1
|
Yılmaz Karadağ F, Öztürk Engin D, Büber AA, Görmüş T, Arslan E, Çetin AŞ, Tekin S, Sayan İ, Bayri C, Odabaşı H, Bakan N, Ankaralı H. Evaluation of candidemia cases in the intensive care unit of a tertiary training hospital during the period of COVID-19 pandemic. BMC Infect Dis 2025; 25:288. [PMID: 40021959 PMCID: PMC11869554 DOI: 10.1186/s12879-025-10688-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 02/19/2025] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND Many risk factors, including COVID-19 infection, lead to the development of invasive Candida infection in intensive care unit patients. The aim of this study was to evaluate the risk factors affecting mortality along with the clinical characteristics of candidemia patients. METHODS This retrospective study was conducted among patients hospitalized at the Anesthesiology and Reanimation Clinic between June 2020 and December 2021. The clinical and laboratory characteristics of 165 patients with candidemia were recorded. The difference between patients with and without COVID-19 infection was evaluated statistically. Multivariate analysis was performed to determine factors affecting mortality. RESULTS A total of 165 patients were included in the study, 52.1% of whom were male. The mean age of the patients was 66.5 (median 18-97) years. The percentage of patients with COVID-19 infection was 70.9%. The mean leukocyte count and aspartate transaminase, alanine transaminase, C-reactive protein, lactate dehydrogenase, ferritin, and D-dimer levels were significantly greater in COVID-19 patients than non COVID-19 patients (p < 0.05). The mortality rate in patients with candidemia was 80.2%. The presence of comorbidities, corticosteroid use, advanced age, and high ferritin and D-dimer levels negatively affected mortality, according to the multivariate analysis results. C. albicans was the most frequently isolated Candida species. CONCLUSIONS We detected higher mortality rates in patients with candidemia who were elderly, had comorbidities, received corticosteroid treatment and had elevated ferritin and D-dimer levels. When steroids are used, it is necessary to remember that this drug is a double-edged sword and to be careful of fungal infections.
Collapse
Affiliation(s)
- Fatma Yılmaz Karadağ
- Department of Infectious Diseases and Clinical Microbiology, University of Health Sciences, Sancaktepe Sehit Prof. Dr. Ilhan Varank Training and Research Hospital, Emek Mahallesi, Namık Kemal cad. No 54 Sancaktepe, Istanbul, 34785, Turkey.
| | - Derya Öztürk Engin
- Department of Infectious Diseases and Clinical Microbiology, University of Health Sciences, Sancaktepe Sehit Prof. Dr. Ilhan Varank Training and Research Hospital, Emek Mahallesi, Namık Kemal cad. No 54 Sancaktepe, Istanbul, 34785, Turkey
| | - Aslıhan Ayşe Büber
- Department of Infectious Diseases and Clinical Microbiology, University of Health Sciences, Sancaktepe Sehit Prof. Dr. Ilhan Varank Training and Research Hospital, Emek Mahallesi, Namık Kemal cad. No 54 Sancaktepe, Istanbul, 34785, Turkey
| | - Tülay Görmüş
- Department of Infectious Diseases and Clinical Microbiology, University of Health Sciences, Sancaktepe Sehit Prof. Dr. Ilhan Varank Training and Research Hospital, Emek Mahallesi, Namık Kemal cad. No 54 Sancaktepe, Istanbul, 34785, Turkey
| | - Eyüp Arslan
- Department of Infectious Diseases and Clinical Microbiology, University of Health Sciences, Sancaktepe Sehit Prof. Dr. Ilhan Varank Training and Research Hospital, Emek Mahallesi, Namık Kemal cad. No 54 Sancaktepe, Istanbul, 34785, Turkey
| | - Ayşe Şabablı Çetin
- Department of Infectious Diseases and Clinical Microbiology, University of Health Sciences, Sancaktepe Sehit Prof. Dr. Ilhan Varank Training and Research Hospital, Emek Mahallesi, Namık Kemal cad. No 54 Sancaktepe, Istanbul, 34785, Turkey
| | - Selda Tekin
- Department of Anesthesiology and Reanimation, University of Health Sciences, Sancaktepe Sehit Prof. Dr. Ilhan Varank Training and Research Hospital, Istanbul, Turkey
| | - İsmet Sayan
- Department of Anesthesiology and Reanimation, University of Health Sciences, Sancaktepe Sehit Prof. Dr. Ilhan Varank Training and Research Hospital, Istanbul, Turkey
| | - Candan Bayri
- Department of Infectious Diseases and Clinical Microbiology, University of Health Sciences, Sancaktepe Sehit Prof. Dr. Ilhan Varank Training and Research Hospital, Emek Mahallesi, Namık Kemal cad. No 54 Sancaktepe, Istanbul, 34785, Turkey
| | - Hakan Odabaşı
- Department of Medical Microbiology, Sancaktepe Sehit Prof. Dr. Ilhan Varank Training and Research Hospital, Istanbul, Turkey
| | - Nurten Bakan
- Department of Anesthesiology and Reanimation, University of Health Sciences, Sancaktepe Sehit Prof. Dr. Ilhan Varank Training and Research Hospital, Istanbul, Turkey
| | - Handan Ankaralı
- Department of Biostatistics, Istanbul Medeniyet University, Istanbul, Turkey
| |
Collapse
|
2
|
Bistagnino F, Pizzi D, Mantovani F, Antonino JR, Tovani-Palone MR. Long COVID and gut candidiasis: What is the existing relationship? World J Gastroenterol 2024; 30:4104-4114. [DOI: 10.3748/wjg.v30.i37.4104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/30/2024] [Accepted: 09/13/2024] [Indexed: 09/26/2024] Open
