1
|
Sun Z, Li L, Zhang L. Apigenin enhancing oxidative resistance and proteostasis to extend lifespan via PTEN-mediated AKT signalling pathway. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167670. [PMID: 39826849 DOI: 10.1016/j.bbadis.2025.167670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/27/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
Aging is a complicated process, featuring the progressive deterioration of physiological functions and a heightened susceptibility to diseases including neurodegenerative disorders, cardiovascular diseases, and cancer. Apigenin, a flavonoid existing in various plants, has attracted attention due to its potential role in anti-aging. In this investigation, the potential effect of apigenin on extending lifespan in Saccharomyces cerevisiae (yeast) and Drosophila melanogaster (flies) was explored. The results indicate that apigenin significantly extends both replicative and chronological life duration in yeast, as well as longevity in male and female flies. Apigenin treatment also improves resistance to oxidative stress in both organisms, as manifested by enhanced survival, decreased reactive oxygen species (ROS) levels and upregulation of antioxidant enzymes. Furthermore, apigenin activates crucial elements of the proteostasis network (PN), such as upregulation of proteostasis-related enzymes activity and genes expression. Network analysis revealed that apigenin affects aging conserved in the longevity-regulating pathway. Notably, Pten is a hub target in flies. Apigenin regulated DmPten at both mRNA and protein expression level while modulating downstream targets, including the phosphorylation of AKT and associated signalling pathways. In a high-sucrose diet (HSD) model, Apigenin treatment extended lifespan, reduced hemolymph glucose levels, enhanced Pten expression, suppressed AKT phosphorylation, and modulated the phosphorylation status of S6K and expression of DmFoxo. These results demonstrate that apigenin could serve as a longevity research object and potential therapeutic drug for promoting health and longevity through its antioxidant and proteostatic properties.
Collapse
Affiliation(s)
- Zhengqiong Sun
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, China
| | - Lei Li
- Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai 200433, China
| | - Lei Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou 311300, China; Department of Pharmaceutical Botany, School of Pharmacy, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
2
|
Faraldi M, Provinciali M, Di Rosa M, Moresi R, Sansoni V, Gomarasca M, Gerosa L, Malvandi AM, Lattanzio F, Banfi G, Lombardi G. Circulating biomarkers associated with walking performance in elderly subjects: exploring miRNAs, metabolic and inflammatory biomarkers. GeroScience 2025:10.1007/s11357-025-01510-2. [PMID: 39833599 DOI: 10.1007/s11357-025-01510-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 12/30/2024] [Indexed: 01/22/2025] Open
Abstract
Aging phenotype is characterized by musculoskeletal impairment that leads to diminished mobility and physical function. This study investigated whether circulating miRNAs and metabolic and inflammatory biomarkers may reflect the walking performance of the elderly. Elderly hospitalized for an acute condition and recruited from the ReportAge Biobank were grouped, based on their walking performance, in active subjects (n = 23, age: 83.0 ± 4.3), able to walk ≥ 1 km and who performed more than 1 h activity, and inactive subjects (n = 23, age: 85.0 ± 6.0), able to walk < 100 m and who performed < 1 h activity in the 3 days prior hospitalization. Plasma levels of 754 miRNAs were evaluated using OpenArray® platform, and miRNAs whose level was ± 2.5 fold (p < 0.05) were validated by qPCR. Target prediction for validated miRNAs was performed on MirWalk 3.0, Gene Ontology and pathway enrichment on Panther 19.0. Cytokines and metabolites associated with bone, muscle, and inflammation were evaluated from plasma samples using Luminex and ELISA. Among the 7 miRNAs found differentially expressed in active compared to inactive elderly after the initial screening, 4 miRNAs were validated: hsa-let7g-5p, hsa-miR-27a-3p, hsa-miR-361-5p, hsa-miR-574-3p, all upregulated in the active group. Gene Ontology and pathway enrichment analysis revealed the identified miRNAs potentially involved in muscle and bone metabolism during aging. Among cytokines, gp130 and IL-10 significantly differed between the two groups. This study suggests the potential association of specific circulating biomarkers with walking performance in elderly and their potential involvement in the molecular mechanism underlying age-associated musculoskeletal impairment.
Collapse
Affiliation(s)
- Martina Faraldi
- Laboratory of Experimental Biochemistry & Advanced Diagnostics, IRCCS Ospedale Galeazzi-Sant'Ambrogio, Via Cristina Belgioioso 173, 20157, Milan, Italy.
| | - Mauro Provinciali
- Advanced Technology Center for Aging Research, IRCCS INRCA, 60121, Ancona, Italy
| | - Mirko Di Rosa
- Centre for Biostatistics and Applied Geriatric Clinical Epidemiology, IRCCS INRCA, 60124, Ancona, Italy
| | | | - Veronica Sansoni
- Laboratory of Experimental Biochemistry & Advanced Diagnostics, IRCCS Ospedale Galeazzi-Sant'Ambrogio, Via Cristina Belgioioso 173, 20157, Milan, Italy
| | - Marta Gomarasca
- Laboratory of Experimental Biochemistry & Advanced Diagnostics, IRCCS Ospedale Galeazzi-Sant'Ambrogio, Via Cristina Belgioioso 173, 20157, Milan, Italy
| | - Laura Gerosa
- Laboratory of Experimental Biochemistry & Advanced Diagnostics, IRCCS Ospedale Galeazzi-Sant'Ambrogio, Via Cristina Belgioioso 173, 20157, Milan, Italy
| | - Amir Mohammad Malvandi
- Laboratory of Experimental Biochemistry & Advanced Diagnostics, IRCCS Ospedale Galeazzi-Sant'Ambrogio, Via Cristina Belgioioso 173, 20157, Milan, Italy
| | | | - Giuseppe Banfi
- Laboratory of Experimental Biochemistry & Advanced Diagnostics, IRCCS Ospedale Galeazzi-Sant'Ambrogio, Via Cristina Belgioioso 173, 20157, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Giovanni Lombardi
- Laboratory of Experimental Biochemistry & Advanced Diagnostics, IRCCS Ospedale Galeazzi-Sant'Ambrogio, Via Cristina Belgioioso 173, 20157, Milan, Italy
- Department of Athletics, Strength and Conditioning, Poznań University of Physical Education, Poznań, Poland
| |
Collapse
|
3
|
Nussinov R, Yavuz BR, Jang H. Single cell spatial biology over developmental time can decipher pediatric brain pathologies. Neurobiol Dis 2024; 199:106597. [PMID: 38992777 DOI: 10.1016/j.nbd.2024.106597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/18/2024] [Accepted: 07/07/2024] [Indexed: 07/13/2024] Open
Abstract
Pediatric low grade brain tumors and neurodevelopmental disorders share proteins, signaling pathways, and networks. They also share germline mutations and an impaired prenatal differentiation origin. They may differ in the timing of the events and proliferation. We suggest that their pivotal distinct, albeit partially overlapping, outcomes relate to the cell states, which depend on their spatial location, and timing of gene expression during brain development. These attributes are crucial as the brain develops sequentially, and single-cell spatial organization influences cell state, thus function. Our underlying premise is that the root cause in neurodevelopmental disorders and pediatric tumors is impaired prenatal differentiation. Data related to pediatric brain tumors, neurodevelopmental disorders, brain cell (sub)types, locations, and timing of expression in the developing brain are scant. However, emerging single cell technologies, including transcriptomic, spatial biology, spatial high-resolution imaging performed over the brain developmental time, could be transformational in deciphering brain pathologies thereby pharmacology.
Collapse
Affiliation(s)
- Ruth Nussinov
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA; Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Bengi Ruken Yavuz
- Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| | - Hyunbum Jang
- Computational Structural Biology Section, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA; Cancer Innovation Laboratory, National Cancer Institute at Frederick, Frederick, MD 21702, USA
| |
Collapse
|
4
|
Cao H, Deng B, Song T, Lian J, Xia L, Chu X, Zhang Y, Yang F, Wang C, Cai Y, Diao Y, Kapranov P. Genome-wide profiles of DNA damage represent highly accurate predictors of mammalian age. Aging Cell 2024; 23:e14122. [PMID: 38391092 PMCID: PMC11113270 DOI: 10.1111/acel.14122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/18/2024] [Accepted: 02/11/2024] [Indexed: 02/24/2024] Open
Abstract
The identification of novel age-related biomarkers represents an area of intense research interest. Despite multiple studies associating DNA damage with aging, there is a glaring paucity of DNA damage-based biomarkers of age, mainly due to the lack of precise methods for genome-wide surveys of different types of DNA damage. Recently, we developed two techniques for genome-wide mapping of the most prevalent types of DNA damage, single-strand breaks and abasic sites, with nucleotide-level resolution. Herein, we explored the potential of genomic patterns of DNA damage identified by these methods as a source of novel age-related biomarkers using mice as a model system. Strikingly, we found that models based on genomic patterns of either DNA lesion could accurately predict age with higher precision than the commonly used transcriptome analysis. Interestingly, the informative patterns were limited to relatively few genes and the DNA damage levels were positively or negatively correlated with age. These findings show that previously unexplored high-resolution genomic patterns of DNA damage contain useful information that can contribute significantly to both practical applications and basic science.
Collapse
Affiliation(s)
- Huifen Cao
- Institute of Genomics, School of MedicineHuaqiao UniversityXiamenChina
| | - Bolin Deng
- Institute of Genomics, School of MedicineHuaqiao UniversityXiamenChina
| | - Tianrong Song
- Institute of Genomics, School of MedicineHuaqiao UniversityXiamenChina
| | - Jiabian Lian
- Department of Clinical Laboratorythe First Affiliated Hospital of Xiamen UniversityXiamenChina
| | - Lu Xia
- Xiamen Cell Therapy Research Centerthe First Affiliated Hospital of Xiamen UniversityXiamenChina
| | | | - Yufei Zhang
- Institute of Genomics, School of MedicineHuaqiao UniversityXiamenChina
| | - Fujian Yang
- Institute of Genomics, School of MedicineHuaqiao UniversityXiamenChina
| | - Chunlian Wang
- Institute of Genomics, School of MedicineHuaqiao UniversityXiamenChina
| | - Ye Cai
- Institute of Genomics, School of MedicineHuaqiao UniversityXiamenChina
| | - Yong Diao
- Institute of Genomics, School of MedicineHuaqiao UniversityXiamenChina
| | - Philipp Kapranov
- State Key Laboratory of Cellular Stress Biology, School of Life SciencesXiamen UniversityXiamenChina
| |
Collapse
|
5
|
Bramwell LR, Harries LW. Senescence, regulators of alternative splicing and effects of trametinib treatment in progeroid syndromes. GeroScience 2024; 46:1861-1879. [PMID: 37751047 PMCID: PMC10828446 DOI: 10.1007/s11357-023-00933-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/04/2023] [Indexed: 09/27/2023] Open
Abstract
Progeroid syndromes such as Hutchinson Gilford Progeroid syndrome (HGPS), Werner syndrome (WS) and Cockayne syndrome (CS), result in severely reduced lifespans and premature ageing. Normal senescent cells show splicing factor dysregulation, which has not yet been investigated in syndromic senescent cells. We sought to investigate the senescence characteristics and splicing factor expression profiles of progeroid dermal fibroblasts. Natural cellular senescence can be reversed by application of the senomorphic drug, trametinib, so we also investigated its ability to reverse senescence characteristics in syndromic cells. We found that progeroid cultures had a higher senescence burden, but did not always have differences in levels of proliferation, DNA damage repair and apoptosis. Splicing factor gene expression appeared dysregulated across the three syndromes. 10 µM trametinib reduced senescent cell load and affected other aspects of the senescence phenotype (including splicing factor expression) in HGPS and Cockayne syndromes. Werner syndrome cells did not demonstrate changes in in senescence following treatment. Splicing factor dysregulation in progeroid cells provides further evidence to support this mechanism as a hallmark of cellular ageing and highlights the use of progeroid syndrome cells in the research of ageing and age-related disease. This study suggests that senomorphic drugs such as trametinib could be a useful adjunct to therapy for progeroid diseases.
