1
|
Barua S, Rana EA, Prodhan MA, Akter SH, Gogoi-Tiwari J, Sarker S, Annandale H, Eagles D, Abraham S, Uddin JM. The Global Burden of Emerging and Re-Emerging Orbiviruses in Livestock: An Emphasis on Bluetongue Virus and Epizootic Hemorrhagic Disease Virus. Viruses 2024; 17:20. [PMID: 39861809 PMCID: PMC11768700 DOI: 10.3390/v17010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/23/2024] [Accepted: 12/25/2024] [Indexed: 01/27/2025] Open
Abstract
Bluetongue virus (BTV) and epizootic hemorrhagic disease virus (EHDV) are vector-borne orbiviruses that pose an emerging threat to livestock, including cattle and sheep. This review summarizes the global distribution, genetic diversity, and key factors driving their spread along with the existing knowledge gaps and recommendations to mitigate their impact. Both viruses cause hemorrhagic disease in susceptible ruminants and are commonly reported in tropical and subtropical regions including North America, Asia, Africa, Oceania, and some parts of Europe. The geographical distribution of these viruses, encompassing 27 BTV and 7 EHDV serotypes, has shifted, particularly with the recent invasion of BTV-3, 4, and 8 and EHDV-8 serotypes in Europe. Several factors contribute to the recent spread of these viruses such as the distribution of virulent strains by the movement of temperature-dependent Culicoides vectors into new areas due to rapid climate change, the reassortment of viral strains during mixed infections, and unrestricted global trade. These diseases cause significant economic impacts including morbidity, mortality, reduced production, high management costs, and the disruption of international trade. Effective prevention and control strategies are paramount and rely on vaccination, vector control using insecticides, and the destruction of breeding sites, husbandry practices including the isolation and quarantine of infected hosts, restriction of animal movement, prompt diagnosis and identification of circulating strains, and effective surveillance and monitoring plans such as the pre-export and post-import screening of semen used for artificial insemination. However, challenges remain with intercontinental virus spread, live vaccines, and the failure of inactivated vaccines to produce protective immunity against dissimilar strains. Significant knowledge gaps highlight the need for a better scientific understanding and a strategic plan to ensure healthy livestock and global food security.
Collapse
Affiliation(s)
- Shanta Barua
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Jakir Hossain Road, Khulsi, Chattogram 4225, Bangladesh; (S.B.); (E.A.R.)
| | - Eaftekhar Ahmed Rana
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Jakir Hossain Road, Khulsi, Chattogram 4225, Bangladesh; (S.B.); (E.A.R.)
- School of Veterinary Medicine, Murdoch University, Perth, WA 6150, Australia; (M.A.P.); (S.H.A.); (J.G.-T.); (H.A.)
| | - M. Asaduzzaman Prodhan
- School of Veterinary Medicine, Murdoch University, Perth, WA 6150, Australia; (M.A.P.); (S.H.A.); (J.G.-T.); (H.A.)
| | - Syeda Hasina Akter
- School of Veterinary Medicine, Murdoch University, Perth, WA 6150, Australia; (M.A.P.); (S.H.A.); (J.G.-T.); (H.A.)
| | - Jully Gogoi-Tiwari
- School of Veterinary Medicine, Murdoch University, Perth, WA 6150, Australia; (M.A.P.); (S.H.A.); (J.G.-T.); (H.A.)
| | - Subir Sarker
- Biomedical Sciences & Molecular Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4814, Australia;
- Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
| | - Henry Annandale
- School of Veterinary Medicine, Murdoch University, Perth, WA 6150, Australia; (M.A.P.); (S.H.A.); (J.G.-T.); (H.A.)
| | - Debbie Eagles
- Australian Animal Health Laboratory (AHL), Australian Centre for Disease Preparedness (ACDP), East Geelong, VIC 3219, Australia;
| | - Sam Abraham
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Perth, WA 6150, Australia;
| | - Jasim M. Uddin
- School of Veterinary Medicine, Murdoch University, Perth, WA 6150, Australia; (M.A.P.); (S.H.A.); (J.G.-T.); (H.A.)
- Centre for Biosecurity and One Health, Harry Butler Institute, Murdoch University, Perth, WA 6150, Australia;
| |
Collapse
|
2
|
Jiménez-Cabello L, Utrilla-Trigo S, Rodríguez-Sabando K, Carra-Valenzuela A, Illescas-Amo M, Calvo-Pinilla E, Ortego J. Vaccine candidates based on MVA viral vectors expressing VP2 or VP7 confer full protection against Epizootic hemorrhagic disease virus in IFNAR(-/-) mice. J Virol 2024; 98:e0168724. [PMID: 39508577 DOI: 10.1128/jvi.01687-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 11/15/2024] Open
Abstract
Epizootic hemorrhagic disease (EHD), caused by Epizootic hemorrhagic disease virus (EHDV), is an emerging and severe livestock disease. Recent incursion and distribution of EHDV in Europe have outlined the need for vaccine research against this viral disease. In this work, we report modified vaccinia virus Ankara (MVA)-vectored vaccines designed to express protein VP2 of EHDV-8 or protein VP7 of EHDV-2. Prime boost immunization of adult IFNAR(-/-) mice with the MVA-VP2 vaccine candidate induced high titers of EHDV-8-specific neutralizing antibodies (NAbs) and conferred full protection against homologous lethal challenge with EHDV-8. However, no heterologous protection was observed after lethal challenge with EHDV-6. In contrast, the MVA-VP7 vaccine candidate elicited strong cytotoxic CD8+ T-cell responses against VP7 and conferred complete protection against lethal challenge with either EHDV-8 or EHDV-6 in IFNAR(-/-) mice in the absence of NAbs, being the first multiserotype vaccine candidate against EHDV. Moreover, we expressed recombinant proteins VP2 and VP7 of EHDV in the baculovirus expression system, which were used to analyze the potential DIVA (differentiating infected from vaccinated animals) character of these vaccine candidates.IMPORTANCEEmergence and re-emergence of arthropod-borne viruses are major concerns for both human and animal health. The most recent example is the fast expansion of EHDV-8 through Europe. Besides, EHDV-8 relates with a high prevalence of pathologic cases in cattle populations. No vaccine is currently available in Europe, and vaccine research against this arboviral disease is negligible. In this work, we present novel DIVA vaccine candidates against EHDV, and most importantly, we identified the protein VP7 of EHDV as an antigen capable of inducing multiserotype protection, one of the major challenges in vaccine research against orbiviruses.
Collapse
Affiliation(s)
- Luis Jiménez-Cabello
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, Madrid, Spain
| | - Sergio Utrilla-Trigo
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, Madrid, Spain
| | - Karen Rodríguez-Sabando
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, Madrid, Spain
| | - Alejandro Carra-Valenzuela
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, Madrid, Spain
| | - Miguel Illescas-Amo
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, Madrid, Spain
| | - Eva Calvo-Pinilla
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, Madrid, Spain
| | - Javier Ortego
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, Madrid, Spain
| |
Collapse
|
3
|
Smith AC, Kuroki K, Ierardi RA, Delaney LE, Gull TB, Ogunbadewa AJ, Schultz LG. Causes of mortality in farmed white-tailed deer in the midwestern United States, 2004-2023. J Vet Diagn Invest 2024; 36:809-815. [PMID: 39185592 PMCID: PMC11529127 DOI: 10.1177/10406387241271416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024] Open
Abstract
Farmed cervids are of growing economic importance in the midwestern United States. Although diseases of wild and captive cervids have been examined in more northerly climates, little information exists on the health challenges of deer in the Midwest. We characterized and summarized the causes of mortality in farmed white-tailed deer (Odocoileus virginianus) submitted to the University of Missouri Veterinary Medical Diagnostic Laboratory (Columbia, MO, USA) over a 19-y period (2004-2023). Of 388 cases examined, 253 (65%) were carcasses submitted for autopsy, and 135 (35%) cases were tissue samples harvested by field veterinarians. Infectious disease was the most common cause of mortality (n = 335; 86.3%). Of infectious causes, primary pneumonia was most common (n = 140; 41.7%), followed by septicemia (n = 68; 20.1%), and primary enteritis (n = 64; 19.1%). Viruses were detected in 18% of pneumonia cases. The most common non-infectious diagnoses were emaciation and trauma (both 4 each; 1%). Thirteen animals (3.4%) died of unknown causes. Forty-nine percent of cases were juvenile deer <1-y-old. Most cases were received in the summer (212; 54.6%). Infectious diseases, particularly bacteria and viruses, pose a significant health challenge to farmed deer in the midwestern United States.
