1
|
Kulkarni R, Kumari S, Dhapola R, Sharma P, Singh SK, Medhi B, HariKrishnaReddy D. Association Between the Gut Microbiota and Alzheimer's Disease: An Update on Signaling Pathways and Translational Therapeutics. Mol Neurobiol 2025; 62:4499-4519. [PMID: 39460901 DOI: 10.1007/s12035-024-04545-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024]
Abstract
Alzheimer's disease (AD) is a cognitive disease with high morbidity and mortality. In AD patients, the diversity of the gut microbiota is altered, which influences pathology through the gut-brain axis. Probiotic therapy alleviates pathological and psychological consequences by restoring the diversity of the gut microbial flora. This study addresses the role of altered gut microbiota in the progression of neuroinflammation, which is a major hallmark of AD. This process begins with the activation of glial cells, leading to the release of proinflammatory cytokines and the modulation of cholinergic anti-inflammatory pathways. Short-chain fatty acids, which are bacterial metabolites, provide neuroprotective effects and maintain blood‒brain barrier integrity. Furthermore, the gut microbiota stimulates oxidative stress and mitochondrial dysfunction, which promote AD progression. The signaling pathways involved in gut dysbiosis-mediated neuroinflammation-mediated promotion of AD include cGAS-STING, C/EBPβ/AEP, RAGE, TLR4 Myd88, and the NLRP3 inflammasome. Preclinical studies have shown that natural extracts such as Ganmaidazao extract, isoorentin, camelia oil, Sparassis crispa-1, and xanthocerasides improve gut health and can delay the worsening of AD. Clinical studies using probiotics such as Bifidobacterium spp., yeast beta-glucan, and drugs such as sodium oligomannate and rifaximine have shown improvements in gut health, resulting in the amelioration of AD symptoms. This study incorporates the most current research on the pathophysiology of AD involving the gut microbiota and highlights the knowledge gaps that need to be filled to develop potent therapeutics against AD.
Collapse
Affiliation(s)
- Rutweek Kulkarni
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Sneha Kumari
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Rishika Dhapola
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Prajjwal Sharma
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Sunil K Singh
- Department of Biochemistry, School of Basic Sciences, Central University of Punjab, Ghudda, Bathinda, Punjab, India
| | - Bikash Medhi
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Dibbanti HariKrishnaReddy
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda, 151401, Punjab, India.
| |
Collapse
|
2
|
Ferreira da Silva A, Gomes A, Gonçalves LMD, Fernandes A, Almeida AJ. Exploring the Link Between Periodontitis and Alzheimer's Disease-Could a Nanoparticulate Vaccine Break It? Pharmaceutics 2025; 17:141. [PMID: 40006510 PMCID: PMC11858903 DOI: 10.3390/pharmaceutics17020141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 02/27/2025] Open
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disorder, as approximately 55 million people worldwide are affected, with a significant tendency to increase. It reveals three main pathological features: amyloid plaques, neurofibrillary tangles, and neuroinflammation, responsible for the neurodegenerative changes that slowly lead to deterioration of personality and cognitive control. Over a century after the first case report, effective treatments remain elusive, likely due to an incomplete understanding of the precise mechanisms driving its pathogenesis. Recent studies provide growing evidence of an infectious aetiology for AD, a hypothesis reinforced by findings that amyloid beta functions as an antimicrobial peptide. Among the microorganisms already associated with AD, Porphyromonas gingivalis (Pg), the keystone pathogen of periodontitis (PeD), has received particular attention as a possible aetiological agent for AD development. Herein, we review the epidemiological and genetic evidence linking PeD and Pg to AD, highlighting the identification of periodontal bacteria in post mortem analysis of AD patients' brains and identifying putative mechanistic links relevant to the biological plausibility of the association. With the focus on AD research shifting from cure to prevention, the proposed mechanisms linking PeD to AD open the door for unravelling new prophylactic approaches able to reduce the global burden of AD. As hypothesised in this review, these could include a bionanotechnological approach involving the development of an oral nanoparticulate vaccine based on Pg-specific antigens. Such a vaccine could prevent Pg antigens from progressing to the brain and triggering AD pathology, representing a promising step toward innovative and effective AD prevention.
Collapse
Affiliation(s)
| | | | | | | | - António J. Almeida
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto, 1649-003 Lisbon, Portugal; (A.F.d.S.); (A.G.); (L.M.D.G.); (A.F.)
| |
Collapse
|
3
|
Hosseininasab SSM, Ebrahimi R, Yaghoobpoor S, Kazemi K, Khakpour Y, Hajibeygi R, Mohamadkhani A, Fathi M, Vakili K, Tavasol A, Tutunchian Z, Fazel T, Fathi M, Hajiesmaeili M. Alzheimer's disease and infectious agents: a comprehensive review of pathogenic mechanisms and microRNA roles. Front Neurosci 2025; 18:1513095. [PMID: 39840010 PMCID: PMC11747386 DOI: 10.3389/fnins.2024.1513095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 12/02/2024] [Indexed: 01/23/2025] Open
Abstract
Alzheimer's Disease (AD) is the most prevalent type of dementia and is characterized by the presence of senile plaques and neurofibrillary tangles. There are various theories concerning the causes of AD, but the connection between viral and bacterial infections and their potential role in the pathogenesis of AD has become a fascinating area of research for the field. Various viruses such as Herpes simplex virus 1 (HSV-1), Epstein-Barr virus (EBV), Cytomegalovirus (CMV), influenza viruses, and Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), as well as bacteria such as Chlamydia pneumoniae (CP), Helicobacter pylori (HP), Porphyromonas gingivalis (P. gingivalis), Spirochetes and eukaryotic unicellular parasites (e.g., Toxoplasma gondii), have been linked to AD due to their ability to activate the immune system, induce inflammation and increase oxidative stress, thereby leading to cognitive decline and AD. In addition, microRNAs (miRNAs) might play a crucial role in the pathogenesis mechanisms of these pathogens since they are utilized to target various protein-coding genes, allowing for immune evasion, maintaining latency, and suppressing cellular signaling molecules. Also, they can regulate gene expression in human cells. This article provides an overview of the association between AD and various infectious agents, with a focus on the mechanisms by which these pathogens may be related to the pathogenesis of AD. These findings suggest important areas for further research to be explored in future studies.
Collapse
Affiliation(s)
- Seyyed Sam Mehdi Hosseininasab
- Critical Care Quality Improvement Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rasoul Ebrahimi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shirin Yaghoobpoor
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kiarash Kazemi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Yaser Khakpour
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ramtin Hajibeygi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ashraf Mohamadkhani
- Liver and Pancreatobiliary Diseases Research Center, Digestive Diseases Research Institute, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Mobina Fathi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kimia Vakili
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arian Tavasol
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zohreh Tutunchian
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tara Fazel
- Student Research Committee, School of International Campus, Guilan University of Medical Sciences, Tehran, Iran
| | - Mohammad Fathi
- Department of Anesthesiology, Critical Care Quality Improvement Research Center, Shahid Modarres Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadreza Hajiesmaeili
- Critical Care Quality Improvement Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Pourahmad R, saleki K, Zare Gholinejad M, Aram C, Soltani Farsani A, Banazadeh M, Tafakhori A. Exploring the effect of gut microbiome on Alzheimer's disease. Biochem Biophys Rep 2024; 39:101776. [PMID: 39099604 PMCID: PMC11296257 DOI: 10.1016/j.bbrep.2024.101776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/30/2024] [Accepted: 07/04/2024] [Indexed: 08/06/2024] Open
Abstract
Alzheimer's disease (AD) is the most widespread and irreversible form of dementia and accounts for more than half of dementia cases. The most significant risk factors for AD are aging-related exacerbations, degradation of anatomical pathways, environmental variables and mitochondrial dysfunction. Finding a decisive therapeutic solution is a major current issue. Nuanced interactions between major neuropathological mechanisms in AD in patients and microbiome have recently gained rising attention. The presence of bacterial amyloid in the gut triggers the immune system, resulting in increased immune feedbacks and endogenous neuronal amyloid within the CNS. Also, early clinical research revealed that changing the microbiome with beneficial bacteria or probiotics could affect brain function in AD. New approaches focus on the possible neuroprotective action of disease-modifying medications in AD. In the present review, we discuss the impact of the gut microbiota on the brain and review emerging research that suggests a disruption in the microbiota-brain axis can affect AD by mediating neuroinflammation. Such novel methods could help the development of novel therapeutics for AD.
Collapse
Affiliation(s)
- Ramtin Pourahmad
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Kiarash saleki
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
- Department of E-Learning in Medical Sciences, Faculty of Medical Education and Learning Technologies, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Cena Aram
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | | | - Mohammad Banazadeh
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Abbas Tafakhori
- Department of Neurology, School of Medicine, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Zhao M, Wang Y, Shen Y, Wei C, Zhang G, Sun L. A review of the roles of pathogens in Alzheimer's disease. Front Neurosci 2024; 18:1439055. [PMID: 39224577 PMCID: PMC11366636 DOI: 10.3389/fnins.2024.1439055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Alzheimer's disease (AD) is one of the leading causes of dementia and is characterized by memory loss, mental and behavioral abnormalities, and impaired ability to perform daily activities. Even as a global disease that threatens human health, effective treatments to slow the progression of AD have not been found, despite intensive research and significant investment. In recent years, the role of infections in the etiology of AD has sparked intense debate. Pathogens invade the central nervous system through a damaged blood-brain barrier or nerve trunk and disrupt the neuronal structure and function as well as homeostasis of the brain microenvironment through a series of molecular biological events. In this review, we summarize the various pathogens involved in AD pathology, discuss potential interactions between pathogens and AD, and provide an overview of the promising future of anti-pathogenic therapies for AD.
Collapse
Affiliation(s)
| | | | | | | | | | - Li Sun
- Department of Neurology, Neuroscience Center, The First Hospital of Jilin University, Jilin University, Changchun, China
| |
Collapse
|
6
|
Prosswimmer T, Heng A, Daggett V. Mechanistic insights into the role of amyloid-β in innate immunity. Sci Rep 2024; 14:5376. [PMID: 38438446 PMCID: PMC10912764 DOI: 10.1038/s41598-024-55423-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/23/2024] [Indexed: 03/06/2024] Open
Abstract
Colocalization of microbial pathogens and the β-amyloid peptide (Aβ) in the brain of Alzheimer's disease (AD) patients suggests that microbial infection may play a role in sporadic AD. Aβ exhibits antimicrobial activity against numerous pathogens, supporting a potential role for Aβ in the innate immune response. While mammalian amyloid is associated with disease, many bacteria form amyloid fibrils to fortify the biofilm that protects the cells from the surrounding environment. In the microbial AD hypothesis, Aβ aggregates in response to infection to combat the pathogen. We hypothesize that this occurs through toxic Aβ oligomers that contain α-sheet structure and form prior to fibrillization. De novo designed α-sheet peptides specifically bind to the α-sheet structure present in the oligomers of both bacterial and mammalian amyloidogenic proteins to neutralize toxicity and inhibit aggregation. Here, we measure the effect of E. coli on Aβ, including upregulation, aggregation, and toxicity. Additionally, we determined the effect of Aβ structure on E. coli amyloid fibrils, or curli comprised of the CsgA protein, and biofilm formation. We found that curli formation by E. coli increased Aβ oligomer production, and Aβ oligomers inhibited curli biogenesis and reduced biofilm cell density. Further, curli and biofilm inhibition by Aβ oligomers increased E. coli susceptibility to gentamicin. Toxic oligomers of Aβ and CsgA interact via α-sheet interactions, neutralizing their toxicity. These results suggest that exposure to toxic oligomers formed by microbial pathogens triggers Aβ oligomer upregulation and aggregation to combat infection via selective interactions between α-sheet oligomers to neutralize toxicity of both species with subsequent inhibition of fibrillization.
Collapse
Affiliation(s)
- Tatum Prosswimmer
- Molecular Engineering Program, University of Washington, Seattle, WA, 98195-5610, USA
| | - Anthony Heng
- Department of Neuroscience, University of Washington, Seattle, WA, 98195-5610, USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195-5610, USA
| | - Valerie Daggett
- Molecular Engineering Program, University of Washington, Seattle, WA, 98195-5610, USA.
