1
|
Galsuren J, Dambadarjaa D, Tighe RM, Gray GC, Zhang J. Particulate Matter Exposure and Viral Infections: Relevance to Highly Polluted Settings such as Ulaanbaatar, Mongolia. Curr Environ Health Rep 2025; 12:22. [PMID: 40268823 DOI: 10.1007/s40572-025-00484-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2025] [Indexed: 04/25/2025]
Abstract
PURPOSE OF REVIEW Particulate matter (PM), a ubiquitous significant component of the ambient air pollution mixture, significantly contributes to increased global risk for chronic cardiopulmonary diseases, acute hospitalizations, and deaths. One of the causes of this increased risk is because PM exposure increases the incidence and severity of respiratory infections. The respiratory system is particularly vulnerable to air pollution and its impact on infection as it is a key site for exposure both to inhaled pollutants and infectious microbes or viruses. This review examines the current understanding of how PM affects antiviral host defense responses and possible underlying mechanisms. RECENT FINDINGS While numerous studies have associated adverse health outcomes with combined or sequential exposure to inhaled pollutants and viruses, defining causal relationships and mechanisms remains limited. Particularly limited, are contemporary data focuses on low- and middle-income countries, including heavily polluted regions such as Ulaanbaatar, Mongolia. This manuscript focuses on how (1) PM, serving as a carrier for viruses, enhances the transmission of viruses; (2) PM impairs immune defense to viruses; and (3) PM impacts epithelial cell functions to exacerbate viral infections. Given the significant public health hazards on PM, particularly in heavily polluted regions such as Southeast Asia, Middle East and Africa, it is critical to define specific mechanisms of PM on respiratory infection and how their impact may differ in these highly polluted regions. Ultimately, this could devise future public health measures and interventions to limit this substantial public health risk.
Collapse
Affiliation(s)
- Jargalsaikhan Galsuren
- School of Public Health, Mongolian National University of Medical Sciences, Ulaanbaatar, 14210, Mongolia
| | - Davaalkham Dambadarjaa
- School of Public Health, Mongolian National University of Medical Sciences, Ulaanbaatar, 14210, Mongolia
| | - Robert M Tighe
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Duke University, Durham, NC, 27710, USA
| | - Gregory C Gray
- Department of Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX, 77555, USA
| | - Junfeng Zhang
- Duke Nicholas School of the Environment, Durham, NC, 27705, USA.
| |
Collapse
|
2
|
Sreenivasan CC, Li F, Wang D. Emerging Threats of Highly Pathogenic Avian Influenza A (H5N1) in US Dairy Cattle: Understanding Cross-Species Transmission Dynamics in Mammalian Hosts. Viruses 2024; 16:1703. [PMID: 39599818 PMCID: PMC11598956 DOI: 10.3390/v16111703] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/15/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024] Open
Abstract
The rapid geographic spread of the highly pathogenic avian influenza (HPAI) A(H5N1) virus in poultry, wild birds, and other mammalian hosts, including humans, raises significant health concerns globally. The recent emergence of HPAI A(H5N1) in agricultural animals such as cattle and goats indicates the ability of the virus to breach unconventional host interfaces, further expanding the host range. Among the four influenza types-A, B, C, and D, cattle are most susceptible to influenza D infection and serve as a reservoir for this seven-segmented influenza virus. It is generally thought that bovines are not hosts for other types of influenza viruses, including type A. However, this long-standing viewpoint has been challenged by the recent outbreaks of HPAI A(H5N1) in dairy cows in the United States. To date, HPAI A(H5N1) has spread into fourteen states, affecting 299 dairy herds and causing clinical symptoms such as reduced appetite, fever, and a sudden drop in milk production. Infected cows can also transmit the disease through raw milk. This review article describes the current epidemiological landscape of HPAI A(H5N1) in US dairy cows and its interspecies transmission events in other mammalian hosts reported across the globe. The review also discusses the viral determinants of tropism, host range, adaptative mutations of HPAI A(H5N1) in various mammalian hosts with natural and experimental infections, and vaccination strategies. Finally, it summarizes some immediate questions that need to be addressed for a better understanding of the infection biology, transmission, and immune response of HPAI A(H5N1) in bovines.
