1
|
Tsap MI, Shcherbata HR. The balancing act between lipid droplets and lysosomes for membrane functionality in age-related neurodegeneration and inflammation. Prog Lipid Res 2025; 99:101341. [PMID: 40482724 DOI: 10.1016/j.plipres.2025.101341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 05/20/2025] [Accepted: 05/30/2025] [Indexed: 06/11/2025]
Abstract
Age-related neurodegenerative disorders are often associated with disruptions in lipid metabolism. A critical aspect is the impairment of the interaction between lipid droplets (LDs) and lysosomal function, leading to the accumulation of toxic lipid species. This accumulation triggers cellular stress, inflammation, and defective waste processing within cells, disrupting cellular homeostasis and amplifying neuroinflammatory processes. Recent studies have shown that alterations in phospholipid and fatty acid homeostasis drive neuroinflammation and oxidative stress, exacerbating neurodegenerative processes. This review focuses on the role of neuropathy target esterase (PNPLA6/NTE) and NTE-related esterase (PNPLA7/NRE) in lipid metabolism, highlighting how dysregulation of these enzymes contributes to neurodegeneration, inflammation, and lysosomal dysfunction. Additionally, we discuss the involvement of lipid rafts, sphingolipids, and phospholipase enzymes, particularly PLA2 family members, in cellular signaling and membrane dynamics. By examining the relationship between lipid metabolism, inflammatory signaling, and lysosomal storage disorders, we aim to provide a comprehensive understanding of how LDs and lysosomes interact to influence cellular homeostasis in neurodegenerative conditions, which could lead to new therapeutic strategies addressing lipid dysregulation in age-related neurological disorders.
Collapse
Affiliation(s)
- Mariana I Tsap
- Institute of Cell Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | - Halyna R Shcherbata
- Institute of Cell Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany; Mount Desert Island Biological Laboratory, Bar Harbor, ME 04609, USA.
| |
Collapse
|
2
|
Mukherjee AG, Mishra S, Gopalakrishnan AV, Kannampuzha S, Murali R, Wanjari UR, B S, Vellingiri B, Madhyastha H, Kanagavel D, Vijayan M. Unraveling the mystery of citrate transporters in Alzheimer's disease: An updated review. Ageing Res Rev 2025; 107:102726. [PMID: 40073978 DOI: 10.1016/j.arr.2025.102726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 12/26/2024] [Accepted: 03/05/2025] [Indexed: 03/14/2025]
Abstract
A key molecule in cellular metabolism, citrate is essential for lipid biosynthesis, energy production, and epigenetic control. The etiology of Alzheimer's disease (AD), a progressive neurodegenerative illness marked by memory loss and cognitive decline, may be linked to dysregulated citrate transport, according to recent research. Citrate transporters, which help citrate flow both inside and outside of cells, are becoming more and more recognized as possible participants in the molecular processes underlying AD. Citrate synthase (CS), a key enzyme in the tricarboxylic acid (TCA) cycle, supports mitochondrial function and neurotransmitter synthesis, particularly acetylcholine (ACh), essential for cognition. Changes in CS activity affect citrate availability, influencing energy metabolism and neurotransmitter production. Choline, a precursor for ACh, is crucial for neuronal function. Lipid metabolism, oxidative stress reactions, and mitochondrial function can all be affected by aberrant citrate transport, and these changes are linked to dementia. Furthermore, the two main pathogenic characteristics of AD, tau hyperphosphorylation and amyloid-beta (Aβ) aggregation, may be impacted by disturbances in citrate homeostasis. The goal of this review is to clarify the complex function of citrate transporters in AD and provide insight into how they contribute to the development and course of the illness. We aim to provide an in-depth idea of which particular transporters are dysregulated in AD and clarify the functional implications of these dysregulated transporters in brain cells. To reduce neurodegenerative processes and restore metabolic equilibrium, we have also discussed the therapeutic potential of regulating citrate transport. Gaining insight into the relationship between citrate transporters and the pathogenesis of AD may help identify new indicators for early detection and creative targets for treatment. This study offers hope for more potent ways to fight this debilitating illness and is a crucial step in understanding the metabolic foundations of AD.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Shatakshi Mishra
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, VIT, Vellore 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India.
| | - Sandra Kannampuzha
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Reshma Murali
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Stany B
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, VIT, Vellore 632014, India
| | - Balachandar Vellingiri
- Stem cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab (CUPB), Bathinda, Punjab 151401, India
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki 8891692, Japan
| | - Deepankumar Kanagavel
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, VIT, Vellore 632014, India
| | - Murali Vijayan
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
3
|
Chen Y, Gowda SGB, Gowda D, Jayaprakash J, Nath LR, Ikeda A, Bamai YA, Ketema RM, Kishi R, Chiba H, Hui SP. Application of Liquid Chromatography/Tandem Mass Spectrometry for Quantitative Analysis of Plasmalogens in Preadolescent Children-The Hokkaido Study. Diagnostics (Basel) 2025; 15:743. [PMID: 40150086 PMCID: PMC11941332 DOI: 10.3390/diagnostics15060743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 02/28/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025] Open
Abstract
Background: Plasmalogens (Pls) are phospholipids with a unique structure, abundant in the brain and heart. Due to their chemical instability and analytical difficulties, less information is available compared to other phospholipids. The importance of Pls in several cellular processes is known, one of which is their protective effect against oxidative damage. The physiological role of Pls in human development has not been elucidated. Despite their clinical importance, the quantitative analysis of Pls in children's plasma has been limited. Methods: This study aims to determine the plasma levels of Pls in prepubertal children using liquid chromatography/tandem mass spectrometry (LC-MS/MS). The plasma samples used were obtained from 9- to 12-year-old girls (n = 156) and boys (n = 178), n = 334 in total, who participated in the Hokkaido study. Results: Ethanolamine plasmalogen (PlsEtn) and choline plasmalogen (PlsCho), both carrying eicosapentaenoic acid, were significantly lower in girls than in boys. In both sexes, the plasmalogen levels for the 12-year-old children were lower than those for the 9-year-old children. PlsCho (16:0/18:2) was lower in the overweight children than in the normal-weight children for both sexes. PlsEtn (18:0/20:4) was the most abundant ethanolamine-type plasmalogen in both sexes. Conclusions: This study is the first report on plasmalogen levels and molecular types in children's plasma. This study provides the information needed to understand the role of Pls in human developmental processes and may open up new opportunities in the future to control age-related changes in Pls.
Collapse
Affiliation(s)
- Yifan Chen
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan; (Y.C.); (S.G.B.G.); (D.G.); (A.I.); (R.M.K.)
| | - Siddabasave Gowda B. Gowda
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan; (Y.C.); (S.G.B.G.); (D.G.); (A.I.); (R.M.K.)
- Graduate School of Global Food Resources, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-0809, Japan; (J.J.); (L.R.N.)
| | - Divyavani Gowda
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan; (Y.C.); (S.G.B.G.); (D.G.); (A.I.); (R.M.K.)
| | - Jayashankar Jayaprakash
- Graduate School of Global Food Resources, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-0809, Japan; (J.J.); (L.R.N.)
| | - Lipsa Rani Nath
- Graduate School of Global Food Resources, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo 060-0809, Japan; (J.J.); (L.R.N.)
| | - Atusko Ikeda
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan; (Y.C.); (S.G.B.G.); (D.G.); (A.I.); (R.M.K.)
- Center for Environmental and Health Sciences, Hokkaido University, Kita-12, Nishi-7, Kita-ku, Sapporo 060-0812, Japan; (Y.A.B.); (R.K.)
| | - Yu Ait Bamai
- Center for Environmental and Health Sciences, Hokkaido University, Kita-12, Nishi-7, Kita-ku, Sapporo 060-0812, Japan; (Y.A.B.); (R.K.)
| | - Rahel Mesfin Ketema
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan; (Y.C.); (S.G.B.G.); (D.G.); (A.I.); (R.M.K.)
- Center for Environmental and Health Sciences, Hokkaido University, Kita-12, Nishi-7, Kita-ku, Sapporo 060-0812, Japan; (Y.A.B.); (R.K.)
| | - Reiko Kishi
- Center for Environmental and Health Sciences, Hokkaido University, Kita-12, Nishi-7, Kita-ku, Sapporo 060-0812, Japan; (Y.A.B.); (R.K.)
| | - Hitoshi Chiba
- Department of Nutrition, Sapporo University of Health Sciences, Nakanuma Nishi-4-2-1-15, Higashi-ku, Sapporo 070-0894, Japan;
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Kita-12, Nishi-5, Kita-ku, Sapporo 060-0812, Japan; (Y.C.); (S.G.B.G.); (D.G.); (A.I.); (R.M.K.)
| |
Collapse
|
4
|
Zammit AR, Yu L, Poole VN, Arfanakis K, Schneider JA, Petyuk VA, De Jager PL, Kaddurah-Daouk R, Iturria-Medina Y, Bennett DA. Multi-omic subtypes of Alzheimer's dementia are differentially associated with psychological traits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.21.639584. [PMID: 40060468 PMCID: PMC11888240 DOI: 10.1101/2025.02.21.639584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Importance Psychological traits reflecting neuroticism, depressive symptoms, loneliness, and purpose in life are risk factors of AD dementia; however, the underlying biologic mechanisms of these associations remain largely unknown. Objective To examine whether one or more multi-omic brain molecular subtypes of AD is associated with neuroticism, depressive symptoms, loneliness, and/or purpose in life. Design Two cohort-based studies; Religious Orders Study (ROS) and Rush Memory and Aging Project (MAP), both ongoing longitudinal clinical pathological studies that began enrollment in 1994 and 1997. Setting Older priests, nuns, and brothers from across the U.S. (ROS) and older adults from across the greater Chicago metropolitan area (MAP). Participants 822 decedents with multi-omic data from the dorsolateral prefrontal cortex. Exposures Pseudotime, representing molecular distance from no cognitive impairment (NCI) to AD dementia, and three multi-omic brain molecular subtypes of AD dementia representing 3 omic pathways from no cognitive impairment (NCI) to AD dementia that differ by their omic constituents. Main outcomes and measures We first ran four separate linear regressions with neuroticism, depressive symptoms, loneliness, purpose in life as the outcomes, and pseudotime as the predictor, adjusting for age, sex and education. We then ran four separate analyses of covariance (ANCOVAs) with Bonferroni-corrected post-hoc tests to test whether the three multi-omic AD subtypes are differentially associated with the four traits, adjusting for the same covariates. Results Pseudotime was positively associated (p<0.05) with neuroticism and loneliness. AD subtypes were differentially associated with the traits: AD subtypes 1 and 3 were associated with neuroticism; AD subtype 2 with depressive symptoms; AD subtype 3 with loneliness, and AD subtype 2 with purpose in life. Conclusions and Relevance Three multi-omic brain molecular subtypes of AD dementia differentially share omic features with four psychological risk factors of AD dementia. Our data provide novel insights into the biology underlying well-established associations between psychological traits and AD dementia.
Collapse
Affiliation(s)
- Andrea R. Zammit
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Lei Yu
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Victoria N. Poole
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL, USA
| | - Konstantinos Arfanakis
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Diagnostic Radiology and Nuclear Medicine, Rush University Medical Center, Chicago, IL, USA
- Department of Biomedical Engineering, Illinois Institute of Technology, Rush University Medical Center, Chicago, IL, USA
| | - Julie A. Schneider
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Pathology, Rush University Medical Center, Chicago, IL, USA
| | - Vladislav A. Petyuk
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Philip L. De Jager
- Center for Translational & Computational Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York, NY, USA
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, North Carolina, USA
- Duke Institute of Brain Sciences, Duke University, Durham, North Carolina, USA
- Department of Medicine, Duke University, Durham, North Carolina, USA
| | - Yasser Iturria-Medina
- Neurology and Neurosurgery Department, Montreal Neurological Institute, Montreal, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Canada
- Ludmer Centre for Neuroinformatics & Mental Health, Montreal, Canada
- McGill University Research Centre for Studies in Aging, Douglas Research Centre
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
5
|
Gutierrez-Tordera L, Panisello L, García-Gonzalez P, Ruiz A, Cantero JL, Rojas-Criollo M, Mursil M, Atienza M, Novau-Ferré N, Mateu-Fabregat J, Mostafa H, Puig D, Folch J, Rashwan H, Marquié M, Boada M, Papandreou C, Bulló M. Metabolic Signature of Insulin Resistance and Risk of Alzheimer's Disease. J Gerontol A Biol Sci Med Sci 2025; 80:glae283. [PMID: 39569614 DOI: 10.1093/gerona/glae283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND Substantial evidence supports the relationship between peripheral insulin resistance (IR) and the development of Alzheimer's disease (AD)-dementia. However, the mechanisms explaining these associations are only partly understood. We aimed to identify a metabolic signature of IR associated with the progression from mild cognitive impairment (MCI) to AD-dementia. METHODS This is a case-control study on 400 MCI subjects, free of type 2 diabetes, within the ACE cohort, including individuals ATN + and ATN-. After a median of 2.1 years of follow-up, 142 subjects converted to AD-dementia. IR was assessed using the homeostasis model assessment for insulin resistance (HOMA-IR). A targeted multiplatform approach profiled over 600 plasma metabolites. Elastic net penalized linear regression with 10-fold cross-validation was employed to select those metabolites associated with HOMA-IR. The prediction ability of the signature was assessed using support vector machine and performance metrics. The metabolic signature was associated with AD-dementia risk using a multivariable Cox regression model. Using counterfactual-based mediation analysis, we investigated the mediation role of the metabolic signature between HOMA-IR and AD-dementia. The metabolic pathways in which the metabolites were involved were identified using MetaboAnalyst. RESULTS The metabolic signature comprised 18 metabolites correlated with HOMA-IR. After adjustments by confounders, the signature was associated with increased AD-dementia risk (HR = 1.234; 95% CI = 1.019-1.494; p < .05). The metabolic signature mediated 35% of the total effect of HOMA-IR on AD-dementia risk. Significant metabolic pathways were related to glycerophospholipid and tyrosine metabolism. CONCLUSIONS We have identified a blood-based metabolic signature that reflects IR and may enhance our understanding of the biological mechanisms through which IR affects AD-dementia.
