1
|
Park SJ, Kim KW, Lee EJ. Gut-brain axis and environmental factors in Parkinson's disease: bidirectional link between disease onset and progression. Neural Regen Res 2025; 20:3416-3429. [PMID: 39688568 PMCID: PMC11974660 DOI: 10.4103/nrr.nrr-d-24-00994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/21/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Parkinson's disease has long been considered a disorder that primarily affects the brain, as it is defined by the dopaminergic neurodegeneration in the substantia nigra and the brain accumulation of Lewy bodies containing α-synuclein protein. In recent decades, however, accumulating research has revealed that Parkinson's disease also involves the gut and uncovered an intimate and important bidirectional link between the brain and the gut, called the "gut-brain axis." Numerous clinical studies demonstrate that gut dysfunction frequently precedes motor symptoms in Parkinson's disease patients, with findings including impaired intestinal permeability, heightened inflammation, and distinct gut microbiome profiles and metabolites. Furthermore, α-synuclein deposition has been consistently observed in the gut of Parkinson's disease patients, suggesting a potential role in disease initiation. Importantly, individuals with vagotomy have a reduced Parkinson's disease risk. From these observations, researchers have hypothesized that α-synuclein accumulation may initiate in the gut and subsequently propagate to the central dopaminergic neurons through the gut-brain axis, leading to Parkinson's disease. This review comprehensively examines the gut's involvement in Parkinson's disease, focusing on the concept of a gut-origin for the disease. We also examine the interplay between altered gut-related factors and the accumulation of pathological α-synuclein in the gut of Parkinson's disease patients. Given the accessibility of the gut to both dietary and pharmacological interventions, targeting gut-localized α-synuclein represents a promising avenue for developing effective Parkinson's disease therapies.
Collapse
Affiliation(s)
- Soo Jung Park
- Department of Brain Science, Ajou University School of Medicine, Suwon, South Korea
| | - Kyung Won Kim
- Department of Life Science and Multidisciplinary Genome Institute, Hallym University, Chuncheon, South Korea
| | - Eun Jeong Lee
- Department of Brain Science, Ajou University School of Medicine, Suwon, South Korea
| |
Collapse
|
2
|
Sun X, Qin B, Guo A, Gui J, Weng J, Ye J, Feng S, Sang M. Withaferin A maintained microbiome and metabolome features in A53T transgenic mice via multi-omics integrated analysis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156725. [PMID: 40220427 DOI: 10.1016/j.phymed.2025.156725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 03/11/2025] [Accepted: 04/01/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND Withaferin A (WFA), a naturally occurring compound, has shown promise as a therapeutic agent for Parkinson's disease (PD), a neurodegenerative disorder associated with motor and gastrointestinal dysfunctions. However, its effects on gut microbiota metabolism remain poorly understood. PURPOSE This study aimed to elucidate the neuroprotective mechanisms of WFA in a PD mouse model by investigating its regulation of gut microbiota composition, metabolic pathways, and correlations with brain spatial metabolomics. METHODS Human SNCA-transgenic (A53T) mice were treated with WFA and evaluated using behavioral tests, immunohistochemistry, Western blot, and ELISA to assess motor/cognitive functions and PD-related pathology. Gut microbiota composition was analyzed via 16S rRNA sequencing, while untargeted fecal metabolomics and brain spatial metabolomics were employed to identify metabolic alterations. RESULTS WFA significantly improved motor performance, alleviated cognitive deficits, restored intestinal barrier integrity, and reduced neuroinflammation. It elevated the abundance of anti-inflammatory gut bacteria (e.g., Bifidobacterium, Dubosiella, Akkermansia) and reversed 55 fecal metabolites linked to sphingolipid metabolism, serotonergic synapses, and neuroactive ligand- receptor interactions. Spatial metabolomics revealed WFA's regulation of sphingolipid signaling pathways, including sphingosine kinase (Sphk1), ceramidase, sphingosine 1-phosphate receptor (S1PR5), and endocannabinoid receptor CB2 expression. Correlation analysis indicated a link between brain metabolite content and gut microbiota abundance. CONCLUSION Our findings highlight a potential mechanism of WFA that repairs neurons by modulating the sphingolipid signaling pathway within the microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Xiaodong Sun
- Research Center for Translational Medicine, Hubei Provincial Clinical Research Center for Parkinson's Disease at Xiangyang No.1 People's Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, 442000, PR China
| | - Bingqing Qin
- Research Center for Translational Medicine, Hubei Provincial Clinical Research Center for Parkinson's Disease at Xiangyang No.1 People's Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, 442000, PR China; Jiangsu Key Laboratory of Neuropsychiatric Diseases, Institute of Neuroscience, Soochow University, Suzhou, 215000, PR China
| | - Ai Guo
- Research Center for Translational Medicine, Hubei Provincial Clinical Research Center for Parkinson's Disease at Xiangyang No.1 People's Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, 442000, PR China
| | - Jianjun Gui
- Research Center for Translational Medicine, Hubei Provincial Clinical Research Center for Parkinson's Disease at Xiangyang No.1 People's Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, 442000, PR China
| | - Jingjing Weng
- Research Center for Translational Medicine, Hubei Provincial Clinical Research Center for Parkinson's Disease at Xiangyang No.1 People's Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, 442000, PR China
| | - Junjie Ye
- Research Center for Translational Medicine, Hubei Provincial Clinical Research Center for Parkinson's Disease at Xiangyang No.1 People's Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, 442000, PR China; Department of Clinical Laboratory, Wuhan Asia Heart Hospital, Wuhan, 430022, Hubei, PR China
| | - Shenglan Feng
- Research Center for Translational Medicine, Hubei Provincial Clinical Research Center for Parkinson's Disease at Xiangyang No.1 People's Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, 442000, PR China
| | - Ming Sang
- Research Center for Translational Medicine, Hubei Provincial Clinical Research Center for Parkinson's Disease at Xiangyang No.1 People's Hospital, Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, 442000, PR China.
| |
Collapse
|
3
|
Mather M. Autonomic dysfunction in neurodegenerative disease. Nat Rev Neurosci 2025; 26:276-292. [PMID: 40140684 DOI: 10.1038/s41583-025-00911-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2025] [Indexed: 03/28/2025]
Abstract
In addition to their more studied cognitive and motor effects, neurodegenerative diseases are also associated with impairments in autonomic function - the regulation of involuntary physiological processes. These autonomic impairments manifest in different ways and at different stages depending on the specific disease. The neural networks responsible for autonomic regulation in the brain and body have characteristics that render them particularly susceptible to the prion-like spread of protein aggregation involved in neurodegenerative diseases. Specifically, the axons of these neurons - in both peripheral and central networks - are long and poorly myelinated axons, which make them preferential targets for pathological protein aggregation. Moreover, cortical regions integrating information about the internal state of the body are highly connected with other brain regions, which increases the likelihood of intersection with pathological pathways and prion-like spread of abnormal proteins. This leads to an autonomic 'signature' of dysfunction, characteristic of each neurodegenerative disease, that is linked to the affected networks and regions undergoing pathological aggregation.
Collapse
Affiliation(s)
- Mara Mather
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
- Department of Psychology, University of Southern California, Los Angeles, CA, USA.
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Bellini G, D'Antongiovanni V, Palermo G, Antonioli L, Fornai M, Ceravolo R, Bernardini N, Derkinderen P, Pellegrini C. α-Synuclein in Parkinson's Disease: From Bench to Bedside. Med Res Rev 2025; 45:909-946. [PMID: 39704040 PMCID: PMC11976381 DOI: 10.1002/med.22091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/24/2024] [Accepted: 11/07/2024] [Indexed: 12/21/2024]
Abstract
α-Synuclein (α-syn), a pathological hallmark of PD, is emerging as a bridging element at the crossroads between neuro/immune-inflammatory responses and neurodegeneration in PD. Several evidence show that pathological α-syn accumulates in neuronal and non-neuronal cells (i.e., neurons, microglia, macrophages, skin cells, and intestinal cells) in central and peripheral tissues since the prodromal phase of the disease, contributing to brain pathology. Indeed, pathological α-syn deposition can promote neurogenic/immune-inflammatory responses that contribute to systemic and central neuroinflammation associated with PD. After providing an overview of the structure and functions of physiological α-syn as well as its pathological forms, we review current studies about the role of neuronal and non-neuronal α-syn at the crossroads between neuroinflammation and neurodegeneration in PD. In addition, we provide an overview of the correlation between the accumulation of α-syn in central and peripheral tissues and PD, related symptoms, and neuroinflammation. Special attention was paid to discussing whether targeting α-syn can represent a suitable therapeutical approach for PD.
Collapse
Affiliation(s)
- Gabriele Bellini
- Center for Neurodegenerative Diseases, Unit of Neurology, Parkinson's Disease and Movement Disorders, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
- Department of NeurologyThe Marlene and Paolo Fresco Institute for Parkinson's and Movement Disorders, NYU Langone HealthNew York CityNew YorkUSA
| | - Vanessa D'Antongiovanni
- Unit of Histology and Embryology, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Giovanni Palermo
- Center for Neurodegenerative Diseases, Unit of Neurology, Parkinson's Disease and Movement Disorders, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Luca Antonioli
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Matteo Fornai
- Unit of Pharmacology and Pharmacovigilance, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Roberto Ceravolo
- Center for Neurodegenerative Diseases, Unit of Neurology, Parkinson's Disease and Movement Disorders, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Nunzia Bernardini
- Unit of Histology and Embryology, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - Pascal Derkinderen
- Department of NeurologyNantes Université, CHU Nantes, INSERMNantesFrance
| | - Carolina Pellegrini
- Unit of Histology and Embryology, Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| |
Collapse
|
5
|
Wang B, Bai X, Yang Y, Yang H. Possible linking and treatment between Parkinson's disease and inflammatory bowel disease: a study of Mendelian randomization based on gut-brain axis. J Transl Med 2025; 23:45. [PMID: 39799347 PMCID: PMC11725218 DOI: 10.1186/s12967-024-06045-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 12/25/2024] [Indexed: 01/15/2025] Open
Abstract
BACKGROUND Mounting evidence suggests that Parkinson's disease (PD) and inflammatory bowel disease (IBD) are closely associated and becoming global health burdens. However, the causal relationships and common pathogeneses between them are uncertain. Furthermore, they are uncurable. Thus, we aimed to identify the causal relationships and novel therapeutic targets shared between them based on their common pathophysiological mechanisms in gut-brain-axis (GBA). METHODS A meta-analysis on bidirectional Mendelian randomization (MR) utilizing various datasets was performed to estimate their causal relationship. Then, pleiotropic analysis under the composite null hypothesis (PLACO) with functional mapping combined with annotation of genetic associations (FUMA) analysis were conducted to identify pleiotropic genes. Next, blood, brain and intestine expression quantitative trait locus (eQTL) were taken to perform drug-target MR finding common causal genes in two diseases. Colocalization analysis ensured the eQTLs of corresponding gene colocalized with disease. Enrichment analysis and protein‒protein interaction (PPI) network were done to explore common pathogenesis pathways. Genes passed all analysis were regarded as drug targets. RESULTS Our MR meta-analysis revealed the bidirectional causal relationship between diseases, with combined ORs for PD on IBD, CD, UC (1.050 [95% CI 1.014-1.086], 1.044 [95% CI 0.995-1.095], 1.063 [95% CI 1.016-1.120]); for IBD, CD, UC on PD (1.003 [95% CI 0.973-1.034], 1.035 [95% CI 1.004-1.067], 1.008 [95% CI 0.977-1.040]). Overall, 277, 216 and 201 genes were identified as pleiotropic genes between PD and IBD, CD, UC. Total of 733 genes were classified as tier 3 (found in only one tissue) druggable targets, 57 as tier 2 (found in two tissues, 51 protein-coding genes) and 9 as tier 3 (found in three tissues). Among 60 protein-coding druggable targets over tier 2, 18 overlapped with pleiotropic genes and enriched in mitochondria, antigen presentation, processing and immune cell regulation pathways. Three druggable genes (LRRK2, RAB29 and HLA-DQA2) passed colocalization analysis. LRRK2 and RAB29 were reported to be pleiotropic genes, and RAB29 and HLA-DQA2 were reported for the first time as potential drug targets. CONCLUSIONS This study established a reliable causal relationship, possible shared drug targets and common pathogenesis pathways of two diseases, which had important implications for intervention and treatment of two diseases simultaneously.
Collapse
Affiliation(s)
- Beiming Wang
- Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
- 4+4 medical doctor program, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 5, DongDanSanTiao, DongCheng District, Beijing, 100730, China
| | - Xiaoyin Bai
- Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yingmai Yang
- Department of Neurology, Peking Union Medical College Hospital, Beijing, 100730, China.
| | - Hong Yang
- Department of Gastroenterology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China.
| |
Collapse
|
6
|
Mu L, Chen J, Li J, Nyirenda T, Hegland KW, Beach TG. Mechanisms of Swallowing, Speech and Voice Disorders in Parkinson's Disease: Literature Review with Our First Evidence for the Periperal Nervous System Involvement. Dysphagia 2024; 39:1001-1012. [PMID: 38498201 DOI: 10.1007/s00455-024-10693-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 02/29/2024] [Indexed: 03/20/2024]
Abstract
The majority of patients with Parkinson's disease (PD) develop swallowing, speech, and voice (SSV) disorders. Importantly, swallowing difficulty or dysphagia and related aspiration are life-threatening conditions for PD patients. Although PD treatments have significant therapeutic effects on limb motor function, their effects on SSV disorders are less impressive. A large gap in our knowledge is that the mechanisms of SSV disorders in PD are poorly understood. PD was long considered to be a central nervous system disorder caused by the death of dopaminergic neurons in the basal ganglia. Aggregates of phosphorylated α-synuclein (PAS) underlie PD pathology. SSV disorders were thought to be caused by the same dopaminergic problem as those causing impaired limb movement; however, there is little evidence to support this. The pharynx, larynx, and tongue play a critical role in performing upper airway (UA) motor tasks and their dysfunction results in disordered SSV. This review aims to provide an overview on the neuromuscular organization patterns, functions of the UA structures, clinical features of SSV disorders, and gaps in knowledge regarding the pathophysiology underlying SSV disorders in PD, and evidence supporting the hypothesis that SSV disorders in PD could be associated, at least in part, with PAS damage to the peripheral nervous system controlling the UA structures. Determining the presence and distribution of PAS lesions in the pharynx, larynx, and tongue will facilitate the identification of peripheral therapeutic targets and set a foundation for the development of new therapies to treat SSV disorders in PD.