Abstract
Since the beginning of the coronavirus disease (COVID) 2019 pandemic, thousands of articles on the topic have been published, and although there is a growing trend of research on another associated condition, long coronavirus disease, important points still remain to be clarified in this respect. Robust evidence has suggested a relevant link between new clinical discoveries and molecular mechanisms that could be associated with the manifestations of different signs and symptoms involving cases of long COVID. However, one of the existing gaps that requires further investigation concerns a possible relationship between gut candidiasis and long COVID. While recent studies also suggest an interplay between the occurrence of these two conditions, it is not yet fully clear how this may happen, as well as the specifics regarding the possible pathophysiological mechanisms involved. In this connection and with the advent of a potential strengthening of the body of evidence supporting the hypothesis of a link between gut candidiasis and long COVID, a better understanding of the clinical presentation, pathophysiology and clinical management of such a relationship should be essential and useful for both, additional advances towards more targeted research and appropriate case management. Knowing more about the signs, symptoms, and complications associated with cases of long COVID is essential in order to more effectively mitigate the related burden and provide a higher quality of care and life for the affected population. In light of this and the need for better outcomes, here we review and discuss the content on different aspects of long COVID, including its pathophysiology and the existing evidence of a potential relationship between such a condition and gut candidiasis, as well as suggest propositions for future related research.
Collapse
Affiliation(s)
- Filippo Bistagnino
- Department of Medical Biotechnology and Translational Medicine, International Medical School, Università degli Studi di Milano, Milan 20054, Italy
| | - Davide Pizzi
- Department of Medical Biotechnology and Translational Medicine, International Medical School, Università degli Studi di Milano, Milan 20054, Italy
| | - Filippo Mantovani
- Department of Medical Biotechnology and Translational Medicine, International Medical School, Università degli Studi di Milano, Milan 20054, Italy
| | - Jacopo Rosso Antonino
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, Milan 20133, Italy
| | - Marcos Roberto Tovani-Palone
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, India
| |
Collapse
|
3
|
Srisurapanont K, Lerttiendamrong B, Meejun T, Thanakitcharu J, Manothummetha K, Thongkam A, Chuleerarux N, Sanguankeo A, Li LX, Leksuwankun S, Langsiri N, Torvorapanit P, Worasilchai N, Plongla R, Moonla C, Nematollahi S, Kates OS, Permpalung N. Candidemia Following Severe COVID-19 in Hospitalised and Critical Ill Patients: A Systematic Review and Meta-Analysis. Mycoses 2024; 67:e13798. [PMID: 39379339 PMCID: PMC11607781 DOI: 10.1111/myc.13798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/27/2024] [Accepted: 08/30/2024] [Indexed: 10/10/2024]
Abstract
RATIONALE The epidemiology and clinical impact of COVID-19-associated candidemia (CAC) remained uncertain, leaving gaps in understanding its prevalence, risk factors and outcomes. METHODS A systematic review and meta-analysis were conducted by searching PubMed, Embase and Scopus for reports of CAC prevalence, risk factors and clinical outcomes up to June 18, 2024. The generalised linear mixed model was employed to determine the prevalence and 95% confidence intervals (CIs). The risk factors and clinical outcomes were compared between patients with and without CAC using the inverse variance method. RESULTS From 81 studies encompassing 29 countries and involving 351,268 patients, the global prevalence of CAC was 4.33% (95% Cl, 3.16%-5.90%) in intensive care unit (ICU) patients. In ICUs, the pooled prevalence of CAC in high-income countries was significantly higher than that of lower-middle-income countries (5.99% [95% Cl, 4.24%-8.40%] vs. 2.23% [95% Cl, 1.06%-4.61%], p = 0.02). Resistant Candida species, including C. auris, C. glabrata (Nakaseomyces glabratus) and C. krusei (Pichia kudriavzveii), constituted 2% of ICU cases. The mortality rate for CAC was 68.40% (95% Cl, 61.86%-74.28%) among ICU patients. Several risk factors were associated with CAC, including antibiotic use, central venous catheter placement, dialysis, mechanical ventilation, tocilizumab, extracorporeal membrane oxygenation and total parenteral nutrition. Notably, the pooled odds ratio of tocilizumab was 2.59 (95% CI, 1.44-4.65). CONCLUSIONS The prevalence of CAC is substantial in the ICU setting, particularly in high-income countries. Several risk factors associated with CAC were identified, including several that are modifiable, offering the opportunity to mitigate the risk of CAC.