Collapse
Affiliation(s)
- Amanda C. Smith
- Veterinary Medical Diagnostic Laboratory, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Keiichi Kuroki
- Veterinary Medical Diagnostic Laboratory, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Rosalie A. Ierardi
- Veterinary Medical Diagnostic Laboratory, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Lauren E. Delaney
- Veterinary Medical Diagnostic Laboratory, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Tamara B. Gull
- Veterinary Medical Diagnostic Laboratory, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Anthony J. Ogunbadewa
- Veterinary Medical Diagnostic Laboratory, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| | - Loren G. Schultz
- Department of Medicine and Surgery, College of Veterinary Medicine, University of Missouri, Columbia, MO, USA
| |
Collapse
|
4
|
Paquette SJ, Czekay D, Manalaysay J, Furukawa-Stoffer T, Ambagala A, Vigil S, Shahhosseini N. Development of a Multiplex Real-Time PCR to Disambiguate Culicoides sonorensis within Culicoides variipennis Complex, the Proven Vector of Bluetongue and Epizootic Hemorrhagic Disease Viruses in North America. Curr Issues Mol Biol 2024; 46:9534-9554. [PMID: 39329918 PMCID: PMC11429534 DOI: 10.3390/cimb46090566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/26/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024] Open
Abstract
Species delimitation of Culicoides complex species can be challenging. Among species within the Culicoides variipennis complex, C. sonorensis is considered the primary vector of bluetongue virus (BTV) and epizootic hemorrhagic disease virus (EHDV) in North America. Morphological identification of C. sonorensis within the C. variipennis complex is laborious, time-consuming, and requires entomology expertise. Therefore, in this study we developed and validated a multiplex real-time PCR for rapid detection and differentiation of C. sonorensis from the two other main cryptic species (C. variipennis and C. occidentalis) within the C. variipennis complex. The assay targets the EF1α gene and has a built-in internal control targeting 18 S. The specificity and the sensitivity of the multiplex real-time PCR were evaluated using morphologically identified reference and field-collected specimens. The multiplex PCR was 100% specific when nucleic acid extracted from C. variipennis, sonorensis, and occidentalis specimens was tested. When nucleic acid extracted from pools of midges was tested, the multiplex PCR was able to detect all three Culicoides species with comparable sensitivity. The multiplex assay, however, failed to detect eight morphologically identified C. sonorensis specimens collected from Alberta in 2014. The EF1α gene sequences of these specimens formed a distinct phylogenetic cluster, amongst those from C. variipennis, sonorensis, and occidentalis, suggesting that they belong to a different species. We hypothesize that those specimens might be C. albertensis, the only other species remaining in the C. variipennis complex with known geographical distribution in North America. We believe that this highly sensitive and specific multiplex real-time PCR assay could be an effective tool for rapid detection and differentiation of C. sonorensis, the known vector of BTV and EHDV, in trap collections in future vector surveillance programs.
Collapse
Affiliation(s)
- Sarah-Jo Paquette
- Centre for Vector-Borne Diseases, National Centre for Animal Diseases, Canadian Food Inspection Agency, Lethbridge, AB T1J 3Z4, Canada
| | - Dominic Czekay
- Centre for Vector-Borne Diseases, National Centre for Animal Diseases, Canadian Food Inspection Agency, Lethbridge, AB T1J 3Z4, Canada
| | - Jessica Manalaysay
- Centre for Vector-Borne Diseases, National Centre for Animal Diseases, Canadian Food Inspection Agency, Lethbridge, AB T1J 3Z4, Canada
- Departments of Chemistry & Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Tara Furukawa-Stoffer
- Centre for Vector-Borne Diseases, National Centre for Animal Diseases, Canadian Food Inspection Agency, Lethbridge, AB T1J 3Z4, Canada
| | - Aruna Ambagala
- National Centre for Foreign Animal Diseases, Canadian Food Inspection Agency, Winnipeg, MB R3E 3M4, Canada
| | - Stacey Vigil
- Southeastern Cooperative Wildlife Disease Study, University of Georgia, Athens, GA 30602, USA
| | - Nariman Shahhosseini
- Centre for Vector-Borne Diseases, National Centre for Animal Diseases, Canadian Food Inspection Agency, Lethbridge, AB T1J 3Z4, Canada
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| |
Collapse
|
5
|
Jiménez-Cabello L, Utrilla-Trigo S, Benavides-Silván J, Anguita J, Calvo-Pinilla E, Ortego J. IFNAR(-/-) Mice Constitute a Suitable Animal Model for Epizootic Hemorrhagic Disease Virus Study and Vaccine Evaluation. Int J Biol Sci 2024; 20:3076-3093. [PMID: 38904031 PMCID: PMC11186350 DOI: 10.7150/ijbs.95275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/24/2024] [Indexed: 06/22/2024] Open
Abstract
Epizootic hemorrhagic disease (EHD), caused by Epizootic hemorrhagic disease virus (EHDV), is an emerging and severe livestock disease. Recent incursion and distribution of EHDV in Europe have outlined the emerging character of EHD. Despite its worldwide impact, numerous knowledge gaps exist. A range of inconveniences restricts utilization of natural hosts of EHDV. Here, we show that adult mice deficient in type I IFN receptor (IFNAR(-/-)) are highly susceptible to EHDV-6 and EHDV-8 infection when the virus is administered subcutaneously. Disease was characterized by ruffled hair, reluctance to move, dehydration and conjunctivitis, with viraemia detected from day 5 post-infection. A deeper characterization of EHDV-8 infection showed viral replication in the lung, liver, spleen, kidney, testis and ovaries. Importantly, increased expression levels of pro-inflammatory cytokines IL-1β, IL-6 and CXCL2 were observed in spleen after EHDV-8 infection. Furthermore, IFNAR(-/-) adult mice immunized with a EHDV-8 inactivated vaccine elicited neutralizing antibodies specific of EHDV-8 and full protection against challenge with a lethal dose of this virus. This study also explores the possibilities of this animal model for study of BTV and EHDV coinfection. In summary, the IFNAR(-/-) mouse model faithfully recapitulates EHD and can be applied for vaccine testing, which can facilitate progress in addressing the animal health challenge posed by this virus.
