1
|
Zhang W, Huang Y, Wang Y, Lu Z, Sun J, Jing M. Risk assessment of infection of COVID-19 contacts based on scenario simulation. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2025; 45:322-341. [PMID: 39074840 PMCID: PMC11787960 DOI: 10.1111/risa.15103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/31/2024]
Abstract
We constructed a rapid infection risk assessment model for contacts of COVID-19. The improved Wells-Riley model was used to estimate the probability of infection for contacts of COVID-19 in the same place and evaluate their risk grades. We used COVID-19 outbreaks that were documented to validate the accuracy of the model. We analyzed the relationship between controllable factors and infection probability and constructed common scenarios to analyze the infection risk of contacts in different scenarios. The model showed the robustness of the fitting (mean relative error = 5.89%, mean absolute error = 2.03%, root mean squared error = 2.03%, R2 = 0.991). We found that improving ventilation from poorly ventilated to naturally ventilated and wearing masks can reduce the probability of infection by about two times. Contacts in places of light activity, loud talking or singing, and heavy exercise, oral breathing (e.g., gyms, KTV, choirs) were at higher risk of infection. The model constructed in this study can quickly and accurately assess the infection risk grades of COVID-19 contacts. Simply opening doors and windows for ventilation can significantly reduce the risk of infection in certain places. The places of light activity, loud talking or singing, and heavy exercise, oral breathing, should pay more attention to prevent and control transmission of the epidemic.
Collapse
Affiliation(s)
- Wei‐Wen Zhang
- Department of Preventive MedicineShihezi University School of MedicineShiheziChina
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health SecurityThe Xinjiang Production and Construction CorpsXinjiangChina
| | - Yan‐Ran Huang
- Department of Preventive MedicineShihezi University School of MedicineShiheziChina
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health SecurityThe Xinjiang Production and Construction CorpsXinjiangChina
| | - Yu‐Yuan Wang
- Department of Preventive MedicineShihezi University School of MedicineShiheziChina
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health SecurityThe Xinjiang Production and Construction CorpsXinjiangChina
| | - Ze‐Xi Lu
- Department of Preventive MedicineShihezi University School of MedicineShiheziChina
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health SecurityThe Xinjiang Production and Construction CorpsXinjiangChina
| | - Jia‐Lin Sun
- Department of Preventive MedicineShihezi University School of MedicineShiheziChina
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health SecurityThe Xinjiang Production and Construction CorpsXinjiangChina
| | - Ming‐Xia Jing
- Department of Preventive MedicineShihezi University School of MedicineShiheziChina
- Key Laboratory for Prevention and Control of Emerging Infectious Diseases and Public Health SecurityThe Xinjiang Production and Construction CorpsXinjiangChina
| |
Collapse
|
2
|
Zhang H, Pan Y, Deng C, Niu Z, You R, Chen C. Experimental investigation of interpersonal particle transport in an aircraft cabin mockup with nanofiber air filters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176059. [PMID: 39241892 DOI: 10.1016/j.scitotenv.2024.176059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Improving aircraft environmental control systems could reduce the risk of airborne infectious disease transmission in aircraft cabins. The high-efficiency particulate air (HEPA) filters used in the existing systems exhibit high pressure drop, which results in high consumption of energy and fuel. Nanofiber air filters fabricated by electrospinning can reduce pressure drop, but their performance in aircraft cabins is unknown. Therefore, this study experimentally investigated the interpersonal particle transport in an aircraft cabin mockup with nanofiber air filters. First, a full-scale, fully occupied, 7-row, single-aisle aircraft cabin mockup was constructed. Nanofiber filtration units were fabricated using the electrospinning technique. Under the well-sealed laboratory testing conditions, both the small-scale nanofiber and HEPA filter media exhibited a particle removal efficiency of around 99 %. The performance of nanofiber and HEPA filtration units installed in the environmental control system of the mockup was then measured. Finally, the interpersonal particle transport in the cabin was measured. The results show that the particle removal efficiency of the nanofiber filtration units installed in the environmental control system ranged from 64 to 72 % when the particle size was 0.3-0.4 μm, which primarily reflected the large air leakages associated with the filter installation. At the filter media level, the pressure drop across the nanofiber units in the mockup was 61-67 % lower than that across the HEPA units under the same airflow rate, which however may not necessarily translate into lower pressure drop for actual filters in aircraft due to the potentially different design in terms of media face area. The average normalized particle concentration in the breathing zones of fellow passengers in the cabin mockup with the nanofiber filtration units was by 0.23, 0.29, and 0.32, respectively, when the index passenger was seated at the window, middle, and aisle.
Collapse
Affiliation(s)
- Haiqiang Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, N.T. 999077, Hong Kong SAR, China
| | - Yue Pan
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, N.T. 999077, Hong Kong SAR, China
| | - Chengzhong Deng
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, N.T. 999077, Hong Kong SAR, China
| | - Zhuolun Niu
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, N.T. 999077, Hong Kong SAR, China
| | - Ruoyu You
- Department of Building Environment and Energy Engineering, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong SAR, China
| | - Chun Chen
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, N.T. 999077, Hong Kong SAR, China; Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Shatin, N.T. 999077, Hong Kong SAR, China.
| |
Collapse
|
3
|
Iwamura N, Tsutsumi K, Hamashoji T, Arita Y, Deguchi T. Carbon Dioxide Levels as a Key Indicator for Managing SARS-CoV-2 Airborne Transmission Risks Across 10 Indoor Scenarios. Cureus 2024; 16:e74429. [PMID: 39600549 PMCID: PMC11590689 DOI: 10.7759/cureus.74429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/25/2024] [Indexed: 11/29/2024] Open
Abstract
Background The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in December 2019 has led to a global pandemic through contact, droplets, and aerosolized particles. Aim This study aimed to quantify the airborne transmission risk of SARS-CoV-2 in various indoor environments. Methods Using indoor carbon dioxide (CO2) levels, we estimated the probability of airborne transmission and the basic reproduction number (R0) across 10 hypothetical indoor scenarios, including a college classroom, restaurant, classical music concert, live event, city bus, crowded train, hospital room, home, shogi match, and business meeting, using an analysis based on the modified Wells-Riley model. Results The relationship between airborne transmission rates and indoor CO2 concentrations was visualized with and without the use of masks. Without masks, at an indoor CO2 concentration of 1,000 ppm, airborne transmission rates were high in a home (100%), business meeting (100%), and hospital room (95%); however, they were moderate in a restaurant (55%), at a shogi match (22%), and at a live concert (21%); and low in a college classroom (1.7%), on a city bus (1.3%), at a classical music concert (1.0%), and on a crowded train (0.25%). In contrast, R0 was high at a live event (42.3), in a restaurant (15.9), in a home (3.00), and in a hospital room (2.86), indicating a greater risk of cluster infections. An examination of reduced airborne infection risk through surgical mask use and improved ventilation across various scenarios revealed that mask-wearing was highly effective in hospital rooms, in restaurants, at shogi matches, and in live concerts. Ventilation was particularly useful in hospital rooms, in restaurants, and at shogi matches. Discussion and conclusion In all indoor scenarios, a positive linear relationship existed between airborne transmission risk and indoor CO2 levels. The risk varied markedly across scenarios and was influenced by factors such as mask use, ventilation quality, conversation, and exposure duration. This model indicates that the risk of SARS-CoV-2 airborne transmission can be easily predicted using a CO2 meter.
Collapse
Affiliation(s)
- Narumichi Iwamura
- Department of Nephrology, Japanese Red Cross Yamaguchi Hospital, Yamaguchi, JPN
| | - Kanako Tsutsumi
- Department of Nephrology, Japanese Red Cross Yamaguchi Hospital, Yamaguchi, JPN
| | - Takafumi Hamashoji
- Department of Nephrology, Japanese Red Cross Yamaguchi Hospital, Yamaguchi, JPN
| | - Yui Arita
- Department of Nephrology, Japanese Red Cross Yamaguchi Hospital, Yamaguchi, JPN
| | - Takashi Deguchi
- Department of Nephrology, Japanese Red Cross Yamaguchi Hospital, Yamaguchi, JPN
| |
Collapse
|
4
|
Park J, Yeom GJ. Risk of COVID-19 transmission on long-haul flights: During the COVID-19 pandemic. PLoS One 2024; 19:e0309044. [PMID: 39150944 PMCID: PMC11329108 DOI: 10.1371/journal.pone.0309044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/05/2024] [Indexed: 08/18/2024] Open
Abstract
This study aimed to determine the possibility of COVID-19 transmission through in-flight contact during flights for many patients with confirmed COVID-19 during the COVID-19 pandemic and explore infection prevention and control (IPC) methods for overseas infectious diseases. A retrospective cohort study was conducted on flight with a large number of confirmed case among. Delhi- Incheon flights in 2020. This flight was selected to confirm transmission through close contact with the cabin, with a total of 14 confirmed cases out of 190 passengers (including 10 flight attendants). After confirming COVID-19 test results for those entering Korea, we conducted an epidemiological investigation on confirmed patients to determine their general characteristics and epidemiological relevance. We analyzed the epidemiological relevance, occupational information, incubation period, and COVID-19 variation and genotype among confirmed patients who were in close contact with confirmed cases, and analyzed the possibility of transmission according to the distance of close contact in the flight. One confirmed patient was found to be highly likely to be infected due to close contact with the cabin. However, it occurred within two rows, not within 1 meter. In addition, considering the aerodynamics in the cabin and local incidence rate, infection in an unspecified number of local people could not be excluded. It was analyzed that the reason for reducing infection from close contact on board for a long time in a flight with a large number of confirmed cases was the effective IPC method. In order to prevent overseas infectious diseases caused by flights, autonomous IPC management of airlines and passengers is necessary in addition to national quarantine management such as symptom screening before boarding, wearing passenger masks while boarding, food and beverage restrictions, disinfection of public spaces, distancing between passengers, close contact management after boarding, and self-quarantine.
Collapse
Affiliation(s)
- Jiyun Park
- Incheon Airport National Quarantine Station, Korea Centers for Disease Control and Prevention (KDCA), Incheon, Republic of Korea
| | - Gye Jeong Yeom
- Department of Nursing Science, JEI University, Incheon, Republic of Korea
| |
Collapse
|
5
|
Figueiredo I, Teixeira T, Nunes S, Figueiredo C, Fragoso J, Azevedo C, Moreira D, Malheiro L. Traveling Before, During, and After the Pandemic: Impact of the COVID-19 Pandemic on the Travel Behavior and Travel Medicine Practice. Cureus 2024; 16:e66247. [PMID: 39238689 PMCID: PMC11375393 DOI: 10.7759/cureus.66247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/05/2024] [Indexed: 09/07/2024] Open
Abstract
OBJECTIVE The emergence of the coronavirus disease 2019 (COVID-19) pandemic severely compromised international travel and the practice of travel medicine. This study aimed to investigate the evolution of traveler behaviors and prophylactic prescriptions across the pandemic and post-pandemic periods. POPULATION AND METHODS A retrospective study was conducted on travelers attending the International Vaccination Center in Vila Nova de Gaia, Portugal, from August 2019 to May 2023, where data were collected on travelers' demographics, destination, duration, reasons for traveling, and data regarding travel-related vaccines and malaria prophylaxis. Travelers' characteristics were compared between Period A (pre-pandemic), Period B (pandemic), and Period C (post-pandemic). RESULTS The study included 1,711 travelers in the analysis. During the pandemic period, there were fewer travelers for tourism (5% decrease) and an increase in travelers for emigration and work (4.8% increase). There was also an increase in trips lasting less than two weeks among tourists, as well as trips lasting more than one month, primarily among travelers for work or emigration. During the pandemic, there was a significant decrease in Asia as a destination, with a shift toward African countries, which partially reverted in the post-pandemic period. Significant decreases in the prescriptions of vaccines were found during the pandemic and continued in the post-pandemic period. CONCLUSION There was a change in travelers' characteristics due to the pandemic, with a shift to shorter trips for tourism, an avoidance of Asia, and a preference for sub-Saharan African countries as a main hub of destination. Some vaccine prescription practices remained low and even decreased during or after the pandemic.
Collapse
Affiliation(s)
- Inês Figueiredo
- Medicine Department, Faculty of Medicine of University of Porto, Porto, PRT
| | - Tiago Teixeira
- Travel Clinic, Unidade Local de Saúde de Gaia/Espinho, Vila Nova de Gaia, PRT
| | - Sofia Nunes
- Travel Clinic, Unidade Local de Saúde de Gaia/Espinho, Vila Nova de Gaia, PRT
| | | | - Joana Fragoso
- Travel Clinic, Unidade Local de Saúde de Gaia/Espinho, Vila Nova de Gaia, PRT
| | - Carlos Azevedo
- Travel Clinic, Unidade Local de Saúde de Gaia/Espinho, Vila Nova de Gaia, PRT
| | - Diana Moreira
- Travel Clinic, Unidade Local de Saúde de Gaia/Espinho, Vila Nova de Gaia, PRT
| | - Luís Malheiro
- Travel Clinic, Unidade Local de Saúde de Gaia/Espinho, Vila Nova De Gaia, PRT
- Medicine Department, Faculty of Medicine of University of Porto, Porto, PRT
| |
Collapse
|
6
|
Goldswain H, Penrice-Randal R, Donovan-Banfield I, Duffy CW, Dong X, Randle N, Ryan Y, Rzeszutek AM, Pilgrim J, Keyser E, Weller SA, Hutley EJ, Hartley C, Prince T, Darby AC, Aye Maung N, Nwume H, Hiscox JA, Emmett SR. SARS-CoV-2 population dynamics in immunocompetent individuals in a closed transmission chain shows genomic diversity over the course of infection. Genome Med 2024; 16:89. [PMID: 39014481 PMCID: PMC11251137 DOI: 10.1186/s13073-024-01360-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 07/04/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND SARS-CoV-2 remains rapidly evolving, and many biologically important genomic substitutions/indels have characterised novel SARS-CoV-2 lineages, which have emerged during successive global waves of the pandemic. Worldwide genomic sequencing has been able to monitor these waves, track transmission clusters, and examine viral evolution in real time to help inform healthcare policy. One school of thought is that an apparent greater than average divergence in an emerging lineage from contemporary variants may require persistent infection, for example in an immunocompromised host. Due to the nature of the COVID-19 pandemic and sampling, there were few studies that examined the evolutionary trajectory of SARS-CoV-2 in healthy individuals. METHODS We investigated viral evolutionary trends and participant symptomatology within a cluster of 16 SARS-CoV-2 infected, immunocompetent individuals with no co-morbidities in a closed transmission chain. Longitudinal nasopharyngeal swab sampling allowed characterisation of SARS-CoV-2 intra-host variation over time at both the dominant and minor genomic variant levels through Nimagen-Illumina sequencing. RESULTS A change in viral lineage assignment was observed in individual infections; however, there was only one indel and no evidence of recombination over the period of an acute infection. Minor and dominant genomic modifications varied between participants, with some minor genomic modifications increasing in abundance to become the dominant viral sequence during infection. CONCLUSIONS Data from this cohort of SARS-CoV-2-infected participants demonstrated that long-term persistent infection in an immunocompromised host was not necessarily a prerequisite for generating a greater than average frequency of amino acid substitutions. Amino acid substitutions at both the dominant and minor genomic sequence level were observed in immunocompetent individuals during infection showing that viral lineage changes can occur generating viral diversity.