Collapse
Affiliation(s)
- Laura R Bramwell
- RNA-Mediated Mechanisms of Disease Group, Department of Clinical and Biomedical Sciences (Medical School), Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Lorna W Harries
- RNA-Mediated Mechanisms of Disease Group, Department of Clinical and Biomedical Sciences (Medical School), Faculty of Health and Life Sciences, University of Exeter, Exeter, UK.
| |
Collapse
|
6
|
Burton MA, Antoun E, Garratt ES, Westbury L, Dennison EM, Harvey NC, Cooper C, Patel HP, Godfrey KM, Lillycrop KA. The serum small non-coding RNA (SncRNA) landscape as a molecular biomarker of age associated muscle dysregulation and insulin resistance in older adults. FASEB J 2024; 38:e23423. [PMID: 38294260 PMCID: PMC10952661 DOI: 10.1096/fj.202301089rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 12/08/2023] [Accepted: 12/29/2023] [Indexed: 02/01/2024]
Abstract
Small noncoding RNAs (sncRNAs) are implicated in age-associated pathologies, including sarcopenia and insulin resistance (IR). As potential circulating biomarkers, most studies have focussed on microRNAs (miRNAs), one class of sncRNA. This study characterized the wider circulating sncRNA transcriptome of older individuals and associations with sarcopenia and IR. sncRNA expression including miRNAs, transfer RNAs (tRNAs), tRNA-associated fragments (tRFs), and piwi-interacting RNAs (piRNAs) was measured in serum from 21 healthy and 21 sarcopenic Hertfordshire Sarcopenia Study extension women matched for age (mean 78.9 years) and HOMA2-IR. Associations with age, sarcopenia and HOMA2-IR were examined and predicted gene targets and biological pathways characterized. Of the total sncRNA among healthy controls, piRNAs were most abundant (85.3%), followed by tRNAs (4.1%), miRNAs (2.7%), and tRFs (0.5%). Age was associated (FDR < 0.05) with 2 miRNAs, 58 tRNAs, and 14 tRFs, with chromatin organization, WNT signaling, and response to stress enriched among gene targets. Sarcopenia was nominally associated (p < .05) with 12 tRNAs, 3 tRFs, and 6 piRNAs, with target genes linked to cell proliferation and differentiation such as Notch Receptor 1 (NOTCH1), DISC1 scaffold protein (DISC1), and GLI family zinc finger-2 (GLI2). HOMA2-IR was nominally associated (p<0.05) with 6 miRNAs, 9 tRNAs, 1 tRF, and 19 piRNAs, linked with lysine degradation, circadian rhythm, and fatty acid biosynthesis pathways. These findings identify changes in circulating sncRNA expression in human serum associated with chronological age, sarcopenia, and IR. These may have clinical utility as circulating biomarkers of ageing and age-associated pathologies and provide novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- Mark A. Burton
- Human Development and Health Academic Unit, Faculty of MedicineUniversity of SouthamptonSouthamptonUK
| | - Elie Antoun
- Human Development and Health Academic Unit, Faculty of MedicineUniversity of SouthamptonSouthamptonUK
| | - Emma S. Garratt
- Human Development and Health Academic Unit, Faculty of MedicineUniversity of SouthamptonSouthamptonUK
- NIHR Southampton Biomedical Research CentreUniversity of Southampton and University Hospital Southampton NHS Foundation TrustSouthamptonUK
| | - Leo Westbury
- MRC Lifecourse Epidemiology CentreUniversity of SouthamptonSouthamptonUK
| | - Elaine M. Dennison
- MRC Lifecourse Epidemiology CentreUniversity of SouthamptonSouthamptonUK
- Victoria University of WellingtonWellingtonNew Zealand
| | - Nicholas C. Harvey
- NIHR Southampton Biomedical Research CentreUniversity of Southampton and University Hospital Southampton NHS Foundation TrustSouthamptonUK
- MRC Lifecourse Epidemiology CentreUniversity of SouthamptonSouthamptonUK
| | - Cyrus Cooper
- NIHR Southampton Biomedical Research CentreUniversity of Southampton and University Hospital Southampton NHS Foundation TrustSouthamptonUK
- MRC Lifecourse Epidemiology CentreUniversity of SouthamptonSouthamptonUK
| | - Harnish P. Patel
- NIHR Southampton Biomedical Research CentreUniversity of Southampton and University Hospital Southampton NHS Foundation TrustSouthamptonUK
- MRC Lifecourse Epidemiology CentreUniversity of SouthamptonSouthamptonUK
- Academic Geriatric Medicine, Faculty of MedicineUniversity of SouthamptonSouthamptonUK
| | - Keith M. Godfrey
- Human Development and Health Academic Unit, Faculty of MedicineUniversity of SouthamptonSouthamptonUK
- NIHR Southampton Biomedical Research CentreUniversity of Southampton and University Hospital Southampton NHS Foundation TrustSouthamptonUK
- MRC Lifecourse Epidemiology CentreUniversity of SouthamptonSouthamptonUK
| | - Karen A. Lillycrop
- Human Development and Health Academic Unit, Faculty of MedicineUniversity of SouthamptonSouthamptonUK
- NIHR Southampton Biomedical Research CentreUniversity of Southampton and University Hospital Southampton NHS Foundation TrustSouthamptonUK
- Biological SciencesUniversity of SouthamptonSouthamptonUK
| |
Collapse
|
7
|
Hartke J, Ceron-Noriega A, Stoldt M, Sistermans T, Kever M, Fuchs J, Butter F, Foitzik S. Long live the host! Proteomic analysis reveals possible strategies for parasitic manipulation of its social host. Mol Ecol 2023; 32:5877-5889. [PMID: 37795937 DOI: 10.1111/mec.17155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/15/2023] [Accepted: 09/19/2023] [Indexed: 10/06/2023]
Abstract
Parasites with complex life cycles often manipulate the phenotype of their intermediate hosts to increase the probability of transmission to their definitive hosts. Infection with Anomotaenia brevis, a cestode that uses Temnothorax nylanderi ants as intermediate hosts, leads to a multiple-fold extension of host lifespan and to changes in behaviour, morphology and colouration. The mechanisms behind these changes are unknown, as is whether the increased longevity is achieved through parasite manipulation. Here, we demonstrate that the parasite releases proteins into its host with functions that might explain the observed changes. These parasitic proteins make up a substantial portion of the proteome of the hosts' haemolymph, and thioredoxin peroxidase and superoxide dismutase, two antioxidants, exhibited the highest abundances among them. The largest part of the secreted proteins could not be annotated, indicating they are either novel or severely altered during recent coevolution to function in host manipulation. We also detected shifts in the hosts' proteome with infection, in particular an overabundance of vitellogenin-like A in infected ants, a protein that regulates division of labour in Temnothorax ants, which could explain the observed behavioural changes. Our results thus suggest two different strategies that might be employed by this parasite to manipulate its host: secreting proteins with immediate influence on the host's phenotype and altering the host's translational activity. Our findings highlight the intricate molecular interplay required to influence the phenotype of a host and point to potential signalling pathways and genes involved in parasite-host communication.
Collapse
Affiliation(s)
- Juliane Hartke
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | | | - Marah Stoldt
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Tom Sistermans
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Marion Kever
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jenny Fuchs
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Falk Butter
- Institute of Molecular Biology, Mainz, Germany
| | - Susanne Foitzik
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
8
|
Jiang E, Dinesh A, Jadhav S, Miller RA, Garcia GG. Canagliflozin shares common mTOR and MAPK signaling mechanisms with other lifespan extension treatments. Life Sci 2023; 328:121904. [PMID: 37406767 PMCID: PMC11351721 DOI: 10.1016/j.lfs.2023.121904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/19/2023] [Accepted: 06/28/2023] [Indexed: 07/07/2023]
Abstract
Long-lived mouse models and treatments that extend lifespan, such as Rapamycin, acarbose and 17α- -estradiol, lead to reduction in mTORC1 activity, declines in cap-dependent translation and increases in cap-independent translation. In addition, these treatments reduce the MEK-ERK-MNK (ERK1-2) signaling cascade, leading to reduction in eIF4E phosphorylation, which also regulates mRNA translation. Here, we report that Canagliflozin, a drug that extends lifespan only in male mice reduces mTORC1 and ERK1-2 signaling in male mice only. The data suggest reduction in mTORC1 and ERK pathways are common mechanisms shared by both genetic and pharmacological models of slowed aging in mice. Our data also reveal a significant sexual dimorphism in the ERK1-2 signaling pathway which might help to explain why some drugs can extend lifespan in males but have no effects in female mice.
Collapse
Affiliation(s)
- Eric Jiang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan College of Literature, Science, and the Arts, USA
| | - Arjun Dinesh
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan College of Literature, Science, and the Arts, USA
| | - Sohan Jadhav
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan College of Literature, Science, and the Arts, USA
| | - Richard A Miller
- Department of Pathology, University of Michigan School of Medicine, USA; University of Michigan Geriatrics Center, Ann Arbor, MI 48109, USA
| | - Gonzalo G Garcia
- Department of Pathology, University of Michigan School of Medicine, USA.
| |
Collapse
|
9
|
Dcruz AC, Vignesh Balaji E, Manandhar S, Kumar A, Gujaran TV, Hedayat P, Pai KSR. BRAF gene as a potential target to attenuate drug resistance and treat cancer. GENE REPORTS 2023; 30:101740. [DOI: 10.1016/j.genrep.2023.101740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
10
|
Hajj-Boutros G, Karelis AD, Cefis M, Morais JA, Casgrain J, Gouspillou G, Sonjak V. Potential mechanisms involved in regulating muscle protein turnover after acute exercise: A brief review. Front Physiol 2023; 13:1106425. [PMID: 36699675 PMCID: PMC9870712 DOI: 10.3389/fphys.2022.1106425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
It is well established that resistance training increases muscle mass. Indeed, there is evidence to suggest that a single session of resistance training is associated with an increase in muscle protein synthesis in young adults. However, the fundamental mechanisms that are involved in regulating muscle protein turnover rates after an acute bout of physical exercise are unclear. Therefore, this review will briefly focus on summarizing the potential mechanisms behind the growth of skeletal muscle after physical exercise. We also present mechanistic differences that may exist between young and older individuals during muscle protein synthesis and breakdown after physical exercise. Pathways leading to the activation of AKT/mTOR signals after resistance exercise and the activation of AMPK signaling pathway following a HIIT (High intensity interval training) are discussed.
Collapse
Affiliation(s)
- Guy Hajj-Boutros
- Research Institute of the McGill University Health Center (MUHC), Montreal, QC, Canada
| | - Antony D. Karelis
- Department of Exercise Science, Université du Québec à Montréal, Montreal, QC, Canada
| | - Marina Cefis
- Department of Exercise Science, Université du Québec à Montréal, Montreal, QC, Canada
| | - José A. Morais
- Research Institute of the McGill University Health Center (MUHC), Montreal, QC, Canada,Division of Geriatric Medicine, McGill University, Montreal, QC, Canada
| | - Juliette Casgrain
- Department of Exercise Science, Université du Québec à Montréal, Montreal, QC, Canada
| | - Gilles Gouspillou
- Department of Exercise Science, Université du Québec à Montréal, Montreal, QC, Canada
| | - Vita Sonjak
- Research Institute of the McGill University Health Center (MUHC), Montreal, QC, Canada,*Correspondence: Vita Sonjak,
| |
Collapse
|
11
|
Abdelrahman Z, Wang X, Wang D, Zhang T, Zhang Y, Wang X, Chen Z. Identification of novel pathways and immune profiles related to sarcopenia. Front Med (Lausanne) 2023; 10:928285. [PMID: 37138756 PMCID: PMC10149827 DOI: 10.3389/fmed.2023.928285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 03/10/2023] [Indexed: 05/05/2023] Open
Abstract
Introduction Sarcopenia is a progressive deterioration of skeletal muscle mass strength and function. Methods To uncover the underlying cellular and biological mechanisms, we studied the association between sarcopenia's three stages and the patient's ethnicity, identified a gene regulatory network based on motif enrichment in the upregulated gene set of sarcopenia, and compared the immunological landscape among sarcopenia stages. Results We found that sarcopenia (S) was associated with GnRH, neurotrophin, Rap1, Ras, and p53 signaling pathways. Low muscle mass (LMM) patients showed activated pathways of VEGF signaling, B-cell receptor signaling, ErbB signaling, and T-cell receptor signaling. Low muscle mass and physical performance (LMM_LP) patients showed lower enrichment scores in B-cell receptor signaling, apoptosis, HIF-1 signaling, and the adaptive immune response pathways. Five common genes among DEGs and the elastic net regression model, TTC39DP, SLURP1, LCE1C, PTCD2P1, and OR7E109P, were expressed between S patients and healthy controls. SLURP1 and LCE1C showed the highest expression levels among sarcopenic Chinese descent than Caucasians and Afro-Caribbeans. Gene regulatory analysis of top upregulated genes in S patients yielded a top-scoring regulon containing GATA1, GATA2, and GATA3 as master regulators and nine predicted direct target genes. Two genes were associated with locomotion: POSTN and SLURP1. TTC39DP upregulation was associated with a better prognosis and stronger immune profile in S patients. The upregulation of SLURP1 and LCE1C was associated with a worse prognosis and weaker immune profile. Conclusion This study provides new insight into sarcopenia's cellular and immunological prospects and evaluates the age and sarcopenia-related modifications of skeletal muscle.
