - Minyi Wang
- Guangdong Provincial Key Laboratory of Intelligent Transport System, Guangzhou, Guangdong Province, China
| | - Yuan Li
- Department of Infectious Diseases, Baoan District Centre for Disease Control and Prevention, Shenzhen, Guangdong Province, China
| | - Shuwen Qin
- Department of Infectious Diseases, Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, Zhejiang Province, China
| | - Yu Zhao
- Department of Infectious Diseases, Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, Zhejiang Province, China
| | - Xingyi Geng
- Emergency Offices, Jinan Centre for Disease Control and Prevention, Jinan, Shandong Province, China
| | - Supen Wang
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui Province, China
| | - Enfu Chen
- Department of Infectious Diseases, Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, Zhejiang Province, China.
| | - Zhi Yu
- School of Intelligent Systems Engineering, Sun Yat-sen University, Guangzhou, Guangdong Province, China.
| | - Ta-Chien Chan
- Research Center for Humanities and Social Sciences, Academia Sinica, Taipei, Taiwan.
| | - Shelan Liu
- Department of Infectious Diseases, Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
16
|
Cheng W, Li H, Zhang X, Sun W, Chong KC, Lau SYF, Yu Z, Liu S, Ling F, Pan J, Chen E. The association between ambient particulate matters, nitrogen dioxide, and childhood scarlet fever in Hangzhou, Eastern China, 2014-2018. CHEMOSPHERE 2020; 246:125826. [PMID: 31918112 DOI: 10.1016/j.chemosphere.2020.125826] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/28/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND The emerging cases of childhood scarlet fever (SF) and worsening air pollution problems in Chinese cities suggests a potential linkage between them. However, few studies had explored this association in a large childhood population. METHODS We conducted a time-series analysis using the daily count of SF and the daily concentrations of particulate matters with an aerodynamic diameter of 2.5 (PM2.5) and 10 (PM10), as well as nitrogen dioxide (NO2) in Hangzhou, China from 2014 to 2018. Distributed lag nonlinear models were used to estimate the lag effects of PM2.5, PM10 and NO2 for a maximum lag of 10 days, which were quantified using relative risk (RR) comparing the adjusted risks at the 2.5th (extremely low effect) and 97.5th (extremely high effect) percentiles of concentration of the three air pollutants to that at the median. Stratified RRs by sex were also reported. RESULTS Using the median concentration as reference, for extremely high effect, the RR was the highest on lag days 5, 6, and 3 for PM2.5, PM10, and NO2 respectively. While on lag day 0, the RR of PM2.5, PM10, and NO2 were 1.04 (95%CI: 0.90-1.20), 1.07 (95%CI: 0.92-1.24), and 1.08 (95%CI: 0.92-1.26) respectively, the RRs increased constantly and cumulatively to the maximum values of 1.88 (95%CI: 1.33-2.66), 1.82 (95%CI: 1.29-2.55), and 2.19 (95%CI: 1.47-3.27) for PM2.5, PM10, and NO2 respectively on lag day 10. Subgroup analyses showed that females appeared to be more vulnerable to the three pollutants than males. CONCLUSION Our study provides evidence that PM2.5, PM10, and NO2 exert delayed effects on SF infection.
Collapse
Affiliation(s)
- Wei Cheng
- Zhejiang Provincial Centre for Disease Control and Prevention, 3399 Binsheng Road, Binjiang District, Hangzhou, Zhejiang, 310051, China
| | - Huanhuan Li
- Zhejiang Hospital, 12 Lingyin Road, Xihu District, Hangzhou, Zhejiang, 310013, China
| | - Xueying Zhang
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York City, NY, 10029, United States
| | - Wanwan Sun
- Zhejiang Provincial Centre for Disease Control and Prevention, 3399 Binsheng Road, Binjiang District, Hangzhou, Zhejiang, 310051, China
| | - Ka Chun Chong
- Division of Biostatistics, JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong China
| | - Steven Yuk-Fai Lau
- Division of Biostatistics, JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, New Territories, Hong Kong China
| | - Zhao Yu
- Zhejiang Provincial Centre for Disease Control and Prevention, 3399 Binsheng Road, Binjiang District, Hangzhou, Zhejiang, 310051, China
| | - Shelan Liu
- Zhejiang Provincial Centre for Disease Control and Prevention, 3399 Binsheng Road, Binjiang District, Hangzhou, Zhejiang, 310051, China
| | - Feng Ling
- Zhejiang Provincial Centre for Disease Control and Prevention, 3399 Binsheng Road, Binjiang District, Hangzhou, Zhejiang, 310051, China
| | - Jinren Pan
- Zhejiang Provincial Centre for Disease Control and Prevention, 3399 Binsheng Road, Binjiang District, Hangzhou, Zhejiang, 310051, China.