Collapse
Affiliation(s)
- Hannah Goldswain
- Institute for Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
| | - Rebekah Penrice-Randal
- Institute for Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
| | - I'ah Donovan-Banfield
- Institute for Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
| | - Craig W Duffy
- Institute for Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
| | - Xiaofeng Dong
- Institute for Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
| | - Nadine Randle
- Institute for Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
| | - Yan Ryan
- Institute for Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
| | | | - Jack Pilgrim
- Centre for Genomic Research, University of Liverpool, Liverpool, L69 3BX, UK
| | - Emma Keyser
- Defence Science Technology Laboratory, Porton Down, Salisbury, SP4 0JQ, UK
| | - Simon A Weller
- Defence Science Technology Laboratory, Porton Down, Salisbury, SP4 0JQ, UK
| | - Emma J Hutley
- Centre for Defence Pathology, Royal Centre for Defence Medicine, OCT Centre, Birmingham, B15 2WB, UK
| | - Catherine Hartley
- Institute for Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
| | - Tessa Prince
- Institute for Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
| | - Alistair C Darby
- Institute for Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK
| | - Niall Aye Maung
- British Army, Hunter House, St Omer Barracks, Aldershot, Hampshire, GU11 2BG, UK
| | - Henry Nwume
- Defence Science Technology Laboratory, Porton Down, Salisbury, SP4 0JQ, UK
| | - Julian A Hiscox
- Institute for Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, L3 5RF, UK.
- A*STAR Infectious Diseases Laboratories (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Connexis North Tower, 1 Fusionopolis Way, Singapore, #20-10138632, Singapore.
| | - Stevan R Emmett
- Defence Science Technology Laboratory, Porton Down, Salisbury, SP4 0JQ, UK.
| |
Collapse
|
7
|
Wu Y, Namilae S, Srinivasan A, Mubayi A, Scotch M. Parametric analysis of SARS-CoV-2 dose-response models in transportation scenarios. PLoS One 2024; 19:e0301996. [PMID: 38865326 PMCID: PMC11168674 DOI: 10.1371/journal.pone.0301996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 03/26/2024] [Indexed: 06/14/2024] Open
Abstract
Transportation systems involve high-density crowds of geographically diverse people with variations in susceptibility; therefore, they play a large role in the spread of infectious diseases like SARS-CoV-2. Dose-response models are widely used to model the relationship between the trigger of a disease and the level of exposure in transmission scenarios. In this study, we quantified and bounded viral exposure-related parameters using empirical data from five transportation-related events of SARS-CoV-2 transmission. Dose-response models were then applied to parametrically analyze the infection spread in generic transportation systems, including a single-aisle airplane, bus, and railway coach, and then examined the mitigating efficiency of masks by performing a sensitivity analysis of the related factors. We found that dose level significantly affected the number of secondary infections. In general, we observed that mask usage reduced infection rates at all dose levels and that high-quality masks equivalent to FFP2/N95 masks are effective for all dose levels. In comparison, we found that lower-quality masks exhibit limited mitigation efficiency, especially in the presence of high dosage. The sensitivity analysis indicated that a reduction in the infection distance threshold is a critical factor in mask usage.
Collapse
Affiliation(s)
- Yuxuan Wu
- Embry-Riddle Aeronautical University, Daytona Beach, Florida, United States of America
| | - Sirish Namilae
- Embry-Riddle Aeronautical University, Daytona Beach, Florida, United States of America
| | - Ashok Srinivasan
- University of West Florida, Pensacola, Florida, United States of America
| | - Anuj Mubayi
- QVIA, Durham, North Carolina, United States of America
| | - Mathew Scotch
- Arizona State University, Tempe, Arizona, United States of America
| |
Collapse
|
8
|
Pan Y, Zhang H, Huang W, Liu W, You R, Chen C. Enhancing removal of air contaminants in existing aircraft cabins by optimizing supply air direction based on Re-field synergy and Bayesian optimization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172363. [PMID: 38614342 DOI: 10.1016/j.scitotenv.2024.172363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
There are a large number of airplanes currently being operated, in which the ventilation system needs to be improved to more effectively remove air contaminants. A potential approach is to adjust the supply air directions with the use of simple airflow deflectors. This study proposed a method for optimizing the supply air direction of ventilation in aircraft cabins based on the Re-field synergy index and Bayesian optimization. A validated numerical model was used to calculate the air distribution and air contaminant transport in a single-row single-aisle aircraft cabin to obtain the Re-field synergy values. The Bayesian optimization approach was used to identify the supply air direction which maximizes the Re-field synergy, namely, maximizes the mass transfer effectiveness. Finally, the air contaminant transport in a 7-row single-aisle aircraft cabin with the optimized supply air direction was evaluated to demonstrate the enhancement of ventilation performance. The results show that the proposed method based on the Re-field synergy index and Bayesian optimization can efficiently optimize the supply air direction in order to enhance the air contaminant removal in aircraft cabins. In the 7-row single-aisle aircraft cabin, the optimized supply air direction can reduce the average air contaminant concentration in the breathing zone of the passengers by up to 23 %.
Collapse
Affiliation(s)
- Yue Pan
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, N.T. 999077, Hong Kong
| | - Haiqiang Zhang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, N.T. 999077, Hong Kong
| | - Wenjie Huang
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, N.T. 999077, Hong Kong
| | - Wei Liu
- Tianjin Key Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Department of Civil and Architectural Engineering, KTH Royal Institute of Technology, Stockholm 100 44, Sweden
| | - Ruoyu You
- Department of Building Environment and Energy Engineering, The Hong Kong Polytechnic University, Kowloon 999077, Hong Kong
| | - Chun Chen
- Department of Mechanical and Automation Engineering, The Chinese University of Hong Kong, Shatin, N.T. 999077, Hong Kong; Institute of Environment, Energy and Sustainability, The Chinese University of Hong Kong, Shatin, N.T. 999077, Hong Kong.
| |
Collapse
|
9
|
Ruuskanen O, Dollner H, Luoto R, Valtonen M, Heinonen OJ, Waris M. Contraction of Respiratory Viral Infection During air Travel: An Under-Recognized Health Risk for Athletes. SPORTS MEDICINE - OPEN 2024; 10:60. [PMID: 38776030 PMCID: PMC11111432 DOI: 10.1186/s40798-024-00725-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 05/09/2024] [Indexed: 05/25/2024]
Abstract
Air travel has an important role in the spread of viral acute respiratory infections (ARIs). Aircraft offer an ideal setting for the transmission of ARI because of a closed environment, crowded conditions, and close-contact setting. Numerous studies have shown that influenza and COVID-19 spread readily in an aircraft with one virus-positive symptomatic or asymptomatic index case. The numbers of secondary cases differ markedly in different studies most probably because of the wide variation of the infectiousness of the infector as well as the susceptibility of the infectees. The primary risk factor is sitting within two rows of an infectious passenger. Elite athletes travel frequently and are thus prone to contracting an ARI during travel. It is anecdotally known in the sport and exercise medicine community that athletes often contract ARI during air travel. The degree to which athletes are infected in an aircraft by respiratory viruses is unclear. Two recent studies suggest that 8% of Team Finland members traveling to major winter sports events contracted the common cold most probably during air travel. Further prospective clinical studies with viral diagnostics are needed to understand the transmission dynamics and to develop effective and socially acceptable preventive measures during air travel.
Collapse
Affiliation(s)
- Olli Ruuskanen
- Department of Paediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, PL 52, 20521, Turku, Finland
| | - Henrik Dollner
- Department of Clinical and Molecular Medicine, Children's Clinic, St. Olavs University Hospital, Norwegian University of Science and Technology, Trondheim, Norway
| | - Raakel Luoto
- Department of Paediatrics and Adolescent Medicine, Turku University Hospital and University of Turku, PL 52, 20521, Turku, Finland
| | | | - Olli J Heinonen
- Paavo Nurmi Centre and Unit for Health and Physical Activity, University of Turku, Turku, Finland
| | - Matti Waris
- Institute of Biomedicine, University of Turku and Department of Clinical Virology, Turku University Hospital, Kiinamyllynkatu 10, 20520, Turku, Finland.
| |
Collapse
|
10
|
Zhao D, Cheng S, Tsui FR, Mathur MB, Wang CHJ. The Risk of Aircraft-Acquired SARS-CoV-2 Transmission during Commercial Flights: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:654. [PMID: 38928901 PMCID: PMC11203943 DOI: 10.3390/ijerph21060654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/09/2024] [Accepted: 05/15/2024] [Indexed: 06/28/2024]
Abstract
The aircraft-acquired transmission of SARS-CoV-2 poses a public health risk. Following PRISMA guidelines, we conducted a systematic review and analysis of articles, published prior to vaccines being available, from 24 January 2020 to 20 April 2021 to identify factors important for transmission. Articles were included if they mentioned index cases and identifiable flight duration, and excluded if they discussed non-commercial aircraft, airflow or transmission models, cases without flight data, or that were unable to determine in-flight transmission. From the 15 articles selected for in-depth review, 50 total flights were analyzed by flight duration both as a categorical variable-short (<3 h), medium (3-6 h), or long flights (>6 h)-and as a continuous variable with case counts modeled by negative binomial regression. Compared to short flights without masking, medium and long flights without masking were associated with 4.66-fold increase (95% CI: [1.01, 21.52]; p < 0.0001) and 25.93-fold increase in incidence rates (95% CI: [4.1, 164]; p < 0.0001), respectively; long flights with enforced masking had no transmission reported. A 1 h increase in flight duration was associated with 1.53-fold (95% CI: [1.19, 1.66]; p < 0.001) increase in the incidence rate ratio (IRR) of cases. Masking should be considered for long flights.
Collapse
Affiliation(s)
- Diana Zhao
- Center for Policy, Outcomes and Prevention, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; (D.Z.)
| | - Stephanie Cheng
- Center for Policy, Outcomes and Prevention, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; (D.Z.)
| | - Fuchiang R. Tsui
- Department of Anesthesiology and Critical Care Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19146, USA;
| | - Maya B. Mathur
- Quantitative Sciences Unit, Department of Pediatrics, Stanford University, Stanford, CA 94305, USA;
| | - Chih-Hung Jason Wang
- Center for Policy, Outcomes and Prevention, Department of Pediatrics, Stanford University School of Medicine, Stanford, CA 94305, USA; (D.Z.)
- Center for Health Policy, Freeman-Spogli Institute for International Studies, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
11
|
Schmidt PW. Inference under superspreading: Determinants of SARS-CoV-2 transmission in Germany. Stat Med 2024; 43:1933-1954. [PMID: 38422989 DOI: 10.1002/sim.10046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/11/2024] [Accepted: 02/10/2024] [Indexed: 03/02/2024]
Abstract
Superspreading, under-reporting, reporting delay, and confounding complicate statistical inference on determinants of disease transmission. A model that accounts for these factors within a Bayesian framework is estimated using German Covid-19 surveillance data. Compartments based on date of symptom onset, location, and age group allow to identify age-specific changes in transmission, adjusting for weather, reported prevalence, and testing and tracing. Several factors were associated with a reduction in transmission: public awareness rising, information on local prevalence, testing and tracing, high temperature, stay-at-home orders, and restaurant closures. However, substantial uncertainty remains for other interventions including school closures and mandatory face coverings. The challenge of disentangling the effects of different determinants is discussed and examined through a simulation study. On a broader perspective, the study illustrates the potential of surveillance data with demographic information and date of symptom onset to improve inference in the presence of under-reporting and reporting delay.
Collapse
|
12
|
Belland K, Garcia D, DeJohn C, Allen GR, Mills WD, Glaudel SP. Safety and Effectiveness Assessment of Ultraviolet-C Disinfection in Aircraft Cabins. Aerosp Med Hum Perform 2024; 95:147-157. [PMID: 38356125 DOI: 10.3357/amhp.6350.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
INTRODUCTION: Aircraft cabins, susceptible to disease transmission, require effective strategies to minimize the spread of airborne diseases. This paper reviews the James Reason Swiss Cheese Theory in mitigating these risks, as implemented by the International Civil Aviation Organization during the COVID-19 pandemic. It also evaluates the use of airborne ultraviolet-C (UV-C) light as an additional protective measure.METHODS: Our approach involved a thorough literature review by experts and a detailed risk-vs.-benefit analysis. The review covered existing research to understand the scientific foundation, while the analysis used established techniques to assess the impact of influenza and COVID-19 in terms of infections, deaths, and economic costs.RESULTS: Integrating UV-C light in aircraft cabins, when applied with appropriate scientific understanding and engineering safeguards, has the potential to reduce in-flight disease transmission. This additional mitigation strategy can work synergistically with existing measures.DISCUSSION: The research and risk-vs.-benefit analysis present strong evidence for the safety and effectiveness of continuous UV-C disinfection in aircraft cabins. It suggests that UV-C light, maintained below exposure limits, can be a valuable addition to existing measures against disease transmission during flights.Belland K, Garcia D, DeJohn C, Allen GR, Mills WD, Glaudel SP. Safety and effectiveness assessment of ultraviolet-C disinfection in aircraft cabins. Aerosp Med Hum Perform. 2024; 95(3):147-157.
Collapse
|
13
|
Bayly H, Stoddard M, Van Egeren D, Murray EJ, Raifman J, Chakravarty A, White LF. Looking under the lamp-post: quantifying the performance of contact tracing in the United States during the SARS-CoV-2 pandemic. BMC Public Health 2024; 24:595. [PMID: 38395830 PMCID: PMC10893709 DOI: 10.1186/s12889-024-18012-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Contact tracing forms a crucial part of the public-health toolbox in mitigating and understanding emergent pathogens and nascent disease outbreaks. Contact tracing in the United States was conducted during the pre-Omicron phase of the ongoing COVID-19 pandemic. This tracing relied on voluntary reporting and responses, often using rapid antigen tests due to lack of accessibility to PCR tests. These limitations, combined with SARS-CoV-2's propensity for asymptomatic transmission, raise the question "how reliable was contact tracing for COVID-19 in the United States"? We answered this question using a Markov model to examine the efficiency with which transmission could be detected based on the design and response rates of contact tracing studies in the United States. Our results suggest that contact tracing protocols in the U.S. are unlikely to have identified more than 1.65% (95% uncertainty interval: 1.62-1.68%) of transmission events with PCR testing and 1.00% (95% uncertainty interval 0.98-1.02%) with rapid antigen testing. When considering a more robust contact tracing scenario, based on compliance rates in East Asia with PCR testing, this increases to 62.7% (95% uncertainty interval: 62.6-62.8%). We did not assume presence of asymptomatic transmission or superspreading, making our estimates upper bounds on the actual percentages traced. These findings highlight the limitations in interpretability for studies of SARS-CoV-2 disease spread based on U.S. contact tracing and underscore the vulnerability of the population to future disease outbreaks, for SARS-CoV-2 and other pathogens.
Collapse
Affiliation(s)
- Henry Bayly
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | | | | | - Eleanor J Murray
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| | - Julia Raifman
- Department of Health Law, Policy and Management, Boston University School of Public Health, Boston, MA, USA
| | | | - Laura F White
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA.
| |
Collapse
|
14
|
Howkins J, Packer S, Walsh E, Kumar D, Edeghere O, Hickman M, Oliver I. Risk of transmission of SARS-CoV-2 on international flights, a retrospective cohort study using national surveillance data in England. BMC Infect Dis 2024; 24:174. [PMID: 38326781 PMCID: PMC10851503 DOI: 10.1186/s12879-024-09052-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/24/2024] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND It is not yet fully understood to what extent in-flight transmission contributed to the spread of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). This study aimed to determine the occurrence and extent of SARS-CoV-2 transmission in-flight and assess factors associated with transmission risk to inform future control strategies. METHODS Retrospective cohort study using data obtained from contact tracing of international flights arriving in England between 02/08/2021-15/10/2021. Transmission risk was estimated by calculating the secondary attack rate (SAR). Univariable and multivariable analyses of the SAR by specific risk factors was undertaken, including: number of in-flight index cases; number of symptomatic index cases; contact vaccination status; flight duration; proximity to the index case(s); contact age. RESULTS 11,307 index cases linked to 667,849 contacts with 5,289 secondary cases reported. In-flight SAR was 0.79% (95% CI: 0.77-0.81). Increasing numbers of symptomatic cases (when > 4 index cases compared to one index case aOR 1.85; 95% CI: 1.40-2.44) and seating proximity to an index case (seated within compared to outside of two rows OR 1.82; 95% CI: 1.50-2.22) were associated with increased risk of secondary cases. Full vaccination history was protective (aOR 0.52; 95% CI: 0.47-0.57). CONCLUSIONS This study confirms that in-flight transmission of SARS-CoV-2 occurred. There are factors associated with increased risk of infection. Contact tracing identified exposed persons who subsequently developed infection. A targeted approach to contact tracing passengers with the highest exposure risk could be an effective use of limited public health resources.