Collapse
Affiliation(s)
- Laia Gutierrez-Tordera
- Nutrition and Metabolic Health Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), 43201 Reus, Spain
- Institute of Health Pere Virgili (IISPV), 43204 Reus, Spain
| | - Laura Panisello
- Nutrition and Metabolic Health Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), 43201 Reus, Spain
- Institute of Health Pere Virgili (IISPV), 43204 Reus, Spain
| | - Pablo García-Gonzalez
- ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), 08028 Barcelona, Spain
| | - Agustín Ruiz
- ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), 08028 Barcelona, Spain
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - José Luis Cantero
- Laboratory of Functional Neuroscience, Pablo de Olavide University (UPO), 41013 Seville, Spain
| | - Melina Rojas-Criollo
- Nutrition and Metabolic Health Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), 43201 Reus, Spain
- Institute of Health Pere Virgili (IISPV), 43204 Reus, Spain
| | - Muhammad Mursil
- Department of Computer Engineering and Mathematics, Rovira i Virgili University (URV), 43007 Tarragona, Spain
| | - Mercedes Atienza
- Laboratory of Functional Neuroscience, Pablo de Olavide University (UPO), 41013 Seville, Spain
| | - Nil Novau-Ferré
- Nutrition and Metabolic Health Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), 43201 Reus, Spain
- Institute of Health Pere Virgili (IISPV), 43204 Reus, Spain
| | - Javier Mateu-Fabregat
- Nutrition and Metabolic Health Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), 43201 Reus, Spain
- Institute of Health Pere Virgili (IISPV), 43204 Reus, Spain
| | - Hamza Mostafa
- Nutrition and Metabolic Health Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), 43201 Reus, Spain
- Institute of Health Pere Virgili (IISPV), 43204 Reus, Spain
| | - Domènec Puig
- Department of Computer Engineering and Mathematics, Rovira i Virgili University (URV), 43007 Tarragona, Spain
| | - Jaume Folch
- Nutrition and Metabolic Health Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), 43201 Reus, Spain
- Institute of Health Pere Virgili (IISPV), 43204 Reus, Spain
| | - Hatem Rashwan
- Department of Computer Engineering and Mathematics, Rovira i Virgili University (URV), 43007 Tarragona, Spain
| | - Marta Marquié
- ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), 08028 Barcelona, Spain
| | - Mercè Boada
- ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), 08028 Barcelona, Spain
| | - Christopher Papandreou
- Nutrition and Metabolic Health Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), 43201 Reus, Spain
- Institute of Health Pere Virgili (IISPV), 43204 Reus, Spain
| | - Mònica Bulló
- Nutrition and Metabolic Health Research Group, Department of Biochemistry and Biotechnology, Rovira i Virgili University (URV), 43201 Reus, Spain
- Institute of Health Pere Virgili (IISPV), 43204 Reus, Spain
| |
Collapse
|
6
|
Yu S, Xu J, Wu C, Zhu Y, Diao M, Hu W. Multi-omics Study of Hypoxic-Ischemic Brain Injury After Cardiopulmonary Resuscitation in Swine. Neurocrit Care 2025; 42:59-76. [PMID: 38937417 DOI: 10.1007/s12028-024-02038-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/05/2024] [Indexed: 06/29/2024]
Abstract
BACKGROUND Hypoxic-ischemic brain injury is a common cause of mortality after cardiac arrest (CA) and cardiopulmonary resuscitation; however, the specific underlying mechanisms are unclear. This study aimed to explore postresuscitation changes based on multi-omics profiling. METHODS A CA swine model was established, and the neurological function was assessed at 24 h after resuscitation, followed by euthanizing animals. Their fecal, blood, and hippocampus samples were collected to analyze gut microbiota, metabolomics, and transcriptomics. RESULTS The 16S ribosomal DNA sequencing showed that the microbiota composition and diversity changed after resuscitation, in which the abundance of Akkermansia and Muribaculaceae_unclassified increased while the abundance of Bifidobacterium and Romboutsia decreased. A relationship was observed between CA-related microbes and metabolites via integrated analysis of gut microbiota and metabolomics, in which Escherichia-Shigella was positively correlated with glycine. Combined metabolomics and transcriptomics analysis showed that glycine was positively correlated with genes involved in apoptosis, interleukin-17, mitogen-activated protein kinases, nuclear factor kappa B, and Toll-like receptor signal pathways. CONCLUSIONS Our results provided novel insight into the mechanism of hypoxic-ischemic brain injury after resuscitation, which is envisaged to help identify potential diagnostic and therapeutic markers.
Collapse
Affiliation(s)
- Shuhang Yu
- Department of Critical Care Medicine, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiefeng Xu
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chenghao Wu
- Department of Emergency Medicine, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Zhu
- Department of Critical Care Medicine, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengyuan Diao
- Department of Critical Care Medicine, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Wei Hu
- Department of Critical Care Medicine, Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
7
|
Snowden SG, Koulman A, Gaser C, la Fleur SE, Roseboom TJ, Korosi A, de Rooij SR. Prenatal exposure to undernutrition is associated with a specific lipid profile predicting future brain aging. NPJ AGING 2024; 10:42. [PMID: 39349457 PMCID: PMC11442854 DOI: 10.1038/s41514-024-00169-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 09/05/2024] [Indexed: 10/02/2024]
Abstract
Prenatal adversity affects cognitive and brain aging. Both lipid and leptin concentrations may be involved. We investigated if prenatal undernutrition is associated with a specific blood lipid profile and/or leptin concentrations, and if these relate to cognitive function and brain aging. 801 plasma samples of members of the Dutch famine birth cohort were assessed for lipidomics and leptin at age 58. Cognitive performance was measured with a Stroop task at 58, and MRI-based BrainAGE was derived in a subsample at 68. Out of 259 lipid signals, a signature of five identified individuals who were undernourished prenatally. These five lipids were not associated with cognitive performance, but three were predictive of BrainAGE. Leptin was not associated with prenatal famine exposure, Stroop performance, or BrainAGE. In conclusion, prenatal undernutrition was associated with an altered lipid profile predictive of BrainAGE 10 years later, demonstrating the potential of lipid profiles as early biomarkers for accelerated brain aging.
Collapse
Affiliation(s)
- Stuart G Snowden
- Core Metabolomics and Lipidomics Laboratory, Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Level 4 Pathology, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
- Department of Biological Sciences, Royal Holloway University of London, Egham, Surrey, TW20 0EX, UK
| | - Albert Koulman
- Core Metabolomics and Lipidomics Laboratory, Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Level 4 Pathology, Cambridge Biomedical Campus, Cambridge, CB2 0QQ, UK
| | - Christian Gaser
- Structural Brain Mapping Group, Department of Neurology, Jena University Hospital, Jena, Germany
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Susanne E la Fleur
- Endocrine Laboratory, Department of Clinical Chemistry, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Cellular and Molecular Mechanisms, Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology & Metabolism, Amsterdam, The Netherlands
| | - Tessa J Roseboom
- Department of Epidemiology and Data Science, Amsterdam UMC, location University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands
| | - Aniko Korosi
- Centre for Neuroscience, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Susanne R de Rooij
- Department of Epidemiology and Data Science, Amsterdam UMC, location University of Amsterdam, Amsterdam, the Netherlands.
- Amsterdam Reproduction and Development, Amsterdam, The Netherlands.
- Amsterdam Public Health research institute, Aging & Later life, Health Behaviors & Chronic Diseases, Amsterdam, The Netherlands.
| |
Collapse
|
8
|
Ferré-González L, Balaguer Á, Roca M, Ftara A, Lloret A, Cháfer-Pericás C. Plasma lipidomics in early APP/PS1 female mouse model and its relationship with brain: Is it affected by the estrous cycle? Alzheimers Res Ther 2024; 16:183. [PMID: 39143583 PMCID: PMC11323474 DOI: 10.1186/s13195-024-01549-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/31/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most prevalent dementia, showing higher incidence in women. Besides, lipids play an essential role in brain, and they could be dysregulated in neurodegeneration. Specifically, impaired plasma lipid levels could predict early AD diagnosis. This work aims to identify the main plasma lipids altered in early AD female mouse model and evaluate their relationship with brain lipidome. Also, the possible involvement of the estrous cycle in lipid metabolism has been evaluated. METHODS Plasma samples of wild-type (n = 10) and APP/PS1 (n = 10) female mice of 5 months of age were collected, processed, and analysed using a lipidomic mass spectrometry-based method. A statistical analysis involving univariate and multivariate approaches was performed to identify significant lipid differences related to AD between groups. Also, cytology tests were conducted to confirm estrous cycle phases. RESULTS Three hundred thirty lipids were detected in plasma, 18 of them showed significant differences between groups; specifically, some triacylglycerols, cholesteryl esters, lysophosphatidylcholines, phosphatidylcholines, and ether-linked phosphatidylcholines, increased in early AD; while other phosphatidylcholines, phosphatidylethanolamines, ceramides, and ether-linked phosphatidylethanolamines decreased in early AD. A multivariate approach was developed from some lipid variables, showing high diagnostic indexes (70% sensitivity, 90% specificity, 80% accuracy). From brain and plasma lipidome, some significant correlations were observed, mainly in the glycerophospholipid family. Also, some differences were found in both plasma and brain lipids, according to the estrous cycle phase. CONCLUSIONS Therefore, lipid alterations can be identified in plasma at early AD stages in mice females, with a relationship with brain lipid metabolism for most of the lipid subfamilies, suggesting some lipids as potential AD biomarkers. In addition, the estrous cycle monitoring could be relevant in female studies.
Collapse
Affiliation(s)
- Laura Ferré-González
- Alzheimer's Disease Research Group, Instituto de Investigación Sanitaria La Fe, Avda de Fernando Abril Martorell, 106; 46026, Valencia, Spain
| | - Ángel Balaguer
- Faculty of Mathematics, University of Valencia, Valencia, Spain
| | - Marta Roca
- Analytical Unit, Health Research Institute La Fe, Valencia, Spain
| | - Artemis Ftara
- Department of Physiology, Faculty of Medicine, University of Valencia, Health Research Institute INCLIVA, Valencia, Spain
| | - Ana Lloret
- Department of Physiology, Faculty of Medicine, University of Valencia, Health Research Institute INCLIVA, Valencia, Spain
| | - Consuelo Cháfer-Pericás
- Alzheimer's Disease Research Group, Instituto de Investigación Sanitaria La Fe, Avda de Fernando Abril Martorell, 106; 46026, Valencia, Spain.
| |
Collapse
|
9
|
Arbeev KG, Bagley O, Ukraintseva SV, Kulminski A, Stallard E, Schwaiger-Haber M, Patti GJ, Gu Y, Yashin AI, Province MA. Methods for joint modelling of longitudinal omics data and time-to-event outcomes: Applications to lysophosphatidylcholines in connection to aging and mortality in the Long Life Family Study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.29.24311176. [PMID: 39132492 PMCID: PMC11312646 DOI: 10.1101/2024.07.29.24311176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Studying relationships between longitudinal changes in omics variables and risks of events requires specific methodologies for joint analyses of longitudinal and time-to-event outcomes. We applied two such approaches (joint models [JM], stochastic process models [SPM]) to longitudinal metabolomics data from the Long Life Family Study focusing on understudied associations of longitudinal changes in lysophosphatidylcholines (LPC) with mortality and aging-related outcomes (23 LPC species, 5,790 measurements of each in 4,011 participants, 1,431 of whom died during follow-up). JM analyses found that higher levels of the majority of LPC species were associated with lower mortality risks, with the largest effect size observed for LPC 15:0/0:0 (hazard ratio: 0.715, 95% CI (0.649, 0.788)). SPM applications to LPC 15:0/0:0 revealed how the association found in JM reflects underlying aging-related processes: decline in robustness to deviations from optimal LPC levels, better ability of males' organisms to return to equilibrium LPC levels (which are higher in females), and increasing gaps between the optimum and equilibrium levels leading to increased mortality risks with age. Our results support LPC as a biomarker of aging and related decline in robustness/resilience, and call for further exploration of factors underlying age-dynamics of LPC in relation to mortality and diseases.
Collapse
Affiliation(s)
- Konstantin G. Arbeev
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, North Carolina 27708, USA
| | - Olivia Bagley
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, North Carolina 27708, USA
| | - Svetlana V. Ukraintseva
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, North Carolina 27708, USA
| | - Alexander Kulminski
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, North Carolina 27708, USA
| | - Eric Stallard
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, North Carolina 27708, USA
| | - Michaela Schwaiger-Haber
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri 63130, United States
- Center for Metabolomics and Isotope Tracing at Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Gary J. Patti
- Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, United States
- Department of Medicine, Washington University in St. Louis, St. Louis, Missouri 63130, United States
- Center for Metabolomics and Isotope Tracing at Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Yian Gu
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
- G.H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, and the New York Presbyterian Hospital, New York, New York 10032, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York 10032, USA
| | - Anatoliy I. Yashin
- Biodemography of Aging Research Unit, Social Science Research Institute, Duke University, Durham, North Carolina 27708, USA
| | - Michael A. Province
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| |
Collapse
|
10
|
Wahid HH, Anahar FN, Isahak NH, Mohd Zoharodzi J, Mohammad Khoiri SNL, Mohamad Zainal NH, Kamarudin N, Ismail H, Mustafa Mahmud MIA. Role of Platelet Activating Factor as a Mediator of Inflammatory Diseases and Preterm Delivery. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:862-878. [PMID: 38403163 DOI: 10.1016/j.ajpath.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/16/2024] [Accepted: 01/31/2024] [Indexed: 02/27/2024]
Abstract
Nearly 70% of preterm deliveries occur spontaneously, and the clinical pathways involved include preterm labor and preterm premature rupture of membranes. Prediction of preterm delivery is considered crucial due to the significant effects of preterm birth on health and the economy at both the personal and community levels. Although similar inflammatory processes occur in both term and preterm delivery, the premature activation of these processes or exaggerated inflammatory response triggered by infection or sterile factors leads to preterm delivery. Platelet activating factor (PAF) is a phosphoglycerylether lipid mediator of inflammation that is implicated in infections, cancers, and various chronic diseases and disorders including cardiovascular, renal, cerebrovascular, and central nervous system diseases. In gestational tissues, PAF mediates the inflammatory pathways that stimulate the effector mechanisms of labor, including myometrial contraction, cervical dilation, and fetal membrane rupture. Women with preterm labor and preterm premature rupture of membranes have increased levels of PAF in their amniotic fluid. In mice, the intrauterine or intraperitoneal administration of carbamyl PAF activates inflammation in gestational tissues, thereby eliciting preterm delivery. This review summarizes recent research on PAF as an important inflammatory mediator in preterm delivery and in other inflammatory disorders, highlighting its potential value for prediction, intervention, and prevention of these diseases.