Collapse
Affiliation(s)
- Zeinab Abdelrahman
- Department of Neurobiology and Department of Rehabilitation Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain–Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Neurobiology and Department of Orthopedics, Zhejiang University School of Medicine, 2nd Affiliated Hospital, Hangzhou, Zhejiang, China
| | - Xiaosheng Wang
- Biomedical Informatics Research Lab, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
- Big Data Research Institute, China Pharmaceutical University, Nanjing, China
| | - Daming Wang
- Department of Neurobiology and Department of Rehabilitation Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Tianfang Zhang
- Department of Neurobiology and Department of Rehabilitation Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yue Zhang
- Shenzhen Futian Hospital for Rheumatic Diseases, Shenzhen, China
| | - Xuhua Wang
- Department of Neurobiology and Department of Rehabilitation Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain–Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Neurobiology and Department of Orthopedics, Zhejiang University School of Medicine, 2nd Affiliated Hospital, Hangzhou, Zhejiang, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
- Xuhua Wang
| | - Zuobing Chen
- Department of Neurobiology and Department of Rehabilitation Medicine, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- *Correspondence: Zuobing Chen
| |
Collapse
|
12
|
Laskovs M, Partridge L, Slack C. Molecular inhibition of RAS signalling to target ageing and age-related health. Dis Model Mech 2022; 15:276620. [PMID: 36111627 PMCID: PMC9510030 DOI: 10.1242/dmm.049627] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The RAS/MAPK pathway is a highly conserved signalling pathway with a well-established role in cancer. Mutations that hyperactivate this pathway are associated with unregulated cell proliferation. Evidence from a range of model organisms also links RAS/MAPK signalling to ageing. Genetic approaches that reduce RAS/MAPK signalling activity extend lifespan and also improve healthspan, delaying the onset and/or progression of age-related functional decline. Given its role in cancer, therapeutic interventions that target and inhibit this pathway's key components are under intense investigation. The consequent availability of small molecule inhibitors raises the possibility of repurposing these compounds to ameliorate the deleterious effects of ageing. Here, we review evidence that RAS/MAPK signalling inhibitors already in clinical use, such as trametinib, acarbose, statins, metformin and dihydromyricetin, lead to lifespan extension and to improved healthspan in a range of model systems. These findings suggest that the repurposing of small molecule inhibitors of RAS/MAPK signalling might offer opportunities to improve health during ageing, and to delay or prevent the development of age-related disease. However, challenges to this approach, including poor tolerance to treatment in older adults or development of drug resistance, first need to be resolved before successful clinical implementation. Summary: This Review critically discusses the links between RAS signalling and ageing, and how RAS inhibitors could extend lifespan and enhance healthspan.
Collapse
Affiliation(s)
- Mihails Laskovs
- School of Biosciences, College of Health and Life Sciences, Aston University 1 , Birmingham B4 7ET , UK
| | - Linda Partridge
- Institute of Healthy Ageing 2 , Department of Genetics, Evolution and Environment , , Darwin Building, Gower Street, London WC1E 6BT , UK
- University College London 2 , Department of Genetics, Evolution and Environment , , Darwin Building, Gower Street, London WC1E 6BT , UK
- Max Planck Institute for Biology of Ageing 3 , Joseph-Stelzmann-Strasse 9b, 50931 Cologne , Germany
| | - Cathy Slack
- School of Biosciences, College of Health and Life Sciences, Aston University 1 , Birmingham B4 7ET , UK
| |
Collapse
|
13
|
Barbé C, Salles J, Chambon C, Giraudet C, Sanchez P, Patrac V, Denis P, Boirie Y, Walrand S, Gueugneau M. Characterization of the Skeletal Muscle Proteome in Undernourished Old Rats. Int J Mol Sci 2022; 23:ijms23094762. [PMID: 35563153 PMCID: PMC9101871 DOI: 10.3390/ijms23094762] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/10/2022] [Accepted: 04/15/2022] [Indexed: 12/04/2022] Open
Abstract
Aging is associated with a progressive loss of skeletal muscle mass and function termed sarcopenia. Various metabolic alterations that occur with aging also increase the risk of undernutrition, which can worsen age-related sarcopenia. However, the impact of undernutrition on aged skeletal muscle remains largely under-researched. To build a deeper understanding of the cellular and molecular mechanisms underlying age-related sarcopenia, we characterized the undernutrition-induced changes in the skeletal muscle proteome in old rats. For this study, 20-month-old male rats were fed 50% or 100% of their spontaneous intake for 12 weeks, and proteomic analysis was performed on both slow- and fast-twitch muscles. Proteomic profiling of undernourished aged skeletal muscle revealed that undernutrition has profound effects on muscle proteome independently of its effect on muscle mass. Undernutrition-induced changes in muscle proteome appear to be muscle-type-specific: slow-twitch muscle showed a broad pattern of differential expression in proteins important for energy metabolism, whereas fast-twitch muscle mainly showed changes in protein turnover between undernourished and control rats. This first proteomic analysis of undernourished aged skeletal muscle provides new molecular-level insight to explain phenotypic changes in undernourished aged muscle. We anticipate this work as a starting point to define new biomarkers associated with undernutrition-induced muscle loss in the elderly.
Collapse
Affiliation(s)
- Caroline Barbé
- Human Nutrition Unit, INRAE, Auvergne Human Nutrition Research Center, Clermont Auvergne University, 63000 Clermont-Ferrand, France; (C.B.); (J.S.); (C.G.); (P.S.); (V.P.); (P.D.); (Y.B.); (S.W.)
| | - Jérôme Salles
- Human Nutrition Unit, INRAE, Auvergne Human Nutrition Research Center, Clermont Auvergne University, 63000 Clermont-Ferrand, France; (C.B.); (J.S.); (C.G.); (P.S.); (V.P.); (P.D.); (Y.B.); (S.W.)
| | - Christophe Chambon
- Animal Products Quality Unit (QuaPA), INRAE, 63122 Clermont-Ferrand, France;
- Metabolomic and Proteomic Exploration Facility, Clermont Auvergne University, INRAE, 63122 Clermont-Ferrand, France
| | - Christophe Giraudet
- Human Nutrition Unit, INRAE, Auvergne Human Nutrition Research Center, Clermont Auvergne University, 63000 Clermont-Ferrand, France; (C.B.); (J.S.); (C.G.); (P.S.); (V.P.); (P.D.); (Y.B.); (S.W.)
| | - Phelipe Sanchez
- Human Nutrition Unit, INRAE, Auvergne Human Nutrition Research Center, Clermont Auvergne University, 63000 Clermont-Ferrand, France; (C.B.); (J.S.); (C.G.); (P.S.); (V.P.); (P.D.); (Y.B.); (S.W.)
| | - Véronique Patrac
- Human Nutrition Unit, INRAE, Auvergne Human Nutrition Research Center, Clermont Auvergne University, 63000 Clermont-Ferrand, France; (C.B.); (J.S.); (C.G.); (P.S.); (V.P.); (P.D.); (Y.B.); (S.W.)
| | - Philippe Denis
- Human Nutrition Unit, INRAE, Auvergne Human Nutrition Research Center, Clermont Auvergne University, 63000 Clermont-Ferrand, France; (C.B.); (J.S.); (C.G.); (P.S.); (V.P.); (P.D.); (Y.B.); (S.W.)
| | - Yves Boirie
- Human Nutrition Unit, INRAE, Auvergne Human Nutrition Research Center, Clermont Auvergne University, 63000 Clermont-Ferrand, France; (C.B.); (J.S.); (C.G.); (P.S.); (V.P.); (P.D.); (Y.B.); (S.W.)
- Department of Clinical Nutrition, Clermont-Ferrand University Hospital Center, 63000 Clermont-Ferrand, France
| | - Stéphane Walrand
- Human Nutrition Unit, INRAE, Auvergne Human Nutrition Research Center, Clermont Auvergne University, 63000 Clermont-Ferrand, France; (C.B.); (J.S.); (C.G.); (P.S.); (V.P.); (P.D.); (Y.B.); (S.W.)
- Department of Clinical Nutrition, Clermont-Ferrand University Hospital Center, 63000 Clermont-Ferrand, France
| | - Marine Gueugneau
- Human Nutrition Unit, INRAE, Auvergne Human Nutrition Research Center, Clermont Auvergne University, 63000 Clermont-Ferrand, France; (C.B.); (J.S.); (C.G.); (P.S.); (V.P.); (P.D.); (Y.B.); (S.W.)
- Correspondence: ; Tel.: +33-4-73-60-82-65
| |
Collapse
|
14
|
Chen CP, Chan KC, Ho HH, Huang HP, Hsu LS, Wang CJ. Mulberry polyphenol extracts attenuated senescence through inhibition of Ras/ERK via promoting Ras degradation in VSMC. Int J Med Sci 2022; 19:89-97. [PMID: 34975302 PMCID: PMC8692108 DOI: 10.7150/ijms.64763] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 11/04/2021] [Indexed: 02/06/2023] Open
Abstract
Ageing is one of the major risk factors of human diseases, including cancer, diabetes, and cardiovascular disease. Mulberry exhibits a wide range of functions, such as anti-oxidant, anti-inflammation, and anti-diabetes. In this study, we investigated the role of mulberry polyphenol extract (MPE) in K-Ras-induced senescence of smooth muscle cells. Forced expression of K-Ras enhanced senescence of smooth muscle A7r5 cells as shown by the elevation of β-galactosidase activity. Treatment with MPE significantly repressed the Ras, phosphorylated ERK, and β-galactosidase level. MPE triggered the association of cyclins with their corresponding cyclin-dependent protein kinases and hyperphosphorylated retinoblastoma (RB). MPE also down-regulated the levels of K-Ras-induced CDK inhibitors. MPE enhanced the phosphorylated AMP-dependent protein kinase (AMPK) and inducible nitric oxide synthase (iNOS) level in the presence of K-Ras. Pretreatment with either L-NAME or AMPK inhibitor reversed the effects of MPE. In addition, L-NAME and AMPK inhibitor repressed the MPE-induced total and phosphorylated 3-hydroxy-3-methylglutaryl coenzyme A (HMG-Co A) level. MPE repressed K-Ras-induced G0/G1 arrest, whereas L-NAME and AMPK inhibitor blocked the effects of MPE. Our results indicated that MPE recovered the K-Ras-induced senescence of vascular smooth muscle cells through iNOS and AMPK-dependent pathway. Our findings suggested that MPE may prevent ageing-induced atherosclerosis.
Collapse
Affiliation(s)
- Ching-Pei Chen
- Cardiovascular division of Changhua Cristian Hospital, Changhua, Taiwan
| | - Kuei-Chuan Chan
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan.,Department of Internal Medicine, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
| | - Hsieh-Hsun Ho
- Institute of Biochemistry and Biotechnology, Chung Shan Medical University, Tai-chung, 402, Taiwan
| | - Hui-Pei Huang
- Department of Biochemistry, School of Medicine, Medical College, Chung Shan Medical University, Taichung, 402, Taiwan
| | - Li-Sung Hsu
- Institute of Medicine, Chung Shan Medical University, Taichung, 402, Taiwan.,Clinical Laboratory, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
| | - Chau-Jong Wang
- Department of Health Diet and Industry Management, Chung Shan Medical University, Taichung 402, Taiwan.,Department of Medical Research, Chung Shan Medical University Hospital, Taichung, 402, Taiwan
| |
Collapse
|
15
|
Wang Z, Zhang Q, Lin JR, Jabalameli MR, Mitra J, Nguyen N, Zhang ZD. Deep post-GWAS analysis identifies potential risk genes and risk variants for Alzheimer's disease, providing new insights into its disease mechanisms. Sci Rep 2021; 11:20511. [PMID: 34654853 PMCID: PMC8519945 DOI: 10.1038/s41598-021-99352-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 09/23/2021] [Indexed: 12/27/2022] Open
Abstract
Alzheimer's disease (AD) is a genetically complex, multifactorial neurodegenerative disease. It affects more than 45 million people worldwide and currently remains untreatable. Although genome-wide association studies (GWAS) have identified many AD-associated common variants, only about 25 genes are currently known to affect the risk of developing AD, despite its highly polygenic nature. Moreover, the risk variants underlying GWAS AD-association signals remain unknown. Here, we describe a deep post-GWAS analysis of AD-associated variants, using an integrated computational framework for predicting both disease genes and their risk variants. We identified 342 putative AD risk genes in 203 risk regions spanning 502 AD-associated common variants. 246 AD risk genes have not been identified as AD risk genes by previous GWAS collected in GWAS catalogs, and 115 of 342 AD risk genes are outside the risk regions, likely under the regulation of transcriptional regulatory elements contained therein. Even more significantly, for 109 AD risk genes, we predicted 150 risk variants, of both coding and regulatory (in promoters or enhancers) types, and 85 (57%) of them are supported by functional annotation. In-depth functional analyses showed that AD risk genes were overrepresented in AD-related pathways or GO terms-e.g., the complement and coagulation cascade and phosphorylation and activation of immune response-and their expression was relatively enriched in microglia, endothelia, and pericytes of the human brain. We found nine AD risk genes-e.g., IL1RAP, PMAIP1, LAMTOR4-as predictors for the prognosis of AD survival and genes such as ARL6IP5 with altered network connectivity between AD patients and normal individuals involved in AD progression. Our findings open new strategies for developing therapeutics targeting AD risk genes or risk variants to influence AD pathogenesis.