Collapse
Affiliation(s)
- Joshua Howkins
- UK Health Security Agency, 5th Floor, 10 South Colonnade, E14 4PU, London, UK.
| | - Simon Packer
- Health Protection Operations, UK Health Security Agency, 5th Floor, 10 South Colonnade, E14 4PU, London, UK
| | | | - Deepti Kumar
- UK Health Security Agency, 61 Colindale Avenue, NW9 5EQ, London, UK
| | - Obaghe Edeghere
- UK Health Security Agency, 61 Colindale Avenue, NW9 5EQ, London, UK
| | - Matthew Hickman
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Isabel Oliver
- UK Health Security Agency, 5th Floor, 10 South Colonnade, E14 4PU, London, UK
| |
Collapse
|
15
|
Chua MT, Boon Y, Yeoh CK, Li Z, Goh CJM, Kuan WS. Point-of-care ultrasound use in COVID-19: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2024; 12:13. [PMID: 38304913 PMCID: PMC10777239 DOI: 10.21037/atm-23-1403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/25/2023] [Indexed: 02/03/2024]
Abstract
Background and Objective The coronavirus disease 2019 (COVID-19) pandemic that began in early 2020 resulted in significant mortality from respiratory tract infections. Existing imaging modalities such as chest X-ray (CXR) lacks sensitivity in its diagnosis while computed tomography (CT) scan carries risks of radiation and contamination. Point-of-care ultrasound (POCUS) has the advantage of bedside testing with higher diagnostic accuracy. We aim to describe the various applications of POCUS for patients with suspected severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection in the emergency department (ED) and intensive care unit (ICU). Methods We performed literature search on the use of POCUS in the diagnosis and management of COVID-19 in MEDLINE, Embase and Scopus databases using the following search terms: "ultrasonography", "ultrasound", "COVID-19", "SARS-CoV-2", "SARS-CoV-2 variants", "emergency services", "emergency department" and "intensive care units". Search was performed independently by two reviewers with any discrepancy adjudicated by a third member. Key Content and Findings Lung POCUS in patients with COVID-19 shows different ultrasonographic features from pulmonary oedema, bacterial pneumonia, and other viral pneumonia, thus useful in differentiating between these conditions. It is more sensitive than CXR, and more accessible and widely available than CT scan. POCUS can be used to diagnose COVID-19 pneumonia, screen for COVID-19-related pulmonary and extrapulmonary complications, and guide management of ICU patients, such as timing of ventilator weaning based on lung POCUS findings. Conclusions POCUS is a useful and rapid point-of-care modality that can be used to aid in diagnosis, management, and risk stratification of COVID-19 patients in different healthcare settings.
Collapse
Affiliation(s)
- Mui Teng Chua
- Emergency Medicine Department, National University Hospital, National University Health System, Singapore, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yuru Boon
- Emergency Medicine Department, National University Hospital, National University Health System, Singapore, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chew Kiat Yeoh
- Emergency Medicine Department, National University Hospital, National University Health System, Singapore, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zisheng Li
- Emergency Medicine Department, National University Hospital, National University Health System, Singapore, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Carmen Jia Man Goh
- Emergency Department, Ng Teng Fong General Hospital, Singapore, Singapore
| | - Win Sen Kuan
- Emergency Medicine Department, National University Hospital, National University Health System, Singapore, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
16
|
Qiu G, Zhang X, deMello AJ, Yao M, Cao J, Wang J. On-site airborne pathogen detection for infection risk mitigation. Chem Soc Rev 2023; 52:8531-8579. [PMID: 37882143 PMCID: PMC10712221 DOI: 10.1039/d3cs00417a] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Indexed: 10/27/2023]
Abstract
Human-infecting pathogens that transmit through the air pose a significant threat to public health. As a prominent instance, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that caused the COVID-19 pandemic has affected the world in an unprecedented manner over the past few years. Despite the dissipating pandemic gloom, the lessons we have learned in dealing with pathogen-laden aerosols should be thoroughly reviewed because the airborne transmission risk may have been grossly underestimated. From a bioanalytical chemistry perspective, on-site airborne pathogen detection can be an effective non-pharmaceutic intervention (NPI) strategy, with on-site airborne pathogen detection and early-stage infection risk evaluation reducing the spread of disease and enabling life-saving decisions to be made. In light of this, we summarize the recent advances in highly efficient pathogen-laden aerosol sampling approaches, bioanalytical sensing technologies, and the prospects for airborne pathogen exposure measurement and evidence-based transmission interventions. We also discuss open challenges facing general bioaerosols detection, such as handling complex aerosol samples, improving sensitivity for airborne pathogen quantification, and establishing a risk assessment system with high spatiotemporal resolution for mitigating airborne transmission risks. This review provides a multidisciplinary outlook for future opportunities to improve the on-site airborne pathogen detection techniques, thereby enhancing the preparedness for more on-site bioaerosols measurement scenarios, such as monitoring high-risk pathogens on airplanes, weaponized pathogen aerosols, influenza variants at the workplace, and pollutant correlated with sick building syndromes.
Collapse
Affiliation(s)
- Guangyu Qiu
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
- Institute of Environmental Engineering, ETH Zürich, Zürich 8093, Switzerland
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| | - Xiaole Zhang
- Institute of Environmental Engineering, ETH Zürich, Zürich 8093, Switzerland
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| | - Andrew J deMello
- Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zürich, Vladimir-Prelog-Weg1, Zürich, Switzerland
| | - Maosheng Yao
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, China
| | - Junji Cao
- Institute of Atmospheric Physics, Chinese Academy of Science, China
| | - Jing Wang
- Institute of Environmental Engineering, ETH Zürich, Zürich 8093, Switzerland
- Laboratory for Advanced Analytical Technologies, Empa, Swiss Federal Laboratories for Materials Science and Technology, Dübendorf 8600, Switzerland
| |
Collapse
|
17
|
Judson TJ, Zhang S, Lindan CP, Boothroyd D, Grumbach K, Bollyky JB, Sample HA, Huang B, Desai M, Gonzales R, Maldonado Y, Rutherford G. Association of protective behaviors with SARS-CoV-2 infection: results from a longitudinal cohort study of adults in the San Francisco Bay Area. Ann Epidemiol 2023; 86:1-7. [PMID: 37524216 DOI: 10.1016/j.annepidem.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/02/2023]
Abstract
PURPOSE In an effort to decrease transmission during the first years of the COVID-19 pandemic, public health officials encouraged masking, social distancing, and working from home, and restricted travel. However, many studies of the effectiveness of these measures had significant methodologic limitations. In this analysis, we used data from the TrackCOVID study, a longitudinal cohort study of a population-based sample of 3846 adults in the San Francisco Bay Area, to evaluate the association between self-reported protective behaviors and incidence of SARS-CoV-2 infection. METHODS Participants without SARS-CoV2 infection were enrolled from August to December 2020 and followed monthly with testing and surveys (median of four visits). RESULTS A total of 118 incident infections occurred (3.0% of participants). At baseline, 80.0% reported always wearing a mask; 56.0% avoided contact with nonhousehold members some/most of the time; 9.6% traveled outside the state; and 16.0% worked 20 or more hours per week outside the home. Factors associated with incident infection included being Black or Latinx, having less than a college education, and having more household residents. The only behavioral factor associated with incident infection was working outside the home (adjusted hazard ratio 1.62, 95% confidence interval 1.02-2.59). CONCLUSIONS Focusing on protecting people who cannot work from home could help prevent infections during future waves of COVID-19, or future pandemics from respiratory viruses. This focus must be balanced with the known importance of directing resources toward those at risk of severe infections.
Collapse
Affiliation(s)
- Timothy J Judson
- Department of Medicine, University of California San Francisco, San Francisco.
| | - Shiqi Zhang
- Quantitative Sciences Unit, Department of Medicine, Stanford University, Palo Alto, CA
| | - Christina P Lindan
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco
| | - Derek Boothroyd
- Quantitative Sciences Unit, Department of Medicine, Stanford University, Palo Alto, CA
| | - Kevin Grumbach
- Department of Family and Community Medicine, University of California San Francisco, San Francisco
| | - Jennifer B Bollyky
- Department of Pediatrics, School of Medicine, Stanford University, Stanford, CA
| | - Hannah A Sample
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles
| | - Beatrice Huang
- Department of Medicine, University of California San Francisco, San Francisco
| | - Manisha Desai
- Quantitative Sciences Unit, Department of Medicine, Stanford University, Palo Alto, CA
| | - Ralph Gonzales
- Division of General Internal Medicine, Department of Medicine, University of California San Francisco, San Francisco
| | - Yvonne Maldonado
- Department of Pediatrics, School of Medicine, Stanford University, Stanford, CA; Department of Medicine, School of Medicine, Stanford University, Stanford, CA
| | - George Rutherford
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco
| |
Collapse
|
18
|
Lovey T, Hasler R, Gautret P, Schlagenhauf P. Travel-related respiratory symptoms and infections in travellers (2000-22): a systematic review and meta-analysis. J Travel Med 2023; 30:taad081. [PMID: 37310895 PMCID: PMC10481419 DOI: 10.1093/jtm/taad081] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/15/2023]
Abstract
BACKGROUND Respiratory tract infections (RTIs) are common in travellers due to the year-round or seasonal presence of respiratory pathogen and exposure to crowded environments during the itinerary. No study has systematically examined the burden of RTI infections among travellers. The aim of this systematic review and meta-analysis is to evaluate the prevalence of RTIs and symptoms suggestive of RTIs among travellers according to risk groups and/or geographic region, and to describe the spectrum of RTIs. METHODS The systematic review and meta-analysis was registered in PROSPERO (CRD42022311261). We searched Medline, Embase, Scopus, Cochrane Central, Web of Science, Science Direct and preprint servers MedRxiv, BioRxiv, SSRN and IEEE Xplore on 1 February 2022. Studies reporting RTIs or symptoms suggestive of RTIs in international travellers after 1 January 2000 were eligible. Data appraisal and extraction were performed by two authors, and proportional meta-analyses were used to obtain estimates of the prevalence of respiratory symptoms and RTIs in travellers and predefined risk groups. FINDINGS A total of 429 articles on travellers' illness were included. Included studies reported 86 841 symptoms suggestive of RTIs and 807 632 confirmed RTIs. Seventy-eight percent of reported respiratory symptoms and 60% of RTIs with available location data were acquired at mass gatherings events. Cough was the most common symptom suggestive of respiratory infections, and the upper respiratory tract was the most common site for RTIs in travellers. The prevalence of RTIs and respiratory symptoms suggestive of RTIs were 10% [8%; 14%] and 37% [27%; 48%], respectively, among travellers. Reporting of RTIs in travellers denoted by publication output was found to correlate with global waves of new respiratory infections. INTERPRETATION This study demonstrates a high burden of RTIs among travellers and indicates that travellers' RTIs reflect respiratory infection outbreaks. These findings have important implications for understanding and managing RTIs among travellers.
Collapse
Affiliation(s)
- Thibault Lovey
- Epidemiology, Biostatistics and Prevention Institute, University of Zürich, Hirschengraben 84, 8001 Zürich Switzerland
| | - Robin Hasler
- HFR Fribourg – Cantonal Hospital, 1708 Fribourg, Switzerland
| | | | - Patricia Schlagenhauf
- Epidemiology, Biostatistics and Prevention Institute, University of Zürich, Hirschengraben 84, 8001 Zürich Switzerland
- Department of Global and Public Health, MilMedBiol Competence Centre, Epidemiology Biostatistics and Prevention Institute, WHO Collaborating Centre for Travellers’ Health, Hirschengraben 84, 8001 Zürich, Switzerland
| |
Collapse
|
19
|
Das T, Sikdar S, Chowdhury MHU, Nyma KJ, Adnan M. SARS-CoV-2 prevalence in domestic and wildlife animals: A genomic and docking based structural comprehensive review. Heliyon 2023; 9:e19345. [PMID: 37662720 PMCID: PMC10474441 DOI: 10.1016/j.heliyon.2023.e19345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 08/08/2023] [Accepted: 08/19/2023] [Indexed: 09/05/2023] Open
Abstract
The SARS-CoV-2 virus has been identified as the infectious agent that led to the COVID-19 pandemic, which the world has seen very recently. Researchers have linked the SARS-CoV-2 outbreak to bats for the zoonotic spread of the virus to humans. Coronaviruses have a crown-like shape and positive-sense RNA nucleic acid. It attaches its spike glycoprotein to the host angiotensin-converting enzyme 2 (ACE2) receptor. Coronavirus genome comprises 14 ORFs and 27 proteins, spike glycoprotein being one of the most critical proteins for viral pathogenesis. Many mammals and reptiles, including bats, pangolins, ferrets, snakes, and turtles, serve as the principal reservoirs for this virus. But many experimental investigations have shown that certain domestic animals, including pigs, chickens, dogs, cats, and others, may also be able to harbor this virus, whether they exhibit any symptoms. These animals act as reservoirs for SARS-CoV, facilitating its zoonotic cross-species transmission to other species, including humans. In this review, we performed a phylogenetic analysis with multiple sequence alignment and pairwise evolutionary distance analysis, which revealed the similarity of ACE2 receptors in humans, chimpanzees, domestic rabbits, house mice, and golden hamsters. Pairwise RMSD analysis of the spike protein from some commonly reported SARS-CoV revealed that bat and pangolin coronavirus shared the highest structural similarity with human coronavirus. In a further experiment, molecular docking confirmed a higher affinity of pig, bat, and pangolin coronavirus spike proteins' affinity to the human ACE2 receptor. Such comprehensive structural and genomic analysis can help us to forecast the next likely animal source of these coronaviruses that may infect humans. To combat these zoonotic illnesses, we need a one health strategy that considers the well-being of people and animals and the local ecosystem.