- Department of Biochemistry, University of Washington, Seattle, WA, 98195-5610, USA.
- Department of Bioengineering, University of Washington, Seattle, WA, 98195-5610, USA.
| |
Collapse
|
7
|
Li R, Wang J, Xiong W, Luo Y, Feng H, Zhou H, Peng Y, He Y, Ye Q. The oral-brain axis: can periodontal pathogens trigger the onset and progression of Alzheimer's disease? Front Microbiol 2024; 15:1358179. [PMID: 38362505 PMCID: PMC10868393 DOI: 10.3389/fmicb.2024.1358179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/18/2024] [Indexed: 02/17/2024] Open
Abstract
Alzheimer's disease (AD) is the most prevalent form of dementia, characterized by a progressive cognitive decline. Sporadic AD, accounting for more than 95% of cases, may arise due to the influence of environmental factors. It was reported that periodontitis, a common oral ailment, shares several risk factors with AD, including advanced age, smoking, diabetes, and hypertension, among others. Periodontitis is an inflammatory disease triggered by dysbiosis of oral microorganisms, whereas Alzheimer's disease is characterized by neuroinflammation. Many studies have indicated that chronic inflammation can instigate brain AD-related pathologies, including amyloid-β plaques, Tau protein hyperphosphorylation, neuroinflammation, and neurodegeneration. The potential involvement of periodontal pathogens and/or their virulence factors in the onset and progression of AD by the oral-brain axis has garnered significant attention among researchers with ongoing investigations. This review has updated the periodontal pathogens potentially associated with AD, elucidating their impact on the central nervous system, immune response, and related pathological processes in the brain to provide valuable insights for future research on the oral-brain axis.
Collapse
Affiliation(s)
- Ruohan Li
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Junnan Wang
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Wei Xiong
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yu Luo
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
- Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Huixian Feng
- Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Heng Zhou
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Youjian Peng
- Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yan He
- Institute of Regenerative and Translational Medicine, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, China
| | - Qingsong Ye
- Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
- Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| |
Collapse
|
8
|
Dong S, Xia J, Wang F, Yang L, Xing S, Du J, Zhang T, Li Z. Discovery of novel deoxyvasicinone derivatives with benzenesulfonamide substituents as multifunctional agents against Alzheimer's disease. Eur J Med Chem 2024; 264:116013. [PMID: 38052155 DOI: 10.1016/j.ejmech.2023.116013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/26/2023] [Accepted: 11/26/2023] [Indexed: 12/07/2023]
Abstract
A series of deoxyvasicinone derivatives with benzenesulfonamide substituents were designed and synthesized to find a multifunctional anti-Alzheimer's disease (AD) drug. The results of the biological activity evaluation indicated that most compounds demonstrated selective inhibition of acetylcholinesterase (AChE). Among them, g17 exhibited the most potent inhibitory effect on AChE (IC50 = 0.24 ± 0.04 μM). Additionally, g17 exhibited promising properties as a metal chelator and inhibitor of amyloid β peptides self-aggregation (68.34 % ± 1.16 %). Research on oxidative stress has shown that g17 displays neuroprotective effects and effectively suppresses the intracellular accumulation of reactive oxygen species. Besides, g17 demonstrated remarkable anti-neuroinflammatory effects by significantly reducing the production of pro-inflammatory cytokines (such as NO, IL-1β, and TNF-α) and inhibiting the expression of inflammatory mediators iNOS and COX-2. In vivo studies showed that g17 significantly improved AD model mice's cognitive and memory abilities. Histological examination of mouse hippocampal tissue sections using hematoxylin and eosin staining revealed that g17 effectively mitigates neuronal damage. Considering the multifunctional properties of g17, it is regarded as a promising lead compound for treating AD.
Collapse
Affiliation(s)
- Shuanghong Dong
- The Key Laboratory for Joint Construction of Synthetic Bioprotein of Anhui Province, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jucheng Xia
- The Key Laboratory for Joint Construction of Synthetic Bioprotein of Anhui Province, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Fang Wang
- The Key Laboratory for Joint Construction of Synthetic Bioprotein of Anhui Province, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Lili Yang
- The Key Laboratory for Joint Construction of Synthetic Bioprotein of Anhui Province, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Siqi Xing
- The Key Laboratory for Joint Construction of Synthetic Bioprotein of Anhui Province, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jiyu Du
- The Key Laboratory for Joint Construction of Synthetic Bioprotein of Anhui Province, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Tingting Zhang
- The Key Laboratory for Joint Construction of Synthetic Bioprotein of Anhui Province, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Zeng Li
- The Key Laboratory for Joint Construction of Synthetic Bioprotein of Anhui Province, Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.
| |
Collapse
|
9
|
Hochuli N, Kadyan S, Park G, Patoine C, Nagpal R. Pathways linking microbiota-gut-brain axis with neuroinflammatory mechanisms in Alzheimer's pathophysiology. MICROBIOME RESEARCH REPORTS 2023; 3:9. [PMID: 38455083 PMCID: PMC10917618 DOI: 10.20517/mrr.2023.39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/03/2023] [Accepted: 11/30/2023] [Indexed: 03/09/2024]
Abstract
Disturbances in the local and peripheral immune systems are closely linked to a wide range of diseases. In the context of neurodegenerative disorders such as Alzheimer's disease (AD), inflammation plays a crucial role, often appearing as a common manifestation despite the variability in the occurrence of other pathophysiological hallmarks. Thus, combating neuroinflammation holds promise in treating complex pathophysiological diseases like AD. Growing evidence suggests the gut microbiome's crucial role in shaping the pathogenesis of AD by influencing inflammatory mediators. Gut dysbiosis can potentially activate neuroinflammatory pathways through bidirectional signaling of the gut-brain axis; however, the precise mechanisms of this complex interweaved network remain largely unclear. In these milieus, this review attempts to summarize the contributing role of gut microbiome-mediated neuroinflammatory signals in AD pathophysiology, while also pondering potential mechanisms through which commensal and pathogenic gut microbes affect neuroinflammation. While certain taxa such as Roseburia and Escherichia have been strongly correlated with AD, other clades such as Bacteroides and Faecalibacterium exhibit variations at the species and strain levels. In order to disentangle the inflammatory aspects of neurodegeneration attributed to the gut microbiome, it is imperative that future mechanistic studies investigate the species/strain-level dependency of commensals, opportunistic, and pathogenic gut microbes that consistently show correlations with AD patients across multiple associative studies.
Collapse
Affiliation(s)
| | | | | | | | - Ravinder Nagpal
- Department of Health, Nutrition, and Food Sciences, College of Education, Health, and Human Sciences, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
10
|
Pisano M, Giordano F, Sangiovanni G, Capuano N, Acerra A, D’Ambrosio F. The Interaction between the Oral Microbiome and Systemic Diseases: A Narrative Review. MICROBIOLOGY RESEARCH 2023; 14:1862-1878. [DOI: 10.3390/microbiolres14040127] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Background: The human being is defined as a ‘superorganism’ since it is made up of its own cells and microorganisms that reside inside and outside the human body. Commensal microorganisms, which are even ten times more numerous than the cells present in the body, perform very important functions for the host, as they contribute to the health of the host, resist pathogens, maintain homeostasis, and modulate the immune system. In the mouth, there are different types of microorganisms, such as viruses, mycoplasmas, bacteria, archaea, fungi, and protozoa, often organized in communities. The aim of this umbrella review is to evaluate if there is a connection between the oral microbiome and systematic diseases. Methodology: A literature search was conducted through PubMed/MEDLINE, the COCHRANE library, Scopus, and Web of Science databases without any restrictions. Because of the large number of articles included and the wide range of methods and results among the studies found, it was not possible to report the results in the form of a systematic review or meta-analysis. Therefore, a narrative review was conducted. We obtained 73.931 results, of which 3593 passed the English language filter. After the screening of the titles and abstracts, non-topic entries were excluded, but most articles obtained concerned interactions between the oral microbiome and systemic diseases. Discussion: A description of the normal microbial flora was present in the oral cavity both in physiological conditions and in local pathological conditions and in the most widespread systemic pathologies. Furthermore, the therapeutic precautions that the clinician can follow in order to intervene on the change in the microbiome have been described. Conclusions: This review highlights what are the intercorrelations of the oral microbiota in healthy subjects and in subjects in pathological conditions. According to several recent studies, there is a clear correlation between dysbiosis of the oral microbiota and diseases such as diabetes, cardiovascular diseases, chronic inflammatory diseases, and neurodegenerative diseases.
Collapse
Affiliation(s)
- Massimo Pisano
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Salerno, Italy
| | - Francesco Giordano
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Salerno, Italy
| | - Giuseppe Sangiovanni
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Salerno, Italy
| | - Nicoletta Capuano
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Salerno, Italy
| | - Alfonso Acerra
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Salerno, Italy
| | - Francesco D’Ambrosio
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Salerno, Italy
| |
Collapse
|
11
|
Ma L, Jiang X, Huang Q, Chen W, Zhang H, Pei H, Cao Y, Wang H, Li H. Traditional Chinese medicine for the treatment of Alzheimer's disease: A focus on the microbiota-gut-brain axis. Biomed Pharmacother 2023; 165:115244. [PMID: 37516021 DOI: 10.1016/j.biopha.2023.115244] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/11/2023] [Accepted: 07/25/2023] [Indexed: 07/31/2023] Open
Abstract
Alzheimer's disease (AD), the most frequent cause of dementia, is a neurodegenerative disorder characterised by a progressive decline in cognitive function that is associated with the formation of amyloid beta plaques and neurofibrillary tangles. Gut microbiota comprises of a complex community of microorganisms residing in the gastrointestinal ecosystem. These microorganisms can participate in gut-brain axis activities, thereby affecting cognitive function and associated behaviours. Increasing evidence has indicated that gut dysbiosis can jeopardise host immune responses and promote inflammation, which may be an initiating factor for the onset and evolution of AD. Traditional Chinese medicine (TCM) is a promising resource which encompasses immense chemical diversity and multiple-target characteristics for the treatment of AD. Many TCMs regulate the gut microbiota during treatment of diseases, indicating that gut microbiota may be an important target for TCM efficacy. In this review, we summarised the role of the microbiota-gut-brain axis in the development of AD and the effects of TCM in treating AD by regulating the gut microbiota. We anticipate that this review will provide novel perspectives and strategies for future AD research and treatments.
Collapse
Affiliation(s)
- Lina Ma
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, PR China
| | - Xuefan Jiang
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, PR China
| | - Qiaoyi Huang
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, PR China
| | - Wenxuan Chen
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, PR China
| | - Huiqin Zhang
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, PR China
| | - Hui Pei
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, PR China
| | - Yu Cao
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, PR China
| | - Huichan Wang
- Institute of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, PR China
| | - Hao Li
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, PR China.
| |
Collapse
|
12
|
Ayan E, DeMirci H, Serdar MA, Palermo F, Baykal AT. Bridging the Gap between Gut Microbiota and Alzheimer's Disease: A Metaproteomic Approach for Biomarker Discovery in Transgenic Mice. Int J Mol Sci 2023; 24:12819. [PMID: 37629000 PMCID: PMC10454110 DOI: 10.3390/ijms241612819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Alzheimer's Disease (AD) is a progressively debilitating form of dementia that affects millions of individuals worldwide. Although a vast amount of research has investigated the complex interplay between gut microbiota and neurodegeneration, the metaproteomic effects of microbiota on AD pathogenesis remain largely uncharted territory. This study aims to reveal the role of gut microbiota in AD pathogenesis, particularly regarding changes in the proteome and molecular pathways that are intricately linked to disease progression. We operated state-of-the-art Nano-Liquid Chromatography Mass Spectrometry (nLC-MS/MS) to compare the metaproteomic shifts of 3-month-old transgenic (3M-ALZ) and control (3M-ALM, Alzheimer's Littermate) mice, depicting the early onset of AD with those of 12-month-old ALZ and ALM mice displaying the late stage of AD. Combined with computational analysis, the outcomes of the gut-brain axis-focused inquiry furnish priceless knowledge regarding the intersection of gut microbiota and AD. Accordingly, our data indicate that the microbiota, proteome, and molecular changes in the intestine arise long before the manifestation of disease symptoms. Moreover, disparities exist between the normal-aged flora and the gut microbiota of late-stage AD mice, underscoring that the identified vital phyla, proteins, and pathways hold immense potential as markers for the early and late stages of AD. Our research endeavors to offer a comprehensive inquiry into the intricate interplay between gut microbiota and Alzheimer's Disease utilizing metaproteomic approaches, which have not been widely adopted in this domain. This highlights the exigency for further scientific exploration to elucidate the underlying mechanisms that govern this complex and multifaceted linkage.