Collapse
Affiliation(s)
- Luis Jiménez-Cabello
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, 28130 Madrid, Spain
| | - Sergio Utrilla-Trigo
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, 28130 Madrid, Spain
| | - Julio Benavides-Silván
- Instituto de Ganadería de Montaña (CSIC-Universidad de León), 24346 Grulleros, León, Spain
| | - Juan Anguita
- Centro de Investigación Cooperativa en Biociencias (CIC bioGUNE), 48160 Derio, Spain
- Ikerbasque, Basque Foundation for Science, 48012 Bilbao, Spain
| | - Eva Calvo-Pinilla
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, 28130 Madrid, Spain
| | - Javier Ortego
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Valdeolmos, 28130 Madrid, Spain
| |
Collapse
|
6
|
Benn JS, Orange JP, Gomez JP, Dinh ETN, McGregor BL, Blosser EM, Burkett-Cadena ND, Wisely SM, Blackburn JK. Culicoides Midge Abundance across Years: Modeling Inter-Annual Variation for an Avian Feeder and a Candidate Vector of Hemorrhagic Diseases in Farmed Wildlife. Viruses 2024; 16:766. [PMID: 38793647 PMCID: PMC11125994 DOI: 10.3390/v16050766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/25/2024] [Accepted: 05/04/2024] [Indexed: 05/26/2024] Open
Abstract
(1) Background: Epizootic hemorrhagic disease virus (EHDV) and bluetongue virus (BTV) are orbiviruses that cause hemorrhagic disease (HD) with significant economic and population health impacts on domestic livestock and wildlife. In the United States, white-tailed deer (Odocoileus virginianus) are particularly susceptible to these viruses and are a frequent blood meal host for various species of Culicoides biting midges (Diptera: Ceratopogonidae) that transmit orbiviruses. The species of Culicoides that transmit EHDV and BTV vary between regions, and larval habitats can differ widely between vector species. Understanding how midges are distributed across landscapes can inform HD virus transmission risk on a local scale, allowing for improved animal management plans to avoid suspected high-risk areas or target these areas for insecticide control. (2) Methods: We used occupancy modeling to estimate the abundance of gravid (egg-laden) and parous (most likely to transmit the virus) females of two putative vector species, C. stellifer and C. venustus, and one species, C. haematopotus, that was not considered a putative vector. We developed a universal model to determine habitat preferences, then mapped a predicted weekly midge abundance during the HD transmission seasons in 2015 (July-October) and 2016 (May-October) in Florida. (3) Results: We found differences in habitat preferences and spatial distribution between the parous and gravid states for C. haematopotus and C. stellifer. Gravid midges preferred areas close to water on the border of well and poorly drained soil. They also preferred mixed bottomland hardwood habitats, whereas parous midges appeared less selective of habitat. (4) Conclusions: If C. stellifer is confirmed as an EHDV vector in this region, the distinct spatial and abundance patterns between species and physiological states suggest that the HD risk is non-random across the study area.
Collapse
Affiliation(s)
- Jamie S. Benn
- Spatial Epidemiology & Ecology Research Laboratory, Department of Geography, University of Florida, 3141 Turlington Hall, Gainesville, FL 32611, USA; (J.S.B.); (J.P.O.)
- Emerging Pathogens Institute, University of Florida, 2055 Mowry Road, Gainesville, FL 32611, USA
| | - Jeremy P. Orange
- Spatial Epidemiology & Ecology Research Laboratory, Department of Geography, University of Florida, 3141 Turlington Hall, Gainesville, FL 32611, USA; (J.S.B.); (J.P.O.)
- Emerging Pathogens Institute, University of Florida, 2055 Mowry Road, Gainesville, FL 32611, USA
| | - Juan Pablo Gomez
- Departamento de Química y Biología, Universidad del Norte, Barranquilla 080001, Colombia;
| | - Emily T. N. Dinh
- Michigan Department of Health and Human Services, 333 S Grand Ave, Lansing, MI 48933, USA;
| | - Bethany L. McGregor
- USDA-ARS-Center for Grain and Animal Health Research-Arthropod-Borne Animal Diseases Research Unit, 1515 College Ave, Manhatten, KS 66506, USA;
| | - Erik M. Blosser
- Sutter-Yuba Mosquito & Vector Control District, 701 Bogue Road, Yuba City, CA 95991, USA;
| | - Nathan D. Burkett-Cadena
- Florida Medical Entomology Laboratory, University of Florida, 200 9th St SE, Vero Beach, FL 32962, USA;
| | - Samantha M. Wisely
- Department of Wildlife Ecology and Conservation, 110 Newins-Ziegler Hall, Gainesville, FL 32611, USA;
| | - Jason K. Blackburn
- Spatial Epidemiology & Ecology Research Laboratory, Department of Geography, University of Florida, 3141 Turlington Hall, Gainesville, FL 32611, USA; (J.S.B.); (J.P.O.)
- Emerging Pathogens Institute, University of Florida, 2055 Mowry Road, Gainesville, FL 32611, USA
| |
Collapse
|
7
|
Golender N, Hoffmann B. The Molecular Epidemiology of Epizootic Hemorrhagic Disease Viruses Identified in Israel between 2015 and 2023. EPIDEMIOLOGIA 2024; 5:90-105. [PMID: 38390919 PMCID: PMC10885110 DOI: 10.3390/epidemiologia5010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/22/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024] Open
Abstract
Epizootic hemorrhagic disease (EHD) is an infectious, non-contagious viral disease seriously affecting cattle and some wild ruminants and has a worldwide distribution. All viruses can be subdivided into "Eastern" and "Western" topotypes according to geographic distribution via the phylogenetic analysis of internal genes. In Israel, during the last decade, three outbreaks were registered: caused by EHDV-6 in 2015, by EHDV-1 in 2016, and by EHDV-7 in 2020. Additionally, RNA of EHDV-8 was found in imported calves from Portugal in 2023. During the same period in other countries of the region, non-Israeli-like EHDV-6 and EHDV-8 were identified. Full genome sequencing, BLAST, and phylogenetic analyses of the locally and globally known EHDV genomes allowed us to presume the probable route and origin of these viruses detected in Israel. Thus, EHDV-6 has probably been circulating in the region for a long period when EHDV-1 and -8 appeared here for the last years, while their route of introduction into the new areas was probably natural; all of them belonged to the "Western" topotype. In contrast, EHDV-7 probably had the "Eastern", anthropogenic origin. Data from the study can facilitate the evaluation of the appearance or reappearance of EHDVs in the Mediterranean area and enhance the planning of prevention measures.
Collapse
Affiliation(s)
- Natalia Golender
- Department of Virology, Kimron Veterinary Institute, Bet Dagan 5025001, Israel
| | - Bernd Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
8
|
Ogola EO, Bastos ADS, Slothouwer I, Getugi C, Osalla J, Omoga DCA, Ondifu DO, Sang R, Torto B, Junglen S, Tchouassi DP. Viral diversity and blood-feeding patterns of Afrotropical Culicoides biting midges (Diptera: Ceratopogonidae). Front Microbiol 2024; 14:1325473. [PMID: 38249470 PMCID: PMC10797016 DOI: 10.3389/fmicb.2023.1325473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024] Open
Abstract
Introduction Culicoides biting midges (Diptera: Ceratopogonidae) are vectors of arboviral pathogens that primarily affect livestock represented by Schmallenberg virus (SBV), epizootic hemorrhagic disease virus (EHDV) and bluetongue virus (BTV). In Kenya, studies examining the bionomic features of Culicoides including species diversity, blood-feeding habits, and association with viruses are limited. Methods Adult Culicoides were surveyed using CDC light traps in two semi-arid ecologies, Baringo and Kajiado counties, in Kenya. Blood-fed specimens were analysed through polymerase chain reaction (PCR) and sequencing of cytochrome oxidase subunit 1 (cox1) barcoding region. Culicoides pools were screened for virus infection by generic RT-PCR and next-generation sequencing (NGS). Results Analysis of blood-fed specimens confirmed that midges had fed on cattle, goats, sheep, zebra, and birds. Cox1 barcoding of the sampled specimens revealed the presence of known vectors of BTV and epizootic hemorrhagic disease virus (EHDV) including species in the Imicola group (Culicoides imicola) and Schultzei group (C. enderleni, C. kingi, and C. chultzei). Culicoides leucostictus and a cryptic species distantly related to the Imicola group were also identified. Screening of generated pools (11,006 individuals assigned to 333 pools) by generic RT-PCR revealed presence of seven phylogenetically distinct viruses grouping in the genera Goukovirus, Pacuvirus and Orthobunyavirus. The viruses showed an overall minimum infection rate (MIR) of 7.0% (66/333, 95% confidence interval (CI) 5.5-8.9). In addition, full coding sequences of two new iflaviruses, tentatively named Oloisinyai_1 and Oloisinyai_2, were generated by next-generation sequencing (NGS) from individual homogenate of Culicoides pool. Conclusion The results indicate a high genetic diversity of viruses in Kenyan biting midges. Further insights into host-vector-virus interactions as well as investigations on the potential clinical significance of the detected viruses are warranted.