Collapse
Affiliation(s)
| | | | - Tanaporn Meejun
- Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Jaedvara Thanakitcharu
- Panyananthaphikkhu Cholprathan Medical Center, Srinakharinwirot University, Nonthaburi, Thailand
| | - Kasama Manothummetha
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Achitpol Thongkam
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nipat Chuleerarux
- Department of Medicine, University of Miami/Jackson Memorial Hospital, Miami, Florida, USA
| | - Anawin Sanguankeo
- Department of Preventive and Social Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Lucy X. Li
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Surachai Leksuwankun
- Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Thai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Nattapong Langsiri
- Panyananthaphikkhu Cholprathan Medical Center, Srinakharinwirot University, Nonthaburi, Thailand
| | - Pattama Torvorapanit
- Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Thai Red Cross Emerging Infectious Diseases Clinical Center, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Navaporn Worasilchai
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, and Research Unit of Medical Mycology Diagnosis, Chulalongkorn University, Bangkok, Thailand
| | - Rongpong Plongla
- Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Chatphatai Moonla
- Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Center of Excellence in Translational Hematology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Saman Nematollahi
- Department of Medicine, University of Arizona College of Medicine, Tucson, Arizona, USA
| | - Olivia S. Kates
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nitipong Permpalung
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
4
|
Asfaram S, Iranpour S, Molaei S, Abdollahzadeh H, Faraji F, Aminizadeh S. Sero-prevalence of Toxoplasma gondii before and during the COVID-19 pandemic in Northwestern Iran. BMC Infect Dis 2024; 24:834. [PMID: 39152395 PMCID: PMC11328482 DOI: 10.1186/s12879-024-09724-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND Toxoplasma gondii (T. gondii) is a ubiquitous protozoan parasite on our planet that causes toxoplasmosis. This study evaluated the seroprevalence and related risk factors for T. gondii infection in a population referred to healthcare centers in Meshkin-Shahr, Northwest Iran. METHODS A total of 400 blood samples were randomly collected from the general population and assessed using the anti-Toxoplasma antibodies, Immunoglobulin G and M (IgG and IgM) Enzyme-linked immunosorbent assay (ELISA) Kits in two steps before and during the coronavirus disease 2019 (COVID-19) pandemic, 2019-2020. The results were analyzed through logistic regression via SPSS 26 software. RESULTS Before the COVID-19 pandemic, anti-toxoplasma antibodies were detected in 39% of individuals (IgG: 38%, IgM: 0.5%, and IgG-IgM: 0.5%). Among the eleven risk factors evaluated, contact with soil and people awareness were significantly associated with T. gondii infection (p < 0.05). However, factors such as females, 20-39 age groups, junior high schools, housewives, rural areas, raw meat or vegetable consumption, vegetable or fruits washed by water, not detergent, and cat owners did not show a significant relationship with seropositivity (p > 0.05). After the outbreak of the COVID-19 pandemic, the overall seroprevalence for anti-T. gondii antibody increased to 49.7% (IgG: 47.7%, IgM: 0.5%, and IgG and IgM: 1.5%). Among these patients, 26% were positive for COVID-19. Additionally, before the COVID-19 pandemic, 40 samples were negative for anti-T. gondii antibodies but later became positive. The crude and adjusted models suggested that toxoplasmosis may be a possible risk factor for increased susceptibility to COVID-19, with an odds ratio (OR) of 1.28 (95% confidence interval (CI), 0.82-1.99; P < 0.05). Conversely, a non-significant protective effect against latent toxoplasmosis was observed in COVID-19-positive individuals (OR = 0.99; 95% CI, 0.51-1.92; P > 0.05), and COVID-19 positivity did not increase the levels of anti-T. gondii IgG antibodies. CONCLUSIONS The general population in this region had a moderate seroprevalence of T. gondii. The increased number of COVID-19-positive patients with latent toxoplasmosis highlights the need to pay attention to the early diagnosis and proper treatment of toxoplasmosis in these patients and implement preventive programs in these areas for future possible viral infections.
