1
|
Lüth S, Fuchs J, Deneke C. Compatibility of whole-genome sequencing data from Illumina and Ion Torrent technologies in genome comparison analysis of Listeria monocytogenes. Microb Genom 2025; 11:001389. [PMID: 40310451 PMCID: PMC12046094 DOI: 10.1099/mgen.0.001389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 02/28/2025] [Indexed: 05/02/2025] Open
Abstract
Whole-genome sequencing (WGS) has become the key approach for molecular surveillance of Listeria monocytogenes. Genome comparison analysis can reveal transmission routes that cannot be found with classic epidemiology. A widespread standard for use in genome comparison analysis involves data from short-read sequencing, generated on Illumina or Ion Torrent devices. To date, little is known about the compatibility of data from both platforms. This knowledge is essential when it comes to the central analysis of data, for example, in the case of outbreaks. We used WGS data from 47 L. monocytogenes isolates of the strain collection of the German National Reference Laboratory for L. monocytogenes, generated on either Illumina or Ion Torrent devices, to analyse the impact of the sequencing technology on downstream analyses. In our study, only the assembler SPAdes delivered qualitatively comparable results. In the gene-based core genome multilocus sequence typing (cgMLST), the same-strain allele discrepancy between the platforms was 14.5 alleles on average, which is well above the threshold of 7 alleles routinely used for cluster detection in L. monocytogenes. An application of a strict frameshift filter in cgMLST analysis could push the mean discrepancy below this threshold but reduced discriminatory power. The impact of the platform on the read-based single nucleotide polymorphism analysis was lower than that on the cgMLST. Overall, it was possible to improve compatibility in various ways, but perfect compatibility could not be achieved.
Collapse
Affiliation(s)
- Stefanie Lüth
- Department of Biological Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| | - Jannika Fuchs
- Chemical and Veterinary Investigation Office (CVUA) Karlsruhe, Weißenburger Str. 3, 76187 Karlsruhe, Germany
| | - Carlus Deneke
- Department of Biological Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany
| |
Collapse
|
2
|
Slavinska A, Jauneikaite E, Meškytė U, Kirkliauskienė A, Misevič A, Petrutienė A, Kuisiene N. Genomic characterization of Listeria monocytogenes isolated from normally sterile human body fluids in Lithuania from 2016 to 2021. Microb Genom 2025; 11. [PMID: 40392696 DOI: 10.1099/mgen.0.001410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2025] Open
Abstract
Listeria monocytogenes is a saprophytic gram-positive bacterium and opportunistic foodborne pathogen that can cause listeriosis in humans. The incidence of listeriosis has been rising globally and, despite antimicrobial treatment, the mortality rates associated with the most severe forms of listeriosis such as sepsis, meningitis and meningoencephalitis remain high. The notification of listeriosis in humans is mandatory in Lithuania, and up to 20 cases are reported annually. However, no studies have described the detailed virulence and antimicrobial susceptibility profiles of any clinical L. monocytogenes strains in Lithuania. Accordingly, this study aimed to describe the antibiotic susceptibility of invasive L. monocytogenes and perform in-depth characterization of strains isolated from patients with neuroinfections through whole-genome sequencing. A total of 70 isolates were collected, mostly from infected patients aged 65 or older, between 2016 and 2021 : 41 (58.6%) from blood, 19 (27.1%) from cerebrospinal fluid, 5 (7.1%) from wounds, 1 (1.4%) from pleural fluid and 1 (1.4%) from a brain abscess. Two phylogenetic lineages were identified-I (n = 16/70, 22.9%) and II (n = 54/70, 77.1%)-along with three serogroups-IIa (n = 53/70, 75.7%), IVb (n = 16/70, 22.9%), and IIc (n = 1/70, 1.4%). Genomic analysis of 20 isolates showed a high level of diversity with seven genotypes: ST6 (n = 6), ST155 (n = 5), ST8 (n = 4), ST504 (n = 2) and singletons for ST37, ST451 and ST2. Phylogenetic analysis clustered these isolates into two clades defined by serogroups IVb and IIa. Notably, five isolates were clustered tightly together (difference of 6-48 core SNPs from reference and 0, 4 or 44 SNPs from each other) with ST155, previously reported in a European outbreak. Comparison with publicly available L. monocytogenes genomes did not identify unique clusters or genotypes. No acquired antimicrobial resistance genes were identified. Our study highlights the complementary value of whole-genome sequencing in routine PCR-based surveillance in Lithuania. This is the first study to characterize and compare genomes for L. monocytogenes associated with neuroinfections in Lithuania using whole-genome sequencing. The retrospective detection of the ST155 clone underscores the need for a review and strengthening of epidemiological surveillance strategies in clinical and non-clinical settings in Lithuania.
Collapse
Affiliation(s)
- Anželika Slavinska
- Department of Microbiology and Biotechnology, Institute of Biosciences of Vilnius University Life Sciences Centre, 10257 Vilnius, Lithuania
| | - Elita Jauneikaite
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, London, UK
| | - Ugnė Meškytė
- Department of Microbiology and Biotechnology, Institute of Biosciences of Vilnius University Life Sciences Centre, 10257 Vilnius, Lithuania
| | - Agnė Kirkliauskienė
- Faculty of Medicine, Institute of Biomedical science, Vilnius University, 03101 Vilnius, Lithuania
| | - Adam Misevič
- Faculty of Medicine, Institute of Biomedical science, Vilnius University, 03101 Vilnius, Lithuania
| | - Aurelija Petrutienė
- Department of Clinical Investigations of the National Public Health Surveillance Laboratory, 10210 Vilnius, Lithuania
| | - Nomeda Kuisiene
- Department of Microbiology and Biotechnology, Institute of Biosciences of Vilnius University Life Sciences Centre, 10257 Vilnius, Lithuania
| |
Collapse
|
3
|
Wareth G, Neubauer H. The striking incidence of animal listeriosis in Germany (2014-2024) indicates a persistent but neglected risk for One Health. Vet Res 2025; 56:53. [PMID: 40057808 PMCID: PMC11889758 DOI: 10.1186/s13567-025-01481-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/23/2025] [Indexed: 05/13/2025] Open
Abstract
Listeriosis is a serious zoonotic disease caused by the genus Listeria, with Listeria monocytogenes being the most pathogenic species for humans and various animal species. This bacterium is commonly found in the environment and poses significant health risks. We analysed official surveillance data detailing animal listeriosis in Germany over the last decade to unravel its host diversity and spatiotemporal distribution. Altogether, 1.629 notifications involving 3.326 various animal species were reported. Listeriosis has a broad host range in farm animals and wildlife, with a consistently striking incidence reported nationwide. Addressing this issue is crucial for public health and the safety of our food supply.
Collapse
Affiliation(s)
- Gamal Wareth
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany.
| | - Heinrich Neubauer
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| |
Collapse
|
4
|
Feige L, Walter N, Fawzy A, Schultze T, Hassel M, Vogt M, Zanger P, Schoeps A. Outbreak of listeriosis associated with consumption of deli meats in a hospital, Germany, February to March 2023. Euro Surveill 2025; 30:2400316. [PMID: 39980424 PMCID: PMC11843619 DOI: 10.2807/1560-7917.es.2025.30.7.2400316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/10/2024] [Indexed: 02/22/2025] Open
Abstract
Listeria monocytogenes can cause severe illness in individuals with weakened immune systems. In March 2023, L. monocytogenes was isolated from blood (n = 2) or pleural fluid (n = 1) of three febrile patients receiving synthetic glucocorticoids in a tertiary hospital in Germany. Food supply records suggested sliced parboiled sausage as the likely source, and L. monocytogenes was isolated from four samples of sealed packaged sliced sausages and ham from one manufacturer. The patient and food isolates clustered within 0-4 allelic differences. Counts of L. monocytogenes in all four food samples were < 100 colony-forming units (CFU)/g, a threshold in the European Union legislation for ready-to-eat products with specific conditions. Our findings, aligned with previous evidence, highlight that persons with weakened immune systems should not be exposed to L. monocytogenes in food. We advocate for a clear communication of deli meats as high-risk foods, so individuals with weakened immune systems can adjust their diet to reduce their risk for invasive listeriosis. We recommend an update of dietary and hygiene guidelines for care settings and private homes where food is prepared, handled and stored for persons with weakened immune systems.
Collapse
Affiliation(s)
- Lena Feige
- Federal State Agency for Consumer & Health Protection Rhineland-Palatinate, Koblenz, Germany
| | - Nicole Walter
- District Public Health Authority, Ludwigshafen, Germany
| | - Ahmad Fawzy
- Cairo University, Faculty of Veterinary Medicine, Department of Medicine and Infectious Diseases, Cairo, Egypt
- Landesbetrieb Hessisches Landeslabor (LHL), Gießen, Germany
| | | | - Melanie Hassel
- Federal State Agency for Consumer & Health Protection Rhineland-Palatinate, Koblenz, Germany
| | - Manfred Vogt
- Federal State Agency for Consumer & Health Protection Rhineland-Palatinate, Koblenz, Germany
| | - Philipp Zanger
- Federal State Agency for Consumer & Health Protection Rhineland-Palatinate, Koblenz, Germany
- Heidelberg Institute of Global Health, University Hospitals, Heidelberg, Germany
| | - Anja Schoeps
- Federal State Agency for Consumer & Health Protection Rhineland-Palatinate, Koblenz, Germany
- Heidelberg Institute of Global Health, University Hospitals, Heidelberg, Germany
| |
Collapse
|
5
|
Parra-Flores J, Daza-Prieto B, Chavarria P, Troncoso M, Stöger A, Figueroa G, Mancilla-Rojano J, Cruz-Córdova A, Martinovic A, Ruppitsch W. From Traditional Typing to Genomic Precision: Whole-Genome Sequencing of Listeria monocytogenes Isolated from Refrigerated Foods in Chile. Foods 2025; 14:290. [PMID: 39856956 PMCID: PMC11765429 DOI: 10.3390/foods14020290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/11/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Ready-to-eat (RTE) foods are the most common sources of Listeria monocytogenes transmission. Whole-genome sequencing (WGS) enhances the investigation of foodborne outbreaks by enabling the tracking of pathogen sources and the prediction of genetic traits related to virulence, stress, and antimicrobial resistance, which benefit food safety management. The aim of this study was to evaluate the efficacy of WGS in the typing of 16 L. monocytogenes strains isolated from refrigerated foods in Chile, highlighting its advantages in pathogen identification and the improvement of epidemiological surveillance and food safety. Using cgMLST, a cluster was identified comprising 2 strains with zero allele differences among the 16 strains evaluated. Ninety-four percent of the isolates (15/16) were serotype 1/2b, and 88% of them (14/16) were ST5. All strains shared identical virulence genes related to adhesion (ami, iap, lapB), stress resistance (clpCEP), invasion (aut, iapcwhA, inlAB, lpeA), toxin production (hly), and intracellular regulation (prfA), with only 13 strains exhibiting the bcrBC and qacJ gene, which confer resistance to quaternary ammonium. The pCFSAN010068_01 plasmids were prevalent, and insertion sequences (ISLs) and composite transposons (cns) were detected in 87.5% of the strains. The presence of various antibiotic resistance genes, along with resistance to thermal shocks and disinfectants, may provide L. monocytogenes ST5 strains with enhanced environmental resistance to the hygiene treatments used in the studied food production plant.
Collapse
Affiliation(s)
- Julio Parra-Flores
- Department of Nutrition and Public Health, Universidad del Bío-Bío, Chillán 3780000, Chile;
| | - Beatriz Daza-Prieto
- Institute of Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, 1090 Vienna, Austria; (B.D.-P.); (A.S.)
| | - Pamela Chavarria
- Department of Nutrition and Public Health, Universidad del Bío-Bío, Chillán 3780000, Chile;
| | - Miriam Troncoso
- Fundación Instituto Profesional Duoc UC, Santiago 8240000, Chile;
| | - Anna Stöger
- Institute of Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, 1090 Vienna, Austria; (B.D.-P.); (A.S.)
| | - Guillermo Figueroa
- Microbiology and Probiotics Laboratory, Institute of Nutrition and Food Technology, Universidad de Chile, Santiago 7830490, Chile;
| | - Jetsi Mancilla-Rojano
- Immunochemistry Research Laboratory, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (J.M.-R.); (A.C.-C.)
| | - Ariadnna Cruz-Córdova
- Immunochemistry Research Laboratory, Hospital Infantil de México Federico Gómez, Mexico City 06720, Mexico; (J.M.-R.); (A.C.-C.)
| | - Aleksandra Martinovic
- Faculty of Food Technology, Food Safety and Ecology, University of Donja Gorica, 81000 Podgorica, Montenegro;
| | - Werner Ruppitsch
- Institute of Medical Microbiology and Hygiene, Austrian Agency for Health and Food Safety, 1090 Vienna, Austria; (B.D.-P.); (A.S.)