Collapse
Affiliation(s)
- Liancai Mu
- Upper Airway Reserch Laboratory, Center for Discovery and Innovation, Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ, 07110, USA.
- Center for Discovery and Innovation, Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ, 07110, USA.
| | - Jingming Chen
- Upper Airway Reserch Laboratory, Center for Discovery and Innovation, Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ, 07110, USA
| | - Jing Li
- Upper Airway Reserch Laboratory, Center for Discovery and Innovation, Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ, 07110, USA
| | - Themba Nyirenda
- Upper Airway Reserch Laboratory, Center for Discovery and Innovation, Hackensack Meridian Health, 111 Ideation Way, Nutley, NJ, 07110, USA
| | - Karen Wheeler Hegland
- Upper Airway Dysfunction Laboratory, M.A. Program in Communication Sciences & Disorders, Department of Speech, Language and Hearing Sciences, College of Public Health and Health Professions, University of Florida, 1225 Center Dr., Gainesville, FL, 32611, USA
| | - Thomas G Beach
- Director of Neuroscience, Director of Brain and Body Donation Program, Banner Sun Health Research Institute, 10515 West Santa Fe Dr, Sun City, AZ, 85351, USA
| |
Collapse
|
7
|
Kovacs GG, Grinberg LT, Halliday G, Alafuzoff I, Dugger BN, Murayama S, Forrest SL, Martinez‐Valbuena I, Tanaka H, Kon T, Yoshida K, Jaunmuktane Z, Spina S, Nelson PT, Gentleman S, Alegre‐Abarrategui J, Serrano GE, Paes VR, Takao M, Wakabayashi K, Uchihara T, Yoshida M, Saito Y, Kofler J, Rodriguez RD, Gelpi E, Attems J, Crary JF, Seeley WW, Duda JE, Keene CD, Woulfe J, Munoz D, Smith C, Lee EB, Neumann M, White CL, McKee AC, Thal DR, Jellinger K, Ghetti B, Mackenzie IRA, Dickson DW, Beach TG. Biomarker-Based Approach to α-Synucleinopathies: Lessons from Neuropathology. Mov Disord 2024; 39:2173-2179. [PMID: 39360851 PMCID: PMC11657033 DOI: 10.1002/mds.30028] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 12/20/2024] Open
Affiliation(s)
- Gabor G. Kovacs
- Tanz Centre for Research in Neurodegenerative Diseases, University of TorontoTorontoOntarioCanada
| | - Lea T. Grinberg
- Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco (UCSF)San FranciscoCaliforniaUSA
- Department of PathologyUniversity of São Paulo Medical SchoolSão PauloBrazil
| | - Glenda Halliday
- Brain and Mind Centre, The University of SydneySydneyAustralia
- School of Medical Sciences, Faculty of Medicine and HealthThe University of SydneySydneyAustralia
| | | | | | - Shigeo Murayama
- Brain Bank for Aging Research, Tokyo Metropolitan Institute for Geriatrics and GerontologyTokyoJapan
| | - Shelley L. Forrest
- Tanz Centre for Research in Neurodegenerative Diseases, University of TorontoTorontoOntarioCanada
| | - Ivan Martinez‐Valbuena
- Tanz Centre for Research in Neurodegenerative Diseases, University of TorontoTorontoOntarioCanada
| | - Hidetomo Tanaka
- Tanz Centre for Research in Neurodegenerative Diseases, University of TorontoTorontoOntarioCanada
| | - Tomoya Kon
- Department of NeurologyHirosaki University Graduate School of MedicineHirosakiJapan
| | - Koji Yoshida
- Tanz Centre for Research in Neurodegenerative Diseases, University of TorontoTorontoOntarioCanada
| | - Zane Jaunmuktane
- Department of Clinical and Movement NeurosciencesQueen Square Brain Bank for Neurological Disorders, Queen Square Institute of Neurology, University College LondonLondonUnited Kingdom
| | - Salvatore Spina
- Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco (UCSF)San FranciscoCaliforniaUSA
| | - Peter T. Nelson
- Sanders‐Brown Center on Aging, University of KentuckyLexingtonKentuckyUSA
| | - Steve Gentleman
- Imperial College London, Parkinson's UK Tissue BankLondonUnited Kingdom
| | | | | | - Vitor Ribeiro Paes
- Department of PathologyUniversity of São Paulo Medical SchoolSão PauloBrazil
| | - Masaki Takao
- Department of Clinical Laboratory and Internal MedicineNational Center of Neurology and Psychiatry (NCNP), National Center HospitalTokyoJapan
| | - Koichi Wakabayashi
- Department of NeuropathologyHirosaki University Graduate School of MedicineHirosakiJapan
| | - Toshiki Uchihara
- University of Hawaii Postgraduate Medical Education Program at Okinawa Chubu HospitalUrumaJapan
| | - Mari Yoshida
- Department of NeuropathologyInstitute for Medical Science of Aging, Aichi Medical UniversityAichiJapan
| | - Yuko Saito
- Brain Bank for Aging Research, Tokyo Metropolitan Institute for Geriatrics and GerontologyTokyoJapan
| | - Julia Kofler
- Department of PathologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Roberta Diehl Rodriguez
- Laboratorio de Ressonancia Magnetica em Neurorradiologia (LIM‐44), HCFMUSP, Faculdade de MedicinaUniversidade de São PauloSão PauloBrazil
| | - Ellen Gelpi
- Division of Neuropathology and Neurochemistry, Department of NeurologyMedical University of ViennaViennaAustria
| | - Johannes Attems
- Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - John F. Crary
- Departments of Pathology, Neuroscience, and Artificial Intelligence and Human HealthIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - William W. Seeley
- Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco (UCSF)San FranciscoCaliforniaUSA
| | - John E. Duda
- Michael J. Crescenz VA Medical CenterPerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - C. Dirk Keene
- Department of Laboratory Medicine and PathologyUniversity of Washington School of MedicineSeattleWashingtonUSA
| | - John Woulfe
- Ottawa Hospital Research Institute and University of OttawaOttawaOntarioCanada
| | | | - Colin Smith
- University of Edinburgh, Academic Department of Neuropathology, Centre for Clinical Brain SciencesEdinburghUnited Kingdom
| | - Edward B. Lee
- Department of Pathology and Laboratory MedicinePerelman School of Medicine at the University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Manuela Neumann
- Department of NeuropathologyUniversity Hospital Tübingen and DZNE TübingenTübingenGermany
| | - Charles L. White
- Neuropathology Section, Department of PathologyUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Ann C. McKee
- Boston University Alzheimer's Disease Center and CTE CenterBostonMassachusettsUSA
| | - Dietmar R. Thal
- Laboratory of Neuropathology, Department of Imaging and Pathology and Leuven Brain InstituteKU‐LeuvenLeuvenBelgium
- Department of PathologyUniversity Hospital LeuvenLeuvenBelgium
| | | | - Bernardino Ghetti
- School of Medicine, Department of Pathology and Laboratory MedicineIndiana UniversityIndianapolisIndianaUSA
| | - Ian R. A. Mackenzie
- Department of PathologyUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | | | | |
Collapse
|
8
|
Burré J, Edwards RH, Halliday G, Lang AE, Lashuel HA, Melki R, Murayama S, Outeiro TF, Papa SM, Stefanis L, Woerman AL, Surmeier DJ, Kalia LV, Takahashi R. Research Priorities on the Role of α-Synuclein in Parkinson's Disease Pathogenesis. Mov Disord 2024; 39:1663-1678. [PMID: 38946200 PMCID: PMC11808831 DOI: 10.1002/mds.29897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/16/2024] [Accepted: 06/03/2024] [Indexed: 07/02/2024] Open
Abstract
Various forms of Parkinson's disease, including its common sporadic form, are characterized by prominent α-synuclein (αSyn) aggregation in affected brain regions. However, the role of αSyn in the pathogenesis and evolution of the disease remains unclear, despite vast research efforts of more than a quarter century. A better understanding of the role of αSyn, either primary or secondary, is critical for developing disease-modifying therapies. Previous attempts to hone this research have been challenged by experimental limitations, but recent technological advances may facilitate progress. The Scientific Issues Committee of the International Parkinson and Movement Disorder Society (MDS) charged a panel of experts in the field to discuss current scientific priorities and identify research strategies with potential for a breakthrough. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jacqueline Burré
- Appel Institute for Alzheimer's Disease Research and Brain and Mind Research Institute, Weill Cornell MedicineNew YorkNew YorkUSA
| | - Robert H. Edwards
- Department of Physiology and NeurologyUniversity of California, San Francisco School of MedicineSan FranciscoCaliforniaUSA
| | - Glenda Halliday
- Brain and Mind Centre, School of Medical Sciences, The University of SydneyCamperdownNew South WalesAustralia
| | - Anthony E. Lang
- Edmond J. Safra Program in Parkinson's Disease, Krembil Research Institute, Toronto Western Hospital, University Health NetworkTorontoOntarioCanada
- Division of Neurology, Department of MedicineUniversity of TorontoTorontoOntarioCanada
| | - Hilal A. Lashuel
- Laboratory of Chemical Biology of Neurodegeneration, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Ronald Melki
- Institut Francois Jacob (MIRCen), CEA and Laboratory of Neurodegenerative Diseases, CNRSFontenay‐Aux‐RosesFrance
| | - Shigeo Murayama
- Department of NeuropathologyTokyo Metropolitan Institute for Geriatrics and GerontologyTokyoJapan
- The Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, United Graduate School of Child DevelopmentOsaka UniversityOsakaJapan
| | - Tiago F. Outeiro
- Department of Experimental NeurodegenerationUniversity Medical CenterGöttingenGermany
- Faculty of Medical Sciences, Translational and Clinical Research InstituteNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Stella M. Papa
- Department of NeurologySchool of Medicine, and Emory National Primate Research Center, Emory UniversityAtlantaGeorgiaUSA
| | - Leonidas Stefanis
- First Department of NeurologyEginitio Hospital, School of Medicine, National and Kapodistrian University of AthensAthensGreece
- Biomedical Research Foundation of the Academy of AthensAthensGreece
| | - Amanda L. Woerman
- Department of BiologyInstitute for Applied Life Sciences, University of Massachusetts AmherstAmherstMassachusettsUSA
- Department of Microbiology, Immunology, and PathologyPrion Research Center, Colorado State UniversityFort CollinsColoradoUSA
| | - Dalton James Surmeier
- Department of Neuroscience, Feinberg School of MedicineNorthwestern UniversityChicagoIllinoisUSA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research NetworkChevy ChaseMarylandUSA
| | - Lorraine V. Kalia
- Edmond J. Safra Program in Parkinson's Disease, Krembil Research Institute, Toronto Western Hospital, University Health NetworkTorontoOntarioCanada
- Division of Neurology, Department of MedicineUniversity of TorontoTorontoOntarioCanada
| | - Ryosuke Takahashi
- Department of NeurologyGraduate School of Medicine, Kyoto UniversityKyotoJapan
| |
Collapse
|
9
|
Mastenbroek SE, Vogel JW, Collij LE, Serrano GE, Tremblay C, Young AL, Arce RA, Shill HA, Driver-Dunckley ED, Mehta SH, Belden CM, Atri A, Choudhury P, Barkhof F, Adler CH, Ossenkoppele R, Beach TG, Hansson O. Disease progression modelling reveals heterogeneity in trajectories of Lewy-type α-synuclein pathology. Nat Commun 2024; 15:5133. [PMID: 38879548 PMCID: PMC11180185 DOI: 10.1038/s41467-024-49402-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/04/2024] [Indexed: 06/19/2024] Open
Abstract
Lewy body (LB) diseases, characterized by the aggregation of misfolded α-synuclein proteins, exhibit notable clinical heterogeneity. This may be due to variations in accumulation patterns of LB neuropathology. Here we apply a data-driven disease progression model to regional neuropathological LB density scores from 814 brain donors with Lewy pathology. We describe three inferred trajectories of LB pathology that are characterized by differing clinicopathological presentation and longitudinal antemortem clinical progression. Most donors (81.9%) show earliest pathology in the olfactory bulb, followed by accumulation in either limbic (60.8%) or brainstem (21.1%) regions. The remaining donors (18.1%) initially exhibit abnormalities in brainstem regions. Early limbic pathology is associated with Alzheimer's disease-associated characteristics while early brainstem pathology is associated with progressive motor impairment and substantial LB pathology outside of the brain. Our data provides evidence for heterogeneity in the temporal spread of LB pathology, possibly explaining some of the clinical disparities observed in Lewy body disease.
Collapse
Affiliation(s)
- Sophie E Mastenbroek
- Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam University Medical Center, location VUmc, Amsterdam, The Netherlands.
- Amsterdam Neuroscience, Brain imaging, Amsterdam, The Netherlands.
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden.
| | - Jacob W Vogel
- Department of Clinical Sciences Malmö, Faculty of Medicine, SciLifeLab, Lund University, Lund, Sweden
| | - Lyduine E Collij
- Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam University Medical Center, location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain imaging, Amsterdam, The Netherlands
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden
| | | | | | - Alexandra L Young
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
| | | | - Holly A Shill
- Department of Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Erika D Driver-Dunckley
- Department of Neurology, Parkinson's Disease and Movement Disorders Center, Mayo Clinic, Scottsdale, AZ, USA
| | - Shyamal H Mehta
- Department of Neurology, Parkinson's Disease and Movement Disorders Center, Mayo Clinic, Scottsdale, AZ, USA
| | | | - Alireza Atri
- Banner Sun Health Research Institute, Sun City, AZ, USA
- Department of Neurology, Center for Mind/Brain Medicine, Brigham & Women's Hospital & Harvard Medical School, Boston, MA, USA
| | | | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam University Medical Center, location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain imaging, Amsterdam, The Netherlands
- Institutes of Neurology & Healthcare Engineering, University College London, London, UK
| | - Charles H Adler
- Department of Neurology, Parkinson's Disease and Movement Disorders Center, Mayo Clinic, Scottsdale, AZ, USA
| | - Rik Ossenkoppele
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam University Medical Center location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | | | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden.