Collapse
Affiliation(s)
- Shabnam Asfaram
- Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Sohrab Iranpour
- Department of Community Medicine, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Soheila Molaei
- Zoonoses Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Hamed Abdollahzadeh
- Ardabil Health Center Laboratory, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Fatemeh Faraji
- Meshkin-Shahr Health Center Laboratory, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Selva Aminizadeh
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Shiyadeh ZS, Farahyar S, Vahedi Larijani L, Beardsley J, Nouri N, Mahmoudi S, Roudbar Mohammadi S, Rodrigues CF, Roudbary M. Hospitalized COVID-19 Patients with Urinary Tract Infection in Iran: Candida Species Distribution and Antifungal Susceptibility Patterns. Antibiotics (Basel) 2024; 13:633. [PMID: 39061315 PMCID: PMC11273823 DOI: 10.3390/antibiotics13070633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/29/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Candida species, typically part of the human skin and mucous membrane flora, can cause opportunistic fungal infections, notably urinary tract infections (UTIs), which are on the rise among hospitalized COVID-19 patients. The lack of understanding of UTIs in this population, coupled with the emergence of multidrug-resistant strains, poses significant challenges for effective treatment and further investigations. In this study, urine samples were collected from 70 COVID-19 patients with UTIs in sterile containers for microbiology examination. After microscopic observation, the isolates were identified both by phenotypic and molecular techniques such as multiplex PCR. Antifungal susceptibility testing (AFST) against fluconazole (Flu), itraconazole (Itr), and amphotericin B (AMB) was performed according to CLSI M27/S4 standard methods, with the frequency of isolates including Candida albicans (n = 20, 51.3%), Candida tropicalis (n = 15, 38.4%), Nakaseomyces glabrata (previously Candida glabrata) (n = 2, 5.1%), Pichia kudriavzevii (previously Candida krusei), and Candida parapsilosis (n = 1, 2.5%). All isolates of C. albicans, C. tropicalis, C. glabrata, and C. parapsilosis were sensitive to amphotericin B, while C. kruzei was resistant to AMB. Around 70% of C. albicans isolates were sensitive to Flu; 20% of C. tropicalis were resistant to itraconazole, while 33% were resistant to fluconazole. C. albicans and C. tropicalis were the main causes of candiduria in infected cases and both Flu and AMB showed good results in AFST in these species. Performing drug susceptibility testing for clinical isolates of Candida spp. provided guidance for appropriate management and control, and timely antifungal treatment.
Collapse
Affiliation(s)
- Zeinab Soleimani Shiyadeh
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran; (Z.S.S.); (S.F.); (S.M.)
| | - Shirin Farahyar
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran; (Z.S.S.); (S.F.); (S.M.)
- Microbial Biotechnology Research Center (MBiRC), School of Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| | - Laleh Vahedi Larijani
- Department of Pathology, School of Medicine, Mazandaran University of Medical Sciences, Sari 48175-866, Iran;
| | - Justin Beardsley
- Sydney Infectious Diseases Institute, University of Sydney, Sydney, NSW 2145, Australia;
- Westmead Hospital, NSW Health, Sydney, NSW 2145, Australia
| | - Noura Nouri
- Department of Mycology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14115111, Iran; (N.N.); (S.R.M.)
| | - Shahram Mahmoudi
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran; (Z.S.S.); (S.F.); (S.M.)
| | - Shahla Roudbar Mohammadi
- Department of Mycology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14115111, Iran; (N.N.); (S.R.M.)
| | - Célia Fortuna Rodrigues
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, University Institute of Health Sciences—CESPU, 4585-116 Gandra, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Translational Toxicology Research Laboratory, University Institute of Health Sciences (1H-TOXRUN, IUCS-CESPU), 4585-116 Gandra, Portugal
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
| | - Maryam Roudbary
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran; (Z.S.S.); (S.F.); (S.M.)
- Sydney Infectious Diseases Institute, University of Sydney, Sydney, NSW 2145, Australia;
- Westmead Hospital, NSW Health, Sydney, NSW 2145, Australia
| |
Collapse
|
6
|
Su L, Yu T, Zhang C, Huo P, Zhao Z. A prediction model for secondary invasive fungal infection among severe SARS-CoV-2 positive patients in ICU. Front Cell Infect Microbiol 2024; 14:1382720. [PMID: 39040601 PMCID: PMC11260608 DOI: 10.3389/fcimb.2024.1382720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024] Open
Abstract