- Faculty of Food Technology, Food Safety and Ecology, University of Donja Gorica, 81000 Podgorica, Montenegro;
| |
Collapse
|
6
|
Wang J, Schamp CN, Hudson LK, Chaggar HK, Bryan DW, Garman KN, Radosevich M, Denes TG. Whole-genome sequencing and metagenomics reveal diversity and prevalence of Listeria spp. from soil in the Nantahala National Forest. Microbiol Spectr 2025; 13:e0171224. [PMID: 39651889 PMCID: PMC11705966 DOI: 10.1128/spectrum.01712-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/15/2024] [Indexed: 01/11/2025] Open
Abstract
Listeria spp. are widely distributed environmental bacteria associated with human foodborne illness. The ability to detect and characterize Listeria strains in the natural environment will contribute to improved understanding of transmission routes of contamination. The current standard for surveillance and outbreak source attribution is whole-genome sequencing (WGS) of Listeria monocytogenes clinical isolates. Recently, metagenomic sequencing has also been explored as a tool for the detection of Listeria spp. in environmental samples. This study evaluated soil samples from four locations across altitudes ranging from 1,500 to 4,500 ft in the Nantahala National Forest in North Carolina, USA. Forty-two Listeria isolates were cultured and sequenced, and 12 metagenomes of soil bacterial communities were generated. These isolates comprised 14 distinct strains from five species, including Listeria cossartiae subsp. cayugensis (n = 8; n represents the number of distinct strains), L. monocytogenes (n = 3), "Listeria swaminathanii" (Lsw) (n = 1), Listeria marthii (n = 1), and Listeria booriae (n = 1). Most strains (n = 13) were isolated from lower altitudes (1,500 or 2,500 ft), while the L. swaminathanii strain was isolated from both higher (4,500 ft) and lower (1,500 ft) altitudes. Metagenomic analysis of soil described a reduction in both bacterial community diversity and relative abundance of Listeria spp. as the altitude increased. Soil pH and cation exchange capacity were positively correlated (P < 0.05) with the abundance of Listeria spp. as detected by metagenomics. By integrating culture-independent metagenomics with culture-based WGS, this study advances current knowledge regarding distribution of Listeria spp. in the natural environment and suggests the potential for future use of culture-independent methods in tracking the transmission of foodborne pathogens. IMPORTANCE As a foodborne pathogen, Listeria continues to cause numerous illnesses in humans and animals. Studying the diversity and distribution of Listeria in soil is crucial for understanding potential sources of contamination and developing effective strategies to prevent foodborne outbreaks of listeriosis. Additionally, examining the ecological niches and survival mechanisms of Listeria in natural habitats provides insights into its persistence and adaptability, informing risk assessments and public health interventions. This research contributes to a broader understanding of microbial ecology and the factors influencing foodborne pathogen emergence, ultimately enhancing food safety and protecting public health. Moreover, using a metagenomic approach provides a detailed understanding of the soil microbial ecosystems, leading to more effective monitoring and control of foodborne pathogens. This study also highlights the potential for integrating metagenomics into routine surveillance systems for food safety in the near future.
Collapse
Affiliation(s)
- Jia Wang
- Department of Food Science, The University of Tennessee, Knoxville, Tennessee, USA
| | - Claire N. Schamp
- Department of Food Science, The University of Tennessee, Knoxville, Tennessee, USA
| | - Lauren K. Hudson
- Department of Food Science, The University of Tennessee, Knoxville, Tennessee, USA
| | - Harleen K. Chaggar
- Department of Food Science, The University of Tennessee, Knoxville, Tennessee, USA
| | - Daniel W. Bryan
- Department of Food Science, The University of Tennessee, Knoxville, Tennessee, USA
| | | | - Mark Radosevich
- Department of Biosystems Engineering and Soil Science, The University of Tennessee, Knoxville, Tennessee, USA
| | - Thomas G. Denes
- Department of Food Science, The University of Tennessee, Knoxville, Tennessee, USA
| |
Collapse
|
7
|
Al-Bayati HH, Abdullah SA, Shihab TJ, Sultan M, Jumaa QS. Immunogenicity of culture filtrated proteins and whole-cell killed formalin of Listeria monocytogenes to induced cellular immune response in vivo. Open Vet J 2024; 14:3581-3598. [PMID: 39927340 PMCID: PMC11799627 DOI: 10.5455/ovj.2024.v14.i12.40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/13/2024] [Indexed: 02/11/2025] Open
Abstract
Background Listeria monocytogenes (LM) is a life-threatening bacterium affecting many individuals worldwide, including elderly people, pregnant women, and immune-deficient patients. Aim Whole-cell killed formalin of LM antigens (WKLMAgs) and Listeria culture filtrated proteins (LCFPs) against challenge-attenuated LM after two booster doses (0 and 14 days) of immunization act as an antigen activating a high level of IgG3, IgM, CXCL2, and IL-1 beta. Methods Forty male rats were randomly assigned to four groups. The first group served as a control negative, while the second positive (+) control was inoculation orally 1 ml with virulent (1 × 107 colony forming unit CFU/ml) of LM on day 28, whereas the other two groups were injected with 1-ml WKLMAgs and 1-ml LCFPs in two subcutaneously doses with day 14 intervals, with at day 28 a challenged effective dose (1 × 107 CFU/ml) of virulent LM. Serum blood parameters were measured. During the 35 days, the euthanized animal histopathology studies were performed on the spleen, liver, small intestine, and brain. Results The current study indicated a significant difference between WKLMAgs and LCFPs for serological tests Immunoglobulin (Ig) M, chemokine (C-X-C motif) ligand 2, Ig G3, and interleukin-1 beta compared to both negative and positive controls at P < 0.001. Additionally, the WKLMAgs and LCFPs led to a decrease in the histopathological changes of organs such as (brain, spleen, liver, and intestine) compared to the positive control, which affected the organs with microgranuloma, with a pathological difference between the WKLMAgs and LCFPs compared to the negative control group. Conclusion Both WKLMAgs and LCFPs are capable to be as a vaccine candidate antigen for the induction of protective immunity against L. monocytogenes.
Collapse
Affiliation(s)
- Hassan H.K. Al-Bayati
- Department of Pathology and Poultry Diseases, College of Veterinary Medicine, University of Tikrit, Tikrit, Iraq
| | - Sultan Ahmed Abdullah
- Department of Pathology and Poultry Diseases, College of Veterinary Medicine, University of Tikrit, Tikrit, Iraq
| | - Thamer Jaddoa Shihab
- Department of Pathology and Poultry Diseases, College of Veterinary Medicine, University of Tikrit, Tikrit, Iraq
| | - Muthanna Sultan
- Department of Microbiology, College of Veterinary Medicine, University of Tikrit, Tikrit, Iraq
| | - Qusai Saleh Jumaa
- Department of Pathology and Poultry Diseases, College of Veterinary Medicine, University of Tikrit, Tikrit, Iraq
| |
Collapse
|
8
|
Sousa M, Magalhães R, Ferreira V, Teixeira P. Current methodologies available to evaluate the virulence potential among Listeria monocytogenes clonal complexes. Front Microbiol 2024; 15:1425437. [PMID: 39493856 PMCID: PMC11528214 DOI: 10.3389/fmicb.2024.1425437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/26/2024] [Indexed: 11/05/2024] Open
Abstract
Listeria monocytogenes is a foodborne pathogen that causes listeriosis in humans, the severity of which depends on multiple factors, including intrinsic characteristics of the affected individuals and the pathogen itself. Additionally, emerging evidence suggests that epigenetic modifications may also modulate host susceptibility to infection. Therefore, different clinical outcomes can be expected, ranging from self-limiting gastroenteritis to severe central nervous system and maternal-neonatal infections, and bacteremia. Furthermore, L. monocytogenes is a genetically and phenotypically diverse species, resulting in a large variation in virulence potential between strains. Multilocus sequence typing (MLST) has been widely used to categorize the clonal structure of bacterial species and to define clonal complexes (CCs) of genetically related isolates. The combination of MLST and epidemiological data allows to distinguish hypervirulent CCs, which are notably more prevalent in clinical cases and typically associated with severe forms of the disease. Conversely, other CCs, termed hypovirulent, are predominantly isolated from food and food processing environments and are associated with the occurrence of listeriosis in immunosuppressed individuals. Reports of genetic traits associated with this diversity have been described. The Food and Agriculture Organization (FAO) is encouraging the search for virulence biomarkers to rapidly identify the main strains of concern to reduce food waste and economical losses. The aim of this review is to comprehensively collect, describe and discuss the methodologies used to discriminate the virulence potential of L. monocytogenes CCs. From the exploration of in vitro and in vivo models to the study of expression of virulence genes, each approach is critically explored to better understand its applicability and efficiency in distinguishing the virulence potential of the pathogen.
Collapse
Affiliation(s)
| | | | | | - Paula Teixeira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, Porto, Portugal
| |
Collapse
|
9
|
Martins BTF, Camargo AC, Tavares RDM, Nero LA. Relevant foodborne bacteria associated to pork production chain. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 113:181-218. [PMID: 40023561 DOI: 10.1016/bs.afnr.2024.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Foodborne diseases affect millions of people globally, resulting in a huge number of hospitalizations and deaths. In this context, laboratory-based research is crucial to identify the major pathogens as well as the relevance of each one for distinct food production chains. Pork meat is very popular, being the most consumed meat in many countries and its inspection at the slaughterhouse is the main component of surveillance to protect consumers. Healthy pigs may carry pathogenic and antibiotic resistant bacteria that can be subsequently transferred to humans through the consumption of contaminated meat. Further, the food processing environment can harbor pathogenic persistent bacteria, representing a risk of cross-contamination to pork meat, demanding strict slaughtering procedures. Among these foodborne bacteria, Salmonella, Yersinia enterocolitica, Escherichia coli, Campylobacter spp., Listeria monocytogenes and Staphylococcus aureus are the most relevant in the pork production chain. Molecular subtyping has been fundamental for pathogen detection and also to track transmission, and nowadays it is a key component of the efforts to prevent and control foodborne diseases. In this chapter, characteristics of these major foodborne bacteria associated to pork meat will be addressed, including their occurrence and importance along the pork production chain, worldwide distribution, typing, as well as control and prevention measures from farm to fork.
Collapse
Affiliation(s)
- Bruna Torres Furtado Martins
- InsPOA-Laboratório de Inspeção de Produtos de Origem Animal, Departamento de Veterinária, Universidade Federal de Viçosa, Viçosa, MG, Brasil
| | - Anderson Carlos Camargo
- InsPOA-Laboratório de Inspeção de Produtos de Origem Animal, Departamento de Veterinária, Universidade Federal de Viçosa, Viçosa, MG, Brasil; InovaLeite-Laboratório de Pesquisa em Leites e Derivados, Departamento de Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, MG, Brasil
| | - Rafaela de Melo Tavares
- InsPOA-Laboratório de Inspeção de Produtos de Origem Animal, Departamento de Veterinária, Universidade Federal de Viçosa, Viçosa, MG, Brasil
| | - Luís Augusto Nero
- InsPOA-Laboratório de Inspeção de Produtos de Origem Animal, Departamento de Veterinária, Universidade Federal de Viçosa, Viçosa, MG, Brasil.
| |
Collapse
|
10
|
Halbedel S, Wamp S, Lachmann R, Holzer A, Pietzka A, Ruppitsch W, Wilking H, Flieger A. High density genomic surveillance and risk profiling of clinical Listeria monocytogenes subtypes in Germany. Genome Med 2024; 16:115. [PMID: 39375806 PMCID: PMC11457394 DOI: 10.1186/s13073-024-01389-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 09/24/2024] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND Foodborne infections such as listeriosis caused by the bacterium Listeria monocytogenes represent a significant public health concern, particularly when outbreaks affect many individuals over prolonged time. Systematic collection of pathogen isolates from infected patients, whole genome sequencing (WGS) and phylogenetic analyses allow recognition and termination of outbreaks after source identification and risk profiling of abundant lineages. METHODS We here present a multi-dimensional analysis of > 1800 genome sequences from clinical L. monocytogenes isolates collected in Germany between 2018 and 2021. Different WGS-based subtyping methods were used to determine the population structure with its main phylogenetic sublineages as well as for identification of disease clusters. Clinical frequencies of materno-foetal and brain infections and in vitro infection experiments were used for risk profiling of the most abundant sublineages. These sublineages and large disease clusters were further characterised in terms of their genetic and epidemiological properties. RESULTS The collected isolates covered 62% of all notified cases and belonged to 188 infection clusters. Forty-two percent of these clusters were active for > 12 months, 60% generated cases cross-regionally, including 11 multinational clusters. Thirty-seven percent of the clusters were caused by sequence type (ST) ST6, ST8 and ST1 clones. ST1 was identified as hyper- and ST8, ST14, ST29 as well as ST155 as hypovirulent, while ST6 had average virulence potential. Inactivating mutations were found in several virulence and house-keeping genes, particularly in hypovirulent STs. CONCLUSIONS Our work presents an in-depth analysis of the genomic characteristics of L. monocytogenes isolates that cause disease in Germany. It supports prioritisation of disease clusters for epidemiological investigations and reinforces the need to analyse the mechanisms underlying hyper- and hypovirulence.
Collapse
Affiliation(s)
- Sven Halbedel
- FG11 Division of Enteropathogenic Bacteria and Legionella, Consultant Laboratory for Listeria, Robert Koch Institute, Burgstrasse 37, Wernigerode, D-38855, Germany.