Collapse
Affiliation(s)
- Edwin O. Ogola
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Armanda D. S. Bastos
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Inga Slothouwer
- Institute of Virology, Charité Universitätsmedizin Berlin, Corporate Member of Free University Berlin, Humboldt-University Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Caroline Getugi
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Josephine Osalla
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Dorcus C. A. Omoga
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Dickens O. Ondifu
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Rosemary Sang
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Baldwyn Torto
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Sandra Junglen
- Institute of Virology, Charité Universitätsmedizin Berlin, Corporate Member of Free University Berlin, Humboldt-University Berlin, and Berlin Institute of Health, Berlin, Germany
| | - David P. Tchouassi
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| |
Collapse
|
9
|
Allen SE, Vigil SL, Furukawa-Stoffer T, Colucci N, Ambagala A, Pearl DL, Ruder MG, Jardine CM, Nemeth NM. Abundance and diversity of Culicoides Latreille (Diptera: Ceratopogonidae) in southern Ontario, Canada. Parasit Vectors 2023; 16:201. [PMID: 37316934 DOI: 10.1186/s13071-023-05799-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 05/02/2023] [Indexed: 06/16/2023] Open
Abstract
BACKGROUND Culicoides Latreille (Diptera: Ceratopogonidae) is a genus of hematophagous midges feeding on various vertebrate hosts and serving as a vector for numerous pathogens important to livestock and wildlife health. North American pathogens include bluetongue (BT) and epizootic hemorrhagic disease (EHD) viruses. Little is known about Culicoides spp. distribution and abundance and species composition in Ontario, Canada, despite bordering numerous U.S. states with documented Culicoides spp. and BT and EHD virus activity. We sought to characterize Culicoides spp. distribution and abundance and to investigate whether select meteorological and ecological risk factors influenced the abundance of Culicoides biguttatus, C. stellifer, and the subgenus Avaritia trapped throughout southern Ontario. METHODS From June to October of 2017 to 2018, CDC-type LED light suction traps were placed on twelve livestock-associated sites across southern Ontario. Culicoides spp. collected were morphologically identified to the species level when possible. Associations were examined using negative binomial regression among C. biguttatus, C. stellifer, and subgenus Avaritia abundance, and select factors: ambient temperature, rainfall, primary livestock species, latitude, and habitat type. RESULTS In total, 33,905 Culicoides spp. midges were collected, encompassing 14 species from seven subgenera and one species group. Culicoides sonorensis was collected from three sites during both years. Within Ontario, the northern trapping locations had a pattern of seasonal peak abundance in August (2017) and July (2018), and the southern locations had abundance peaks in June for both years. Culicoides biguttatus, C. stellifer, and subgenus Avaritia were significantly more abundant if ovine was the primary livestock species at trapping sites (compared to bovine). Culicoides stellifer and subgenus Avaritia were significantly more abundant at mid- to high-temperature ranges on trap days (i.e., 17.3-20.2 and 20.3-31.0 °C compared to 9.5-17.2 °C). Additionally, subgenus Avaritia were significantly more abundant if rainfall 4 weeks prior was between 2.7 and 20.1 mm compared to 0.0 mm and if rainfall 8 weeks prior was between 0.1 and 2.1 mm compared to 0.0 mm. CONCLUSIONS Results from our study describe Culicoides spp. distribution in southern Ontario, the potential for spread and maintenance of EHD and BT viruses, and concurrent health risks to livestock and wildlife in southern Ontario in reference to certain meteorological and ecological risk factors. We identified that Culicoides spp. are diverse in this province, and appear to be distinctly distributed spatially and temporally. The livestock species present, temperature, and rainfall appear to have an impact on the abundance of C. biguttatus, C. stellifer, and subgenus Avaritia trapped. These findings could help inform targeted surveillance, control measures, and the development of management guides for Culicoides spp. and EHD and BT viruses in southern Ontario, Canada.
Collapse
Affiliation(s)
- Samantha E Allen
- Wyoming Game and Fish Department, Veterinary Services, Laramie, USA.
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada.
- Canadian Wildlife Health Cooperative, Ontario Veterinary College, University of Guelph, Guelph, Canada.
| | - Stacey L Vigil
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, USA
| | - Tara Furukawa-Stoffer
- Canadian Food Inspection Agency, National Centre for Animal Diseases, Lethbridge, Canada
| | - Nicole Colucci
- Canadian Food Inspection Agency, National Centre for Animal Diseases, Lethbridge, Canada
| | - Aruna Ambagala
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, Canada
| | - David L Pearl
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Canada
| | - Mark G Ruder
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, USA
| | - Claire M Jardine
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Canada
- Canadian Wildlife Health Cooperative, Ontario Veterinary College, University of Guelph, Guelph, Canada
| | - Nicole M Nemeth
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, USA
- Department of Pathology, University of Georgia, Athens, USA
| |
Collapse
|
10
|
Jiménez-Cabello L, Utrilla-Trigo S, Lorenzo G, Ortego J, Calvo-Pinilla E. Epizootic Hemorrhagic Disease Virus: Current Knowledge and Emerging Perspectives. Microorganisms 2023; 11:1339. [PMID: 37317313 DOI: 10.3390/microorganisms11051339] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/27/2023] [Accepted: 05/16/2023] [Indexed: 06/16/2023] Open
Abstract
Epizootic Hemorrhagic Disease (EHD) of ruminants is a viral pathology that has significant welfare, social, and economic implications. The causative agent, epizootic hemorrhagic disease virus (EHDV), belongs to the Orbivirus genus and leads to significant regional disease outbreaks among livestock and wildlife in North America, Asia, Africa, and Oceania, causing significant morbidity and mortality. During the past decade, this viral disease has become a real threat for countries of the Mediterranean basin, with the recent occurrence of several important outbreaks in livestock. Moreover, the European Union registered the first cases of EHDV ever detected within its territory. Competent vectors involved in viral transmission, Culicoides midges, are expanding its distribution, conceivably due to global climate change. Therefore, livestock and wild ruminants around the globe are at risk for this serious disease. This review provides an overview of current knowledge about EHDV, including changes of distribution and virulence, an examination of different animal models of disease, and a discussion about potential treatments to control the disease.
Collapse
Affiliation(s)
- Luis Jiménez-Cabello
- Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), Valdeolmos, 28130 Madrid, Spain
| | - Sergio Utrilla-Trigo
- Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), Valdeolmos, 28130 Madrid, Spain
| | - Gema Lorenzo
- Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), Valdeolmos, 28130 Madrid, Spain
| | - Javier Ortego
- Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), Valdeolmos, 28130 Madrid, Spain
| | - Eva Calvo-Pinilla
- Centro de Investigación en Sanidad Animal (CISA-INIA/CSIC), Valdeolmos, 28130 Madrid, Spain
| |
Collapse
|
11
|
Xue F, Wang B, Guo DX, Jiao Y, Yin X, Cui WL, Zhou QQ, Yu FR, Lin YQ. Peptide Biomarkers Discovery for Seven Species of Deer Antler Using LC-MS/MS and Label-Free Approach. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27154756. [PMID: 35897939 PMCID: PMC9331363 DOI: 10.3390/molecules27154756] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022]
Abstract
Deer antler is a globally widely used precious natural medicine and the material of deer horn gelatin. However, identification of deer antler species based on traditional approaches are problematic because of their similarity in appearance and physical-chemical properties. In this study, we performed a comprehensive antler peptidome analysis using a label-free approach: nano LC-Orbitrap MS was applied to discover peptide biomarkers in deer adult beta-globin (HBBA), and HPLC-Triple Quadrupole MS was used to verify their specificity. Nineteen peptide biomarkers were found, on which foundation a strategy for antlers and a strategy for antler mixtures such as flakes or powder are provided to identify seven species of deer antler including Eurasian elk (Alces alces), reindeer (Rangifer tarandus), white-tailed deer (Odocoileus viginianus), white-lipped deer (Przewalskium albirostris), fallow deer (Dama dama), sika deer (Cervus nippon), and red deer (Cervus elaphus) simultaneously. It is worth noting that our search found that the HBBA gene of sika deer, red deer, and North American wapiti (Cervus canadensis) in China may have undergone severe genetic drifts.