Collapse
Affiliation(s)
- Hanan H Wahid
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University, Pahang, Malaysia.
| | - Fatin N Anahar
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University, Pahang, Malaysia
| | - Nurul H Isahak
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University, Pahang, Malaysia
| | - Juwairiyah Mohd Zoharodzi
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University, Pahang, Malaysia
| | - Siti N L Mohammad Khoiri
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University, Pahang, Malaysia
| | - Nurul H Mohamad Zainal
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, University of Putra Malaysia, Selangor, Malaysia
| | - Norhidayah Kamarudin
- Department of Pathology, Kulliyyah of Medicine, International Islamic University, Pahang, Malaysia
| | - Hamizah Ismail
- Department of Obstetrics & Gynaecology, Kulliyyah of Medicine, International Islamic University, Pahang, Malaysia
| | - Mohammed I A Mustafa Mahmud
- Department of Basic Medical Sciences, Kulliyyah of Medicine, International Islamic University, Pahang, Malaysia
| |
Collapse
|
11
|
Wang C, Gamage PL, Jiang W, Mudalige T. Excipient-related impurities in liposome drug products. Int J Pharm 2024; 657:124164. [PMID: 38688429 DOI: 10.1016/j.ijpharm.2024.124164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024]
Abstract
Liposomes are widely used in the pharmaceutical industry as drug delivery systems to increase the efficacy and reduce the off-target toxicity of active pharmaceutical ingredients (APIs). The liposomes are more complex drug delivery systems than the traditional dosage forms, and phospholipids and cholesterol are the major structural excipients. These two excipients undergo hydrolysis and/or oxidation during liposome preparation and storage, resulting in lipids hydrolyzed products (LHPs) and cholesterol oxidation products (COPs) in the final liposomal formulations. These excipient-related impurities at elevated concentrations may affect liposome stability and exert biological functions. This review focuses on LHPs and COPs, two major categories of excipient-related impurities in the liposomal formulations, and discusses factors affecting their formation, and analytical methods to determine these excipient-related impurities.
Collapse
Affiliation(s)
- Changguang Wang
- Arkansas Laboratory, Office of Regulatory Affairs, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Prabhath L Gamage
- Arkansas Laboratory, Office of Regulatory Affairs, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA
| | - Wenlei Jiang
- Office of Research and Standards, Office of Generic Drugs, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, 20993, USA.
| | - Thilak Mudalige
- Arkansas Laboratory, Office of Regulatory Affairs, U.S. Food and Drug Administration, Jefferson, AR, 72079, USA.
| |
Collapse
|
12
|
Pan X, Donaghy PC, Roberts G, Chouliaras L, O’Brien JT, Thomas AJ, Heslegrave AJ, Zetterberg H, McGuinness B, Passmore AP, Green BD, Kane JPM. Plasma metabolites distinguish dementia with Lewy bodies from Alzheimer's disease: a cross-sectional metabolomic analysis. Front Aging Neurosci 2024; 15:1326780. [PMID: 38239488 PMCID: PMC10794326 DOI: 10.3389/fnagi.2023.1326780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/11/2023] [Indexed: 01/22/2024] Open
Abstract
Background In multifactorial diseases, alterations in the concentration of metabolites can identify novel pathological mechanisms at the intersection between genetic and environmental influences. This study aimed to profile the plasma metabolome of patients with dementia with Lewy bodies (DLB) and Alzheimer's disease (AD), two neurodegenerative disorders for which our understanding of the pathophysiology is incomplete. In the clinical setting, DLB is often mistaken for AD, highlighting a need for accurate diagnostic biomarkers. We therefore also aimed to determine the overlapping and differentiating metabolite patterns associated with each and establish whether identification of these patterns could be leveraged as biomarkers to support clinical diagnosis. Methods A panel of 630 metabolites (Biocrates MxP Quant 500) and a further 232 metabolism indicators (biologically informative sums and ratios calculated from measured metabolites, each indicative for a specific pathway or synthesis; MetaboINDICATOR) were analyzed in plasma from patients with probable DLB (n = 15; age 77.6 ± 8.2 years), probable AD (n = 15; 76.1 ± 6.4 years), and age-matched cognitively healthy controls (HC; n = 15; 75.2 ± 6.9 years). Metabolites were quantified using a reversed-phase ultra-performance liquid chromatography column and triple-quadrupole mass spectrometer in multiple reaction monitoring (MRM) mode, or by using flow injection analysis in MRM mode. Data underwent multivariate (PCA analysis), univariate and receiving operator characteristic (ROC) analysis. Metabolite data were also correlated (Spearman r) with the collected clinical neuroimaging and protein biomarker data. Results The PCA plot separated DLB, AD and HC groups (R2 = 0.518, Q2 = 0.348). Significant alterations in 17 detected metabolite parameters were identified (q ≤ 0.05), including neurotransmitters, amino acids and glycerophospholipids. Glutamine (Glu; q = 0.045) concentrations and indicators of sphingomyelin hydroxylation (q = 0.039) distinguished AD and DLB, and these significantly correlated with semi-quantitative measurement of cardiac sympathetic denervation. The most promising biomarker differentiating AD from DLB was Glu:lysophosphatidylcholine (lysoPC a 24:0) ratio (AUC = 0.92; 95%CI 0.809-0.996; sensitivity = 0.90; specificity = 0.90). Discussion Several plasma metabolomic aberrations are shared by both DLB and AD, but a rise in plasma glutamine was specific to DLB. When measured against plasma lysoPC a C24:0, glutamine could differentiate DLB from AD, and the reproducibility of this biomarker should be investigated in larger cohorts.
Collapse
Affiliation(s)
- Xiaobei Pan
- School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Paul C. Donaghy
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Gemma Roberts
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Leonidas Chouliaras
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - John T. O’Brien
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Alan J. Thomas
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Amanda J. Heslegrave
- Department of Neurodegenerative Disease, University College London Queen Square Institute of Neurology, London, United Kingdom
- Dementia Research Institute, UCL, London, United Kingdom
| | - Henrik Zetterberg
- Department of Neurodegenerative Disease, University College London Queen Square Institute of Neurology, London, United Kingdom
- Dementia Research Institute, UCL, London, United Kingdom
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Hong Kong Center for Neurodegenerative Diseases, Kowloon, Hong Kong SAR, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | | | - Anthony P. Passmore
- Centre for Public Health, Queen’s University Belfast, Belfast, United Kingdom
| | - Brian D. Green
- School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Joseph P. M. Kane
- Centre for Public Health, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
13
|
Judd JM, Jasbi P, Winslow W, Serrano GE, Beach TG, Klein-Seetharaman J, Velazquez R. Inflammation and the pathological progression of Alzheimer's disease are associated with low circulating choline levels. Acta Neuropathol 2023; 146:565-583. [PMID: 37548694 PMCID: PMC10499952 DOI: 10.1007/s00401-023-02616-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 08/08/2023]
Abstract
Deficiency of dietary choline, an essential nutrient, is observed worldwide, with ~ 90% of Americans being deficient. Previous work highlights a relationship between decreased choline intake and an increased risk for cognitive decline and Alzheimer's disease (AD). The associations between blood circulating choline and the pathological progression in both mild cognitive impairment (MCI) and AD remain unknown. Here, we examined these associations in a cohort of patients with MCI with presence of either sparse or high neuritic plaque density and Braak stage and a second cohort with either moderate AD (moderate to frequent neuritic plaques, Braak stage = IV) or severe AD (frequent neuritic plaques, Braak stage = VI), compared to age-matched controls. Metabolomic analysis was performed on serum from the AD cohort. We then assessed the effects of dietary choline deficiency (Ch-) in 3xTg-AD mice and choline supplementation (Ch+) in APP/PS1 mice, two rodent models of AD. The levels of circulating choline were reduced while pro-inflammatory cytokine TNFα was elevated in serum of both MCI sparse and high pathology cases. Reduced choline and elevated TNFα correlated with higher neuritic plaque density and Braak stage. In AD patients, we found reductions in choline, its derivative acetylcholine (ACh), and elevated TNFα. Choline and ACh levels were negatively correlated with neuritic plaque load, Braak stage, and TNFα, but positively correlated with MMSE, and brain weight. Metabolites L-Valine, 4-Hydroxyphenylpyruvic, Methylmalonic, and Ferulic acids were significantly associated with circuiting choline levels. In 3xTg-AD mice, the Ch- diet increased amyloid-β levels and tau phosphorylation in cortical tissue, and TNFα in both blood and cortical tissue, paralleling the severe human-AD profile. Conversely, the Ch+ diet increased choline and ACh while reducing amyloid-β and TNFα levels in brains of APP/PS1 mice. Collectively, low circulating choline is associated with AD-neuropathological progression, illustrating the importance of adequate dietary choline intake to offset disease.
Collapse
Affiliation(s)
- Jessica M Judd
- Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Tempe, AZ, 85287, USA
- Arizona Alzheimer's Consortium, Phoenix, AZ, 85014, USA
| | - Paniz Jasbi
- School of Molecular Sciences, Arizona State University, Phoenix, AZ, 85287, USA
| | - Wendy Winslow
- Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Tempe, AZ, 85287, USA
- Arizona Alzheimer's Consortium, Phoenix, AZ, 85014, USA
| | - Geidy E Serrano
- Arizona Alzheimer's Consortium, Phoenix, AZ, 85014, USA
- Banner Sun Health Research Institute, Sun City, AZ, 85351, USA
| | - Thomas G Beach
- Arizona Alzheimer's Consortium, Phoenix, AZ, 85014, USA
- Banner Sun Health Research Institute, Sun City, AZ, 85351, USA
| | | | - Ramon Velazquez
- Arizona State University-Banner Neurodegenerative Disease Research Center at the Biodesign Institute, Tempe, AZ, 85287, USA.
- Arizona Alzheimer's Consortium, Phoenix, AZ, 85014, USA.
- School of Life Sciences, Arizona State University, 797 E Tyler St, Tempe, AZ, 85287, USA.
| |
Collapse
|
14
|
Synan L, Ghazvini S, Uthaman S, Cutshaw G, Lee CY, Waite J, Wen X, Sarkar S, Lin E, Santillan M, Santillan D, Bardhan R. First Trimester Prediction of Preterm Birth in Patient Plasma with Machine-Learning-Guided Raman Spectroscopy and Metabolomics. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38185-38200. [PMID: 37549133 PMCID: PMC10625673 DOI: 10.1021/acsami.3c04260] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Preterm birth (PTB) is the leading cause of infant deaths globally. Current clinical measures often fail to identify women who may deliver preterm. Therefore, accurate screening tools are imperative for early prediction of PTB. Here, we show that Raman spectroscopy is a promising tool for studying biological interfaces, and we examine differences in the maternal metabolome of the first trimester plasma of PTB patients and those that delivered at term (healthy). We identified fifteen statistically significant metabolites that are predictive of the onset of PTB. Mass spectrometry metabolomics validates the Raman findings identifying key metabolic pathways that are enriched in PTB. We also show that patient clinical information alone and protein quantification of standard inflammatory cytokines both fail to identify PTB patients. We show for the first time that synergistic integration of Raman and clinical data guided with machine learning results in an unprecedented 85.1% accuracy of risk stratification of PTB in the first trimester that is currently not possible clinically. Correlations between metabolites and clinical features highlight the body mass index and maternal age as contributors of metabolic rewiring. Our findings show that Raman spectral screening may complement current prenatal care for early prediction of PTB, and our approach can be translated to other patient-specific biological interfaces.
Collapse
Affiliation(s)
- Lilly Synan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50012, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Saman Ghazvini
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50012, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Saji Uthaman
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50012, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Gabriel Cutshaw
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50012, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Che-Yu Lee
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 62106, Taiwan
| | - Joshua Waite
- Department of Mechanical Engineering, Iowa state University, Ames, IA 50012, USA
| | - Xiaona Wen
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| | - Soumik Sarkar
- Department of Mechanical Engineering, Iowa state University, Ames, IA 50012, USA
| | - Eugene Lin
- Department of Chemistry and Biochemistry, National Chung Cheng University, Chiayi 62106, Taiwan
| | - Mark Santillan
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Hospitals & Clinics, Iowa City, IA 52242, USA
| | - Donna Santillan
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Hospitals & Clinics, Iowa City, IA 52242, USA
| | - Rizia Bardhan
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50012, USA
- Nanovaccine Institute, Iowa State University, Ames, IA 50012, USA
| |
Collapse
|
15
|
Kim JP, Nho K, Wang T, Huynh K, Arnold M, Risacher SL, Bice PJ, Han X, Kristal BS, Blach C, Baillie R, Kastenmüller G, Meikle PJ, Saykin AJ, Kaddurah-Daouk R. Circulating lipid profiles are associated with cross-sectional and longitudinal changes of central biomarkers for Alzheimer's disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.06.12.23291054. [PMID: 37398438 PMCID: PMC10312871 DOI: 10.1101/2023.06.12.23291054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Investigating the association of lipidome profiles with central Alzheimer's disease (AD) biomarkers, including amyloid/tau/neurodegeneration (A/T/N), can provide a holistic view between the lipidome and AD. We performed cross-sectional and longitudinal association analysis of serum lipidome profiles with AD biomarkers in the Alzheimer's Disease Neuroimaging Initiative cohort (N=1,395). We identified lipid species, classes, and network modules that were significantly associated with cross-sectional and longitudinal changes of A/T/N biomarkers for AD. Notably, we identified the lysoalkylphosphatidylcholine (LPC(O)) as associated with "A/N" biomarkers at baseline at lipid species, class, and module levels. Also, GM3 ganglioside showed significant association with baseline levels and longitudinal changes of the "N" biomarkers at species and class levels. Our study of circulating lipids and central AD biomarkers enabled identification of lipids that play potential roles in the cascade of AD pathogenesis. Our results suggest dysregulation of lipid metabolic pathways as precursors to AD development and progression.