- Memory Clinic, Skåne University Hospital, Malmö, Sweden.
| |
Collapse
|
10
|
Hazart D, Rolli-Derkinderen M, Delhomme B, Derkinderen P, Oheim M, Ricard C. [The gut, a whistleblower, in the early stages of Parkinson's disease]. Med Sci (Paris) 2024; 40:544-549. [PMID: 38986099 DOI: 10.1051/medsci/2024082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024] Open
Abstract
The enteric nervous system (ENS), often called the "second brain", plays a crucial role in regulating digestive functions. Dysfunctions of the ENS are associated with several diseases such as Parkinson's disease. Recent studies suggest that early digestive disorders, notably chronic constipation, may be early signs of this neurodegenerative disease. Three-dimensional imaging of the ENS offers new insights into early diagnosis, in particular through the analysis of intestinal biopsies. This new research axis raises questions about the intestinal cause of Parkinson's disease, and opens the door to a better understanding and earlier treatment of this disease.
Collapse
Affiliation(s)
- Doriane Hazart
- Université Paris Cité, SPPIN (Saint-Pères Paris Institute for the Neurosciences), CNRS UMR 8003, Paris, France
| | - Malvyne Rolli-Derkinderen
- Nantes Université, Inserm U1235, TENSGBD (The enteric nervous system in gut and brain disorders), Nantes, France
| | - Brigitte Delhomme
- Université Paris Cité, SPPIN (Saint-Pères Paris Institute for the Neurosciences), CNRS UMR 8003, Paris, France
| | - Pascal Derkinderen
- CHU Nantes, Nantes Université, TENSGBD (The enteric nervous system in gut and brain disorders), Nantes, France
| | - Martin Oheim
- Université Paris Cité, SPPIN (Saint-Pères Paris Institute for the Neurosciences), CNRS UMR 8003, Paris, France
| | - Clément Ricard
- Université Paris Cité, SPPIN (Saint-Pères Paris Institute for the Neurosciences), CNRS UMR 8003, Paris, France
| |
Collapse
|
11
|
Kula J, Kuter KZ. MUFA synthesis and stearoyl-CoA desaturase as a new pharmacological target for modulation of lipid and alpha-synuclein interaction against Parkinson's disease synucleinopathy. Neuropharmacology 2024; 249:109865. [PMID: 38342377 DOI: 10.1016/j.neuropharm.2024.109865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/13/2024]
Abstract
Protein pathology spreading within the nervous system, accompanies neurodegeneration and a spectrum of motor and cognitive dysfunctions. Currently available therapies against Parkinson's disease and other synucleinopathies are mostly symptomatic and fail to slow the disease progression in the long term. Modification of α-synuclein (αS) aggregation and toxicity of its pathogenic forms is one of the main goals in neuroprotective approach. Since the discovery of lipid component of Lewy bodies, fatty acids became a crucial, yet little explored target for research. MUFAs (monounsaturated fatty acids) are substrates for lipids, such as phospholipids, triglycerides and cholesteryl esters. They regulate membrane fluidity, take part in signal transduction, cellular differentiation and other fundamental processes. αS and MUFA interactions are essential for Lewy body pathology. αS increases levels of MUFAs, mainly oleic acid, which in turn can enhance αS toxicity and aggregation. Thus, reduction of MUFAs synthesis by inhibition of stearoyl-CoA desaturase (SCD) activity could be the new way to prevent aggravation of αS pathology. Due to the limited distribution in peripheral tissues, SCD5 is a potential target in novel therapies and therefore could be an important starting point in search for disease-modifying neuroprotective therapy. Here we summarize facts about physiology and pathology of αS, explain recently discovered lipid-αS interactions, review SCD function and involved mechanisms, present available SCD inhibitors and discuss their pharmacological potential in disease management. Modulation of MUFA synthesis, decreasing αS and lipid toxicity is clearly essential, but unexplored avenue in pharmacotherapy of Parkinson's disease and synucleinopathies.
Collapse
Affiliation(s)
- Joanna Kula
- Department of Neuropsychopharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St., 31-343 Krakow, Poland.
| | - Katarzyna Z Kuter
- Department of Neuropsychopharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna St., 31-343 Krakow, Poland.
| |
Collapse
|
12
|
Horsager J, Borghammer P. Brain-first vs. body-first Parkinson's disease: An update on recent evidence. Parkinsonism Relat Disord 2024; 122:106101. [PMID: 38519273 DOI: 10.1016/j.parkreldis.2024.106101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/07/2024] [Accepted: 03/10/2024] [Indexed: 03/24/2024]
Abstract
We recently proposed a new disease model of Parkinson's disease - the a-Synuclein Origin site and Connectome model. The model posits that the initial pathology starts either in the olfactory bulb or amygdala leading to a brain-first subtype, or in the enteric nervous system leading to a body-first subtype. These subtypes should be distinguishable early in the disease course on a range of imaging, clinical, and neuropathological markers. Here, we review recent original human studies, which tested the predictions of the model. Molecular imaging studies were generally in agreement with the model, whereas structural imaging studies, such as MRI volumetry, showed conflicting findings. Most large-scale clinical studies were supportive, reporting clustering of relevant markers of the body-first subtype, including REM-sleep behavior disorder, constipation, autonomic dysfunction, neuropsychiatric symptoms, and cognitive impairment. Finally, studies of a-synuclein deposition in antemortem and postmortem tissues revealed distribution of pathology, which generally supports the model.
Collapse
Affiliation(s)
- Jacob Horsager
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Denmark.
| | - Per Borghammer
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Denmark; Department of Clinical Medicine, Aarhus University, Denmark.
| |
Collapse
|
13
|
Radlicka-Borysewska A, Jabłońska J, Lenarczyk M, Szumiec Ł, Harda Z, Bagińska M, Barut J, Pera J, Kreiner G, Wójcik DK, Rodriguez Parkitna J. Non-motor symptoms associated with progressive loss of dopaminergic neurons in a mouse model of Parkinson's disease. Front Neurosci 2024; 18:1375265. [PMID: 38745938 PMCID: PMC11091341 DOI: 10.3389/fnins.2024.1375265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/09/2024] [Indexed: 05/16/2024] Open
Abstract
Parkinson's disease (PD) is characterized by three main motor symptoms: bradykinesia, rigidity and tremor. PD is also associated with diverse non-motor symptoms that may develop in parallel or precede motor dysfunctions, ranging from autonomic system dysfunctions and impaired sensory perception to cognitive deficits and depression. Here, we examine the role of the progressive loss of dopaminergic transmission in behaviors related to the non-motor symptoms of PD in a mouse model of the disease (the TIF-IADATCreERT2 strain). We found that in the period from 5 to 12 weeks after the induction of a gradual loss of dopaminergic neurons, mild motor symptoms became detectable, including changes in the distance between paws while standing as well as the swing speed and step sequence. Male mutant mice showed no apparent changes in olfactory acuity, no anhedonia-like behaviors, and normal learning in an instrumental task; however, a pronounced increase in the number of operant responses performed was noted. Similarly, female mice with progressive dopaminergic neuron degeneration showed normal learning in the probabilistic reversal learning task and no loss of sweet-taste preference, but again, a robustly higher number of choices were performed in the task. In both males and females, the higher number of instrumental responses did not affect the accuracy or the fraction of rewarded responses. Taken together, these data reveal discrete, dopamine-dependent non-motor symptoms that emerge in the early stages of dopaminergic neuron degeneration.
Collapse
Affiliation(s)
- Anna Radlicka-Borysewska
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology of the Polish Academy of Sciences, Kraków, Poland
| | - Judyta Jabłońska
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology of the Polish Academy of Sciences, Kraków, Poland
| | - Michał Lenarczyk
- Faculty of Management and Social Communication, Institute of Applied Psychology, Jagiellonian University, Kraków, Poland
| | - Łukasz Szumiec
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology of the Polish Academy of Sciences, Kraków, Poland
| | - Zofia Harda
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology of the Polish Academy of Sciences, Kraków, Poland
| | - Monika Bagińska
- Department of Brain Biochemistry, Maj Institute of Pharmacology of the Polish Academy of Sciences, Kraków, Poland
| | - Justyna Barut
- Department of Brain Biochemistry, Maj Institute of Pharmacology of the Polish Academy of Sciences, Kraków, Poland
| | - Joanna Pera
- Department of Neurology, Jagiellonian University Medical College, Kraków, Poland
| | - Grzegorz Kreiner
- Department of Brain Biochemistry, Maj Institute of Pharmacology of the Polish Academy of Sciences, Kraków, Poland
| | - Daniel K. Wójcik
- Faculty of Management and Social Communication, Institute of Applied Psychology, Jagiellonian University, Kraków, Poland
- Laboratory of Neuroinformatics, Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Jan Rodriguez Parkitna
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology of the Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
14
|
Ermini F, Low VF, Song JJ, Tan AYS, Faull RLM, Dragunow M, Curtis MA, Dominy SS. Ultrastructural localization of Porphyromonas gingivalis gingipains in the substantia nigra of Parkinson's disease brains. NPJ Parkinsons Dis 2024; 10:90. [PMID: 38664405 PMCID: PMC11045759 DOI: 10.1038/s41531-024-00705-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Gingipains are protease virulence factors produced by Porphyromonas gingivalis, a Gram-negative bacterium best known for its role in chronic periodontitis. Gingipains were recently identified in the middle temporal gyrus of postmortem Alzheimer's disease (AD) brains, where gingipain load correlated with AD diagnosis and tau and ubiquitin pathology. Since AD and Parkinson's disease (PD) share some overlapping pathologic features, including nigral pathology and Lewy bodies, the current study explored whether gingipains are present in the substantia nigra pars compacta of PD brains. In immunohistochemical techniques and multi-channel fluorescence studies, gingipain antigens were abundant in dopaminergic neurons in the substantia nigra of both PD and neurologically normal control brains. 3-dimensional reconstructions of Lewy body containing neurons revealed that gingipains associated with the periphery of alpha-synuclein aggregates but were occasionally observed inside aggregates. In vitro proteomic analysis demonstrated that recombinant alpha-synuclein is cleaved by lysine-gingipain, generating multiple alpha-synuclein fragments including the non-amyloid component fragments. Immunogold electron microscopy with co-labeling of gingipains and alpha-synuclein confirmed the occasional colocalization of gingipains with phosphorylated (pSER129) alpha-synuclein. In dopaminergic neurons, gingipains localized to the perinuclear cytoplasm, neuromelanin, mitochondria, and nucleus. These data suggest that gingipains localize in dopaminergic neurons in the substantia nigra and interact with alpha-synuclein.
Collapse
Affiliation(s)
- Florian Ermini
- Previously Cortexyme, Inc., South San Francisco, CA, USA.
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
| | - Victoria F Low
- NeuroValida, The University of Auckland, Auckland, New Zealand
- Department of Anatomy and Medical Imaging, The University of Auckland, Auckland, New Zealand
| | - Jennifer J Song
- NeuroValida, The University of Auckland, Auckland, New Zealand
- Department of Anatomy and Medical Imaging, The University of Auckland, Auckland, New Zealand
| | - Adelie Y S Tan
- NeuroValida, The University of Auckland, Auckland, New Zealand
- Department of Anatomy and Medical Imaging, The University of Auckland, Auckland, New Zealand
| | - Richard L M Faull
- NeuroValida, The University of Auckland, Auckland, New Zealand
- Department of Anatomy and Medical Imaging, The University of Auckland, Auckland, New Zealand
| | - Michael Dragunow
- NeuroValida, The University of Auckland, Auckland, New Zealand
- Department of Pharmacology and Clinical Pharmacology, The University of Auckland, Auckland, New Zealand
| | - Maurice A Curtis
- NeuroValida, The University of Auckland, Auckland, New Zealand
- Department of Anatomy and Medical Imaging, The University of Auckland, Auckland, New Zealand
| | - Stephen S Dominy
- Previously Cortexyme, Inc., South San Francisco, CA, USA.
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
- Lighthouse Pharmaceuticals, Inc., San Francisco, CA, USA.
| |
Collapse
|
15
|
Li W, Li JY. Overlaps and divergences between tauopathies and synucleinopathies: a duet of neurodegeneration. Transl Neurodegener 2024; 13:16. [PMID: 38528629 DOI: 10.1186/s40035-024-00407-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/28/2024] [Indexed: 03/27/2024] Open
Abstract
Proteinopathy, defined as the abnormal accumulation of proteins that eventually leads to cell death, is one of the most significant pathological features of neurodegenerative diseases. Tauopathies, represented by Alzheimer's disease (AD), and synucleinopathies, represented by Parkinson's disease (PD), show similarities in multiple aspects. AD manifests extrapyramidal symptoms while dementia is also a major sign of advanced PD. We and other researchers have sequentially shown the cross-seeding phenomenon of α-synuclein (α-syn) and tau, reinforcing pathologies between synucleinopathies and tauopathies. The highly overlapping clinical and pathological features imply shared pathogenic mechanisms between the two groups of disease. The diagnostic and therapeutic strategies seemingly appropriate for one distinct neurodegenerative disease may also apply to a broader spectrum. Therefore, a clear understanding of the overlaps and divergences between tauopathy and synucleinopathy is critical for unraveling the nature of the complicated associations among neurodegenerative diseases. In this review, we discuss the shared and diverse characteristics of tauopathies and synucleinopathies from aspects of genetic causes, clinical manifestations, pathological progression and potential common therapeutic approaches targeting the pathology, in the aim to provide a timely update for setting the scheme of disease classification and provide novel insights into the therapeutic development for neurodegenerative diseases.
Collapse
Affiliation(s)
- Wen Li
- Health Sciences Institute, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, China Medical University, Shenyang, 110122, China
| | - Jia-Yi Li
- Health Sciences Institute, Key Laboratory of Major Chronic Diseases of Nervous System of Liaoning Province, China Medical University, Shenyang, 110122, China.
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Wallenberg Neuroscience Center, Lund University, BMC A10, 22184, Lund, Sweden.
| |
Collapse
|
16
|
Adler CH, Serrano GE, Shill HA, Driver-Dunckley E, Mehta SH, Zhang N, Glass M, Sue LI, Intorcia A, Beach TG. Symmetry of synuclein density in autopsied Parkinson's disease submandibular glands. Neurosci Lett 2024; 825:137702. [PMID: 38395191 PMCID: PMC10942751 DOI: 10.1016/j.neulet.2024.137702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
BACKGROUND Peripheral tissue biopsy in Parkinson's disease (PD) may be valuable for clinical care, biomarker validation, and as research enrollment criteria. OBJECTIVE Determine whether submandibular gland pathologic alpha-synuclein (aSyn) density is symmetrical and whether previous needle biopsy caused tissue damage. METHODS Thirty autopsy-confirmed PD cases having fixed submandibular gland tissue from one side and frozen submandibular gland tissue from the contralateral side were studied. Tissue was stained for phosphorylated aSyn and density (0-4 semiquantitative scale) was determined. Three previously biopsied cases were also assessed for tissue damage at subsequent autopsy. RESULTS Mean (SD) age was 80.9 (5.5) years and disease duration 12.5 (9.3). Submandibular gland aSyn staining had a mean score of 2.13 for both the initially fixed and the initially frozen submandibular glands. The correlation between aSyn density of the two sides was r = 0.63. Correlation of aSyn density, in the originally fixed submandibular gland, with disease duration was good (r = 0.49, p =.006). No permanent tissue damage was found in the three previously biopsied cases. CONCLUSIONS This study found good correlation between aSyn density in both submandibular glands of patients with PD and found no evidence of significant tissue damage in previously biopsied subjects.