Collapse
Affiliation(s)
- Zhen Wang
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Quanwei Zhang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jhih-Rong Lin
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - M Reza Jabalameli
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Joydeep Mitra
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Nha Nguyen
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Zhengdong D Zhang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
16
|
Achache H, Falk R, Lerner N, Beatus T, Tzur YB. Oocyte aging is controlled by mitogen-activated protein kinase signaling. Aging Cell 2021; 20:e13386. [PMID: 34061407 PMCID: PMC8208789 DOI: 10.1111/acel.13386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 03/25/2021] [Accepted: 05/08/2021] [Indexed: 12/11/2022] Open
Abstract
Oogenesis is one of the first processes to fail during aging. In women, most oocytes cannot successfully complete meiotic divisions already during the fourth decade of life. Studies of the nematode Caenorhabditis elegans have uncovered conserved genetic pathways that control lifespan, but our knowledge regarding reproductive aging in worms and humans is limited. Specifically, little is known about germline internal signals that dictate the oogonial biological clock. Here, we report a thorough characterization of the changes in the worm germline during aging. We found that shortly after ovulation halts, germline proliferation declines, while apoptosis continues, leading to a gradual reduction in germ cell numbers. In late aging stages, we observed that meiotic progression is disturbed and crossover designation and DNA double-strand break repair decrease. In addition, we detected a decline in the quality of mature oocytes during aging, as reflected by decreasing size and elongation of interhomolog distance, a phenotype also observed in human oocytes. Many of these altered processes were previously attributed to MAPK signaling variations in young worms. In support of this, we observed changes in activation dynamics of MPK-1 during aging. We therefore tested the hypothesis that MAPK controls oocyte quality in aged worms using both genetic and pharmacological tools. We found that in mutants with high levels of activated MPK-1, oocyte quality deteriorates more rapidly than in wild-type worms, whereas reduction of MPK-1 levels enhances quality. Thus, our data suggest that MAPK signaling controls germline aging and could be used to attenuate the rate of oogenesis quality decline.
Collapse
Affiliation(s)
- Hanna Achache
- Department of GeneticsInstitute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
| | - Roni Falk
- Department of GeneticsInstitute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
| | - Noam Lerner
- Department of NeurobiologyThe Institute of Life ScienceThe Hebrew University of JerusalemJerusalemIsrael
- The Alexander Grass Center for BioengineeringThe Rachel and Selim Benin School of Computer Science and EngineeringThe Hebrew University of JerusalemJerusalemIsrael
| | - Tsevi Beatus
- Department of NeurobiologyThe Institute of Life ScienceThe Hebrew University of JerusalemJerusalemIsrael
- The Alexander Grass Center for BioengineeringThe Rachel and Selim Benin School of Computer Science and EngineeringThe Hebrew University of JerusalemJerusalemIsrael
| | - Yonatan B. Tzur
- Department of GeneticsInstitute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
| |
Collapse
|
17
|
Moaddel R, Ubaida‐Mohien C, Tanaka T, Lyashkov A, Basisty N, Schilling B, Semba RD, Franceschi C, Gorospe M, Ferrucci L. Proteomics in aging research: A roadmap to clinical, translational research. Aging Cell 2021; 20:e13325. [PMID: 33730416 PMCID: PMC8045948 DOI: 10.1111/acel.13325] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/31/2020] [Accepted: 01/18/2021] [Indexed: 02/06/2023] Open
Abstract
The identification of plasma proteins that systematically change with age and, independent of chronological age, predict accelerated decline of health is an expanding area of research. Circulating proteins are ideal translational "omics" since they are final effectors of physiological pathways and because physicians are accustomed to use information of plasma proteins as biomarkers for diagnosis, prognosis, and tracking the effectiveness of treatments. Recent technological advancements, including mass spectrometry (MS)-based proteomics, multiplexed proteomic assay using modified aptamers (SOMAscan), and Proximity Extension Assay (PEA, O-Link), have allowed for the assessment of thousands of proteins in plasma or other biological matrices, which are potentially translatable into new clinical biomarkers and provide new clues about the mechanisms by which aging is associated with health deterioration and functional decline. We carried out a detailed literature search for proteomic studies performed in different matrices (plasma, serum, urine, saliva, tissues) and species using multiple platforms. Herein, we identified 232 proteins that were age-associated across studies. Enrichment analysis of the 232 age-associated proteins revealed metabolic pathways previously connected with biological aging both in animal models and in humans, most remarkably insulin-like growth factor (IGF) signaling, mitogen-activated protein kinases (MAPK), hypoxia-inducible factor 1 (HIF1), cytokine signaling, Forkhead Box O (FOXO) metabolic pathways, folate metabolism, advance glycation end products (AGE), and receptor AGE (RAGE) metabolic pathway. Information on these age-relevant proteins, likely expanded and validated in longitudinal studies and examined in mechanistic studies, will be essential for patient stratification and the development of new treatments aimed at improving health expectancy.
Collapse
Affiliation(s)
- Ruin Moaddel
- Biomedical Research Centre National Institute on Aging, NIH Baltimore MD USA
| | | | - Toshiko Tanaka
- Biomedical Research Centre National Institute on Aging, NIH Baltimore MD USA
| | - Alexey Lyashkov
- Biomedical Research Centre National Institute on Aging, NIH Baltimore MD USA
| | | | | | - Richard D Semba
- Wilmer Eye Institute Johns Hopkins University School of Medicine Baltimore MD USA
| | - Claudio Franceschi
- University of Bologna and IRCCS Institute of Neurological Sciences Bologna Italy
| | - Myriam Gorospe
- Biomedical Research Centre National Institute on Aging, NIH Baltimore MD USA
| | - Luigi Ferrucci
- Biomedical Research Centre National Institute on Aging, NIH Baltimore MD USA
| |
Collapse
|
18
|
Wang N, Wang C, Zhao H, He Y, Lan B, Sun L, Gao Y. The MAMs Structure and Its Role in Cell Death. Cells 2021; 10:cells10030657. [PMID: 33809551 PMCID: PMC7999768 DOI: 10.3390/cells10030657] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 02/06/2023] Open
Abstract
The maintenance of cellular homeostasis involves the participation of multiple organelles. These organelles are associated in space and time, and either cooperate or antagonize each other with regards to cell function. Crosstalk between organelles has become a significant topic in research over recent decades. We believe that signal transduction between organelles, especially the endoplasmic reticulum (ER) and mitochondria, is a factor that can influence the cell fate. As the cellular center for protein folding and modification, the endoplasmic reticulum can influence a range of physiological processes by regulating the quantity and quality of proteins. Mitochondria, as the cellular "energy factory," are also involved in cell death processes. Some researchers regard the ER as the sensor of cellular stress and the mitochondria as an important actuator of the stress response. The scientific community now believe that bidirectional communication between the ER and the mitochondria can influence cell death. Recent studies revealed that the death signals can shuttle between the two organelles. Mitochondria-associated membranes (MAMs) play a vital role in the complex crosstalk between the ER and mitochondria. MAMs are known to play an important role in lipid synthesis, the regulation of Ca2+ homeostasis, the coordination of ER-mitochondrial function, and the transduction of death signals between the ER and the mitochondria. Clarifying the structure and function of MAMs will provide new concepts for studying the pathological mechanisms associated with neurodegenerative diseases, aging, and cancers. Here, we review the recent studies of the structure and function of MAMs and its roles involved in cell death, especially in apoptosis.
Collapse
Affiliation(s)
- Nan Wang
- China Japan Union Hospital, Jilin University, Changchun 130031, China; (N.W.); (C.W.); (H.Z.); (Y.H.); (B.L.)
| | - Chong Wang
- China Japan Union Hospital, Jilin University, Changchun 130031, China; (N.W.); (C.W.); (H.Z.); (Y.H.); (B.L.)
| | - Hongyang Zhao
- China Japan Union Hospital, Jilin University, Changchun 130031, China; (N.W.); (C.W.); (H.Z.); (Y.H.); (B.L.)
| | - Yichun He
- China Japan Union Hospital, Jilin University, Changchun 130031, China; (N.W.); (C.W.); (H.Z.); (Y.H.); (B.L.)
| | - Beiwu Lan
- China Japan Union Hospital, Jilin University, Changchun 130031, China; (N.W.); (C.W.); (H.Z.); (Y.H.); (B.L.)
| | - Liankun Sun
- Key Laboratory of Pathobiology, Ministry of Education, Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun 130012, China
- Correspondence: (L.S.); (Y.G.)
| | - Yufei Gao
- China Japan Union Hospital, Jilin University, Changchun 130031, China; (N.W.); (C.W.); (H.Z.); (Y.H.); (B.L.)
- Correspondence: (L.S.); (Y.G.)
| |
Collapse
|
19
|
Mandl M, Wagner SA, Hatzmann FM, Ejaz A, Ritthammer H, Baumgarten S, Viertler HP, Springer J, Zwierzina ME, Mattesich M, Brucker C, Waldegger P, Pierer G, Zwerschke W. Sprouty1 Prevents Cellular Senescence Maintaining Proliferation and Differentiation Capacity of Human Adipose Stem/Progenitor Cells. J Gerontol A Biol Sci Med Sci 2021; 75:2308-2319. [PMID: 32304210 PMCID: PMC7662188 DOI: 10.1093/gerona/glaa098] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Indexed: 12/25/2022] Open
Abstract
The role of Ras-Mitogen-activated protein kinase (MAPK) signaling in cellular aging is not precisely understood. Recently, we identified Sprouty1 (SPRY1) as a weight-loss target gene in human adipose stem/progenitor cells (ASCs) and showed that Sprouty1 is important for proper regulation of adipogenesis. In the present study, we show that loss-of-function of Sprouty1 by CRISPR/Cas9-mediated genome editing in human ASCs leads to hyper-activation of MAPK signaling and a senescence phenotype. Sprouty1 knockout ASCs undergo an irreversible cell cycle arrest, become enlarged and stain positive for senescence-associated β-galactosidase. Sprouty1 down-regulation leads to DNA double strand breaks, a considerably increased number of senescence-associated heterochromatin foci and induction of p53 and p21Cip1. In addition, we detect an increase of hypo-phosphorylated Retinoblastoma (Rb) protein in SPRY1 knockout ASCs. p16Ink4A is not induced. Moreover, we show that Sprouty1 knockout leads to induction of a senescence-associated secretory phenotype as indicated by the activation of the transcription factors NFκB and C/EBPβ and a significant increase in mRNA expression and secretion of interleukin-8 (IL-8) and CXCL1/GROα. Finally, we demonstrate that adipogenesis is abrogated in senescent SPRY1 knockout ASCs. In conclusion, this study reveals a novel mechanism showing the importance of Sprouty1 for the prevention of senescence and the maintenance of the proliferation and differentiation capacity of human ASCs.