Collapse
Affiliation(s)
- Jun Pyo Kim
- Center for Neuroimaging, Radiology and Imaging Sciences, and the Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Department of Neurology, Samsung Medical Center, Seoul, Korea
| | - Kwangsik Nho
- Center for Neuroimaging, Radiology and Imaging Sciences, and the Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Tingting Wang
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Victoria, Australia
| | - Kevin Huynh
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Victoria, Australia
- Department of Cardiovascular Research Translation and Implementation, La Trobe University, Melbourne, Australia
| | - Matthias Arnold
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Shannon L Risacher
- Center for Neuroimaging, Radiology and Imaging Sciences, and the Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Paula J Bice
- Center for Neuroimaging, Radiology and Imaging Sciences, and the Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Xianlin Han
- University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Bruce S Kristal
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women's Hospital, and Division of Sleep Medicine, Harvard Medical School, Boston, MA, USA
| | - Colette Blach
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | | | - Gabi Kastenmüller
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Peter J Meikle
- Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Victoria, Australia
- Department of Cardiovascular Research Translation and Implementation, La Trobe University, Melbourne, Australia
| | - Andrew J Saykin
- Center for Neuroimaging, Radiology and Imaging Sciences, and the Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
- Duke Institute of Brain Sciences, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| |
Collapse
|
16
|
Judd JM, Jasbi P, Winslow W, Serrano GE, Beach TG, Klein-Seetharaman J, Velazquez R. Low circulating choline, a modifiable dietary factor, is associated with the pathological progression and metabolome dysfunction in Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.06.539713. [PMID: 37214864 PMCID: PMC10197582 DOI: 10.1101/2023.05.06.539713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Most Americans (∼90%) are deficient in dietary choline, an essential nutrient. Associations between circulating choline and pathological progression in Alzheimer's disease (AD) remain unknown. Here, we examined these associations and performed a metabolomic analysis in blood serum from severe AD, moderate AD, and healthy controls. Additionally, to gain mechanistic insight, we assessed the effects of dietary choline deficiency (Ch-) in 3xTg-AD mice and choline supplementation (Ch+) in APP/PS1 mice. In humans, we found AD-associated reductions in choline, it's derivative acetylcholine (ACh), and elevated pro-inflammatory cytokine TNFα. Choline and ACh were negatively correlated with Plaque density, Braak stage, and TNFα, but positively correlated with MMSE and brain weight. Metabolites L-Valine, 4-Hydroxyphenylpyruvic, Methylmalonic, and Ferulic acids were associated with choline levels. In mice, Ch-paralleled AD severe, but Ch+ was protective. In conclusion, low circulating choline is associated with AD-neuropathological progression, illustrating the importance of dietary choline consumption to offset disease.
Collapse
|
17
|
Otoki Y, Yu D, Shen Q, Sahlas DJ, Ramirez J, Gao F, Masellis M, Swartz RH, Chan PC, Pettersen JA, Kato S, Nakagawa K, Black SE, Swardfager W, Taha AY. Quantitative Lipidomic Analysis of Serum Phospholipids Reveals Dissociable Markers of Alzheimer's Disease and Subcortical Cerebrovascular Disease. J Alzheimers Dis 2023; 93:665-682. [PMID: 37092220 DOI: 10.3233/jad-220795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
BACKGROUND Circulating phospholipid species have been shown to predict Alzheimer's disease (AD) prognosis but the link between phospholipid disturbances and subcortical small vessel cerebrovascular disease (CeVD) common in AD patients is not known. OBJECTIVE This study used quantitative lipidomics to measure serum diacyl, alkenyl (ether), alkyl, and lyso phospholipid species in individuals with extensive CeVD (n = 29), AD with minimal CeVD (n = 16), and AD with extensive CeVD (n = 14), and compared them to age-matched controls (n = 27). Memory was assessed using the California Verbal Learning Test. 3.0T MRI was used to assess hippocampal volume, atrophy, and white matter hyperintensity (WMH) volumes as manifestations of CeVD. RESULTS AD was associated with significantly higher concentrations of choline plasmalogen 18:0_18:1 and alkyl-phosphocholine 18:1. CeVD was associated with significantly lower lysophospholipids containing 16:0. Phospholipids containing arachidonic acid (AA) were associated with poorer memory in controls, whereas docosahexaenoic acid (DHA)-containing phospholipids were associated with better memory in individuals with AD+CeVD. In controls, DHA-containing phospholipids were associated with more atrophy and phospholipids containing linoleic acid and AA were associated with less atrophy. Lysophospholipids containing 16:0, 18:0, and 18:1 were correlated with less atrophy in controls, and of these, alkyl-phosphocholine 18:1 was correlated with smaller WMH volumes. Conversely, 16:0_18:1 choline plasmalogen was correlated with greater WMH volumes in controls. CONCLUSION This study demonstrates discernable differences in circulating phospholipids in individuals with AD and CeVD, as well as new associations between phospholipid species with memory and brain structure that were specific to contexts of commonly comorbid vascular and neurodegenerative pathologies.
Collapse
Affiliation(s)
- Yurika Otoki
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA
- Laboratory of Food Function Analysis, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Di Yu
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Canada
- Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Canada
- LC Campbell Cognitive Neurology Unit, Sunnybrook Research Institute, Toronto, Canada
| | - Qing Shen
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA
| | - Demetrios J Sahlas
- Department of Medicine (Neurology Division), McMaster University, Hamilton, Canada
| | - Joel Ramirez
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Canada
| | - Fuqiang Gao
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Canada
| | - Mario Masellis
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Canada
- Department of Medicine (Neurology Division) and the Northern Medical Program, University of British Columbia, Vancouver, Canada
| | - Richard H Swartz
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Pak Cheung Chan
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Department of Laboratory Medicine and Molecular Diagnostics, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Jacqueline A Pettersen
- Department of Medicine (Neurology Division) and the Northern Medical Program, University of British Columbia, Vancouver, Canada
| | - Shunji Kato
- Laboratory of Food Function Analysis, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Kiyotaka Nakagawa
- Laboratory of Food Function Analysis, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan
| | - Sandra E Black
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Canada
- Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Canada
- LC Campbell Cognitive Neurology Unit, Sunnybrook Research Institute, Toronto, Canada
- Department of Medicine (Neurology Division), University of Toronto, Toronto, Canada
| | - Walter Swardfager
- Hurvitz Brain Sciences Program, Sunnybrook Research Institute, Toronto, Canada
- Department of Pharmacology & Toxicology, University of Toronto, Toronto, Canada
- Canadian Partnership for Stroke Recovery, Sunnybrook Research Institute, Toronto, Canada
- LC Campbell Cognitive Neurology Unit, Sunnybrook Research Institute, Toronto, Canada
- University Health Network Toronto Rehabilitation Institute, Toronto, Canada
| | - Ameer Y Taha
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of California, Davis, CA, USA
- West Coast Metabolomics Center, Genome Center, University of California - Davis, Davis, CA, USA
- Center for Neuroscience, University of California - Davis, Davis, CA, USA
| |
Collapse
|
18
|
Jové M, Mota-Martorell N, Obis È, Sol J, Martín-Garí M, Ferrer I, Portero-Otin M, Pamplona R. Ether Lipid-Mediated Antioxidant Defense in Alzheimer's Disease. Antioxidants (Basel) 2023; 12:293. [PMID: 36829852 PMCID: PMC9952080 DOI: 10.3390/antiox12020293] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
One of the richest tissues in lipid content and diversity of the human body is the brain. The human brain is constitutively highly vulnerable to oxidative stress. This oxidative stress is a determinant in brain aging, as well as in the onset and progression of sporadic (late-onset) Alzheimer's disease (sAD). Glycerophospholipids are the main lipid category widely distributed in neural cell membranes, with a very significant presence for the ether lipid subclass. Ether lipids have played a key role in the evolution of the human brain compositional specificity and functionality. Ether lipids determine the neural membrane structural and functional properties, membrane trafficking, cell signaling and antioxidant defense mechanisms. Here, we explore the idea that ether lipids actively participate in the pathogenesis of sAD. Firstly, we evaluate the quantitative relevance of ether lipids in the human brain composition, as well as their role in the human brain evolution. Then, we analyze the implications of ether lipids in neural cell physiology, highlighting their inherent antioxidant properties. Finally, we discuss changes in ether lipid content associated with sAD and their physiopathological implications, and propose a mechanism that, as a vicious cycle, explains the potential significance of ether lipids in sAD.
Collapse
Affiliation(s)
- Mariona Jové
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), Lleida University (UdL), E-25198 Lleida, Spain
| | - Natàlia Mota-Martorell
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), Lleida University (UdL), E-25198 Lleida, Spain
| | - Èlia Obis
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), Lleida University (UdL), E-25198 Lleida, Spain
| | - Joaquim Sol
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), Lleida University (UdL), E-25198 Lleida, Spain
- Research Support Unit (USR), Catalan Institute of Health (ICS), Fundació Institut Universitari per a la Recerca en Atenció Primària de Salut Jordi Gol i Gurina (IDIAP JGol), E-25007 Lleida, Spain
| | - Meritxell Martín-Garí
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), Lleida University (UdL), E-25198 Lleida, Spain
| | - Isidre Ferrer
- Department of Pathology and Experimental Therapeutics, University of Barcelona (UB), E-08907 Barcelona, Spain
- Neuropathology Group, Institute of Biomedical Research of Bellvitge (IDIBELL), E-08907 Barcelona, Spain
- Network Research Center of Neurodegenerative Diseases (CIBERNED), Instituto Carlos III, E-08907 Barcelona, Spain
| | - Manuel Portero-Otin
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), Lleida University (UdL), E-25198 Lleida, Spain
| | - Reinald Pamplona
- Department of Experimental Medicine, Lleida Biomedical Research Institute (IRBLleida), Lleida University (UdL), E-25198 Lleida, Spain
| |
Collapse
|
19
|
Krasnobaev VD, Batishchev OV. The Role of Lipid Domains and Physical Properties of Membranes in the Development of Age-Related Neurodegenerative Diseases. BIOCHEMISTRY (MOSCOW), SUPPLEMENT SERIES A: MEMBRANE AND CELL BIOLOGY 2022. [DOI: 10.1134/s199074782209001x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
In FUS[1−359]‐tg mice O,S-dibenzoyl thiamine reduces muscle atrophy, decreases glycogen synthase kinase 3 beta, and normalizes the metabolome. Biomed Pharmacother 2022; 156:113986. [DOI: 10.1016/j.biopha.2022.113986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/25/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
|
21
|
Krasnobaev VD, Galimzyanov TR, Akimov SA, Batishchev OV. Lysolipids regulate raft size distribution. Front Mol Biosci 2022; 9:1021321. [PMID: 36275621 PMCID: PMC9581197 DOI: 10.3389/fmolb.2022.1021321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
The lipid matrix of cellular membranes, directly and indirectly, regulates many vital functions of the cell. The diversity of lipids in membranes leads to the formation of ordered domains called rafts, which play a crucial role in signal transduction, protein sorting and other cellular processes. Rafts are believed to impact the development of different neurodegenerative diseases, such as Alzheimer’s, Parkinson’s, Huntington’s ones, amyotrophic lateral sclerosis, some types of cancer, etc. These diseases correlate with the change in the membrane lipid composition resulting from an oxidative stress, age-related processes, dysfunction of proteins, and many others. In particular, a lot of studies report a significant rise in the level of lysolipids. Physicochemical properties of rafts are determined by membrane composition, in particular, by the content of lysolipids. Lysolipids may thus regulate raft-involving processes. However, the exact mechanism of such regulation is unknown. Although studying rafts in vivo still seems to be rather complicated, liquid-ordered domains are well observed in model systems. In the present study, we used atomic force microscopy (AFM) to examine how lysophospholipids influence the liquid-ordered domains in model ternary membranes. We demonstrated that even a small amount of lysolipids in a membrane significantly impacts domain size depending on the saturation of the lysolipid hydrocarbon tails and the amount of cholesterol. The mixture with the bigger relative fraction of cholesterol was more susceptible to the action of lysolipids. This data helped us to generalize our previous theoretical model of the domain size regulation by lipids with particular molecular shape expanding it to the case of lysolipids and dioleoylglycerol.