- Institute for Medical Microbiology and Hospital Hygiene, Otto Von Guericke University Magdeburg, Leipziger Strasse 44, Magdeburg, 39120, Germany.
| | - Sabrina Wamp
- FG11 Division of Enteropathogenic Bacteria and Legionella, Consultant Laboratory for Listeria, Robert Koch Institute, Burgstrasse 37, Wernigerode, D-38855, Germany
| | - Raskit Lachmann
- FG35 - Division for Gastrointestinal Infections, Zoonoses and Tropical Infections, Robert Koch Institute, Seestrasse 10, Berlin, 13353, Germany
| | - Alexandra Holzer
- FG35 - Division for Gastrointestinal Infections, Zoonoses and Tropical Infections, Robert Koch Institute, Seestrasse 10, Berlin, 13353, Germany
| | - Ariane Pietzka
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Beethovenstraße 6, Graz, 8010, Austria
| | - Werner Ruppitsch
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Währingerstrasse 25a, Vienna, 1090, Austria
| | - Hendrik Wilking
- FG35 - Division for Gastrointestinal Infections, Zoonoses and Tropical Infections, Robert Koch Institute, Seestrasse 10, Berlin, 13353, Germany
| | - Antje Flieger
- FG11 Division of Enteropathogenic Bacteria and Legionella, Consultant Laboratory for Listeria, Robert Koch Institute, Burgstrasse 37, Wernigerode, D-38855, Germany.
| |
Collapse
|
11
|
Vasileiadi N, Tsironi T, Mandilara GD. Assessing Listeria monocytogenes Growth in Artificially Inoculated Sea-Farmed Product-Raw Sea Bass ( Dicentrarchus labrax) Fillet, Produced in Greece. Microorganisms 2024; 12:1970. [PMID: 39458279 PMCID: PMC11509366 DOI: 10.3390/microorganisms12101970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/14/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Listeria monocytogenes (Lm) is responsible for listeriosis, a serious foodborne disease, with high hospitalization and mortality rates worldwide. The main cause of listeriosis in humans is the consumption of ready-to-eat (RTE) foods; Commission Regulation (EC) No 2073/2005 establishes microbiological criteria for Lm in RTE foods. Raw fish products are widely consumed, e.g., in sushi and various seafood recipes (e.g., carpaccio, sashimi, maki, nigiri, tartare, etc.), but are not subjected to RTE food safety criteria. The aim of our study was to assess the growth potential of Lm in raw sea bass fillets obtained from a leading aquaculture company in Greece. In order to assess the growth of Lm in raw sea bass fillets, we applied the "challenge test", a scientific experiment designed to assess the growth of Lm within a specific food product under controlled conditions. According to our results, and taking into consideration the health risk for the listeriosis-vulnerable population, raw fish products utilized in the preparation of RTE foods, including sushi and an array of seafood dishes, should be incorporated in the Category of Safety Criteria of Regulation (EC) No 2073/2005 "Ready-to-eat food able to support the growth of Listeria monocytogenes".
Collapse
Affiliation(s)
- Ntina Vasileiadi
- Unit of Environmental Microbiology, Laboratory of Infectious Disease Surveillance, Faculty of Public Health Policy, School of Public Health, University of West Attica, 11521 Athens, Greece;
| | - Theofania Tsironi
- Laboratory of Food Process Engineering, Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece;
| | - Georgia D. Mandilara
- Unit of Environmental Microbiology, Laboratory of Infectious Disease Surveillance, Faculty of Public Health Policy, School of Public Health, University of West Attica, 11521 Athens, Greece;
| |
Collapse
|
12
|
Ikhimiukor OO, Mingle L, Wirth SE, Mendez-Vallellanes DV, Hoyt H, Musser KA, Wolfgang WJ, Andam CP. Long-term persistence of diverse clones shapes the transmission landscape of invasive Listeria monocytogenes. Genome Med 2024; 16:109. [PMID: 39232757 PMCID: PMC11373459 DOI: 10.1186/s13073-024-01379-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/29/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND The foodborne bacterium Listeria monocytogenes (Lm) causes a range of diseases, from mild gastroenteritis to invasive infections that have high fatality rate in vulnerable individuals. Understanding the population genomic structure of invasive Lm is critical to informing public health interventions and infection control policies that will be most effective especially in local and regional communities. METHODS We sequenced the whole draft genomes of 936 Lm isolates from human clinical samples obtained in a two-decade active surveillance program across 58 counties in New York State, USA. Samples came mostly from blood and cerebrospinal fluid. We characterized the phylogenetic relationships, population structure, antimicrobial resistance genes, virulence genes, and mobile genetic elements. RESULTS The population is genetically heterogenous, consisting of lineages I-IV, 89 clonal complexes, 200 sequence types, and six known serogroups. In addition to intrinsic antimicrobial resistance genes (fosX, lin, norB, and sul), other resistance genes tetM, tetS, ermG, msrD, and mefA were sparsely distributed in the population. Within each lineage, we identified clusters of isolates with ≤ 20 single nucleotide polymorphisms in the core genome alignment. These clusters may represent isolates that share a most recent common ancestor, e.g., they are derived from the same contamination source or demonstrate evidence of transmission or outbreak. We identified 38 epidemiologically linked clusters of isolates, confirming eight previously reported disease outbreaks and the discovery of cryptic outbreaks and undetected chains of transmission, even in the rarely reported Lm lineage III (ST3171). The presence of animal-associated lineages III and IV may suggest a possible spillover of animal-restricted strains to humans. Many transmissible clones persisted over several years and traversed distant sites across the state. CONCLUSIONS Our findings revealed the bacterial determinants of invasive listeriosis, driven mainly by the diversity of locally circulating lineages, intrinsic and mobile antimicrobial resistance and virulence genes, and persistence across geographical and temporal scales. Our findings will inform public health efforts to reduce the burden of invasive listeriosis, including the design of food safety measures, source traceback, and outbreak detection.
Collapse
Affiliation(s)
| | - Lisa Mingle
- New York State Department of Health, Wadsworth Center, Albany, NY, USA
| | - Samantha E Wirth
- New York State Department of Health, Wadsworth Center, Albany, NY, USA
| | | | - Hannah Hoyt
- New York State Department of Health, Wadsworth Center, Albany, NY, USA
| | | | | | - Cheryl P Andam
- University at Albany, State University of New York, Albany, NY, USA.
| |
Collapse
|
13
|
Wei J, Zhang X, Ismael M, Zhong Q. Anti-Biofilm Effects of Z102-E of Lactiplantibacillus plantarum against Listeria monocytogenes and the Mechanism Revealed by Transcriptomic Analysis. Foods 2024; 13:2495. [PMID: 39200422 PMCID: PMC11354177 DOI: 10.3390/foods13162495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/02/2024] Open
Abstract
Lactic acid bacteria (LAB) are the most common probiotics, and they present excellent inhibitory effects on pathogenic bacteria. This study aimed to explore the anti-biofilm potential of the purified active substance of Lactiplantibacillus plantarum, named Z102-E. The effects of Z102-E on Listeria monocytogenes were investigated in detail, and a transcriptomic analysis was conducted to reveal the anti-biofilm mechanism. The results indicated that the sub-MIC of Z102-E (3.2, 1.6, and 0.8 mg/mL) decreased the bacterial growth and effectively reduced the self-aggregation, surface hydrophobicity, sugar utilization, motility, biofilm formation, AI-2 signal molecule, contents of extracellular polysaccharides, and extracellular protein of L. monocytogenes. Moreover, the inverted fluorescence microscopy observation confirmed the anti-biofilm effect of Z102-E. The transcriptomic analysis indicated that 117 genes were up-regulated and 214 were down-regulated. Z102-E regulated the expressions of genes related to L. monocytogenes quorum sensing, biofilm formation, etc. These findings suggested that Z102-E has great application potential as a natural bacteriostatic agent.
Collapse
Affiliation(s)
| | | | | | - Qingping Zhong
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; (J.W.); (X.Z.); (M.I.)
| |
Collapse
|
14
|
Vázquez E, de Gregorio-Vicente O, Soriano V, Álvarez-Domínguez C, Corral O, Moreno-Torres V. Increased incidence and mortality from Listeria monocytogenes infection in Spain. Int J Infect Dis 2024; 145:107089. [PMID: 38734058 DOI: 10.1016/j.ijid.2024.107089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/26/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024] Open
Abstract
OBJECTIVES Listeria monocytogenes (LM) is a health threat worldwide given its high mortality and the growing of high-risk susceptible populations. METHODS All hospitalizations with a diagnosis of LM in the National Registry of Hospital Discharges were examined in Spain from 2000 to 2021. RESULTS A total of 8152 hospital admissions with LM were identified. The mean age was 59.5 years and 48% were immunosuppressed (IS). The rate of LM hospitalizations increased from 5 per 1 million population in 2000 to 8.9 in 2021 (p < 0.001). A foodborne outbreak in Andalusia determined a sharp increase in admissions with LM during 2019. The COVID-19 pandemic and lockdowns were associated with a decrease in LM admissions. The overall in-hospital mortality was 16.7%. The number of deaths in patients hospitalized with LM rose from 7.8 per 100,000 deceased in 2000 to 18 in 2021 (p < 0.001). After adjustment, age >65 years (odds ratio [OR] = 2.16), sepsis (OR = 2.60), meningoencephalitis (OR = 1.72), endocarditis (OR = 2.0), neonatal listeriosis (OR = 2.10) and IS (OR = 2.09) were associated with mortality. CONCLUSIONS The number of patients hospitalized with LM in Spain has increased significantly from 2000 to 2021. The increase in the rate of admissions and deaths was largely driven by the growing proportion of elderly and IS patients.
Collapse
Affiliation(s)
- Elena Vázquez
- UNIR Health Sciences School and Medical Center, Madrid, Spain
| | | | - Vicente Soriano
- UNIR Health Sciences School and Medical Center, Madrid, Spain
| | | | - Octavio Corral
- UNIR Health Sciences School and Medical Center, Madrid, Spain
| | - Víctor Moreno-Torres
- UNIR Health Sciences School and Medical Center, Madrid, Spain; Internal Medicine Department, Health Research Institute Puerta de Hierro-Segovia de Arana (IDIPHIM), Hospital Universitario Puerta de Hierro, Majadahonda, Madrid, Spain.
| |
Collapse
|
15
|
Lagarde J, Feurer C, Denis M, Douarre PE, Piveteau P, Roussel S. Listeria monocytogenes prevalence and genomic diversity along the pig and pork production chain. Food Microbiol 2024; 119:104430. [PMID: 38225039 DOI: 10.1016/j.fm.2023.104430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 11/10/2023] [Accepted: 11/19/2023] [Indexed: 01/17/2024]
Abstract
The facultative intracellular bacterium Listeria monocytogenes (L. monocytogenes) is the causative agent of listeriosis, a severe invasive illness. This ubiquitous species is widely distributed in the environment, but infection occurs almost exclusively through ingestion of contaminated food. The pork production sector has been heavily affected by a series of L. monocytogenes-related foodborne outbreaks in the past around the world. Ready-to-eat (RTE) pork products represent one of the main food sources for strong-evidence listeriosis outbreaks. This pathogen is known to be present throughout the entire pig and pork production chain. Some studies hypothesized that the main source of contamination in final pork products was either living pigs or the food-processing environment. A detailed genomic picture of L. monocytogenes can provide a renewed understanding of the routes of contamination from pig farms to the final products. This review provides an overview of the prevalence, the genomic diversity and the genetic background linked to virulence of L. monocytogenes along the entire pig and pork production chain, from farm to fork.
Collapse
Affiliation(s)
- Jean Lagarde
- ANSES, Salmonella and Listeria Unit (USEL), University of Paris-Est, Maisons-Alfort Laboratory for Food Safety, 14 rue Pierre et Marie Curie, 94700, Maisons-Alfort, France; INRAE, Unit of Process Optimisation in Food, Agriculture and the Environment (UR OPAALE), 17 avenue de Cucillé, 35000, Rennes, France
| | - Carole Feurer
- IFIP, The French Pig and Pork Institute, Department of Fresh and Processed Meat, La Motte au Vicomte, 35650, Le Rheu, France
| | - Martine Denis
- ANSES, Unit of Hygiene and Quality of Poultry and Pork Products (UHQPAP), Ploufragan-Plouzané-Niort Laboratory, 31 rue des fusillés, 22440, Ploufragan, France
| | - Pierre-Emmanuel Douarre
- ANSES, Salmonella and Listeria Unit (USEL), University of Paris-Est, Maisons-Alfort Laboratory for Food Safety, 14 rue Pierre et Marie Curie, 94700, Maisons-Alfort, France
| | - Pascal Piveteau
- INRAE, Unit of Process Optimisation in Food, Agriculture and the Environment (UR OPAALE), 17 avenue de Cucillé, 35000, Rennes, France
| | - Sophie Roussel
- ANSES, Salmonella and Listeria Unit (USEL), University of Paris-Est, Maisons-Alfort Laboratory for Food Safety, 14 rue Pierre et Marie Curie, 94700, Maisons-Alfort, France.
| |
Collapse
|
16
|
Møretrø T, Wagner E, Heir E, Langsrud S, Fagerlund A. Genomic analysis of Listeria monocytogenes CC7 associated with clinical infections and persistence in the food industry. Int J Food Microbiol 2024; 410:110482. [PMID: 37977076 DOI: 10.1016/j.ijfoodmicro.2023.110482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 11/19/2023]
Abstract
Listeria monocytogenes clonal complex 7 (CC7), belonging to lineage II, is the most common subtype among clinical listeriosis isolates in Norway, and is also commonly found in Norwegian food industry and outdoor environments. In the present study, the relative prevalence of CCs among clinical isolates of L. monocytogenes in European countries during 2010-2015 was determined. Then, phylogenomic and comparative genomic analyses was performed for 115 Norwegian and 255 international reference genomes from various sources, to examine potential explanations underlying the high prevalence of CC7 among Norwegian listeriosis cases. Selected isolates were also compared using in vitro virulence assays. The results showed a high relative prevalence of CC7 in clinical isolates from Norway and the neighboring Nordic countries Sweden and Finland. In contrast to in most other European countries, lineage II dominated among clinical isolates in these countries. Phylogenetic analysis of the 370 CC7 isolates separated the genomes into four clades, with the majority of Norwegian isolates (69 %) clustered in one of these clades, estimated to have diverged from the other clades around year 1830. The Norwegian isolates within this clade were widely distributed in different habitats; several (poultry) meat processing factories, a salmon processing plant, in nature, farms, and slugs, and among human clinical isolates. In particular, one pervasive CC7 clone was found across three poultry processing plants and one salmon processing plant, and also included three clinical isolates. All analysed CC7 isolates harbored the same set of 72 genes involved in both general and specific stress responses. Divergence was observed for plasmid-encoded genes including genes conferring resistance against arsenic (Tn554-arsCBADR), cadmium (cadA1C1 and cadA2C2), and the biocide benzalkonium chloride (bcrABC). No significant difference in prevalence of these genes was seen between isolates from different habitats or sources. Virulence attributes were highly conserved among the CC7 isolates. In vitro virulence studies of five representative CC7 isolates revealed a virulence potential that, in general, was not significantly lower than that of the control strain EGDe, with isolate-dependent differences that could not be correlated with genetic determinants. The study shows that CC7 is widespread in Norway, and that a pervasive CC7 clone was present in food processing plants. The study highlights the importance of CC7 and lineage II strains in causing listeriosis and shows that more research is needed to understand the reasons behind geographical differences in CC prevalence.