Collapse
Affiliation(s)
- Charles H Adler
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, USA.
| | - Geidy E Serrano
- Civin Laboratory of Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, USA
| | | | - Erika Driver-Dunckley
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Shyamal H Mehta
- Department of Neurology, Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Nan Zhang
- Department of Biostatistics, Mayo Clinic College of Medicine, Mayo Clinic Arizona, Scottsdale, AZ, USA
| | - Michael Glass
- Civin Laboratory of Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Lucia I Sue
- Civin Laboratory of Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Anthony Intorcia
- Civin Laboratory of Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Thomas G Beach
- Civin Laboratory of Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, USA
| |
Collapse
|
17
|
Trubitsina NP, Matiiv AB, Rogoza TM, Zudilova AA, Bezgina MD, Zhouravleva GA, Bondarev SA. Role of the Gut Microbiome and Bacterial Amyloids in the Development of Synucleinopathies. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:523-542. [PMID: 38648770 DOI: 10.1134/s0006297924030118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/16/2024] [Accepted: 01/24/2024] [Indexed: 04/25/2024]
Abstract
Less than ten years ago, evidence began to accumulate about association between the changes in the composition of gut microbiota and development of human synucleinopathies, in particular sporadic form of Parkinson's disease. We collected data from more than one hundred and thirty experimental studies that reported similar results and summarized the frequencies of detection of different groups of bacteria in these studies. It is important to note that it is extremely rare that a unidirectional change in the population of one or another group of microorganisms (only an elevation or only a reduction) was detected in the patients with Parkinson's disease. However, we were able to identify several groups of bacteria that were overrepresented in the patients with Parkinson's disease in the analyzed studies. There are various hypotheses about the molecular mechanisms that explain such relationships. Usually, α-synuclein aggregation is associated with the development of inflammatory processes that occur in response to the changes in the microbiome. However, experimental evidence is accumulating on the influence of bacterial proteins, including amyloids (curli), as well as various metabolites, on the α-synuclein aggregation. In the review, we provided up-to-date information about such examples.
Collapse
Affiliation(s)
- Nina P Trubitsina
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | - Anton B Matiiv
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | - Tatyana M Rogoza
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
- St. Petersburg Branch of the Vavilov Institute of General Genetics, Saint Petersburg, 198504, Russia
| | - Anna A Zudilova
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | - Mariya D Bezgina
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | - Galina A Zhouravleva
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
- Laboratory of Amyloid Biology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
| | - Stanislav A Bondarev
- Department of Genetics and Biotechnology, Saint Petersburg State University, Saint Petersburg, 199034, Russia.
- Laboratory of Amyloid Biology, Saint Petersburg State University, Saint Petersburg, 199034, Russia
| |
Collapse
|
18
|
Bonaz B. The gut-brain axis in Parkinson's disease. Rev Neurol (Paris) 2024; 180:65-78. [PMID: 38129277 DOI: 10.1016/j.neurol.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023]
Abstract
There is a bi-directional communication between the gut, including the microbiota, and the brain through the autonomic nervous system. Accumulating evidence has suggested a bidirectional link between gastrointestinal inflammation and neurodegeneration, in accordance with the concept of the gut-rain axis. An abnormal microbiota-gut-brain interaction contributes to the pathogeny of Parkinson's disease. This supports the hypothesis that Parkinson's disease originates in the gut to spread to the central nervous system, in particular through the vagus nerve. Targeting the gut-to-brain axis with vagus nerve stimulation, fecal microbiota transplantation, gut-selective antibiotics, as well as drugs targeting the leaky gut might be of interest in the management of Parkinson's disease.
Collapse
Affiliation(s)
- B Bonaz
- Service d'hépato-gastroentérologie, Grenoble institut neurosciences, université Grenoble-Alpes, Grenoble, France.
| |
Collapse
|
19
|
Oertel WH, Paule E, Hasemann T, Sittig E, Belke M, Unger MM, Mayer G, Werner R, Jansen A, Pape H, Höglinger GU, Vadasz D, Müller HH, Knake S, Janzen A. Reduced Gastric Contraction in Rapid-Eye-Movement Sleep Behavior Disorder and De Novo Parkinson's Disease. Mov Disord 2024; 39:53-63. [PMID: 37955157 DOI: 10.1002/mds.29652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 09/13/2023] [Accepted: 10/18/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND Reduced gastric motility in Parkinson's disease (PD) has been reported, but hardly any study exists in subjects with isolated rapid-eye-movement (REM) sleep behavior disorder (iRBD), a specific prodrome of α-synucleinopathies. OBJECTIVES We compared the gastric motility of 17 iRBD subjects with that of 18 PD subjects (15 drug naive, 3 early treated in defined off) and 15 healthy controls (HC) with real-time magnetic resonance imaging (rtMRI). METHODS After overnight fasting, participants consumed a standardized breakfast and underwent a 3-T rtMRI of the stomach. Amplitude and velocity of the peristaltic waves were analyzed under blinded conditions. Gastric motility index (GMI) was calculated. The procedure was repeated in 12 of 17 iRBD subjects ~2.5 years later. Nine of these 12 iRBD subjects were hyposmic. RESULTS In iRBD and PD subjects the amplitude of the peristaltic waves was significantly reduced compared with HCs (iRBD vs. HC: 8.7 ± 3.7 vs. 11.9 ± 4.1 mm, P = 0.0097; PD vs. HC: 6.8 ± 2.2 vs. 11.9 ± 4.1 mm, P = 0.0001). The amplitude in iRBD and PD subjects was decreased to the same extent. The GMI was reduced in only PD subjects (PD vs. HC: P = 0.0027; PD vs. iRBD: P = 0.0203). After ~2.5 years the amplitude in iRBD subjects did not significantly decrease further. CONCLUSION The amplitude of the peristaltic waves was markedly reduced in iRBD, a prodrome of α-synucleinopathies. This reduction was similar to the extent observed already in manifest early PD. This finding implies that the α-synuclein pathology affects the innervation of the stomach already in the prodromal stage. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Wolfgang H Oertel
- Department of Neurology, Philipps-University Marburg (UMR), Marburg, Germany
| | - Esther Paule
- Department of Neurology, Philipps-University Marburg (UMR), Marburg, Germany
| | - Theresa Hasemann
- Department of Neurology, Philipps-University Marburg (UMR), Marburg, Germany
| | - Elisabeth Sittig
- Department of Neurology, Philipps-University Marburg (UMR), Marburg, Germany
| | - Marcus Belke
- Department of Neurology, Philipps-University Marburg (UMR), Marburg, Germany
| | - Marcus M Unger
- Department of Neurology, Philipps-University Marburg (UMR), Marburg, Germany
- Department of Neurology, Saarland University, Saarbrücken, Germany
- Department of Neurology, SHG Kliniken Sonnenberg, Saarbruecken, Germany
| | - Geert Mayer
- Department of Neurology, Philipps-University Marburg (UMR), Marburg, Germany
| | - Rita Werner
- Department of Neurology, Philipps-University Marburg (UMR), Marburg, Germany
| | - Andreas Jansen
- Core-Facility Brain Imaging, Faculty of Medicine, Philipps-University Marburg, Marburg, Germany
- CMBB-Center for Mind, Brain and Behavior, Philipps-University Marburg, Marburg, Germany
| | - Heidi Pape
- Department of Neurology, Philipps-University Marburg (UMR), Marburg, Germany
| | - Günter U Höglinger
- Department of Neurology, Philipps-University Marburg (UMR), Marburg, Germany
- Department of Neurology, University Hospital Munich, Ludwig-Maximilians-University Munich, München, Germany
| | - Dávid Vadasz
- Department of Neurology, Philipps-University Marburg (UMR), Marburg, Germany
| | - Hans-Helge Müller
- Institute of Medical Bioinformatics and Biostatistics, Philipps-University Marburg, Marburg, Germany
| | - Susanne Knake
- Department of Neurology, Philipps-University Marburg (UMR), Marburg, Germany
- Core-Facility Brain Imaging, Faculty of Medicine, Philipps-University Marburg, Marburg, Germany
- CMBB-Center for Mind, Brain and Behavior, Philipps-University Marburg, Marburg, Germany
| | - Annette Janzen
- Department of Neurology, Philipps-University Marburg (UMR), Marburg, Germany
| |
Collapse
|
20
|
Yang M, Gan J, Liu S, Yang Y, Han J, Meng Q, Yang F, Ji Y. Associations Between Plasma Orexin-A Level and Constipation in Cognitive Impairment. J Alzheimers Dis 2024; 97:409-419. [PMID: 38143347 DOI: 10.3233/jad-230625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
BACKGROUND Constipation is a common symptom in dementia, and the cause is controversial. Rare clinical studies focused on plasma orexin-A levels and constipation in dementia. OBJECTIVE To evaluate the associations between orexin-A and constipation in patients with cognitive impairment. METHODS A total of 21 patients with mild cognitive impairment (MCI), 142 with Alzheimer's disease (AD), and 57 with Lewy body dementia (LBD) were conducted. Besides informant-based history, neurological examinations or neuropsychological assessments, plasma levels of orexin-A, and constipation were assessed. The associations between orexin-A and constipation were evaluated by logistic regression models. RESULTS There were 47/220 (21.36%) cognitive impairment patients having constipation, and the proportion of constipation in LBD (61.40%) was significantly higher than AD (5.63%) and MCI (19.05%). No significant age or sex differences in the prevalence of constipation were found in the MCI, AD, and LBD groups. We found the cognitive impairment patients with constipation had lower levels of plasma orexin-A [1.00 (0.86, 1.28) versus 1.29 (1.01, 1.50) ng/ml, p < 0.001] than those without. And the plasma levels of orexin-A were significantly associated with the occurrence of constipation after adjusting for all variables in all patients with cognitive impairment (OR = 0.151, 95% CI: 0.042-0.537, p = 0.003). And the same finding was more prominent in the LBD group (p = 0.048). CONCLUSIONS The decrease of plasma level of orexin-A is closely associated with the occurrence of constipation. Orexin-A has an intestinal protective effect and is involved in the gastrointestinal symptoms of patients with cognitive impairment.
Collapse
Affiliation(s)
- Mengli Yang
- Department of Neurology, Henan Provincial People's Hospital, Henan Provincial Key Medicine Laboratory of Nursing, Zhengzhou University People's Hospital, Zhengzhou, China
| | - Jinghuan Gan
- Department of Neurology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shuai Liu
- Department of Neurology, Tianjin Dementia Institute, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin, China
| | - Yaqi Yang
- Department of Neurology, Tianjin Dementia Institute, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin, China
| | - Jiuyan Han
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing, China
| | | | - Fan Yang
- Tianjin Medical University, Tianjin, China
| | - Yong Ji
- Department of Neurology, Tianjin Dementia Institute, Tianjin Key Laboratory of Cerebrovascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin, China
| |
Collapse
|
21
|
Mastenbroek SE, Vogel JW, Collij LE, Serrano GE, Tremblay C, Young AL, Arce RA, Shill HA, Driver-Dunckley ED, Mehta SH, Belden CM, Atri A, Choudhury P, Barkhof F, Adler CH, Ossenkoppele R, Beach TG, Hansson O. Disease progression modelling reveals heterogeneity in trajectories of Lewy-type α-synuclein pathology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.05.569878. [PMID: 38106128 PMCID: PMC10723322 DOI: 10.1101/2023.12.05.569878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Lewy body (LB) disorders, characterized by the aggregation of misfolded α-synuclein proteins, exhibit notable clinical heterogeneity. This may be due to variations in accumulation patterns of LB neuropathology. By applying data-driven disease progression modelling to regional neuropathological LB density scores from 814 brain donors, we describe three inferred trajectories of LB pathology that were characterized by differing clinicopathological presentation and longitudinal antemortem clinical progression. Most donors (81.9%) showed earliest pathology in the olfactory bulb, followed by accumulation in either limbic (60.8%) or brainstem (21.1%) regions. The remaining donors (18.1%) exhibited the first abnormalities in brainstem regions. Early limbic pathology was associated with Alzheimer's disease-associated characteristics. Meanwhile, brainstem-first pathology was associated with progressive motor impairment and substantial LB pathology outside of the brain. Our data provides evidence for heterogeneity in the temporal spread of LB pathology, possibly explaining some of the clinical disparities observed in LBDs.