Collapse
Affiliation(s)
- Vladimir D. Krasnobaev
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
| | - Timur R. Galimzyanov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Sergey A. Akimov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
| | - Oleg V. Batishchev
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Moscow, Russia
- *Correspondence: Oleg V. Batishchev,
| |
Collapse
|
22
|
Dorninger F, Werner ER, Berger J, Watschinger K. Regulation of plasmalogen metabolism and traffic in mammals: The fog begins to lift. Front Cell Dev Biol 2022; 10:946393. [PMID: 36120579 PMCID: PMC9471318 DOI: 10.3389/fcell.2022.946393] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/25/2022] [Indexed: 12/15/2022] Open
Abstract
Due to their unique chemical structure, plasmalogens do not only exhibit distinct biophysical and biochemical features, but require specialized pathways of biosynthesis and metabolization. Recently, major advances have been made in our understanding of these processes, for example by the attribution of the gene encoding the enzyme, which catalyzes the final desaturation step in plasmalogen biosynthesis, or by the identification of cytochrome C as plasmalogenase, which allows for the degradation of plasmalogens. Also, models have been presented that plausibly explain the maintenance of adequate cellular levels of plasmalogens. However, despite the progress, many aspects around the questions of how plasmalogen metabolism is regulated and how plasmalogens are distributed among organs and tissues in more complex organisms like mammals, remain unresolved. Here, we summarize and interpret current evidence on the regulation of the enzymes involved in plasmalogen biosynthesis and degradation as well as the turnover of plasmalogens. Finally, we focus on plasmalogen traffic across the mammalian body - a topic of major importance, when considering plasmalogen replacement therapies in human disorders, where deficiencies in these lipids have been reported. These involve not only inborn errors in plasmalogen metabolism, but also more common diseases including Alzheimer's disease and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Fabian Dorninger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria,*Correspondence: Fabian Dorninger, ; Katrin Watschinger,
| | - Ernst R. Werner
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Katrin Watschinger
- Institute of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria,*Correspondence: Fabian Dorninger, ; Katrin Watschinger,
| |
Collapse
|
23
|
Peña-Bautista C, Álvarez-Sánchez L, Roca M, García-Vallés L, Baquero M, Cháfer-Pericás C. Plasma Lipidomics Approach in Early and Specific Alzheimer’s Disease Diagnosis. J Clin Med 2022; 11:jcm11175030. [PMID: 36078960 PMCID: PMC9457360 DOI: 10.3390/jcm11175030] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/02/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Background: The brain is rich in lipid content, so a physiopathological pathway in Alzheimer’s disease (AD) could be related to lipid metabolism impairment. The study of lipid profiles in plasma samples could help in the identification of early AD changes and new potential biomarkers. Methods: An untargeted lipidomic analysis was carried out in plasma samples from preclinical AD (n = 11), mild cognitive impairment-AD (MCI-AD) (n = 31), and healthy (n = 20) participants. Variables were identified by means of two complementary methods, and lipid families’ profiles were studied. Then, a targeted analysis was carried out for some identified lipids. Results: Statistically significant differences were obtained for the diglycerol (DG), lysophosphatidylethanolamine (LPE), lysophosphatidylcholine (LPC), monoglyceride (MG), and sphingomyelin (SM) families as well as for monounsaturated (MUFAs) lipids, among the participant groups. In addition, statistically significant differences in the levels of lipid families (ceramides (Cer), LPE, LPC, MG, and SM) were observed between the preclinical AD and healthy groups, while statistically significant differences in the levels of DG, MG, and PE were observed between the MCI-AD and healthy groups. In addition, 18:1 LPE showed statistically significant differences in the targeted analysis between early AD (preclinical and MCI) and healthy participants. Conclusion: The different plasma lipid profiles could be useful in the early and minimally invasive detection of AD. Among the lipid families, relevant results were obtained from DGs, LPEs, LPCs, MGs, and SMs. Specifically, MGs could be potentially useful in AD detection; while LPEs, LPCs, and SM seem to be more related to the preclinical stage, while DGs are more related to the MCI stage. Specifically, 18:1 LPE showed a potential utility as an AD biomarker.
Collapse
Affiliation(s)
- Carmen Peña-Bautista
- Alzheimer’s Disease Research Group, Health Research Institute La Fe, 46026 Valencia, Spain
| | - Lourdes Álvarez-Sánchez
- Alzheimer’s Disease Research Group, Health Research Institute La Fe, 46026 Valencia, Spain
- Division of Neurology, University and Polytechnic Hospital La Fe, 46026 Valencia, Spain
| | - Marta Roca
- Analytical Unit, Health Research Institute La Fe, 46026 Valencia, Spain
| | - Lorena García-Vallés
- Division of Neurology, University and Polytechnic Hospital La Fe, 46026 Valencia, Spain
| | - Miguel Baquero
- Alzheimer’s Disease Research Group, Health Research Institute La Fe, 46026 Valencia, Spain
- Division of Neurology, University and Polytechnic Hospital La Fe, 46026 Valencia, Spain
| | - Consuelo Cháfer-Pericás
- Alzheimer’s Disease Research Group, Health Research Institute La Fe, 46026 Valencia, Spain
- Correspondence:
| |
Collapse
|
24
|
Lipidomics of Bioactive Lipids in Alzheimer's and Parkinson's Diseases: Where Are We? Int J Mol Sci 2022; 23:ijms23116235. [PMID: 35682914 PMCID: PMC9181703 DOI: 10.3390/ijms23116235] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 12/16/2022] Open
Abstract
Lipids are not only constituents of cellular membranes, but they are also key signaling mediators, thus acting as “bioactive lipids”. Among the prominent roles exerted by bioactive lipids are immune regulation, inflammation, and maintenance of homeostasis. Accumulated evidence indicates the existence of a bidirectional relationship between the immune and nervous systems, and lipids can interact particularly with the aggregation and propagation of many pathogenic proteins that are well-renowned hallmarks of several neurodegenerative disorders, including Alzheimer’s (AD) and Parkinson’s (PD) diseases. In this review, we summarize the current knowledge about the presence and quantification of the main classes of endogenous bioactive lipids, namely glycerophospholipids/sphingolipids, classical eicosanoids, pro-resolving lipid mediators, and endocannabinoids, in AD and PD patients, as well as their most-used animal models, by means of lipidomic analyses, advocating for these lipid mediators as powerful biomarkers of pathology, diagnosis, and progression, as well as predictors of response or activity to different current therapies for these neurodegenerative diseases.
Collapse
|
25
|
Nishikimi M, Shoaib M, Choudhary RC, Aoki T, Miyara SJ, Yagi T, Hayashida K, Takegawa R, Yin T, Becker LB, Kim J. Preserving brain
LPC‐DHA
by plasma supplementation attenuates brain injury after cardiac arrest. Ann Neurol 2022; 91:389-403. [DOI: 10.1002/ana.26296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 12/20/2021] [Accepted: 12/31/2021] [Indexed: 11/12/2022]
Affiliation(s)
- Mitsuaki Nishikimi
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research Manhasset NY USA
- Department of Emergency Medicine Northshore University Hospital Manhasset NY USA
| | - Muhammad Shoaib
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research Manhasset NY USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Hempstead NY USA
| | - Rishabh C. Choudhary
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research Manhasset NY USA
| | - Tomoaki Aoki
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research Manhasset NY USA
| | - Santiago J. Miyara
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research Manhasset NY USA
| | - Tsukasa Yagi
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research Manhasset NY USA
| | - Kei Hayashida
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research Manhasset NY USA
| | - Ryosuke Takegawa
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research Manhasset NY USA
| | - Tai Yin
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research Manhasset NY USA
| | - Lance B. Becker
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research Manhasset NY USA
- Department of Emergency Medicine Northshore University Hospital Manhasset NY USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Hempstead NY USA
| | - Junhwan Kim
- Laboratory for Critical Care Physiology, Feinstein Institutes for Medical Research Manhasset NY USA
- Department of Emergency Medicine Northshore University Hospital Manhasset NY USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell Hempstead NY USA
| |
Collapse
|
26
|
Serum Metabolomic and Lipidomic Profiling Reveals Novel Biomarkers of Efficacy for Benfotiamine in Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms222413188. [PMID: 34947984 PMCID: PMC8709126 DOI: 10.3390/ijms222413188] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/24/2021] [Accepted: 12/01/2021] [Indexed: 01/08/2023] Open
Abstract
Serum metabolomics and lipidomics are powerful approaches for discovering unique biomarkers in various diseases and associated therapeutics and for revealing metabolic mechanisms of both. Treatment with Benfotiamine (BFT), a thiamine prodrug, for one year produced encouraging results for patients with mild cognitive impairment and mild Alzheimer’s disease (AD). In this study, a parallel metabolomics and lipidomics approach was applied for the first exploratory investigation on the serum metabolome and lipidome of patients treated with BFT. A total of 315 unique metabolites and 417 lipids species were confidently identified and relatively quantified. Rigorous statistical analyses revealed significant differences between the placebo and BFT treatment groups in 25 metabolites, including thiamine, tyrosine, tryptophan, lysine, and 22 lipid species, mostly belonging to phosphatidylcholines. Additionally, 10 of 11 metabolites and 14 of 15 lipid species reported in previous literature to follow AD progression changed in the opposite direction to those reported to reflect AD progression. Enrichment and pathway analyses show that significantly altered metabolites by BFT are involved in glucose metabolism and biosynthesis of aromatic amino acids. Our study discovered that multiple novel biomarkers and multiple mechanisms that may underlie the benefit of BFT are potential therapeutic targets in AD and should be validated in studies with larger sample sizes.
Collapse
|
27
|
Engel KM, Schiller J, Galuska CE, Fuchs B. Phospholipases and Reactive Oxygen Species Derived Lipid Biomarkers in Healthy and Diseased Humans and Animals - A Focus on Lysophosphatidylcholine. Front Physiol 2021; 12:732319. [PMID: 34858200 PMCID: PMC8631503 DOI: 10.3389/fphys.2021.732319] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/21/2021] [Indexed: 12/20/2022] Open
Abstract
Phospholipids (PL) are converted into lipid biomarkers by the action of phospholipases and reactive oxygen species (ROS), which are activated or released under certain physiological and pathophysiological conditions. Therefore, the in vivo concentration of such lipid biomarkers [e.g., lysophospholipids (LPLs)] is altered in humans and animals under different conditions such as inflammation, stress, medication, and nutrition. LPLs are particularly interesting because they are known to possess pro- and anti-inflammatory properties and may be generated by two different pathways: either by the influence of phospholipase A2 or by different reactive oxygen species that are generated in significant amounts under inflammatory conditions. Both lead to the cleavage of unsaturated acyl residues. This review provides a short summary of the mechanisms by which lipid biomarkers are generated under in vitro and in vivo conditions. The focus will be on lysophosphatidylcholine (LPC) because usually, this is the LPL species which occurs in the highest concentration and is, thus, easily detectable by chromatographic and spectroscopic methods. Finally, the effects of lipid biomarkers as signaling molecules and their roles in different human and animal pathologies such as infertility, cancer, atherosclerosis, and aging will be shortly discussed.
Collapse
Affiliation(s)
- Kathrin M Engel
- Faculty of Medicine, Institute of Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
| | - Jürgen Schiller
- Faculty of Medicine, Institute of Medical Physics and Biophysics, University of Leipzig, Leipzig, Germany
| | - Christina E Galuska
- Core Facility Metabolomics, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Beate Fuchs
- Core Facility Metabolomics, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
28
|
Liu F, Wang C, Slikker W. Analysis of biofluid lipid changes: potential biomarkers for detecting central nervous system diseases and neurotoxicity. CURRENT OPINION IN TOXICOLOGY 2021. [DOI: 10.1016/j.cotox.2021.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Lauer AA, Griebsch LV, Pilz SM, Janitschke D, Theiss EL, Reichrath J, Herr C, Beisswenger C, Bals R, Valencak TG, Portius D, Grimm HS, Hartmann T, Grimm MOW. Impact of Vitamin D 3 Deficiency on Phosphatidylcholine-/Ethanolamine, Plasmalogen-, Lyso-Phosphatidylcholine-/Ethanolamine, Carnitine- and Triacyl Glyceride-Homeostasis in Neuroblastoma Cells and Murine Brain. Biomolecules 2021; 11:1699. [PMID: 34827697 PMCID: PMC8615687 DOI: 10.3390/biom11111699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/08/2021] [Accepted: 11/12/2021] [Indexed: 11/16/2022] Open
Abstract
Vitamin D3 hypovitaminosis is associated with several neurological diseases such as Alzheimer's disease, Parkinson's disease or multiple sclerosis but also with other diseases such as cancer, diabetes or diseases linked to inflammatory processes. Importantly, in all of these diseases lipids have at least a disease modifying effect. Besides its well-known property to modulate gene-expression via the VDR-receptor, less is known if vitamin D hypovitaminosis influences lipid homeostasis and if these potential changes contribute to the pathology of the diseases themselves. Therefore, we analyzed mouse brain with a mild vitamin D hypovitaminosis via a targeted shotgun lipidomic approach, including phosphatidylcholine, plasmalogens, lyso-phosphatidylcholine, (acyl-/acetyl-) carnitines and triglycerides. Alterations were compared with neuroblastoma cells cultivated in the presence and with decreased levels of vitamin D. Both in cell culture and in vivo, decreased vitamin D level resulted in changed lipid levels. While triglycerides were decreased, carnitines were increased under vitamin D hypovitaminosis suggesting an impact of vitamin D on energy metabolism. Additionally, lyso-phosphatidylcholines in particular saturated phosphatidylcholine (e.g., PC aa 48:0) and plasmalogen species (e.g., PC ae 42:0) tended to be increased. Our results suggest that vitamin D hypovitaminosis not only may affect gene expression but also may directly influence cellular lipid homeostasis and affect lipid turnover in disease states that are known for vitamin D hypovitaminosis.
Collapse
Affiliation(s)
- Anna Andrea Lauer
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (A.A.L.); (L.V.G.); (S.M.P.); (D.J.); (E.L.T.); (H.S.G.)
| | - Lea Victoria Griebsch
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (A.A.L.); (L.V.G.); (S.M.P.); (D.J.); (E.L.T.); (H.S.G.)
| | - Sabrina Melanie Pilz
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (A.A.L.); (L.V.G.); (S.M.P.); (D.J.); (E.L.T.); (H.S.G.)
| | - Daniel Janitschke
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (A.A.L.); (L.V.G.); (S.M.P.); (D.J.); (E.L.T.); (H.S.G.)
| | - Elena Leoni Theiss
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (A.A.L.); (L.V.G.); (S.M.P.); (D.J.); (E.L.T.); (H.S.G.)
| | - Jörg Reichrath
- Department of Dermatology, Saarland University Hospital, 66421 Homburg, Germany;
| | - Christian Herr
- Department of Internal Medicine V-Pulmonology, Allergology, Respiratory Intensive Care Medicine, Saarland University Hospital, 66421 Homburg, Germany; (C.H.); (C.B.); (R.B.)
| | - Christoph Beisswenger
- Department of Internal Medicine V-Pulmonology, Allergology, Respiratory Intensive Care Medicine, Saarland University Hospital, 66421 Homburg, Germany; (C.H.); (C.B.); (R.B.)
| | - Robert Bals
- Department of Internal Medicine V-Pulmonology, Allergology, Respiratory Intensive Care Medicine, Saarland University Hospital, 66421 Homburg, Germany; (C.H.); (C.B.); (R.B.)
| | - Teresa Giovanna Valencak
- Department of Biosciences, Paris Lodron University Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Germany;
- College of Animal Sciences, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Dorothea Portius
- Nutrition Therapy and Counseling, Campus Gera, SRH University of Applied Health Science, 07548 Gera, Germany;
| | - Heike Sabine Grimm
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (A.A.L.); (L.V.G.); (S.M.P.); (D.J.); (E.L.T.); (H.S.G.)
| | - Tobias Hartmann
- Deutsches Institut für Demenzprävention, Saarland University, 66421 Homburg, Germany;
| | - Marcus Otto Walter Grimm
- Experimental Neurology, Saarland University, 66421 Homburg, Germany; (A.A.L.); (L.V.G.); (S.M.P.); (D.J.); (E.L.T.); (H.S.G.)