Background The global COVID-19 pandemic has resulted in over seven million deaths, and IFI can further complicate the clinical course of COVID-19. Coinfection of COVID-19 and IFI (secondary IFI) pose significant threats not only to healthcare systems but also to patient lives. After the control measures for COVID-19 were lifted in China, we observed a substantial number of ICU patients developing COVID-19-associated IFI. This creates an urgent need for predictive assessment of COVID-19 patients in the ICU environment for early detection of suspected fungal infection cases. Methods This study is a single-center, retrospective research endeavor. We conducted a case-control study on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) positive patients. The cases consisted of patients who developed any secondary IFI during their ICU stay at Jilin University China-Japan Union Hospital in Changchun, Jilin Province, China, from December 1st, 2022, to August 31st, 2023. The control group consisted of SARS-CoV-2 positive patients without secondary IFI. Descriptive and comparative analyses were performed, and a logistic regression prediction model for secondary IFI in COVID-19 patients was established. Additionally, we observed an increased incidence of COVID-19-associated pulmonary aspergillosis (CAPA) during this pandemic. Therefore, we conducted a univariate subgroup analysis on top of IFI, using non-CAPA patients as the control subgroup. Results From multivariate analysis, the prediction model identified 6 factors that are significantly associated with IFI, including the use of broad-spectrum antibiotics for more than 2 weeks (aOR=4.14, 95% CI 2.03-8.67), fever (aOR=2.3, 95%CI 1.16-4.55), elevated log IL-6 levels (aOR=1.22, 95% CI 1.04-1.43) and prone position ventilation (aOR=2.38, 95%CI 1.15-4.97) as independent risk factors for COVID-19 secondary IFI. High BMI (BMI ≥ 28 kg/m2) (aOR=0.85, 95% CI 0.75-0.94) and the use of COVID-19 immunoglobulin (aOR=0.45, 95% CI 0.2-0.97) were identified as independent protective factors against COVID-19 secondary IFI. The Receiver Operating Curve (ROC) area under the curve (AUC) of this model was 0.81, indicating good classification. Conclusion We recommend paying special attention for the occurrence of secondary IFI in COVID-19 patients with low BMI (BMI < 28 kg/m2), elevated log IL-6 levels and fever. Additionally, during the treatment of COVID-19 patients, we emphasize the importance of minimizing the duration of broad-spectrum antibiotic use and highlight the potential of immunoglobulin application in reducing the incidence of IFI.
Collapse
Affiliation(s)
- Leilei Su
- Department of Critical Care Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Tong Yu
- Department of Epidemiology, University of Pittsburgh School of Public Health, Pittsburgh, PA, United States
| | - Chunmei Zhang
- Department of Critical Care Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Pengfei Huo
- Department of Critical Care Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhongyan Zhao
- Department of Critical Care Medicine, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
7
|
Araujo JM, de Almeida Junior JN, Magri MMC, Costa SF, Guimarães T. Epidemiological Assessment and Risk Factors for Mortality of Bloodstream Infections by Candida sp. and the Impact of the COVID-19 Pandemic Era. J Fungi (Basel) 2024; 10:268. [PMID: 38667939 PMCID: PMC11051234 DOI: 10.3390/jof10040268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/22/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Candidemia is one of the healthcare-associated infections that has high mortality. The risk factors that predispose a patient to develop this infection are mostly found in patients of greater severity and COVID-19 contributes to the risk of death. The aim of this study is to evaluate epidemiological characteristics and risk factors for mortality in patients with candidemia before and during the COVID-19 pandemic era. This is a retrospective study conducted at Instituto Central from 2016 to 2020 of patients with candidemia that were evaluated for demographic data, medical history, risk factors, microbiological data, therapeutic measures, complementary exams, device management, and outcome defined by 30-day mortality. A total of 170 episodes were included (58.2% males; mean age of 56 years). The overall incidence density of candidemia per 1000 admissions and per 1000 patient-days was 1.17 and 0.17, respectively, with an increase of 38% in the year 2020. The use of a central venous catheter was the most prevalent (93.5%) condition, followed by the previous use of antibiotics (91.1%). Corticosteroid use ranked seventh (56.4%). C. albicans was responsible for 71 (41.7%) of the isolates, followed by C. tropicalis and C. glabrata, with 34 (20%) isolates each. Echinocandin was prescribed in 60.1% of cases and fluconazole in 37%. Echocardiography resulted in six (5.08%) cases of endocarditis and fundoscopy resulting in two (2.4%) endophthalmitis. The 30-day mortality was 93/170 (54.7%). The risk factors associated with mortality were age (OR 1.03, CI 95% 1.01-1.06), heart disease (OR 7.51, CI 95% 1.48-37.9), hemodialysis (OR 3.68, CI 95% 1.28-10.57), and use of corticosteroids (OR 2.83, CI 95% 1.01-7.92). The COVID-19 pandemic had an impact on the increase incidence of candidemia. The persistently high mortality highlights the need for better management strategies, control of risk factors, and guarantee of adequate treatment.
Collapse
Affiliation(s)
- Jordana Machado Araujo
- Infection Control Department, Hospital das Clínicas, University of São Paulo, São Paulo 05403-900, Brazil;
| | | | - Marcello Mihailenko Chaves Magri
- Infectious Diseases Department, Hospital das Clínicas, University of São Paulo, São Paulo 05403-900, Brazil; (M.M.C.M.); (S.F.C.)
| | - Silvia Figueiredo Costa
- Infectious Diseases Department, Hospital das Clínicas, University of São Paulo, São Paulo 05403-900, Brazil; (M.M.C.M.); (S.F.C.)