Collapse
Affiliation(s)
- Trond Møretrø
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, N-1430 Aas, Norway.
| | - Eva Wagner
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, N-1430 Aas, Norway
| | - Even Heir
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, N-1430 Aas, Norway
| | - Solveig Langsrud
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, N-1430 Aas, Norway
| | - Annette Fagerlund
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, N-1430 Aas, Norway
| |
Collapse
|
17
|
Schiavano GF, Guidi F, Pomilio F, Brandi G, Salini R, Amagliani G, Centorotola G, Palma F, Felici M, Lorenzetti C, Blasi G. Listeria monocytogenes Strains Persisting in a Meat Processing Plant in Central Italy: Use of Whole Genome Sequencing and In Vitro Adhesion and Invasion Assays to Decipher Their Virulence Potential. Microorganisms 2023; 11:1659. [PMID: 37512831 PMCID: PMC10383671 DOI: 10.3390/microorganisms11071659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/12/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023] Open
Abstract
In this study, we used both a WGS and an in vitro approach to study the virulence potential of nine Listeria monocytogenes (Lm) strains belonging to genetic clusters persisting in a meat processing plant in Central Italy. The studied clusters belonged to CC1-ST1, CC9-ST9, and CC218-ST2801. All the CC1 and CC218 strains presented the same accessory virulence genes (LIPI-3, gltA, gltB, and aut_IVb). CC1 and CC9 strains presented a gene profile similarity of 22.6% as well as CC9 and CC218 isolates. CC1 and CC218 showed a similarity of 45.2% of the same virulence profile. The hypervirulent strains of lineage I (CC1 and CC218) presented a greater ability to adhere and invade Caco-2 cells than hypovirulent ones (CC9). CC1 strains were significantly more adhesive and invasive compared with CC9 and CC218 strains, although these last CCs presented the same accessory virulence genes. No statistically significant difference was found comparing CC218 with CC9 strains. This study provided for the first time data on the in vitro adhesiveness and invasiveness of CC218-ST2801 and added more data on the virulence characteristics of CC1 and CC9. What we observed confirmed that the ability of Lm to adhere to and invade human cells in vitro is not always decipherable from its virulence gene profile.
Collapse
Affiliation(s)
- Giuditta Fiorella Schiavano
- Dipartimento di Studi Umanistici, Università degli Studi di Urbino "Carlo Bo", Via Bramante, 17, 61029 Urbino, Italy
| | - Fabrizia Guidi
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Laboratorio Nazionale di Riferimento per Listeria Monocytogenes, Via Campo Boario, 64100 Teramo, Italy
| | - Francesco Pomilio
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Laboratorio Nazionale di Riferimento per Listeria Monocytogenes, Via Campo Boario, 64100 Teramo, Italy
| | - Giorgio Brandi
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino "Carlo Bo", Via Santa Chiara, 27, 61029 Urbino, Italy
| | - Romolo Salini
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Centro Operativo Veterinario per l'Epidemiologia, Programmazione, Informazione e Analisi del Rischio (COVEPI), National Reference Center for Veterinary Epidemiology, Via Campo Boario, 64100 Teramo, Italy
| | - Giulia Amagliani
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino "Carlo Bo", Via Santa Chiara, 27, 61029 Urbino, Italy
| | - Gabriella Centorotola
- Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Laboratorio Nazionale di Riferimento per Listeria Monocytogenes, Via Campo Boario, 64100 Teramo, Italy
| | - Francesco Palma
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino "Carlo Bo", Via Santa Chiara, 27, 61029 Urbino, Italy
| | - Martina Felici
- Dipartimento di Scienze Biomolecolari, Università degli Studi di Urbino "Carlo Bo", Via Santa Chiara, 27, 61029 Urbino, Italy
| | - Cinzia Lorenzetti
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Via Gaetano Salvemini, 1, 06126 Perugia, Italy
| | - Giuliana Blasi
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Via Gaetano Salvemini, 1, 06126 Perugia, Italy
| |
Collapse
|
18
|
Halbedel S, Sperle I, Lachmann R, Kleta S, Fischer MA, Wamp S, Holzer A, Lüth S, Murr L, Freitag C, Espenhain L, Stephan R, Pietzka A, Schjørring S, Bloemberg G, Wenning M, Al Dahouk S, Wilking H, Flieger A. Large Multicountry Outbreak of Invasive Listeriosis by a Listeria monocytogenes ST394 Clone Linked to Smoked Rainbow Trout, 2020 to 2021. Microbiol Spectr 2023; 11:e0352022. [PMID: 37036341 PMCID: PMC10269727 DOI: 10.1128/spectrum.03520-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 03/17/2023] [Indexed: 04/11/2023] Open
Abstract
Whole-genome sequencing (WGS) has revolutionized surveillance of infectious diseases. Disease outbreaks can now be detected with high precision, and correct attribution of infection sources has been improved. Listeriosis, caused by the bacterium Listeria monocytogenes, is a foodborne disease with a high case fatality rate and a large proportion of outbreak-related cases. Timely recognition of listeriosis outbreaks and precise allocation of food sources are important to prevent further infections and to promote public health. We report the WGS-based identification of a large multinational listeriosis outbreak with 55 cases that affected Germany, Austria, Denmark, and Switzerland during 2020 and 2021. Clinical isolates formed a highly clonal cluster (called Ny9) based on core genome multilocus sequence typing (cgMLST). Routine and ad hoc investigations of food samples identified L. monocytogenes isolates from smoked rainbow trout filets from a Danish producer grouping with the Ny9 cluster. Patient interviews confirmed consumption of rainbow trout as the most likely infection source. The Ny9 cluster was caused by a MLST sequence type (ST) ST394 clone belonging to molecular serogroup IIa, forming a distinct clade within molecular serogroup IIa strains. Analysis of the Ny9 genome revealed clpY, dgcB, and recQ inactivating mutations, but phenotypic characterization of several virulence-associated traits of a representative Ny9 isolate showed that the outbreak strain had the same pathogenic potential as other serogroup IIa strains. Our report demonstrates that international food trade can cause multicountry outbreaks that necessitate cross-border outbreak collaboration. It also corroborates the relevance of ready-to-eat smoked fish products as causes for listeriosis. IMPORTANCE Listeriosis is a severe infectious disease in humans and characterized by an exceptionally high case fatality rate. The disease is transmitted through consumption of food contaminated by the bacterium Listeria monocytogenes. Outbreaks of listeriosis often occur but can be recognized and stopped through implementation of whole-genome sequencing-based pathogen surveillance systems. We here describe the detection and management of a large listeriosis outbreak in Germany and three neighboring countries. This outbreak was caused by rainbow trout filet, which was contaminated by a L. monocytogenes clone belonging to sequence type ST394. This work further expands our knowledge on the genetic diversity and transmission routes of an important foodborne pathogen.
Collapse
Affiliation(s)
- Sven Halbedel
- FG11–Division of Enteropathogenic bacteria and Legionella, Consultant Laboratory for Listeria, Robert Koch Institute, Wernigerode, Germany
- Institute for Medical Microbiology and Hospital Hygiene, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Ida Sperle
- FG35–Division for Gastrointestinal Infections, Zoonoses and Tropical Infections, Robert Koch Institute, Berlin, Germany
- Postgraduate Training for Applied Epidemiology (PAE), Robert Koch Institute, Berlin, Germany
- ECDC Fellowship Program, Field Epidemiology path (EPIET), European Centre for Disease Prevention and Control (ECDC), Solna, Sweden
| | - Raskit Lachmann
- FG35–Division for Gastrointestinal Infections, Zoonoses and Tropical Infections, Robert Koch Institute, Berlin, Germany
| | - Sylvia Kleta
- National Reference Laboratory for Listeria monocytogenes, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Martin A. Fischer
- FG11–Division of Enteropathogenic bacteria and Legionella, Consultant Laboratory for Listeria, Robert Koch Institute, Wernigerode, Germany
| | - Sabrina Wamp
- FG11–Division of Enteropathogenic bacteria and Legionella, Consultant Laboratory for Listeria, Robert Koch Institute, Wernigerode, Germany
| | - Alexandra Holzer
- FG35–Division for Gastrointestinal Infections, Zoonoses and Tropical Infections, Robert Koch Institute, Berlin, Germany
| | - Stefanie Lüth
- National Reference Laboratory for Listeria monocytogenes, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Larissa Murr
- State Institute for Food, Food Hygiene and Cosmetics, Bavarian Health and Food Safety Authority, Oberschleissheim, Germany
| | - Christin Freitag
- Institute for Food of Animal Origin, Rhineland–Palatinate State Investigation Office, Koblenz, Germany
| | - Laura Espenhain
- Department of Infectious Disease Epidemiology and Prevention, Statens Serum Institut, Copenhagen, Denmark
| | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Ariane Pietzka
- Austrian Agency for Health and Food Safety, Graz, Austria
| | - Susanne Schjørring
- Department of Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Guido Bloemberg
- Swiss National Center for Enteropathogenic Bacteria and Listeria, Institute for Food Safety and Hygiene, University of Zurich, Switzerland
| | - Mareike Wenning
- State Institute for Food, Food Hygiene and Cosmetics, Bavarian Health and Food Safety Authority, Oberschleissheim, Germany
| | - Sascha Al Dahouk
- National Reference Laboratory for Listeria monocytogenes, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Hendrik Wilking
- FG35–Division for Gastrointestinal Infections, Zoonoses and Tropical Infections, Robert Koch Institute, Berlin, Germany
| | - Antje Flieger
- FG11–Division of Enteropathogenic bacteria and Legionella, Consultant Laboratory for Listeria, Robert Koch Institute, Wernigerode, Germany
| |
Collapse
|
19
|
Abstract
Listeria monocytogenes is a Gram-positive facultative intracellular pathogen that can cause severe invasive infections upon ingestion with contaminated food. Clinically, listerial disease, or listeriosis, most often presents as bacteremia, meningitis or meningoencephalitis, and pregnancy-associated infections manifesting as miscarriage or neonatal sepsis. Invasive listeriosis is life-threatening and a main cause of foodborne illness leading to hospital admissions in Western countries. Sources of contamination can be identified through international surveillance systems for foodborne bacteria and strains' genetic data sharing. Large-scale whole genome studies have increased our knowledge on the diversity and evolution of L. monocytogenes, while recent pathophysiological investigations have improved our mechanistic understanding of listeriosis. In this article, we present an overview of human listeriosis with particular focus on relevant features of the causative bacterium, epidemiology, risk groups, pathogenesis, clinical manifestations, and treatment and prevention.
Collapse
Affiliation(s)
- Merel M Koopmans
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Matthijs C Brouwer
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - José A Vázquez-Boland
- Infection Medicine, Edinburgh Medical School (Biomedical Sciences), University of Edinburgh, Edinburgh, United Kingdom
| | - Diederik van de Beek
- Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam, the Netherlands
| |
Collapse
|
20
|
Lakicevic B, Jankovic V, Pietzka A, Ruppitsch W. Wholegenome sequencing as the gold standard approach for control of Listeria monocytogenes in the food chain. J Food Prot 2023; 86:100003. [PMID: 36916580 DOI: 10.1016/j.jfp.2022.10.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 10/05/2022] [Accepted: 10/19/2022] [Indexed: 12/23/2022]
Abstract
Listeria monocytogenes has been implicated in numerous outbreaks and related deaths of listeriosis. In food production, L. monocytogenes occurs in raw food material and above all, through postprocessing contamination. The use of next-generation sequencing technologies such as whole-genome sequencing (WGS) facilitates foodborne outbreak investigations, pathogen source tracking and tracing geographic distributions of different clonal complexes, routine microbiological/epidemiological surveillance of listeriosis, and quantitative microbial risk assessment. WGS can also be used to predict various genetic traits related to virulence, stress, or antimicrobial resistance, which can be of great benefit for improving food safety management as well as public health.
Collapse
Affiliation(s)
- Brankica Lakicevic
- Department for Microbiological and Molecular-biological Testing, Institute of Meat Hygiene and Technology, Belgrade, Serbia.
| | - Vesna Jankovic
- Department for Microbiological and Molecular-biological Testing, Institute of Meat Hygiene and Technology, Belgrade, Serbia
| | - Ariane Pietzka
- Institute of Medical Microbiology and Hygiene/National Reference Laboratory for Listeria Division for Public Health, Austrian Agency for Health and Food Safety, Graz, Austria
| | - Werner Ruppitsch
- Institute of Medical Microbiology and Hygiene Division for Public Health, Austrian Agency for Health and Food Safety, Vienna, Austria
| |
Collapse
|
21
|
Tsai YH, Moura A, Gu ZQ, Chang JH, Liao YS, Teng RH, Tseng KY, Chang DL, Liu WR, Huang YT, Leclercq A, Lo HJ, Lecuit M, Chiou CS. Genomic Surveillance of Listeria monocytogenes in Taiwan, 2014 to 2019. Microbiol Spectr 2022; 10:e0182522. [PMID: 36222695 PMCID: PMC9769603 DOI: 10.1128/spectrum.01825-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/20/2022] [Indexed: 01/05/2023] Open
Abstract
Listeria monocytogenes is a life-threatening foodborne pathogen. Here, we report the genomic characterization of a nationwide dataset of 411 clinical and 82 food isolates collected in Taiwan between 2014 and 2019. The observed incidence of listeriosis increased from 0.83 to 7 cases per million population upon implementation of mandatory notification in 2018. Pregnancy-associated cases accounted for 2.8% of human listeriosis and all-cause 7-day mortality was of 11.9% in nonmaternal-neonatal listeriosis. L. monocytogenes was isolated from 90% of raw pork and 34% of chicken products collected in supermarkets. Sublineages SL87, SL5, and SL378 accounted for the majority (65%) of clinical cases. SL87 and SL378 were also predominant (57%) in food products. Five cgMLST clusters accounted for 57% clinical cases, suggesting unnoticed outbreaks spanning up to 6 years. Mandatory notification allowed identifying the magnitude of listeriosis in Taiwan. Continuous real-time genomic surveillance will allow reducing contaminating sources and disease burden. IMPORTANCE Understanding the phylogenetic relationship between clinical and food isolates is important to identify the transmission routes of foodborne diseases. Here, we performed a nationwide study between 2014 and 2019 of both clinical and food Listeria monocytogenes isolates and sequenced their genomes. We show a 9-fold increase in listeriosis reporting upon implementation of mandatory notification. We found that sublineages SL87 and SL378 predominated among both clinical (50%) and food (57%) isolates, and identified five cgMLST clusters accounting for 57% of clinical cases, suggestive of potential protracted sources of contamination over up to 6 years in Taiwan. These findings highlight that mandatory declaration is critical in identifying the burden of listeriosis, and the importance of genome sequencing for a detailed characterization of the pathogenic L. monocytogenes genotypes circulating in Asia.