| | - Enfu Chen
- Zhejiang Provincial Centre for Disease Control and Prevention, 3399 Binsheng Road, Binjiang District, Hangzhou, Zhejiang, 310051, China.
| |
Collapse
|
17
|
Kim J, Kim JE, Bae JM. Incidence of Scarlet Fever in Children in Jeju Province, Korea, 2002-2016: An Age-period-cohort Analysis. J Prev Med Public Health 2019; 52:188-194. [PMID: 31163954 PMCID: PMC6549015 DOI: 10.3961/jpmph.18.299] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 04/02/2019] [Indexed: 11/09/2022] Open
Abstract
Objectives: Outbreaks of scarlet fever in Mexico in 1999, Hong Kong and mainland China in 2011, and England in 2014-2016 have received global attention, and the number of notified cases in Korean children, including in Jeju Province, has also increased since 2010. To identify relevant hypotheses regarding this emerging outbreak, an age-period-cohort (APC) analysis of scarlet fever incidence was conducted among children in Jeju Province, Korea. Methods: This study analyzed data from the nationwide insurance claims database administered by the Korean National Health Insurance Service. The inclusion criteria were children aged ≤14 years residing in Jeju Province, Korea who received any form of healthcare for scarlet fever from 2002 to 2016. The age and year variables were categorized into 5 groups, respectively. After calculating the crude incidence rate (CIR) for age and calendar year groups, the intrinsic estimator (IE) method was applied to conduct the APC analysis. Results: In total, 2345 cases were identified from 2002 to 2016. Scarlet fever was most common in the 0-2 age group, and boys presented more cases than girls. Since the CIR decreased with age between 2002 and 2016, the age and period effect decreased in all observed years. The IE coefficients suggesting a cohort effect shifted from negative to positive in 2009. Conclusions: The results suggest that the recent outbreak of scarlet fever among children in Jeju Province might be explained through the cohort effect. As children born after 2009 showed a higher risk of scarlet fever, further descriptive epidemiological studies are needed.
Collapse
Affiliation(s)
- Jinhee Kim
- Jeju Center for Infection Control, Jeju, Korea
| | - Ji-Eun Kim
- Jeju Center for Infection Control, Jeju, Korea
| | - Jong-Myon Bae
- Jeju Center for Infection Control, Jeju, Korea.,Department of Preventive Medicine, Jeju National University School of Medicine, Jeju, Korea
| |
Collapse
|
18
|
Lu JY, Chen ZQ, Liu YH, Liu WH, Ma Y, Li TG, Zhang ZB, Yang ZC. Effect of meteorological factors on scarlet fever incidence in Guangzhou City, Southern China, 2006-2017. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 663:227-235. [PMID: 30711589 DOI: 10.1016/j.scitotenv.2019.01.318] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/19/2018] [Accepted: 01/24/2019] [Indexed: 06/09/2023]
Abstract
OBJECTIVE To explore the relationship between meteorological factors and scarlet fever incidence from 2006 to 2017 in Guangzhou, the largest subtropical city of Southern China, and assist public health prevention and control measures. METHODS Data for weekly scarlet fever incidence and meteorological variables from 2006 to 2017 in Guangzhou were collected from the National Notifiable Disease Report System (NNDRS) and the Guangzhou Meteorological Bureau (GZMB). Distributed lag nonlinear models (DLNMs) were conducted to estimate the effect of meteorological factors on weekly scarlet fever incidence in Guangzhou. RESULTS We observed nonlinear effects of temperature, relative humidity, and wind velocity. The risk was the highest when the weekly mean temperature was 31 °C during lag week 14, yielding a relative risk (RR) of 1.48 (95% CI: 1.01-2.17). When relative humidity was 43.5% during lag week 0, the RR was 1.49 (95% CI: 1.04-2.12); the highest RR (1.55, 95% CI: 1.20-1.99) was reached when relative humidity was 93.5% during lag week 20. When wind velocity was 4.4 m/s during lag week 13, the RR was highest at 3.41 (95% CI: 1.57-7.44). Positive correlations were observed among weekly temperature ranges and atmospheric pressure with scarlet fever incidence, while a negative correlation was detected with aggregate rainfall. The cumulative extreme effect of meteorological variables on scarlet fever incidence was statistically significant, except for the high effect of wind velocity. CONCLUSION Weekly mean temperature, relative humidity, and wind velocity had double-trough effects on scarlet fever incidence; high weekly temperature range, high atmospheric pressure, and low aggregate rainfall were risk factors for scarlet fever morbidity. Our findings provided preliminary, but fundamental, information that may be useful for a better understanding of epidemic trends of scarlet fever and for developing an early warning system. Laboratory surveillance for scarlet fever should be strengthened in the future.