Collapse
Affiliation(s)
- Sophie E. Mastenbroek
- Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam University Medical Center, location VUmc, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Brain imaging, Amsterdam, the Netherlands
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden
| | - Jacob W. Vogel
- Department of Clinical Sciences Malmö, Faculty of Medicine, SciLifLab, Lund University, Lund, Sweden
| | - Lyduine E. Collij
- Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam University Medical Center, location VUmc, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Brain imaging, Amsterdam, the Netherlands
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden
| | - Geidy E. Serrano
- Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Cecilia Tremblay
- Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Alexandra L. Young
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, UK
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
| | - Richard A. Arce
- Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Holly A. Shill
- Department of Neurology, Barrow Neurological Institute, Phoenix, Arizona, United States of America
| | - Erika D. Driver-Dunckley
- Department of Neurology, Parkinson’s Disease and Movement Disorders Center, Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Shyamal H. Mehta
- Department of Neurology, Parkinson’s Disease and Movement Disorders Center, Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Christine M. Belden
- Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Alireza Atri
- Banner Sun Health Research Institute, Sun City, Arizona, United States of America
- Department of Neurology, Center for Mind/Brain Medicine, Brigham & Women’s Hospital & Harvard Medical School, Boston, Massachusetts, United States of America
| | - Parichita Choudhury
- Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam University Medical Center, location VUmc, Amsterdam, the Netherlands
- Amsterdam Neuroscience, Brain imaging, Amsterdam, the Netherlands
- Institutes of Neurology & Healthcare Engineering, University College London, London, United Kingdom
| | - Charles H. Adler
- Department of Neurology, Parkinson’s Disease and Movement Disorders Center, Mayo Clinic, Scottsdale, Arizona, United States of America
| | - Rik Ossenkoppele
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Thomas G. Beach
- Banner Sun Health Research Institute, Sun City, Arizona, United States of America
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Faculty of Medicine, Lund University, Lund, Sweden
- Memory Clinic, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
22
|
Claudino Dos Santos JC, Oliveira LF, Noleto FM, Gusmão CTP, Brito GADC, Viana GSDB. Gut-microbiome-brain axis: the crosstalk between the vagus nerve, alpha-synuclein and the brain in Parkinson's disease. Neural Regen Res 2023; 18:2611-2614. [PMID: 37449597 DOI: 10.4103/1673-5374.373673] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
This critical review of the literature shows that there is a close link between the microbiome, the gut, and the brain in Parkinson's disease. The vagus nerve, the main component of the parasympathetic nervous system, is involved in the regulation of immune response, digestion, heart rate, and control of mood. It can detect microbiota metabolites through its afferents, transferring this gut information to the central nervous system. Preclinical and clinical studies have shown the important role played by the gut microbiome and gut-related factors in disease development and progression, as well as treatment responses. These findings suggest that the gut microbiome may be a valuable target for new therapeutic strategies for Parkinson's disease. More studies are needed to better understand the underlying biology and how this axis can be modulated for the patient's benefit.
Collapse
Affiliation(s)
- Júlio César Claudino Dos Santos
- Christus University Center - UNICHRISTUS, Fortaleza; Postgraduate Program in Morphofunctional Sciences, Federal University of Ceará - UFC, Fortaleza, CE, Brazil
| | | | | | | | - Gerly Anne de Castro Brito
- Postgraduate Program in Morphofunctional Sciences, Federal University of Ceará - UFC; Physiology and Pharmacology Department of the Federal University of Ceará - UFC, Fortaleza, CE, Brazil, Fortaleza
| | | |
Collapse
|
23
|
de Fàbregues O, Sellés M, Ramos-Vicente D, Roch G, Vila M, Bové J. Relevance of tissue-resident memory CD8 T cells in the onset of Parkinson's disease and examination of its possible etiologies: infectious or autoimmune? Neurobiol Dis 2023; 187:106308. [PMID: 37741513 DOI: 10.1016/j.nbd.2023.106308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/05/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023] Open
Abstract
Tissue-resident memory CD8 T cells are responsible for local immune surveillance in different tissues, including the brain. They constitute the first line of defense against pathogens and cancer cells and play a role in autoimmunity. A recently published study demonstrated that CD8 T cells with markers of residency containing distinct granzymes and interferon-γ infiltrate the parenchyma of the substantia nigra and contact dopaminergic neurons in an early premotor stage of Parkinson's disease. This infiltration precedes α-synuclein aggregation and neuronal loss in the substantia nigra, suggesting a relevant role for CD8 T cells in the onset of the disease. To date, the nature of the antigen that initiates the adaptive immune response remains unknown. This review will discuss the role of tissue-resident memory CD8 T cells in brain immune homeostasis and in the onset of Parkinson's disease and other neurological diseases. We also discuss how aging and genetic factors can affect the CD8 T cell immune response and how animal models can be misleading when studying human-related immune response. Finally, we speculate about a possible infectious or autoimmune origin of Parkinson's disease.
Collapse
Affiliation(s)
- Oriol de Fàbregues
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain; Movement Disorders Unit, Neurology Department, Vall d'Hebron University Hospital
| | - Maria Sellés
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain
| | - David Ramos-Vicente
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain
| | - Gerard Roch
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain
| | - Miquel Vila
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain; Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, Barcelona, Catalonia, Spain; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Catalonia, Spain
| | - Jordi Bové
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute, Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), Barcelona, Catalonia, Spain.
| |
Collapse
|
24
|
Talman L, Safarpour D. An Overview of Gastrointestinal Dysfunction in Parkinsonian Syndromes. Semin Neurol 2023; 43:583-597. [PMID: 37703887 DOI: 10.1055/s-0043-1771461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Gastrointestinal (GI) dysfunction is a common nonmotor symptom in Parkinson's disease (PD) as well as other parkinsonian syndromes and may precede the onset of motor symptoms by decades. Involvement of all segments of the GI tract can lead to altered responses to medications and worsened quality of life for patients. While some GI symptoms occur in isolation, others overlap. Therefore, understanding the changes in different segments of the GI tract and how they relate to altered responses to PD treatment can guide both diagnostic and pharmacological interventions. Gut microbiota plays a critical role in immune activity and modulation of the enteric and central nervous systems. Understanding this bidirectional relationship helps to elucidate the pathogenesis of neurodegeneration. This review will describe the current understanding of how GI dysfunction develops in parkinsonian syndromes, common symptoms in PD and related disorders, and available treatments.
Collapse
Affiliation(s)
- Lauren Talman
- Department of Neurology School of Medicine, Oregon Health & Science University, Portland, Oregon
| | - Delaram Safarpour
- Department of Neurology School of Medicine, Oregon Health & Science University, Portland, Oregon
| |
Collapse
|
25
|
Coughlin DG, Irwin DJ. Fluid and Biopsy Based Biomarkers in Parkinson's Disease. Neurotherapeutics 2023; 20:932-954. [PMID: 37138160 PMCID: PMC10457253 DOI: 10.1007/s13311-023-01379-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 05/05/2023] Open
Abstract
Several advances in fluid and tissue-based biomarkers for use in Parkinson's disease (PD) and other synucleinopathies have been made in the last several years. While work continues on species of alpha-synuclein (aSyn) and other proteins which can be measured from spinal fluid and plasma samples, immunohistochemistry and immunofluorescence from peripheral tissue biopsies and alpha-synuclein seeding amplification assays (aSyn-SAA: including real-time quaking induced conversion (RT-QuIC) and protein misfolding cyclic amplification (PMCA)) now offer a crucial advancement in their ability to identify aSyn species in PD patients in a categorical fashion (i.e., of aSyn + vs aSyn -); to augment clinical diagnosis however, aSyn-specific assays that have quantitative relevance to pathological burden remain an unmet need. Alzheimer's disease (AD) co-pathology is commonly found postmortem in PD, especially in those who develop dementia, and dementia with Lewy bodies (DLB). Biofluid biomarkers for tau and amyloid beta species can detect AD co-pathology in PD and DLB, which does have relevance for prognosis, but further work is needed to understand the interplay of aSyn tau, amyloid beta, and other pathological changes to generate comprehensive biomarker profiles for patients in a manner translatable to clinical trial design and individualized therapies.
Collapse
Affiliation(s)
- David G Coughlin
- Department of Neurosciences, University of California San Diego, 9444 Medical Center Drive, ECOB 03-021, MCC 0886, La Jolla, CA, 92037, USA.
| | - David J Irwin
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
26
|
Kang SY, Yun JY, Kang YK, Moon BS, Yoon HJ, Yoo MY, Kim BS. Salivary Gland Uptake on 18F-FP-CIT PET as a New Biomarker in Patients With Parkinsonism. Korean J Radiol 2023; 24:690-697. [PMID: 37404111 DOI: 10.3348/kjr.2023.0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/31/2023] [Accepted: 04/27/2023] [Indexed: 07/06/2023] Open
Abstract
OBJECTIVE 18F-FP-CIT positron emission tomography (PET) is known for its high sensitivity and specificity for evaluating striatal dopamine transporter (DAT) binding. Recently, for the early diagnose of Parkinson's disease, many researchers focused on the diagnosis of synucleinopathy in organs involved in non-motor symptoms of Parkinson's disease. We investigated the feasibility of salivary gland uptake on 18F-FP-CIT PET as a new biomarker in patients with parkinsonism. MATERIALS AND METHODS A total of 219 participants with confirmed or presumed parkinsonism, including 54 clinically diagnosed idiopathic Parkinson's disease (IPD), 59 suspected and yet undiagnosed, and 106 with secondary parkinsonism, were enrolled. The standardized uptake value ratio (SUVR) of the salivary glands was measured on both early and delayed 18F-FP-CIT PET scans using the cerebellum as the reference region. Additionally, the delayed-to-early ratio (DE_ratio) of salivary gland was obtained. The results were compared between patients with different PET patterns. RESULTS The SUVR in early 18F-FP-CIT PET scan was significantly higher in patients with IPD pattern compared that in the non-dopaminergic degradation group (0.5 ± 0.19 vs. 0.6 ± 0.21, P < 0.001). Compared with the non-dopaminergic degradation group, the DE_ratio was significantly lower in patients with IPD (5.05 ± 1.7 vs. 4.0 ± 1.31, P < 0.001) or atypical parkinsonism patterns (5.05 ± 1.7 vs. 3.76 ± 0.96, P < 0.05). The DE_ratio was moderately and positively correlated with striatal DAT availability in both the whole striatum (r = 0.37, P < 0.001) and posterior putamen (r = 0.36, P < 0.001). CONCLUSION Parkinsonism patients with an IPD pattern exhibited a significant increase in uptake on early 18F-FP-CIT PET and a decrease in the DE_ratio in the salivary gland. Our findings suggest that salivary gland uptake of dual-phase 18F-FP-CIT PET can provide diagnostic information on DAT availability in patients with Parkinson's disease.
Collapse
Affiliation(s)
- Seo Young Kang
- Department of Nuclear Medicine, Ewha Womans University College of Medicine, Seoul, Korea
| | - Ji Young Yun
- Department of Neurology, Ewha Womans University College of Medicine, Seoul, Korea
| | - Yeon-Koo Kang
- Department of Nuclear Medicine, Ewha Womans University College of Medicine, Seoul, Korea
| | - Byung Seok Moon
- Department of Nuclear Medicine, Ewha Womans University College of Medicine, Seoul, Korea
| | - Hai-Jeon Yoon
- Department of Nuclear Medicine, Ewha Womans University College of Medicine, Seoul, Korea
| | - Min Young Yoo
- Department of Nuclear Medicine, Ewha Womans University College of Medicine, Seoul, Korea
| | - Bom Sahn Kim
- Department of Nuclear Medicine, Ewha Womans University College of Medicine, Seoul, Korea.
| |
Collapse
|
27
|
Pifl C, Reither H, Attems J, Zecca L. Dopamine and vesicular monoamine transport loss supports incidental Lewy body disease as preclinical idiopathic Parkinson. NPJ Parkinsons Dis 2023; 9:89. [PMID: 37322038 PMCID: PMC10272141 DOI: 10.1038/s41531-023-00514-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 04/27/2023] [Indexed: 06/17/2023] Open
Abstract
Incidental Lewy body disease (ILBD) is a neuropathological diagnosis of brains with Lewy bodies without clinical neuropsychiatric symptoms. Dopaminergic deficits suggest a relationship to preclinical Parkinson's disease (PD). We now report a subregional pattern of striatal dopamine loss in ILBD cases, with dopamine found significantly decreased in the putamen (-52%) and only to a lower extent in the caudate (-38%, not statistically significant); this is similar to the pattern in idiopathic PD in various neurochemical and in vivo imaging studies. We aimed to find out if our recently reported impaired storage of dopamine in striatal synaptic vesicles prepared from striatal tissue of cases with idiopathic PD might be an early or even causative event. We undertook parallel measurements of [3H]dopamine uptake and vesicular monoamine transporter (VMAT)2 binding sites by the specific label [3H]dihydrotetrabenazine on vesicular preparation from caudate and putamen in ILBD. Neither specific uptake of dopamine and binding of [3H]dihydrotetrabenazine, nor mean values of the calculated ratios of dopamine uptake and VMAT2 binding, a measure of uptake rate per transport site, were significantly different between ILBD and controls. ATP-dependence of [3H]dopamine uptake revealed significantly higher rates in putamen than in caudate at saturating concentrations of ATP in controls, a subregional difference lost in ILBD. Our findings support a loss of the normally higher VMAT2 activity in putamen as a contributing factor to the higher susceptibility of the putamen to dopamine depletion in idiopathic PD. Moreover, we suggest ILBD postmortem tissue as a valuable source for testing hypotheses on processes in idiopathic PD.
Collapse
Affiliation(s)
- Christian Pifl
- Center for Brain Research, Medical University of Vienna, Vienna, Austria.
| | - Harald Reither
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Johannes Attems
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Luigi Zecca
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate, Milan, Italy
| |
Collapse
|
28
|
Borghammer P. The brain-first vs. body-first model of Parkinson's disease with comparison to alternative models. J Neural Transm (Vienna) 2023; 130:737-753. [PMID: 37062013 DOI: 10.1007/s00702-023-02633-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/03/2023] [Indexed: 04/17/2023]
Abstract
The ultimate origin of Lewy body disorders, including Parkinson's disease (PD) and Dementia with Lewy bodies (DLB), is still incompletely understood. Although a large number of pathogenic mechanisms have been implicated, accumulating evidence support that aggregation and neuron-to-neuron propagation of alpha-synuclein may be the core feature of these disorders. The synuclein, origin, and connectome (SOC) disease model of Lewy body disorders was recently introduced. This model is based on the hypothesis that in the majority of patients, the first alpha-synuclein pathology arises in single location and spreads from there. The most common origin sites are the enteric nervous system and the olfactory system. The SOC model predicts that gut-first pathology leads to a clinical body-first subtype characterized by prodromal autonomic symptoms and REM sleep behavior disorder. In contrast, olfactory-first pathology leads to a brain-first subtype with fewer non-motor symptoms before diagnosis. The SOC model further predicts that body-first patients are older, more commonly develop symmetric dopaminergic degeneration, and are at increased risk of dementia-compared to brain-first patients. In this review, the SOC model is explained and compared to alternative models of the pathogenesis of Lewy body disorders, including the Braak staging system, and the Unified Staging System for Lewy Body Disorders. Postmortem evidence from brain banks and clinical imaging data of dopaminergic and cardiac sympathetic loss is reviewed. It is concluded that these datasets seem to be more compatible with the SOC model than with those alternative disease models of Lewy body disorders.