Collapse
Affiliation(s)
- Esra Ayan
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34450, Turkey; (E.A.); (M.A.S.)
- Department of Molecular Biology and Genetics, Faculty of Science, Koç University, Istanbul 34450, Turkey;
| | - Hasan DeMirci
- Department of Molecular Biology and Genetics, Faculty of Science, Koç University, Istanbul 34450, Turkey;
- Koç University Isbank Center for Infectious Diseases (KUISCID), Koç University, Istanbul 34450, Turkey
- Stanford PULSE Institute, SLAC National Laboratory, Menlo Park, CA 94305, USA
| | - Muhittin Abdulkadir Serdar
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34450, Turkey; (E.A.); (M.A.S.)
| | | | - Ahmet Tarık Baykal
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul 34450, Turkey; (E.A.); (M.A.S.)
- Acıbadem Labmed Clinical Laboratories, R&D Center, İstanbul 34450, Turkey
- Department of Medical Biochemistry, Faculty of Medicine, Acibadem Mehmet Ali Aydınlar University, Istanbul 34450, Turkey
| |
Collapse
|
13
|
Pisani F, Pisani V, Arcangeli F, Harding A, Singhrao SK. Treponema denticola Has the Potential to Cause Neurodegeneration in the Midbrain via the Periodontal Route of Infection-Narrative Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6049. [PMID: 37297653 PMCID: PMC10252855 DOI: 10.3390/ijerph20116049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/30/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease and the most common example of dementia. The neuropathological features of AD are the abnormal deposition of extracellular amyloid-β (Aβ) and intraneuronal neurofibrillary tangles with hyperphosphorylated tau protein. It is recognized that AD starts in the frontal cerebral cortex, and then it progresses to the entorhinal cortex, the hippocampus, and the rest of the brain. However, some studies on animals suggest that AD could also progress in the reverse order starting from the midbrain and then spreading to the frontal cortex. Spirochetes are neurotrophic: From a peripheral route of infection, they can reach the brain via the midbrain. Their direct and indirect effect via the interaction of their virulence factors and the microglia potentially leads to the host peripheral nerve, the midbrain (especially the locus coeruleus), and cortical damage. On this basis, this review aims to discuss the hypothesis of the ability of Treponema denticola to damage the peripheral axons in the periodontal ligament, to evade the complemental pathway and microglial immune response, to determine the cytoskeletal impairment and therefore causing the axonal transport disruption, an altered mitochondrial migration and the consequent neuronal apoptosis. Further insights about the central neurodegeneration mechanism and Treponema denticola's resistance to the immune response when aggregated in biofilm and its quorum sensing are suggested as a pathogenetic model for the advanced stages of AD.
Collapse
Affiliation(s)
- Flavio Pisani
- Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston PR1 2HE, UK
| | - Valerio Pisani
- IRCCS, “Santa Lucia” Foundation, Neurology and Neurorehabilitation Unit, Via Ardeatina, 306, 00179 Rome, Italy
| | - Francesca Arcangeli
- Azienda Sanitaria Locale ASLRM1, Nuovo Regina Margherita Hospital, Geriatric Department, Advanced Centre for Dementia and Cognitive Disorders, Via Emilio Morosini, 30, 00153 Rome, Italy
| | - Alice Harding
- Dementia and Neurodegenerative Disease Research Group, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston PR1 2HE, UK
| | - Simarjit Kaur Singhrao
- Dementia and Neurodegenerative Disease Research Group, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston PR1 2HE, UK
| |
Collapse
|
14
|
Khatoon S, Kalam N, Rashid S, Bano G. Effects of gut microbiota on neurodegenerative diseases. Front Aging Neurosci 2023; 15:1145241. [PMID: 37323141 PMCID: PMC10268008 DOI: 10.3389/fnagi.2023.1145241] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/12/2023] [Indexed: 06/17/2023] Open
Abstract
A progressive degradation of the brain's structure and function, which results in a reduction in cognitive and motor skills, characterizes neurodegenerative diseases (NDs) such as Alzheimer's disease (AD), Parkinson's disease (PD), Amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD). The morbidity linked to NDs is growing, which poses a severe threat to human being's mental and physical ability to live well. The gut-brain axis (GBA) is now known to have a crucial role in the emergence of NDs. The gut microbiota is a conduit for the GBA, a two-way communication system between the gut and the brain. The myriad microorganisms that make up the gut microbiota can affect brain physiology by transmitting numerous microbial chemicals from the gut to the brain via the GBA or neurological system. The synthesis of neurotransmitters, the immunological response, and the metabolism of lipids and glucose have all been demonstrated to be impacted by alterations in the gut microbiota, such as an imbalance of helpful and harmful bacteria. In order to develop innovative interventions and clinical therapies for NDs, it is crucial to comprehend the participation of the gut microbiota in these conditions. In addition to using antibiotics and other drugs to target particular bacterial species that may be a factor in NDs, this also includes using probiotics and other fecal microbiota transplantation to maintain a healthy gut microbiota. In conclusion, the examination of the GBA can aid in understanding the etiology and development of NDs, which may benefit the improvement of clinical treatments for these disorders and ND interventions. This review indicates existing knowledge about the involvement of microbiota present in the gut in NDs and potential treatment options.
Collapse
Affiliation(s)
- Saima Khatoon
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Nida Kalam
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Summya Rashid
- Department of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Gulnaz Bano
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
15
|
Vojtechova I, Machacek T, Kristofikova Z, Stuchlik A, Petrasek T. Infectious origin of Alzheimer’s disease: Amyloid beta as a component of brain antimicrobial immunity. PLoS Pathog 2022; 18:e1010929. [PMCID: PMC9671327 DOI: 10.1371/journal.ppat.1010929] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The amyloid cascade hypothesis, focusing on pathological proteins aggregation, has so far failed to uncover the root cause of Alzheimer’s disease (AD), or to provide an effective therapy. This traditional paradigm essentially explains a mechanism involved in the development of sporadic AD rather than its cause. The failure of an overwhelming majority of clinical studies (99.6%) demonstrates that a breakthrough in therapy would be difficult if not impossible without understanding the etiology of AD. It becomes more and more apparent that the AD pathology might originate from brain infection. In this review, we discuss a potential role of bacteria, viruses, fungi, and eukaryotic parasites as triggers of AD pathology. We show evidence from the current literature that amyloid beta, traditionally viewed as pathological, actually acts as an antimicrobial peptide, protecting the brain against pathogens. However, in case of a prolonged or excessive activation of a senescent immune system, amyloid beta accumulation and aggregation becomes damaging and supports runaway neurodegenerative processes in AD. This is paralleled by the recent study by Alam and colleagues (2022) who showed that alpha-synuclein, the protein accumulating in synucleinopathies, also plays a critical physiological role in immune reactions and inflammation, showing an unforeseen link between the 2 unrelated classes of neurodegenerative disorders. The multiplication of the amyloid precursor protein gene, recently described by Lee and collegues (2018), and possible reactivation of human endogenous retroviruses by pathogens fits well into the same picture. We discuss these new findings from the viewpoint of the infection hypothesis of AD and offer suggestions for future research. More than a century after its discovery, Alzheimer’s disease (AD) remains incurable and mysterious. The dominant hypothesis of amyloid cascade has succeeded in explaining the key pathological mechanism, but not its trigger. Amyloid beta has been traditionally considered a pathological peptide, and its physiological functions remain poorly known. These knowledge gaps have contributed to repeated failures of clinical studies. The emerging infectious hypothesis of AD considers central nervous system (CNS) infection the primary trigger of sporadic AD. A closely connected hypothesis claims that amyloid beta is an antimicrobial peptide. In this review, we discuss the available evidence for the involvement of infections in AD, coming from epidemiological studies, post mortem analyses of brain tissue, and experiments in vitro and in vivo. We argue there is no unique “Alzheimer’s germ,” instead, AD is a general reaction of the CNS to chronic infections, in the milieu of an aged immune system. The pathology may become self-sustained even without continuous presence of microbes in the brain. Importantly, the infectious hypothesis leads to testable predictions. Targeting amyloid beta should be ineffective, unless the triggering pathogen and inflammatory response are addressed as well. Meticulous control of selected infections might be the best near-term strategy for AD prevention.
Collapse
Affiliation(s)
- Iveta Vojtechova
- National Institute of Mental Health, Klecany, Czech Republic
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- * E-mail: , (IV); , (TP)
| | - Tomas Machacek
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | | | - Ales Stuchlik
- National Institute of Mental Health, Klecany, Czech Republic
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tomas Petrasek
- National Institute of Mental Health, Klecany, Czech Republic
- Laboratory of Neurophysiology of Memory, Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
- * E-mail: , (IV); , (TP)
| |
Collapse
|
16
|
Chen L, Cao H, Wu X, Xu X, Ji X, Wang B, Zhang P, Li H. Effects of oral health intervention strategies on cognition and microbiota alterations in patients with mild Alzheimer's disease: A randomized controlled trial. Geriatr Nurs 2022; 48:103-110. [PMID: 36155316 DOI: 10.1016/j.gerinurse.2022.09.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 12/14/2022]
Abstract
We explored the effects of an oral health intervention on the oral microbiome and cognitive function of patients with mild Alzheimer's disease (AD) and determined the influence on disease progression. Sixty-six patients with mild AD were randomly assigned to intervention or control groups and received a 24-week oral health intervention and routine care, respectively. Data were collected at baseline and week 24. 16 S rRNA sequencing was used to analyze oral microbiota. After 24 weeks of oral health intervention, Kayser-Jones Brief Oral Health Status Examination (BOHSE), Mini-Mental State Examination (MMSE), Neuropsychiatric Inventory (NPI), Nursing Home Adjustment Scale (NHAS), and Alzheimer's Disease Cooperative Study-ADL (ADCS-ADL) scores were different between groups (p < 0.05). Subgingival plaque in patients with AD showed significant differences in the diversity and abundance of oral microbiomes, with a higher abundance of normal oral flora in the intervention group. We found oral health intervention strategies are effective in modifying subgingival microbiota differences and slowing cognitive decline in mild AD patients.
Collapse
Affiliation(s)
- Lili Chen
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China; The School of Nursing, Fujian Medical University, Fuzhou, China; Fujian Provincial Hospital, Fuzhou, China.
| | - Huizhen Cao
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China; Fujian Provincial Hospital, Fuzhou, China
| | - Xiaoqi Wu
- Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xinhua Xu
- The School of Nursing, Fujian Medical University, Fuzhou, China
| | - Xinli Ji
- The School of Nursing, Fujian Medical University, Fuzhou, China
| | - Bixia Wang
- The School of Nursing, Fujian Medical University, Fuzhou, China
| | - Ping Zhang
- The School of Nursing, Fujian Medical University, Fuzhou, China
| | - Hong Li
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China; The School of Nursing, Fujian Medical University, Fuzhou, China; Fujian Provincial Hospital, Fuzhou, China.
| |
Collapse
|
17
|
Giordano-Kelhoffer B, Lorca C, March Llanes J, Rábano A, del Ser T, Serra A, Gallart-Palau X. Oral Microbiota, Its Equilibrium and Implications in the Pathophysiology of Human Diseases: A Systematic Review. Biomedicines 2022; 10:biomedicines10081803. [PMID: 36009350 PMCID: PMC9405223 DOI: 10.3390/biomedicines10081803] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/19/2022] [Accepted: 07/23/2022] [Indexed: 02/06/2023] Open
Abstract
Imbalances of the oral microbiota and dysbiosis have traditionally been linked to the occurrence of teeth and oral diseases. However, recent findings indicate that this microbiota exerts relevant influence in systemic health. Dysbiosis of the oral microbiota is implicated in the apparition and progression of cardiovascular, neurodegenerative and other major human diseases. In fact, the oral microbiota are the second most diverse and largely populated microbiota of the human body and its relationships with systemic health, although widely explored, they still lack of proper integration. The purpose of this systematic review is thus to widely examine the implications of oral microbiota in oral, cardiovascular and neurodegenerative diseases to offer integrative and up-to-date interpretations. To achieve that aim, we identified a total of 121 studies curated in PUBMED from the time interval January 2003–April 2022, which after careful screening resulted in 79 studies included. The reviewed scientific literature provides plausible vias of implication of dysbiotic oral microbiota in systemic human diseases, and encourages further research to continue elucidating the highly relevant and still poorly understood implications of this niche microbiota in systemic health. PROSPERO Registration Number: CRD42022299692. This systematic review follows relevant PRISMA guidelines.