Collapse
Affiliation(s)
- Markus Mandl
- Division of Cell Metabolism and Differentiation Research, Research Institute for Biomedical Aging Research, University of Innsbruck, Austria.,Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Austria
| | - Sonja A Wagner
- Division of Cell Metabolism and Differentiation Research, Research Institute for Biomedical Aging Research, University of Innsbruck, Austria.,Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Austria
| | - Florian M Hatzmann
- Division of Cell Metabolism and Differentiation Research, Research Institute for Biomedical Aging Research, University of Innsbruck, Austria.,Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Austria
| | - Asim Ejaz
- Division of Cell Metabolism and Differentiation Research, Research Institute for Biomedical Aging Research, University of Innsbruck, Austria
| | - Heike Ritthammer
- Division of Cell Metabolism and Differentiation Research, Research Institute for Biomedical Aging Research, University of Innsbruck, Austria
| | - Saphira Baumgarten
- Division of Cell Metabolism and Differentiation Research, Research Institute for Biomedical Aging Research, University of Innsbruck, Austria
| | - Hans P Viertler
- Division of Cell Metabolism and Differentiation Research, Research Institute for Biomedical Aging Research, University of Innsbruck, Austria.,Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Austria
| | - Jochen Springer
- Division of Cell Metabolism and Differentiation Research, Research Institute for Biomedical Aging Research, University of Innsbruck, Austria
| | - Marit E Zwierzina
- Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Austria
| | - Monika Mattesich
- Department of Plastic and Reconstructive Surgery, Innsbruck Medical University, Austria
| | - Camille Brucker
- Division of Cell Metabolism and Differentiation Research, Research Institute for Biomedical Aging Research, University of Innsbruck, Austria.,Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Austria
| | - Petra Waldegger
- Division of Cell Metabolism and Differentiation Research, Research Institute for Biomedical Aging Research, University of Innsbruck, Austria.,Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Austria
| | - Gerhard Pierer
- Department of Plastic and Reconstructive Surgery, Innsbruck Medical University, Austria
| | - Werner Zwerschke
- Division of Cell Metabolism and Differentiation Research, Research Institute for Biomedical Aging Research, University of Innsbruck, Austria.,Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Austria
| |
Collapse
|
20
|
Abstract
Aging is characterized by a progressive loss of physiological function leading to increase in the vulnerability to death. This deterioration process occurs in all living organisms and is the primary risk factor for pathological conditions including obesity, type 2 diabetes mellitus, Alzheimer's disease and cardiovascular diseases. Most of the age-related diseases have been associated with impairment of action of an important hormone, namely insulin. It is well-known that this hormone is a critical mediator of metabolism, growth, proliferation and differentiation. Insulin action depends on two processes that determine its circulating levels, insulin secretion and clearance, and insulin sensitivity in its target tissues. Aging has deleterious effects on these three mechanisms, impairing insulin action, thereby increasing the risk for diseases and death. Thus, improving insulin action may be an important strategy to have a healthier and longer life.
Collapse
|
21
|
Hsieh MH, Kao TY, Hsieh TH, Kao CC, Peng CY, Lai HC, Chuang PH, Kao JT. Prognostic roles of diabetes mellitus and hypertension in advanced hepatocellular carcinoma treated with sorafenib. PLoS One 2020; 15:e0244293. [PMID: 33382703 PMCID: PMC7775090 DOI: 10.1371/journal.pone.0244293] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 12/08/2020] [Indexed: 12/09/2022] Open
Abstract
BACKGROUND & AIMS It remains limited whether diabetes mellitus (DM) and hypertension (HTN) affect the prognosis of advanced hepatocellular carcinoma (HCC) treated with sorafenib. Our study attempted to elucidate the roles of DM/HTN and the effects of diabetes medications among advanced HCC patients receiving sorafenib. METHODS From August 2012 to February 2018, 733 advanced HCC patients receiving sorafenib were enrolled at China Medical University, Taichung, Taiwan. According to the presence/absence of DM or HTN, they were divided into four groups: control [DM(-)/HTN(-), n = 353], DM-only [DM(+)/HTN(-), n = 91], HTN-only [DM(-)/HTN(+), n = 184] and DM+HTN groups [DM(+)/HTN(+), n = 105]. Based on the types of diabetes medications, there were three groups among DM patients (the combined cohort of DM-only and DM+HTN groups), including metformin (n = 63), non-metformin oral hypoglycemic agent (OHA) (n = 104) and regular insulin (RI)/neutral protamine hagedorn (NPH) groups (n = 29). We then assessed the survival differences between these groups. RESULTS DM-only and DM+HTN groups significantly presented longer overall survival (OS) than control group (control vs. DM-only, 7.70 vs. 11.83 months, p = 0.003; control vs. DM+HTN, 7.70 vs. 11.43 months, p = 0.008). However, there was no significant OS difference between control and HTN-only group (7.70 vs. 8.80 months, p = 0.111). Besides, all groups of DM patients showed significantly longer OS than control group (control vs. metformin, 7.70 vs. 12.60 months, p = 0.011; control vs. non-metformin OHA, 7.70 vs. 10.80 months, p = 0.016; control vs. RI/NPH, 7.70 vs. 15.20 months, p = 0.026). CONCLUSIONS Rather than HTN, DM predicts better prognosis in advanced HCC treated with sorafenib. Besides, metformin, non-metformin OHA and RI/NPH are associated with longer survival among DM-related advanced HCC patients receiving sorafenib.
Collapse
Affiliation(s)
- Ming-Han Hsieh
- Department of Medicine, School of Medicine, China Medical University, Taichung, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Tzu-Yu Kao
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Ting-Hui Hsieh
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chun-Chi Kao
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Cheng-Yuan Peng
- Department of Medicine, School of Medicine, China Medical University, Taichung, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Hsueh-Chou Lai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Po-Heng Chuang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Jung-Ta Kao
- Department of Medicine, School of Medicine, China Medical University, Taichung, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
22
|
Murthy VL, Yu B, Wang W, Zhang X, Alkis T, Pico AR, Yeri A, Bhupathiraju SN, Bressler J, Ballantyne CM, Freedman JE, Ordovas J, Boerwinkle E, Tucker KL, Shah R. Molecular Signature of Multisystem Cardiometabolic Stress and Its Association With Prognosis. JAMA Cardiol 2020; 5:1144-1153. [PMID: 32717046 DOI: 10.1001/jamacardio.2020.2686] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Importance Cardiometabolic disease is responsible for decreased longevity and poorer cardiovascular outcomes in the modern era. Metabolite profiling provides a specific measure of global metabolic function to examine specific metabolic mechanisms and pathways of cardiometabolic disease beyond its clinical definitions. Objectives To define a molecular basis for cardiometabolic stress and assess its association with cardiovascular prognosis. Design, Setting, and Participants A prospective observational cohort study was conducted in a population-based setting across 2 geographically distinct centers (Boston Puerto Rican Health Study [BPRHS], an ongoing study of individuals enrolled between June 1, 2004, and October 31, 2009; and Atherosclerosis Risk in Communities [ARIC] study, whose participants were originally sampled between November 24, 1986, and February 10, 1990, and followed up through December 31, 2017). Participants in the BPRHS were 668 Puerto Rican individuals with metabolite profiling living in Massachusetts, and participants in the ARIC study were 2152 individuals with metabolite profiling and long-term follow-up for mortality and cardiovascular outcomes. Statistical analysis was performed from October 1, 2018, to March 13, 2020. Exposure The primary exposure was metabolite profiles across both cohorts. Main Outcomes and Measures Outcomes included associations with multisystem cardiometabolic stress and all-cause mortality and incident coronary heart disease (in the ARIC study). Results Participants in the BPRHS (N = 668; 491 women; mean [SD] age, 57.0 [7.4] years; mean [SD] body mass index [calculated as weight in kilograms divided by height in meters squared], 32.0 [6.5]) had higher prevalent cardiometabolic risk relative to those in the ARIC study (N = 2152; 599 African American individuals; 1213 women; mean [SD] age, 54.3 [5.7] years; mean [SD] body mass index, 28.0 [5.5]). Multisystem cardiometabolic stress was defined for 668 Puerto Rican individuals in the BPRHS as a multidimensional composite of hypothalamic-adrenal axis activity, sympathetic activation, blood pressure, proatherogenic dyslipidemia, insulin resistance, visceral adiposity, and inflammation. A total of 260 metabolites associated with cardiometabolic stress were identified in the BPRHS, involving known and novel pathways of cardiometabolic disease (eg, amino acid metabolism, oxidative stress, and inflammation). A parsimonious metabolite-based score associated with cardiometabolic stress in the BPRHS was subsequently created; this score was applied to shared metabolites in the ARIC study, demonstrating significant associations with coronary heart disease and all-cause mortality after multivariable adjustment at a 30-year horizon (per SD increase in metabolomic score: hazard ratio, 1.14; 95% CI, 1.00-1.31; P = .045 for coronary heart disease; and hazard ratio, 1.15; 95% CI, 1.07-1.24; P < .001 for all-cause mortality). Conclusions and Relevance Metabolites associated with cardiometabolic stress identified known and novel pathways of cardiometabolic disease in high-risk, community-based cohorts and were associated with coronary heart disease and survival at a 30-year time horizon. These results underscore the shared molecular pathophysiology of metabolic dysfunction, cardiovascular disease, and longevity and suggest pathways for modification to improve prognosis across all linked conditions.
Collapse
Affiliation(s)
- Venkatesh L Murthy
- Frankel Cardiovascular Center, Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor
| | - Bing Yu
- Department of Epidemiology, Human Genetics and Environmental Sciences, University of Texas Health Science Center at Houston School of Public Health, Houston
| | - Wenshuang Wang
- Department of Epidemiology, Human Genetics and Environmental Sciences, University of Texas Health Science Center at Houston School of Public Health, Houston
| | - Xiuyan Zhang
- Department of Biomedical and Nutritional Sciences, University of Massachusetts, Lowell, Lowell
| | - Taryn Alkis
- Department of Epidemiology, Human Genetics and Environmental Sciences, University of Texas Health Science Center at Houston School of Public Health, Houston
| | - Alexander R Pico
- Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, California
| | - Ashish Yeri
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Boston
| | - Shilpa N Bhupathiraju
- Department of Nutrition, Harvard School of Public Health, Boston, Massachusetts.,Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jan Bressler
- Department of Epidemiology, Human Genetics and Environmental Sciences, University of Texas Health Science Center at Houston School of Public Health, Houston
| | | | - Jane E Freedman
- UMass Memorial Heart and Vascular Center, University of Massachusetts Medical School, Worcester
| | - Jose Ordovas
- Friedman School of Nutrition Science and Policy, School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts
| | - Eric Boerwinkle
- Department of Epidemiology, Human Genetics and Environmental Sciences, University of Texas Health Science Center at Houston School of Public Health, Houston
| | - Katherine L Tucker
- Department of Biomedical and Nutritional Sciences, University of Massachusetts, Lowell, Lowell
| | - Ravi Shah
- Cardiology Division, Department of Medicine, Massachusetts General Hospital, Boston
| |
Collapse
|
23
|
Polidoro RB, Hagan RS, de Santis Santiago R, Schmidt NW. Overview: Systemic Inflammatory Response Derived From Lung Injury Caused by SARS-CoV-2 Infection Explains Severe Outcomes in COVID-19. Front Immunol 2020; 11:1626. [PMID: 32714336 PMCID: PMC7344249 DOI: 10.3389/fimmu.2020.01626] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 06/17/2020] [Indexed: 01/12/2023] Open
Abstract
Most SARS-CoV2 infections will not develop into severe COVID-19. However, in some patients, lung infection leads to the activation of alveolar macrophages and lung epithelial cells that will release proinflammatory cytokines. IL-6, TNF, and IL-1β increase expression of cell adhesion molecules (CAMs) and VEGF, thereby increasing permeability of the lung endothelium and reducing barrier protection, allowing viral dissemination and infiltration of neutrophils and inflammatory monocytes. In the blood, these cytokines will stimulate the bone marrow to produce and release immature granulocytes, that return to the lung and further increase inflammation, leading to acute respiratory distress syndrome (ARDS). This lung-systemic loop leads to cytokine storm syndrome (CSS). Concurrently, the acute phase response increases the production of platelets, fibrinogen and other pro-thrombotic factors. Systemic decrease in ACE2 function impacts the Renin-Angiotensin-Kallikrein-Kinin systems (RAS-KKS) increasing clotting. The combination of acute lung injury with RAS-KKS unbalance is herein called COVID-19 Associated Lung Injury (CALI). This conservative two-hit model of systemic inflammation due to the lung injury allows new intervention windows and is more consistent with the current knowledge.
Collapse
Affiliation(s)
- Rafael B. Polidoro
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Robert S. Hagan
- Division of Pulmonary Diseases and Critical Care Medicine, Department of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | | | - Nathan W. Schmidt
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Department of Pediatrics, Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
24
|
ERK2 Phosphorylates PFAS to Mediate Posttranslational Control of De Novo Purine Synthesis. Mol Cell 2020; 78:1178-1191.e6. [PMID: 32485148 DOI: 10.1016/j.molcel.2020.05.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/06/2020] [Accepted: 04/29/2020] [Indexed: 02/07/2023]
Abstract
The RAS-ERK/MAPK (RAS-extracellular signal-regulated kinase/mitogen-activated protein kinase) pathway integrates growth-promoting signals to stimulate cell growth and proliferation, at least in part, through alterations in metabolic gene expression. However, examples of direct and rapid regulation of the metabolic pathways by the RAS-ERK pathway remain elusive. We find that physiological and oncogenic ERK signaling activation leads to acute metabolic flux stimulation through the de novo purine synthesis pathway, thereby increasing building block availability for RNA and DNA synthesis, which is required for cell growth and proliferation. We demonstrate that ERK2, but not ERK1, phosphorylates the purine synthesis enzyme PFAS (phosphoribosylformylglycinamidine synthase) at T619 in cells to stimulate de novo purine synthesis. The expression of nonphosphorylatable PFAS (T619A) decreases purine synthesis, RAS-dependent cancer cell-colony formation, and tumor growth. Thus, ERK2-mediated PFAS phosphorylation facilitates the increase in nucleic acid synthesis required for anabolic cell growth and proliferation.