Collapse
Affiliation(s)
- Tuhin Das
- Department of Microbiology, University of Chittagong, Chattogram, 4331, Bangladesh
| | - Suranjana Sikdar
- Department of Microbiology, University of Chittagong, Chattogram, 4331, Bangladesh
| | - Md. Helal Uddin Chowdhury
- Ethnobotany and Pharmacognosy Lab, Department of Botany, University of Chittagong, Chattogram, 4331, Bangladesh
| | | | - Md. Adnan
- Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, 84112, United States
- Department of Pharmacy, International Islamic University Chittagong, Chattogram, 4318, Bangladesh
| |
Collapse
|
20
|
Schijven JF, van Veen T, Delmaar C, Kos J, Vermeulen L, Roosien R, Verhoeven F, Schipper M, Peerlings B, Duizer E, Derei J, Lammen W, Bartels O, van der Ven H, Maas R, de Roda Husman AM. Quantitative Microbial Risk Assessment of Contracting COVID-19 Derived from Measured and Simulated Aerosol Particle Transmission in Aircraft Cabins. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:87011. [PMID: 37589660 PMCID: PMC10434022 DOI: 10.1289/ehp11495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/13/2023] [Accepted: 07/13/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND SARS-CoV-2 can be effectively transmitted between individuals located in close proximity to each other for extended durations. Aircraft provide such conditions. Although high attack rates during flights were reported, little was known about the risk levels of aerosol transmission of SARS-CoV-2 in aircraft cabins. OBJECTIVES The major objective was to estimate the risk of contracting COVID-19 from transmission of aerosol particles in aircraft cabins. METHODS In two single-aisle and one twin-aisle aircraft, dispersion of generated aerosol particles over a seven-row economy class cabin section was measured under cruise and taxi conditions and simulated with a computational fluid dynamic model under cruise conditions. Using the aerosol particle dispersion data, a quantitative microbial risk assessment was conducted for scenarios with an asymptomatic infectious person expelling aerosol particles by breathing and speaking. Effects of flight conditions were evaluated using generalized additive mixed models. RESULTS Aerosol particle concentration decreased with increasing distance from the infectious person, and this decrease varied with direction. On a typical flight with an average shedder, estimated mean risk of contracting COVID-19 ranged from 1.3 × 10 - 3 to 9.0 × 10 - 2 . Risk increased to 7.7 × 10 - 2 with a super shedder (< 3 % of cases) on a long flight. Risks increased with increasing flight duration: 2-23 cruise flights of typical duration and 2-10 flights of longer duration resulted in at least 1 case of COVID-19 due to onboard aerosol transmission by one average shedder, and in the case of one super shedder, at least 1 case in 1-3 flights of typical duration cruise and 1 flight of longer duration. DISCUSSION Our findings indicate that the risk of contracting COVID-19 by aerosol transmission in an aircraft cabin is low, but it will not be zero. Testing before boarding may help reduce the chance of a (super)shedder boarding an aircraft and mask use further reduces aerosol transmission in the aircraft cabin. https://doi.org/10.1289/EHP11495.
Collapse
Affiliation(s)
- Jack F. Schijven
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
- Department of Earth Sciences, Utrecht University, Utrecht, the Netherlands
| | - Theo van Veen
- Royal Netherlands Aerospace Centre, Amsterdam, the Netherlands
| | - Christiaan Delmaar
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Johan Kos
- Royal Netherlands Aerospace Centre, Amsterdam, the Netherlands
| | - Lucie Vermeulen
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Rui Roosien
- Royal Netherlands Aerospace Centre, Amsterdam, the Netherlands
| | | | - Maarten Schipper
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Bram Peerlings
- Royal Netherlands Aerospace Centre, Amsterdam, the Netherlands
| | - Erwin Duizer
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| | - Jonathan Derei
- Royal Netherlands Aerospace Centre, Amsterdam, the Netherlands
| | - Wim Lammen
- Royal Netherlands Aerospace Centre, Amsterdam, the Netherlands
| | - Onno Bartels
- Royal Netherlands Aerospace Centre, Amsterdam, the Netherlands
| | | | - Robert Maas
- Royal Netherlands Aerospace Centre, Amsterdam, the Netherlands
| | - Ana Maria de Roda Husman
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, the Netherlands
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
21
|
Mothershead JL, Dembek ZF, Hadeed SJ, Schwartz-Watjen KT, Broadway KM, Tigabu B, Woodards AJ, Owens AN, Chekol T, Wu A. A Universal Travel Risk Assessment Questionnaire: Travel Assessment During COVID-19 Pandemic and Endemicity. Mil Med 2023; 188:e2606-e2614. [PMID: 36065513 DOI: 10.1093/milmed/usac261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/26/2022] [Accepted: 08/17/2022] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Throughout the Coronavirus Disease 2019 (COVID-19) pandemic, military commanders have been challenged with providing appropriate travel guidance for their military and civilian personnel and dependents. This guidance, where promulgated, lacks uniformity. Travel aids and computer applications similarly differ and are not updated as often as jurisdictional travel health guidance is changed. Given the ever-evolving Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) variants with differing degrees of infectivity, COVID-19 travel guidance will remain relevant for military travelers during the transition from pandemic to endemic phases and for the foreseeable future. MATERIALS AND METHODS We reviewed all germane travel guidance promulgated by the U.S, Department of Defense; the U.S. Centers for Disease Control and Prevention; and other federal, state, and international agencies. From these materials, we identified and delineated applicable universal components for COVID-19 travel risk and created a universal Travel Risk Assessment Questionnaire (TRAQ). RESULTS We present a universal TRAQ that identifies and allows for a graded most-appropriate response to known travel risk assessment factors including travel restrictions, travel mode, travel time, travel party size, trip duration, COVID-19 incidence rate at travel destination, lodging, planned activities, personal interaction level, vaccination coverage at destination, travel location, traveler's vaccination status, previous COVID-19 infection, mask wear compliance, mask type, and work environment, along with additional considerations and post-travel COVID-19 questions. We provide examples of the use of this questionnaire that describe low, medium, and high risk to the traveler for contracting COVID-19. CONCLUSION Our TRAQ provides an easy-to-use format that can enable military, business, or personal travelers to more completely assess their likelihood of COVID-19 exposure and help them to reduce their potential for contracting COVID-19 during travel and subsequently transmitting it to others upon return. It should help commanders and traveling personnel to better assess COVID-19 travel risks through application of known travel risk factors.
Collapse
Affiliation(s)
- Jerry L Mothershead
- Applied Research Associates (ARA), Support to DTRA Technical Reachback, Albuquerque, NM 87110, USA
| | - Zygmunt F Dembek
- Battelle Memorial Institute, Support to DTRA Technical Reachback, Columbus, OH 43201, USA
- Guarantor
| | - Steven J Hadeed
- Battelle Memorial Institute, Support to DTRA Technical Reachback, Columbus, OH 43201, USA
| | | | - Katherine M Broadway
- Defense Sciences, Inc. (DSI), Support to DTRA Technical Reachback, San Antonio, TX 78230, USA
| | - Bersabeh Tigabu
- Global Systems Engineering, Support to DTRA Technical Reachback, Alexandria, VA 22312, USA
| | - Ashley J Woodards
- Battelle Memorial Institute, Support to DTRA Technical Reachback, Columbus, OH 43201, USA
| | - Akeisha N Owens
- Defense Threat Reduction Agency (DTRA), Fort Belvoir, VA 22060, USA
| | - Tesema Chekol
- Battelle Memorial Institute, Support to DTRA Technical Reachback, Columbus, OH 43201, USA
| | - Aiguo Wu
- Defense Threat Reduction Agency (DTRA), Fort Belvoir, VA 22060, USA
| |
Collapse
|
22
|
Bayly H, Stoddard M, Egeren DV, Murray EJ, Raifman J, Chakravarty A, White LF. Looking under the lamp-post: quantifying the performance of contact tracing in the United States during the SARS-CoV-2 pandemic. RESEARCH SQUARE 2023:rs.3.rs-2953875. [PMID: 37333276 PMCID: PMC10274953 DOI: 10.21203/rs.3.rs-2953875/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Contact tracing forms a crucial part of the public-health toolbox in mitigating and understanding emergent pathogens and nascent disease outbreaks. Contact tracing in the United States was conducted during the pre-Omicron phase of the ongoing COVID-19 pandemic. This tracing relied on voluntary reporting and responses, often using rapid antigen tests (with a high false negative rate) due to lack of accessibility to PCR tests. These limitations, combined with SARS-CoV-2's propensity for asymptomatic transmission, raise the question "how reliable was contact tracing for COVID-19 in the United States"? We answered this question using a Markov model to examine the efficiency with which transmission could be detected based on the design and response rates of contact tracing studies in the United States. Our results suggest that contact tracing protocols in the U.S. are unlikely to have identified more than 1.65% (95% uncertainty interval: 1.62%-1.68%) of transmission events with PCR testing and 0.88% (95% uncertainty interval 0.86%-0.89%) with rapid antigen testing. When considering an optimal scenario, based on compliance rates in East Asia with PCR testing, this increases to 62.7% (95% uncertainty interval: 62.6%-62.8%). These findings highlight the limitations in interpretability for studies of SARS-CoV-2 disease spread based on U.S. contact tracing and underscore the vulnerability of the population to future disease outbreaks, for SARS-CoV-2 and other pathogens.
Collapse
|
23
|
Wang Y, Leng P, Zhou H. Global transmission of monkeypox virus-a potential threat under the COVID-19 pandemic. Front Immunol 2023; 14:1174223. [PMID: 37215147 PMCID: PMC10198437 DOI: 10.3389/fimmu.2023.1174223] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 04/25/2023] [Indexed: 05/24/2023] Open
Abstract
Monkeypox virus (MPXV) cases have increased dramatically worldwide since May 2022. The Atlanta Center for Disease Control and Prevention (Atlanta CDC) had reported a total of 85,922 cases as of February 20th, 2023. During the COVID-19 pandemic, MPXV has emerged as a potential public threat. MPXV transmission and prevalence must be closely monitored. In this comprehensive review, we explained the basic characteristics and transmission routes of MPXV, individuals susceptible to it, as well as highlight the impact of the behavior of men who have sex with men (MSM) and airline traveling on recent outbreaks of MPXV. We also describe the clinical implications, the prevention of MPXV, and clinical measures of viral detection.
Collapse
Affiliation(s)
| | | | - Hao Zhou
- College of Medical Technology, Chengdu University of Traditional Chinese
Medicine, Chengdu, China
| |
Collapse
|
24
|
Wang F, Zhang TT, You R, Chen Q. Evaluation of infection probability of Covid-19 in different types of airliner cabins. BUILDING AND ENVIRONMENT 2023; 234:110159. [PMID: 36895516 PMCID: PMC9977471 DOI: 10.1016/j.buildenv.2023.110159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 06/09/2023]
Abstract
According to the World Health Organization (https://covid19.who.int/), more than 651 million people have been infected by COVID-19, and more than 6.6 million of them have died. COVID-19 has spread to almost every country in the world because of air travel. Cases of COVID-19 transmission from an index patient to fellow passengers in commercial airplanes have been widely reported. This investigation used computational fluid dynamics (CFD) to simulate airflow and COVID-19 virus (SARS-CoV-2) transport in a variety of airliner cabins. The cabins studied were economy-class with 2-2, 3-3, 2-3-2, and 3-3-3 seat configurations, respectively. The CFD results were validated by using experimental data from a seven-row cabin mockup with a 3-3 seat configuration. This study used the Wells-Riley model to estimate the probability of infection with SARS-CoV-2. The results show that CFD can predict airflow and virus transmission with acceptable accuracy. With an assumed flight time of 4 h, the infection probability was almost the same among the different cabins, except that the 3-3-3 configuration had a lower risk because of its airflow pattern. Flying time was the most important parameter for causing the infection, while cabin type also played a role. Without mask wearing by the passengers and the index patient, the infection probability could be 8% for a 10-h, long-haul flight, such as a twin-aisle air cabin with 3-3-3 seat configuration.
Collapse
Affiliation(s)
- Feng Wang
- Tianjin Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
- Department of Building Environment and Energy Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Tengfei Tim Zhang
- Tianjin Laboratory of Indoor Air Environmental Quality Control, School of Environmental Science and Engineering, Tianjin University, Tianjin, China
- School of Civil Engineering, Dalian University of Technology, Dalian, China
| | - Ruoyu You
- Department of Building Environment and Energy Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Qingyan Chen
- Department of Building Environment and Energy Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| |
Collapse
|
25
|
Brainard J, Jones NR, Harrison FC, Hammer CC, Lake IR. Super-spreaders of novel coronaviruses that cause SARS, MERS and COVID-19: A systematic review. Ann Epidemiol 2023:S1047-2797(23)00058-3. [PMID: 37001627 DOI: 10.1016/j.annepidem.2023.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 01/12/2023] [Accepted: 03/26/2023] [Indexed: 03/31/2023]
Abstract
PURPOSE Most index cases with novel coronavirus infections transmit disease to just one or two other individuals, but some individuals "super-spread"-they infect many secondary cases. Understanding common factors that super-spreaders may share could inform outbreak models, and be used to guide contact tracing during outbreaks. METHODS We searched in MEDLINE, Scopus, and preprints to identify studies about people documented as transmitting pathogens that cause SARS, MERS, or COVID-19 to at least nine other people. We extracted data to describe them by age, sex, location, occupation, activities, symptom severity, any underlying conditions, disease outcome and undertook quality assessment for outbreaks published by June 2021. RESULTS The most typical super-spreader was a male age 40+. Most SARS or MERS super-spreaders were very symptomatic, the super-spreading occurred in hospital settings and frequently the individual died. In contrast, COVID-19 super-spreaders often had very mild disease and most COVID-19 super-spreading happened in community settings. CONCLUSIONS SARS and MERS super-spreaders were often symptomatic, middle- or older-age adults who had a high mortality rate. In contrast, COVID-19 super-spreaders tended to have mild disease and were any adult age. More outbreak reports should be published with anonymized but useful demographic information to improve understanding of super-spreading, super-spreaders, and the settings in which super-spreading happens.
Collapse
|
26
|
Seidl C, Coyer L, Ackermann N, Katz K, Walter J, Ippisch S, Hoch M, Böhmer MM. SARS-CoV-2 Prevalence on and Incidence after Arrival in Travelers on Direct Flights from Cape Town, South Africa to Munich, Germany Shortly after Occurrence of the Omicron Variant in November/December 2021: Results from the OMTRAIR Study. Pathogens 2023; 12:pathogens12020354. [PMID: 36839626 PMCID: PMC9960974 DOI: 10.3390/pathogens12020354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/10/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
The highly transmissible SARS-CoV-2-variant B.1.1.529 (Omicron) first appeared in South Africa in November 2021. In order to study Omicron entry to Germany, its occurrence related to incoming airline travel, symptomatology and compliance with entry regulations and recommendations, we conducted a cross-sectional study, followed by a retrospective cohort study among passengers and crew on 19 direct flights from Cape Town, South Africa, to Munich, Germany, between 26 November and 23 December 2021. Travelers were mandatorily PCR-tested on arrival and invited to complete an online questionnaire. SARS-CoV-2-prevalence on arrival was 3.3% (n = 90/2728), and 93% were Omicron. Of the passengers, 528 (19%) completed the questionnaire. Among participants who tested negative on arrival, self-reported SARS-CoV-2-incidence was 4.3% within 14 days, of whom 74% reported a negative PCR-test ≤ 48 h before boarding, 77% were fully vaccinated, and 90% reported wearing an FFP2/medical mask during flight. We found multiple associations between risk factors and infection on and after arrival, among which having a positive-tested travel partner was the most noteworthy. In conclusion, PCR testing before departure was insufficient to control the introduction of the Omicron variant. Additional measures (e.g., frequent testing, quarantine after arrival or travel ban) should be considered to delay virus introduction in such settings.