Collapse
Affiliation(s)
- Per Borghammer
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, J220, 8200, Aarhus, Denmark.
| |
Collapse
|
29
|
Wüllner U, Borghammer P, Choe CU, Csoti I, Falkenburger B, Gasser T, Lingor P, Riederer P. The heterogeneity of Parkinson's disease. J Neural Transm (Vienna) 2023; 130:827-838. [PMID: 37169935 PMCID: PMC10174621 DOI: 10.1007/s00702-023-02635-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/12/2023] [Indexed: 05/13/2023]
Abstract
The heterogeneity of Parkinson's disease (PD), i.e. the various clinical phenotypes, pathological findings, genetic predispositions and probably also the various implicated pathophysiological pathways pose a major challenge for future research projects and therapeutic trail design. We outline several pathophysiological concepts, pathways and mechanisms, including the presumed roles of α-synuclein misfolding and aggregation, Lewy bodies, oxidative stress, iron and melanin, deficient autophagy processes, insulin and incretin signaling, T-cell autoimmunity, the gut-brain axis and the evidence that microbial (viral) agents may induce molecular hallmarks of neurodegeneration. The hypothesis is discussed, whether PD might indeed be triggered by exogenous (infectious) agents in susceptible individuals upon entry via the olfactory bulb (brain first) or the gut (body-first), which would support the idea that disease mechanisms may change over time. The unresolved heterogeneity of PD may have contributed to the failure of past clinical trials, which attempted to slow the course of PD. We thus conclude that PD patients need personalized therapeutic approaches tailored to specific phenomenological and etiologic subtypes of disease.
Collapse
Affiliation(s)
- Ullrich Wüllner
- Department of Neurology, University Clinic Bonn and German Center for Neurodegenerative Diseases (DZNE), 53127 Bonn, Germany
| | - Per Borghammer
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| | - Chi-un Choe
- Department of Neurology, Klinikum Itzehoe, Robert-Koch-Straße 2, 25524 Itzehoe, Germany
| | - Ilona Csoti
- Fachklinik Für Parkinson, Gertrudis Klinik Biskirchen, Karl-Ferdinand-Broll-Straße 2-4, 35638 Leun-Biskirchen, Germany
| | - Björn Falkenburger
- Department of Neurology, University Hospital Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Thomas Gasser
- Department of Neurology, Hertie-Institute for Clinical Brain Research, University of Tübingen and German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Paul Lingor
- Department of Neurology, School of Medicine, Klinikum Rechts Der Isar, Technical University of Munich, Munich, Germany
- Department of Neurology and German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Peter Riederer
- University Hospital Wuerzburg, Clinic and Policlinic for Psychiatry, Psychosomatics and Psychotherapy, Margarete-Höppel-Platz 1, 97080 Würzburg, Germany
- Department of Psychiatry, University of Southern Denmark Odense, J.B. Winslows Vey 18, 5000 Odense, Denmark
| |
Collapse
|
30
|
Li Q, Meng LB, Chen LJ, Shi X, Tu L, Zhou Q, Yu JL, Liao X, Zeng Y, Yuan QY. The role of the microbiota-gut-brain axis and intestinal microbiome dysregulation in Parkinson's disease. Front Neurol 2023; 14:1185375. [PMID: 37305758 PMCID: PMC10249504 DOI: 10.3389/fneur.2023.1185375] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/24/2023] [Indexed: 06/13/2023] Open
Abstract
Parkinson's disease (PD) is a complex progressive neurodegenerative disease associated with aging. Its main pathological feature is the degeneration and loss of dopaminergic neurons related to the misfolding and aggregation of α-synuclein. The pathogenesis of PD has not yet been fully elucidated, and its occurrence and development process are closely related to the microbiota-gut-brain axis. Dysregulation of intestinal microbiota may promote the damage of the intestinal epithelial barrier, intestinal inflammation, and the upward diffusion of phosphorylated α-synuclein from the enteric nervous system (ENS) to the brain in susceptible individuals and further lead to gastrointestinal dysfunction, neuroinflammation, and neurodegeneration of the central nervous system (CNS) through the disordered microbiota-gut-brain axis. The present review aimed to summarize recent advancements in studies focusing on the role of the microbiota-gut-brain axis in the pathogenesis of PD, especially the mechanism of intestinal microbiome dysregulation, intestinal inflammation, and gastrointestinal dysfunction in PD. Maintaining or restoring homeostasis in the gut microenvironment by targeting the gut microbiome may provide future direction for the development of new biomarkers for early diagnosis of PD and therapeutic strategies to slow disease progression.
Collapse
Affiliation(s)
- Qing Li
- Department of Nutrition, Southwest Hospital, Third Military Medical University (Army Medical University), The First Affiliated Hospital of PLA Army Medical University, Chongqing, China
| | - Ling-bing Meng
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Li-jun Chen
- Department of Nutrition, Southwest Hospital, Third Military Medical University (Army Medical University), The First Affiliated Hospital of PLA Army Medical University, Chongqing, China
| | - Xia Shi
- Department of Nutrition, Southwest Hospital, Third Military Medical University (Army Medical University), The First Affiliated Hospital of PLA Army Medical University, Chongqing, China
| | - Ling Tu
- Department of Nutrition, Southwest Hospital, Third Military Medical University (Army Medical University), The First Affiliated Hospital of PLA Army Medical University, Chongqing, China
| | - Qi Zhou
- Department of Nutrition, Southwest Hospital, Third Military Medical University (Army Medical University), The First Affiliated Hospital of PLA Army Medical University, Chongqing, China
| | - Jin-long Yu
- Department of Nutrition, Southwest Hospital, Third Military Medical University (Army Medical University), The First Affiliated Hospital of PLA Army Medical University, Chongqing, China
| | - Xin Liao
- Department of Nutrition, Southwest Hospital, Third Military Medical University (Army Medical University), The First Affiliated Hospital of PLA Army Medical University, Chongqing, China
| | - Yuan Zeng
- Department of Nutrition, Southwest Hospital, Third Military Medical University (Army Medical University), The First Affiliated Hospital of PLA Army Medical University, Chongqing, China
| | - Qiao-ying Yuan
- Department of Nutrition, Southwest Hospital, Third Military Medical University (Army Medical University), The First Affiliated Hospital of PLA Army Medical University, Chongqing, China
| |
Collapse
|
31
|
Abdelnaby R, Moawad MHED, Shabib AS, Mohamed KA, Ebrahim MA, Aboutaleb AM, Gaber DE, Serour AS, Shamim MA, Elberry MH, Bedewi MA, Elsayed M, Walter U. Sonographic vagus nerve atrophy in Parkinson's disease: Myth or fact? A systematic review and meta-analysis of recent evidence answers. Parkinsonism Relat Disord 2023; 112:105451. [PMID: 37236044 DOI: 10.1016/j.parkreldis.2023.105451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/12/2023] [Accepted: 05/20/2023] [Indexed: 05/28/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is a major cause of disability. We aimed to assess the benefit of ultrasonography of the vagus nerve (VN) to compare between PD and healthy controls as well as to deliver reference values of nerve cross sectional area (CSA). MATERIALS AND METHODS We performed a systematic search on Medline (PubMed), Scopus, Embase, and Web of Science, up till July 25, 2022. After article selection and screening, we performed a quality assessment using the Newcastle-Ottawa Scale. Furthermore, a statistical analysis and subgroup analysis was performed. RESULTS Eleven studies were included with a total of 809 participants (409 PD patients and 400 controls). A statistically significant difference in the CSA of the right and left VN between PD patients and healthy controls was observed, indicating the atrophy of VN in PD patients (p < 0.00001). The subgroup meta-analysis for average measurements of VN CSA showed insignificant heterogeneity for age (I2 = 48.67%, p = 0.058), level of measurements (I2 = 57.91%, p = 0.05), and disease duration (I2 = 27.1%, p = 0.241). CONCLUSION Our meta-analysis showed a sonographically detectable degree of neuronal damage in PD, which correlates with VN atrophy with high confidence. Therefore, we believe this is a potential marker for vagus neuronal lesions. Future studies are required to assess the potential clinical correlation.
Collapse
Affiliation(s)
- Ramy Abdelnaby
- Department of Neurology, RWTH Aachen University, Aachen, Germany.
| | - Mostafa Hossam El Din Moawad
- Faculty of Pharmacy, Alexandria University, Alexandria, Egypt; Faculty of Medicine, Suez Canal University, Ismailia, Egypt.
| | | | | | | | | | | | | | - Muhammad A Shamim
- Department of Pharmacology, All India Institute of Medical Sciences, Jodhpur, India.
| | - Mostafa H Elberry
- Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt.
| | - Mohamed Abdelmohsen Bedewi
- Department of Internal Medicine, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-kharj, Kingdom of Saudi Arabia.
| | - Mohamed Elsayed
- Department of Psychiatry and Psychotherapy III, University of Ulm, Ulm, Germany; Department of Psychiatry, School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, Germany.
| | - Uwe Walter
- Department of Neurology, Rostock University Medical Center, and the German Center of Neurodegenerative Diseases, Research Site Rostock, Rostock, Germany.
| |
Collapse
|
32
|
Bourque M, Morissette M, Soulet D, Di Paolo T. Impact of Sex on Neuroimmune contributions to Parkinson's disease. Brain Res Bull 2023:110668. [PMID: 37196734 DOI: 10.1016/j.brainresbull.2023.110668] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/27/2023] [Accepted: 05/13/2023] [Indexed: 05/19/2023]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder after Alzheimer's disease. Inflammation has been observed in both the idiopathic and familial forms of PD. Importantly, PD is reported more often in men than in women, men having at least 1.5- fold higher risk to develop PD than women. This review summarizes the impact of biological sex and sex hormones on the neuroimmune contributions to PD and its investigation in animal models of PD. Innate and peripheral immune systems participate in the brain neuroinflammation of PD patients and is reproduced in neurotoxin, genetic and alpha-synuclein based models of PD. Microglia and astrocytes are the main cells of the innate immune system in the central nervous system and are the first to react to restore homeostasis in the brain. Analysis of serum immunoprofiles in female and male control and PD patients show that a great proportion of these markers differ between male and female. The relationship between CSF inflammatory markers and PD clinical characteristics or PD biomarkers shows sex differences. Conversely, in animal models of PD, sex differences in inflammation are well documented and the beneficial effects of endogenous and exogenous estrogenic modulation in inflammation have been reported. Targeting neuroinflammation in PD is an emerging therapeutic option but gonadal drugs have not yet been investigated in this respect, thus offering new opportunities for sex specific treatments.
Collapse
Affiliation(s)
- Mélanie Bourque
- Centre de Recherche du CHU de Québec, Axe Neurosciences, 2705, Boulevard Laurier, Québec, (Québec), G1V4G2, Canada.
| | - Marc Morissette
- Centre de Recherche du CHU de Québec, Axe Neurosciences, 2705, Boulevard Laurier, Québec, (Québec), G1V4G2, Canada.
| | - Denis Soulet
- Centre de Recherche du CHU de Québec, Axe Neurosciences, 2705, Boulevard Laurier, Québec, (Québec), G1V4G2, Canada; Faculté de Pharmacie, Pavillon Ferdinand-Vandry, 1050, avenue de la Médecine, Université Laval, Québec (Québec) G1V 0A6, Canada.
| | - Thérèse Di Paolo
- Centre de Recherche du CHU de Québec, Axe Neurosciences, 2705, Boulevard Laurier, Québec, (Québec), G1V4G2, Canada; Faculté de Pharmacie, Pavillon Ferdinand-Vandry, 1050, avenue de la Médecine, Université Laval, Québec (Québec) G1V 0A6, Canada.
| |
Collapse
|
33
|
Chahine LM, Beach TG, Adler CH, Hepker M, Kanthasamy A, Appel S, Pritzkow S, Pinho M, Mosovsky S, Serrano GE, Coffey C, Brumm MC, Oliveira LMA, Eberling J, Mollenhauer B. Central and peripheral α-synuclein in Parkinson disease detected by seed amplification assay. Ann Clin Transl Neurol 2023; 10:696-705. [PMID: 36972727 PMCID: PMC10187727 DOI: 10.1002/acn3.51753] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/29/2023] [Accepted: 02/10/2023] [Indexed: 03/29/2023] Open
Abstract
OBJECTIVES Detection of α-synuclein aggregates by seed amplification is a promising Parkinson disease biomarker assay. Understanding intraindividual relationships of α-synuclein measures could inform optimal biomarker development. The objectives were to test accuracy of α-synuclein seed amplification assay in central (cerebrospinal fluid) and peripheral (submandibular gland) sources, compare to total α-synuclein measures, and investigate within-subject relationships. METHODS The Systemic Synuclein Sampling Study aimed to characterize α-synuclein in multiple tissues and biofluids within Parkinson disease subjects (n = 59) and compared to healthy controls (n = 21). Motor and non-motor measures and dopamine transporter scans were obtained. Four measures of α-synuclein were compared: seed amplification assay in cerebrospinal fluid and formalin-fixed paraffin-embedded submandibular gland, total α-synuclein quantified in biofluids using enzyme-linked immunoassay, and aggregated α-synuclein in submandibular gland detected by immunohistochemistry. Accuracy of seed amplification assay for Parkinson disease diagnosis was examined and within-subject α-synuclein measures were compared. RESULTS Sensitivity and specificity of α-synuclein seed amplification assay for Parkinson disease diagnosis was 92.6% and 90.5% in cerebrospinal fluid, and 73.2% and 78.6% in submandibular gland, respectively. 25/38 (65.8%) Parkinson disease participants were positive for both cerebrospinal fluid and submandibular gland seed amplification assay. Comparing accuracy for Parkinson disease diagnosis of different α-synuclein measures, cerebrospinal fluid seed amplification assay was the highest (Youden Index = 83.1%). 98.3% of all Parkinson disease cases had ≥1 measure of α-synuclein positive. INTERPRETATION α-synuclein seed amplification assay (cerebrospinal fluid>submandibular gland) had higher sensitivity and specificity compared to total α-synuclein measures, and within-subject relationships of central and peripheral α-synuclein measures emerged.