Collapse
|
25
|
Bettedi L, Yan A, Schuster E, Alic N, Foukas LC. Increased mitochondrial and lipid metabolism is a conserved effect of Insulin/PI3K pathway downregulation in adipose tissue. Sci Rep 2020; 10:3418. [PMID: 32099025 PMCID: PMC7042323 DOI: 10.1038/s41598-020-60210-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 01/31/2020] [Indexed: 11/28/2022] Open
Abstract
The Insulin/IGF-1 signalling (IIS) pathway plays an essential role in the regulation of glucose and lipid homeostasis. At the same time, a reduction in the IIS pathway activity can extend lifespan and healthspan in various model organisms. Amongst a number of body organs that sense and respond to insulin/IGF-1, the adipose tissue has a central role in both the metabolic and lifespan effects of IIS at the organismal level. Genetic inactivation of IIS components specifically in the adipose tissue has been shown before to improve metabolic profile and extend lifespan in various model organisms. We sought to identify conserved molecular mechanisms that may underlie the beneficial effects of IIS inhibition in the adipose tissue, specifically at the level of phosphoinositide 3-kinase (PI3K), a key IIS effector molecule. To this end, we inactivated PI3K by genetic means in the fly fat body and by pharmacological inhibition in mammalian adipocytes. Gene expression studies revealed changes to metabolism and upregulation of mitochondrial activity in mouse adipocytes and fly fat bodies with downregulated PI3K, which were confirmed by biochemical assays in mammalian adipocytes. These data suggest that PI3K inactivation has a conserved effect of upregulating mitochondrial metabolism in both fly and mammalian adipose tissue, which likely contributes to the health- and life-span extending effect of IIS pathway downregulation.
Collapse
Affiliation(s)
- Lucia Bettedi
- Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK.,National Institutes of Child Health and Human Development (NICHD), Bethesda, MD, 20814, USA
| | - Anqi Yan
- Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Eugene Schuster
- Endocrinology Team, Breast Cancer Now, The Institute of Cancer Research, 237 Fulham Road, London, SW3 6JB, UK
| | - Nazif Alic
- Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK
| | - Lazaros C Foukas
- Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
26
|
Ramzan F, D'Souza RF, Durainayagam BR, Milan AM, Roy NC, Kruger MC, Henry CJ, Mitchell CJ, Cameron-Smith D. Inflexibility of the plasma miRNA response following a high-carbohydrate meal in overweight insulin-resistant women. GENES AND NUTRITION 2020; 15:2. [PMID: 32042348 PMCID: PMC7001289 DOI: 10.1186/s12263-020-0660-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/15/2020] [Indexed: 12/14/2022]
Abstract
Context Metabolic inflexibility is a characteristic of insulin resistance, limiting the ability to transiently regulate oxidative metabolism and gene expression in response to nutrient availability. Little is known of the flexibility of post-transcriptional regulation, including circulatory miRNAs (c-miRNAs). Design The abundances of targeted c-miRNAs, with reported functions in metabolic regulation, were analysed in response to a high-carbohydrate meal in healthy weight insulin-sensitive (IS) and overweight insulin-resistant (IR) women. Participants Age-matched healthy weight IS (n = 20, BMI = 24.3 ± 0.70) and overweight IR (n = 20, BMI = 28.6 ± 0.67) women. Methods An abundance of c-miRNAs was quantified prior to and following a high-carbohydrate breakfast meal (2500 kJ; 50% carbohydrate, 20% fat and 27% protein). Target genes of the differentially regulated c-miRNA were measured in RNA extracted from circulatory peripheral blood mononuclear cells (PBMCs). Results In healthy weight IS women, both miR-15a-5p (p = 0.03) and miR-17-5p (p < 0.01) levels were halved at 4 h post-meal. These miRNA remained unaltered following the same meal in the overweight IR women. Furthermore, amongst genes targeted by these miRNA, CPT1A (p = 0.01) and IL8 (p = 0.03) had also reduced expression 4 h post-meal only in the healthy weight IS women. Conclusions The study findings provide preliminary evidence for a possible extension of metabolic inflexibility to include c-miRNAs. Trial registration The clinical trial is registered with Australian New Zealand Clinical Trials Registry under Trial registration: ANZCTR: ACTRN12615001108505. Registered on 21 October 2015.
Collapse
Affiliation(s)
- F Ramzan
- 1The Liggins Institute, The University of Auckland, 85 Park Road, Grafton, Private Bag, 92019, Auckland, 1142 New Zealand.,2The Riddet Institute, Palmerston North, New Zealand
| | - R F D'Souza
- 1The Liggins Institute, The University of Auckland, 85 Park Road, Grafton, Private Bag, 92019, Auckland, 1142 New Zealand.,3School of Medical Sciences, The University of Auckland, Auckland, New Zealand
| | - B R Durainayagam
- 1The Liggins Institute, The University of Auckland, 85 Park Road, Grafton, Private Bag, 92019, Auckland, 1142 New Zealand
| | - A M Milan
- 1The Liggins Institute, The University of Auckland, 85 Park Road, Grafton, Private Bag, 92019, Auckland, 1142 New Zealand
| | - N C Roy
- 2The Riddet Institute, Palmerston North, New Zealand.,4Food Nutrition & Health Team, AgResearch Ltd, Palmerston North, New Zealand.,The High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - M C Kruger
- 6Institute of Food Science and Technology, Massey University, Palmerston North, New Zealand
| | - C J Henry
- 7Clinical Nutrition Research Centre, Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, 117609 Singapore
| | - C J Mitchell
- 1The Liggins Institute, The University of Auckland, 85 Park Road, Grafton, Private Bag, 92019, Auckland, 1142 New Zealand.,8School of Kinesiology, The University of British Columbia, Vancouver, Canada
| | - D Cameron-Smith
- 1The Liggins Institute, The University of Auckland, 85 Park Road, Grafton, Private Bag, 92019, Auckland, 1142 New Zealand.,2The Riddet Institute, Palmerston North, New Zealand.,9Food & Bio-Based Products Group, AgResearch Ltd, Palmerston North, New Zealand.,10Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (ASTAR), Singapore, 117609 Singapore
| |
Collapse
|
27
|
Dard L, Blanchard W, Hubert C, Lacombe D, Rossignol R. Mitochondrial functions and rare diseases. Mol Aspects Med 2020; 71:100842. [PMID: 32029308 DOI: 10.1016/j.mam.2019.100842] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/26/2019] [Accepted: 12/27/2019] [Indexed: 12/19/2022]
Abstract
Mitochondria are dynamic cellular organelles responsible for a large variety of biochemical processes as energy transduction, REDOX signaling, the biosynthesis of hormones and vitamins, inflammation or cell death execution. Cell biology studies established that 1158 human genes encode proteins localized to mitochondria, as registered in MITOCARTA. Clinical studies showed that a large number of these mitochondrial proteins can be altered in expression and function through genetic, epigenetic or biochemical mechanisms including the interaction with environmental toxics or iatrogenic medicine. As a result, pathogenic mitochondrial genetic and functional defects participate to the onset and the progression of a growing number of rare diseases. In this review we provide an exhaustive survey of the biochemical, genetic and clinical studies that demonstrated the implication of mitochondrial dysfunction in human rare diseases. We discuss the striking diversity of the symptoms caused by mitochondrial dysfunction and the strategies proposed for mitochondrial therapy, including a survey of ongoing clinical trials.
Collapse
Affiliation(s)
- L Dard
- Bordeaux University, 33000, Bordeaux, France; INSERM U1211, 33000, Bordeaux, France; CELLOMET, CGFB-146 Rue Léo Saignat, Bordeaux, France
| | - W Blanchard
- Bordeaux University, 33000, Bordeaux, France; INSERM U1211, 33000, Bordeaux, France; CELLOMET, CGFB-146 Rue Léo Saignat, Bordeaux, France
| | - C Hubert
- Bordeaux University, 33000, Bordeaux, France; INSERM U1211, 33000, Bordeaux, France
| | - D Lacombe
- Bordeaux University, 33000, Bordeaux, France; INSERM U1211, 33000, Bordeaux, France; CHU de Bordeaux, Service de Génétique Médicale, F-33076, Bordeaux, France
| | - R Rossignol
- Bordeaux University, 33000, Bordeaux, France; INSERM U1211, 33000, Bordeaux, France; CELLOMET, CGFB-146 Rue Léo Saignat, Bordeaux, France.
| |
Collapse
|
28
|
Xiong S, Yu K, Ye X, Fang Q, Deng Y, Xiao S, Yang L, Wang B, Wang F, Yan Z, Wang F, Song Q, Stanley DW, Ye G. Genes acting in longevity-related pathways in the endoparasitoid, Pteromalus puparum. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 103:e21635. [PMID: 31625210 DOI: 10.1002/arch.21635] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/24/2019] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
Among insects, lifespans vary over a broad range, from the short-lived mayflies to the 17-year periodical cicadas. Generally, lifespans are determined by a phase in life, the reproductive lifespan, which varies among species. Numerous pathways, such as the insulin/insulin-like growth factor signaling pathway, the target of rapamycin pathway and the mitogen-activated protein kinase/extracellular signal-regulated kinases pathways, influence aging and lifespan. Components of these pathways were identified as lifespan-related genes, including genes mediating growth, metabolism, development, resistance, and other processes. Many age-related genes have been discovered in fruit flies, honeybees, and ants among other insect species. Studies of insect aging and longevity can help understand insect biology and develop new pest management technologies. In this paper, we interrogated the new Pteromalus puparum genome, from which we predicted 133 putative lifespan-related genes based on their homology with known lifespan-related genes of Drosophila melanogaster. These genes function in five signaling pathways and three physiological processes. The conserved domain structures of these genes were predicted and their expression patterns were analyzed. Amino acid sequence alignments and domain structure analysis indicate that most components remain conserved across at least six insect orders. The data in this paper will facilitate future work on parasitoid lifespans, which may have economic value in biocontrol programs.
Collapse
Affiliation(s)
- Shijiao Xiong
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Kaili Yu
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xinhai Ye
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Qi Fang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Yi Deng
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Shan Xiao
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Lei Yang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Beibei Wang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Fei Wang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Zhichao Yan
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Fang Wang
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Qisheng Song
- Division of Plant Sciences, University of Missouri, Columbia, Missouri
| | - David W Stanley
- USDA Agricultural Research Service, Biological Control of Insects Research Laboratory, Columbia, Missouri
| | - Gongyin Ye
- State Key Laboratory of Rice Biology & Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
29
|
Rudzińska M, Parodi A, Balakireva AV, Chepikova OE, Venanzi FM, Zamyatnin AA. Cellular Aging Characteristics and Their Association with Age-Related Disorders. Antioxidants (Basel) 2020; 9:antiox9020094. [PMID: 31979201 PMCID: PMC7071036 DOI: 10.3390/antiox9020094] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/12/2020] [Accepted: 01/21/2020] [Indexed: 02/06/2023] Open
Abstract
Different molecular signaling pathways, biological processes, and intercellular communication mechanisms control longevity and are affected during cellular senescence. Recent data have suggested that organelle communication, as well as genomic and metabolic dysfunctions, contribute to this phenomenon. Oxidative stress plays a critical role by inducing structural modifications to biological molecules while affecting their function and catabolism and eventually contributing to the onset of age-related dysfunctions. In this scenario, proteins are not adequately degraded and accumulate in the cell cytoplasm as toxic aggregates, increasing cell senescence progression. In particular, carbonylation, defined as a chemical reaction that covalently and irreversibly modifies proteins with carbonyl groups, is considered to be a significant indicator of protein oxidative stress and aging. Here, we emphasize the role and dysregulation of the molecular pathways controlling cell metabolism and proteostasis, the complexity of the mechanisms that occur during aging, and their association with various age-related disorders. The last segment of the review details current knowledge on protein carbonylation as a biomarker of cellular senescence in the development of diagnostics and therapeutics for age-related dysfunctions.
Collapse
Affiliation(s)
- Magdalena Rudzińska
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.R.); (A.P.); (A.V.B.); (O.E.C.); (F.M.V.)
| | - Alessandro Parodi
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.R.); (A.P.); (A.V.B.); (O.E.C.); (F.M.V.)
| | - Anastasia V. Balakireva
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.R.); (A.P.); (A.V.B.); (O.E.C.); (F.M.V.)
| | - Olga E. Chepikova
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.R.); (A.P.); (A.V.B.); (O.E.C.); (F.M.V.)
| | - Franco M. Venanzi
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.R.); (A.P.); (A.V.B.); (O.E.C.); (F.M.V.)
| | - Andrey A. Zamyatnin
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia; (M.R.); (A.P.); (A.V.B.); (O.E.C.); (F.M.V.)