Collapse
Affiliation(s)
- Yu-Huan Tsai
- Laboratory of Host-Microbe Interactions and Cell Dynamics, Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Alexandra Moura
- Biology of Infection Unit, Institut Pasteur, Université Paris Cité, Inserm U1117, Paris, France
- Institut Pasteur, National Reference Centre and WHO Collaborating Centre Listeria, Paris, France
| | - Zi-Qi Gu
- Laboratory of Host-Microbe Interactions and Cell Dynamics, Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Jui-Hsien Chang
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Taichung, Taiwan
| | - Ying-Shu Liao
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Taichung, Taiwan
| | - Ru-Hsiou Teng
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Taichung, Taiwan
| | - Kuo-Yao Tseng
- Laboratory of Host-Microbe Interactions and Cell Dynamics, Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Dai-Ling Chang
- Laboratory of Host-Microbe Interactions and Cell Dynamics, Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wei-Ren Liu
- Laboratory of Host-Microbe Interactions and Cell Dynamics, Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yu-Tsung Huang
- Departments of Laboratory Medicine and Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
- Graduate Institute of Clinical Laboratory Sciences and Medical Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Alexandre Leclercq
- Biology of Infection Unit, Institut Pasteur, Université Paris Cité, Inserm U1117, Paris, France
- Institut Pasteur, National Reference Centre and WHO Collaborating Centre Listeria, Paris, France
| | - Hsiu-Jung Lo
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
- School of Dentistry, China Medical University, Taichung, Taiwan
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
| | - Marc Lecuit
- Biology of Infection Unit, Institut Pasteur, Université Paris Cité, Inserm U1117, Paris, France
- Institut Pasteur, National Reference Centre and WHO Collaborating Centre Listeria, Paris, France
- Division of Infectious Diseases and Tropical Medicine, Institut Imagine, APHP, Necker-Enfants Malades University Hospital, Paris, France
| | - Chien-Shun Chiou
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Taichung, Taiwan
| |
Collapse
|
22
|
Lachmann R, Halbedel S, Lüth S, Holzer A, Adler M, Pietzka A, Al Dahouk S, Stark K, Flieger A, Kleta S, Wilking H. Invasive listeriosis outbreaks and salmon products: a genomic, epidemiological study. Emerg Microbes Infect 2022; 11:1308-1315. [PMID: 35380514 PMCID: PMC9132468 DOI: 10.1080/22221751.2022.2063075] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Invasive listeriosis, caused by Listeria (L.) monocytogenes, is a severe foodborne infection, especially for immunocompromised individuals. The aim of our investigation was the identification and analysis of listeriosis outbreaks in Germany with smoked and graved salmon products as the most likely source of infection using whole-genome sequencing (WGS) and patient interviews. In a national surveillance programme, WGS was used for subtyping and core genome multi locus sequence typing (cgMLST) for cluster detection of L. monocytogenes isolates from listeriosis cases as well as food and environmental samples in Germany. Patient interviews were conducted to complement the molecular typing. We identified 22 independent listeriosis outbreaks occurring between 2010 and 2021 that were most likely associated with the consumption of smoked and graved salmon products. In Germany, 228 cases were identified, of 50 deaths (22%) reported 17 were confirmed to have died from listeriosis. Many of these 22 outbreaks were cross-border outbreaks with further cases in other countries. This report shows that smoked and graved salmon products contaminated with L. monocytogenes pose a serious risk for listeriosis infection in Germany. Interdisciplinary efforts including WGS and epidemiological investigations were essential to identifying the source of infection. Uncooked salmon products are high-risk foods frequently contaminated with L. monocytogenes. In order to minimize the risk of infection for consumers, food producers need to improve hygiene measures and reduce the entry of pathogens into food processing. Furthermore, susceptible individuals should be better informed of the risk of acquiring listeriosis from consuming smoked and graved salmon products.
Collapse
Affiliation(s)
- Raskit Lachmann
- FG35 Division of Gastrointestinal Infections, Zoonoses and Tropical Infections, Robert Koch Institute, Berlin, Germany
| | - Sven Halbedel
- FG11 Division of Enteropathogenic Bacteria and Legionella, Consultant Laboratory for Listeria, Robert Koch Institute, Wernigerode, Germany
| | - Stefanie Lüth
- German Federal Institute for Risk Assessment, National Reference Laboratory for Listeria Monocytogenes, Berlin, Germany
| | - Alexandra Holzer
- FG35 Division of Gastrointestinal Infections, Zoonoses and Tropical Infections, Robert Koch Institute, Berlin, Germany
| | - Marlen Adler
- German Federal Institute for Risk Assessment, National Reference Laboratory for Listeria Monocytogenes, Berlin, Germany
| | - Ariane Pietzka
- Austrian Agency for Health and Food Safety, Graz, Austria
| | - Sascha Al Dahouk
- German Federal Institute for Risk Assessment, National Reference Laboratory for Listeria Monocytogenes, Berlin, Germany
| | - Klaus Stark
- FG35 Division of Gastrointestinal Infections, Zoonoses and Tropical Infections, Robert Koch Institute, Berlin, Germany
| | - Antje Flieger
- FG11 Division of Enteropathogenic Bacteria and Legionella, Consultant Laboratory for Listeria, Robert Koch Institute, Wernigerode, Germany
| | - Sylvia Kleta
- German Federal Institute for Risk Assessment, National Reference Laboratory for Listeria Monocytogenes, Berlin, Germany
| | - Hendrik Wilking
- FG35 Division of Gastrointestinal Infections, Zoonoses and Tropical Infections, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
23
|
Fernández-Martínez NF, Ruiz-Montero R, Briones E, Baños E, García San Miguel Rodríguez-Alarcón L, Chaves JA, Abad R, Varela C, Lorusso N. Listeriosis outbreak caused by contaminated stuffed pork, Andalusia, Spain, July to October 2019. Euro Surveill 2022; 27:2200279. [PMID: 36305337 PMCID: PMC9615414 DOI: 10.2807/1560-7917.es.2022.27.43.2200279] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Between 1 July and 26 October 2019 in Andalusia, Spain, a large outbreak with 207 confirmed cases of listeriosis was identified. Confirmed cases had a median age of 44 years (range: 0-94) and 114 were women (55.1%). Most cases (n = 154) had mild gastroenteritis, 141 (68.1%) required hospitalisation and three died; five of 34 pregnant women had a miscarriage. The median incubation period was 1 day (range: 0-30), and was significantly shorter in cases presenting with gastroenteritis compared to those presenting without gastroenteritis (1 day vs. 3 days, respectively, p value < 0.001). Stuffed pork, a ready-to-eat product consumed unheated, from a single producer contaminated with Listeria monocytogenes ST388 was identified as the source of infection. The outbreak strain was identified in 189 human samples and 87 non-human (82 food and 5 environmental) samples. Notification of new cases declined abruptly after control measures were implemented. These included contaminated food recall, protocols for clinical management of suspected cases and for post-exposure prophylaxis in pregnant women and communication campaigns with concise messages to the population through social media. Given that there were 3,059 probable cases, this was the largest L. monocytogenes outbreak ever reported in Europe.
Collapse
Affiliation(s)
- Nicolás Francisco Fernández-Martínez
- Preventive Medicine and Public Health Unit, Reina Sofia University Hospital, Córdoba, Spain,Preventive Medicine and Public Health Research Group, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Córdoba, Spain
| | - Rafael Ruiz-Montero
- Preventive Medicine and Public Health Unit, Reina Sofia University Hospital, Córdoba, Spain,Preventive Medicine and Public Health Research Group, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Córdoba, Spain,Department of Medical and Surgical Sciences, University of Córdoba, Córdoba, Spain
| | - Eduardo Briones
- Public Health Unit, Sevilla Health District, Sevilla, Spain,CIBER in Epidemiology and Public Health (CIBERESP), Sevilla, Spain
| | - Elena Baños
- Public Health Unit, Sevilla Health District, Sevilla, Spain,Directorate General of Public Health and Pharmaceutical Management, Regional Ministry of Health and Consumer Affairs, Sevilla, Spain
| | | | - J. Alberto Chaves
- Directorate General of Public Health and Pharmaceutical Management, Regional Ministry of Health and Consumer Affairs, Sevilla, Spain
| | - Raquel Abad
- Neisseria, Listeria and Bordetella Unit, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Carmen Varela
- National Centre of Epidemiology, Carlos III Health Institute, Madrid, Spain,CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | | | - Nicola Lorusso
- Directorate General of Public Health and Pharmaceutical Management, Regional Ministry of Health and Consumer Affairs, Sevilla, Spain
| |
Collapse
|
24
|
Mayer RL, Verbeke R, Asselman C, Aernout I, Gul A, Eggermont D, Boucher K, Thery F, Maia TM, Demol H, Gabriels R, Martens L, Bécavin C, De Smedt SC, Vandekerckhove B, Lentacker I, Impens F. Immunopeptidomics-based design of mRNA vaccine formulations against Listeria monocytogenes. Nat Commun 2022; 13:6075. [PMID: 36241641 PMCID: PMC9562072 DOI: 10.1038/s41467-022-33721-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/29/2022] [Indexed: 12/24/2022] Open
Abstract
Listeria monocytogenes is a foodborne intracellular bacterial pathogen leading to human listeriosis. Despite a high mortality rate and increasing antibiotic resistance no clinically approved vaccine against Listeria is available. Attenuated Listeria strains offer protection and are tested as antitumor vaccine vectors, but would benefit from a better knowledge on immunodominant vector antigens. To identify novel antigens, we screen for Listeria peptides presented on the surface of infected human cell lines by mass spectrometry-based immunopeptidomics. In between more than 15,000 human self-peptides, we detect 68 Listeria immunopeptides from 42 different bacterial proteins, including several known antigens. Peptides presented on different cell lines are often derived from the same bacterial surface proteins, classifying these antigens as potential vaccine candidates. Encoding these highly presented antigens in lipid nanoparticle mRNA vaccine formulations results in specific CD8+ T-cell responses and induces protection in vaccination challenge experiments in mice. Our results can serve as a starting point for the development of a clinical mRNA vaccine against Listeria and aid to improve attenuated Listeria vaccines and vectors, demonstrating the power of immunopeptidomics for next-generation bacterial vaccine development.
Collapse
Affiliation(s)
- Rupert L Mayer
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB Proteomics Core, VIB, Ghent, Belgium
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter, Vienna, Austria
| | - Rein Verbeke
- Ghent Research Group on Nanomedicines, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Caroline Asselman
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
| | - Ilke Aernout
- Ghent Research Group on Nanomedicines, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Adillah Gul
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Denzel Eggermont
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Katie Boucher
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB Proteomics Core, VIB, Ghent, Belgium
| | - Fabien Thery
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Teresa M Maia
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB Proteomics Core, VIB, Ghent, Belgium
| | - Hans Demol
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB Proteomics Core, VIB, Ghent, Belgium
| | - Ralf Gabriels
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Lennart Martens
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | | | - Stefaan C De Smedt
- Ghent Research Group on Nanomedicines, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Bart Vandekerckhove
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, 9000, Ghent, Belgium
| | - Ine Lentacker
- Ghent Research Group on Nanomedicines, Ghent University, Ghent, Belgium.
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| | - Francis Impens
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium.