| | - Thaís Guimarães
- Infection Control Department, Hospital das Clínicas, University of São Paulo, São Paulo 05403-900, Brazil;
| |
Collapse
|
8
|
Yang Z, Cai K, Liao Y, Wu WC, Xing L, Hu M, Ren J, Zhang J, Zhu X, Yuan K, Wang S, Huang H, Yang C, Zhang M, Shi M, Lu H. Total Infectome Characterization of Respiratory Infections during the 2022-23 COVID-19 Outbreak in China Revealed Extensive Coinfections with Links to SARS-CoV-2 Status, Age, and Disease Severity. Pathogens 2024; 13:216. [PMID: 38535561 PMCID: PMC10974474 DOI: 10.3390/pathogens13030216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/29/2024] [Accepted: 02/20/2024] [Indexed: 02/11/2025] Open
Abstract
Between 7 December 2022 and 28 February 2023, China experienced a new wave of COVID-19 that swept across the entire country and resulted in an increasing amount of respiratory infections and hospitalizations. The purpose of this study is to reveal the intensity and composition of coinfecting microbial agents. In total, 196 inpatients were recruited from The Third People's Hospital of Shenzhen, and 169 respiratory and 73 blood samples were collected for metagenomic next-generation sequencing. The total "Infectome" was characterized and compared across different groups defined by the SARS-CoV-2 detection status, age groups, and severity of disease. Our results revealed a total of 22 species of pathogenic microbes (4 viruses, 13 bacteria, and 5 fungi), and more were discovered in the respiratory tract than in blood. The diversity of the total infectome was highly distinguished between respiratory and blood samples, and it was generally higher in patients that were SARS-CoV-2-positive, older in age, and with more severe disease. At the individual pathogen level, HSV-1 seemed to be the major contributor to these differences observed in the overall comparisons. Collectively, this study reveals the highly complex respiratory infectome and high-intensity coinfection in patients admitted to the hospital during the period of the 2023 COVID-19 pandemic in China.
Collapse
Affiliation(s)
- Zhongzhou Yang
- Shenzhen Key Laboratory of Systems Medicine for Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (Z.Y.); (Y.L.); (W.-C.W.); (M.H.); (C.Y.)
| | - Kanru Cai
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, The Third People’s Hospital of Shenzhen, Shenzhen 518112, China; (K.C.); (J.Z.); (X.Z.); (M.Z.)
| | - Yuqi Liao
- Shenzhen Key Laboratory of Systems Medicine for Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (Z.Y.); (Y.L.); (W.-C.W.); (M.H.); (C.Y.)
| | - Wei-Chen Wu
- Shenzhen Key Laboratory of Systems Medicine for Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (Z.Y.); (Y.L.); (W.-C.W.); (M.H.); (C.Y.)
| | - Li Xing
- BGI Genomics, BGI-Shenzhen, Shenzhen 518000, China; (L.X.); (J.R.); (K.Y.); (S.W.); (H.H.)
| | - Minxuan Hu
- Shenzhen Key Laboratory of Systems Medicine for Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (Z.Y.); (Y.L.); (W.-C.W.); (M.H.); (C.Y.)
| | - Jiali Ren
- BGI Genomics, BGI-Shenzhen, Shenzhen 518000, China; (L.X.); (J.R.); (K.Y.); (S.W.); (H.H.)
| | - Jieyun Zhang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, The Third People’s Hospital of Shenzhen, Shenzhen 518112, China; (K.C.); (J.Z.); (X.Z.); (M.Z.)
| | - Xiuyun Zhu
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, The Third People’s Hospital of Shenzhen, Shenzhen 518112, China; (K.C.); (J.Z.); (X.Z.); (M.Z.)
| | - Ke Yuan
- BGI Genomics, BGI-Shenzhen, Shenzhen 518000, China; (L.X.); (J.R.); (K.Y.); (S.W.); (H.H.)
| | - Shunyao Wang
- BGI Genomics, BGI-Shenzhen, Shenzhen 518000, China; (L.X.); (J.R.); (K.Y.); (S.W.); (H.H.)
| | - Hui Huang
- BGI Genomics, BGI-Shenzhen, Shenzhen 518000, China; (L.X.); (J.R.); (K.Y.); (S.W.); (H.H.)
| | - Chunhui Yang
- Shenzhen Key Laboratory of Systems Medicine for Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (Z.Y.); (Y.L.); (W.-C.W.); (M.H.); (C.Y.)
| | - Mingxia Zhang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, The Third People’s Hospital of Shenzhen, Shenzhen 518112, China; (K.C.); (J.Z.); (X.Z.); (M.Z.)
| | - Mang Shi
- Shenzhen Key Laboratory of Systems Medicine for Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Shenzhen 518107, China; (Z.Y.); (Y.L.); (W.-C.W.); (M.H.); (C.Y.)