Collapse
Affiliation(s)
| | - Feng Li
- Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA;
| | - Dan Wang
- Department of Veterinary Science, Maxwell H. Gluck Equine Research Center, University of Kentucky, Lexington, KY 40546, USA;
| |
Collapse
|
3
|
Kang YM, Tseren Ochir EO, Heo GB, An SH, Jeong H, Dondog U, Myagmarsuren T, Lee YJ, Lee KN. Surveillance and Genetic Analysis of Low-Pathogenicity Avian Influenza Viruses Isolated from Feces of Wild Birds in Mongolia, 2021 to 2023. Animals (Basel) 2024; 14:1105. [PMID: 38612344 PMCID: PMC11011059 DOI: 10.3390/ani14071105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
The introduction of novel highly pathogenic (HPAI) viruses into Korea has been attributed to recombination events occurring at breeding sites in the Northern Hemisphere. This has increased interest in monitoring and genetically analyzing avian influenza viruses (AIVs) in northern regions, such as Mongolia, which share migratory bird flyways with Korea. AIVs in Mongolia were monitored by analyzing 10,149 fecal samples freshly collected from wild birds from April to October in 2021 to 2023. The prevalence of AIVs in wild birds was 1.01%, with a total of 77 AIVs isolated during these 3 years. These 77 AIVs included hemagglutinin (HA) subtypes H1, H2, H3, H4, H6, H10 and H13 and neuraminidase (NA) subtypes N1, N2, N3, N6, N7 and N8. The most frequently detected subtype combinations were H3N8 (39.0%) and H4N6 (19.5%), although HPAI viruses were not detected. Genetic analysis indicated that theses AIVs isolated from Mongolian samples were closely related to AIVs in wild birds in Korea, including those of Eurasian lineage. These findings indicate the necessity of continuous AIV surveillance and monitoring, as HPAI viruses introduced into Korea may derive from strains in Mongolia.
Collapse
Affiliation(s)
- Yong-Myung Kang
- Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si 39660, Republic of Korea; (Y.-M.K.); (G.-B.H.); (S.-H.A.); (H.J.); (Y.-J.L.)
| | - Erdene-Ochir Tseren Ochir
- Department of Infectious Disease and Microbiology, School of Veterinary Medicine, Mongolian University of Life Sciences, Zaisan Street, Ulaanbaatar 17024, Mongolia; (E.-O.T.O.); (U.D.); (T.M.)
| | - Gyeong-Beom Heo
- Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si 39660, Republic of Korea; (Y.-M.K.); (G.-B.H.); (S.-H.A.); (H.J.); (Y.-J.L.)
| | - Se-Hee An
- Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si 39660, Republic of Korea; (Y.-M.K.); (G.-B.H.); (S.-H.A.); (H.J.); (Y.-J.L.)
| | - Hwanseok Jeong
- Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si 39660, Republic of Korea; (Y.-M.K.); (G.-B.H.); (S.-H.A.); (H.J.); (Y.-J.L.)
| | - Urankhaich Dondog
- Department of Infectious Disease and Microbiology, School of Veterinary Medicine, Mongolian University of Life Sciences, Zaisan Street, Ulaanbaatar 17024, Mongolia; (E.-O.T.O.); (U.D.); (T.M.)
| | - Temuulen Myagmarsuren
- Department of Infectious Disease and Microbiology, School of Veterinary Medicine, Mongolian University of Life Sciences, Zaisan Street, Ulaanbaatar 17024, Mongolia; (E.-O.T.O.); (U.D.); (T.M.)
| | - Youn-Jeong Lee
- Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si 39660, Republic of Korea; (Y.-M.K.); (G.-B.H.); (S.-H.A.); (H.J.); (Y.-J.L.)
| | - Kwang-Nyeong Lee
- Animal and Plant Quarantine Agency, 177 Hyeoksin 8-ro, Gimcheon-si 39660, Republic of Korea; (Y.-M.K.); (G.-B.H.); (S.-H.A.); (H.J.); (Y.-J.L.)