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
- VIB Proteomics Core, VIB, Ghent, Belgium.
| |
Collapse
|
25
|
Varsaki A, Ortiz S, Santorum P, López P, López-Alonso V, Hernández M, Abad D, Rodríguez-Grande J, Ocampo-Sosa AA, Martínez-Suárez JV. Prevalence and Population Diversity of Listeria monocytogenes Isolated from Dairy Cattle Farms in the Cantabria Region of Spain. Animals (Basel) 2022; 12:ani12182477. [PMID: 36139336 PMCID: PMC9495194 DOI: 10.3390/ani12182477] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/08/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022] Open
Abstract
Simple Summary The origin and prevalence of Listeria monocytogenes was studied in dairy cattle farms in order to examine its diversity and determine its possible persistence in manure. The utilization of manure for agricultural purposes is common in many countries. While properly treated and managed manure is an effective and safe fertilizer, foodborne illness outbreaks can occur, as many of the most prominent foodborne pathogens are carried by healthy livestock. It is, therefore, necessary to study the origin and persistence of zoonotic agents in general and of L. monocytogenes in particular, in order to avoid recirculation in farms and reduce risk for human populations. Abstract Listeria monocytogenes is an opportunistic pathogen that is widely distributed in the environment. Here we show the prevalence and transmission of L. monocytogenes in dairy farms in the Cantabria region, on the northern coast of Spain. A total of 424 samples was collected from 14 dairy farms (5 organic and 9 conventional) and 211 L. monocytogenes isolates were recovered following conventional microbiological methods. There were no statistically significant differences in antimicrobial resistance ratios between organic and conventional farms. A clonal relationship among the isolates was assessed by pulsed field gel electrophoresis (PFGE) analysis and 64 different pulsotypes were obtained. Most isolates (89%, n = 187) were classified as PCR serogroup IVb by using a multiplex PCR assay. In this case, 45 isolates of PCR serogroup IVb were whole genome-sequenced to perform a further analysis at genomic level. In silico MLST analysis showed the presence of 12 sequence types (ST), of which ST1, ST54 and ST666 were the most common. Our data indicate that the environment of cattle farms retains a high incidence of L. monocytogenes, including subtypes involved in human listeriosis reports and outbreaks. This pathogen is shed in the feces and could easily colonize dairy products, as a result of fecal contamination. Effective herd and manure management are needed in order to prevent possible outbreaks.
Collapse
Affiliation(s)
- Athanasia Varsaki
- Centro de Investigación y Formación Agrarias (CIFA), 39600 Muriedas, Spain
- Correspondence: (A.V.); (J.V.M.-S.)
| | - Sagrario Ortiz
- National Institute for Agricultural and Food Research and Technology (INIA)-Spanish National Research Council (CSIC), 28040 Madrid, Spain
| | - Patricia Santorum
- Centro de Investigación y Formación Agrarias (CIFA), 39600 Muriedas, Spain
| | - Pilar López
- National Institute for Agricultural and Food Research and Technology (INIA)-Spanish National Research Council (CSIC), 28040 Madrid, Spain
| | | | - Marta Hernández
- Instituto Tecnológico Agrario de Castilla y León (ITACyL), 47071 Valladolid, Spain
| | - David Abad
- Instituto Tecnológico Agrario de Castilla y León (ITACyL), 47071 Valladolid, Spain
| | - Jorge Rodríguez-Grande
- Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla, Instituto de Investigación Valdecilla (IDIVAL), 39008 Santander, Spain
| | - Alain A. Ocampo-Sosa
- Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla, Instituto de Investigación Valdecilla (IDIVAL), 39008 Santander, Spain
| | - Joaquín V. Martínez-Suárez
- National Institute for Agricultural and Food Research and Technology (INIA)-Spanish National Research Council (CSIC), 28040 Madrid, Spain
- Correspondence: (A.V.); (J.V.M.-S.)
| |
Collapse
|
26
|
Vidovic S, Paturi G, Gupta S, Fletcher GC. Lifestyle of Listeria monocytogenes and food safety: Emerging listericidal technologies in the food industry. Crit Rev Food Sci Nutr 2022; 64:1817-1835. [PMID: 36062812 DOI: 10.1080/10408398.2022.2119205] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Listeria monocytogenes, a causative agent of listeriosis, is a major foodborne pathogen. Among pathogens, L. monocytogenes stands out for its unique ecological and physiological characteristics. This distinct lifestyle of L. monocytogenes has a significant impact on food safety and public health, mainly through the ability of this pathogen to multiply at refrigeration temperature and to persist in the food processing environment. Due to a combination of these characteristics and emerging trends in consumer preference for ready-to-eat and minimally processed food, there is a need to develop effective and sustainable approaches to control contamination of food products with L. monocytogenes. Implementation of an efficient and reliable control strategy for L. monocytogenes must first address the problem of cross-contamination. Besides the preventive control strategies, cross-contamination may be addressed with the introduction of emerging post packaging non-thermal or thermal hurdles that can ensure delivery of a listericidal step in a packed product without interfering with the organoleptic characteristics of a food product. This review aims to present the most relevant findings underlying the distinct lifestyle of L. monocytogenes and its impact on food safety. We also discuss emerging food decontamination technologies that can be used to better control L. monocytogenes.
Collapse
Affiliation(s)
- Sinisa Vidovic
- Food Safety Preservation Team, The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Gunaranjan Paturi
- Food Safety Preservation Team, The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Sravani Gupta
- Food Safety Preservation Team, The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| | - Graham C Fletcher
- Food Safety Preservation Team, The New Zealand Institute for Plant and Food Research Limited, Auckland, New Zealand
| |
Collapse
|
27
|
Pervasive Listeria monocytogenes Is Common in the Norwegian Food System and Is Associated with Increased Prevalence of Stress Survival and Resistance Determinants. Appl Environ Microbiol 2022; 88:e0086122. [PMID: 36005805 PMCID: PMC9499026 DOI: 10.1128/aem.00861-22] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
To investigate the diversity, distribution, persistence, and prevalence of stress survival and resistance genes of Listeria monocytogenes clones dominating in food processing environments in Norway, genome sequences from 769 L. monocytogenes isolates from food industry environments, foods, and raw materials (512 of which were sequenced in the present study) were subjected to whole-genome multilocus sequence typing (wgMLST), single-nucleotide polymorphism (SNP), and comparative genomic analyses. The data set comprised isolates from nine meat and six salmon processing facilities in Norway collected over a period of three decades. The most prevalent clonal complex (CC) was CC121, found in 10 factories, followed by CC7, CC8, and CC9, found in 7 factories each. Overall, 72% of the isolates were classified as persistent, showing 20 or fewer wgMLST allelic differences toward an isolate found in the same factory in a different calendar year. Moreover, over half of the isolates (56%) showed this level of genetic similarity toward an isolate collected from a different food processing facility. These were designated as pervasive strains, defined as clusters with the same level of genetic similarity as persistent strains but isolated from different factories. The prevalence of genetic determinants associated with increased survival in food processing environments, including heavy metal and biocide resistance determinants, stress response genes, and inlA truncation mutations, showed a highly significant increase among pervasive isolates but not among persistent isolates. Furthermore, these genes were significantly more prevalent among the isolates from food processing environments compared to in isolates from natural and rural environments (n = 218) and clinical isolates (n = 111) from Norway. IMPORTANCEListeria monocytogenes can persist in food processing environments for months to decades and spread through the food system by, e.g., contaminated raw materials. Knowledge of the distribution and diversity of L. monocytogenes is important in outbreak investigations and is essential to effectively track and control this pathogen in the food system. The present study presents a comprehensive overview of the prevalence of persistent clones and of the diversity of L. monocytogenes in Norwegian food processing facilities. The results demonstrate extensive spread of highly similar strains throughout the Norwegian food system, in that 56% of the 769 collected isolates from food processing factories belonged to clusters of L. monocytogenes identified in more than one facility. These strains were associated with an overall increase in the prevalence of plasmids and determinants of heavy metal and biocide resistance, as well as other genetic elements associated with stress survival mechanisms and persistence.
Collapse
|
28
|
Sibanda T, Buys EM. Listeria monocytogenes Pathogenesis: The Role of Stress Adaptation. Microorganisms 2022; 10:microorganisms10081522. [PMID: 36013940 PMCID: PMC9416357 DOI: 10.3390/microorganisms10081522] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/08/2022] [Accepted: 07/19/2022] [Indexed: 12/13/2022] Open
Abstract
Adaptive stress tolerance responses are the driving force behind the survival ability of Listeria monocytogenes in different environmental niches, within foods, and ultimately, the ability to cause human infections. Although the bacterial stress adaptive responses are primarily a necessity for survival in foods and the environment, some aspects of the stress responses are linked to bacterial pathogenesis. Food stress-induced adaptive tolerance responses to acid and osmotic stresses can protect the pathogen against similar stresses in the gastrointestinal tract (GIT) and, thus, directly aid its virulence potential. Moreover, once in the GIT, the reprogramming of gene expression from the stress survival-related genes to virulence-related genes allows L. monocytogenes to switch from an avirulent to a virulent state. This transition is controlled by two overlapping and interlinked transcriptional networks for general stress response (regulated by Sigma factor B, (SigB)) and virulence (regulated by the positive regulatory factor A (PrfA)). This review explores the current knowledge on the molecular basis of the connection between stress tolerance responses and the pathogenesis of L. monocytogenes. The review gives a detailed background on the currently known mechanisms of pathogenesis and stress adaptation. Furthermore, the paper looks at the current literature and theories on the overlaps and connections between the regulatory networks for SigB and PrfA.
Collapse
Affiliation(s)
- Thulani Sibanda
- Department of Consumer and Food Sciences, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa;
- Department of Applied Biology and Biochemistry, National University of Science and Technology, Bulawayo P.O. Box AC939, Zimbabwe
| | - Elna M. Buys
- Department of Consumer and Food Sciences, University of Pretoria, Private Bag X20, Hatfield, Pretoria 0028, South Africa;
- Correspondence:
| |
Collapse
|
29
|
Listeria monocytogenes post-outbreak management - When could a food production be considered under control again? Int J Food Microbiol 2022; 379:109844. [DOI: 10.1016/j.ijfoodmicro.2022.109844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 06/23/2022] [Accepted: 07/17/2022] [Indexed: 11/21/2022]
|
30
|
Wu J, NicAogáin K, McAuliffe O, Jordan K, O’Byrne C. Phylogenetic and Phenotypic Analyses of a Collection of Food and Clinical Listeria monocytogenes Isolates Reveal Loss of Function of Sigma B from Several Clonal Complexes. Appl Environ Microbiol 2022; 88:e0005122. [PMID: 35481758 PMCID: PMC9128516 DOI: 10.1128/aem.00051-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/17/2022] [Indexed: 12/14/2022] Open
Abstract
To understand the molecular mechanisms that contribute to the stress responses of the important foodborne pathogen Listeria monocytogenes, we collected 139 strains (meat, n = 25; dairy, n = 10; vegetable, n = 8; seafood, n = 14; mixed food, n = 4; and food processing environments, n = 78), mostly isolated in Ireland, and subjected them to whole-genome sequencing. These strains were compared to 25 Irish clinical isolates and 4 well-studied reference strains. Core genome and pan-genome analysis confirmed a highly clonal and deeply branched population structure. Multilocus sequence typing showed that this collection contained a diverse range of strains from L. monocytogenes lineages I and II. Several groups of isolates with highly similar genome content were traced to single or multiple food business operators, providing evidence of strain persistence or prevalence, respectively. Phenotypic screening assays for tolerance to salt stress and resistance to acid stress revealed variants within several clonal complexes that were phenotypically distinct. Five of these phenotypic outliers were found to carry mutations in the sigB operon, which encodes the stress-inducible sigma factor sigma B. Transcriptional analysis confirmed that three of the strains that carried mutations in sigB, rsbV, or rsbU had reduced SigB activity, as predicted. These strains exhibited increased tolerance to salt stress and displayed decreased resistance to low pH stress. Overall, this study shows that loss-of-function mutations in the sigB operon are comparatively common in field isolates, probably reflecting the cost of the general stress response to reproductive fitness in this pathogen. IMPORTANCE The bacterial foodborne pathogen Listeria monocytogenes frequently contaminates various categories of food products and is able to cause life-threatening infections when ingested by humans. Thus, it is important to control the growth of this bacterium in food by understanding the mechanisms that allow its proliferation under suboptimal conditions. In this study, intraspecies heterogeneity in stress response was observed across a collection consisting of mainly Irish L. monocytogenes isolates. Through comparisons of genome sequence and phenotypes observed, we identified three strains with impairment of the general stress response regulator SigB. Two of these strains are used widely in food challenge studies for evaluating the growth potential of L. monocytogenes. Given that loss of SigB function is associated with atypical phenotypic properties, the use of these strains in food challenge studies should be re-evaluated.
Collapse
Affiliation(s)
- Jialun Wu
- Bacterial Stress Response Group, Microbiology, School of Biological and Chemical Sciences, National University of Ireland, Galway, Ireland
| | - Kerrie NicAogáin
- Bacterial Stress Response Group, Microbiology, School of Biological and Chemical Sciences, National University of Ireland, Galway, Ireland
| | | | - Kieran Jordan
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
| | - Conor O’Byrne
- Bacterial Stress Response Group, Microbiology, School of Biological and Chemical Sciences, National University of Ireland, Galway, Ireland
| |
Collapse
|
31
|
Parra-Flores J, Holý O, Bustamante F, Lepuschitz S, Pietzka A, Contreras-Fernández A, Castillo C, Ovalle C, Alarcón-Lavín MP, Cruz-Córdova A, Xicohtencatl-Cortes J, Mancilla-Rojano J, Troncoso M, Figueroa G, Ruppitsch W. Virulence and Antibiotic Resistance Genes in Listeria monocytogenes Strains Isolated From Ready-to-Eat Foods in Chile. Front Microbiol 2022; 12:796040. [PMID: 35299835 PMCID: PMC8921925 DOI: 10.3389/fmicb.2021.796040] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/13/2021] [Indexed: 01/30/2023] Open
Abstract
Listeria monocytogenes is causing listeriosis, a rare but severe foodborne infection. Listeriosis affects pregnant women, newborns, older adults, and immunocompromised individuals. Ready-to-eat (RTE) foods are the most common sources of transmission of the pathogen This study explored the virulence factors and antibiotic resistance in L. monocytogenes strains isolated from ready-to-eat (RTE) foods through in vitro and in silico testing by whole-genome sequencing (WGS). The overall positivity of L. monocytogenes in RTE food samples was 3.1% and 14 strains were isolated. L. monocytogenes ST8, ST2763, ST1, ST3, ST5, ST7, ST9, ST14, ST193, and ST451 sequence types were identified by average nucleotide identity, ribosomal multilocus sequence typing (rMLST), and core genome MLST. Seven isolates had serotype 1/2a, five 1/2b, one 4b, and one 1/2c. Three strains exhibited in vitro resistance to ampicillin and 100% of the strains carried the fosX, lin, norB, mprF, tetA, and tetC resistance genes. In addition, the arsBC, bcrBC, and clpL genes were detected, which conferred resistance to stress and disinfectants. All strains harbored hlyA, prfA, and inlA genes almost thirty-two the showed the bsh, clpCEP, hly, hpt, iap/cwhA, inlA, inlB, ipeA, lspA, mpl, plcA, pclB, oat, pdgA, and prfA genes. One isolate exhibited a type 11 premature stop codon (PMSC) in the inlA gene and another isolate a new mutation (deletion of A in position 819). The Inc18(rep25), Inc18(rep26), and N1011A plasmids and MGEs were found in nine isolates. Ten isolates showed CAS-Type II-B systems; in addition, Anti-CRISPR AcrIIA1 and AcrIIA3 phage-associated systems were detected in three genomes. These virulence and antibiotic resistance traits in the strains isolated in the RTE foods indicate a potential public health risk for consumers.