- Deutsches Institut für Demenzprävention, Saarland University, 66421 Homburg, Germany;
- Nutrition Therapy and Counseling, Campus Rheinland, SRH University of Applied Health Science, 51377 Leverkusen, Germany
| |
Collapse
|
30
|
Wang X, Bui H, Vemuri P, Graff-Radford J, Jack CR, Petersen RC, Mielke MM. Lipidomic Network of Mild Cognitive Impairment from the Mayo Clinic Study of Aging. J Alzheimers Dis 2021; 81:533-543. [PMID: 33814434 DOI: 10.3233/jad-201347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Lipid alterations contribute to Alzheimer's disease (AD) pathogenesis. Lipidomics studies could help systematically characterize such alterations and identify potential biomarkers. OBJECTIVE To identify lipids associated with mild cognitive impairment and amyloid-β deposition, and to examine lipid correlation patterns within phenotype groupsMethods:Eighty plasma lipids were measured using mass spectrometry for 1,255 non-demented participants enrolled in the Mayo Clinic Study of Aging. Individual lipids associated with mild cognitive impairment (MCI) were first identified. Correlation network analysis was then performed to identify lipid species with stable correlations across conditions. Finally, differential correlation network analysis was used to determine lipids with altered correlations between phenotype groups, specifically cognitively unimpaired versus MCI, and with elevated brain amyloid versus without. RESULTS Seven lipids were associated with MCI after adjustment for age, sex, and APOE4. Lipid correlation network analysis revealed that lipids from a few species correlated well with each other, demonstrated by subnetworks of these lipids. 177 lipid pairs differently correlated between cognitively unimpaired and MCI patients, whereas 337 pairs of lipids exhibited altered correlation between patients with and without elevated brain amyloid. In particular, 51 lipid pairs showed correlation alterations by both cognitive status and brain amyloid. Interestingly, the lipids central to the network of these 51 lipid pairs were not significantly associated with either MCI or amyloid, suggesting network-based approaches could provide biological insights complementary to traditional association analyses. CONCLUSION Our attempt to characterize the alterations of lipids at network-level provides additional insights beyond individual lipids, as shown by differential correlations in our study.
Collapse
Affiliation(s)
- Xuewei Wang
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Hai Bui
- Eli Lilly and Company, Indianapolis, IN, USA
| | | | | | | | - Ronald C Petersen
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA.,Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Michelle M Mielke
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA.,Department of Neurology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
31
|
Nho K, Kueider-Paisley A, Arnold M, MahmoudianDehkordi S, Risacher SL, Louie G, Blach C, Baillie R, Han X, Kastenmüller G, Doraiswamy PM, Kaddurah-Daouk R, Saykin AJ, for the Alzheimer’s Disease Neuroimaging Initiative and on behalf of the Alzheimer Disease Metabolomics Consortium. Serum metabolites associated with brain amyloid beta deposition, cognition and dementia progression. Brain Commun 2021; 3:fcab139. [PMID: 34396103 PMCID: PMC8361396 DOI: 10.1093/braincomms/fcab139] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/30/2021] [Indexed: 11/13/2022] Open
Abstract
Metabolomics in the Alzheimer's Disease Neuroimaging Initiative cohort provides a powerful tool for mapping biochemical changes in Alzheimer's disease, and a unique opportunity to learn about the association between circulating blood metabolites and brain amyloid-β deposition in Alzheimer's disease. We examined 140 serum metabolites and their associations with brain amyloid-β deposition, cognition and conversion from mild cognitive impairment to Alzheimer's disease in the Alzheimer's Disease Neuroimaging Initiative. Processed [18F] Florbetapir PET images were used to perform a voxel-wise statistical analysis of the effect of metabolite levels on amyloid-β accumulation across the whole brain. We performed a multivariable regression analysis using age, sex, body mass index, apolipoprotein E ε4 status and study phase as covariates. We identified nine metabolites as significantly associated with amyloid-β deposition after multiple comparison correction. Higher levels of one acylcarnitine (C3; propionylcarnitine) and one biogenic amine (kynurenine) were associated with decreased amyloid-β accumulation and higher memory scores. However, higher levels of seven phosphatidylcholines (lysoPC a C18:2, PC aa C42:0, PC ae C42:3, PC ae C44:3, PC ae C44:4, PC ae C44:5 and PC ae C44:6) were associated with increased brain amyloid-β deposition. In addition, higher levels of PC ae C44:4 were significantly associated with lower memory and executive function scores and conversion from mild cognitive impairment to Alzheimer's disease dementia. Our findings suggest that dysregulation of peripheral phosphatidylcholine metabolism is associated with earlier pathological changes noted in Alzheimer's disease as measured by brain amyloid-β deposition as well as later clinical features including changes in memory and executive functioning. Perturbations in phosphatidylcholine metabolism may point to issues with membrane restructuring leading to the accumulation of amyloid-β in the brain. Additional studies are needed to explore whether these metabolites play a causal role in the pathogenesis of Alzheimer's disease or if they are biomarkers for systemic changes during preclinical phases of the disease.
Collapse
Affiliation(s)
- Kwangsik Nho
- Department of Radiology and Imaging Sciences, Center for Computational Biology and Bioinformatics, and the Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | - Matthias Arnold
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC 27710, USA
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany
| | | | - Shannon L Risacher
- Department of Radiology and Imaging Sciences, Center for Computational Biology and Bioinformatics, and the Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Gregory Louie
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC 27710, USA
| | - Colette Blach
- Duke Molecular Physiology Institute, Duke University, Durham, NC 27710, USA
| | | | - Xianlin Han
- University of Texas Health Science Center at San Antonio, San Antonio, TX 78249, USA
| | - Gabi Kastenmüller
- Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany
- German Center for Diabetes Research (DZD), Neuherberg 85764, Germany
| | - P Murali Doraiswamy
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC 27710, USA
- Duke Institute of Brain Sciences, Duke University, Durham, NC 27710, USA
- Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC 27710, USA
- Duke Institute of Brain Sciences, Duke University, Durham, NC 27710, USA
- Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Center for Computational Biology and Bioinformatics, and the Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | |
Collapse
|
32
|
Phospholipid Screening Postcardiac Arrest Detects Decreased Plasma Lysophosphatidylcholine: Supplementation as a New Therapeutic Approach. Crit Care Med 2021; 50:e199-e208. [PMID: 34259447 DOI: 10.1097/ccm.0000000000005180] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Cardiac arrest and subsequent resuscitation have been shown to deplete plasma phospholipids. This depletion of phospholipids in circulating plasma may contribute to organ damage postresuscitation. Our aim was to identify the diminishment of essential phospholipids in postresuscitation plasma and develop a novel therapeutic approach of supplementing these depleted phospholipids that are required to prevent organ dysfunction postcardiac arrest, which may lead to improved survival. DESIGN Clinical case control study followed by translational laboratory study. SETTING Research institution. PATIENTS/SUBJECTS Adult cardiac arrest patients and male Sprague-Dawley rats. INTERVENTIONS Resuscitated rats after 10-minute asphyxial cardiac arrest were randomized to be treated with lysophosphatidylcholine specie or vehicle. MEASUREMENTS AND MAIN RESULTS We first performed a phospholipid survey on human cardiac arrest and control plasma. Using mass spectrometry analysis followed by multivariable regression analyses, we found that plasma lysophosphatidylcholine levels were an independent discriminator of cardiac arrest. We also found that decreased plasma lysophosphatidylcholine was associated with poor patient outcomes. A similar association was observed in our rat model, with significantly greater depletion of plasma lysophosphatidylcholine with increased cardiac arrest time, suggesting an association of lysophosphatidylcholine levels with injury severity. Using a 10-minute cardiac arrest rat model, we tested supplementation of depleted lysophosphatidylcholine species, lysophosphatidylcholine(18:1), and lysophosphatidylcholine(22:6), which resulted in significantly increased survival compared with control. Furthermore, the survived rats treated with these lysophosphatidylcholine species exhibited significantly improved brain function. However, supplementing lysophosphatidylcholine(18:0), which did not decrease in the plasma after 10-minute cardiac arrest, had no beneficial effect. CONCLUSIONS Our data suggest that decreased plasma lysophosphatidylcholine is a major contributor to mortality and brain damage postcardiac arrest, and its supplementation may be a novel therapeutic approach.
Collapse
|
33
|
Mohammadzadeh Honarvar N, Zarezadeh M, Molsberry SA, Ascherio A. Changes in plasma phospholipids and sphingomyelins with aging in men and women: A comprehensive systematic review of longitudinal cohort studies. Ageing Res Rev 2021; 68:101340. [PMID: 33839333 DOI: 10.1016/j.arr.2021.101340] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/25/2021] [Accepted: 04/02/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Aging affects the serum levels of various metabolites which may be involved in the pathogenesis of chronic diseases. The aim of this review article is to summarize the relationship between aging and alterations in the plasma phospholipids and sphingomyelins. METHODS PRISMA guidelines were employed during all steps. MEDLINE (PubMed), Scopus, Embase and Web of Sciences databases and Google Scholar were searched up to October 2020. Cohort studies investigating the relationship between aging and within-person changes in sphingomyelin (SM), phosphatidyl choline (PC), lyso PC (LPC) and phosphatidyl ethanolamine (PE) were included. Newcastle-Ottawa scale was used to assess the quality of included studies. RESULTS A total of 1425 studies were identified. After removing 610 duplicates and 723 irrelevant studies, full texts of 92 articles were evaluated. Of these 92, 6 studies (including data from 7 independent cohorts) met the inclusion criteria and are included in this review. All study populations were healthy and included both men and women. Results by sex were reported in 3 cohorts for PC, 5 cohorts for LPC, 3 cohorts for SM, and only 1 cohort for PE. In men, PC, SM, PE and LPC decreased with aging, although results for LPC were inconsistent. In women, LPC, SM, and PE increased age, whereas changes in PC were inconsistent. CONCLUSION Within-person serum levels of phospholipids and sphingomyelins, decrease during aging in men and increase in women. Notably, however, there were some inconsistencies across studies of LPC in men and of PC in women.
Collapse
|
34
|
Llorente-Ovejero A, Martínez-Gardeazabal J, Moreno-Rodríguez M, Lombardero L, González de San Román E, Manuel I, Giralt MT, Rodríguez-Puertas R. Specific Phospholipid Modulation by Muscarinic Signaling in a Rat Lesion Model of Alzheimer's Disease. ACS Chem Neurosci 2021; 12:2167-2181. [PMID: 34037379 PMCID: PMC9162383 DOI: 10.1021/acschemneuro.1c00169] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
![]()
Alzheimer’s disease (AD) represents
the most common cause
of dementia worldwide and has been consistently associated with the
loss of basal forebrain cholinergic neurons (BFCNs) leading to impaired
cholinergic neurotransmission, aberrant synaptic function, and altered
structural lipid metabolism. In this sense, membrane phospholipids
(PLs) can be used for de novo synthesis of choline (Ch) for the further
obtaining of acetylcholine (ACh) when its availability is compromised.
Specific lipid species involved in the metabolism of Ch have been
identified as possible biomarkers of phenoconversion to AD. Using
a rat model of BFCN lesion, we have evaluated the lipid composition
and muscarinic signaling in brain areas related to cognitive processes.
The loss of BFCN resulted in alterations of varied lipid species related
to Ch metabolism at nucleus basalis magnocellularis (NMB) and cortical
projection areas. The activity of muscarinic receptors (mAChR) was
decreased in the NMB and increased in the hippocampus according to
the subcellular distribution of M1/M2 mAChR
which could explain the learning and memory impairment reported in
this AD rat model. These results suggest that the modulation of specific
lipid metabolic routes could represent an alternative therapeutic
strategy to potentiate cholinergic neurotransmission and preserve
cell membrane integrity in AD.
Collapse
Affiliation(s)
- Alberto Llorente-Ovejero
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), B° Sarriena s/n, 48940 Leioa, Spain
| | - Jonatan Martínez-Gardeazabal
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), B° Sarriena s/n, 48940 Leioa, Spain
| | - Marta Moreno-Rodríguez
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), B° Sarriena s/n, 48940 Leioa, Spain
| | - Laura Lombardero
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), B° Sarriena s/n, 48940 Leioa, Spain
| | - Estíbaliz González de San Román
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), B° Sarriena s/n, 48940 Leioa, Spain
| | - Iván Manuel
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), B° Sarriena s/n, 48940 Leioa, Spain
- Neurodegenerative Diseases, BioCruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - María Teresa Giralt
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), B° Sarriena s/n, 48940 Leioa, Spain
| | - Rafael Rodríguez-Puertas
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), B° Sarriena s/n, 48940 Leioa, Spain
- Neurodegenerative Diseases, BioCruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
| |
Collapse
|
35
|
The interaction between brain and liver regulates lipid metabolism in the TBI pathology. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166078. [PMID: 33444711 DOI: 10.1016/j.bbadis.2021.166078] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/28/2020] [Accepted: 01/03/2021] [Indexed: 12/31/2022]
Abstract
To shed light on the impact of systemic physiology on the pathology of traumatic brain injury (TBI), we examine the effects of TBI (concussive injury) and dietary fructose on critical aspects of lipid homeostasis in the brain and liver of young-adult rats. Lipids are integral components of brain structure and function, and the liver has a role on the synthesis and metabolism of lipids. Fructose is mainly metabolized in the liver with potential implications for brain function. Lipidomic analysis accompanied by unbiased sparse partial least squares discriminant analysis (sPLS-DA) identified lysophosphatidylcholine (LPC) and cholesterol ester (CE) as the top lipid families impacted by TBI and fructose in the hippocampus, and only LPC (16:0) was associated with hippocampal-dependent memory performance. Fructose and TBI elevated liver pro-inflammatory markers, interleukin-1α (IL-1α), Interferon-γ (IFN-γ) that correlated with hippocampal-dependent memory dysfunction, and monocyte chemoattractant protein-1 (MCP-1) positively correlated with LPC levels in the hippocampus. The effects of fructose were more pronounced in the liver, in agreement with the role of liver on fructose metabolism and suggest that fructose could exacerbate liver inflammation caused by TBI. The overall results indicate that TBI and fructose interact to influence systemic and central inflammation by engaging liver lipids. The impact of TBI and fructose diet on the periphery provides a therapeutic target to counteract the TBI pathogenesis.