Collapse
Affiliation(s)
- Barbara Giordano-Kelhoffer
- Faculty of Dentistry, Universitat Internacional de Catalunya (UIC), 08017 Barcelona, Spain;
- Bioengineering Institute of Technology, Faculty of Health Sciences, Universitat Internacional de Catalunya (UIC), 08017 Barcelona, Spain
- Faculty of Health Sciences, Valencian International University, 46002 Valencia, Spain
- Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRB Lleida), Neuroscience Area, +Pec Proteomics Research Group (+PPRG), University Hospital Arnau de Vilanova (HUAV), 25198 Lleida, Spain;
| | - Cristina Lorca
- Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRB Lleida), Neuroscience Area, +Pec Proteomics Research Group (+PPRG), University Hospital Arnau de Vilanova (HUAV), 25198 Lleida, Spain;
- IMDEA—Food Research Institute, +Pec Proteomics, Campus of International Excellence UAM + CSIC, Old Cantoblanco Hospital, 8 Crta. Canto Blanco, 28049 Madrid, Spain
| | - Jaume March Llanes
- NeuroPGA Research Group—Psychology Department, University of Lleida (UdL), 25001 Lleida, Spain;
| | - Alberto Rábano
- Alzheimer’s Centre Reina Sofia—CIEN Foundation, 28031 Madrid, Spain; (A.R.); (T.d.S.)
| | - Teodoro del Ser
- Alzheimer’s Centre Reina Sofia—CIEN Foundation, 28031 Madrid, Spain; (A.R.); (T.d.S.)
| | - Aida Serra
- IMDEA—Food Research Institute, +Pec Proteomics, Campus of International Excellence UAM + CSIC, Old Cantoblanco Hospital, 8 Crta. Canto Blanco, 28049 Madrid, Spain
- Correspondence: (A.S.); (X.G.-P.); Tel.: +34-91-7278-100 (A.S.); +34-97-3702-224 (X.G.-P.)
| | - Xavier Gallart-Palau
- Faculty of Health Sciences, Valencian International University, 46002 Valencia, Spain
- Biomedical Research Institute of Lleida Dr. Pifarré Foundation (IRB Lleida), Neuroscience Area, +Pec Proteomics Research Group (+PPRG), University Hospital Arnau de Vilanova (HUAV), 25198 Lleida, Spain;
- Psychology Department, University of Lleida (UdL), 25001 Lleida, Spain
- Correspondence: (A.S.); (X.G.-P.); Tel.: +34-91-7278-100 (A.S.); +34-97-3702-224 (X.G.-P.)
| |
Collapse
|
18
|
Luo JJ, Wallace W, Kusiak JW. A tough trek in the development of an anti-amyloid therapy for Alzheimer's disease: Do we see hope in the distance? J Neurol Sci 2022; 438:120294. [DOI: 10.1016/j.jns.2022.120294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/27/2022] [Accepted: 05/18/2022] [Indexed: 12/17/2022]
|
19
|
Wiatrak B, Balon K, Jawień P, Bednarz D, Jęśkowiak I, Szeląg A. The Role of the Microbiota-Gut-Brain Axis in the Development of Alzheimer's Disease. Int J Mol Sci 2022; 23:ijms23094862. [PMID: 35563253 PMCID: PMC9104401 DOI: 10.3390/ijms23094862] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/16/2022] [Accepted: 04/21/2022] [Indexed: 02/06/2023] Open
Abstract
Along with the increase in life expectancy in the populations of developed and developing countries resulting from better access and improved health care, the number of patients with dementia, including Alzheimer’s disease (AD), is growing. The disease was first diagnosed and described at the beginning of the 20th century. However, to this day, there is no effective causal therapy, and symptomatic treatment often improves patients’ quality of life only for a short time. The current pharmacological therapies are based mainly on the oldest hypotheses of the disease—cholinergic (drugs affecting the cholinergic system are available), the hypothesis of amyloid-β aggregation (an anti-amyloid drug was conditionally approved by the FDA in 2020), and one drug is an N-methyl-D-aspartate receptor (NMDAR) antagonist (memantine). Hypotheses about AD pathogenesis focus on the nervous system and the brain. As research progresses, it has become known that AD can be caused by diseases that have been experienced over the course of a lifetime, which could also affect other organs. In this review, we focus on the potential association of AD with the digestive system, primarily the gut microbiota. The role of diet quality in preventing and alleviating Alzheimer’s disease is also discussed. The problem of neuroinflammation, which may be the result of microbiota disorders, is also described. An important aspect of the work is the chapter on the treatment strategies for changing the microbiota, potentially protecting against the disease and alleviating its course in the initial stages.
Collapse
Affiliation(s)
- Benita Wiatrak
- Department of Pharmacology, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland; (D.B.); (I.J.); (A.S.)
- Correspondence: (B.W.); (P.J.)
| | - Katarzyna Balon
- Laboratory of Genomics & Bioinformatics, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland;
| | - Paulina Jawień
- Department of Biostructure and Animal Physiology, Wroclaw University of Environmental and Life Sciences, Norwida 25/27, 50-375 Wroclaw, Poland
- Correspondence: (B.W.); (P.J.)
| | - Dominika Bednarz
- Department of Pharmacology, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland; (D.B.); (I.J.); (A.S.)
| | - Izabela Jęśkowiak
- Department of Pharmacology, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland; (D.B.); (I.J.); (A.S.)
| | - Adam Szeląg
- Department of Pharmacology, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wroclaw, Poland; (D.B.); (I.J.); (A.S.)
| |
Collapse
|
20
|
Escobar YNH, O’Piela D, Wold LE, Mackos AR. Influence of the Microbiota-Gut-Brain Axis on Cognition in Alzheimer’s Disease. J Alzheimers Dis 2022; 87:17-31. [PMID: 35253750 PMCID: PMC10394502 DOI: 10.3233/jad-215290] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The gut microbiota is made up of trillions of microbial cells including bacteria, viruses, fungi, and other microbial bodies and is greatly involved in the maintenance of proper health of the host body. In particular, the gut microbiota has been shown to not only be involved in brain development but also in the modulation of behavior, neuropsychiatric disorders, and neurodegenerative diseases including Alzheimer’s disease. The precise mechanism by which the gut microbiota can affect the development of Alzheimer’s disease is unknown, but the gut microbiota is thought to communicate with the brain directly via the vagus nerve or indirectly through signaling molecules such as cytokines, neuroendocrine hormones, bacterial components, neuroactive molecules, or microbial metabolites such as short-chain fatty acids. In particular, interventions such as probiotic supplementation, fecal microbiota transfer, and supplementation with microbial metabolites have been used not only to study the effects that the gut microbiota has on behavior and cognitive function, but also as potential therapeutics for Alzheimer’s disease. A few of these interventions, such as probiotics, are promising candidates for the improvement of cognition in Alzheimer ’s disease and are the focus of this review.
Collapse
Affiliation(s)
- Yael-Natalie H. Escobar
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA
- College of Nursing, The Ohio State University, Columbus, OH, USA
| | - Devin O’Piela
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA
- College of Nursing, The Ohio State University, Columbus, OH, USA
| | - Loren E. Wold
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA
- College of Nursing, The Ohio State University, Columbus, OH, USA
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA
| | - Amy R. Mackos
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH, USA
- College of Nursing, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
21
|
Norins LC. Down syndrome and Alzheimer’s disease: Same infectious cause, same preventive? Med Hypotheses 2022. [DOI: 10.1016/j.mehy.2021.110745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
22
|
Wang X, Jiang D, Li T, Zhang X, Wang R, Gao S, Yang F, Wang Y, Tian Q, Xie C, Liang J. Association between microbiological risk factors and neurodegenerative disorders: An umbrella review of systematic reviews and meta-analyses. Front Psychiatry 2022; 13:991085. [PMID: 36213914 PMCID: PMC9537612 DOI: 10.3389/fpsyt.2022.991085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/30/2022] [Indexed: 02/05/2023] Open
Abstract
UNLABELLED The role of microbiological factors in the development of neurodegenerative diseases is attracting increasing attention, while the relationship remains debated. This study aimed to comprehensively summarize and evaluate the associations between microbiological factors and the risk of neurodegenerative disorders with an umbrella review. PubMed, Embase, and the Cochrane library were used to search for papers from the earliest to March 2021 for identifying meta-analyses and systematic reviews that examined associations between microbiological factors and neurodegenerative diseases. AMSTAR2 tool was employed to evaluate the methodical quality of systematic reviews and meta-analyses. The effect size and 95% confidence interval (95% CI) were recalculated with a random effect model after the overlap was recognized by the corrected covered area (CCA) method. The heterogeneity of each meta-analysis was measured by the I 2 statistic and 95% prediction interval (95% PI). Additionally, publication bias and the quality of evidence were evaluated for all 37 unique associations. Only 4 associations had above the medium level of evidence, and the rest associations presented a low level of evidence. Among them, helicobacter pylori (HP), infection, and bacteria are associated with Parkinson's disease (PD), and the other one verifies that periodontal disease is a risk factor for all types of dementia. Following the evidence of our study, eradication of HP and aggressive treatment of periodontitis are beneficial for the prevention of PD and dementia, respectively. This umbrella review provides comprehensive quality-grade evidence on the relationship between microbial factors and neurodegenerative disease. Regardless of much evidence linking microbial factors to neurodegenerative diseases, these associations are not necessarily causal, and the evidence level is generally low. Thus, more effective studies are required. SYSTEMATIC REVIEW REGISTRATION https://www.crd.york.ac.uk/PROSPERO/#searchadvanced, PROSPERO, identifier: CRD42021239512.
Collapse
Affiliation(s)
- Xin Wang
- Department of Neurology, Beijing Huairou Hospital of Traditional Chinese Medicine, Beijing, China
| | - Deming Jiang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Tianxiong Li
- Surgery Centre of Diabetes Mellitus, Peking University Ninth School of Clinical Medicine (Beijing Shijitan Hospital, Capital Medical University), Beijing, China
| | - Xiao Zhang
- Department of Neurology, Beijing Huairou Hospital of Traditional Chinese Medicine, Beijing, China
| | - Ran Wang
- Department of Neurology, Beijing Huairou Hospital of Traditional Chinese Medicine, Beijing, China
| | - Song Gao
- Department of Neurology, Beijing Huairou Hospital of Traditional Chinese Medicine, Beijing, China
| | - Fengyi Yang
- Department of Neurology, Beijing Huairou Hospital of Traditional Chinese Medicine, Beijing, China
| | - Yan Wang
- Department of Neurology, Beijing Huairou Hospital of Traditional Chinese Medicine, Beijing, China
| | - Qi Tian
- Department of Neurology, Beijing Huairou Hospital of Traditional Chinese Medicine, Beijing, China
| | - Chunrong Xie
- Department of Neurology, Beijing Huairou Hospital of Traditional Chinese Medicine, Beijing, China
- Chunrong Xie
| | - Jinghong Liang
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Jinghong Liang
| |
Collapse
|
23
|
Chakravarthi ST, Joshi SG. An Association of Pathogens and Biofilms with Alzheimer's Disease. Microorganisms 2021; 10:microorganisms10010056. [PMID: 35056505 PMCID: PMC8778325 DOI: 10.3390/microorganisms10010056] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 11/16/2022] Open
Abstract
As one of the leading causes of dementia, Alzheimer's disease (AD) is a condition in which individuals experience progressive cognitive decline. Although it is known that beta-amyloid (Aβ) deposits and neurofibrillary tangles (NFT) of tau fibrils are hallmark characteristics of AD, the exact causes of these pathologies are still mostly unknown. Evidence that infectious diseases may cause AD pathology has been accumulating for decades. The association between microbial pathogens and AD is widely studied, and there are noticeable correlations between some bacterial species and AD pathologies, especially spirochetes and some of the oral microbes. Borrelia burgdorferi has been seen to correlate with Aβ plaques and NFTs in infected cells. Because of the evidence of spirochetes in AD patients, Treponema pallidum and other oral treponemes are speculated to be a potential cause of AD. T. pallidum has been seen to form aggregates in the brain when the disease disseminates to the brain that closely resemble the Aβ plaques of AD patients. This review examines the evidence as to whether pathogens could be the cause of AD and its pathology. It offers novel speculations that treponemes may be able to induce or correlate with Alzheimer's disease.