Collapse
Affiliation(s)
- Julio Parra-Flores
- Department of Nutrition and Public Health, Universidad del Bío-Bío, Chillán, Chile
| | - Ondrej Holý
- Science and Research Centre, Faculty of Health Sciences, Palacký University Olomouc, Olomouc, Czechia
| | - Fernanda Bustamante
- Environmental and Public Health Laboratory, Regional Secretariat of the Ministry of Health in Maule, Talca, Chile
| | - Sarah Lepuschitz
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Vienna, Austria
| | - Ariane Pietzka
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Vienna, Austria
| | | | - Claudia Castillo
- School of Nutrition and Dietetics, Universidad del Bío-Bío, Chillán, Chile
| | - Catalina Ovalle
- School of Nutrition and Dietetics, Universidad del Bío-Bío, Chillán, Chile
| | | | - Ariadnna Cruz-Córdova
- Intestinal Bacteriology Research Laboratory, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Juan Xicohtencatl-Cortes
- Intestinal Bacteriology Research Laboratory, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
| | - Jetsi Mancilla-Rojano
- Intestinal Bacteriology Research Laboratory, Hospital Infantil de México Federico Gómez, Mexico City, Mexico
- Faculty of Medicine, Biological Sciences Graduate Program, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Miriam Troncoso
- Microbiology and Probiotics Laboratory, Institute of Nutrition and Food Technology, Universidad de Chile, Santiago, Chile
| | - Guillermo Figueroa
- Microbiology and Probiotics Laboratory, Institute of Nutrition and Food Technology, Universidad de Chile, Santiago, Chile
| | - Werner Ruppitsch
- Austrian Agency for Health and Food Safety, Institute for Medical Microbiology and Hygiene, Vienna, Austria
| |
Collapse
|
32
|
[Raw meat, lots of problems: rare infection in a patient after mechanical valve replacement and liver transplantation]. Internist (Berl) 2022; 63:658-661. [PMID: 35175370 DOI: 10.1007/s00108-022-01279-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2022] [Indexed: 10/19/2022]
Abstract
We report about a 43-year-old man who presented to the emergency department in septic shock with nonspecific gastrointestinal symptoms. Sonography and computed tomography (CT) could not identify the location of the infection in the patient who had undergone liver transplantation and has a mechanical mitral valve. Blood cultures were positive for Listeria monocytogenes. Transesophageal echocardiography showed prosthetic endocarditis. The findings regressed markedly under ampicillin.
Collapse
|
33
|
Lakicevic BZ, Den Besten HMW, De Biase D. Landscape of Stress Response and Virulence Genes Among Listeria monocytogenes Strains. Front Microbiol 2022; 12:738470. [PMID: 35126322 PMCID: PMC8811131 DOI: 10.3389/fmicb.2021.738470] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 11/30/2021] [Indexed: 12/23/2022] Open
Abstract
The pathogenic microorganism Listeria monocytogenes is ubiquitous and responsible for listeriosis, a disease with a high mortality rate in susceptible people. It can persist in different habitats, including the farm environment, the food production environments, and in foods. This pathogen can grow under challenging conditions, such as low pH, low temperatures, and high salt concentrations. However, L. monocytogenes has a high degree of strain divergence regarding virulence potential, environmental adaption, and stress response. This review seeks to provide the reader with an up-to-date overview of clonal and serotype-specific differences among L. monocytogenes strains. Emphasis on the genes and genomic islands responsible for virulence and resistance to environmental stresses is given to explain the complex adaptation among L. monocytogenes strains. Moreover, we highlight the use of advanced diagnostic technologies, such as whole-genome sequencing, to fine-tune quantitative microbiological risk assessment for better control of listeriosis.
Collapse
Affiliation(s)
- Brankica Z. Lakicevic
- Institute of Meat Hygiene and Technology, Belgrade, Serbia
- *Correspondence: Brankica Z. Lakicevic,
| | | | - Daniela De Biase
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| |
Collapse
|
34
|
Bagatella S, Tavares-Gomes L, Oevermann A. Listeria monocytogenes at the interface between ruminants and humans: A comparative pathology and pathogenesis review. Vet Pathol 2021; 59:186-210. [PMID: 34856818 DOI: 10.1177/03009858211052659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The bacterium Listeria monocytogenes (Lm) is widely distributed in the environment as a saprophyte, but may turn into a lethal intracellular pathogen upon ingestion. Invasive infections occur in numerous species worldwide, but most commonly in humans and farmed ruminants, and manifest as distinct forms. Of those, neuroinfection is remarkably threatening due to its high mortality. Lm is widely studied not only as a pathogen but also as an essential model for intracellular infections and host-pathogen interactions. Many aspects of its ecology and pathogenesis, however, remain unclear and are rarely addressed in its natural hosts. This review highlights the heterogeneity and adaptability of Lm by summarizing its association with the environment, farm animals, and disease. It also provides current knowledge on key features of the pathology and (molecular) pathogenesis of various listeriosis forms in naturally susceptible species with a special focus on ruminants and on the neuroinvasive form of the disease. Moreover, knowledge gaps on pathomechanisms of listerial infections and relevant unexplored topics in Lm pathogenesis research are highlighted.
Collapse
Affiliation(s)
- Stefano Bagatella
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Leticia Tavares-Gomes
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Anna Oevermann
- Division of Neurological Sciences, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
35
|
Chiaverini A, Guidi F, Torresi M, Acciari VA, Centorotola G, Cornacchia A, Centorame P, Marfoglia C, Blasi G, Di Domenico M, Migliorati G, Roussel S, Pomilio F, Sevellec Y. Phylogenetic Analysis and Genome-Wide Association Study Applied to an Italian Listeria monocytogenes Outbreak. Front Microbiol 2021; 12:750065. [PMID: 34803971 PMCID: PMC8600327 DOI: 10.3389/fmicb.2021.750065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/13/2021] [Indexed: 12/24/2022] Open
Abstract
From May 2015 to March 2016, a severe outbreak due to Listeria monocytogenes ST7 strain occurred in Central Italy and caused 24 confirmed clinical cases. The epidemic strain was deeply investigated using whole-genome sequencing (WGS) analysis. In the interested area, the foodborne outbreak investigation identified a meat food-producing plant contaminated by the outbreak strain, carried by pork-ready-to-eat products. In the same region, in March 2018, the epidemic strain reemerged causing one listeriosis case in a 10-month-old child. The aim of this study was to investigate the phylogeny of the epidemic and reemergent strains over time and to compare them with a closer ST7 clone, detected during the outbreak and with different pulsed-field gel electrophoresis (PFGE) profiles, in order to identify genomic features linked to the persistence and the reemergence of the outbreak. An approach combining phylogenetic analysis and genome-wide association study (GWAS) revealed that the epidemic and reemergent clones were genetically closer to the ST7 clone with different PFGE profiles and strictly associated with the pork production chain. The repeated detection of both clones was probably correlated with (i) the presence of truly persistent clones and the repeated introduction of new ones and (ii) the contribution of prophage genes in promoting the persistence of the epidemic clones. Despite that no significant genomic differences were detected between the outbreak and the reemergent strain, the two related clones detected during the outbreak can be differentiated by transcriptional factor and phage genes associated with the phage LP-114.
Collapse
Affiliation(s)
- Alexandra Chiaverini
- National Reference Laboratory for Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, Italy
| | - Fabrizia Guidi
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Perugia, Italy
| | - Marina Torresi
- National Reference Laboratory for Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, Italy
| | - Vicdalia Aniela Acciari
- National Reference Laboratory for Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, Italy
| | - Gabriella Centorotola
- National Reference Laboratory for Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, Italy
| | - Alessandra Cornacchia
- National Reference Laboratory for Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, Italy
| | - Patrizia Centorame
- National Reference Laboratory for Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, Italy
| | - Cristina Marfoglia
- National Reference Laboratory for Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, Italy
| | - Giuliana Blasi
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Perugia, Italy
| | - Marco Di Domenico
- National Reference Centre for Whole Genome Sequencing of Microbial Pathogens Database and Bioinformatic Analysis, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, Italy
| | - Giacomo Migliorati
- National Reference Laboratory for Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, Italy
| | - Sophie Roussel
- Laboratoire de Sécurité des Aliments, Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail, Université PARIS-EST, Maisons-Alfort, France
| | - Francesco Pomilio
- National Reference Laboratory for Listeria monocytogenes, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise G. Caporale, Teramo, Italy
| | - Yann Sevellec
- Laboratoire de Sécurité des Aliments, Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail, Université PARIS-EST, Maisons-Alfort, France
| |
Collapse
|
36
|
Chmielowska C, Korsak D, Chapkauskaitse E, Decewicz P, Lasek R, Szuplewska M, Bartosik D. Plasmidome of Listeria spp.-The repA-Family Business. Int J Mol Sci 2021; 22:ijms221910320. [PMID: 34638661 PMCID: PMC8508797 DOI: 10.3390/ijms221910320] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 12/17/2022] Open
Abstract
Bacteria of the genus Listeria (phylum Firmicutes) include both human and animal pathogens, as well as saprophytic strains. A common component of Listeria spp. genomes are plasmids, i.e., extrachromosomal replicons that contribute to gene flux in bacteria. This study provides an in-depth insight into the structure, diversity and evolution of plasmids occurring in Listeria strains inhabiting various environments under different anthropogenic pressures. Apart from the components of the conserved plasmid backbone (providing replication, stable maintenance and conjugational transfer functions), these replicons contain numerous adaptive genes possibly involved in: (i) resistance to antibiotics, heavy metals, metalloids and sanitizers, and (ii) responses to heat, oxidative, acid and high salinity stressors. Their genomes are also enriched by numerous transposable elements, which have influenced the plasmid architecture. The plasmidome of Listeria is dominated by a group of related replicons encoding the RepA replication initiation protein. Detailed comparative analyses provide valuable data on the level of conservation of these replicons and their role in shaping the structure of the Listeria pangenome, as well as their relationship to plasmids of other genera of Firmicutes, which demonstrates the range and direction of flow of genetic information in this important group of bacteria.
Collapse
Affiliation(s)
- Cora Chmielowska
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (E.C.); (R.L.); (M.S.)
- Correspondence: (C.C.); (D.B.)
| | - Dorota Korsak
- Department of Molecular Microbiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland;
| | - Elvira Chapkauskaitse
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (E.C.); (R.L.); (M.S.)
| | - Przemysław Decewicz
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland;
| | - Robert Lasek
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (E.C.); (R.L.); (M.S.)
| | - Magdalena Szuplewska
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (E.C.); (R.L.); (M.S.)
| | - Dariusz Bartosik
- Department of Bacterial Genetics, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096 Warsaw, Poland; (E.C.); (R.L.); (M.S.)
- Correspondence: (C.C.); (D.B.)
| |
Collapse
|
37
|
Unrath N, McCabe E, Macori G, Fanning S. Application of Whole Genome Sequencing to Aid in Deciphering the Persistence Potential of Listeria monocytogenes in Food Production Environments. Microorganisms 2021; 9:1856. [PMID: 34576750 PMCID: PMC8464834 DOI: 10.3390/microorganisms9091856] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 01/26/2023] Open
Abstract
Listeria monocytogenes is the etiological agent of listeriosis, a foodborne illness associated with high hospitalizations and mortality rates. This bacterium can persist in food associated environments for years with isolates being increasingly linked to outbreaks. This review presents a discussion of genomes of Listeria monocytogenes which are commonly regarded as persisters within food production environments, as well as genes which are involved in mechanisms aiding this phenotype. Although criteria for the detection of persistence remain undefined, the advent of whole genome sequencing (WGS) and the development of bioinformatic tools have revolutionized the ability to find closely related strains. These advancements will facilitate the identification of mechanisms responsible for persistence among indistinguishable genomes. In turn, this will lead to improved assessments of the importance of biofilm formation, adaptation to stressful conditions and tolerance to sterilizers in relation to the persistence of this bacterium, all of which have been previously associated with this phenotype. Despite much research being published around the topic of persistence, more insights are required to further elucidate the nature of true persistence and its implications for public health.
Collapse
Affiliation(s)
- Natalia Unrath
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, D04 N2E5 Dublin, Ireland; (N.U.); (E.M.); (G.M.)
| | - Evonne McCabe
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, D04 N2E5 Dublin, Ireland; (N.U.); (E.M.); (G.M.)