Collapse
Affiliation(s)
- Cornelia Seidl
- Infectious Disease Epidemiology and Surveillance Unit, Bavarian Health and Food Safety Authority, 80636 Munich, Germany
- Postgraduate Training in Applied Epidemiology (PAE), Department of Infectious Epidemiology, Robert Koch Institute, 13353 Berlin, Germany
- Correspondence: (C.S.); (L.C.)
| | - Liza Coyer
- Infectious Disease Epidemiology and Surveillance Unit, Bavarian Health and Food Safety Authority, 80636 Munich, Germany
- ECDC Fellowship Programme, Field Epidemiology path (EPIET), European Centre for Disease Prevention and Control, 16 973 Solna, Sweden
- Correspondence: (C.S.); (L.C.)
| | - Nikolaus Ackermann
- Public Health Microbiology Unit, Bavarian Health and Food Safety Authority, 85764 Oberschleissheim, Germany
| | - Katharina Katz
- Infectious Disease Epidemiology and Surveillance Unit, Bavarian Health and Food Safety Authority, 80636 Munich, Germany
| | - Jan Walter
- Postgraduate Training in Applied Epidemiology (PAE), Department of Infectious Epidemiology, Robert Koch Institute, 13353 Berlin, Germany
| | - Siegfried Ippisch
- Task Force Infectious Diseases Department, Bavarian Health and Food Safety Authority, 80636 Munich, Germany
| | - Martin Hoch
- Task Force Infectious Diseases Department, Bavarian Health and Food Safety Authority, 80636 Munich, Germany
| | - Merle M. Böhmer
- Infectious Disease Epidemiology and Surveillance Unit, Bavarian Health and Food Safety Authority, 80636 Munich, Germany
- Institute of Social Medicine and Health Systems Research, Otto-von-Guericke-University, 39120 Magdeburg, Germany
| |
Collapse
|
27
|
Rafferty AC, Bofkin K, Hughes W, Souter S, Hosegood I, Hall RN, Furuya-Kanamori L, Liu B, Drane M, Regan T, Halder M, Kelaher C, Kirk MD. Does 2x2 airplane passenger contact tracing for infectious respiratory pathogens work? A systematic review of the evidence. PLoS One 2023; 18:e0264294. [PMID: 36730309 PMCID: PMC9894495 DOI: 10.1371/journal.pone.0264294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 01/18/2023] [Indexed: 02/03/2023] Open
Abstract
We critically appraised the literature regarding in-flight transmission of a range of respiratory infections to provide an evidence base for public health policies for contact tracing passengers, given the limited pathogen-specific data for SARS-CoV-2 currently available. Using PubMed, Web of Science, and other databases including preprints, we systematically reviewed evidence of in-flight transmission of infectious respiratory illnesses. A meta-analysis was conducted where total numbers of persons on board a specific flight was known, to calculate a pooled Attack Rate (AR) for a range of pathogens. The quality of the evidence provided was assessed using a bias assessment tool developed for in-flight transmission investigations of influenza which was modelled on the PRISMA statement and the Newcastle-Ottawa scale. We identified 103 publications detailing 165 flight investigations. Overall, 43.7% (72/165) of investigations provided evidence for in-flight transmission. H1N1 influenza A virus had the highest reported pooled attack rate per 100 persons (AR = 1.17), followed by SARS-CoV-2 (AR = 0.54) and SARS-CoV (AR = 0.32), Mycobacterium tuberculosis (TB, AR = 0.25), and measles virus (AR = 0.09). There was high heterogeneity in estimates between studies, except for TB. Of the 72 investigations that provided evidence for in-flight transmission, 27 investigations were assessed as having a high level of evidence, 23 as medium, and 22 as low. One third of the investigations that reported on proximity of cases showed transmission occurring beyond the 2x2 seating area. We suggest that for emerging pathogens, in the absence of pathogen-specific evidence, the 2x2 system should not be used for contact tracing. Instead, alternate contact tracing protocols and close contact definitions for enclosed areas, such as the same cabin on an aircraft or other forms of transport, should be considered as part of a whole of journey approach.
Collapse
Affiliation(s)
- Anna C. Rafferty
- National Centre for Epidemiology and Population Health, The Australian National University, Canberra, Australian Capital Territory, Australia
- National Incident Centre, The Australian Government Department of Health, Canberra, Australian Capital Territory, Australia
| | - Kelly Bofkin
- Qantas Airways Limited, Mascot, New South Wales, Australia
- Virgin Australia Airlines, South Brisbane, Queensland, Australia
| | - Whitney Hughes
- Qantas Airways Limited, Mascot, New South Wales, Australia
| | - Sara Souter
- Qantas Airways Limited, Mascot, New South Wales, Australia
- Virgin Australia Airlines, South Brisbane, Queensland, Australia
| | - Ian Hosegood
- Qantas Airways Limited, Mascot, New South Wales, Australia
| | - Robyn N. Hall
- National Incident Centre, The Australian Government Department of Health, Canberra, Australian Capital Territory, Australia
| | - Luis Furuya-Kanamori
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Herston, Queensland, Australia
| | - Bette Liu
- School of Population Health, University of New South Wales, Kensington, New South Wales, Australia
| | | | - Toby Regan
- New Zealand Ministry of Health, Wellington, New Zealand
| | - Molly Halder
- New Zealand Ministry of Health, Wellington, New Zealand
| | - Catherine Kelaher
- National Incident Centre, The Australian Government Department of Health, Canberra, Australian Capital Territory, Australia
| | - Martyn D. Kirk
- National Centre for Epidemiology and Population Health, The Australian National University, Canberra, Australian Capital Territory, Australia
- National Incident Centre, The Australian Government Department of Health, Canberra, Australian Capital Territory, Australia
- * E-mail:
| |
Collapse
|
28
|
Jones DL, Rhymes JM, Wade MJ, Kevill JL, Malham SK, Grimsley JMS, Rimmer C, Weightman AJ, Farkas K. Suitability of aircraft wastewater for pathogen detection and public health surveillance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159162. [PMID: 36202356 PMCID: PMC9528016 DOI: 10.1016/j.scitotenv.2022.159162] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
International air travel is now widely recognised as one of the primary mechanisms responsible for the transnational movement and global spread of SARS-CoV-2. Monitoring the viral load and novel lineages within human-derived wastewater collected from aircraft and at air transport hubs has been proposed as an effective way to monitor the importation frequency of viral pathogens. The success of this approach, however, is highly dependent on the bathroom and defecation habits of air passengers during their journey. In this study of UK adults (n = 2103), we quantified the likelihood of defecation prior to departure, on the aircraft and upon arrival on both short- and long-haul flights. The results were then used to assess the likelihood of capturing the signal from infected individuals at UK travel hubs. To obtain a representative cross-section of the population, the survey was stratified by geographical region, gender, age, parenting status, and social class. We found that an individual's likelihood to defecate on short-haul flights (< 6 h in duration) was low (< 13 % of the total), but was higher on long-haul flights (< 36 %; > 6 h in duration). This behaviour pattern was higher among males and younger age groups. The maximum likelihood of defecation was prior to departure (< 39 %). Based on known SARS-CoV-2 faecal shedding rates (30-60 %) and an equal probability of infected individuals being on short- (71 % of inbound flights) and long-haul flights (29 %), we estimate that aircraft wastewater is likely to capture ca. 8-14 % of SARS-CoV-2 cases entering the UK. Monte Carlo simulations predicted that SARS-CoV-2 would be present in wastewater on 14 % of short-haul flights and 62 % of long-haul flights under current pandemic conditions. We conclude that aircraft wastewater alone is insufficient to effectively monitor all the transboundary entries of faecal-borne pathogens but can form part of a wider strategy for public heath surveillance at national borders.
Collapse
Affiliation(s)
- Davey L Jones
- Centre for Environmental Biotechnology, Bangor University, Bangor, Gwynedd LL57 2UW, UK; Food Futures Institute, Murdoch University, Murdoch, WA 6105, Australia.
| | - Jennifer M Rhymes
- Centre for Environmental Biotechnology, Bangor University, Bangor, Gwynedd LL57 2UW, UK; UK Centre for Ecology and Hydrology, Bangor, Gwynedd LL57 2UW, UK
| | - Matthew J Wade
- Newcastle University, School of Engineering, Cassie Building, Newcastle-upon-Tyne NE1 7RU, UK; UK Health Security Agency, Environmental Monitoring for Health Protection, Windsor House, London SW1H 0TL, UK
| | - Jessica L Kevill
- Centre for Environmental Biotechnology, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Shelagh K Malham
- School of Ocean Sciences, Bangor University, Menai Bridge, Anglesey LL59 5AB, UK
| | - Jasmine M S Grimsley
- UK Health Security Agency, Environmental Monitoring for Health Protection, Windsor House, London SW1H 0TL, UK; The London Data Company, London EC2N 2AT, UK
| | - Charlotte Rimmer
- Centre for Environmental Biotechnology, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - Andrew J Weightman
- Microbiomes, Microbes and Informatics Group, School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Kata Farkas
- Centre for Environmental Biotechnology, Bangor University, Bangor, Gwynedd LL57 2UW, UK; The London Data Company, London EC2N 2AT, UK
| |
Collapse
|
29
|
Williamson KM, Butler M, Elton B, Taylor J, Islam F, Douglas MP, Kirk MD, Durrheim DN. Transmission of SARS-CoV-2 Delta variant from an infected aircrew member on a short-haul domestic flight, Australia 2021. J Travel Med 2022; 29:6854865. [PMID: 36448584 PMCID: PMC9793396 DOI: 10.1093/jtm/taac144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/17/2022] [Accepted: 11/20/2022] [Indexed: 12/05/2022]
Abstract
In June 2021, when COVID-19 incidence in Australia was low, a COVID-19 (Delta variant) cluster occurred on an 81-minute domestic flight, with an aircrew member as the likely source. Outbreak investigation demonstrated that SARS-CoV-2 may be transmitted during short-haul flights and that mask use protected against infection.
Collapse
Affiliation(s)
- Kirsten M Williamson
- Hunter New England Population Health, Hunter New England Local Health District, Newcastle, NSW 2305, Australia
| | - Michelle Butler
- Hunter New England Population Health, Hunter New England Local Health District, Newcastle, NSW 2305, Australia
| | - Benjamin Elton
- Hunter New England Population Health, Hunter New England Local Health District, Newcastle, NSW 2305, Australia
| | - Joanne Taylor
- Hunter New England Population Health, Hunter New England Local Health District, Newcastle, NSW 2305, Australia.,School of Medicine and Public Health, University of Newcastle, Newcastle, NSW 2308, Australia
| | - Fakhrul Islam
- Hunter New England Population Health, Hunter New England Local Health District, Newcastle, NSW 2305, Australia
| | - Michael P Douglas
- Public Health Response Branch, New South Wales Ministry of Health, Sydney, NSW 2060, Australia.,School of Medicine, University of Western Sydney, NSW 2052, Australia
| | - Martyn D Kirk
- National Centre for Epidemiology and Population Health, Australian National University, Canberra, ACT 2601, Australia
| | - David N Durrheim
- Hunter New England Population Health, Hunter New England Local Health District, Newcastle, NSW 2305, Australia.,School of Medicine and Public Health, University of Newcastle, Newcastle, NSW 2308, Australia
| |
Collapse
|
30
|
Valenzuela-Fernández A, Cabrera-Rodriguez R, Ciuffreda L, Perez-Yanes S, Estevez-Herrera J, González-Montelongo R, Alcoba-Florez J, Trujillo-González R, García-Martínez de Artola D, Gil-Campesino H, Díez-Gil O, Lorenzo-Salazar JM, Flores C, Garcia-Luis J. Nanomaterials to combat SARS-CoV-2: Strategies to prevent, diagnose and treat COVID-19. Front Bioeng Biotechnol 2022; 10:1052436. [PMID: 36507266 PMCID: PMC9732709 DOI: 10.3389/fbioe.2022.1052436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 11/09/2022] [Indexed: 11/26/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and the associated coronavirus disease 2019 (COVID-19), which severely affect the respiratory system and several organs and tissues, and may lead to death, have shown how science can respond when challenged by a global emergency, offering as a response a myriad of rapid technological developments. Development of vaccines at lightning speed is one of them. SARS-CoV-2 outbreaks have stressed healthcare systems, questioning patients care by using standard non-adapted therapies and diagnostic tools. In this scenario, nanotechnology has offered new tools, techniques and opportunities for prevention, for rapid, accurate and sensitive diagnosis and treatment of COVID-19. In this review, we focus on the nanotechnological applications and nano-based materials (i.e., personal protective equipment) to combat SARS-CoV-2 transmission, infection, organ damage and for the development of new tools for virosurveillance, diagnose and immune protection by mRNA and other nano-based vaccines. All the nano-based developed tools have allowed a historical, unprecedented, real time epidemiological surveillance and diagnosis of SARS-CoV-2 infection, at community and international levels. The nano-based technology has help to predict and detect how this Sarbecovirus is mutating and the severity of the associated COVID-19 disease, thereby assisting the administration and public health services to make decisions and measures for preparedness against the emerging variants of SARS-CoV-2 and severe or lethal COVID-19.
Collapse
Affiliation(s)
- Agustín Valenzuela-Fernández
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Romina Cabrera-Rodriguez
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Laura Ciuffreda
- Research Unit, Hospital Universitario N. S. de Candelaria, Santa Cruz de Tenerife, Spain
| | - Silvia Perez-Yanes
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Judith Estevez-Herrera
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | | | - Julia Alcoba-Florez
- Servicio de Microbiología, Hospital Universitario N. S. de Candelaria, Santa Cruz de Tenerife, Spain
| | - Rodrigo Trujillo-González
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
- Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de La Laguna, Santa Cruz de Tenerife, Spain
| | | | - Helena Gil-Campesino
- Servicio de Microbiología, Hospital Universitario N. S. de Candelaria, Santa Cruz de Tenerife, Spain
| | - Oscar Díez-Gil
- Servicio de Microbiología, Hospital Universitario N. S. de Candelaria, Santa Cruz de Tenerife, Spain
| | - José M. Lorenzo-Salazar
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
| | - Carlos Flores
- Research Unit, Hospital Universitario N. S. de Candelaria, Santa Cruz de Tenerife, Spain
- Genomics Division, Instituto Tecnológico y de Energías Renovables, Santa Cruz de Tenerife, Spain
- CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Faculty of Health Sciences, University of Fernando Pessoa Canarias, Las Palmas de Gran Canaria, Spain
| | - Jonay Garcia-Luis
- Laboratorio de Inmunología Celular y Viral, Unidad de Farmacología, Sección de Medicina, Facultad de Ciencias de la Salud, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| |
Collapse
|
31
|
Bennett JS, Mahmoud S, Dietrich W, Jones B, Hosni M. Evaluating vacant middle seats and masks as Coronavirus exposure reduction strategies in aircraft cabins using particle tracer experiments and computational fluid dynamics simulations. ENGINEERING REPORTS : OPEN ACCESS 2022; 5:e12582. [PMID: 36718395 PMCID: PMC9878082 DOI: 10.1002/eng2.12582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/29/2022] [Accepted: 10/01/2022] [Indexed: 06/18/2023]
Abstract
Aircraft cabins have high-performance ventilation systems, yet typically hold many persons in close proximity for long durations. The current study estimated airborne virus exposure and infection reductions when middle seats are vacant compared to full occupancy and when passengers wear surgical masks in aircraft. Tracer particle data reported by U.S. Transportation Command (TRANSCOM) and CFD simulations reported by Boeing were used along with NIOSH data, to build nonlinear regression models with particle exposure and distance from particle source as variables. These models that estimate exposure at given distances from the viral source were applied to evaluate exposure reductions from vacant middle seats. Reductions averaged 54% for the seat row where an infectious passenger is located and 36% for a 24-row cabin containing one infectious passenger, with middle seats vacant. Analysis of the TRANSCOM data showed that universal masking (surgical masks) reduced exposures by 62% and showed masking and physical distancing provide further reductions when practiced together. For a notional scenario involving 10 infectious passengers, compared with no intervention, masking, distancing, and both would prevent 6.2, 3.8, and 7.6 secondary infections, respectively, using the Wells-Riley equation. These results suggest distancing alone, masking alone, and these practiced together reduce SARS CoV-2 exposure risk in increasing order of effectiveness, when an infectious passenger is present.