Collapse
|
12
|
Clarke LL, Mead DG, Ruder MG, Howerth EW, Stallknecht D. North American Arboviruses and White-Tailed Deer ( Odocoileus virginianus): Associated Diseases and Role in Transmission. Vector Borne Zoonotic Dis 2022; 22:425-442. [PMID: 35867036 DOI: 10.1089/vbz.2022.0005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Arboviral disease is of increasing concern to human and animal health professionals as emerging and re-emerging arboviruses are more frequently recognized. Wildlife species are known to play a role in the transmission and maintenance of arboviruses and infections can result in morbidity and mortality in wildlife hosts. Materials and Methods: In this review, we detail existing evidence of white-tailed deer (Odocoileus virginianus) as an important host to a diverse collection of arboviruses and evaluate the utility of this species as a resource to better understand the epidemiology of related viral diseases. Results: Relevant veterinary and zoonotic viral pathogens endemic to North America include epizootic hemorrhagic disease virus, bluetongue virus, orthobunyaviruses, vesicular stomatitis virus, Eastern equine encephalitis virus, West Nile virus, and Powassan virus. Exotic viral pathogens that may infect white-tailed deer are also identified with an emphasis on zoonotic disease risks. The utility of this species is attributed to the high degree of contact with humans and domestic livestock and evidence of preferential feeding by various insect vectors. Conclusions: There is mounting evidence that white-tailed deer are a useful, widely available source of information regarding arboviral circulation, and that surveillance and monitoring of deer populations would be of value to the understanding of certain viral transmission dynamics, with implications for improving human and domestic animal health.
Collapse
Affiliation(s)
- Lorelei L Clarke
- Wisconsin Veterinary Diagnostic Laboratory, Madison, Wisconsin, USA
| | - Daniel G Mead
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Mark G Ruder
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - Elizabeth W Howerth
- Department of Pathology, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| | - David Stallknecht
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
13
|
Allen SE, Vigil SL, Jardine CM, Furukawa-Stoffer T, Colucci N, Ambagala A, Ruder MG, Nemeth NM. New Distribution Records of Biting Midges of the Genus Culicoides (Diptera: Ceratopogonidae) Latreille, Culicoides bergi and Culicoides baueri, in Southern Ontario, Canada. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:1467-1472. [PMID: 35468207 DOI: 10.1093/jme/tjac047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Some species of Culicoides Latreille (Diptera: Ceratopogonidae) can be pests as well as pathogen vectors, but data on their distribution in Ontario, Canada, are sparse. Collecting this baseline data is important given ongoing, accelerated alterations in global climate patterns that may favor the establishment of some species in northern latitudes. Culicoides spp. were surveyed using UV light traps over two seasons in 2017 and 2018 at livestock farms in southern Ontario, Canada. Two Culicoides spp. not previously recorded in Canada were identified, C. bergi and C. baueri, representing new country and provincial records. Unlike some congenerics, these two species are not currently recognized as vectors of pathogens that pose a health risk to humans, livestock or wildlife in North America. However, the possibility that these Culicoides species may have recently expanded their geographic range, potentially in association with climate and/or landscape changes, warrants ongoing attention and research. Furthermore, our results provoke the question of the potential undocumented diversity of Culicoides spp. in Ontario and other parts of Canada, and whether other Culicoides spp. may be undergoing range expansion. The current and future distributions of Culicoides spp., and other potential vectors of human, agricultural, and wildlife health significance, are important to identify for proper disease risk assessment, mitigation, and management.
Collapse
Affiliation(s)
- S E Allen
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, 419 Gordon St, Guelph N1G 2W1, Canada
- Canadian Wildlife Health Cooperative, Ontario Veterinary College, University of Guelph, 419 Gordon Street, Guelph N1G 2W1, Canada
| | - S L Vigil
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, 589 D. W. Brooks Drive, Athens, GA 30602, USA
| | - C M Jardine
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, 419 Gordon St, Guelph N1G 2W1, Canada
- Canadian Wildlife Health Cooperative, Ontario Veterinary College, University of Guelph, 419 Gordon Street, Guelph N1G 2W1, Canada
| | - T Furukawa-Stoffer
- Canadian Food Inspection Agency, National Centre for Animal Diseases, 225090 Township Road 9-1, Lethbridge, AB T1J 0P3, Canada
| | - N Colucci
- Canadian Food Inspection Agency, National Centre for Animal Diseases, 225090 Township Road 9-1, Lethbridge, AB T1J 0P3, Canada
| | - A Ambagala
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, 1015 Arlington St, Winnipeg, MB R3E 3P6, Canada
| | - M G Ruder
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, 589 D. W. Brooks Drive, Athens, GA 30602, USA
| | - N M Nemeth
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, 589 D. W. Brooks Drive, Athens, GA 30602, USA
- Department of Pathology, University of Georgia, 501 D. W. Brooks Drive, Athens, GA 30602, USA
| |
Collapse
|
14
|
Duan Y, Yang Z, Zhu P, Xiao L, Li Z, Li Z, Li L, Zhu J. A serologic investigation of epizootic hemorrhagic disease virus in China between 2014 and 2019. Virol Sin 2022; 37:513-520. [PMID: 35718300 PMCID: PMC9437609 DOI: 10.1016/j.virs.2022.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 06/13/2022] [Indexed: 11/15/2022] Open
Abstract
Epizootic hemorrhagic disease virus (EHDV) is a member of the genus Orbivirus, family Sedoreoviridae. It was firstly recognized in 1955 to cause a highly fatal disease of wild white-tailed deer in America. So far, EHDV was detected and isolated in many wild or domestic ruminants, and widely distributed all over the world. Although the domestic cattle and sheep infected by EHDV were usually asymptomatic or subclinical, several outbreaks of epizootic hemorrhagic disease (EHD) in deer and cattle had been reported. Many EHDV strains were isolated and sequenced in last two decades in China, which promoted a general serologic investigation of EHDV in China. In this study, 18,122 sera were collected from asymptomatic or subclinical domestic ruminants (cattle, cow, yaks, sheep, goats, and deer) in 116 regions belonging to 15 provinces in China. All the sera were tested by EHDV C-ELISA, and the results were obtained by big data analysis. EHDV infections were detected in the 14 of 15 provinces, and only Tibet (average altitude ≥ 4000 m) which was the highest province in China was free of EHDV. The numbers of seropositive collections in both bovine and goat/sheep were in an inverse proportion to the latitude. However, the seropositive rates in bovine were ranged from 0% to 100%, while the seropositive rates in goat/sheep were no more than 50%. The results suggested that bovine was obviously more susceptive for EHDV infection than goat and sheep, therefore might be a major reservoir of EHDV in China. The prevalence of EHDV was consistent with the distribution of Culicoides which were known as the sole insect vectors of EHDV. In particular, the seropositive rates of EHDV were very high in the southern provinces, which required the enhanced surveillance in the future. This is a big data analysis. This is the first English report for EHDV prevalence in multiple provinces in China. The samples included in this study cover 15 provinces and 6 years.