Collapse
Affiliation(s)
- Sandhya T. Chakravarthi
- Center for Surgical Infection and Biofilm, College of Medicine, Drexel University, Philadelphia, PA 19104, USA;
| | - Suresh G. Joshi
- Center for Surgical Infection and Biofilm, College of Medicine, Drexel University, Philadelphia, PA 19104, USA;
- Drexel School of Biomedical Engineering, Science & Health Systems, Drexel University, Philadelphia, PA 19104, USA
- Correspondence: or ; Tel.: +1-215-895-1988
| |
Collapse
|
24
|
Senejani AG, Maghsoudlou J, El-Zohiry D, Gaur G, Wawrzeniak K, Caravaglia C, Khatri VA, MacDonald A, Sapi E. Borrelia burgdorferi Co-Localizing with Amyloid Markers in Alzheimer's Disease Brain Tissues. J Alzheimers Dis 2021; 85:889-903. [PMID: 34897095 PMCID: PMC8842785 DOI: 10.3233/jad-215398] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Infections by bacterial or viral agents have been hypothesized to influence the etiology of neurodegenerative diseases. OBJECTIVE This study examined the potential presence of Borrelia burgdorferi spirochete, the causative agent of Lyme disease, in brain autopsy tissue of patients diagnosed with either Alzheimer's (AD) or Parkinson's diseases. METHODS Brain tissue sections from patients with age-matched controls were evaluated for antigen and DNA presence of B. burgdorferi using various methods. Positive Borrelia structures were evaluated for co-localization with biofilm and AD markers such as amyloid and phospho-tau (p-Tau) using immunohistochemical methods. RESULTS The results showed the presence of B. burgdorferi antigen and DNA in patients with AD pathology and among those, one of them was previously diagnosed with Lyme disease. Interestingly, a significant number of Borrelia-positive aggregates with a known biofilm marker, alginate, were found along with the spirochetal structures. Our immunohistochemical data also showed that Borrelia-positive aggregates co-localized with amyloid and anti-phospho-tau markers. To further prove the potential relationship of B. burgdorferi and amyloids, we infected two mammalian cell lines with B. burgdorferi which resulted in a significant increase in the expression of amyloid-β and p-Tau proteins in both cells lines post-infection. CONCLUSION These results indicate that B. burgdorferi can be found in AD brain tissues, not just in spirochete but a known antibiotics resistant biofilm form, and its co-localized amyloid markers. In summary, this study provides evidence for a likely association between B. burgdorferi infections and biofilm formation, AD pathology, and chronic neurodegenerative diseases.
Collapse
Affiliation(s)
- Alireza G Senejani
- Department of Biology and Environmental Sciences, University of New Haven, West Haven, CT, USA
| | - Jasmin Maghsoudlou
- Department of Biology and Environmental Sciences, University of New Haven, West Haven, CT, USA
| | - Dina El-Zohiry
- Department of Biology and Environmental Sciences, University of New Haven, West Haven, CT, USA
| | - Gauri Gaur
- Department of Biology and Environmental Sciences, University of New Haven, West Haven, CT, USA
| | - Keith Wawrzeniak
- Department of Biology and Environmental Sciences, University of New Haven, West Haven, CT, USA
| | - Cristina Caravaglia
- Department of Biology and Environmental Sciences, University of New Haven, West Haven, CT, USA
| | - Vishwa A Khatri
- Department of Biology and Environmental Sciences, University of New Haven, West Haven, CT, USA
| | - Alan MacDonald
- Molecular Interrogation Research Laboratory, Naples, FL, USA
| | - Eva Sapi
- Department of Biology and Environmental Sciences, University of New Haven, West Haven, CT, USA
| |
Collapse
|
25
|
Abstract
Mediators of the initiation, development, and recurrence of periodontitis include the oral microbiome embedded in subgingival plaque and the host immune response to a dysbiosis within this dynamic and complex microbial community. Although mediators have been studied extensively, researchers in the field have been unable to fully ascribe certain clinical presentations of periodontitis to their nature. Emergence of high-throughput sequencing technologies has resulted in better characterization of the microbial oral dysbiosis that extends beyond the extensively studied putative bacterial periodontopathogens to a shift in the oral virome composition during disease conditions. Although the biological dark matter inserted by retroviruses was once believed to be nonfunctional, research has revealed that it encodes historical viral-eukaryotic interactions and influences host development. The objective of this review is to evaluate the proposed association of herpesviruses to the etiology and pathogenesis of periodontal disease and survey the highly abundant prokaryotic viruses to delineate their potential roles in biofilm dynamics, as well as their interactions with putative bacterial periodontopathogens and eukaryotic cells. The findings suggest that potential novel periodontal therapies targeting or utilizing the oral virome can alleviate certain clinical presentations of periodontitis. Perhaps it is time to embrace the viral dark matter within the periodontal environment to fully comprehend the pathogenesis and systemic implications of periodontitis.
Collapse
Affiliation(s)
- April Martínez
- Orofacial Sciences DepartmentSchool of DentistryUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| | - Ryutaro Kuraji
- Orofacial Sciences DepartmentSchool of DentistryUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
- Department of Life Science DentistryThe Nippon Dental UniversityTokyoJapan
- Department of PeriodontologyThe Nippon Dental University School of Life Dentistry at TokyoTokyoJapan
| | - Yvonne L. Kapila
- Orofacial Sciences DepartmentSchool of DentistryUniversity of California, San FranciscoSan FranciscoCaliforniaUSA
| |
Collapse
|
26
|
Allen HB. A Novel Approach to the Treatment and Prevention of Alzheimer's Disease Based on the Pathology and Microbiology. J Alzheimers Dis 2021; 84:61-67. [PMID: 34542071 PMCID: PMC8609710 DOI: 10.3233/jad-210429] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Utilizing the pathology and microbiology found in tissue from patients with documented Alzheimer's disease (AD), the pathogenesis of this fateful disorder has been made clear. Borrelia burgdorferi and Treponema denticola spirochetes enter the brain, mostly via neuronal pathways and the entorhinal circulation. These organisms easily pass through the blood-brain barrier and have an affinity for neural tissue. Once in the brain, the spirochetes make intra- and extracellular biofilms, and it is the biofilms that create the pathology. Specifically, it is the intracellular biofilms that are ultimately responsible for neurofibrillary tangles and dendritic disintegration. The extracellular biofilms are responsible for the inflammation that initially is generated by the first responder, Toll-like receptor 2. The hypothesis that arises from this work is two-pronged: one is related to prevention; the other to treatment. Regarding prevention, it is very likely possible that AD could be prevented by periodic administration of penicillin (PCN), which would kill the spirochetes before they made biofilms; this would prevent the disease and would not allow any of the above deleterious changes generated by the biofilms to occur. As regards treatment, it may be possible to slow or prevent further decline in early AD by administration of PCN together with a biofilm disperser. The disperser would disrupt the biofilm coating and enable the PCN to kill the spirochetes. This protocol could be administered in a trial with the control arm utilizing the current treatment. The progress of the treatment could be evaluated by one of the current blood tests that is semi-quantitative. The specific protocols are listed.
Collapse
Affiliation(s)
- Herbert B Allen
- Department of Dermatology, Drexel University College of Medicine, Philadelphia, PA, USA.,Dermatology, Eastern Virginia Medical School, Norfolk, VA, USA.,Geriatrics and Gerontology, Rowan School of Osteopathic Medicine, Stratford, NJ, USA
| |
Collapse
|
27
|
Mitić M, Lazarević-Pašti T. Does the application of acetylcholinesterase inhibitors in the treatment of Alzheimer's disease lead to depression? Expert Opin Drug Metab Toxicol 2021; 17:841-856. [PMID: 33999717 DOI: 10.1080/17425255.2021.1931681] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Alzheimer's disease and depression are health conditions affecting millions of people around the world. Both are strongly related to the level of the neurotransmitter acetylcholine. Since cholinergic deficit is characteristic of Alzheimer's disease, acetylcholinesterase inhibitors are applied as relevant drugs for the treatment of this disease, elevating the level of acetylcholine. On the other hand, a high level of acetylcholine is found to be associated with the symptoms of clinical depression.Areas covered: This article aims to discuss if acetylcholinesterase inhibitors used as anti-Alzheimer's drugs could be the cause of the symptoms of clinical depression often linked to this neurological disorder. Emphasis will be put on drugs currently in use and on newly investigated natural products, which can inhibit AChE activity.Expert opinion: Currently, it is not proven that the patient treated for Alzheimer's disease is prone to increased risk for depression due to the acetylcholinesterase inhibition, but there are strong indications. The level of acetylcholine is not the only factor in highly complicated diseases like AD and depression. Still, it needs to be considered isolated, keeping in mind the nature of presently available therapy, especially during a rational drug design process.
Collapse
Affiliation(s)
- Miloš Mitić
- Department of Molecular Biology and Endocrinology, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Tamara Lazarević-Pašti
- Department of Physical Chemistry, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
28
|
Gadila SKG, Rosoklija G, Dwork AJ, Fallon BA, Embers ME. Detecting Borrelia Spirochetes: A Case Study With Validation Among Autopsy Specimens. Front Neurol 2021; 12:628045. [PMID: 34040573 PMCID: PMC8141553 DOI: 10.3389/fneur.2021.628045] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 04/13/2021] [Indexed: 01/30/2023] Open
Abstract
The complex etiology of neurodegenerative disease has prompted studies on multiple mechanisms including genetic predisposition, brain biochemistry, immunological responses, and microbial insult. In particular, Lyme disease is often associated with neurocognitive impairment with variable manifestations between patients. We sought to develop methods to reliably detect Borrelia burgdorferi, the spirochete bacteria responsible for Lyme disease, in autopsy specimens of patients with a history of neurocognitive disease. In this report, we describe the use of multiple molecular detection techniques for this pathogen and its application to a case study of a Lyme disease patient. The patient had a history of Lyme disease, was treated with antibiotics, and years later developed chronic symptoms including dementia. The patient's pathology and clinical case description was consistent with Lewy body dementia. B. burgdorferi was identified by PCR in several CNS tissues and by immunofluorescent staining in the spinal cord. These studies offer proof of the principle that persistent infection with the Lyme disease spirochete may have lingering consequences on the CNS.