| | - Hongzhou Lu
- Department of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The Third People’s Hospital of Shenzhen, Shenzhen 518112, China
| |
Collapse
|
9
|
Oleinikova Y, Daugaliyeva S, Mounier J, Saubenova M, Aitzhanova A. Metagenetic analysis of the bacterial diversity of Kazakh koumiss and assessment of its anti-Candida albicans activity. World J Microbiol Biotechnol 2024; 40:99. [PMID: 38363373 DOI: 10.1007/s11274-024-03896-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 01/12/2024] [Indexed: 02/17/2024]
Abstract
Koumiss, a five-thousand-year-old fermented mare's milk beverage, is widely recognized for its beneficial nutrient and medicinal properties. The microbiota of Chinese and Mongolian koumiss have been largely characterized in recent years, but little is known concerning Kazakh koumiss despite this drink historically originates from the modern Kazakhstan territory. In addition, while koumiss is regarded as a drink with therapeutic potential, there are also no data on koumiss anti-Candida activity. In this context, the aims of the present study were to investigate the bacterial diversity and anti-Candida albicans activity of homemade Kazakh koumiss samples as well as fermented whey and cow's milk, derived from koumiss and propagated for several months. Koumiss bacterial communities were largely dominated by lactic acid bacteria including Lactobacillus sensu lato spp. (69% of total reads), Streptococcus (8.0%) and Lactococcus (6.1%), while other subdominant genera included Acetobacter (2.6%), Enterobacter (2.4%), and Klebsiella (1.5%). Several but not all koumiss samples as well as fermented whey and cow's milk showed antagonistic activities towards C. albicans. Linear discriminant effect size (LEfSe) analysis showed that their bacterial communities were characterized by a significantly higher abundance of amplicon sequence variants (ASV) belonging to the genus Acetobacter. In conclusion, this study allowed to identify the key microorganisms of Kazakh koumiss and provided new information on the possible underestimated contribution of acetic acid bacteria to its probiotic properties.
Collapse
Affiliation(s)
- Yelena Oleinikova
- Research and Production Center for Microbiology and Virology, Bogenbay Batyr str., 105, 050010, Almaty, Kazakhstan
| | - Saule Daugaliyeva
- Research and Production Center for Microbiology and Virology, Bogenbay Batyr str., 105, 050010, Almaty, Kazakhstan.
| | - Jérôme Mounier
- Univ Brest, INRAE, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, F- 29280, Plouzané, France
| | - Margarita Saubenova
- Research and Production Center for Microbiology and Virology, Bogenbay Batyr str., 105, 050010, Almaty, Kazakhstan
| | - Aida Aitzhanova
- Research and Production Center for Microbiology and Virology, Bogenbay Batyr str., 105, 050010, Almaty, Kazakhstan
| |
Collapse
|
10
|
Kusakabe T, Lin WY, Cheong JG, Singh G, Ravishankar A, Yeung ST, Mesko M, DeCelie MB, Carriche G, Zhao Z, Rand S, Doron I, Putzel GG, Worgall S, Cushing M, Westblade L, Inghirami G, Parkhurst CN, Guo CJ, Schotsaert M, García-Sastre A, Josefowicz SZ, Salvatore M, Iliev ID. Fungal microbiota sustains lasting immune activation of neutrophils and their progenitors in severe COVID-19. Nat Immunol 2023; 24:1879-1889. [PMID: 37872315 PMCID: PMC10805066 DOI: 10.1038/s41590-023-01637-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/06/2023] [Indexed: 10/25/2023]
Abstract
Gastrointestinal fungal dysbiosis is a hallmark of several diseases marked by systemic immune activation. Whether persistent pathobiont colonization during immune alterations and impaired gut barrier function has a durable impact on host immunity is unknown. We found that elevated levels of Candida albicans immunoglobulin G (IgG) antibodies marked patients with severe COVID-19 (sCOVID-19) who had intestinal Candida overgrowth, mycobiota dysbiosis and systemic neutrophilia. Analysis of hematopoietic stem cell progenitors in sCOVID-19 revealed transcriptional changes in antifungal immunity pathways and reprogramming of granulocyte myeloid progenitors (GMPs) for up to a year. Mice colonized with C. albicans patient isolates experienced increased lung neutrophilia and pulmonary NETosis during severe acute respiratory syndrome coronavirus-2 infection, which were partially resolved with antifungal treatment or by interleukin-6 receptor blockade. sCOVID-19 patients treated with tocilizumab experienced sustained reductions in C. albicans IgG antibodies titers and GMP transcriptional changes. These findings suggest that gut fungal pathobionts may contribute to immune activation during inflammatory diseases, offering potential mycobiota-immune therapeutic strategies for sCOVID-19 with prolonged symptoms.