Collapse
Affiliation(s)
- Yingliang Duan
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, 650000, China
| | - Zhenxing Yang
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, 650000, China
| | - Pei Zhu
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, 650000, China
| | - Lei Xiao
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, 650000, China
| | - Zhanhong Li
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, 650000, China
| | - Zhuoran Li
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, 650000, China
| | - Le Li
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, 650000, China
| | - Jianbo Zhu
- Yunnan Tropical and Subtropical Animal Virus Diseases Laboratory, Yunnan Animal Science and Veterinary Institute, Kunming, 650000, China.
| |
Collapse
|
15
|
Dorak SJ, Varga C, Ruder MG, Gronemeyer P, Rivera NA, Dufford DR, Skinner DJ, Roca AL, Novakofski J, Mateus-Pinilla NE. Spatial epidemiology of hemorrhagic disease in Illinois wild white-tailed deer. Sci Rep 2022; 12:6888. [PMID: 35477968 PMCID: PMC9046210 DOI: 10.1038/s41598-022-10694-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 04/05/2022] [Indexed: 11/08/2022] Open
Abstract
Epizootic hemorrhagic disease (EHD) and bluetongue (BT) are vector-borne viral diseases that affect wild and domestic ruminants. Clinical signs of EHD and BT are similar; thus, the syndrome is referred to as hemorrhagic disease (HD). Syndromic surveillance and virus detection in North America reveal a northern expansion of HD. High mortalities at northern latitudes suggest recent incursions of HD viruses into northern geographic areas. We evaluated the occurrence of HD in wild Illinois white-tailed deer from 1982 to 2019. Our retrospective space-time analysis identified high-rate clusters of HD cases from 2006 to 2019. The pattern of northward expansion indicates changes in virus-host-vector interactions. Serological evidence from harvested deer revealed prior infection with BTV. However, BTV was not detected from virus isolation in dead deer sampled during outbreaks. Our findings suggest the value of capturing the precise geographic location of outbreaks, the importance of virus isolation to confirm the cause of an outbreak, and the importance of expanding HD surveillance to hunter-harvested wild white-tailed deer. Similarly, it assists in predicting future outbreaks, allowing for targeted disease and vector surveillance, helping wildlife agencies communicate with the public the cause of mortality events and viral hemorrhagic disease outcomes at local and regional scales.
Collapse
Affiliation(s)
- Sheena J Dorak
- Illinois Natural History Survey - Prairie Research Institute, University of Illinois Urbana-Champaign, 1816 S. Oak Street, Champaign, IL, 61820, USA.
| | - Csaba Varga
- Department of Pathobiology, University of Illinois Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL, 61802, USA
| | - Mark G Ruder
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, University of Georgia, Athens, GA, 30602, USA
| | - Peg Gronemeyer
- Illinois Natural History Survey - Prairie Research Institute, University of Illinois Urbana-Champaign, 1816 S. Oak Street, Champaign, IL, 61820, USA
| | - Nelda A Rivera
- Illinois Natural History Survey - Prairie Research Institute, University of Illinois Urbana-Champaign, 1816 S. Oak Street, Champaign, IL, 61820, USA
| | - Douglas R Dufford
- Illinois Department of Natural Resources, One Natural Resources Way, Springfield, IL, 62702, USA
| | - Daniel J Skinner
- Illinois Department of Natural Resources, One Natural Resources Way, Springfield, IL, 62702, USA
| | - Alfred L Roca
- Department of Animal Sciences, University of Illinois Urbana-Champaign, 1207 West Gregory Drive, Urbana, IL, 61801, USA
| | - Jan Novakofski
- Illinois Natural History Survey - Prairie Research Institute, University of Illinois Urbana-Champaign, 1816 S. Oak Street, Champaign, IL, 61820, USA
- Department of Animal Sciences, University of Illinois Urbana-Champaign, 1207 West Gregory Drive, Urbana, IL, 61801, USA
| | - Nohra E Mateus-Pinilla
- Illinois Natural History Survey - Prairie Research Institute, University of Illinois Urbana-Champaign, 1816 S. Oak Street, Champaign, IL, 61820, USA.
- Department of Pathobiology, University of Illinois Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL, 61802, USA.
- Department of Animal Sciences, University of Illinois Urbana-Champaign, 1207 West Gregory Drive, Urbana, IL, 61801, USA.
| |
Collapse
|
16
|
Species delimitation and mitonuclear discordance within a species complex of biting midges. Sci Rep 2022; 12:1730. [PMID: 35110675 PMCID: PMC8810881 DOI: 10.1038/s41598-022-05856-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 01/17/2022] [Indexed: 12/11/2022] Open
Abstract
The inability to distinguish between species can be a serious problem in groups responsible for pathogen transmission. Culicoides biting midges transmit many pathogenic agents infecting wildlife and livestock. In North America, the C. variipennis species complex contains three currently recognized species, only one of which is a known vector, but limited species-specific characters have hindered vector surveillance. Here, genomic data were used to investigate population structure and genetic differentiation within this species complex. Single nucleotide polymorphism data were generated for 206 individuals originating from 17 locations throughout the United States and Canada. Clustering analyses suggest the occurrence of two additional cryptic species within this complex. All five species were significantly differentiated in both sympatry and allopatry. Evidence of hybridization was detected in three different species pairings indicating incomplete reproductive isolation. Additionally, COI sequences were used to identify the hybrid parentage of these individuals, which illuminated discordance between the divergence of the mitochondrial and nuclear datasets.
Collapse
|
17
|
Perspectives on the Changing Landscape of Epizootic Hemorrhagic Disease Virus Control. Viruses 2021; 13:v13112268. [PMID: 34835074 PMCID: PMC8618044 DOI: 10.3390/v13112268] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/23/2021] [Accepted: 10/27/2021] [Indexed: 12/28/2022] Open
Abstract
Epizootic hemorrhagic disease (EHD) is an insect-transmitted viral disease of wild and domestic ruminants. It was first described following a 1955 epizootic in North American white-tailed deer (Odocoileus virginianus), a species which is highly susceptible to the causative agent of EHD, epizootic hemorrhagic disease virus (EHDV). EHDV has been detected globally across tropical and temperate regions, largely corresponding to the presence of Culicoides spp. biting midges which transmit the virus between ruminant hosts. It regularly causes high morbidity and mortality in wild and captive deer populations in endemic areas during epizootics. Although cattle historically have been less susceptible to EHDV, reports of clinical disease in cattle have increased in the past two decades. There is a pressing need to identify new methods to prevent and mitigate outbreaks and reduce the considerable impacts of EHDV on livestock and wildlife. This review discusses recent research advancements towards the control of EHDV, including the development of new investigative tools and progress in basic and applied research focused on virus detection, disease mitigation, and vector control. The potential impacts and implications of these advancements on EHD management are also discussed.
Collapse
|
18
|
Tomaszewski E, Jennings M, Munk B, Botta R, Lewison R. Landscape Seroprevalence of Three Hemorrhagic Disease-Causing Viruses in a Wild Cervid. ECOHEALTH 2021; 18:182-193. [PMID: 34515899 DOI: 10.1007/s10393-021-01546-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 05/02/2021] [Accepted: 05/14/2021] [Indexed: 06/13/2023]
Abstract
Disease plays a major role in shaping wildlife populations worldwide, and changes in landscape conditions can significantly influence risk of pathogen exposure, a threat to vulnerable wild species. Three viruses that cause hemorrhagic disease affect cervid populations in the USA (Odocoileus hemionus adenovirus, bluetongue virus, and epizootic hemorrhagic disease virus), but little is known of their distribution and prevalence in wild populations. We explored the distribution and co-occurrence of seroprevalence of these three pathogens in southern mule deer (Odocoileus hemionus fuliginatus), a subspecies of conservation concern and a harvested species native to southern California, to evaluate the distribution of exposure to these pathogens relative to landscape attributes. We found that habitat type, level of development, and proximity to livestock may affect hemorrhagic disease seroprevalence in southern mule deer. Continued monitoring of hemorrhagic disease-causing viruses in areas where deer are in proximity to cattle and human development is needed to better understand the implications of future outbreaks in wild populations and to identify opportunities to mitigate disease impacts in southern mule deer and other cervid species.
Collapse
Affiliation(s)
- Emma Tomaszewski
- San Diego State University, 5500 Campanile Dr., San Diego, CA, 92182, USA.