Collapse
Affiliation(s)
- Shiva Kumar Goud Gadila
- Division of Immunology, Tulane National Primate Research Center, Tulane University Health Sciences, Covington, LA, United States
| | - Gorazd Rosoklija
- Department of Psychiatry, Columbia University, New York, NY, United States.,Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, United States
| | - Andrew J Dwork
- Department of Psychiatry, Columbia University, New York, NY, United States.,Division of Molecular Imaging and Neuropathology, New York State Psychiatric Institute, New York, NY, United States.,Macedonian Academy of Sciences and Arts, Skopje, Macedonia.,Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
| | - Brian A Fallon
- Department of Psychiatry, Columbia University, New York, NY, United States
| | - Monica E Embers
- Division of Immunology, Tulane National Primate Research Center, Tulane University Health Sciences, Covington, LA, United States
| |
Collapse
|
29
|
Sharma VK, Singh TG, Garg N, Dhiman S, Gupta S, Rahman MH, Najda A, Walasek-Janusz M, Kamel M, Albadrani GM, Akhtar MF, Saleem A, Altyar AE, Abdel-Daim MM. Dysbiosis and Alzheimer's Disease: A Role for Chronic Stress? Biomolecules 2021; 11:678. [PMID: 33946488 PMCID: PMC8147174 DOI: 10.3390/biom11050678] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is an incurable, neuropsychiatric, pathological condition that deteriorates the worth of geriatric lives. AD is characterized by aggregated senile amyloid plaques, neurofibrillary tangles, neuronal loss, gliosis, oxidative stress, neurotransmitter dysfunction, and bioenergetic deficits. The changes in GIT composition and harmony have been recognized as a decisive and interesting player in neuronal pathologies including AD. Microbiota control and influence the oxidoreductase status, inflammation, immune system, and the endocrine system through which it may have an impact on the cognitive domain. The altered and malfunctioned state of microbiota is associated with minor infections to complicated illnesses that include psychosis and neurodegeneration, and several studies show that microbiota regulates neuronal plasticity and neuronal development. The altered state of microbiota (dysbiosis) may affect behavior, stress response, and cognitive functions. Chronic stress-mediated pathological progression also has a well-defined role that intermingles at various physiological levels and directly impacts the pathological advancement of AD. Chronic stress-modulated alterations affect the well-established pathological markers of AD but also affect the gut-brain axis through the mediation of various downstream signaling mechanisms that modulate the microbial commensals of GIT. The extensive literature reports that chronic stressors affect the composition, metabolic activities, and physiological role of microbiota in various capacities. The present manuscript aims to elucidate mechanistic pathways through which stress induces dysbiosis, which in turn escalates the neuropathological cascade of AD. The stress-dysbiosis axis appears a feasible zone of work in the direction of treatment of AD.
Collapse
Affiliation(s)
- Vivek Kumar Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (V.K.S.); (N.G.); (S.D.); (S.G.)
- Goverment College of Pharmacy, District Shimla, Rohru 171207, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (V.K.S.); (N.G.); (S.D.); (S.G.)
| | - Nikhil Garg
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (V.K.S.); (N.G.); (S.D.); (S.G.)
| | - Sonia Dhiman
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (V.K.S.); (N.G.); (S.D.); (S.G.)
| | - Saurabh Gupta
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India; (V.K.S.); (N.G.); (S.D.); (S.G.)
| | - Md. Habibur Rahman
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh;
| | - Agnieszka Najda
- Laboratory of Quality of Vegetables and Medicinal Plants, Department of Vegetable Crops and Medicinal Plants, University of Life Sciences in Lublin, 15 Akademicka Street, 20-950 Lublin, Poland; (A.N.); (M.W.-J.)
| | - Magdalena Walasek-Janusz
- Laboratory of Quality of Vegetables and Medicinal Plants, Department of Vegetable Crops and Medicinal Plants, University of Life Sciences in Lublin, 15 Akademicka Street, 20-950 Lublin, Poland; (A.N.); (M.W.-J.)
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
| | - Ghadeer M. Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11474, Saudi Arabia;
| | - Muhammad Furqan Akhtar
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Lahore Campus, Lahore 54950, Pakistan;
| | - Ammara Saleem
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan;
| | - Ahmed E. Altyar
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia;
| | - Mohamed M. Abdel-Daim
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
30
|
Källstig E, McCabe BD, Schneider BL. The Links between ALS and NF-κB. Int J Mol Sci 2021; 22:3875. [PMID: 33918092 PMCID: PMC8070122 DOI: 10.3390/ijms22083875] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/06/2021] [Accepted: 04/06/2021] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease wherein motor neuron degeneration leads to muscle weakness, progressive paralysis, and death within 3-5 years of diagnosis. Currently, the cause of ALS is unknown but, as with several neurodegenerative diseases, the potential role of neuroinflammation has become an increasingly popular hypothesis in ALS research. Indeed, upregulation of neuroinflammatory factors have been observed in both ALS patients and animal models. One such factor is the inflammatory inducer NF-κB. Besides its connection to inflammation, NF-κB activity can be linked to several genes associated to familial forms of ALS, and many of the environmental risk factors of the disease stimulate NF-κB activation. Collectively, this has led many to hypothesize that NF-κB proteins may play a role in ALS pathogenesis. In this review, we discuss the genetic and environmental connections between NF-κB and ALS, as well as how this pathway may affect different CNS cell types, and finally how this may lead to motor neuron degeneration.
Collapse
Affiliation(s)
| | | | - Bernard L. Schneider
- Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 19, 1015 Lausanne, Switzerland; (E.K.); (B.D.M.)
| |
Collapse
|
31
|
Norins LC. Licensed Anti-Microbial Drugs Logical for Clinical Trials against Pathogens Currently Suspected in Alzheimer's Disease. Antibiotics (Basel) 2021; 10:327. [PMID: 33804679 PMCID: PMC8003809 DOI: 10.3390/antibiotics10030327] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 02/07/2023] Open
Abstract
There is now considerable evidence that several infectious agents (viruses, bacteria, or parasites) may play a contributing role in the development of Alzheimer's disease (AD). The six primary suspects are herpes viruses, spirochetal bacteria, Chlamydia pneumoniae, Porphyromonas gingivalis, mycobacteria, and toxoplasma parasites. Also, some of the antimicrobial and antiviral agents that are used to treat them have shown promise for AD interventions. I describe this evidence and assert it is now time to accelerate clinical trials of these existing drugs, already federally approved, to determine if such treatments can delay, halt, or reverse AD.
Collapse
Affiliation(s)
- Leslie C Norins
- Alzheimer's Germ Quest, 4301 Gulfshore Blvd. N., Suite 1404, Naples, FL 34103, USA
| |
Collapse
|
32
|
Vigasova D, Nemergut M, Liskova B, Damborsky J. Multi-pathogen infections and Alzheimer's disease. Microb Cell Fact 2021; 20:25. [PMID: 33509204 PMCID: PMC7844946 DOI: 10.1186/s12934-021-01520-7] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 01/16/2021] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease associated with the overproduction and accumulation of amyloid-β peptide and hyperphosphorylation of tau proteins in the brain. Despite extensive research on the amyloid-based mechanism of AD pathogenesis, the underlying cause of AD is not fully understood. No disease-modifying therapies currently exist, and numerous clinical trials have failed to demonstrate any benefits. The recent discovery that the amyloid-β peptide has antimicrobial activities supports the possibility of an infectious aetiology of AD and suggests that amyloid-β plaque formation might be induced by infection. AD patients have a weakened blood-brain barrier and immune system and are thus at elevated risk of microbial infections. Such infections can cause chronic neuroinflammation, production of the antimicrobial amyloid-β peptide, and neurodegeneration. Various pathogens, including viruses, bacteria, fungi, and parasites have been associated with AD. Most research in this area has focused on individual pathogens, with herpesviruses and periodontal bacteria being most frequently implicated. The purpose of this review is to highlight the potential role of multi-pathogen infections in AD. Recognition of the potential coexistence of multiple pathogens and biofilms in AD's aetiology may stimulate the development of novel approaches to its diagnosis and treatment. Multiple diagnostic tests could be applied simultaneously to detect major pathogens, followed by anti-microbial treatment using antiviral, antibacterial, antifungal, and anti-biofilm agents.
Collapse
Affiliation(s)
- Dana Vigasova
- International Clinical Research Center, St. Anne’s University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
- Department of Experimental Biology and RECETOX, Faculty of Science, Loschmidt Laboratories, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Michal Nemergut
- Department of Experimental Biology and RECETOX, Faculty of Science, Loschmidt Laboratories, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Barbora Liskova
- Department of Experimental Biology and RECETOX, Faculty of Science, Loschmidt Laboratories, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Jiri Damborsky
- International Clinical Research Center, St. Anne’s University Hospital Brno, Pekarska 53, 656 91 Brno, Czech Republic
- Department of Experimental Biology and RECETOX, Faculty of Science, Loschmidt Laboratories, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
33
|
The Microbiota-Gut-Brain Axis and Alzheimer's Disease: Neuroinflammation Is to Blame? Nutrients 2020; 13:nu13010037. [PMID: 33374235 PMCID: PMC7824474 DOI: 10.3390/nu13010037] [Citation(s) in RCA: 177] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/20/2020] [Accepted: 12/22/2020] [Indexed: 02/06/2023] Open
Abstract
For years, it has been reported that Alzheimer’s disease (AD) is the most common cause of dementia. Various external and internal factors may contribute to the early onset of AD. This review highlights a contribution of the disturbances in the microbiota–gut–brain (MGB) axis to the development of AD. Alteration in the gut microbiota composition is determined by increase in the permeability of the gut barrier and immune cell activation, leading to impairment in the blood–brain barrier function that promotes neuroinflammation, neuronal loss, neural injury, and ultimately AD. Numerous studies have shown that the gut microbiota plays a crucial role in brain function and changes in the behavior of individuals and the formation of bacterial amyloids. Lipopolysaccharides and bacterial amyloids synthesized by the gut microbiota can trigger the immune cells residing in the brain and can activate the immune response leading to neuroinflammation. Growing experimental and clinical data indicate the prominent role of gut dysbiosis and microbiota–host interactions in AD. Modulation of the gut microbiota with antibiotics or probiotic supplementation may create new preventive and therapeutic options in AD. Accumulating evidences affirm that research on MGB involvement in AD is necessary for new treatment targets and therapies for AD.
Collapse
|
34
|
Toll-like receptors in Alzheimer's disease. J Neuroimmunol 2020; 348:577362. [DOI: 10.1016/j.jneuroim.2020.577362] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/04/2020] [Accepted: 08/15/2020] [Indexed: 02/07/2023]
|
35
|
Mirzaei R, Mohammadzadeh R, Sholeh M, Karampoor S, Abdi M, Dogan E, Moghadam MS, Kazemi S, Jalalifar S, Dalir A, Yousefimashouf R, Mirzaei E, Khodavirdipour A, Alikhani MY. The importance of intracellular bacterial biofilm in infectious diseases. Microb Pathog 2020; 147:104393. [PMID: 32711113 DOI: 10.1016/j.micpath.2020.104393] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/17/2022]
Abstract
Various bacterial species, previously known as extracellular pathogens, can reside inside different host cells by adapting to intracellular modes by forming microbial aggregates with similar characteristics to bacterial biofilms. Additionally, bacterial invasion of human cells leads to failure in antibiotic therapy, as most conventional anti-bacterial agents cannot reach intracellular biofilm in normal concentrations. Various studies have shown that bacteria such as uropathogenic Escherichia coli, Pseudomonas aeruginosa, Borrelia burgdorferi,Moraxella catarrhalis, non-typeable Haemophilus influenzae, Streptococcus pneumonia, and group A Streptococci produce biofilm-like structures within the host cells. For the first time in this review, we will describe and discuss the new information about intracellular bacterial biofilm formation and its importance in bacterial infectious diseases.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rokhsareh Mohammadzadeh
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Sholeh
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sajad Karampoor
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Milad Abdi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Student Research Committee, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Eyup Dogan
- Department of Basic Biotechnology, Biotechnology Institute, Ankara, Turkey
| | - Mohammad Shokri Moghadam
- Department of Microbiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sima Kazemi
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Saba Jalalifar
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amine Dalir
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Rasoul Yousefimashouf
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ebrahim Mirzaei
- Department of Medical Genetics and Molecular Biology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Khodavirdipour
- Division of Humann Genetics, Department of Anatomy, St. John's Hospital, Bangalore, India
| | - Mohammad Yousef Alikhani
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
36
|
Bulgart HR, Neczypor EW, Wold LE, Mackos AR. Microbial involvement in Alzheimer disease development and progression. Mol Neurodegener 2020; 15:42. [PMID: 32709243 PMCID: PMC7382139 DOI: 10.1186/s13024-020-00378-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 04/29/2020] [Indexed: 02/08/2023] Open
Abstract
Alzheimer disease (AD) is the most prominent form of dementia and the 5th leading cause of death in individuals over 65. AD is a complex disease stemming from genetic, environmental, and lifestyle factors. It is known that AD patients have increased levels of senile plaques, neurofibrillary tangles, and neuroinflammation; however, the mechanism(s) by which the plaques, tangles, and neuroinflammation manifest remain elusive. A recent hypothesis has emerged that resident bacterial populations contribute to the development and progression of AD by contributing to neuroinflammation, senile plaque formation, and potentially neurofibrillary tangle accumulation (Fig. 1). This review will highlight recent studies involved in elucidating microbial involvement in AD development and progression.