Collapse
Affiliation(s)
- Lana M. Chahine
- Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | | | - Charles H. Adler
- Department of NeurologyMayo Clinic College of MedicineScottsdaleArizonaUSA
| | | | - Anumantha Kanthasamy
- Center for Brain Science and Neurodegenerative Diseases, Department of Physiology and PharmacologyUniversity of GeorgiaAthensGeorgiaUSA
| | - Scott Appel
- Biostatistics Analysis CenterUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Sandra Pritzkow
- Department of NeurologyUniversity of Texas, McGovern Medical SchoolHoustonTexasUSA
| | - Michelle Pinho
- Department of NeurologyUniversity of Texas, McGovern Medical SchoolHoustonTexasUSA
| | - Sherri Mosovsky
- Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | | | - Christopher Coffey
- Banner Sun Health Research InstituteSun CityArizonaUSA
- Department of BiostatisticsUniversity of Iowa College of Public HealthIowa CityIowaUSA
| | - Michael C. Brumm
- Department of BiostatisticsUniversity of Iowa College of Public HealthIowa CityIowaUSA
| | - Luis M. A. Oliveira
- Banner Sun Health Research InstituteSun CityArizonaUSA
- The Michael J. Fox Foundation for Parkinson's ResearchNew YorkNew YorkUSA
| | - Jamie Eberling
- Banner Sun Health Research InstituteSun CityArizonaUSA
- The Michael J. Fox Foundation for Parkinson's ResearchNew YorkNew YorkUSA
| | - Brit Mollenhauer
- Center of Parkinsonism and Movement Disorders, Department of NeurologyParacelsus‐Elena Klinik Kassel and University Medical Center GöttingenGöttingenGermany
| |
Collapse
|
34
|
Chahine LM, Merchant K, Siderowf A, Sherer T, Tanner C, Marek K, Simuni T. Proposal for a Biologic Staging System of Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2023; 13:297-309. [PMID: 37066922 DOI: 10.3233/jpd-225111] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
The Parkinson's disease (PD) research field has seen the advent of several promising biomarkers and a deeper understanding of the clinical features of the disease from the earliest stages of pathology to manifest disease. Despite progress, a biologically based PD staging system does not exist. Such staging would be a useful framework within which to model the disease, develop and validate biomarkers, guide therapeutic development, and inform clinical trials design. We propose that the presence of aggregated neuronal α-synuclein, dopaminergic neuron dysfunction/degeneration, and clinical signs and symptoms identifies a group of individuals that have Lewy body pathology, which in early stages manifests with what is now referred to as prodromal non-motor features and later stages with the manifestations of PD and related Lewy body diseases as defined by clinical diagnostic criteria. Based on the state of the field, we herein propose a definition and staging of PD based on biology. We present the biologic basis for such a staging system and review key assumptions and evidence that support the proposed approach. We identify gaps in knowledge and delineate crucial research priorities that will inform the ultimate integrated biologic staging system for PD.
Collapse
Affiliation(s)
- Lana M Chahine
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kalpana Merchant
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Andrew Siderowf
- Department of Neurology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Todd Sherer
- The Michael J Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Caroline Tanner
- Department of Neurology, Weill Institute for Neurosciences, University of San Francisco, San Francisco, CA, USA
| | | | - Tanya Simuni
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
35
|
Forloni G. Alpha Synuclein: Neurodegeneration and Inflammation. Int J Mol Sci 2023; 24:ijms24065914. [PMID: 36982988 PMCID: PMC10059798 DOI: 10.3390/ijms24065914] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Alpha-Synuclein (α-Syn) is one of the most important molecules involved in the pathogenesis of Parkinson's disease and related disorders, synucleinopathies, but also in several other neurodegenerative disorders with a more elusive role. This review analyzes the activities of α-Syn, in different conformational states, monomeric, oligomeric and fibrils, in relation to neuronal dysfunction. The neuronal damage induced by α-Syn in various conformers will be analyzed in relation to its capacity to spread the intracellular aggregation seeds with a prion-like mechanism. In view of the prominent role of inflammation in virtually all neurodegenerative disorders, the activity of α-Syn will also be illustrated considering its influence on glial reactivity. We and others have described the interaction between general inflammation and cerebral dysfunctional activity of α-Syn. Differences in microglia and astrocyte activation have also been observed when in vivo the presence of α-Syn oligomers has been combined with a lasting peripheral inflammatory effect. The reactivity of microglia was amplified, while astrocytes were damaged by the double stimulus, opening new perspectives for the control of inflammation in synucleinopathies. Starting from our studies in experimental models, we extended the perspective to find useful pointers to orient future research and potential therapeutic strategies in neurodegenerative disorders.
Collapse
Affiliation(s)
- Gianluigi Forloni
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 20156 Milano, Italy
| |
Collapse
|
36
|
Bloem BR, Kalia LV. Thomas G. Beach, MD, PhD, FRCPC, Charles H. Adler, MD, PhD, FAAN, and Simon Stott, PhD, recipients of the Parkinson Prize 2022. JOURNAL OF PARKINSON'S DISEASE 2022; 12:2283-2286. [PMID: 36565068 DOI: 10.3233/jpd-229010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
37
|
Jellinger KA. The pathobiological basis of depression in Parkinson disease: challenges and outlooks. J Neural Transm (Vienna) 2022; 129:1397-1418. [PMID: 36322206 PMCID: PMC9628588 DOI: 10.1007/s00702-022-02559-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
Depression, with an estimated prevalence of about 40% is a most common neuropsychiatric disorder in Parkinson disease (PD), with a negative impact on quality of life, cognitive impairment and functional disability, yet the underlying neurobiology is poorly understood. Depression in PD (DPD), one of its most common non-motor symptoms, can precede the onset of motor symptoms but can occur at any stage of the disease. Although its diagnosis is based on standard criteria, due to overlap with other symptoms related to PD or to side effects of treatment, depression is frequently underdiagnosed and undertreated. DPD has been related to a variety of pathogenic mechanisms associated with the underlying neurodegenerative process, in particular dysfunction of neurotransmitter systems (dopaminergic, serotonergic and noradrenergic), as well as to disturbances of cortico-limbic, striato-thalamic-prefrontal, mediotemporal-limbic networks, with disruption in the topological organization of functional mood-related, motor and other essential brain network connections due to alterations in the blood-oxygen-level-dependent (BOLD) fluctuations in multiple brain areas. Other hypothetic mechanisms involve neuroinflammation, neuroimmune dysregulation, stress hormones, neurotrophic, toxic or metabolic factors. The pathophysiology and pathogenesis of DPD are multifactorial and complex, and its interactions with genetic factors, age-related changes, cognitive disposition and other co-morbidities awaits further elucidation.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150, Vienna, Austria.
| |
Collapse
|
38
|
Shannon KM. Infections and Changes in Commensal Bacteria and the Pathogenesis of Parkinson’s Disease. JOURNAL OF PARKINSON'S DISEASE 2022; 12:S45-S51. [PMID: 35723116 PMCID: PMC9535579 DOI: 10.3233/jpd-223271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The cause of Parkinson’s disease (PD) is unknown, but environmental factors are purported to influence risk. Interest in PD as a sequel of infection dates back to reports of parkinsonism arising from encephalitis lethargica. The objective of this paper is to review the literature as it relates to infections and changes in microbiome and the genesis of PD. There is evidence to support prior infection with Helicobacter pylori, hepatitis C virus, Malassezia, and Strep pneumonia in association with PD. A large number of studies support an association between changes in commensal bacteria, especially gut bacteria, and PD. Extant literature supports a role for some infections and changes in commensal bacteria in the genesis of PD. Studies support an inflammatory mechanism for this association, but additional research is required for translation of these findings to therapeutic options.
Collapse
Affiliation(s)
- Kathleen M. Shannon
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
39
|
Banwinkler M, Dzialas V, Hoenig MC, van Eimeren T. Gray Matter Volume Loss in Proposed Brain-First and Body-First Parkinson's Disease Subtypes. Mov Disord 2022; 37:2066-2074. [PMID: 35943058 DOI: 10.1002/mds.29172] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/24/2022] [Accepted: 07/10/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND α-Synuclein pathology is associated with neuronal degeneration in Parkinson's disease (PD) and considered to sequentially spread across the brain (Braak stages). According to a new hypothesis of distinct α-synuclein spreading directions based on the initial site of pathology, the "brain-first" spreading subtype would be associated with a more asymmetric cerebral and nigrostriatal pathology than the "body-first" subtype. OBJECTIVE Here, we tested if proposed markers of brain-first PD (ie, higher dopamine transporter [DaT] asymmetry; absence of rapid eye movement sleep behavior disorder [RBD]) are associated with a greater or more asymmetric reduction in gray matter volume (GMV) in comparison to body-first PD. METHODS Data of 255 de novo PD patients and 110 healthy controls (HCs) were retrieved from the Parkinson's Progression Markers Initiative. Structural magnetic resonance images were preprocessed, and GMVs and their hemispherical asymmetry were obtained for each of the neuropathologically defined Braak stages. Group and correlation comparisons were performed to assess differences in GMV and GMV asymmetry between PD subtypes. RESULTS PD patients demonstrated significantly smaller bilateral GMVs compared to HCs, in a pattern denoting stage-dependent disease-related brain atrophy. However, the degree of putaminal DaT asymmetry was not associated with reduced GMV or higher GMV asymmetry. Furthermore, RBD-negative and RBD-positive patients did not demonstrate a significant difference in GMV or GMV asymmetry. CONCLUSIONS Our findings suggest that putative brain-first and body-first patients do not present diverging brain atrophy patterns. Although certainly not disproving the brain-first/body-first spreading hypothesis, this study fails to provide evidence in support of it. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Magdalena Banwinkler
- Faculty of Medicine and University Hospital Cologne, Department of Nuclear Medicine, University of Cologne, Cologne, Germany
| | - Verena Dzialas
- Faculty of Medicine and University Hospital Cologne, Department of Nuclear Medicine, University of Cologne, Cologne, Germany.,Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | | | - Merle C Hoenig
- Faculty of Medicine and University Hospital Cologne, Department of Nuclear Medicine, University of Cologne, Cologne, Germany.,Institute for Neuroscience and Medicine II, Molecular Organization of the Brain, Research Center Juelich, Juelich, Germany
| | - Thilo van Eimeren
- Faculty of Medicine and University Hospital Cologne, Department of Nuclear Medicine, University of Cologne, Cologne, Germany.,Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, Cologne, Germany
| |
Collapse
|
40
|
Shin C, Kim SI, Park SH, Shin JH, Lee CY, Yang HK, Lee HJ, Kong SH, Suh YS, Kim HJ, Jeon B. Sensitivity of Detecting Alpha-Synuclein Accumulation in the Gastrointestinal Tract and Tissue Volume Examined. J Mov Disord 2022; 15:264-268. [PMID: 35880377 PMCID: PMC9536904 DOI: 10.14802/jmd.22042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/31/2022] [Indexed: 11/25/2022] Open
Abstract
Objective This study aimed to evaluate whether a larger tissue volume increases the sensitivity of detecting alpha-synuclein (AS) pathology in the gastrointestinal (GI) tract. Methods Nine patients with Parkinson’s disease (PD) or idiopathic rapid eye movement sleep disorder (iRBD) who underwent GI operation and had full-depth intestinal blocks were included. All patients were selected from our previous study population. A total of 10 slides (5 serial sections from the proximal and distal blocks) per patient were analyzed. Results In previous studies, pathologic evaluation revealed phosphorylated AS (+) in 5/9 patients (55.6%) and in 1/5 controls (20.0%); in this extensive examination, this increased to 8/9 patients (88.9%) but remained the same in controls (20.0%). The severity and distribution of positive findings were similar between patients with iRBD and PD. Conclusion Examining a large tissue volume increased the sensitivity of detecting AS accumulation in the GI tract.
Collapse
Affiliation(s)
- Chaewon Shin
- Department of Neurology, Chungnam National University Sejong Hospital, Chungnam National University College of Medicine, Sejong, Korea
| | - Seong-Ik Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Sung-Hye Park
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
| | - Jung Hwan Shin
- Department of Neurology, MRC and Movement Disorder Center, Seoul National University Hospital, Parkinson Study Group, Seoul National University College of Medicine, Seoul, Korea
| | - Chan Young Lee
- Department of Neurology, Ehwa Womans University Mokdong Hospital, Seoul, Korea
| | - Han-Kwang Yang
- Department of Surgery, Cancer Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Hyuk-Joon Lee
- Department of Surgery, Cancer Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Seong-Ho Kong
- Department of Surgery, Cancer Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Yun-Suhk Suh
- Department of Surgery, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Han-Joon Kim
- Department of Neurology, MRC and Movement Disorder Center, Seoul National University Hospital, Parkinson Study Group, Seoul National University College of Medicine, Seoul, Korea
| | - Beomseok Jeon
- Department of Neurology, MRC and Movement Disorder Center, Seoul National University Hospital, Parkinson Study Group, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
41
|
Tan AH, Lim SY, Lang AE. The microbiome-gut-brain axis in Parkinson disease - from basic research to the clinic. Nat Rev Neurol 2022; 18:476-495. [PMID: 35750883 DOI: 10.1038/s41582-022-00681-2] [Citation(s) in RCA: 168] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2022] [Indexed: 12/12/2022]
Abstract
Evidence for a close bidirectional link between the brain and the gut has led to a paradigm shift in neurology, especially in the case of Parkinson disease (PD), in which gastrointestinal dysfunction is a prominent feature. Over the past decade, numerous high-quality preclinical and clinical publications have shed light on the highly complex relationship between the gut and the brain in PD, providing potential for the development of new biomarkers and therapeutics. With the advent of high-throughput sequencing, the role of the gut microbiome has been specifically highlighted. Here, we provide a critical review of the literature on the microbiome-gut-brain axis in PD and present perspectives that will be useful for clinical practice. We begin with an overview of the gut-brain axis in PD, including the potential roles and interrelationships of the vagus nerve, α-synuclein in the enteric nervous system, altered intestinal permeability and inflammation, and gut microbes and their metabolic activities. The sections that follow synthesize the proposed roles of gut-related factors in the development and progression of, in responses to PD treatment, and as therapeutic targets. Finally, we summarize current knowledge gaps and challenges and delineate future directions for the field.
Collapse
Affiliation(s)
- Ai Huey Tan
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia. .,Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.
| | - Shen Yang Lim
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Anthony E Lang
- Edmond J. Safra Program in Parkinson's Disease, Toronto Western Hospital, Toronto, Ontario, Canada.,Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Ontario, Canada
| |
Collapse
|
42
|
Yang R, Gao G, Yang H. The Pathological Mechanism Between the Intestine and Brain in the Early Stage of Parkinson's Disease. Front Aging Neurosci 2022; 14:861035. [PMID: 35813958 PMCID: PMC9263383 DOI: 10.3389/fnagi.2022.861035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
Parkinson's disease (PD) is the second most common chronic progressive neurodegenerative disease. The main pathological features are progressive degeneration of neurons and abnormal accumulation of α-synuclein. At present, the pathogenesis of PD is not completely clear, and many changes in the intestinal tract may be the early pathogenic factors of PD. These changes affect the central nervous system (CNS) through both nervous and humoral pathways. α-Synuclein deposited in the intestinal nerve migrates upward along the vagus nerve to the brain. Inflammation and immune regulation mediated by intestinal immune cells may be involved, affecting the CNS through local blood circulation. In addition, microorganisms and their metabolites may also affect the progression of PD. Therefore, paying attention to the multiple changes in the intestinal tract may provide new insight for the early diagnosis and treatment of PD.