Collapse
Affiliation(s)
- Jian-Yun Lu
- Department of Infectious Disease Control and Prevention, Guangzhou Center For Disease Control and Prevention, Baiyun District Qi De Road, Guangzhou, Guangdong Province 510440, China
| | - Zong-Qiu Chen
- Department of Infectious Disease Control and Prevention, Guangzhou Center For Disease Control and Prevention, Baiyun District Qi De Road, Guangzhou, Guangdong Province 510440, China
| | - Yan-Hui Liu
- Department of Infectious Disease Control and Prevention, Guangzhou Center For Disease Control and Prevention, Baiyun District Qi De Road, Guangzhou, Guangdong Province 510440, China
| | - Wen-Hui Liu
- Department of Infectious Disease Control and Prevention, Guangzhou Center For Disease Control and Prevention, Baiyun District Qi De Road, Guangzhou, Guangdong Province 510440, China
| | - Yu Ma
- Department of Infectious Disease Control and Prevention, Guangzhou Center For Disease Control and Prevention, Baiyun District Qi De Road, Guangzhou, Guangdong Province 510440, China
| | - Tie-Gang Li
- Department of Infectious Disease Control and Prevention, Guangzhou Center For Disease Control and Prevention, Baiyun District Qi De Road, Guangzhou, Guangdong Province 510440, China.
| | - Zhou-Bin Zhang
- Guangzhou Center For Disease Control and Prevention, Baiyun District Qi De Road, Guangzhou, Guangdong Province 510440, China
| | - Zhi-Cong Yang
- Guangzhou Center For Disease Control and Prevention, Baiyun District Qi De Road, Guangzhou, Guangdong Province 510440, China
| |
Collapse
|
19
|
Brockmann SO, Eichner L, Eichner M. Constantly high incidence of scarlet fever in Germany. THE LANCET. INFECTIOUS DISEASES 2019; 18:499-500. [PMID: 29695362 DOI: 10.1016/s1473-3099(18)30210-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 03/12/2018] [Indexed: 10/17/2022]
Affiliation(s)
- Stefan O Brockmann
- Department of Infection Control, Public Health Office Reutlingen, Reutlingen, Germany
| | - Linda Eichner
- Department of Infection Control, Public Health Office Reutlingen, Reutlingen, Germany
| | - Martin Eichner
- Institute of Clinical Epidemiology and Applied Biometry, University of Tubingen, 72076 Tubingen, Germany.
| |
Collapse
|
20
|
Chiang-Ni C, Shi YA, Lai CH, Chiu CH. Cytotoxicity and Survival Fitness of Invasive covS Mutant of Group A Streptococcus in Phagocytic Cells. Front Microbiol 2018; 9:2592. [PMID: 30425702 PMCID: PMC6218877 DOI: 10.3389/fmicb.2018.02592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 10/11/2018] [Indexed: 11/27/2022] Open
Abstract
Group A streptococci (GAS) with spontaneous mutations in the CovR/CovS regulatory system are more invasive and related to severe manifestations. GAS can replicate inside phagocytic cells; therefore, phagocytic cells could serve as the niche to select invasive covS mutants. Nonetheless, the encapsulated covS mutant is resistant to phagocytosis. The fate of intracellular covS mutant in phagocytic cells and whether the intracellular covS mutant contributes to invasive infections are unclear. In this study, capsule-deficient (cap-) strains were utilized to study how intracellular bacteria interacted with phagocytic cells. Results from the competitive infection model showed that the cap-covS mutant had better survival fitness than the cap- wild-type strain in the PMA-activated U937 cells. In addition, the cap-covS mutant caused more cell damages than the cap- wild-type strain and encapsulated covS mutant. Furthermore, treatments with infected cells with clindamycin to inhibit the intracellular bacteria growth was more effective to reduce bacterial toxicity than utilized penicillin to kill the extracellular bacteria. These results not only suggest that the covS mutant could be selected from the intracellular niche of phagocytic cells but also indicating that inactivating or killing intracellular GAS may be critical to prevent invasive infection.