Collapse
|
36
|
Therapeutic Efficacy of Plasmalogens for Alzheimer's Disease, Mild Cognitive Impairment, and Parkinson's Disease in Conjunction with a New Hypothesis for the Etiology of Alzheimer's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1299:195-212. [PMID: 33417216 DOI: 10.1007/978-3-030-60204-8_14] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
It has been reported in recent years that blood levels of plasmalogens (Pls) are decreased in various diseases. None of those reports, however, conducted any clinical trials to examine the effect of Pls on those diseases. This article describes our recent report on a therapeutic efficacy of orally administered Pls in mild cognitive impairment (MCI), mild to severe Alzheimer's disease (AD), and Parkinson's disease (PD). A 24-week, multicenter, randomized, double-blind, placebo-controlled trial was performed in patients with MCI (n = 178) and mild AD (n = 98). The study design for moderate AD (n = 57) and severe AD (n = 18) was 12-week open-labeled, and the design for patients with PD (n = 10) was 24-week open-labeled. They showed a significant improvement in cognitive function and other clinical symptoms with elevation of the blood Pls levels. No adverse events were reported. The baseline levels of plasma ethanolamine plasmalogen and erythrocyte ethanolamine plasmalogen in MCI, AD, and PD were significantly lower than those of normal aged. The degree of reduction in the blood Pls levels was in the order of MCI ≺ mild AD ≺ moderate AD ≺ severe AD ≺ PD. The findings suggest that the blood levels of Pls may be a beneficial biomarker for assessing AD severity. Based on these results, we have proposed a new hypothesis for the etiology of AD and other neuropsychiatric disorders.
Collapse
|
37
|
Travers JB, Rohan JG, Sahu RP. New Insights Into the Pathologic Roles of the Platelet-Activating Factor System. Front Endocrinol (Lausanne) 2021; 12:624132. [PMID: 33796070 PMCID: PMC8008455 DOI: 10.3389/fendo.2021.624132] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/17/2021] [Indexed: 12/15/2022] Open
Abstract
Described almost 50 years ago, the glycerophosphocholine lipid mediator Platelet-activating factor (PAF) has been implicated in many pathologic processes. Indeed, elevated levels of PAF can be measured in response to almost every type of pathology involving inflammation and cell damage/death. In this review, we provide evidence for PAF involvement in pathologic processes, with focus on cancer, the nervous system, and in photobiology. Importantly, recent insights into how PAF can generate and travel via bioactive extracellular vesicles such as microvesicle particles (MVP) are presented. What appears to be emerging from diverse pathologies in different organ systems is a common theme where pro-oxidative stressors generate oxidized glycerophosphocholines with PAF agonistic effects, which then trigger more enzymatic PAF synthesis via the PAF receptor. A downstream consequence of PAF receptor activation is the generation and release of MVP which provide a mechanism to transmit PAF as well as other bioactive agents. The knowledge gaps which when addressed could result in novel therapeutic strategies are also discussed. Taken together, an enhanced understanding of the PAF family of lipid mediators is essential in our improved comprehension of the relationship amongst the diverse cutaneous, cancerous, neurologic and systemic pathologic processes.
Collapse
Affiliation(s)
- Jeffrey B. Travers
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- Department of Dermatology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
- Dayton Veterans Administration Medical Center, Dayton, OH, United States
- *Correspondence: Jeffrey B. Travers, ; orcid.org/0000-0001-7232-1039
| | - Joyce G. Rohan
- Naval Medical Research Unit Dayton, Environmental Health Effects Directorate, Wright Patterson Air Force Base, OH, United States
| | - Ravi P. Sahu
- Department of Pharmacology & Toxicology, Boonshoft School of Medicine at Wright State University, Dayton, OH, United States
| |
Collapse
|
38
|
An Increased Plasma Level of ApoCIII-Rich Electronegative High-Density Lipoprotein May Contribute to Cognitive Impairment in Alzheimer's Disease. Biomedicines 2020; 8:biomedicines8120542. [PMID: 33256187 PMCID: PMC7761422 DOI: 10.3390/biomedicines8120542] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/24/2020] [Accepted: 11/24/2020] [Indexed: 02/02/2023] Open
Abstract
High-density lipoprotein (HDL) plays a vital role in lipid metabolism and anti-inflammatory activities; a dysfunctional HDL impairs cholesterol efflux pathways. To understand HDL's role in patients with Alzheimer's disease (AD), we analyzed the chemical properties and function. HDL from AD patients (AD-HDL) was separated into five subfractions, H1-H5, using fast-protein liquid chromatography equipped with an anion-exchange column. Subfraction H5, defined as the most electronegative HDL, was increased 5.5-fold in AD-HDL (23.48 ± 17.83%) in comparison with the control HDL (4.24 ± 3.22%). By liquid chromatography mass spectrometry (LC/MSE), AD-HDL showed that the level of apolipoprotein (apo)CIII was elevated but sphingosine-1-phosphate (S1P)-associated apoM and anti-oxidative paraoxonase 1 (PON1) were reduced. AD-HDL showed a lower cholesterol efflux capacity that was associated with the post-translational oxidation of apoAI. Exposure of murine macrophage cell line, RAW 264.7, to AD-HDL induced a vibrant expression of ganglioside GM1 in colocalization with apoCIII on lipid rafts alongside a concomitant increase of tumor necrosis factor-α (TNF-α) detectable in the cultured medium. In conclusion, AD-HDL had a higher proportion of H5, an apoCIII-rich electronegative HDL subfraction. The associated increase in pro-inflammatory (apoCIII, TNF-α) components might favor Amyloid β assembly and neural inflammation. A compromised cholesterol efflux capacity of AD-HDL may also contribute to cognitive impairment.
Collapse
|
39
|
Dorninger F, Forss-Petter S, Wimmer I, Berger J. Plasmalogens, platelet-activating factor and beyond - Ether lipids in signaling and neurodegeneration. Neurobiol Dis 2020; 145:105061. [PMID: 32861763 PMCID: PMC7116601 DOI: 10.1016/j.nbd.2020.105061] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/20/2020] [Accepted: 08/22/2020] [Indexed: 12/12/2022] Open
Abstract
Glycerol-based ether lipids including ether phospholipids form a specialized branch of lipids that in mammals require peroxisomes for their biosynthesis. They are major components of biological membranes and one particular subgroup, the plasmalogens, is widely regarded as a cellular antioxidant. Their vast potential to influence signal transduction pathways is less well known. Here, we summarize the literature showing associations with essential signaling cascades for a wide variety of ether lipids, including platelet-activating factor, alkylglycerols, ether-linked lysophosphatidic acid and plasmalogen-derived polyunsaturated fatty acids. The available experimental evidence demonstrates links to several common players like protein kinase C, peroxisome proliferator-activated receptors or mitogen-activated protein kinases. Furthermore, ether lipid levels have repeatedly been connected to some of the most abundant neurological diseases, particularly Alzheimer's disease and more recently also neurodevelopmental disorders like autism. Thus, we critically discuss the potential role of these compounds in the etiology and pathophysiology of these diseases with an emphasis on signaling processes. Finally, we review the emerging interest in plasmalogens as treatment target in neurological diseases, assessing available data and highlighting future perspectives. Although many aspects of ether lipid involvement in cellular signaling identified in vitro still have to be confirmed in vivo, the compiled data show many intriguing properties and contributions of these lipids to health and disease that will trigger further research.
Collapse
Affiliation(s)
- Fabian Dorninger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, Vienna 1090, Austria.
| | - Sonja Forss-Petter
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, Vienna 1090, Austria
| | - Isabella Wimmer
- Department of Neurology, Medical University of Vienna, Währinger Gürtel 18-20, Vienna 1090, Austria
| | - Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, Vienna 1090, Austria.
| |
Collapse
|
40
|
Peña-Bautista C, Álvarez L, Baquero M, Ferrer I, García L, Hervás-Marín D, Cháfer-Pericás C. Plasma isoprostanoids assessment as Alzheimer's disease progression biomarkers. J Neurochem 2020; 157:2187-2194. [PMID: 32918484 DOI: 10.1111/jnc.15183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/21/2020] [Accepted: 09/02/2020] [Indexed: 12/15/2022]
Abstract
Alzheimer's Disease (AD) is the most common neurodegenerative disease worldwide. So, there is a need to identify AD early diagnosis and monitoring biomarkers in blood samples. The aim of this study was to analyse the utility of lipid peroxidation biomarkers in AD progression evaluation. Participants (n = 19) were diagnosed with AD at early stages (Time 0, T0), and they were re-evaluated 2 years later (Time 1, T1). Plasma biomarkers from AD patients were determined at both times. Some analytes, such as dihomo-isoprostanes (17-epi-17-F2t-dihomo-IsoP, 17-F2t-dihomo-IsoP, Ent-7(RS)-7-F2t-dihomo-IsoP), and neuroprostanes (10-epi-10-F4t-NeuroP) showed very high probability of showing an increasing trend over time. Baseline values allowed to develop an affordable preliminary regression model to predict long-term cognitive status. So, some lipid peroxidation biomarkers would deserve consideration as useful progression AD biomarkers. The developed prediction model would constitute an important minimally invasive approach in AD personalized prognosis and perhaps could have some interest also in experimental treatments evaluation.
Collapse
Affiliation(s)
| | - Lourdes Álvarez
- Neurology Unit, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Miguel Baquero
- Neurology Unit, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Inés Ferrer
- Neurology Unit, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Lorena García
- Neurology Unit, University and Polytechnic Hospital La Fe, Valencia, Spain
| | | | | |
Collapse
|
41
|
Kytikova OY, Novgorodtseva TP, Antonyuk MV, Gvozdenko TA. Plasmalogens in the Pathophysiology and Therapy of Age-Specific Diseases. ADVANCES IN GERONTOLOGY 2020. [DOI: 10.1134/s207905702003011x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Wilkinson DJ, Rodriguez-Blanco G, Dunn WB, Phillips BE, Williams JP, Greenhaff PL, Smith K, Gallagher IJ, Atherton PJ. Untargeted metabolomics for uncovering biological markers of human skeletal muscle ageing. Aging (Albany NY) 2020; 12:12517-12533. [PMID: 32580166 PMCID: PMC7377844 DOI: 10.18632/aging.103513] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/04/2020] [Indexed: 02/07/2023]
Abstract
Ageing compromises skeletal muscle mass and function through poorly defined molecular aetiology. Here we have used untargeted metabolomics using UHPLC-MS to profile muscle tissue from young (n=10, 25±4y), middle aged (n=18, 50±4y) and older (n=18, 70±3y) men and women (50:50). Random Forest was used to prioritise metabolite features most informative in stratifying older age, with potential biological context examined using the prize-collecting Steiner forest algorithm embedded in the PIUMet software, to identify metabolic pathways likely perturbed in ageing. This approach was able to filter a large dataset of several thousand metabolites down to subnetworks of age important metabolites. Identified networks included the common age-associated metabolites such as androgens, (poly)amines/amino acids and lipid metabolites, in addition to some potentially novel ageing related markers such as dihydrothymine and imidazolone-5-proprionic acid. The present study reveals that this approach is a potentially useful tool to identify processes underlying human tissue ageing, and could therefore be utilised in future studies to investigate the links between age predictive metabolites and common biomarkers linked to health and disease across age.
Collapse
Affiliation(s)
- Daniel J Wilkinson
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Nottingham, Nottingham, UK.,National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham, UK.,School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, UK
| | - Giovanny Rodriguez-Blanco
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Nottingham, Nottingham, UK.,School of Biosciences and Phenome Centre Birmingham, University of Birmingham, Birmingham, Birmingham, UK.,Beatson Institute for Cancer Research, Glasgow, UK
| | - Warwick B Dunn
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Nottingham, Nottingham, UK.,School of Biosciences and Phenome Centre Birmingham, University of Birmingham, Birmingham, Birmingham, UK
| | - Bethan E Phillips
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Nottingham, Nottingham, UK.,National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham, UK.,School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, UK
| | - John P Williams
- School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, UK
| | - Paul L Greenhaff
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Nottingham, Nottingham, UK.,National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham, UK.,School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham, UK
| | - Kenneth Smith
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Nottingham, Nottingham, UK.,National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham, UK.,School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, UK
| | - Iain J Gallagher
- University of Stirling, Faculty of Health Sciences and Sport, Stirling, UK
| | - Philip J Atherton
- MRC-Versus Arthritis Centre for Musculoskeletal Ageing Research, University of Nottingham, Nottingham, UK.,National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham, UK.,School of Medicine, University of Nottingham, Royal Derby Hospital Centre, Derby, UK
| |
Collapse
|
43
|
Markovic M, Ben-Shabat S, Aponick A, Zimmermann EM, Dahan A. Lipids and Lipid-Processing Pathways in Drug Delivery and Therapeutics. Int J Mol Sci 2020; 21:ijms21093248. [PMID: 32375338 PMCID: PMC7247327 DOI: 10.3390/ijms21093248] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 04/28/2020] [Accepted: 05/02/2020] [Indexed: 12/19/2022] Open
Abstract
The aim of this work is to analyze relevant endogenous lipid processing pathways, in the context of the impact that lipids have on drug absorption, their therapeutic use, and utilization in drug delivery. Lipids may serve as biomarkers of some diseases, but they can also provide endogenous therapeutic effects for certain pathological conditions. Current uses and possible clinical benefits of various lipids (fatty acids, steroids, triglycerides, and phospholipids) in cancer, infectious, inflammatory, and neurodegenerative diseases are presented. Lipids can also be conjugated to a drug molecule, accomplishing numerous potential benefits, one being the improved treatment effect, due to joined influence of the lipid carrier and the drug moiety. In addition, such conjugates have increased lipophilicity relative to the parent drug. This leads to improved drug pharmacokinetics and bioavailability, the ability to join endogenous lipid pathways and achieve drug targeting to the lymphatics, inflamed tissues in certain autoimmune diseases, or enable overcoming different barriers in the body. Altogether, novel mechanisms of the lipid role in diseases are constantly discovered, and new ways to exploit these mechanisms for the optimal drug design that would advance different drug delivery/therapy aspects are continuously emerging.