- California Department of Fish and Wildlife, 1416 9th St., 12th Floor, Sacramento, CA, 95814, USA.
| | - Megan Jennings
- San Diego State University, 5500 Campanile Dr., San Diego, CA, 92182, USA
| | - Brandon Munk
- California Department of Fish and Wildlife, 1416 9th St., 12th Floor, Sacramento, CA, 95814, USA
| | - Randy Botta
- California Department of Fish and Wildlife, 1416 9th St., 12th Floor, Sacramento, CA, 95814, USA
| | - Rebecca Lewison
- San Diego State University, 5500 Campanile Dr., San Diego, CA, 92182, USA
| |
Collapse
|
19
|
de Beer CJ, Boikanyo SNB, Venter GJ. Assessment of the Hemotek® system for the in vitro feeding of field-collected Culicoides imicola (Diptera: Ceratopogonidae) in South Africa. MEDICAL AND VETERINARY ENTOMOLOGY 2021; 35:177-186. [PMID: 32990991 DOI: 10.1111/mve.12484] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/27/2020] [Accepted: 09/04/2020] [Indexed: 06/11/2023]
Abstract
The optimising and standardisation of in vitro blood feeding protocols for field-collected Culicoides species (Diptera: Ceratopogonidae) will be of essence for the comparison of the vector competencies of various populations of viruses of veterinary importance and the establishment of laboratory colonies of putative vector species. A custom-made feeding chamber to accommodate the small size of Culicoides imicola Kieffer was designed for the commercially available Hemotek® system and compared to existing membrane and cotton pledge feeding methods. High feeding rates coupled to higher mean blood meal volume than that of the existing OVI device indicated that the Hemotek system will be suitable for the feeding of field-collected Culicoides. The Hemotek system was subsequently used to identify factors that may affect feeding success in the laboratory. Evaluated factors were the source (host) and temperature of the blood meal, time of the day of feeding, the position of the blood reservoir in relation to the midges and exposure time to the blood. While only feeding orientation and the temperature of the blood source seems to significantly affect the feeding rate, all the factors did influence the volume of blood consumed.
Collapse
Affiliation(s)
- C J de Beer
- Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Insect Pest Control Laboratory, Vienna, Austria
- Epidemiology, Vectors and Parasites, Agricultural Research Council-Onderstepoort Veterinary Research, Pretoria, South Africa
| | - S N B Boikanyo
- Epidemiology, Vectors and Parasites, Agricultural Research Council-Onderstepoort Veterinary Research, Pretoria, South Africa
| | - G J Venter
- Epidemiology, Vectors and Parasites, Agricultural Research Council-Onderstepoort Veterinary Research, Pretoria, South Africa
- Department of Veterinary Tropical Diseases, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
20
|
Epizootic Hemorrhagic Disease Virus and Bluetongue Virus Seroprevalence in Wild White-Tailed Deer (Odocoileus virginianus) in Florida, USA. J Wildl Dis 2021; 56:928-932. [PMID: 32544030 DOI: 10.7589/2019-10-263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/09/2020] [Indexed: 11/20/2022]
Abstract
A wild population of white-tailed deer (Odocoileus virginianus) was surveyed for evidence of past or current epizootic hemorrhagic disease virus (EHDV) and current bluetongue virus (BTV) infections. We collected 121 blood samples from hunter-harvested or live-captured deer from two state-managed properties in northwest Florida, US; live captures were in support of a movement ecology study. Blood samples were tested for antibodies against titers to three EHDV serotypes (EHDV-1, EHDV-2, and EHDV-6), and multiplex quantitative reverse transcription PCR was used to identify the presence of EHDV or BTV viral RNA. Of these samples, 81% (98/121) tested seropositive for at least one of three serotypes of EHDV. Of those testing seropositive, 33% (40/121) contained antibodies for two serotypes, and 19% (24/121) contained antibodies for all three EHDV serotypes. Furthermore, results of generalized linear models indicated that the probability of infection by EHDV serotypes 1 and 6 increased with an animal's age. Our findings indicate that seroprevalence may be high for multiple serotypes in regions where these orbiviruses are endemic. These results could prove useful for managing disease risk in naïve deer populations.
Collapse
|
21
|
A RETROSPECTIVE SUMMARY OF CERVID MORBIDITY AND MORTALITY IN ONTARIO AND NUNAVUT REGIONS OF CANADA (1991-2017). J Wildl Dis 2021; 56:884-895. [PMID: 32348201 DOI: 10.7589/jwd-d-19-00018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/18/2020] [Indexed: 11/20/2022]
Abstract
Free-ranging cervids in Canada face diverse threats such as climate change, human population expansion, and the northward spread of vector-borne pathogens. However, we currently have a limited understanding of the impacts of these health challenges in Ontario cervids. Our objective was to identify and characterize causes of morbidity and mortality in free-ranging cervids submitted to the Ontario and Nunavut node of the Canadian Wildlife Health Cooperative (CWHC) over a 27-yr period (1991 to 2017). Submissions included carcasses submitted for full postmortem examination (gross and histopathology; n=196) and field-collected tissues (n=384). Ancillary tests were performed on a case-by-case basis. Univariable logistic regression was used to test for associations between select causes of morbidity and mortality, and factors such as sex, age, and season. Four cervid species were examined: white-tailed deer (Odocoileus virginianus; n=211), moose (Alces alces; n=140), elk (Cervus canadensis; n=136), and caribou (Rangifer tarandus caribou; n=93). Noninfectious disease was the most common general cause of morbidity and mortality (38.1%; 221/580) and was most commonly attributed to trauma (49.7%; 110/221). Deaths attributed to infectious diseases (34.3%; 199/580) were most often bacterial in etiology (45.7%; 91/199). The most common primary infectious disease diagnosed in caribou was digital limb infection, and moose were most commonly diagnosed with parasitic causes, including meningeal worm (Parelaphostrongylus tenuis) and winter tick (Dermacentor albipictus). Chronic wasting disease was not diagnosed among cervids tested during the study period, consistent with the previous lack of detection of the disease in Ontario. These results reveal that anthropogenic, infectious, and environmentally associated causes of morbidity and mortality are commonly diagnosed in cervids submitted to the CWHC Ontario and Nunavut regions, and represent potential population threats that should continue to be monitored.
Collapse
|
22
|
A Duplex Fluorescent Microsphere Immunoassay for Detection of Bluetongue and Epizootic Hemorrhagic Disease Virus Antibodies in Cattle Sera. Viruses 2021; 13:v13040682. [PMID: 33921013 PMCID: PMC8071417 DOI: 10.3390/v13040682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/10/2021] [Accepted: 04/14/2021] [Indexed: 01/19/2023] Open
Abstract
Bluetongue virus (BTV) causes internationally reportable hemorrhagic disease in cattle, sheep, and white-tailed deer. The closely related, and often co-circulating, epizootic hemorrhagic disease virus causes a clinically similar devastating disease in white-tailed deer, with increasing levels of disease in cattle in the past 10 years. Transmitted by Culicoides biting midges, together, they constitute constant disease threats to the livelihood of livestock owners. In cattle, serious economic impacts result from decreased animal production, but most significantly from trade regulations. For effective disease surveillance and accurate trade regulation implementation, rapid, sensitive assays that can detect exposure of cattle to BTV and/or EHDV are needed. We describe the development and validation of a duplex fluorescent microsphere immunoassay (FMIA) to simultaneously detect and differentiate antibodies to BTV and EHDV in a single bovine serum sample. Performance of the duplex FMIA for detection and differentiation of BTV and EHDV serogroup antibodies was comparable, with higher sensitivity than commercially available single-plex competitive enzyme-linked immunosorbent assays (cELISA) for detection of each virus antibody separately. The FMIA adds to the currently available diagnostic tools for hemorrhagic orbiviral diseases in cattle as a sensitive, specific assay, with the benefits of serogroup differentiation in a single serum sample, and multiplexing flexibility in a high-throughput platform.