Collapse
Affiliation(s)
- Chuan Chiang-Ni
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yong-An Shi
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chih-Ho Lai
- Department of Microbiology and Immunology, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Cheng-Hsun Chiu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.,Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.,Department of Pediatrics, Chang Gung Children's Hospital, Taoyuan, Taiwan
| |
Collapse
|
21
|
Zhang X, Liu YC. The resurgence of scarlet fever in China. THE LANCET. INFECTIOUS DISEASES 2018; 18:823-824. [PMID: 29858151 DOI: 10.1016/s1473-3099(18)30275-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 04/13/2018] [Indexed: 10/16/2022]
Affiliation(s)
- Xingyu Zhang
- Department of Surgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Yan-Cun Liu
- Department of Emergency Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China.
| |
Collapse
|
22
|
Liu Y, Chan TC, Yap LW, Luo Y, Xu W, Qin S, Zhao N, Yu Z, Geng X, Liu SL. Resurgence of scarlet fever in China: a 13-year population-based surveillance study. THE LANCET. INFECTIOUS DISEASES 2018; 18:903-912. [PMID: 29858148 PMCID: PMC7185785 DOI: 10.1016/s1473-3099(18)30231-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 03/09/2018] [Accepted: 03/27/2018] [Indexed: 12/25/2022]
Abstract
Background A re-emergence of scarlet fever has been noted in Hong Kong, South Korea, and England, UK, since 2008. China also had a sudden increase in the incidence of the disease in 2011. In this study, we aimed to assess the epidemiological changes before and after the upsurge. We also aimed to explore the reasons for the upsurge in disease in 2011, the epidemiological factors that contributed to it, and assess how these could be managed to prevent future epidemics. Methods In this observational study, we extracted the epidemiological data for all cases of scarlet fever between 2004 and 2016 in China from the Chinese Public Health Science Data Center, the official website of National Health Commission of the People's Republic of China, and the National Notifiable Infectious Disease Surveillance System. These data had been collected from 31 provinces and regions in China and included geographical, seasonal, and patient demographic information. We used descriptive statistical methods and joinpoint regression to examine the spatiotemporal patterns and annual percentage change in incidence of the upsurge of disease across China. Findings Between Jan 1, 2004, and Dec 31, 2016, 502 723 cases of scarlet fever, with ten fatalities, were reported in China, resulting in an annualised average incidence of 2·8807 per 100 000 people. The annual average incidence increased from 1·457 per 100 000 people in 2004 to 4·7638 per 100 000 people in 2011 (incidence rate ratio [IRR] 3·27, 95% CI 3·22–3·32; p<0·0001), peaking in 2015 (5·0092 per 100 000 people). The annual incidence after the 2011 upsurge of scarlet fever, between 2011 and 2016, was twice the average annual incidence reported between 2004 and 2010 (4·0125 vs 1·9105 per 100 000 people; IRR 2·07, 95% CI 2·06–2·09; p<0·0001). Most cases were distributed in the north, northeast, and northwest of the country. Semi-annual patterns were observed in May–June and November–December. The median age at onset of disease was 6 years, with the annual highest incidence observed in children aged 6 years (49·4675 per 100 000 people). The incidence among boys and men was 1·54 greater than that among girls and women before the upsurge, and 1·51 times greater after the upsurge (p<0·0001 for both). The median time from disease onset to reporting of the disease was shorter after the upsurge in disease than before (3 days vs 4 days; p=0·001). Interpretation To our knowledge, this is the largest epidemiological study of scarlet fever worldwide. The patterns of infection across the country were similar before and after the 2011 upsurge, but the incidence of disease was substantially higher after 2011. Prevention and control strategies being implemented in response to this threat include improving disease surveillance and emergency response systems. In particular, the school absenteeism and symptom monitoring and early-warning system will contribute to the early diagnosis and report of the scarlet fever. This approach will help combat scarlet fever and other childhood infectious diseases in China. Funding National Key R&D Plan of China Science and key epidemiological disciplines of Zhejiang Provincial Health of China.