Collapse
Affiliation(s)
- Milica Markovic
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (M.M.); (S.B.-S.)
| | - Shimon Ben-Shabat
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (M.M.); (S.B.-S.)
| | - Aaron Aponick
- Department of Chemistry, University of Florida, Gainesville, FL 32603, USA;
| | - Ellen M. Zimmermann
- Department of Medicine, Division of Gastroenterology, University of Florida, Gainesville, FL 32610, USA;
| | - Arik Dahan
- Department of Clinical Pharmacology, School of Pharmacy, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (M.M.); (S.B.-S.)
- Correspondence:
| |
Collapse
|
44
|
Liu X, Sims HF, Jenkins CM, Guan S, Dilthey BG, Gross RW. 12-LOX catalyzes the oxidation of 2-arachidonoyl-lysolipids in platelets generating eicosanoid-lysolipids that are attenuated by iPLA 2γ knockout. J Biol Chem 2020; 295:5307-5320. [PMID: 32161117 PMCID: PMC7170522 DOI: 10.1074/jbc.ra119.012296] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/04/2020] [Indexed: 12/13/2022] Open
Abstract
The canonical pathway of eicosanoid production in most mammalian cells is initiated by phospholipase A2-mediated release of arachidonic acid, followed by its enzymatic oxidation resulting in a vast array of eicosanoid products. However, recent work has demonstrated that the major phospholipase in mitochondria, iPLA2γ (patatin-like phospholipase domain containing 8 (PNPLA8)), possesses sn-1 specificity, with polyunsaturated fatty acids at the sn-2 position generating polyunsaturated sn-2-acyl lysophospholipids. Through strategic chemical derivatization, chiral chromatographic separation, and multistage tandem MS, here we first demonstrate that human platelet-type 12-lipoxygenase (12-LOX) can directly catalyze the regioselective and stereospecific oxidation of 2-arachidonoyl-lysophosphatidylcholine (2-AA-LPC) and 2-arachidonoyl-lysophosphatidylethanolamine (2-AA-LPE). Next, we identified these two eicosanoid-lysophospholipids in murine myocardium and in isolated platelets. Moreover, we observed robust increases in 2-AA-LPC, 2-AA-LPE, and their downstream 12-LOX oxidation products, 12(S)-HETE-LPC and 12(S)-HETE-LPE, in calcium ionophore (A23187)-stimulated murine platelets. Mechanistically, genetic ablation of iPLA2γ markedly decreased the calcium-stimulated production of 2-AA-LPC, 2-AA-LPE, and 12-HETE-lysophospholipids in mouse platelets. Importantly, a potent and selective 12-LOX inhibitor, ML355, significantly inhibited the production of 12-HETE-LPC and 12-HETE-LPE in activated platelets. Furthermore, we found that aging is accompanied by significant changes in 12-HETE-LPC in murine serum that were also markedly attenuated by iPLA2γ genetic ablation. Collectively, these results identify previously unknown iPLA2γ-initiated signaling pathways mediated by direct 12-LOX oxidation of 2-AA-LPC and 2-AA-LPE. This oxidation generates previously unrecognized eicosanoid-lysophospholipids that may serve as biomarkers for age-related diseases and could potentially be used as targets in therapeutic interventions.
Collapse
Affiliation(s)
- Xinping Liu
- Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri 63110
| | - Harold F Sims
- Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri 63110
| | - Christopher M Jenkins
- Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri 63110
| | - Shaoping Guan
- Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri 63110
| | - Beverly G Dilthey
- Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri 63110
| | - Richard W Gross
- Division of Bioorganic Chemistry and Molecular Pharmacology, Department of Medicine, Washington University School of Medicine, Saint Louis, Missouri 63110; Department of Developmental Biology, Washington University School of Medicine, Saint Louis, Missouri 63110; Department of Chemistry, Washington University, Saint Louis, Missouri 63130.
| |
Collapse
|
45
|
Kao YC, Ho PC, Tu YK, Jou IM, Tsai KJ. Lipids and Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21041505. [PMID: 32098382 PMCID: PMC7073164 DOI: 10.3390/ijms21041505] [Citation(s) in RCA: 293] [Impact Index Per Article: 58.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/14/2020] [Accepted: 02/20/2020] [Indexed: 12/14/2022] Open
Abstract
Lipids, as the basic component of cell membranes, play an important role in human health as well as brain function. The brain is highly enriched in lipids, and disruption of lipid homeostasis is related to neurologic disorders as well as neurodegenerative diseases such as Alzheimer’s disease (AD). Aging is associated with changes in lipid composition. Alterations of fatty acids at the level of lipid rafts and cerebral lipid peroxidation were found in the early stage of AD. Genetic and environmental factors such as apolipoprotein and lipid transporter carrying status and dietary lipid content are associated with AD. Insight into the connection between lipids and AD is crucial to unraveling the metabolic aspects of this puzzling disease. Recent advances in lipid analytical methodology have led us to gain an in-depth understanding on lipids. As a result, lipidomics have becoming a hot topic of investigation in AD, in order to find biomarkers for disease prediction, diagnosis, and prevention, with the ultimate goal of discovering novel therapeutics.
Collapse
Affiliation(s)
- Yu-Chia Kao
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; (Y.-C.K.); (P.-C.H.)
- Department of Pediatrics, E-DA Hospital, Kaohsiung 824, Taiwan
| | - Pei-Chuan Ho
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; (Y.-C.K.); (P.-C.H.)
| | - Yuan-Kun Tu
- Department of Orthopedics, E-DA Hospital, Kaohsiung 824, Taiwan; (Y.-K.T.); (I.-M.J.)
| | - I-Ming Jou
- Department of Orthopedics, E-DA Hospital, Kaohsiung 824, Taiwan; (Y.-K.T.); (I.-M.J.)
| | - Kuen-Jer Tsai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan; (Y.-C.K.); (P.-C.H.)
- Research Center of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Correspondence: ; Tel.: +886-6-235-3535-4254; Fax: +886-6-275-8781
| |
Collapse
|
46
|
Potential Involvement of Peroxisome in Multiple Sclerosis and Alzheimer's Disease : Peroxisome and Neurodegeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1299:91-104. [PMID: 33417210 DOI: 10.1007/978-3-030-60204-8_8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
Peroxisomopathies are rare diseases due to dysfunctions of the peroxisome in which this organelle is either absent or with impaired activities. These diseases, at the exception of type I hyperoxaluria and acatalasaemia, affect the central and peripheral nervous system. Due to the significant impact of peroxisomal abnormalities on the functioning of nerve cells, this has led to an interest in peroxisome in common neurodegenerative diseases, such as Alzheimer's disease and multiple sclerosis. In these diseases, a role of the peroxisome is suspected on the basis of the fatty acid and phospholipid profile in the biological fluids and the brains of patients. It is also speculated that peroxisomal dysfunctions could contribute to oxidative stress and mitochondrial alterations which are recognized as major players in the development of neurodegenerative diseases. Based on clinical and in vitro studies, the data obtained support a potential role of peroxisome in Alzheimer's disease and multiple sclerosis.
Collapse
|
47
|
Peña-Bautista C, Roca M, López-Cuevas R, Baquero M, Vento M, Cháfer-Pericás C. Metabolomics study to identify plasma biomarkers in alzheimer disease: ApoE genotype effect. J Pharm Biomed Anal 2019; 180:113088. [PMID: 31923717 DOI: 10.1016/j.jpba.2019.113088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/03/2019] [Accepted: 12/24/2019] [Indexed: 12/17/2022]
Abstract
Alzheimer Disease (AD) is the main cause of dementia, and it has a great social and economic impact worldwide. It is a complex multifactorial disease, and we still do not know enough about its causes. For this reason, omics studies could be a useful tool for the search for new biomarkers and for enhancing the knowledge of different metabolic pathways that may be altered in the initial stages of the disease. Metabolomic analysis was carried out for plasma samples from early AD patients and healthy controls. Obtained data were normalized and analyzed by volcano plot and supervised orthogonal-least-squares-discriminant analysis. Fifteen variables were selected as the most important variables for the groups' discrimination, and the different levels of 6 identified metabolites could discriminate between patients with different ApoE4 genotypes (ε4-carriers and non ε4-carriers). In conclusion, ApoE4 genotype is associated with changes in lipid metabolomics profile in AD patients, and it could be relevant for the development of AD since early stages.
Collapse
Affiliation(s)
| | - Marta Roca
- Analytical Unit Platform, Health Research Institute La Fe, Valencia, Spain
| | | | - Miguel Baquero
- Neurology Unit, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Máximo Vento
- Neonatal Research Unit, Health Research Institute La Fe, Valencia, Spain
| | | |
Collapse
|
48
|
Bekdash RA. Neuroprotective Effects of Choline and Other Methyl Donors. Nutrients 2019; 11:nu11122995. [PMID: 31817768 PMCID: PMC6950346 DOI: 10.3390/nu11122995] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/20/2019] [Accepted: 12/05/2019] [Indexed: 12/14/2022] Open
Abstract
Recent evidence suggests that physical and mental health are influenced by an intricate interaction between genes and environment. Environmental factors have been shown to modulate neuronal gene expression and function by epigenetic mechanisms. Exposure to these factors including nutrients during sensitive periods of life could program brain development and have long-lasting effects on mental health. Studies have shown that early nutritional intervention that includes methyl-donors improves cognitive functions throughout life. Choline is a micronutrient and a methyl donor that is required for normal brain growth and development. It plays a pivotal role in maintaining structural and functional integrity of cellular membranes. It also regulates cholinergic signaling in the brain via the synthesis of acetylcholine. Via its metabolites, it participates in pathways that regulate methylation of genes related to memory and cognitive functions at different stages of development. Choline-related functions have been dysregulated in some neurodegenerative diseases suggesting choline role in influencing mental health across the lifespan.
Collapse
Affiliation(s)
- Rola A Bekdash
- Department of Biological Sciences, Rutgers University, Newark, NJ 07102, USA
| |
Collapse
|
49
|
Abstract
Alzheimer's disease (AD) is the most common form of neurodegenerative dementia and there is no cure to date. Biomarkers in cerebrospinal fluid (CSF) are already included in the diagnostic work-up of symptomatic patients but markers for preclinical diagnosis and disease progression are not available. Furthermore, blood biomarkers are highly appreciated because they are minimally invasive and more accessible in primary care and in clinical studies. Mass spectrometry (MS) is an established tool for the measurement of various analytes in biological fluids such as blood. Its major strength is the high selectivity which is why it is also preferred as a reference method for immunoassays. MS has been used in several studies in the past for blood biomarker discovery and validation in AD using targeted MS such as multiple/selected reaction monitoring (MRM/SRM) or unbiased approaches (proteomics, metabolomics). In this short review, we give an overview on the status of current MS-based biomarker candidates for AD in blood plasma and serum.Plain Language Summary: Plain language summary available for this article.
Collapse
Affiliation(s)
- Patrick Oeckl
- Department of Neurology, Ulm University Hospital, Ulm, Germany.
| | - Markus Otto
- Department of Neurology, Ulm University Hospital, Ulm, Germany
| |
Collapse
|
50
|
Dorninger F, Gundacker A, Zeitler G, Pollak DD, Berger J. Ether Lipid Deficiency in Mice Produces a Complex Behavioral Phenotype Mimicking Aspects of Human Psychiatric Disorders. Int J Mol Sci 2019; 20:E3929. [PMID: 31412538 PMCID: PMC6720005 DOI: 10.3390/ijms20163929] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 12/12/2022] Open
Abstract
Ether lipids form a specialized subgroup of phospholipids that requires peroxisomes to be synthesized. We have previously detected that deficiency in these lipids leads to a severe disturbance of neurotransmitter homeostasis and release as well as behavioral abnormalities, such as hyperactivity, in a mouse model. Here, we focused on a more detailed examination of the behavioral phenotype of ether lipid-deficient mice (Gnpat KO) and describe a set of features related to human psychiatric disorders. Gnpat KO mice show strongly impaired social interaction as well as nestlet shredding and marble burying, indicating disturbed execution of inborn behavioral patterns. Also, compromised contextual and cued fear conditioning in these animals suggests a considerable memory deficit, thus potentially forming a connection to the previously determined ether lipid deficit in human patients with Alzheimer's disease. Nesting behavior and the preference for social novelty proved normal in ether lipid-deficient mice. In addition, we detected task-specific alterations in paradigms assessing depression- and anxiety-related behavior. The reported behavioral changes may be used as easy readout for the success of novel treatment strategies against ether lipid deficiency in ameliorating nervous system-associated symptoms. Furthermore, our findings underline that ether lipids are paramount for brain function and demonstrate their relevance for cognitive, social, and emotional behavior. We hereby substantially extend previous observations suggesting a link between deficiency in ether lipids and human mental illnesses, particularly autism and attention-deficit hyperactivity disorder.
Collapse
Affiliation(s)
- Fabian Dorninger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria
| | - Anna Gundacker
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria
| | - Gerhard Zeitler
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria
| | - Daniela D Pollak
- Department of Neurophysiology and Neuropharmacology, Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstraße 17, 1090 Vienna, Austria.
| | - Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Spitalgasse 4, 1090 Vienna, Austria.
| |
Collapse
|