Collapse
Affiliation(s)
- James S. Bennett
- Division of Field Studies and EngineeringNational Institute for Occupational Safety and Health, CDCCincinnatiOhioUSA
| | - Seif Mahmoud
- Division of Field Studies and EngineeringNational Institute for Occupational Safety and Health, CDCCincinnatiOhioUSA
| | - Watts Dietrich
- Division of Field Studies and EngineeringNational Institute for Occupational Safety and Health, CDCCincinnatiOhioUSA
- University of CincinnatiCincinnatiOhioUSA
| | - Byron Jones
- Department of Mechanical and Nuclear EngineeringKansas State UniversityManhattanKansasUSA
| | - Mohammad Hosni
- Department of Mechanical and Nuclear EngineeringKansas State UniversityManhattanKansasUSA
| |
Collapse
|
32
|
Moek F, Rohde A, Schöll M, Seidel J, Baum JHJ, der Heiden MA. Attack Rate for Wild-Type SARS-CoV-2 during Air Travel: Results from 46 Flights Traced by German Health Authorities, January-March and June-August 2020. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2022; 2022:8364666. [PMID: 36317155 PMCID: PMC9617719 DOI: 10.1155/2022/8364666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/19/2022] [Accepted: 10/12/2022] [Indexed: 11/24/2022]
Abstract
Background Evidence on the risk of SARS-CoV-2 transmission during air travel is scarce. We aimed to estimate the attack rate for wild-type SARS-CoV-2 to improve the evidence base for the adaptation of nonpharmaceutical intervention (NPI) strategies aboard airplanes. Methods In collaboration with German Public Health Authorities (PHA), we conducted a follow-up of in-flight SARS-CoV-2 contact persons. We included those contact persons whom the Emergency Operations Centre at the Robert Koch-Institute had forwarded to PHA between January to March 2020 (before masking on flights became mandatory) and June to August 2020 (after the introduction of mandatory masking). We retrospectively collected data on whether these contact persons had been successfully contacted, had become symptomatic and had been tested for SARS-CoV-2, and whether alternative exposures other than the flight were known. Results Complete data that allowed for the calculation of attack rates were available for 108 contact persons (median age of 36 (IQR 24-53), 40% female), traveling on 46 flights with a median flight duration of 3 hours (IQR 2-3.5). 62 of these persons travelled after masking on flights became mandatory. 13/87 developed symptoms, 44/77 were tested (no data for 21 and 31). 13 persons (9 of whom had been SARS-CoV-2 positive) were excluded from the analysis of attack rates due to a likely alternative exposure. We thus identified 4 probable in-flight transmissions (2 of which occurred after the introduction of mandatory masking). The overall attack rate resulted in 4.2% (4/95; 95% CI: 1.4%-11.0%). Considering flights after mandatory masking, the attack rate was 3.6% (2/56, 95% CI 0.6%-13.4%), before masking 5.1% (2/39, 95% CI 0.9%-18.6%). Conclusions The risk of wild-type SARS-CoV-2 transmission during air travel seemed low, but not negligible. In order to formulate an effective, evidence-based NPI protocol for air travel, further studies considering the different transmissibility of SARS-CoV-2 variants of concern and vaccination status are needed.
Collapse
Affiliation(s)
- Felix Moek
- Postgraduate Training for Applied Epidemiology (PAE), Department of Infectious Disease Epidemiology, Robert Koch Institute, Berlin, Germany
- European Programme for Intervention Epidemiology Training (EPIET), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Anna Rohde
- Unit for Gastrointestinal Infections, Zoonoses and Tropical Infections (Unit 35), Department of Infectious Disease Epidemiology, Robert Koch Institute, Berlin, Germany
| | - Meike Schöll
- Postgraduate Training for Applied Epidemiology (PAE), Department of Infectious Disease Epidemiology, Robert Koch Institute, Berlin, Germany
- European Programme for Intervention Epidemiology Training (EPIET), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
- Unit for Crisis Management, Outbreak Investigations and Training Programmes, Focal Point for the Public Health Service (Unit 38), Department of Infectious Disease Epidemiology, Robert Koch Institute, Berlin, Germany
| | - Juliane Seidel
- Unit for Crisis Management, Outbreak Investigations and Training Programmes, Focal Point for the Public Health Service (Unit 38), Department of Infectious Disease Epidemiology, Robert Koch Institute, Berlin, Germany
| | - Jonathan H. J. Baum
- Postgraduate Training for Applied Epidemiology (PAE), Department of Infectious Disease Epidemiology, Robert Koch Institute, Berlin, Germany
- European Programme for Intervention Epidemiology Training (EPIET), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Maria an der Heiden
- Unit for Crisis Management, Outbreak Investigations and Training Programmes, Focal Point for the Public Health Service (Unit 38), Department of Infectious Disease Epidemiology, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
33
|
Sachs JD, Karim SSA, Aknin L, Allen J, Brosbøl K, Colombo F, Barron GC, Espinosa MF, Gaspar V, Gaviria A, Haines A, Hotez PJ, Koundouri P, Bascuñán FL, Lee JK, Pate MA, Ramos G, Reddy KS, Serageldin I, Thwaites J, Vike-Freiberga V, Wang C, Were MK, Xue L, Bahadur C, Bottazzi ME, Bullen C, Laryea-Adjei G, Ben Amor Y, Karadag O, Lafortune G, Torres E, Barredo L, Bartels JGE, Joshi N, Hellard M, Huynh UK, Khandelwal S, Lazarus JV, Michie S. The Lancet Commission on lessons for the future from the COVID-19 pandemic. Lancet 2022; 400:1224-1280. [PMID: 36115368 PMCID: PMC9539542 DOI: 10.1016/s0140-6736(22)01585-9] [Citation(s) in RCA: 331] [Impact Index Per Article: 110.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/01/2022] [Accepted: 08/11/2022] [Indexed: 02/03/2023]
Affiliation(s)
- Jeffrey D Sachs
- Center for Sustainable Development, Columbia University, New York, NY, United States.
| | - Salim S Abdool Karim
- Mailman School of Public Health, Columbia University, New York, NY, United States
| | - Lara Aknin
- Department of Psychology, Simon Fraser University, Burnaby, BC, Canada
| | - Joseph Allen
- Department of Environmental Health, Harvard T H Chan School of Public Health, Boston, MA, United States
| | | | - Francesca Colombo
- Health Division, Organisation for Economic Co-operation and Development, Paris, France
| | | | | | - Vitor Gaspar
- Fiscal Affairs Department, International Monetary Fund, Washington, DC, United States
| | | | - Andy Haines
- Department of Public Health, Environments and Society, London School of Hygiene and Tropical Medicine, London, UK; Department of Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Peter J Hotez
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Phoebe Koundouri
- Department of International and European Economic Studies, Athens University of Economics and Business, Athens, Greece; Department of Technology, Management and Economics, Technical University of Denmark, Kongens Lyngby, Denmark; European Association of Environmental and Resource Economists, Athens, Greece
| | - Felipe Larraín Bascuñán
- Department of Economics and Administration, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jong-Koo Lee
- National Academy of Medicine of Korea, Seoul, Republic of Korea
| | - Muhammad Ali Pate
- Department of Global Health and Population, Harvard T H Chan School of Public Health, Boston, MA, United States
| | | | | | | | - John Thwaites
- Monash Sustainable Development Institute, Monash University, Clayton, VIC, Australia
| | | | - Chen Wang
- National Clinical Research Center for Respiratory Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China; National Clinical Research Center for Respiratory Diseases, China-Japan Friendship Hospital, Beijing, China
| | | | - Lan Xue
- Schwarzman College, Tsinghua University, Beijing, China
| | - Chandrika Bahadur
- The Lancet COVID-19 Commission Regional Task Force: India, New Delhi, India
| | - Maria Elena Bottazzi
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Chris Bullen
- National Institute for Health Innovation, University of Auckland, Auckland, New Zealand
| | | | - Yanis Ben Amor
- Center for Sustainable Development, Columbia University, New York, NY, United States
| | - Ozge Karadag
- Center for Sustainable Development, Columbia University, New York, NY, United States
| | | | - Emma Torres
- United Nations Sustainable Development Solutions Network, New York, NY, United States
| | - Lauren Barredo
- United Nations Sustainable Development Solutions Network, New York, NY, United States
| | - Juliana G E Bartels
- Center for Sustainable Development, Columbia University, New York, NY, United States
| | - Neena Joshi
- United Nations Sustainable Development Solutions Network, New York, NY, United States
| | | | | | | | - Jeffrey V Lazarus
- Barcelona Institute for Global Health (ISGlobal), Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Susan Michie
- Centre for Behaviour Change, University College London, London, UK
| |
Collapse
|
34
|
Du C, Chen Q. Virus transport and infection evaluation in a passenger elevator with a COVID-19 patient. INDOOR AIR 2022; 32:e13125. [PMID: 36305056 PMCID: PMC9874880 DOI: 10.1111/ina.13125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 05/22/2023]
Abstract
Contaminant transport and flow distribution are very important during an elevator ride, as the reduced social distancing may increase the infection rate of airborne diseases such as COVID-19. Studying the airflow and contaminant concentration in an elevator is not straightforward because the flow pattern inside an elevator changes dramatically with passenger movement and frequent door opening. Since very little experimental data were available for elevators, this investigation validated the use of computational fluid dynamics (CFD) based on the RNG k-∈ $$ \in $$ turbulence model to predict airflow and contaminant transport in a scaled, empty airliner cabin with a moving passenger. The movement of the passenger in the cabin created a dynamic airflow and transient contaminant dispersion that were similar to those in an elevator. The computed results agreed reasonably well with the experimental data for the cabin. The validated CFD program was then used to calculate the distributions of air velocity, air temperature, and particle concentration during an elevator ride with an index patient. The CFD results showed that the airflow pattern in the elevator was very complex due to the downward air supply from the ceiling and upward thermal plumes generated by passengers. This investigation studied different respiratory activities of the index patient, that is, breathing only, breathing, and coughing with and without a mask, and talking. The results indicated that the risk of infection was generally low because of the short duration of the elevator ride. If the index patient talked in the elevator, two passengers in the closest proximity to distance would be infected.
Collapse
Affiliation(s)
- Chengbo Du
- School of Mechanical EngineeringPurdue UniversityWest LafayetteIndianaUSA
| | - Qingyan Chen
- Department of Building Environment and Energy EngineeringThe Hong Kong Polytechnic UniversityKowloonHong Kong
| |
Collapse
|
35
|
Schimmoller BJ, Trovão NS, Isbell M, Goel C, Heck BF, Archer TC, Cardinal KD, Naik NB, Dutta S, Rohr Daniel A, Beheshti A. COVID-19 Exposure Assessment Tool (CEAT): Exposure quantification based on ventilation, infection prevalence, group characteristics, and behavior. SCIENCE ADVANCES 2022; 8:eabq0593. [PMID: 36179034 PMCID: PMC9524836 DOI: 10.1126/sciadv.abq0593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/17/2022] [Indexed: 06/16/2023]
Abstract
The coronavirus disease 2019 (COVID-19) Exposure Assessment Tool (CEAT) allows users to compare respiratory relative risk to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) for various scenarios, providing understanding of how combinations of protective measures affect risk. CEAT incorporates mechanistic, stochastic, and epidemiological factors including the (i) emission rate of virus, (ii) viral aerosol degradation and removal, (iii) duration of activity/exposure, (iv) inhalation rates, (v) ventilation rates (indoors/outdoors), (vi) volume of indoor space, (vii) filtration, (viii) mask use and effectiveness, (ix) distance between people (taking into account both near-field and far-field effects of proximity), (x) group size, (xi) current infection rates by variant, (xii) prevalence of infection and immunity in the community, (xiii) vaccination rates, and (xiv) implementation of COVID-19 testing procedures. CEAT applied to published studies of COVID-19 transmission events demonstrates the model's accuracy. We also show how health and safety professionals at NASA Ames Research Center used CEAT to manage potential risks posed by SARS-CoV-2 exposures.
Collapse
Affiliation(s)
- Brian J. Schimmoller
- Signature Science LLC, Austin, TX 78759, USA
- COVID-19 International Research Team, Medford, MA 02155, USA
| | - Nídia S. Trovão
- COVID-19 International Research Team, Medford, MA 02155, USA
- Fogarty International Center, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Chirag Goel
- COVID-19 International Research Team, Medford, MA 02155, USA
- Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Benjamin F. Heck
- Bastion Technologies, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Tenley C. Archer
- COVID-19 International Research Team, Medford, MA 02155, USA
- Biomea Fusion Inc., Redwood City, CA 94063, USA
| | - Klint D. Cardinal
- Leidos Inc., NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Neil B. Naik
- Leidos Inc., NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Som Dutta
- COVID-19 International Research Team, Medford, MA 02155, USA
- Mechanical and Aerospace Engineering, Utah State University, Logan, UT 84332, USA
| | - Ahleah Rohr Daniel
- Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
| | - Afshin Beheshti
- COVID-19 International Research Team, Medford, MA 02155, USA
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA 94035, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
36
|
Ngeh S, Vogt F, Sikazwe CT, Levy A, Pingault NM, Smith DW, Effler PV. Travel-associated SARS-CoV-2 transmission documented with whole genome sequencing following a long-haul international flight. J Travel Med 2022; 29:6582210. [PMID: 35532195 PMCID: PMC9129214 DOI: 10.1093/jtm/taac057] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/29/2022] [Indexed: 11/14/2022]
Abstract
BACKGROUND Multiple instances of flight-associated severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission during long-haul flights have been reported during the COVID-19 pandemic. However, comprehensive investigations of passenger risk behaviours, before, during and after the flight, are scarce. METHODS To investigate suspected SARS-CoV-2 transmission during a flight from United Arab Emirates to Australia in July 2020, systematic, repeated polymerase chain reaction (PCR) testing of passengers in hotel quarantine was linked to whole genome sequencing. Epidemiological analyses of in-depth interviews covering behaviours during the flight and activities pre- and post-boarding were used to identify risk factors for infection. RESULTS Seventeen of the 95 passengers from four different travel origins had PCR-confirmed infection yielding indistinguishable genomic sequences. Two of the 17 passengers were symptomatic within 2 days of the flight, and classified as co-primary cases. Seven secondary cases were seated within two rows of the co-primary cases, but five economy passengers seated further away and three business class passengers were also infected (attack rate = 16% [15/93]). In multivariable analysis, being seated within two rows of a primary case [odds ratio (OR) 7.16; 95% confidence interval (CI) 1.66-30.85] and spending more than an hour in the arrival airport (OR 4.96; 95% CI 1.04-23.60) were independent predictors of secondary infection, suggesting travel-associated SARS-CoV-2 transmission likely occurred both during and after the flight. Self-reported increased hand hygiene, frequent aisle walking and using the bathroom on the plane did not independently affect the risk of SARS-CoV-2 acquisition. CONCLUSIONS This investigation identified substantial in-flight transmission among passengers seated both within and beyond two rows of the primary cases. Infection of passengers in separate cabin classes also suggests transmission occurred outside the cabin environment, likely at the arrival airport. Recognizing that transmission may occur pre- and post-boarding may inform contact tracing advice and improve efforts to prevent future travel-associated outbreaks.