Collapse
Affiliation(s)
- Hannah R. Bulgart
- Biomedical Sciences Graduate Program, College of Medicine, The Ohio State University, Columbus, OH USA
| | - Evan W. Neczypor
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH USA
- College of Nursing, The Ohio State University, 1585 Neil Ave, Columbus, OH 43210 USA
| | - Loren E. Wold
- Dorothy M. Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, OH USA
- College of Nursing, The Ohio State University, 1585 Neil Ave, Columbus, OH 43210 USA
- Department of Physiology and Cell Biology, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH USA
| | - Amy R. Mackos
- College of Nursing, The Ohio State University, 1585 Neil Ave, Columbus, OH 43210 USA
| |
Collapse
|
37
|
Giannoni P, Claeysen S, Noe F, Marchi N. Peripheral Routes to Neurodegeneration: Passing Through the Blood-Brain Barrier. Front Aging Neurosci 2020; 12:3. [PMID: 32116645 PMCID: PMC7010934 DOI: 10.3389/fnagi.2020.00003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 01/08/2020] [Indexed: 12/21/2022] Open
Abstract
A bidirectional crosstalk between peripheral players of immunity and the central nervous system (CNS) exists. Hence, blood-brain barrier (BBB) breakdown is emerging as a participant mechanism of dysregulated peripheral-CNS interplay, promoting diseases. Here, we examine the implication of BBB damage in neurodegeneration, linking it to peripheral brain-directed autoantibodies and gut-brain axis mechanisms. As BBB breakdown is a factor contributing to, or even anticipating, neuronal dysfunction(s), we here identify contemporary pharmacological strategies that could be exploited to repair the BBB in disease conditions. Developing neurovascular, add on, therapeutic strategies may lead to a more efficacious pre-clinical to clinical transition with the goal of curbing the progression of neurodegeneration.
Collapse
Affiliation(s)
| | - Sylvie Claeysen
- CNRS, INSERM U1191, Institut de Génomique Fonctionnelle, University of Montpellier, Montpellier, France
| | - Francesco Noe
- HiLIFE – Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Nicola Marchi
- CNRS, INSERM U1191, Institut de Génomique Fonctionnelle, University of Montpellier, Montpellier, France
| |
Collapse
|
38
|
Zhu S, Jiang Y, Xu K, Cui M, Ye W, Zhao G, Jin L, Chen X. The progress of gut microbiome research related to brain disorders. J Neuroinflammation 2020; 17:25. [PMID: 31952509 PMCID: PMC6969442 DOI: 10.1186/s12974-020-1705-z] [Citation(s) in RCA: 270] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/07/2020] [Indexed: 02/06/2023] Open
Abstract
There is increasing evidence showing that the dynamic changes in the gut microbiota can alter brain physiology and behavior. Cognition was originally thought to be regulated only by the central nervous system. However, it is now becoming clear that many non-nervous system factors, including the gut-resident bacteria of the gastrointestinal tract, regulate and influence cognitive dysfunction as well as the process of neurodegeneration and cerebrovascular diseases. Extrinsic and intrinsic factors including dietary habits can regulate the composition of the microbiota. Microbes release metabolites and microbiota-derived molecules to further trigger host-derived cytokines and inflammation in the central nervous system, which contribute greatly to the pathogenesis of host brain disorders such as pain, depression, anxiety, autism, Alzheimer’s diseases, Parkinson’s disease, and stroke. Change of blood–brain barrier permeability, brain vascular physiology, and brain structure are among the most critical causes of the development of downstream neurological dysfunction. In this review, we will discuss the following parts:
Overview of technical approaches used in gut microbiome studies Microbiota and immunity Gut microbiota and metabolites Microbiota-induced blood–brain barrier dysfunction Neuropsychiatric diseases
■ Stress and depression ■ Pain and migraine ■ Autism spectrum disorders
Neurodegenerative diseases
■ Parkinson’s disease ■ Alzheimer’s disease ■ Amyotrophic lateral sclerosis ■ Multiple sclerosis
Cerebrovascular disease
■ Atherosclerosis ■ Stroke ■ Arteriovenous malformation
Conclusions and perspectives
Collapse
Affiliation(s)
- Sibo Zhu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Fudan University Taizhou Institute of Health Sciences, Taizhou, China.,Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
| | - Yanfeng Jiang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Fudan University Taizhou Institute of Health Sciences, Taizhou, China
| | - Kelin Xu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Fudan University Taizhou Institute of Health Sciences, Taizhou, China.,School of Data Science, Fudan University, Shanghai, China
| | - Mei Cui
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Weimin Ye
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Genming Zhao
- School of Data Science, Fudan University, Shanghai, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Fudan University Taizhou Institute of Health Sciences, Taizhou, China.,Human Phenome Institute, Fudan University, 825 Zhangheng Road, Shanghai, 201203, China
| | - Xingdong Chen
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China. .,Fudan University Taizhou Institute of Health Sciences, Taizhou, China. .,Human Phenome Institute, Fudan University, 825 Zhangheng Road, Shanghai, 201203, China.
| |
Collapse
|
39
|
Liu XX, Jiao B, Liao XX, Guo LN, Yuan ZH, Wang X, Xiao XW, Zhang XY, Tang BS, Shen L. Analysis of Salivary Microbiome in Patients with Alzheimer’s Disease. J Alzheimers Dis 2019; 72:633-640. [PMID: 31594229 DOI: 10.3233/jad-190587] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Xi-Xi Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Xin-Xin Liao
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Geriatrics Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Li-Na Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Zhen-Hua Yuan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xin Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xue-Wen Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xin-Yue Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Bei-Sha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- Parkinson’s Disease Center of Beijing Institute for Brain Disorders, Beijing, China
- Collaborative Innovation Center for Brain Science, Shanghai, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| |
Collapse
|
40
|
Hemidesmus indicus, a traditional medicinal plant, targets the adherence of multidrug-resistant pathogens to form biofilms. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101338] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
41
|
Norins LC. The Beehive Theory: Role of microorganisms in late sequelae of traumatic brain injury and chronic traumatic encephalopathy. Med Hypotheses 2019; 128:1-5. [PMID: 31203899 DOI: 10.1016/j.mehy.2019.04.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/25/2019] [Indexed: 12/19/2022]
Abstract
Traumatic brain injury and chronic traumatic encephalopathy are both major health problems, well-publicized for the severe delayed effects attributed to them, including cognitive decline, psychiatric disorders, seizures, impaired motor function, and personality changes. For convenience, the two afflictions are considered together under the rubric traumatic brain injury. Despite the need for neuroprotective agents, no substances have shown efficacy in clinical studies. Thus, a deeper understanding of the neuropathological mechanism of such injury is still needed. Proposed here is a theory that microorganisms from within the brain and elsewhere in the body contribute to the long-term neurological deterioration characteristic of traumatic brain injury. The label, "The Beehive Theory", is drawn from the well-known fact that disturbing a tranquil beehive with a blow can cause a swarm of angry bees to exit their dwelling place and attack nearby humans. Similarly, an impact to the head can initiate dislocations and disruptions in the microbiota present in the brain and body. First, since the normal human brain is not sterile, but is host to a variety of microorganisms, blows to the skull may dislodge them from their accustomed local environments, in which they have been living in quiet equilibrium with neighboring brain cells. Deleterious substances may be released by the displaced microbes, including metabolic products and antigens. Second, upon impact commensal microbes already resident on surfaces of the nose, mouth, and eyes, and potentially harmful organisms from the environment, may gain access to the brain through the distal ends of the olfactory and optic nerves or even a disrupted blood-brain barrier. Third, microbes dwelling in more distant parts of the body may be propelled through the walls of local blood vessels into the bloodstream, and then leak out into damaged areas of the brain that have increased blood-brain barrier permeability. Fourth, the impact may cause dysbiosis in the gastrointestinal microbiome, thereby disrupting signaling via the gut-brain axis. Possible preventatives or therapeutics that would address the adverse contributions of microbes to the late sequelae of traumatic brain injury include anti-inflammatories, antibacterials, antivirals, and probiotics.
Collapse
Affiliation(s)
- Leslie C Norins
- Alzheimer's Germ Quest, Inc., 4301 Gulfshore Blvd, Suite 1404, Naples, FL 34103, USA.
| |
Collapse
|
42
|
Poor Oral Health and Its Neurological Consequences: Mechanisms of Porphyromonas gingivalis Involvement in Cognitive Dysfunction. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/s40496-019-0212-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
43
|
Kowalski K, Mulak A. Brain-Gut-Microbiota Axis in Alzheimer's Disease. J Neurogastroenterol Motil 2019; 25:48-60. [PMID: 30646475 PMCID: PMC6326209 DOI: 10.5056/jnm18087] [Citation(s) in RCA: 489] [Impact Index Per Article: 81.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 08/21/2018] [Accepted: 09/16/2018] [Indexed: 12/11/2022] Open
Abstract
Disturbances along the brain-gut-microbiota axis may significantly contribute to the pathogenesis of neurodegenerative disorders. Alzheimer's disease (AD) is the most frequent cause of dementia characterized by a progressive decline in cognitive function associated with the formation of amyloid beta (Aβ) plaques and neurofibrillary tangles. Alterations in the gut microbiota composition induce increased permeability of the gut barrier and immune activation leading to systemic inflammation, which in turn may impair the blood-brain barrier and promote neuroinflammation, neural injury, and ultimately neurodegeneration. Recently, Aβ has also been recognized as an antimicrobial peptide participating in the innate immune response. However, in the dysregulated state, Aβ may reveal harmful properties. Importantly, bacterial amyloids through molecular mimicry may elicit cross-seeding of misfolding and induce microglial priming. The Aβ seeding and propagation may occur at different levels of the brain-gut-microbiota axis. The potential mechanisms of amyloid spreading include neuron-to-neuron or distal neuron spreading, direct blood-brain barrier crossing or via other cells as astrocytes, fibroblasts, microglia, and immune system cells. A growing body of experimental and clinical data confirms a key role of gut dysbiosis and gut microbiota-host interactions in neurodegeneration. The convergence of gut-derived inflammatory response together with aging and poor diet in the elderly contribute to the pathogenesis of AD. Modification of the gut microbiota composition by food-based therapy or by probiotic supplementation may create new preventive and therapeutic options in AD.
Collapse
Affiliation(s)
- Karol Kowalski
- Department of Gastroenterology and Hepatology, Wroclaw Medical University, Poland
| | - Agata Mulak
- Department of Gastroenterology and Hepatology, Wroclaw Medical University, Poland
| |
Collapse
|
44
|
Di Domenico EG, Cavallo I, Bordignon V, D'Agosto G, Pontone M, Trento E, Gallo MT, Prignano G, Pimpinelli F, Toma L, Ensoli F. The Emerging Role of Microbial Biofilm in Lyme Neuroborreliosis. Front Neurol 2018; 9:1048. [PMID: 30559713 PMCID: PMC6287027 DOI: 10.3389/fneur.2018.01048] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 11/19/2018] [Indexed: 01/04/2023] Open
Abstract
Lyme borreliosis (LB) is the most common tick-borne disease caused by the spirochete Borrelia burgdorferi in North America and Borrelia afzelii or Borrelia garinii in Europe and Asia, respectively. The infection affects multiple organ systems, including the skin, joints, and the nervous system. Lyme neuroborreliosis (LNB) is the most dangerous manifestation of Lyme disease, occurring in 10-15% of infected individuals. During the course of the infection, bacteria migrate through the host tissues altering the coagulation and fibrinolysis pathways and the immune response, reaching the central nervous system (CNS) within 2 weeks after the bite of an infected tick. The early treatment with oral antimicrobials is effective in the majority of patients with LNB. Nevertheless, persistent forms of LNB are relatively common, despite targeted antibiotic therapy. It has been observed that the antibiotic resistance and the reoccurrence of Lyme disease are associated with biofilm-like aggregates in B. burgdorferi, B. afzelii, and B. garinii, both in vitro and in vivo, allowing Borrelia spp. to resist to adverse environmental conditions. Indeed, the increased tolerance to antibiotics described in the persisting forms of Borrelia spp., is strongly reminiscent of biofilm growing bacteria, suggesting a possible role of biofilm aggregates in the development of the different manifestations of Lyme disease including LNB.