| |
Collapse
|
4
|
Wang Y, Yang C, Liu Y, Zhang J, Qu W, Liang J, Tu C, Mai Q, Mai K, Feng P, Huang W, Lin Z, Hon C, Yang Z, Pan W. Seroprevalence of Avian Influenza A(H5N6) Virus Infection, Guangdong Province, China, 2022. Emerg Infect Dis 2024; 30:826-828. [PMID: 38526372 PMCID: PMC10977835 DOI: 10.3201/eid3004.231226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024] Open
Abstract
In 2022, we assessed avian influenza A virus subtype H5N6 seroprevalence among the general population in Guangdong Province, China, amid rising numbers of human infections. Among the tested samples, we found 1 to be seropositive, suggesting that the virus poses a low but present risk to the general population.
Collapse
|
5
|
Lee SH, Jeong S, Cho AY, Kim TH, Choi YJ, Lee H, Song CS, Nahm SS, Swayne DE, Lee DH. Caught Right on the Spot: Isolation and Characterization of Clade 2.3.4.4b H5N8 High Pathogenicity Avian Influenza Virus from a Common Pochard ( Aythya ferina) Being Attacked by a Peregrine Falcon ( Falco peregrinus). Avian Dis 2024; 68:72-79. [PMID: 38687111 DOI: 10.1637/aviandiseases-d-23-00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/12/2023] [Indexed: 05/02/2024]
Abstract
We isolated a high pathogenicity avian influenza (HPAI) virus from a common pochard (Aythya ferina) that was being attacked by a bird of prey in South Korea in December 2020. Genetic analyses indicated that the isolate was closely related to the clade 2.3.4.4b H5N8 HPAI viruses found in South Korea and Japan during the winter season of 2020-2021. The histopathological examination revealed multifocal necrotizing inflammation in the liver, kidney, and spleen. Viral antigens were detected in the liver, kidney, spleen, trachea, intestine, and pancreas, indicating the HPAI virus caused a systemic infection. The presence of immunoreactivity for the viral antigen was observed in the cells involved in multifocal necrotic inflammation. Notably, epitheliotropic-positive patterns were identified in the epithelial cells of the trachea, mucosal epithelium of the intestine, and ductular epithelium of the pancreas. These findings provide direct evidence supporting the possibility of HPAI transmission from infected waterfowl to predators.
Collapse
Affiliation(s)
- Sun-Hak Lee
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, Republic of Korea
| | - Sol Jeong
- National Institute of Wildlife Disease Control and Prevention (NIWDC), 1, Songam-gil, Gwangsan-gu, Gwangju, Republic of Korea
| | - Andrew Y Cho
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, Republic of Korea
| | - Tae-Hyeon Kim
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, Republic of Korea
| | - Yun-Jeong Choi
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, Republic of Korea
| | - Heesu Lee
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, Republic of Korea
| | - Chang-Seon Song
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul, Republic of Korea
- Konkuk University Zoonotic Diseases Research Center, Konkuk University, Seoul, Republic of Korea
| | - Sang-Soep Nahm
- Department of Veterinary Anatomy, College of Veterinary Medicine, Konkuk University, Seoul, Korea
| | | | - Dong-Hun Lee
- Konkuk University Zoonotic Diseases Research Center, Konkuk University, Seoul, Republic of Korea,
- Wildlife Health Laboratory, College of Veterinary Medicine, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
6
|
Zhao W, Liu X, Zhang X, Qiu Z, Jiao J, Li Y, Gao R, Wang X, Hu J, Liu X, Hu S, Jiao X, Peng D, Gu M, Liu X. Virulence and transmission characteristics of clade 2.3.4.4b H5N6 subtype avian influenza viruses possessing different internal gene constellations. Virulence 2023; 14:2250065. [PMID: 37635408 PMCID: PMC10464537 DOI: 10.1080/21505594.2023.2250065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/04/2023] [Accepted: 07/25/2023] [Indexed: 08/29/2023] Open
Abstract
Clade 2.3.4.4 H5N6 avian influenza virus (AIV) has been predominant in poultry in China, and the circulating haemagglutinin (HA) gene has changed from clade 2.3.4.4h to clade 2.3.4.4b in recent years. In 2021, we isolated four H5N6 viruses from ducks during the routine surveillance of AIV in China. The whole-genome sequencing results demonstrated that the four isolates all belonged to the currently prevalent clade 2.3.4.4b but had different internal gene constellations, which could be divided into G1 and G2 genotypes. Specifically, G1 possessed H9-like PB2 and PB1 genes on the H5-like genetic backbone while G2 owned an H3-like PB1 gene and the H5-like remaining internal genes. By determining the characteristics of H5N6 viruses, including growth performance on different cells, plaque-formation ability, virus attachment ability, and pathogenicity and transmission in different animal models, we found that G1 strains were more conducive to replication in mammalian cells (MDCK and A549) and BALB/c mice than G2 strains. However, G2 strains were more advantageously replicated in avian cells (CEF and DF-1) and slightly more transmissible in waterfowls (mallards) than G1 strains. This study enriched the epidemiological data of H5 subtype AIV to further understand its dynamic evolution, and laid the foundation for further research on the mechanism of low pathogenic AIV internal genes in generating novel H5 subtype reassortants.