Collapse
|
43
|
Talman LS, Pfeiffer RF. Movement Disorders and the Gut: A Review. Mov Disord Clin Pract 2022; 9:418-428. [PMID: 35586541 PMCID: PMC9092751 DOI: 10.1002/mdc3.13407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 11/07/2022] Open
Abstract
There is a close link between multiple movement disorders and gastrointestinal dysfunction. Gastrointestinal symptoms may precede the development of the neurologic syndrome or may arise following the neurologic presentation. This review will provide an overview of gastrointestinal accompaniments to several well-known as well as lesser known movement disorders. It will also highlight several disorders which may not be considered primary movement disorders but have an overlapping presentation of both gastrointestinal and movement abnormalities.
Collapse
Affiliation(s)
- Lauren S. Talman
- Department of NeurologyOregon Health & Science UniversityPortlandOregonUSA
| | - Ronald F. Pfeiffer
- Department of NeurologyOregon Health & Science UniversityPortlandOregonUSA
| |
Collapse
|
44
|
Warnecke T, Schäfer KH, Claus I, Del Tredici K, Jost WH. Gastrointestinal involvement in Parkinson's disease: pathophysiology, diagnosis, and management. NPJ Parkinsons Dis 2022; 8:31. [PMID: 35332158 PMCID: PMC8948218 DOI: 10.1038/s41531-022-00295-x] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 02/23/2022] [Indexed: 12/12/2022] Open
Abstract
Growing evidence suggests an increasing significance for the extent of gastrointestinal tract (GIT) dysfunction in Parkinson's disease (PD). Most patients suffer from GIT symptoms, including dysphagia, sialorrhea, bloating, nausea, vomiting, gastroparesis, and constipation during the disease course. The underlying pathomechanisms of this α-synucleinopathy play an important role in disease development and progression, i.e., early accumulation of Lewy pathology in the enteric and central nervous systems is implicated in pharyngeal discoordination, esophageal and gastric motility/peristalsis impairment, chronic pain, altered intestinal permeability and autonomic dysfunction of the colon, with subsequent constipation. Severe complications, including malnutrition, dehydration, insufficient drug effects, aspiration pneumonia, intestinal obstruction, and megacolon, frequently result in hospitalization. Sophisticated diagnostic tools are now available that permit more detailed examination of specific GIT impairment patterns. Furthermore, novel treatment approaches have been evaluated, although high-level evidence trials are often missing. Finally, the burgeoning literature devoted to the GIT microbiome reveals its importance for neurologists. We review current knowledge about GIT pathoanatomy, pathophysiology, diagnosis, and treatment in PD and provide recommendations for management in daily practice.
Collapse
Affiliation(s)
- T Warnecke
- Department of Neurology with Institute of Translational Neurology, University Hospital of Münster, 48149, Münster, Germany
| | - K-H Schäfer
- Research and Transfer Working Group Enteric Nervous System (AGENS), University of Applied Sciences Kaiserslautern, Campus Zweibrücken, 66482, Zweibrücken, Germany
| | - I Claus
- Department of Neurology with Institute of Translational Neurology, University Hospital of Münster, 48149, Münster, Germany
| | - K Del Tredici
- Clinical Neuroanatomy, Department of Neurology, Center for Biomedical Research, University of Ulm, 89081, Ulm, Germany
| | - W H Jost
- Parkinson-Klinik Ortenau, 77709, Wolfach, Germany.
| |
Collapse
|
45
|
Motor and non-motor circuit disturbances in early Parkinson disease: which happens first? Nat Rev Neurosci 2022; 23:115-128. [PMID: 34907352 DOI: 10.1038/s41583-021-00542-9] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2021] [Indexed: 12/15/2022]
Abstract
For the last two decades, pathogenic concepts in Parkinson disease (PD) have revolved around the toxicity and spread of α-synuclein. Thus, α-synuclein would follow caudo-rostral propagation from the periphery to the central nervous system, first producing non-motor manifestations (such as constipation, sleep disorders and hyposmia), and subsequently impinging upon the mesencephalon to account for the cardinal motor features before reaching the neocortex as the disease evolves towards dementia. This model is the prevailing theory of the principal neurobiological mechanism of disease. Here, we scrutinize the temporal evolution of motor and non-motor manifestations in PD and suggest that, even though the postulated bottom-up mechanisms are likely to be involved, early involvement of the nigrostriatal system is a key and prominent pathophysiological mechanism. Upcoming studies of detailed clinical manifestations with newer neuroimaging techniques will allow us to more closely define, in vivo, the role of α-synuclein aggregates with respect to neuronal loss during the onset and progression of PD.
Collapse
|
46
|
Chen H, Wang K, Scheperjans F, Killinger B. Environmental triggers of Parkinson's disease - Implications of the Braak and dual-hit hypotheses. Neurobiol Dis 2022; 163:105601. [PMID: 34954321 PMCID: PMC9525101 DOI: 10.1016/j.nbd.2021.105601] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/05/2021] [Accepted: 12/22/2021] [Indexed: 11/22/2022] Open
Abstract
Idiopathic Parkinson's disease (PD) may take decades to develop, during which many risk or protective factors may come into play to initiate the pathogenesis or modify its progression to clinical PD. The lack of understanding of this prodromal phase of PD and the factors involved has been a major hurdle in the study of PD etiology and preventive strategies. Although still controversial, the Braak and dual-hit hypotheses that PD may start peripherally in the olfactory structures and/or the gut provides a theoretical platform to identify the triggers and modifiers of PD prodromal development and progression. This is particularly true for the search of environmental causes of PD as the olfactory structures and gut are the major human mucosal interfaces with the environment. In this review, we lay out our personal views about how the Braak and dual-hit hypotheses may help us search for the environmental triggers and modifiers for PD, summarize available experimental and epidemiological evidence, and discuss research gaps and strategies.
Collapse
Affiliation(s)
- Honglei Chen
- Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA.
| | - Keran Wang
- Epidemiology and Biostatistics, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA
| | - Filip Scheperjans
- Department of Neurology, Helsinki University Hospital, and Clinicum, University of Helsinki, Haartmaninkatu 4, 00290 Helsinki, Finland
| | - Bryan Killinger
- Graduate College, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
47
|
Are We What We Eat? Impact of Diet on the Gut-Brain Axis in Parkinson's Disease. Nutrients 2022; 14:nu14020380. [PMID: 35057561 PMCID: PMC8780419 DOI: 10.3390/nu14020380] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/14/2022] [Accepted: 01/14/2022] [Indexed: 02/07/2023] Open
Abstract
Parkinson’s disease is characterized by motor and non-motor symptoms, such as defects in the gut function, which may occur before the motor symptoms. To date, there are therapies that can improve these symptoms, but there is no cure to avoid the development or exacerbation of this disorder. Dysbiosis of gut microbiota could have a crucial role in the gut–brain axis, which is a bidirectional communication between the central nervous system and the enteric nervous system. Diet can affect the microbiota composition, impacting gut–brain axis functionality. Gut microbiome restoration through probiotics, prebiotics, synbiotics or other dietary means could have the potential to slow PD progression. In this review, we will discuss the influence of diet on the bidirectional communication between gut and brain, thus supporting the hypothesis that this disorder could begin in the gut. We also focus on how food-based therapies might then have an influence on PD and could ameliorate non-motor as well as motor symptoms.
Collapse
|
48
|
Horsager J, Knudsen K, Sommerauer M. Clinical and imaging evidence of brain-first and body-first Parkinson's disease. Neurobiol Dis 2022; 164:105626. [PMID: 35031485 DOI: 10.1016/j.nbd.2022.105626] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/04/2022] [Accepted: 01/07/2022] [Indexed: 12/17/2022] Open
Abstract
Braak's hypothesis has been extremely influential over the last two decades. However, neuropathological and clinical evidence suggest that the model does not conform to all patients with Parkinson's disease (PD). To resolve this controversy, a new model was recently proposed; in brain-first PD, the initial α-synuclein pathology arise inside the central nervous system, likely rostral to the substantia nigra pars compacta, and spread via interconnected structures - eventually affecting the autonomic nervous system; in body-first PD, the initial pathological α-synuclein originates in the enteric nervous system with subsequent caudo-rostral propagation to the autonomic and central nervous system. By using REM-sleep behavior disorder (RBD) as a clinical identifier to distinguish between body-first PD (RBD-positive at motor symptom onset) and brain-first PD (RBD-negative at motor symptom onset), we explored the literature to evaluate clinical and imaging differences between these proposed subtypes. Body-first PD patients display: 1) a larger burden of autonomic symptoms - in particular orthostatic hypotension and constipation, 2) more frequent pathological α-synuclein in peripheral tissues, 3) more brainstem and autonomic nervous system involvement in imaging studies, 4) more symmetric striatal dopaminergic loss and motor symptoms, and 5) slightly more olfactory dysfunction. In contrast, only minor cortical metabolic alterations emerge before motor symptoms in body-first. Brain-first PD is characterized by the opposite clinical and imaging patterns. Patients with pathological LRRK2 genetic variants mostly resemble a brain-first PD profile whereas patients with GBA variants typically conform to a body-first profile. SNCA-variant carriers are equally distributed between both subtypes. Overall, the literature indicates that body-first and brain-first PD might be two distinguishable entities on some clinical and imaging markers.
Collapse
Affiliation(s)
- Jacob Horsager
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark.
| | - Karoline Knudsen
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark
| | - Michael Sommerauer
- Department of Nuclear Medicine and PET, Aarhus University Hospital, Aarhus, Denmark; Department of Neurology, University Hospital Cologne, Faculty of Medicine, University of Cologne, Köln, Germany; Institute of Neuroscience and Medicine (INM-3), Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
49
|
Klann EM, Dissanayake U, Gurrala A, Farrer M, Shukla AW, Ramirez-Zamora A, Mai V, Vedam-Mai V. The Gut-Brain Axis and Its Relation to Parkinson's Disease: A Review. Front Aging Neurosci 2022; 13:782082. [PMID: 35069178 PMCID: PMC8776990 DOI: 10.3389/fnagi.2021.782082] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/18/2021] [Indexed: 02/02/2023] Open
Abstract
Parkinson's disease is a chronic neurodegenerative disease characterized by the accumulation of misfolded alpha-synuclein protein (Lewy bodies) in dopaminergic neurons of the substantia nigra and other related circuitry, which contribute to the development of both motor (bradykinesia, tremors, stiffness, abnormal gait) and non-motor symptoms (gastrointestinal issues, urinogenital complications, olfaction dysfunction, cognitive impairment). Despite tremendous progress in the field, the exact pathways and mechanisms responsible for the initiation and progression of this disease remain unclear. However, recent research suggests a potential relationship between the commensal gut bacteria and the brain capable of influencing neurodevelopment, brain function and health. This bidirectional communication is often referred to as the microbiome-gut-brain axis. Accumulating evidence suggests that the onset of non-motor symptoms, such as gastrointestinal manifestations, often precede the onset of motor symptoms and disease diagnosis, lending support to the potential role that the microbiome-gut-brain axis might play in the underlying pathological mechanisms of Parkinson's disease. This review will provide an overview of and critically discuss the current knowledge of the relationship between the gut microbiota and Parkinson's disease. We will discuss the role of α-synuclein in non-motor disease pathology, proposed pathways constituting the connection between the gut microbiome and the brain, existing evidence related to pre- and probiotic interventions. Finally, we will highlight the potential opportunity for the development of novel preventative measures and therapeutic options that could target the microbiome-gut-brain axis in the context of Parkinson's disease.
Collapse
Affiliation(s)
- Emily M. Klann
- Department of Epidemiology, College of Public Health and Health Professions & College of Medicine, University of Florida, Gainesville, FL, United States
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | - Upuli Dissanayake
- Department of Epidemiology, College of Public Health and Health Professions & College of Medicine, University of Florida, Gainesville, FL, United States
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | - Anjela Gurrala
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Matthew Farrer
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States
| | - Aparna Wagle Shukla
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Adolfo Ramirez-Zamora
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| | - Volker Mai
- Department of Epidemiology, College of Public Health and Health Professions & College of Medicine, University of Florida, Gainesville, FL, United States
- Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States
| | - Vinata Vedam-Mai
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, United States
- Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, United States
| |
Collapse
|
50
|
Deidda G, Biazzo M. Gut and Brain: Investigating Physiological and Pathological Interactions Between Microbiota and Brain to Gain New Therapeutic Avenues for Brain Diseases. Front Neurosci 2021; 15:753915. [PMID: 34712115 PMCID: PMC8545893 DOI: 10.3389/fnins.2021.753915] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/16/2021] [Indexed: 12/12/2022] Open
Abstract
Brain physiological functions or pathological dysfunctions do surely depend on the activity of both neuronal and non-neuronal populations. Nevertheless, over the last decades, compelling and fast accumulating evidence showed that the brain is not alone. Indeed, the so-called "gut brain," composed of the microbial populations living in the gut, forms a symbiotic superorganism weighing as the human brain and strongly communicating with the latter via the gut-brain axis. The gut brain does exert a control on brain (dys)functions and it will eventually become a promising valuable therapeutic target for a number of brain pathologies. In the present review, we will first describe the role of gut microbiota in normal brain physiology from neurodevelopment till adulthood, and thereafter we will discuss evidence from the literature showing how gut microbiota alterations are a signature in a number of brain pathologies ranging from neurodevelopmental to neurodegenerative disorders, and how pre/probiotic supplement interventions aimed to correct the altered dysbiosis in pathological conditions may represent a valuable future therapeutic strategy.
Collapse
Affiliation(s)
- Gabriele Deidda
- The BioArte Limited, Life Sciences Park, San Gwann, Malta
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | - Manuele Biazzo
- The BioArte Limited, Life Sciences Park, San Gwann, Malta
- SienabioACTIVE, University of Siena, Siena, Italy
| |
Collapse
|