Collapse
Affiliation(s)
- Enea Gino Di Domenico
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Ilaria Cavallo
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Valentina Bordignon
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Giovanna D'Agosto
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Martina Pontone
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Elisabetta Trento
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Maria Teresa Gallo
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Grazia Prignano
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Fulvia Pimpinelli
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| | - Luigi Toma
- Department of Research, Advanced Diagnostics, and Technological Innovation, Translational Research Area, Regina Elena National Cancer Institute IRCCS, Rome, Italy
| | - Fabrizio Ensoli
- Clinical Pathology and Microbiology Unit, San Gallicano Dermatological Institute IRCCS, Rome, Italy
| |
Collapse
|
45
|
Precision Medicine: The Role of the MSIDS Model in Defining, Diagnosing, and Treating Chronic Lyme Disease/Post Treatment Lyme Disease Syndrome and Other Chronic Illness: Part 2. Healthcare (Basel) 2018; 6:healthcare6040129. [PMID: 30400667 PMCID: PMC6316761 DOI: 10.3390/healthcare6040129] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/31/2018] [Accepted: 10/31/2018] [Indexed: 12/12/2022] Open
Abstract
We present a precision medical perspective to assist in the definition, diagnosis, and management of Post Treatment Lyme Disease Syndrome (PTLDS)/chronic Lyme disease. PTLDS represents a small subset of patients treated for an erythema migrans (EM) rash with persistent or recurrent symptoms and functional decline. The larger population with chronic Lyme disease is less understood and well defined. Multiple Systemic Infectious Disease Syndrome (MSIDS) is a multifactorial model for treating chronic disease(s), which identifies up to 16 overlapping sources of inflammation and their downstream effects. A patient symptom survey and a retrospective chart review of 200 patients was therefore performed on those patients with chronic Lyme disease/PTLDS to identify those variables on the MSIDS model with the greatest potential effect on regaining health. Results indicate that dapsone combination therapy decreased the severity of eight major Lyme symptoms, and multiple sources of inflammation (other infections, immune dysfunction, autoimmunity, food allergies/sensitivities, leaky gut, mineral deficiencies, environmental toxins with detoxification problems, and sleep disorders) along with downstream effects of inflammation may all affect chronic symptomatology. In part two of our observational study and review paper, we postulate that the use of this model can represent an important and needed paradigm shift in the diagnosis and treatment of chronic disease.
Collapse
|
46
|
|
47
|
Zhang H, Ng KP, Therriault J, Kang MS, Pascoal TA, Rosa-Neto P, Gauthier S. Cerebrospinal fluid phosphorylated tau, visinin-like protein-1, and chitinase-3-like protein 1 in mild cognitive impairment and Alzheimer's disease. Transl Neurodegener 2018; 7:23. [PMID: 30311914 PMCID: PMC6161434 DOI: 10.1186/s40035-018-0127-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 08/20/2018] [Indexed: 03/20/2023] Open
Abstract
Background Visinin-like protein-1 (VILIP-1) and chitinase-3-like protein 1 (CHI3L1 or YKL-40) in cerebrospinal fluid (CSF) are newly discovered markers indicating neuronal damage and microglial activation, respectively. Phosphorylated tau (p-tau) reflects the neuropathology of Alzheimer's disease (AD) and is useful as diagnostic markers for AD. However, it is unknown whether these biomarkers have similar or complementary information in AD. Methods We stratified 121 participants from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database into cognitively normal (CN), stable mild cognitive impairment (sMCI), progressive MCI (pMCI), and dementia due to AD. Analysis of covariance (ANOVA) and chi-square analyses, Spearman correlation, and logistic regression models were performed to test the demographic, associations between biomarkers, and diagnostic accuracies, respectively. Linear mixed-effects models were used to evaluate the effects of CSF amyloid-β (Aβ) on above biomarkers within diagnostic groups, the combination of diagnostic group and Aβ status as predictor, and CSF biomarkers as predictors of AD features, including cognition measured by Mini-Mental State Examination (MMSE) and brain structure and white matter hyperintensity (WMH) measured by magnetic resonance imaging (MRI). Results P-tau, VILIP-1, and YKL-40 were all predictors of AD diagnosis, but combinations of biomarkers did not improve the diagnostic accuracy (AUC 0.924 for p-tau, VILIP-1, and YKL-40) compared to p-tau (AUC 0.922). P-tau and VILIP-1 were highly correlated (r = 0.639, p < 0.001) and strongly associated with Aβ pathology across clinical stages of AD, while YKL-40 was correlated with Aβ pathology in CN and AD groups. VILIP-1 was associated with acceleration of cognitive decline, hippocampal atrophy, and expansion of ventricles in longitudinal analyses. YKL-40 was associated with hippocampal atrophy at baseline and follow-up, while p-tau was only associated with worsening WMH at baseline. Conclusions CSF levels of p-tau, VILIP-1, and YKL-40 may have utility for discriminating between cognitively normal subjects and patients with AD. Increased levels of both VILIP-1 and YKL-40 may be associated with disease degeneration. These CSF biomarkers should be considered for future assessment in the characterization of the natural history of AD.
Collapse
Affiliation(s)
- Hua Zhang
- 1Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 China
| | - Kok Pin Ng
- 2Department of Neurology, National Neuroscience Institute, Singapore, Singapore
| | - Joseph Therriault
- 3The McGill University Research Centre for Studies in Aging, McGill University, Montreal, Canada
| | - Min Su Kang
- 3The McGill University Research Centre for Studies in Aging, McGill University, Montreal, Canada
| | - Tharick A Pascoal
- 3The McGill University Research Centre for Studies in Aging, McGill University, Montreal, Canada
| | - Pedro Rosa-Neto
- 3The McGill University Research Centre for Studies in Aging, McGill University, Montreal, Canada
| | - Serge Gauthier
- 3The McGill University Research Centre for Studies in Aging, McGill University, Montreal, Canada
| | | |
Collapse
|
48
|
Prasansuklab A, Theerasri A, Payne M, Ung AT, Tencomnao T. Acid-base fractions separated from Streblus asper leaf ethanolic extract exhibited antibacterial, antioxidant, anti-acetylcholinesterase, and neuroprotective activities. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:223. [PMID: 30041641 PMCID: PMC6057052 DOI: 10.1186/s12906-018-2288-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 07/12/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Streblus asper is a well-known plant native to Southeast Asia. Different parts of the plant have been traditionally used for various medicinal purposes. However, there is very little scientific evidence reporting its therapeutic benefits for potential treatment of Alzheimer's disease (AD). The study aimed to evaluate antibacterial, antioxidant, acetylcholinesterase (AChE) inhibition, and neuroprotective properties of S. asper leaf extracts with the primary objective of enhancing therapeutic applications and facilitating activity-guided isolation of the active chemical constituents. METHODS The leaves of S. asper were extracted in ethanol and subsequently fractionated into neutral, acid and base fractions. The phytochemical constituents of each fraction were analyzed using GC-MS. The antibacterial activity was evaluated using a broth microdilution method. The antioxidant activity was determined using DPPH and ABTS radical scavenging assays. The neuroprotective activity against glutamate-induced toxicity was tested on hippocampal neuronal HT22 cell line by evaluating the cell viability using MTT assay. The AChE inhibitory activity was screened by thin-layer chromatography (TLC) bioautographic method. RESULTS The partition of the S. asper ethanolic leaf extract yielded the highest mass of phytochemical constitutions in the neutral fraction and the lowest in the basic fraction. Amongst the three fractions, the acidic fraction showed the strongest antibacterial activity against gram-positive bacteria. The antioxidant activities of three fractions were found in the order of acidic > basic > neutral, whereas the decreasing order of neuroprotective activity was neutral > basic > acidic. TLC bioautography revealed one component in the neutral fraction exhibited anti-AChE activity. While in the acid fraction, two components showed inhibitory activity against AChE. GC-MS analysis of three fractions showed the presence of major phytochemical constituents including terpenoids, steroids, phenolics, fatty acids, and lipidic plant hormone. CONCLUSIONS Our findings have demonstrated the therapeutic potential of three fractions extracted from S. asper leaves as a promising natural source for neuroprotective agents with additional actions of antibacterials and antioxidants, along with AChE inhibitors that will benefit in the development of new natural compounds in therapies against AD.
Collapse
Affiliation(s)
- Anchalee Prasansuklab
- Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Atsadang Theerasri
- Program in Clinical Biochemistry and Molecular Medicine, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330 Thailand
| | - Matthew Payne
- School of Mathematical and Physical Sciences, Faculty of Science, The University of Technology Sydney, Sydney, NSW 2007 Australia
| | - Alison T. Ung
- School of Mathematical and Physical Sciences, Faculty of Science, The University of Technology Sydney, Sydney, NSW 2007 Australia
| | - Tewin Tencomnao
- Age-Related Inflammation and Degeneration Research Unit, Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330 Thailand
| |
Collapse
|
49
|
Ma F, Du H. Novel deoxyvasicinone derivatives as potent multitarget-directed ligands for the treatment of Alzheimer's disease: Design, synthesis, and biological evaluation. Eur J Med Chem 2017; 140:118-127. [DOI: 10.1016/j.ejmech.2017.09.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/03/2017] [Accepted: 09/05/2017] [Indexed: 12/31/2022]
|
50
|
Pritchard AB, Crean S, Olsen I, Singhrao SK. Periodontitis, Microbiomes and their Role in Alzheimer's Disease. Front Aging Neurosci 2017; 9:336. [PMID: 29114218 PMCID: PMC5660720 DOI: 10.3389/fnagi.2017.00336] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 10/02/2017] [Indexed: 12/11/2022] Open
Abstract
As far back as the eighteenth and early nineteenth centuries, microbial infections were responsible for vast numbers of deaths. The trend reversed with the introduction of antibiotics coinciding with longer life. Increased life expectancy however, accompanied the emergence of age related chronic inflammatory states including the sporadic form of Alzheimer's disease (AD). Taken together, the true challenge of retaining health into later years of life now appears to lie in delaying and/or preventing the progression of chronic inflammatory diseases, through identifying and influencing modifiable risk factors. Diverse pathogens, including periodontal bacteria have been associated with AD brains. Amyloid-beta (Aβ) hallmark protein of AD may be a consequence of infection, called upon due to its antimicrobial properties. Up to this moment in time, a lack of understanding and knowledge of a microbiome associated with AD brain has ensured that the role pathogens may play in this neurodegenerative disease remains unresolved. The oral microbiome embraces a range of diverse bacterial phylotypes, which especially in vulnerable individuals, will excite and perpetuate a range of inflammatory conditions, to a wide range of extra-oral body tissues and organs specific to their developing pathophysiology, including the brain. This offers the tantalizing opportunity that by controlling the oral-specific microbiome; clinicians may treat or prevent a range of chronic inflammatory diseases orally. Evolution has equipped the human host to combat infection/disease by providing an immune system, but Porphyromonas gingivalis and selective spirochetes, have developed immune avoidance strategies threatening the host-microbe homeostasis. It is clear from longitudinal monitoring of patients that chronic periodontitis contributes to declining cognition. The aim here is to discuss the contribution from opportunistic pathogens of the periodontal microbiome, and highlight the challenges, the host faces, when dealing with unresolvable oral infections that may lead to clinical manifestations that are characteristic for AD.
Collapse
Affiliation(s)
- Anna B. Pritchard
- Dementia & Neurodegenerative Diseases Research Group, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, United Kingdom
| | - StJohn Crean
- Dementia & Neurodegenerative Diseases Research Group, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, United Kingdom
| | - Ingar Olsen
- Department of Oral Biology, Faculty of Dentistry, University of Oslo, Oslo, Norway
| | - Sim K. Singhrao
- Dementia & Neurodegenerative Diseases Research Group, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, United Kingdom
| |
Collapse
|