Collapse
Affiliation(s)
- Wanchen Zhao
- Animal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xin Liu
- Animal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xinyu Zhang
- Animal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhiwei Qiu
- Animal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jun Jiao
- Animal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yang Li
- Animal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Ruyi Gao
- Animal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaoquan Wang
- Animal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jiao Hu
- Animal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaowen Liu
- Animal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Shunlin Hu
- Animal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xinan Jiao
- Animal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Daxin Peng
- Animal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Min Gu
- Animal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiufan Liu
- Animal Infectious Diseases Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
7
|
Barman S, Turner JCM, Kamrul Hasan M, Akhtar S, Jeevan T, Franks J, Walker D, Mukherjee N, Seiler P, Kercher L, McKenzie P, Webster RG, Feeroz MM, Webby RJ. Emergence of a new genotype of clade 2.3.4.4b H5N1 highly pathogenic avian influenza A viruses in Bangladesh. Emerg Microbes Infect 2023; 12:e2252510. [PMID: 37622753 PMCID: PMC10563617 DOI: 10.1080/22221751.2023.2252510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/23/2023] [Indexed: 08/26/2023]
Abstract
Influenza virological surveillance was conducted in Bangladesh from January to December 2021 in live poultry markets (LPMs) and in Tanguar Haor, a wetland region where domestic ducks have frequent contact with migratory birds. The predominant viruses circulating in LPMs were low pathogenic avian influenza (LPAI) H9N2 and clade 2.3.2.1a highly pathogenic avian influenza (HPAI) H5N1 viruses. Additional LPAIs were found in both LPM (H4N6) and Tanguar Haor wetlands (H7N7). Genetic analyses of these LPAIs strongly suggested long-distance movement of viruses along the Central Asian migratory bird flyway. We also detected a novel clade 2.3.4.4b H5N1 virus from ducks in free-range farms in Tanguar Haor that was similar to viruses first detected in October 2020 in The Netherlands but with a different PB2. Identification of clade 2.3.4.4b HPAI H5N1 viruses in Tanguar Haor provides continued support of the role of migratory birds in transboundary movement of influenza A viruses (IAV), including HPAI viruses. Domestic ducks in free range farm in wetland areas, like Tangua Haor, serve as a conduit for the introduction of LPAI and HPAI viruses into Bangladesh. Clade 2.3.4.4b viruses have dominated in many regions of the world since mid-2021, and it remains to be seen if these viruses will replace the endemic clade 2.3.2.1a H5N1 viruses in Bangladesh.