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
- Correspondence: ; Tel.: +74956229843
| |
Collapse
|
30
|
Zhang Y, Deng Q, Tu L, Lv D, Liu D. tRNA‑derived small RNAs: A novel class of small RNAs in human hypertrophic scar fibroblasts. Int J Mol Med 2020; 45:115-130. [PMID: 31939611 PMCID: PMC6889923 DOI: 10.3892/ijmm.2019.4411] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 10/14/2019] [Indexed: 01/25/2023] Open
Abstract
tRNA‑derived small RNAs (tsRNAs) have been shown to play regulatory roles in many physiological and pathological processes. However, their roles in hypertrophic scars remain unclear. The present study investigated differentially expressed tsRNAs in human hypertrophic scar fibroblasts and normal skin fibroblasts via high‑throughput sequencing. Several dysregulated tsRNAs were validated by reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, target prediction, coexpression networks and competing endogenous RNA (ceRNA) networks were evaluated to discover the principal functions of significantly differentially expressed tsRNAs. In total, 67 differentially expressed tsRNAs were detected, of which 27 were upregulated and 40 downregulated in hypertrophic scar fibroblasts. The GO analysis indicated that the dysregulated tsRNAs are associated with numerous biological functions, including 'nervous system development', 'cell adhesion', 'focal adhesion', 'protein binding', 'angiogenesis' and 'actin binding'. KEGG pathway analysis revealed that the most altered pathways include 'Ras signaling pathway', 'Rap1 signaling pathway' and 'cGMP‑PKG signaling pathway'. The target genes of the differentially expressed tsRNAs participate in several signaling pathways important for scar formation. The results of RT‑qPCR were consistent with those of sequencing. MicroRNA (miR)‑29b‑1‑5p was identified as a target of tsRNA‑23678 and was downregulated in hypertrophic scar fibroblasts, constituting a negative regulatory factor for scar formation. Furthermore, tsRNA‑23761 acted as a ceRNA and bound to miR‑3135b to regulate the expression of miR‑3135b targets, including angiotensin‑converting enzyme. Collectively, these findings reveal that tsRNAs are differentially expressed in human hypertrophic scar fibroblasts, and may contribute to the molecular mechanism and treatment of hypertrophic scars.
Collapse
Affiliation(s)
- Yaping Zhang
- Institute of Burns, The First Affiliated Hospital of Nanchang University
- Department of Medicine, Graduate School of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qin Deng
- Institute of Burns, The First Affiliated Hospital of Nanchang University
- Department of Medicine, Graduate School of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Longxiang Tu
- Institute of Burns, The First Affiliated Hospital of Nanchang University
| | - Dan Lv
- Institute of Burns, The First Affiliated Hospital of Nanchang University
- Department of Medicine, Graduate School of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Dewu Liu
- Institute of Burns, The First Affiliated Hospital of Nanchang University
| |
Collapse
|
31
|
Sprouty1 is a weight-loss target gene in human adipose stem/progenitor cells that is mandatory for the initiation of adipogenesis. Cell Death Dis 2019; 10:411. [PMID: 31138786 PMCID: PMC6538615 DOI: 10.1038/s41419-019-1657-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/08/2019] [Accepted: 05/13/2019] [Indexed: 12/26/2022]
Abstract
The differentiation of adipose stem/progenitor cells (ASCs) into adipocytes contributes to adipose tissue expansion in obesity. This process is regulated by numerous signalling pathways including MAPK signalling. In the present study, we show that weight loss (WL) interventions induce upregulation of Sprouty1 (SPRY1), a negative regulator of MAPK signalling, in human ASCs and elucidate the role of the Sprouty1/MAPK interaction for adipogenic differentiation. We found that the Sprouty1 protein levels are low in proliferating ASCs, increasing in density arrested ASCs at the onset of adipogenic differentiation and decreasing in the course of adipogenesis. Knock-down (KD) of Sprouty1 by RNA interference led to elevated MAPK activity and reduced expression of the early adipogenic transcription factor CCAAT/enhancer-binding protein β (C/EBP β), concomitant with an abrogation of adipogenesis. Intriguingly, co-treatment of Sprouty1 KD ASCs with differentiation medium and the pharmacological MEK inhibitor U0126 blunted ERK phosphorylation; however, failed to rescue adipogenic differentiation. Thus, the effects of the Sprouty1 KD are not reversed by inhibiting MAPK signalling although the inhibition of MAPK signalling by U0126 did not prevent adipogenic differentiation in wild type ASCs. In conclusion, we show that Sprouty1 is induced after WL in ASCs of formerly obese people acting as a negative regulator of MAPK signalling, which is necessary to properly trigger adipogenesis at early stages by a C/EBP β dependent mechanism.
Collapse
|
32
|
Qu L, Pan C, He SM, Lang B, Gao GD, Wang XL, Wang Y. The Ras Superfamily of Small GTPases in Non-neoplastic Cerebral Diseases. Front Mol Neurosci 2019; 12:121. [PMID: 31213978 PMCID: PMC6555388 DOI: 10.3389/fnmol.2019.00121] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/25/2019] [Indexed: 12/22/2022] Open
Abstract
The small GTPases from the Ras superfamily play crucial roles in basic cellular processes during practically the entire process of neurodevelopment, including neurogenesis, differentiation, gene expression, membrane and protein traffic, vesicular trafficking, and synaptic plasticity. Small GTPases are key signal transducing enzymes that link extracellular cues to the neuronal responses required for the construction of neuronal networks, as well as for synaptic function and plasticity. Different subfamilies of small GTPases have been linked to a number of non-neoplastic cerebral diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), intellectual disability, epilepsy, drug addiction, Huntington’s disease (HD), amyotrophic lateral sclerosis (ALS) and a large number of idiopathic cerebral diseases. Here, we attempted to make a clearer illustration of the relationship between Ras superfamily GTPases and non-neoplastic cerebral diseases, as well as their roles in the neural system. In future studies, potential treatments for non-neoplastic cerebral diseases which are based on small GTPase related signaling pathways should be explored further. In this paper, we review all the available literature in support of this possibility.
Collapse
Affiliation(s)
- Liang Qu
- Department of Neurosurgery, Tangdu Hospital, Air Force Military Medical University, Xi'an, China
| | - Chao Pan
- Beijing Institute of Biotechnology, Beijing, China
| | - Shi-Ming He
- Department of Neurosurgery, Tangdu Hospital, Air Force Military Medical University, Xi'an, China.,Department of Neurosurgery, Xi'an International Medical Center, Xi'an, China
| | - Bing Lang
- The School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom.,Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Guo-Dong Gao
- Department of Neurosurgery, Tangdu Hospital, Air Force Military Medical University, Xi'an, China
| | - Xue-Lian Wang
- Department of Neurosurgery, Tangdu Hospital, Air Force Military Medical University, Xi'an, China
| | - Yuan Wang
- Department of Neurosurgery, Tangdu Hospital, Air Force Military Medical University, Xi'an, China
| |
Collapse
|
33
|
Targeting mTOR in Acute Lymphoblastic Leukemia. Cells 2019; 8:cells8020190. [PMID: 30795552 PMCID: PMC6406494 DOI: 10.3390/cells8020190] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/12/2019] [Accepted: 02/16/2019] [Indexed: 12/12/2022] Open
Abstract
Acute Lymphoblastic Leukemia (ALL) is an aggressive hematologic disorder and constitutes approximately 25% of cancer diagnoses among children and teenagers. Pediatric patients have a favourable prognosis, with 5-years overall survival rates near 90%, while adult ALL still correlates with poorer survival. However, during the past few decades, the therapeutic outcome of adult ALL was significantly ameliorated, mainly due to intensive pediatric-based protocols of chemotherapy. Mammalian (or mechanistic) target of rapamycin (mTOR) is a conserved serine/threonine kinase belonging to the phosphatidylinositol 3-kinase (PI3K)-related kinase family (PIKK) and resides in two distinct signalling complexes named mTORC1, involved in mRNA translation and protein synthesis and mTORC2 that controls cell survival and migration. Moreover, both complexes are remarkably involved in metabolism regulation. Growing evidence reports that mTOR dysregulation is related to metastatic potential, cell proliferation and angiogenesis and given that PI3K/Akt/mTOR network activation is often associated with poor prognosis and chemoresistance in ALL, there is a constant need to discover novel inhibitors for ALL treatment. Here, the current knowledge of mTOR signalling and the development of anti-mTOR compounds are documented, reporting the most relevant results from both preclinical and clinical studies in ALL that have contributed significantly into their efficacy or failure.
Collapse
|
34
|
Llavero F, Luque Montoro M, Arrazola Sastre A, Fernández-Moreno D, Lacerda HM, Parada LA, Lucia A, Zugaza JL. Epidermal growth factor receptor controls glycogen phosphorylase in T cells through small GTPases of the RAS family. J Biol Chem 2019; 294:4345-4358. [PMID: 30647127 DOI: 10.1074/jbc.ra118.005997] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/07/2019] [Indexed: 12/31/2022] Open
Abstract
We recently uncovered a regulatory pathway of the muscle isoform of glycogen phosphorylase (PYGM) that plays an important role in regulating immune function in T cells. Here, using various enzymatic, pulldown, and immunoprecipitation assays, we describe signaling cross-talk between the small GTPases RAS and RAP1A, member of RAS oncogene family (RAP1) in human Kit 225 lymphoid cells, which, in turn, is regulated by the epidermal growth factor receptor (EGFR). We found that this communication bridge is essential for glycogen phosphorylase (PYG) activation through the canonical pathway because this enzyme is inactive in the absence of adenylyl cyclase type 6 (ADCY6). PYG activation required stimulation of both exchange protein directly activated by cAMP 2 (EPAC2) and RAP1 via RAS and ADCY6 phosphorylation, with the latter being mediated by Raf-1 proto-oncogene, Ser/Thr kinase (RAF1). Consistent with this model, PYG activation was EGFR-dependent and may be initiated by the constitutively active form of RAS. Consequently, PYG activation in Kit 225 T cells could be blocked with specific inhibitors of RAS, EPAC, RAP1, RAF1, ADCY6, and cAMP-dependent protein kinase. Our results establish a new paradigm for the mechanism of PYG activation, which depends on the type of receptor involved.
Collapse
Affiliation(s)
- Francisco Llavero
- From the Achucarro Basque Center for Neuroscience, Science Park of the Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 48940 Leioa, Spain,
| | - Miriam Luque Montoro
- From the Achucarro Basque Center for Neuroscience, Science Park of the Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 48940 Leioa, Spain
| | - Alazne Arrazola Sastre
- From the Achucarro Basque Center for Neuroscience, Science Park of the Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 48940 Leioa, Spain.,the Department of Genetics, Physical Anthropology, and Animal Physiology, Faculty of Science and Technology, UPV/EHU, 48940 Leioa, Spain
| | - David Fernández-Moreno
- the Research Institute of the Hospital 12 de Octubre ("i+12"), 28041 Madrid, Spain.,the Faculty of Sports Science, Universidad Europea de Madrid, 28670 Madrid, Spain
| | | | - Luis A Parada
- the Instituto de Patología Experimental, Universidad Nacional de Salta, A4400 Salta, Argentina, and
| | - Alejandro Lucia
- the Research Institute of the Hospital 12 de Octubre ("i+12"), 28041 Madrid, Spain.,the Faculty of Sports Science, Universidad Europea de Madrid, 28670 Madrid, Spain
| | - José L Zugaza
- From the Achucarro Basque Center for Neuroscience, Science Park of the Universidad del País Vasco/Euskal Herriko Unibertsitatea (UPV/EHU), 48940 Leioa, Spain, .,the Department of Genetics, Physical Anthropology, and Animal Physiology, Faculty of Science and Technology, UPV/EHU, 48940 Leioa, Spain.,IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
35
|
Tian P, Zhu Y, Zhang C, Guo X, Zhang P, Xue H. Ras-ERK1/2 signaling contributes to the development of colorectal cancer via regulating H3K9ac. BMC Cancer 2018; 18:1286. [PMID: 30577849 PMCID: PMC6303919 DOI: 10.1186/s12885-018-5199-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 12/09/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUNDS/AIMS Ras is a control switch of ERK1/2 pathway, and hyperactivation of Ras-ERK1/2 signaling appears frequently in human cancers. However, the molecular regulation following by Ras-ERK1/2 activation is still unclear. This work aimed to reveal whether Ras-ERK1/2 promoted the development of colorectal cancer via regulating H3K9ac. METHODS A vector for expression of K-Ras mutated at G12 V and T35S was transfected into SW48 cells, and the acetylation of H3K9 was measured by Western blot analysis. MTT assay, colony formation assay, transwell assay, chromatin immunoprecipitation and RT-qPCR were performed to detect whether H3K9ac was contributed to K-Ras-mediated cell growth and migration. Furthermore, whether HDAC2 and PCAF involved in modification of H3K9ac following Ras-ERK1/2 activation were studied. RESULTS K-Ras mutated at G12 V and T35S induced a significant activation of ERK1/2 signaling and a significant down-regulation of H3K9ac. Recovering H3K9 acetylation by using a mimicked H3K9ac expression vector attenuated the promoting effects of Ras-ERK1/2 on tumor cells growth and migration. Besides, H3K9ac can be deacetylated by HDAC2 and MDM2-depedent degradation of PCAF. CONCLUSION H3K9ac was a specific target for Ras-ERK1/2 signaling pathway. H3K9 acetylation can be modulated by HDAC2 and MDM2-depedent degradation of PCAF. The revealed regulation provides a better understanding of Ras-ERK1/2 signaling in tumorigenesis.