Collapse
Affiliation(s)
- Yonghong Liu
- School of Engineering, Sun Yat-sen University, Guangzhou, Guangdong Province, China; Guangdong Provincial Key Laboratory of Intelligent Transport System, Guangzhou, Guangdong Province, China
| | - Ta-Chien Chan
- Research Center for Humanities and Social Sciences, Academia Sinica, Taipei, Taiwan
| | - Li-Wei Yap
- Research Center for Humanities and Social Sciences, Academia Sinica, Taipei, Taiwan
| | - Yinping Luo
- School of Engineering, Sun Yat-sen University, Guangzhou, Guangdong Province, China; Guangdong Provincial Key Laboratory of Intelligent Transport System, Guangzhou, Guangdong Province, China
| | - Weijia Xu
- School of Engineering, Sun Yat-sen University, Guangzhou, Guangdong Province, China; Guangdong Provincial Key Laboratory of Intelligent Transport System, Guangzhou, Guangdong Province, China
| | - Shuwen Qin
- Department of Infectious Diseases, Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, Zhejiang Province, China
| | - Na Zhao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zhao Yu
- Department of Infectious Diseases, Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, Zhejiang Province, China
| | - Xingyi Geng
- Emergency Offices, Jinan Centre for Disease Control and Prevention, Jinan, Shandong Province, China
| | - She-Lan Liu
- Department of Infectious Diseases, Zhejiang Provincial Centre for Disease Control and Prevention, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
23
|
Complete Genome Sequence of a Streptococcus pyogenes Serotype M12 Scarlet Fever Outbreak Isolate from China, Compiled Using Oxford Nanopore and Illumina Sequencing. GENOME ANNOUNCEMENTS 2018; 6:6/18/e00389-18. [PMID: 29724853 PMCID: PMC5940962 DOI: 10.1128/genomea.00389-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The incidence of scarlet fever cases remains high in China. Here, we report the complete genome sequence of a Streptococcus pyogenes isolate of serotype M12, which has been confirmed as the predominant serotype in recent outbreaks. Genome sequencing was achieved by a combination of Oxford Nanopore MinION and Illumina methodologies.
Collapse
|
24
|
Scarlet Fever Epidemic in China Caused by Streptococcus pyogenes Serotype M12: Epidemiologic and Molecular Analysis. EBioMedicine 2018; 28:128-135. [PMID: 29342444 PMCID: PMC5835554 DOI: 10.1016/j.ebiom.2018.01.010] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 01/10/2018] [Accepted: 01/10/2018] [Indexed: 12/31/2022] Open
Abstract
From 2011, Hong Kong and mainland China have witnessed a sharp increase in reported cases, with subsequent reports of epidemic scarlet fever in North Asia and the United Kingdom. Here we examine epidemiological data and investigate the genomic context of the predominantly serotype M12 Streptococcus pyogenes scarlet fever isolates from mainland China. Incident case data was obtained from the Chinese Nationwide Notifiable Infectious Diseases Reporting Information System. The relative risk of scarlet fever in recent outbreak years 2011–2016 was calculated using the median age-standardised incidence rate, compared to years 2003–2010 prior this outbreak. Whole genome sequencing was performed on 32 emm12 scarlet fever isolates and 13 emm12 non-scarlet fever isolates collected from different geographic regions of China, and compared with 203 published emm12 S. pyogenes genomes predominantly from scarlet fever outbreaks in Hong Kong (n = 134) and the United Kingdom (n = 63). We found during the outbreak period (2011–2016), the median age-standardised incidence in China was 4.14/100,000 (95% confidence interval (CI) 4.11-4.18), 2.62-fold higher (95% CI 2.57-2.66) than that of 1.58/100,000 (95% CI 1.56-1.61) during the baseline period prior to the outbreak (2003 − 2010). Highest incidence was reported for children 5 years of age (80.5/100,000). Streptococcal toxin encoding prophage φHKU.vir and φHKU.ssa in addition to the macrolide and tetracycline resistant ICE-emm12 and ICE-HKU397 elements were found amongst mainland China multi-clonal emm12 isolates suggesting a role in selection and expansion of scarlet fever lineages in China. Global dissemination of toxin encoded prophage has played a role in the expansion of scarlet fever emm12 clones. These findings emphasize the role of comprehensive surveillance approaches for monitoring of epidemic human disease. The study used all epidemiological data from 1950 to 2016, and describe increased incidence levels for the current outbreak. Using global emm12 scarlet fever isolate genome sequences, the multiclonal nature of the outbreak was confirmed. Global surveillance of GAS toxin and drug resistance mobile genes in the scarlet fever outbreak is necessary.
Our study provides a detailed report of scarlet fever epidemiology and genomic analysis for mainland China since the 2011 outbreak began. We also provide a comprehensive comparison of the genomic relationship of scarlet fever outbreak emm12 isolates from China, Hong Kong and the United Kingdom, countries experiencing an unparalleled re-emergence of scarlet fever. Our observations implicate an important role for GAS toxin and drug resistance related mobile genes in the outbreak and reveal different evolutionary patterns, and identify common themes relating to the acquisition of toxin carrying prophage elements. This work emphasizes the importance of comprehensive nationwide surveillance to track scarlet fever, GAS emm types, exotoxin-encoding prophage and antibiotic resistance genes in a global context.
Collapse
|
25
|
Scarlet fever makes a comeback. THE LANCET. INFECTIOUS DISEASES 2017; 18:128-129. [PMID: 29191627 DOI: 10.1016/s1473-3099(17)30694-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 10/12/2017] [Indexed: 11/24/2022]
|