Collapse
Affiliation(s)
- Subrata Barman
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Jasmine C. M. Turner
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - M. Kamrul Hasan
- Department of Zoology, Jahangirnagar University, Dhaka, Bangladesh
| | - Sharmin Akhtar
- Department of Zoology, Jahangirnagar University, Dhaka, Bangladesh
| | - Trushar Jeevan
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - John Franks
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - David Walker
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Nabanita Mukherjee
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Patrick Seiler
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Lisa Kercher
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Pamela McKenzie
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Robert G. Webster
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | | | - Richard J. Webby
- Department of Infectious Diseases, St. Jude Children’s Research Hospital, Memphis, TN, USA
| |
Collapse
|
8
|
Duong BT, Than DD, Ankhanbaatar U, Gombo-Ochir D, Shura G, Tsolmon A, Pun Mok CK, Basan G, Yeo SJ, Park H. Assessing potential pathogenicity of novel highly pathogenic avian influenza (H5N6) viruses isolated from Mongolian wild duck feces using a mouse model. Emerg Microbes Infect 2022; 11:1425-1434. [PMID: 35451353 PMCID: PMC9154755 DOI: 10.1080/22221751.2022.2069515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Several novel highly pathogenic avian influenza (HPAIVs) A(H5N6) viruses were reported in Mongolia in 2020, some of which included host-specific markers associated with mammalian infection. However, their pathogenicity has not yet been investigated. Here, we isolated and evaluate two novel genotypes of A(H5N6) subtype in Mongolia during 2018–2019 (A/wildDuck/MN/H5N6/2018-19). Their evolution pattern and molecular characteristics were evaluated using gene sequencing and their pathogenicity was determined using a mouse model. We also compared their antigenicity with previous H5 Clade 2.3.4.4 human isolates by cross-hemagglutination inhibition (HI). Our data suggests that A/wildDuck/MN/H5N6/2018-19 belongs to clade 2.3.4.4h, and maintains several residues associated with mammal adaptation. In addition, our evaluations revealed that their isolates are less virulent in mice than the previously identified H5 human isolates. However, their antigenicity is distinct from other HPAIVs H5 clade 2.3.4.4, thus supporting their continued evaluation as potential infection risks and the preparation of novel candidate vaccines for their neutralization.
Collapse
Affiliation(s)
- Bao Tuan Duong
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan, Korea
| | - Duc Duong Than
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan, Korea
| | | | | | - Gansukh Shura
- State Central Veterinary Laboratory, Zaisan, Ulaanbaatar, Mongolia
| | | | - Chris Ka Pun Mok
- HKU-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Ganzorig Basan
- State Central Veterinary Laboratory, Zaisan, Ulaanbaatar, Mongolia
| | - Seon Ju Yeo
- Department of Tropical Medicine and Parasitology, Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Hyun Park
- Zoonosis Research Center, Department of Infection Biology, School of Medicine, Wonkwang University, Iksan, Korea
| |
Collapse
|
9
|
Isolation and Identification of a Highly Pathogenic Avian Influenza H5N6 Virus from Migratory Waterfowl in Western Mongolia. J Wildl Dis 2021; 58:211-214. [PMID: 34699593 DOI: 10.7589/jwd-d-21-00032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/25/2021] [Indexed: 11/20/2022]
Abstract
In April 2020, two Whooper Swans (Cygnus cygnus) and one Swan Goose (Anser cygnoides) were found dead at three different locations in western Mongolia. Virus isolation from organs taken from the carcasses and full genome sequencing revealed that all three birds were positive for highly pathogenic H5N6 avian influenza virus (HPAIV) belonging to subclade 2.3.4.4h. Confirming similar reports from central Mongolia and western China, these findings have important implications for the monitoring, control, and management of HPAIVs in wild bird and commercial poultry populations in Mongolia.
Collapse
|
10
|
Turner JCM, Barman S, Feeroz MM, Hasan MK, Akhtar S, Jeevan T, Walker D, Franks J, Seiler P, Mukherjee N, Kercher L, McKenzie P, Lam T, El-Shesheny R, Webby RJ. Highly Pathogenic Avian Influenza A(H5N6) Virus Clade 2.3.4.4h in Wild Birds and Live Poultry Markets, Bangladesh. Emerg Infect Dis 2021; 27:2492-2494. [PMID: 34424167 PMCID: PMC8386775 DOI: 10.3201/eid2709.210819] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Migratory birds play a major role in spreading influenza viruses over long distances. We report highly pathogenic avian influenza A(H5N6) viruses in migratory and resident ducks in Bangladesh. The viruses were genetically similar to viruses detected in wild birds in China and Mongolia, suggesting migration-associated dissemination of these zoonotic pathogens.
Collapse
|