Collapse
Affiliation(s)
- Peng Tian
- Department of Gastrointestinal Surgery, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, 450003, China
| | - Yanfei Zhu
- Department of General Surgery, Wuxi People's Hospital of Nanjing Medical University, Wuxi, 214023, China
| | - Chao Zhang
- Department of Gastrointestinal Surgery, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, 450003, China
| | - Xinyu Guo
- Department of Gastrointestinal Surgery, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, 450003, China
| | - Peng Zhang
- Department of Gastrointestinal Surgery, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), Zhengzhou, 450003, China
| | - Huanzhou Xue
- Department of General Surgery, Zhengzhou University People's Hospital (Henan Provincial People's Hospital), No.7, Weiwu Road, Zhengzhou, 450003, Henan, China.
| |
Collapse
|
36
|
Abstract
Longer human lives have led to a global burden of late-life disease. However, some older people experience little ill health, a trait that should be extended to the general population. Interventions into lifestyle, including increased exercise and reduction in food intake and obesity, can help to maintain healthspan. Altered gut microbiota, removal of senescent cells, blood factors obtained from young individuals and drugs can all improve late-life health in animals. Application to humans will require better biomarkers of disease risk and responses to interventions, closer alignment of work in animals and humans, and increased use of electronic health records, biobank resources and cohort studies.
Collapse
|
37
|
Flunkert J, Maierhofer A, Dittrich M, Müller T, Horvath S, Nanda I, Haaf T. Genetic and epigenetic changes in clonal descendants of irradiated human fibroblasts. Exp Cell Res 2018; 370:322-332. [PMID: 29964050 DOI: 10.1016/j.yexcr.2018.06.034] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 06/12/2018] [Accepted: 06/27/2018] [Indexed: 10/28/2022]
Abstract
To study delayed genetic and epigenetic radiation effects, which may trigger radiation-induced carcinogenesis, we have established single-cell clones from irradiated and non-irradiated primary human fibroblasts. Stable clones were endowed with the same karyotype in all analyzed metaphases after 20 population doublings (PDs), whereas unstable clones displayed mosaics of normal and abnormal karyotypes. To account for variation in radiation sensitivity, all experiments were performed with two different fibroblast strains. After a single X-ray dose of 2 Gy more than half of the irradiated clones exhibited radiation-induced genome instability (RIGI). Irradiated clones displayed an increased rate of loss of chromosome Y (LOY) and copy number variations (CNVs), compared to controls. CNV breakpoints clustered in specific chromosome regions, in particular 3p14.2 and 7q11.21, coinciding with common fragile sites. CNVs affecting the FHIT gene in FRA3B were observed in independent unstable clones and may drive RIGI. Bisulfite pyrosequencing of control clones and the respective primary culture revealed global hypomethylation of ALU, LINE-1, and alpha-satellite repeats as well as rDNA hypermethylation during in vitro ageing. Irradiated clones showed further reduced ALU and alpha-satellite methylation and increased rDNA methylation, compared to controls. Methylation arrays identified several hundred differentially methylated genes and several enriched pathways associated with in vitro ageing. Methylation changes in 259 genes and the MAP kinase signaling pathway were associated with delayed radiation effects (after 20 PDs). Collectively, our results suggest that both genetic (LOY and CNVs) and epigenetic changes occur in the progeny of exposed cells that were not damaged directly by irradiation, likely contributing to radiation-induced carcinogenesis. We did not observe epigenetic differences between stable and unstable irradiated clones. The fact that the DNA methylation (DNAm) age of clones derived from the same primary culture varied greatly suggests that DNAm age of a single cell (represented by a clone) can be quite different from the DNAm age of a tissue. We propose that DNAm age reflects the emergent property of a large number of individual cells whose respective DNAm ages can be highly variable.
Collapse
Affiliation(s)
- Julia Flunkert
- Institute of Human Genetics, Julius Maximilians University, 97074 Würzburg, Germany
| | - Anna Maierhofer
- Institute of Human Genetics, Julius Maximilians University, 97074 Würzburg, Germany
| | - Marcus Dittrich
- Institute of Human Genetics, Julius Maximilians University, 97074 Würzburg, Germany; Department of Bioinformatics, Julius Maximilians University, 97074 Würzburg, Germany
| | - Tobias Müller
- Department of Bioinformatics, Julius Maximilians University, 97074 Würzburg, Germany
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Indrajit Nanda
- Institute of Human Genetics, Julius Maximilians University, 97074 Würzburg, Germany
| | - Thomas Haaf
- Institute of Human Genetics, Julius Maximilians University, 97074 Würzburg, Germany.
| |
Collapse
|
38
|
Van Sciver RE, Lee MP, Lee CD, Lafever AC, Svyatova E, Kanda K, Colliver AL, Siewertsz van Reesema LL, Tang-Tan AM, Zheleva V, Bwayi MN, Bian M, Schmidt RL, Matrisian LM, Petersen GM, Tang AH. A New Strategy to Control and Eradicate "Undruggable" Oncogenic K-RAS-Driven Pancreatic Cancer: Molecular Insights and Core Principles Learned from Developmental and Evolutionary Biology. Cancers (Basel) 2018; 10:142. [PMID: 29757973 PMCID: PMC5977115 DOI: 10.3390/cancers10050142] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/08/2018] [Accepted: 05/10/2018] [Indexed: 12/15/2022] Open
Abstract
Oncogenic K-RAS mutations are found in virtually all pancreatic cancers, making K-RAS one of the most targeted oncoproteins for drug development in cancer therapies. Despite intense research efforts over the past three decades, oncogenic K-RAS has remained largely "undruggable". Rather than targeting an upstream component of the RAS signaling pathway (i.e., EGFR/HER2) and/or the midstream effector kinases (i.e., RAF/MEK/ERK/PI3K/mTOR), we propose an alternative strategy to control oncogenic K-RAS signal by targeting its most downstream signaling module, Seven-In-Absentia Homolog (SIAH). SIAH E3 ligase controls the signal output of oncogenic K-RAS hyperactivation that drives unchecked cell proliferation, uncontrolled tumor growth, and rapid cancer cell dissemination in human pancreatic cancer. Therefore, SIAH is an ideal therapeutic target as it is an extraordinarily conserved downstream signaling gatekeeper indispensable for proper RAS signaling. Guided by molecular insights and core principles obtained from developmental and evolutionary biology, we propose an anti-SIAH-centered anti-K-RAS strategy as a logical and alternative anticancer strategy to dampen uncontrolled K-RAS hyperactivation and halt tumor growth and metastasis in pancreatic cancer. The clinical utility of developing SIAH as both a tumor-specific and therapy-responsive biomarker, as well as a viable anti-K-RAS drug target, is logically simple and conceptually innovative. SIAH clearly constitutes a major tumor vulnerability and K-RAS signaling bottleneck in pancreatic ductal adenocarcinoma (PDAC). Given the high degree of evolutionary conservation in the K-RAS/SIAH signaling pathway, an anti-SIAH-based anti-PDAC therapy will synergize with covalent K-RAS inhibitors and direct K-RAS targeted initiatives to control and eradicate pancreatic cancer in the future.
Collapse
Affiliation(s)
- Robert E Van Sciver
- Department of Microbiology and Molecular Cell Biology, Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA 23507, USA.
| | - Michael P Lee
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA 23507, USA.
| | - Caroline Dasom Lee
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA 23507, USA.
| | - Alex C Lafever
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA 23507, USA.
| | - Elizaveta Svyatova
- Department of Microbiology and Molecular Cell Biology, Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA 23507, USA.
| | - Kevin Kanda
- Department of Microbiology and Molecular Cell Biology, Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA 23507, USA.
| | - Amber L Colliver
- School of Medicine, Eastern Virginia Medical School, Norfolk, VA 23507, USA.
| | | | - Angela M Tang-Tan
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA.
| | - Vasilena Zheleva
- Department of Surgery, Eastern Virginia Medical School, Norfolk, VA 23507, USA.
| | - Monicah N Bwayi
- Department of Microbiology and Molecular Cell Biology, Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA 23507, USA.
| | - Minglei Bian
- Department of Microbiology and Molecular Cell Biology, Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA 23507, USA.
| | - Rebecca L Schmidt
- Department of Biology, Upper Iowa University, Fayette, IA 52142, USA.
| | - Lynn M Matrisian
- Pancreatic Cancer Action Network, 1050 Connecticut Ave NW, Suite 500, Washington, DC 20036, USA.
- Pancreatic Cancer Action Network, 1500 Rosecrans Ave, Suite 200, Manhattan Beach, CA 90266, USA.
| | - Gloria M Petersen
- Department of Health Sciences Research, Mayo Clinic Cancer Center, Mayo Clinic Pancreatic Cancer SPORE, BioBusiness 5-85, 200 First Street SW, Rochester, MN 55905, USA.
| | - Amy H Tang
- Department of Microbiology and Molecular Cell Biology, Leroy T. Canoles Jr. Cancer Research Center, Eastern Virginia Medical School, Norfolk, VA 23507, USA.
| |
Collapse
|
39
|
Zhang R, Wei Y, Zhu L, Huang L, Wei Y, Chen G, Dang Y, Feng Z. LncRNA UCHL1-AS1 prevents cell mobility of hepatocellular carcinoma: a study based on in vitro and bioinformatics. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:2270-2280. [PMID: 31938339 PMCID: PMC6958276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/08/2018] [Indexed: 06/10/2023]
Abstract
We set out to investigate biological functions and potential molecular mechanisms of long non-coding RNA (lncRNA) in hepatocellular carcinoma (HCC). HCC cell line Bel-7404 was cultured and transfected with antisense to the ubiquitin carboxyl-terminal hydrolase L1 (UCHL1-AS1). Viability and mobility were detected by MTT and wound healing assays. Additionally, enrichment analysis and functional networks of UCHL1-AS1 related genes in HCC were performed. Results showed that high level UCHL1-AS1 could effectively inhibit HCC cell migration. However, there was no significant correlation between overexpressed UCHL1-AS1 and HCC proliferation. Meanwhile, BMP4, CALM3, and HRAS were selected from 204 genes that related to UCHL1-AS1. All of these hub genes play critical roles in HCC occurrence and development. Thus, underlying molecular mechanisms among hub genes and UCHL1-AS1 in HCC might be valuable for prognosis and treatment.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Yichen Wei
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Li'ou Zhu
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Lanshan Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Yan Wei
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Yiwu Dang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Zhenbo Feng
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University Nanning 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
40
|
Bettedi L, Foukas LC. Growth factor, energy and nutrient sensing signalling pathways in metabolic ageing. Biogerontology 2017; 18:913-929. [PMID: 28795262 PMCID: PMC5684302 DOI: 10.1007/s10522-017-9724-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 07/21/2017] [Indexed: 01/24/2023]
Abstract
The field of the biology of ageing has received increasing attention from a biomedical point of view over the past decades. The main reason has been the realisation that increases in human population life expectancy are accompanied by late onset diseases. Indeed, ageing is the most important risk factor for a number of neoplastic, neurodegenerative and metabolic pathologies. Advances in the knowledge of the genetics of ageing, mainly through research in model organisms, have implicated various cellular processes and the respective signalling pathways that regulate them in cellular and organismal ageing. Associated with ageing is a dysregulation of metabolic homeostasis usually manifested as age-related obesity, diminished insulin sensitivity and impaired glucose and lipid homeostasis. Metabolic deterioration contributes to the ageing phenotype and metabolic pathologies are thought to be one of the main factors limiting the potential for lifespan extension. Great efforts have been directed towards identifying pharmacological interventions with the potential to improve healthspan and a number of natural and synthetic compounds have shown promise in achieving beneficial metabolic effects.
Collapse
Affiliation(s)
- Lucia Bettedi
- Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, London, UK
- Cell Biology and Neurobiology Branch, National Institutes of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Lazaros C Foukas
- Institute of Healthy Ageing and Department of Genetics, Evolution and Environment, University College London, London, UK.
| |
Collapse
|