Collapse
Affiliation(s)
- Sera Ngeh
- Communicable Disease Control Directorate, Department of Health Western Australia, PO Box 6172, Perth Business Centre, Perth, WA 6849, Australia.,National Centre for Epidemiology and Population Health, Australian National University, 62 Mills Road, Acton, Canberra ACT 2601, Australia
| | - Florian Vogt
- Communicable Disease Control Directorate, Department of Health Western Australia, PO Box 6172, Perth Business Centre, Perth, WA 6849, Australia.,National Centre for Epidemiology and Population Health, Australian National University, 62 Mills Road, Acton, Canberra ACT 2601, Australia.,Global Health Program, The Kirby Institute, Level 6, Wallace Wurth Building, High Street, University of New South Wales, Sydney, Kensington NSW 2052, Australia
| | - Chisha T Sikazwe
- Department of Microbiology, PathWest Laboratory Medicine Western Australia, QE2 Medical Centre, Locked Bay 2009, Nedlands, WA, 6909, Australia.,School of Biomedical Sciences, University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Avram Levy
- Department of Microbiology, PathWest Laboratory Medicine Western Australia, QE2 Medical Centre, Locked Bay 2009, Nedlands, WA, 6909, Australia.,School of Biomedical Sciences, University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Nevada M Pingault
- Communicable Disease Control Directorate, Department of Health Western Australia, PO Box 6172, Perth Business Centre, Perth, WA 6849, Australia
| | - David W Smith
- Department of Microbiology, PathWest Laboratory Medicine Western Australia, QE2 Medical Centre, Locked Bay 2009, Nedlands, WA, 6909, Australia.,School of Medicine, University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| | - Paul V Effler
- Communicable Disease Control Directorate, Department of Health Western Australia, PO Box 6172, Perth Business Centre, Perth, WA 6849, Australia.,School of Medicine, University of Western Australia, 35 Stirling Highway, Perth, WA 6009, Australia
| |
Collapse
|
37
|
Zheng J, Tao Q, Chen Y. Airborne infection risk of inter-unit dispersion through semi-shaded openings: A case study of a multi-storey building with external louvers. BUILDING AND ENVIRONMENT 2022; 225:109586. [PMID: 36105610 PMCID: PMC9461617 DOI: 10.1016/j.buildenv.2022.109586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/17/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Building design for natural ventilation and indoor air quality have become increasingly important during the past decades. Investigating airflow routes of airborne transmission and evaluating the potential infection risk in the multi-storey building is helpful to the reduction of airborne transmission. Therefore, this study applies computational fluid dynamics simulations to investigate the inter-unit dispersion pattern of gaseous pollutant between different units through semi-shaded openings. The airflow exchange and pollutant dispersion in a multi-storey building is driven by wind-induced natural ventilation. External shading louvers, which are widely used in building facades to reduce heat gain from solar radiation, are chosen to establish the semi-shaded environment. Experimental validation is performed to make sure the accuracy of numerical settings in airflow investigation of semi-shaded openings. The airflow characteristics around semi-shaded openings is analyzed in the numerical simulations. The re-entry ratio of tracer gas and the airborne infection risk of COVID-19 is investigated in the cases with different louvers' locations and source units. The results show that the airflow is commonly slower in the semi-shaded space between louvers and openings. But the ventilation rate is not always consistent with the airflow speed because of the diversion effect from louver slats. The inter-unit infectious risk in the worst unit rises from 7.82% to 26.17% for windward shading, while it rises from 7.89% to 22.52% for leeward shading. These results are helpful to the further understanding of inter-unit transmission of infectious respiratory aerosols through external openings with complex structures.
Collapse
Affiliation(s)
- Jianwen Zheng
- College of Mechanical and Energy Engineering, Jimei University, Xiamen, 361021, China
| | - Qiuhua Tao
- College of Mechanical and Energy Engineering, Jimei University, Xiamen, 361021, China
- Fujian Province Key Laboratory of Energy Cleaning Utilization and Development, Xiamen, 361021, China
| | - Yangui Chen
- College of Mechanical and Energy Engineering, Jimei University, Xiamen, 361021, China
- Fujian Province Key Laboratory of Energy Cleaning Utilization and Development, Xiamen, 361021, China
| |
Collapse
|
38
|
Liu X, Kortoçi P, Motlagh NH, Nurmi P, Tarkoma S. A survey of COVID-19 in public transportation: Transmission risk, mitigation and prevention. MULTIMODAL TRANSPORTATION 2022. [PMCID: PMC9174338 DOI: 10.1016/j.multra.2022.100030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The COVID-19 pandemic is posing significant challenges to public transport operators by drastically reducing demand while also requiring them to implement measures that minimize risks to the health of the passengers. While the collective scientific understanding of the SARS-CoV-2 virus and COVID-19 pandemic are rapidly increasing, currently there is a lack of understanding of how the COVID-19 relates to public transport operations. This article presents a comprehensive survey of the current research on COVID-19 transmission mechanisms and how they relate to public transport. We critically assess literature through a lens of disaster management and survey the main transmission mechanisms, forecasting, risks, mitigation, and prevention mechanisms. Social distancing and control on passenger density are found to be the most effective mechanisms. Computing and digital technology can support risk control. Based on our survey, we draw guidelines for public transport operators and highlight open research challenges to establish a research roadmap for the path forward.
Collapse
|
39
|
Parhizkar H, Van Den Wymelenberg KG, Haas CN, Corsi RL. A Quantitative Risk Estimation Platform for Indoor Aerosol Transmission of COVID-19. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2022; 42:2075-2088. [PMID: 34713463 PMCID: PMC8662138 DOI: 10.1111/risa.13844] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/22/2021] [Accepted: 10/04/2021] [Indexed: 05/06/2023]
Abstract
Aerosol transmission has played a significant role in the transmission of COVID-19 disease worldwide. We developed a COVID-19 aerosol transmission risk estimation model to better understand how key parameters associated with indoor spaces and infector emissions affect inhaled deposited dose of aerosol particles that convey the SARS-CoV-2 virus. The model calculates the concentration of size-resolved, virus-laden aerosol particles in well-mixed indoor air challenged by emissions from an index case(s). The model uses a mechanistic approach, accounting for particle emission dynamics, particle deposition to indoor surfaces, ventilation rate, and single-zone filtration. The novelty of this model relates to the concept of "inhaled & deposited dose" in the respiratory system of receptors linked to a dose-response curve for human coronavirus HCoV-229E. We estimated the volume of inhaled & deposited dose of particles in the 0.5-4 μm range expressed in picoliters (pL) in a well-documented COVID-19 outbreak in restaurant X in Guangzhou China. We anchored the attack rate with the dose-response curve of HCoV-229E which provides a preliminary estimate of the average SARS-CoV-2 dose per person, expressed in plaque forming units (PFUs). For a reasonable emission scenario, we estimate approximately three PFU per pL deposited, yielding roughly 10 PFUs deposited in the respiratory system of those infected in restaurant X. To explore the model's utility, we tested it with four COVID-19 outbreaks. The risk estimates from the model fit reasonably well with the reported number of confirmed cases given available metadata from the outbreaks and uncertainties associated with model assumptions.
Collapse
Affiliation(s)
- Hooman Parhizkar
- Institute for Health in the Built EnvironmentUniversity of OregonEugeneORUSA
- Energy Studies in Building LaboratoryUniversity of OregonEugeneORUSA
| | - Kevin G. Van Den Wymelenberg
- Institute for Health in the Built EnvironmentUniversity of OregonEugeneORUSA
- Energy Studies in Building LaboratoryUniversity of OregonEugeneORUSA
- Biology and the Built Environment CenterUniversity of OregonEugeneORUSA
| | | | | |
Collapse
|
40
|
Bhattacharya M, Dhama K, Chakraborty C. Recently spreading human monkeypox virus infection and its transmission during COVID-19 pandemic period: A travelers' prospective. Travel Med Infect Dis 2022; 49:102398. [PMID: 35779853 PMCID: PMC9239924 DOI: 10.1016/j.tmaid.2022.102398] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/24/2022] [Accepted: 06/25/2022] [Indexed: 12/04/2022]
Abstract
Presently, monkeypox has emerged in multiple countries with many confirmed cases, posing a global public health threat. A link has been found between air travel and the international spread of infectious diseases including the previous spread of monkeypox. This article highlights the spread of COVID-19 through air travel, and then monkeypox spread from one country to another. Scientists are trying to establish the air travel and monkeypox spread. Any travel link from an endemic country has not been proven yet to describe the rising number of current monkeypox cases in non-endemic countries. Due to the quantification method, the direct link of the diseases with air travel might be difficult to establish. However, we have also developed different statistical models of the confirmed cases and the number of air travelers per year (noted in countries where monkeypox has spread). As there is no direct link, these models might show a probability of an indirect association of air travel. However, more strong evidence is needed in this direction. Although, the sudden appearance of monkeypox cases in multiple countries in a few days demands comprehensive epidemiological investigations, genome sequencing, and phylogenetic analysis of viral isolates to prove the travel link from an endemic country. At the same time, it is also necessary to know the real cause while also exploring any direct and/or indirect travel links between different countries. Similarly, the possibility of any zoonotic event should find out to understand the more about natural animal reservoir(s) for the monkeypox virus, which is unknown until now. However, this report will help researchers for conducting further explorative research and investigations for understanding transmission patterns and guide policymakers to make proactive policies to limit the spread of monkeypox.
Collapse
Affiliation(s)
- Manojit Bhattacharya
- Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, 756020, Odisha, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, Uttar Pradesh, India
| | - Chiranjib Chakraborty
- Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal, 700126, India.
| |
Collapse
|
41
|
Travel in the Time of COVID: A Review of International Travel Health in a Global Pandemic. Curr Infect Dis Rep 2022; 24:129-145. [PMID: 35965881 PMCID: PMC9361911 DOI: 10.1007/s11908-022-00784-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2022] [Indexed: 11/03/2022]
Abstract
Abstract
Purpose of Review
This review critically considers the impact of the COVID-19 pandemic on global travel and the practice of travel medicine, highlights key innovations that have facilitated the resumption of travel, and anticipates how travel medicine providers should prepare for the future of international travel.
Recent Findings
Since asymptomatic transmission of the virus was first recognized in March 2020, extensive efforts have been made to characterize the pattern and dynamics of SARS-CoV-2 transmission aboard commercial aircraft, cruise ships, rail and bus transport, and in mass gatherings and quarantine facilities. Despite the negative impact of further waves of COVID-19 driven by the more transmissible Omicron variant, rapid increases of international tourist arrivals are occurring and modeling anticipates further growth. Mitigation of spread requires an integrated approach that combines masking, physical distancing, improving ventilation, testing, and quarantine. Vaccines and therapeutics have played a significant role in reopening society and accelerating the resumption of travel and further therapeutic innovation is likely.
Summary
COVID-19 is likely to persist as an endemic infection, and surveillance will assume an even more important role. The pandemic has provided an impetus to advance technology for telemedicine, to adopt mobile devices and GPS in contact tracing, and to apply digital applications in research. The future of travel medicine should continue to harness these novel platforms in the clinical, research, and educational arenas.
Collapse
|
42
|
Wegrzyn RD, Appiah GD, Morfino R, Milford SR, Walker AT, Ernst ET, Darrow WW, Li SL, Robison K, MacCannell D, Dai D, Girinathan BP, Hicks AL, Cosca B, Woronoff G, Plocik AM, Simen BB, Moriarty L, Guagliardo SAJ, Cetron MS, Friedman CR. Early Detection of Severe Acute Respiratory Syndrome Coronavirus 2 Variants Using Traveler-based Genomic Surveillance at 4 US Airports, September 2021-January 2022. Clin Infect Dis 2022; 76:e540-e543. [PMID: 35686436 PMCID: PMC9214179 DOI: 10.1093/cid/ciac461] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/28/2022] [Accepted: 06/02/2022] [Indexed: 11/25/2022] Open
Abstract
We enrolled arriving international air travelers in a severe acute respiratory syndrome coronavirus 2 genomic surveillance program. We used molecular testing of pooled nasal swabs and sequenced positive samples for sublineage. Traveler-based surveillance provided early-warning variant detection, reporting the first US Omicron BA.2 and BA.3 in North America.
Collapse
Affiliation(s)
- Renee D Wegrzyn
- Correspondence: C. R. Friedman, Division of Global Migration and Quarantine, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop: H16-4, Atlanta, GA 30333 ()
| | - Grace D Appiah
- Division of Global Migration and Quarantine, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | | | - Allison Taylor Walker
- Division of Global Migration and Quarantine, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | | | | | | | - Duncan MacCannell
- Office of Advanced Molecular Detection, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Dongjuan Dai
- Ginkgo Bioworks, Inc, Boston, Massachusetts, USA
| | | | | | - Bryan Cosca
- Ginkgo Bioworks, Inc, Boston, Massachusetts, USA
| | | | | | | | - Leah Moriarty
- Division of Global Migration and Quarantine, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Sarah Anne J Guagliardo
- Division of Global Migration and Quarantine, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Martin S Cetron
- Division of Global Migration and Quarantine, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | |
Collapse
|
43
|
Wang Q, Gu J, An T. The emission and dynamics of droplets from human expiratory activities and COVID-19 transmission in public transport system: A review. BUILDING AND ENVIRONMENT 2022; 219:109224. [PMID: 35645454 PMCID: PMC9126829 DOI: 10.1016/j.buildenv.2022.109224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 05/03/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
The public transport system, containing a large number of passengers in enclosed and confined spaces, provides suitable conditions for the spread of respiratory diseases. Understanding how diseases are transmitted in public transport environment is of vital importance to public health. However, this is a highly multidisciplinary matter and the related physical processes including the emissions of respiratory droplets, the droplet dynamics and transport pathways, and subsequently, the infection risk in public transport, are poorly understood. To better grasp the complex processes involved, a synthesis of current knowledge is required. Therefore, we conducted a review on the behaviors of respiratory droplets in public transport system, covering a wide scope from the emission profiles of expiratory droplets, the droplet dynamics and transport, to the transmission of COVID-19 in public transport. The literature was searched using related keywords in Web of Science and PubMed and screened for suitability. The droplet size is a key parameter in determining the deposition and evaporation, which together with the exhaled air velocity largely determines the horizontal travel distance. The potential transmission route and transmission rate in public transport as well as the factors influencing the virus-laden droplet behaviors and virus viability (such as ventilation system, wearing personal protective equipment, air temperature and relative humidity) were also discussed. The review also suggests that future studies should address the uncertainties in droplet emission profiles associated with the measurement techniques, and preferably build a database based on a unified testing protocol. Further investigations based on field measurements and modeling studies into the influence of different ventilation systems on the transmission rate in public transport are also needed, which would provide scientific basis for controlling the transmission of diseases.
Collapse
Affiliation(s)
- Qiaoqiao Wang
- Institute for Environmental and Climate Research, Jinan University, 511443, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, 511443, Guangzhou, China
| | - Jianwei Gu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, 510006, Guangzhou, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, 510006, Guangzhou, China
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, 510006, Guangzhou, China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, School of Environmental Science and Engineering, Guangdong University of Technology, 510006, Guangzhou, China
| |
Collapse
|
44
|
Hogarth F, Coffey P, Goddard L, Lewis S, Labib S, Wilmot M, Andersson P, Sherry N, Seemann T, Howden BP, Freeman K, Baird R, Hosegood I, McDermott K, Walsh N, Polkinghorne B, Marshall C, Davies J, Krause V, Meumann EM. Genomic Evidence of In-Flight SARS-CoV-2 Transmission, India to Australia, April 2021. Emerg Infect Dis 2022; 28:1527-1530. [PMID: 35483111 PMCID: PMC9239893 DOI: 10.3201/eid2807.212466] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Epidemiologic and genomic investigation of SARS-CoV-2 infections associated with 2 repatriation flights from India to Australia in April 2021 indicated that 4 passengers transmitted SARS-CoV-2 to >11 other passengers. Results suggest transmission despite mandatory mask use and predeparture testing. For subsequent flights, predeparture quarantine and expanded predeparture testing were implemented.