- Department of Microbiology, St. Vincent’s University Hospital, D04 T6F4 Dublin, Ireland
| | - Guerrino Macori
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, D04 N2E5 Dublin, Ireland; (N.U.); (E.M.); (G.M.)
| | - Séamus Fanning
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy & Sports Science, University College Dublin, D04 N2E5 Dublin, Ireland; (N.U.); (E.M.); (G.M.)
| |
Collapse
|
38
|
Wilking H, Lachmann R, Holzer A, Halbedel S, Flieger A, Stark K. Ongoing High Incidence and Case-Fatality Rates for Invasive Listeriosis, Germany, 2010-2019. Emerg Infect Dis 2021; 27:2485-2488. [PMID: 34424172 PMCID: PMC8386774 DOI: 10.3201/eid2709.210068] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We used 10 years of surveillance data to describe listeriosis frequency in Germany. Altogether, 5,576 cases were reported, 91% not pregnancy associated; case counts increased over time. Case-fatality rate was 13% in non–pregnancy-associated cases, most in adults ≥65 years of age. Detecting, investigating, and ending outbreaks might have the greatest effect on incidence
Collapse
|
39
|
Identification of the source of a Listeria monocytogenes outbreak by investigational tracing. J Verbrauch Lebensm 2021. [DOI: 10.1007/s00003-021-01336-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
AbstractThe number of identified listeriosis outbreaks has increased since the sequence typing of Listeria monocytogenes isolates was established in Germany. Due to the nature of the disease, listeriosis outbreaks are difficult to solve. We present investigational tracing as a simple and rapid method to conduct outbreak investigations. The method was applied in 2019 to stop a prolonged listeriosis outbreak in Germany. The starting point for the investigational tracing was nine health care facilities (HCF). Single cases developed listeriosis while they were staying at the nine facilities. Data were collected from companies that delivered foods to HCF and from ready-to-eat (RTE) foods that were consumed there. Following a step-wise approach, data analysis identified similarities in the food supply of the HCF. Food data were heterogeneous and needed to be standardised. Own brands and changing article numbers were challenging aspects during the identification of manufacturers. The analysis of the delivering companies revealed no similarities. Detailed information about the consumed risk foods for Listeria contamination became available for six HCF. All facilities served a wide variety of cold cut meat products to their in-patients. Investigational tracing revealed that only meat products from one out of 29 food business operators had been consumed in all six HCF. Further activities of the authorities enabled the identification of the outbreak strain on food products and in the processing environment of this company. A product recall and the measures taken stopped the listeriosis outbreak. Thus, investigational tracing can be crucial for the clarification of listeriosis outbreaks.
Collapse
|
40
|
Nüesch-Inderbinen M, Bloemberg GV, Müller A, Stevens MJA, Cernela N, Kollöffel B, Stephan R. Listeriosis Caused by Persistence of Listeria monocytogenes Serotype 4b Sequence Type 6 in Cheese Production Environment. Emerg Infect Dis 2021; 27:284-288. [PMID: 33350924 PMCID: PMC7774546 DOI: 10.3201/eid2701.203266] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A nationwide outbreak of human listeriosis in Switzerland was traced to persisting environmental contamination of a cheese dairy with Listeria monocytogenes serotype 4b, sequence type 6, cluster type 7488. Whole-genome sequencing was used to match clinical isolates to a cheese sample and to samples from numerous sites within the production environment.
Collapse
|
41
|
Raschle S, Stephan R, Stevens MJA, Cernela N, Zurfluh K, Muchaamba F, Nüesch-Inderbinen M. Environmental dissemination of pathogenic Listeria monocytogenes in flowing surface waters in Switzerland. Sci Rep 2021; 11:9066. [PMID: 33907261 PMCID: PMC8079687 DOI: 10.1038/s41598-021-88514-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 04/06/2021] [Indexed: 01/04/2023] Open
Abstract
Listeria monocytogenes is an opportunistic pathogen that is widely distributed in the environment. The aquatic environment may represent a potential source for the transmission of L. monocytogenes to animals and the food chain. The present study assessed the occurrence of L. monocytogenes in 191 surface water samples from rivers, streams and inland canals throughout Switzerland. Twenty-five (13%) of the surface water samples contained L. monocytogenes. Whole genome sequence (WGS) data were used to characterize the 25 isolates. The isolates belonged to major lineages I and II, with the majority assigned to either serotype 1/2a (48%), or 4b (44%). The predominant CCs identified were the hypervirulent serotype 4b clones CC1 and CC4, and the serotype CC412; all three have been implicated in listeriosis outbreaks and sporadic cases of human and animal infection worldwide. Two (8%) of the isolates belonged to CC6 which is an emerging hypervirulent clone. All isolates contained intact genes associated with invasion and infection, including inlA/B and prfA. The four CC4 isolates all harbored Listeria pathogenicity island 4 (LIPI-4), which confers hypervirulence. The occurrence of L. monocytogenes in river ecosystems may contribute to the dissemination and introduction of clinically highly relevant strains to the food chain.
Collapse
Affiliation(s)
- Susanne Raschle
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Roger Stephan
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Marc J A Stevens
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Nicole Cernela
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Katrin Zurfluh
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Francis Muchaamba
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
42
|
Fischer MA, Wamp S, Fruth A, Allerberger F, Flieger A, Halbedel S. Population structure-guided profiling of antibiotic resistance patterns in clinical Listeria monocytogenes isolates from Germany identifies pbpB3 alleles associated with low levels of cephalosporin resistance. Emerg Microbes Infect 2021; 9:1804-1813. [PMID: 32691687 PMCID: PMC7473133 DOI: 10.1080/22221751.2020.1799722] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Numbers of listeriosis illnesses have been increasing in Germany and the European Union during the last decade. In addition, reports on the occurrence of antibiotic resistance in Listeria monocytogenes in clinical and environmental isolates are accumulating. The susceptibility towards 14 antibiotics was tested in a selection of clinical L. monocytogenes isolates to get a more precise picture of the development and manifestation of antibiotic resistance in the L. monocytogenes population. Based on the population structure determined by core genome multi locus sequence typing (cgMLST) 544 out of 1220 sequenced strains collected in Germany between 2009 and 2019 were selected to cover the phylogenetic diversity observed in the clinical L. monocytogenes population. All isolates tested were susceptible towards ampicillin, penicillin and co-trimoxazole – the most relevant antibiotics in the treatment of listeriosis. Resistance to daptomycin and ciprofloxacin was observed in 493 (91%) and in 71 (13%) of 544 isolates, respectively. While all tested strains showed resistance towards ceftriaxone, their resistance levels varied widely between 4 mg/L and >128 mg/L. An allelic variation of the penicillin binding protein gene pbpB3 was identified as the cause of this difference in ceftriaxone resistance levels. This study is the first population structure-guided analysis of antimicrobial resistance in recent clinical isolates and confirms the importance of penicillin binding protein B3 (PBP B3) for the high level of intrinsic cephalosporin resistance of L. monocytogenes on a population-wide scale.
Collapse
Affiliation(s)
- Martin A Fischer
- FG11 Division of Enteropathogenic bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| | - Sabrina Wamp
- FG11 Division of Enteropathogenic bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| | - Angelika Fruth
- FG11 Division of Enteropathogenic bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany
| | | | - Antje Flieger
- FG11 Division of Enteropathogenic bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany.,German Consultant Laboratory for Listeria, Robert Koch Institute, Wernigerode, Germany
| | - Sven Halbedel
- FG11 Division of Enteropathogenic bacteria and Legionella, Robert Koch Institute, Wernigerode, Germany.,German Consultant Laboratory for Listeria, Robert Koch Institute, Wernigerode, Germany
| |
Collapse
|
43
|
Wang Y, Ji Q, Li S, Liu M. Prevalence and Genetic Diversity of Listeria monocytogenes Isolated From Retail Pork in Wuhan, China. Front Microbiol 2021; 12:620482. [PMID: 33767677 PMCID: PMC7986423 DOI: 10.3389/fmicb.2021.620482] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/15/2021] [Indexed: 11/25/2022] Open
Abstract
Listeria monocytogenes is a ubiquitous bacteria and causative agent of zoonotic listeriosis with high mortality. The consumption of contaminated animal-derived foods has been linked with both epidemic and sporadic listeriosis. In this work, a total of 64 L. monocytogenes isolates from 259 pork samples sold in 11 supermarket chains were identified and characterized by comparative whole-genome analysis. All isolates were delineated into eight clonal complexes (CCs), namely CC2, CC8, CC9, CC11, CC155, CC121, CC204, and CC619, spanning two lineages (I and II) and carrying 3–5 antibiotic-resistant genes (fosX, lnu, mprF, tetM, and dhfR). It is noted that Listeria pathogenicity island (LIPI)-1, LIPI-3, and LIPI-4 were distributed in all ST619 isolates from two supermarket chains that were closely related with clinical isolates (<40 SNP). Some of the isolates from different supermarket chains with 0 SNP difference indicated a common pork supply source. Notably, 57.81% of the strains carried types IB, IIA, or IIIB CRISPR-Cas system, CC121 isolates carried both types IB and IIA CRISPR-Cas systems, Cas proteins of CC155 isolates located between two CRISPR loci, each CC has unique organization of Cas proteins as well as CRISPR loci. CRISPR-Cas system-based subtyping improved discrimination of pork-derived L. monocytogenes isolates. Comparisons at the genome level contributed to understand the genetic diversities and variations among the isolates and provided insights into the genetic makeup and relatedness of these pathogens.
Collapse
Affiliation(s)
- Yiqian Wang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.,College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qiang Ji
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Shaowen Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Mei Liu
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
44
|
Closed Genome Sequences of Clinical Listeria monocytogenes PCR Serogroup IVb Isolates Associated with Two Recent Large Listeriosis Outbreaks in Germany. Microbiol Resour Announc 2021; 10:10/5/e01434-20. [PMID: 33541883 PMCID: PMC7862961 DOI: 10.1128/mra.01434-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here, we report the closed genome sequences of two representative Listeria monocytogenes strains belonging to PCR serogroup IVb, which are related to two large outbreaks of human listeriosis that affected Germany in 2015 (Eta1) and 2018 to 2019 (Epsilon1a).
Collapse
|
45
|
Nüesch-Inderbinen M, Bloemberg GV, Müller A, Stevens MJ, Cernela N, Kollöffel B, Stephan R. Listeriosis Caused by Persistence of Listeria monocytogenes Serotype 4b Sequence Type 6 in Cheese Production Environment. Emerg Infect Dis 2021. [DOI: 10.3201/eid2701/203266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
46
|
Lachmann R, Halbedel S, Adler M, Becker N, Allerberger F, Holzer A, Boone I, Falkenhorst G, Kleta S, Al Dahouk S, Stark K, Luber P, Flieger A, Wilking H. Nationwide outbreak of invasive listeriosis associated with consumption of meat products in health care facilities, Germany, 2014-2019. Clin Microbiol Infect 2020; 27:1035.e1-1035.e5. [PMID: 32979571 DOI: 10.1016/j.cmi.2020.09.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/27/2020] [Accepted: 09/11/2020] [Indexed: 12/16/2022]
Abstract
OBJECTIVES Invasive listeriosis is a severe foodborne infection caused by Listeria(L.)monocytogenes. The aim of this investigation was to verify and describe a molecular cluster of listeriosis patients and identify factors leading to this outbreak. METHODS Whole genome sequencing and core genome multilocus sequence typing were used for subtyping L. monocytogenes isolates from listeriosis cases and food samples in Germany. Patient interviews and investigational tracing of foodstuffs offered in health-care facilities (HCF), where some of the cases occurred, were conducted. RESULTS We identified a German-wide listeriosis outbreak with 39 genetically related cases occurring between 2014 and 2019. Three patients died as a result of listeriosis. After identification of HCF in different regions of Germany for at least 13 cases as places of exposure, investigational tracing of food supplies in six prioritized HCF revealed meat products from one company (X) as a commonality. Subsequently the outbreak strain was analysed in six isolates from ready-to-eat meat products and one isolate from the production environment of company X. No further Sigma1 cases were detected after recall of the meat products from the market and closure of company X (as of August 2020). CONCLUSIONS Interdisciplinary efforts including whole genome sequencing, epidemiological investigations in patients and investigational tracing of foods were essential to identify the source of infections, and thereby prevent further illnesses and deaths. This outbreak underlines the vulnerability of hospitalized patients for foodborne diseases, such as listeriosis. Food producers and HCF should minimize the risk of microbiological hazards when producing, selecting and preparing food for patients.
Collapse
Affiliation(s)
- Raskit Lachmann
- FG35 Division of Gastrointestinal Infections, Zoonoses and Tropical Infections, Robert Koch Institute, Berlin, Germany.
| | - Sven Halbedel
- FG11 Division of Enteropathogenic Bacteria and Legionella, Consultant Laboratory for Listeria, Robert Koch Institute, Wernigerode, Germany
| | - Marlen Adler
- German Federal Institute for Risk Assessment, Berlin, Germany
| | - Natalie Becker
- Federal Office of Consumer Protection and Food Safety, Berlin, Germany
| | | | - Alexandra Holzer
- FG35 Division of Gastrointestinal Infections, Zoonoses and Tropical Infections, Robert Koch Institute, Berlin, Germany
| | - Idesbald Boone
- FG35 Division of Gastrointestinal Infections, Zoonoses and Tropical Infections, Robert Koch Institute, Berlin, Germany
| | - Gerhard Falkenhorst
- FG35 Division of Gastrointestinal Infections, Zoonoses and Tropical Infections, Robert Koch Institute, Berlin, Germany
| | - Sylvia Kleta
- German Federal Institute for Risk Assessment, Berlin, Germany
| | | | - Klaus Stark
- FG35 Division of Gastrointestinal Infections, Zoonoses and Tropical Infections, Robert Koch Institute, Berlin, Germany
| | - Petra Luber
- Federal Office of Consumer Protection and Food Safety, Berlin, Germany
| | - Antje Flieger
- FG11 Division of Enteropathogenic Bacteria and Legionella, Consultant Laboratory for Listeria, Robert Koch Institute, Wernigerode, Germany
| | - Hendrik Wilking
- FG35 Division of Gastrointestinal Infections, Zoonoses and Tropical Infections, Robert Koch Institute, Berlin, Germany
| |
Collapse
|