Collapse
|
23
|
Inter-annual home range fidelity of wild and ranched white-tailed deer in Florida: implications for epizootic hemorrhagic disease virus and bluetongue virus intervention. EUR J WILDLIFE RES 2021. [DOI: 10.1007/s10344-020-01448-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
24
|
Allen SE, Jardine CM, Hooper-McGrevy K, Ambagala A, Bosco-Lauth AM, Kunkel MR, Mead DG, Nituch L, Ruder MG, Nemeth NM. Serologic Evidence of Arthropod-Borne Virus Infections in Wild and Captive Ruminants in Ontario, Canada. Am J Trop Med Hyg 2020; 103:2100-2107. [PMID: 32815506 DOI: 10.4269/ajtmh.20-0539] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Arthropod-borne viruses (arboviruses) are globally widespread, and their transmission cycles typically involve numerous vertebrate species. Serologic testing of animal hosts can provide a routine surveillance approach to monitoring animal disease systems, can provide a surveillance alternative to arthropod testing and human case reports, and may augment knowledge of epizootiology. Wild and captive ruminants represent good candidate sentinels to track geographic distribution and prevalence of select arboviruses. They often are geographically widespread and abundant, inhabit areas shared by humans and domestic animals, and are readily fed on by various hematophagous arthropod vectors. Ontario, Canada, is home to high densities of coexisting humans, livestock, and wild cervids, as well as growing numbers of arthropod vectors because of the effects of climate change. We collected blood samples from 349 livestock (cattle/sheep) and 217 cervids (wild/farmed/zoo) in Ontario (2016-2019) to assess for antibodies to zoonotic and agriculturally important arboviruses. Livestock sera were tested for antibodies to bluetongue virus (BTV) and epizootic hemorrhagic disease virus (EHDV). Sera from cervids were tested for antibodies to BTV, EHDV, West Nile virus (WNV), eastern equine encephalitis virus (EEEV), Powassan virus (POWV), and heartland virus (HRTV). Fifteen (9.0%) cattle were seropositive for EHDV-serotype 2. Nine (4.2%) cervids were seropositive for arboviruses; three confirmed as WNV, three as EEEV, and one as POWV. All animals were seronegative for BTV and HRTV. These results reveal low seroprevalence of important agricultural, wildlife, and zoonotic pathogens and underline the need for continued surveillance in this and other regions in the face of changing environmental conditions.
Collapse
Affiliation(s)
- Samantha E Allen
- Department of Pathobiology, University of Guelph, Guelph, Canada
| | - Claire M Jardine
- Canadian Wildlife Health Cooperative, University of Guelph, Guelph, Canada.,Department of Pathobiology, University of Guelph, Guelph, Canada
| | - Kathleen Hooper-McGrevy
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, Canada
| | - Aruna Ambagala
- Canadian Food Inspection Agency, National Centre for Foreign Animal Disease, Winnipeg, Canada
| | - Angela M Bosco-Lauth
- Department of Biomedical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Melanie R Kunkel
- Southeastern Cooperative Wildlife Disease Study, University of Georgia, Athens, Georgia
| | - Daniel G Mead
- Southeastern Cooperative Wildlife Disease Study, University of Georgia, Athens, Georgia
| | - Larissa Nituch
- Ministry of Natural Resources and Forestry, Peterborough, Canada
| | - Mark G Ruder
- Southeastern Cooperative Wildlife Disease Study, University of Georgia, Athens, Georgia
| | - Nicole M Nemeth
- Southeastern Cooperative Wildlife Disease Study, University of Georgia, Athens, Georgia
| |
Collapse
|
25
|
Christensen SA, Ruder MG, Williams DM, Porter WF, Stallknecht DE. The role of drought as a determinant of hemorrhagic disease in the eastern United States. GLOBAL CHANGE BIOLOGY 2020; 26:3799-3808. [PMID: 32227543 DOI: 10.1111/gcb.15095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 02/20/2020] [Indexed: 06/10/2023]
Abstract
Bluetongue virus and epizootic hemorrhagic disease (HD) virus are globally distributed, vector-borne viruses that infect and cause disease in domestic and wild ruminant species. The forces driving increases in resulting HD may be linked to weather conditions and increasing severity has been noted in northerly latitudes. We evaluated the role of drought severity in both space and time on changes in HD reports across the eastern United States for a recent 15 year period. The objectives of this study were to: (a) develop a spatiotemporal model to evaluate if drought severity explains changing patterns of HD presence; and (b) determine whether this potential risk factor varies in importance over the present range of HD in the eastern United States. Historic data (2000-2014) from an annual HD presence-absence survey conducted by the Southeastern Cooperative Wildlife Disease Study and from the United States Drought Monitor were used for this analysis. For every county in 23 states and for each of 15 years, data were based on reported drought status for August, wetland cover, the physiographic region, and the status of HD in the previous year. We used a generalized linear mixed model to explain HD presence and evaluated spatiotemporal predictors across the region. We found that drought severity was a significant predictor of HD presence and the significance of this relationship was dependent on latitude. In more northerly latitudes, where immunological naivety is most likely, we demonstrated the increasing strength of drought severity as a determinant of reported HD and established the importance of variation in drought severity as a risk factor over the present range of HD in the eastern United States. Our research provides spatially explicit evidence for the link between climate forces and emerging disease patterns across latitude for a globally distributed disease.
Collapse
Affiliation(s)
- Sonja A Christensen
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA
| | - Mark G Ruder
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, The University of Georgia, Athens, GA, USA
| | - David M Williams
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA
| | - William F Porter
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI, USA
| | - David E Stallknecht
- Southeastern Cooperative Wildlife Disease Study, Department of Population Health, College of Veterinary Medicine, The University of Georgia, Athens, GA, USA
| |
Collapse
|
26
|
Guo Y, Pretorius JM, Xu Q, Wu D, Bu Z, Theron J, Sun E. Development and optimization of a DNA-based reverse genetics systems for epizootic hemorrhagic disease virus. Arch Virol 2020; 165:1079-1087. [PMID: 32144546 DOI: 10.1007/s00705-020-04583-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/08/2020] [Indexed: 01/04/2023]
Abstract
Epizootic hemorrhagic disease virus (EHDV) is a member of the genus Orbivirus, family Reoviridae, and has a genome consisting of 10 linear double-stranded (ds) RNA segments. The current reverse genetics system (RGS) for engineering the EHDV genome relies on the use of in vitro-synthesized capped viral RNA transcripts. To obtain more-efficient and simpler RGSs for EHDV, we developed an entirely DNA (plasmid or PCR amplicon)-based RGS for viral rescue. This RGS enabled the rescue of infectious EHDV from BSR-T7 cells following co-transfection with seven helper viral protein expression plasmids and 10 cDNA rescue plasmids or PCR amplicons representing the EHDV genome. Furthermore, we optimized the DNA-based systems and confirmed that some of the helper expression plasmids were not essential for the recovery of infectious EHDV. Thus, DNA-based RGSs may offer a more efficient method of recombinant virus recovery and accelerate the study of the biological characteristics of EHDV and the development of novel vaccines.
Collapse
Affiliation(s)
- Yunze Guo
- The Key Laboratory of Veterinary Public Health, Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.,Department of Veterinary Pathology, Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, College of Veterinary Medicine, Inner Mongolia Agricultural University, Zhaowuda Road 306, 010018, Hohhot, Inner Mongolia, China
| | - Jakobus M Pretorius
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0002, South Africa
| | - Qingyuan Xu
- The Key Laboratory of Veterinary Public Health, Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Donglai Wu
- The Key Laboratory of Veterinary Public Health, Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Zhigao Bu
- The Key Laboratory of Veterinary Public Health, Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Jacques Theron
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, 0002, South Africa
| | - Encheng Sun
- The Key Laboratory of Veterinary Public Health, Ministry of Agriculture, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China.
| |
Collapse
|