Collapse
|
45
|
Duval D, Palmer JC, Tudge I, Pearce-Smith N, O'Connell E, Bennett A, Clark R. Long distance airborne transmission of SARS-CoV-2: rapid systematic review. BMJ 2022; 377:e068743. [PMID: 35768139 PMCID: PMC9240778 DOI: 10.1136/bmj-2021-068743] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/04/2022] [Indexed: 12/22/2022]
Abstract
OBJECTIVES To evaluate the potential for long distance airborne transmission of SARS-CoV-2 in indoor community settings and to investigate factors that might influence transmission. DESIGN Rapid systematic review and narrative synthesis. DATA SOURCES Medline, Embase, medRxiv, Arxiv, and WHO COVID-19 Research Database for studies published from 27 July 2020 to 19 January 2022; existing relevant rapid systematic review for studies published from 1 January 2020 to 27 July 2020; and citation analysis in Web of Science and Cocites. ELIGIBILITY CRITERIA FOR STUDY SELECTION Observational studies reporting on transmission events in indoor community (non-healthcare) settings in which long distance airborne transmission of SARS-CoV-2 was the most likely route. Studies such as those of household transmission where the main transmission route was likely to be close contact or fomite transmission were excluded. DATA EXTRACTION AND SYNTHESIS Data extraction was done by one reviewer and independently checked by a second reviewer. Primary outcomes were SARS-CoV-2 infections through long distance airborne transmission (>2 m) and any modifying factors. Methodological quality of included studies was rated using the quality criteria checklist, and certainty of primary outcomes was determined using the Grading of Recommendations, Assessment, Development, and Evaluation (GRADE) framework. Narrative synthesis was themed by setting. RESULTS 22 reports relating to 18 studies were identified (methodological quality was high in three, medium in five, and low in 10); all the studies were outbreak investigations. Long distance airborne transmission was likely to have occurred for some or all transmission events in 16 studies and was unclear in two studies (GRADE: very low certainty). In the 16 studies, one or more factors plausibly increased the likelihood of long distance airborne transmission, particularly insufficient air replacement (very low certainty), directional air flow (very low certainty), and activities associated with increased emission of aerosols, such as singing or speaking loudly (very low certainty). In 13 studies, the primary cases were reported as being asymptomatic, presymptomatic, or around symptom onset at the time of transmission. Although some of the included studies were well conducted outbreak investigations, they remain at risk of bias owing to study design and do not always provide the level of detail needed to fully assess transmission routes. CONCLUSION This rapid systematic review found evidence suggesting that long distance airborne transmission of SARS-CoV-2 might occur in indoor settings such as restaurants, workplaces, and venues for choirs, and identified factors such as insufficient air replacement that probably contributed to transmission. These results strengthen the need for mitigation measures in indoor settings, particularly the use of adequate ventilation. SYSTEMATIC REVIEW REGISTRATION PROSPERO CRD42021236762.
Collapse
Affiliation(s)
- Daphne Duval
- COVID-19 Rapid Evidence Service, UK Health Security Agency, London, UK
| | - Jennifer C Palmer
- COVID-19 Rapid Evidence Service, UK Health Security Agency, London, UK
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Science, Bristol Medical School, University of Bristol, Bristol, UK
| | - Isobel Tudge
- COVID-19 Rapid Evidence Service, UK Health Security Agency, London, UK
| | | | - Emer O'Connell
- COVID-19 Advice and Guidance, UK Health Security Agency, London, UK
| | - Allan Bennett
- Biosafety, Air, and Water Microbiology Group, Research and Evaluation, UK Health Security Agency, Porton, UK
| | - Rachel Clark
- COVID-19 Rapid Evidence Service, UK Health Security Agency, London, UK
| |
Collapse
|
46
|
Prentiss M, Chu A, Berggren KK. Finding the infectious dose for COVID-19 by applying an airborne-transmission model to superspreader events. PLoS One 2022; 17:e0265816. [PMID: 35679278 PMCID: PMC9182663 DOI: 10.1371/journal.pone.0265816] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 03/08/2022] [Indexed: 12/19/2022] Open
Abstract
We probed the transmission of COVID-19 by applying an airborne transmission model to five well-documented case studies-a Washington state church choir, a Korean call center, a Korean exercise class, and two different Chinese bus trips. For all events the likely index patients were pre-symptomatic or mildly symptomatic, which is when infective patients are most likely to interact with large groups of people. Applying the model to those events yields results that suggest the following: (1) transmission was airborne; (2) superspreading events do not require an index patient with an unusually high viral load; (3) the viral loads for all of the index patients were of the same order of magnitude and consistent with experimentally measured values for patients at the onset of symptoms, even though viral loads across the population vary by a factor of >108. In particular we used a Wells-Riley exposure model to calculate q, the total average number of infectious quanta inhaled by a person at the event. Given the q value for each event, the simple airborne transmission model was used to determined Sq, the rate at which the index patient exhaled infectious quanta and N0, the characteristic number of COVID-19 virions needed to induce infection. Despite the uncertainties in the values of some parameters of the superspreading events, all five events yielded (N0∼300-2,000 virions), which is similar to published values for influenza. Finally, this work describes the conditions under which similar methods can provide actionable information on the transmission of other viruses.
Collapse
Affiliation(s)
- Mara Prentiss
- Department of Physics, Harvard University, Cambridge, MA, United States of America
| | - Arthur Chu
- QVT Family Office, New York, NY, United States of America
| | - Karl K. Berggren
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, United States of America
| |
Collapse
|
47
|
Zhao X, Liu S, Yin Y, Zhang T(T, Chen Q. Airborne transmission of COVID-19 virus in enclosed spaces: An overview of research methods. INDOOR AIR 2022; 32:e13056. [PMID: 35762235 PMCID: PMC9349854 DOI: 10.1111/ina.13056] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/28/2022] [Accepted: 05/06/2022] [Indexed: 05/22/2023]
Abstract
Since the outbreak of COVID-19 in December 2019, the severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) has spread worldwide. This study summarized the transmission mechanisms of COVID-19 and their main influencing factors, such as airflow patterns, air temperature, relative humidity, and social distancing. The transmission characteristics in existing cases are providing more and more evidence that SARS CoV-2 can be transmitted through the air. This investigation reviewed probabilistic and deterministic research methods, such as the Wells-Riley equation, the dose-response model, the Monte-Carlo model, computational fluid dynamics (CFD) with the Eulerian method, CFD with the Lagrangian method, and the experimental approach, that have been used for studying the airborne transmission mechanism. The Wells-Riley equation and dose-response model are typically used for the assessment of the average infection risk. Only in combination with the Eulerian method or the Lagrangian method can these two methods obtain the spatial distribution of airborne particles' concentration and infection risk. In contrast with the Eulerian and Lagrangian methods, the Monte-Carlo model is suitable for studying the infection risk when the behavior of individuals is highly random. Although researchers tend to use numerical methods to study the airborne transmission mechanism of COVID-19, an experimental approach could often provide stronger evidence to prove the possibility of airborne transmission than a simple numerical model. All in all, the reviewed methods are helpful in the study of the airborne transmission mechanism of COVID-19 and epidemic prevention and control.
Collapse
Affiliation(s)
- Xingwang Zhao
- School of Energy and EnvironmentSoutheast UniversityNanjingChina
| | - Sumei Liu
- Tianjin Key Laboratory of Indoor Air Environmental Quality ControlSchool of Environmental Science and EngineeringTianjin UniversityTianjinChina
| | - Yonggao Yin
- School of Energy and EnvironmentSoutheast UniversityNanjingChina
- Engineering Research Center of Building Equipment, Energy, and EnvironmentMinistry of EducationNanjingChina
| | - Tengfei (Tim) Zhang
- Tianjin Key Laboratory of Indoor Air Environmental Quality ControlSchool of Environmental Science and EngineeringTianjin UniversityTianjinChina
| | - Qingyan Chen
- Department of Building Environment and Energy EngineeringThe Hong Kong Polytechnic UniversityKowloonHong Kong SARChina
| |
Collapse
|
48
|
Guo Q, Wang J, Estill J, Lan H, Zhang J, Wu S, Yao J, Yan X, Chen Y. Risk of COVID-19 Transmission Aboard Aircraft: An Epidemiological Analysis Based on the National Health Information Platform. Int J Infect Dis 2022; 118:270-276. [PMID: 35331931 PMCID: PMC8935959 DOI: 10.1016/j.ijid.2022.03.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/23/2022] [Accepted: 03/15/2022] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVES This study aims to investigate the risk of COVID-19 transmission on aircraft. METHODS We obtained data on all international flights to Lanzhou, China, from June 1, 2020, to August 1, 2020, through the Gansu Province National Health Information Platform and the official website of the Gansu Provincial Center for Disease Control and Prevention. We then performed the statistical analysis. RESULTS Three international flights arrived in Lanzhou. The flights had a total of 700 passengers, of whom 405 (57.9%) were male, and 80 (11.4%) were children under the age of 14 years. Twenty-seven (3.9%) passengers were confirmed to have COVID-19. Confirmed patients were primarily male (17, 65.4%) with a median age of 27.0 years. Most confirmed cases were seated in the middle rows of economy class or near public facility areas such as restrooms and galleys. The prevalence of COVID-19 did not differ between passengers sitting in the window, aisle, or middle seats. However, compared with passengers sitting in the same row up to 2 rows behind a confirmed case, passengers seated in the 2 rows in front of a confirmed case were at a slightly higher risk of being infected. CONCLUSIONS COVID-19 may be transmitted during a passenger flight, although there is still no direct evidence.
Collapse
Affiliation(s)
- Qiangqiang Guo
- School of Public Health, Lanzhou University, Lanzhou, China; Lanzhou University Institute of Health Data Science, Lanzhou, China; Lanzhou University, an Affiliate of the Cochrane China Network, Lanzhou, China; World Health Organization Collaborating Center for Guideline Implementation and Knowledge Translation, Lanzhou, China
| | - Jianjian Wang
- School of Public Health, Lanzhou University, Lanzhou, China; Lanzhou University Institute of Health Data Science, Lanzhou, China; Lanzhou University, an Affiliate of the Cochrane China Network, Lanzhou, China; World Health Organization Collaborating Center for Guideline Implementation and Knowledge Translation, Lanzhou, China
| | - Janne Estill
- Institute of Global Health, University of Geneva, Geneva, Switzerland; Institute of Mathematical Statistics and Actuarial Science, University of Bern, Bern, Switzerland
| | - Hui Lan
- School of Public Health, Lanzhou University, Lanzhou, China; Lanzhou University Institute of Health Data Science, Lanzhou, China; Lanzhou University, an Affiliate of the Cochrane China Network, Lanzhou, China; World Health Organization Collaborating Center for Guideline Implementation and Knowledge Translation, Lanzhou, China
| | - Juanjuan Zhang
- School of Public Health, Lanzhou University, Lanzhou, China; Lanzhou University Institute of Health Data Science, Lanzhou, China; Lanzhou University, an Affiliate of the Cochrane China Network, Lanzhou, China; World Health Organization Collaborating Center for Guideline Implementation and Knowledge Translation, Lanzhou, China
| | - Shouyuan Wu
- School of Public Health, Lanzhou University, Lanzhou, China; Lanzhou University Institute of Health Data Science, Lanzhou, China; Lanzhou University, an Affiliate of the Cochrane China Network, Lanzhou, China; World Health Organization Collaborating Center for Guideline Implementation and Knowledge Translation, Lanzhou, China
| | - Jingwen Yao
- Health Statistics Information Center of Health Commission of Gansu Province, Lanzhou, China
| | - Xuanchen Yan
- Health Statistics Information Center of Health Commission of Gansu Province, Lanzhou, China.
| | - Yaolong Chen
- School of Public Health, Lanzhou University, Lanzhou, China; Lanzhou University Institute of Health Data Science, Lanzhou, China; Lanzhou University, an Affiliate of the Cochrane China Network, Lanzhou, China; World Health Organization Collaborating Center for Guideline Implementation and Knowledge Translation, Lanzhou, China.
| |
Collapse
|
49
|
Kuo PF, Brawiswa Putra IG, Setiawan FA, Wen TH, Chiu CS, Sulistyah UD. The impact of the COVID-19 pandemic on O-D flow and airport networks in the origin country and in Northeast Asia. JOURNAL OF AIR TRANSPORT MANAGEMENT 2022; 100:102192. [PMID: 35194345 PMCID: PMC8849875 DOI: 10.1016/j.jairtraman.2022.102192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/28/2022] [Accepted: 02/03/2022] [Indexed: 05/09/2023]
Abstract
The ongoing COVID-19 pandemic has posed a global threat to human health. In order to prevent the spread of this virus, many countries have imposed travel restrictions. This difficult situation has dramatically affected the airline industry by reducing the passenger volume, number of flights, airline flow patterns, and even has changed the entire airport network, especially in Northeast Asia (because it includes the original disease seed). However, although most scholars have used conventional statistical analysis to describe the changes in passenger volume before and during the COVID-19 outbreak, very few of them have applied statistical assessment or time series analysis, and have not even examined how the impact may be different from place to place. Therefore, the purpose of this study was to identify the impact of COVID-19 on the airline industry and affected areas (including the origin-destination flow and the airport network). First, a Clustering Large Applications (CLARA) algorithm was used to group numerous origin-destination (O-D) flow patterns based on their characteristics and to determine if these characteristics have changed the severity of the impact of each cluster during the COVID-19 outbreak. Second, two statistical tests (the paired t-test and the Wilcoxon signed-rank test) were utilized to determine if the entire airport network and the top 30 hub airports changed during COVID-19. Four centrality measurement indices (degree, closeness, eigenvector, and betweenness centrality) of the airports were used to assess the entire network and ranking of individual hub airports. The study data, provided by The Official Aviation Guide (OAG) from December 2019 to April 2020, indicated that during the COVID-19 outbreak, there was a decrease in passenger volume (60%-98.4%) as well as the number of flights (1.5%-82.6%). However, there were no such significant changes regarding the popularity ranking of most airports during the outbreak. Before this occurred (December 2019), most hub airports were in China (April 2020), and this trend remain similar during the COVID-19 outbreak. However, the values of the centrality measurement decreased significantly for most hub airports due to travel restrictions issued by the government.
Collapse
Affiliation(s)
- Pei-Fen Kuo
- Department of Geomatics, National Cheng Kung University, Taiwan
| | | | | | - Tzai-Hung Wen
- Department of Geography, National Taiwan University, Taiwan
| | - Chui-Sheng Chiu
- Department of Geomatics, National Cheng Kung University, Taiwan
| | | |
Collapse
|
50
|
Identifying mitigation strategies for COVID-19 superspreading on flights using models that account for passenger movement. Travel Med Infect Dis 2022; 47:102313. [PMID: 35306163 PMCID: PMC8925197 DOI: 10.1016/j.tmaid.2022.102313] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 11/24/2022]
Abstract
Background Despite commercial airlines mandating masks, there have been multiple documented events of COVID-19 superspreading on flights. Conventional models do not adequately explain superspreading patterns on flights, with infection spread wider than expected from proximity based on passenger seating. An important reason for this is that models typically do not consider the movement of passengers during the flight, boarding, or deplaning. Understanding the risks for each of these aspects could provide insight into effective mitigation measures. Methods We modeled infection risk from seating and fine-grained movement patterns – boarding, deplaning, and inflight movement. We estimated infection model parameters from a prior superspreading event. We validated the model and the impact of interventions using available data from three flights, including cabin layout and seat locations of infected and uninfected passengers, to suggest interventions to mitigate COVID-19 superspreading events during air travel. Specifically, we studied: 1) London to Hanoi with 201 passengers, including 13 secondary infections among passengers; 2) Singapore to Hangzhou with 321 passengers, including 12 to 14 secondary infections; 3) a non-superspreading event on a private jet in Japan with 9 passengers and no secondary infections. Results Our results show that the inclusion of passenger movement better explains the infection spread patterns than conventional models do. We also found that FFP2/N95 mask usage would have reduced infection by 95–100%, while cloth masks would have reduced it by only 40–80%. Results indicate that leaving the middle seat vacant is effective in reducing infection, and the effectiveness increases when combined with good quality masks. However, with a good mask, the risk is quite low even without the middle seats being empty. Conclusions Our results suggest the need for more stringent guidelines to reduce aviation-related superspreading events of COVID-19.
Collapse
|