Collapse
Affiliation(s)
- Takato Kusakabe
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York City, NY, USA
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease (JRI), Weill Cornell Medicine, New York City, NY, USA
| | - Woan-Yu Lin
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York City, NY, USA
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease (JRI), Weill Cornell Medicine, New York City, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York City, NY, USA
| | - Jin-Gyu Cheong
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York City, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York City, NY, USA
| | - Gagandeep Singh
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Arjun Ravishankar
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York City, NY, USA
| | - Stephen T Yeung
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York City, NY, USA
- Department of Microbiology, New York University, Langone Health, New York City, NY, USA
| | - Marissa Mesko
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York City, NY, USA
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease (JRI), Weill Cornell Medicine, New York City, NY, USA
| | - Meghan Bialt DeCelie
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York City, NY, USA
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease (JRI), Weill Cornell Medicine, New York City, NY, USA
| | - Guilhermina Carriche
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York City, NY, USA
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease (JRI), Weill Cornell Medicine, New York City, NY, USA
| | - Zhen Zhao
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York City, NY, USA
| | - Sophie Rand
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York City, NY, USA
| | - Itai Doron
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York City, NY, USA
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease (JRI), Weill Cornell Medicine, New York City, NY, USA
| | - Gregory G Putzel
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease (JRI), Weill Cornell Medicine, New York City, NY, USA
| | - Stefan Worgall
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York City, NY, USA
- Department of Pediatrics, Weill Cornell Medicine, New York City, NY, USA
| | - Melissa Cushing
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York City, NY, USA
| | - Lars Westblade
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York City, NY, USA
| | - Giorgio Inghirami
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York City, NY, USA
| | - Christopher N Parkhurst
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York City, NY, USA
| | - Chun-Jun Guo
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York City, NY, USA
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease (JRI), Weill Cornell Medicine, New York City, NY, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York City, NY, USA
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York City, NY, USA
| | - Michael Schotsaert
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
- Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai New York, New York City, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Steven Z Josefowicz
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York City, NY, USA
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York City, NY, USA
| | - Mirella Salvatore
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York City, NY, USA
- Department of Population Health Sciences, Weill Cornell Medicine, New York City, NY, USA
| | - Iliyan D Iliev
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York City, NY, USA.
- The Jill Roberts Institute for Research in Inflammatory Bowel Disease (JRI), Weill Cornell Medicine, New York City, NY, USA.
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York City, NY, USA.
- Department of Microbiology and Immunology, Weill Cornell Medicine, New York City, NY, USA.
| |
Collapse
|
11
|
Lu H, Hong T, Jiang Y, Whiteway M, Zhang S. Candidiasis: From cutaneous to systemic, new perspectives of potential targets and therapeutic strategies. Adv Drug Deliv Rev 2023; 199:114960. [PMID: 37307922 DOI: 10.1016/j.addr.2023.114960] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/14/2023]
Abstract
Candidiasis is an infection caused by fungi from a Candida species, most commonly Candida albicans. C. albicans is an opportunistic fungal pathogen typically residing on human skin and mucous membranes of the mouth, intestines or vagina. It can cause a wide variety of mucocutaneous barrier and systemic infections; and becomes a severe health problem in HIV/AIDS patients and in individuals who are immunocompromised following chemotherapy, treatment with immunosuppressive agents or after antibiotic-induced dysbiosis. However, the immune mechanism of host resistance to C. albicans infection is not fully understood, there are a limited number of therapeutic antifungal drugs for candidiasis, and these have disadvantages that limit their clinical application. Therefore, it is urgent to uncover the immune mechanisms of the host protecting against candidiasis and to develop new antifungal strategies. This review synthesizes current knowledge of host immune defense mechanisms from cutaneous candidiasis to invasive C. albicans infection and documents promising insights for treating candidiasis through inhibitors of potential antifungal target proteins.
Collapse
Affiliation(s)
- Hui Lu
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Ting Hong
- Department of Anesthesiology, Huadong Hospital Affiliated to Fudan University, Shanghai, China
| | - Yuanying Jiang
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Malcolm Whiteway
- Department of Biology, Concordia University, Montreal, QC, Canada.
| | - Shiqun Zhang
- Department of Pharmacology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, China.
| |
Collapse
|
12
|
Bogdan I, Reddyreddy AR, Nelluri A, Maganti RK, Bratosin F, Fericean RM, Dumitru C, Barata PI, Tapalaga G, Marincu I. Fungal Infections Identified with Multiplex PCR in Severe COVID-19 Patients during Six Pandemic Waves. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1253. [PMID: 37512065 PMCID: PMC10385930 DOI: 10.3390/medicina59071253] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/10/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023]
Abstract
Background and Objectives: With an increasing number of severe COVID-19 cases presenting with secondary fungal infections, this study aimed to determine the prevalence of fungal co-infections in severe COVID-19 patients across the six waves, identify the most common fungal pathogens associated with severe COVID-19, and explore any potential links between patient characteristics, therapeutic strategies, and the prevalence and type of fungal infection. Materials and Methods: A retrospective analysis was conducted on severe COVID-19 patients admitted to the Infectious Diseases and Pulmonology Hospital, "Victor Babes", Romania, between March 2020 and August 2022. Samples were collected from respiratory specimens, blood, and urine, after which a standard nucleic acid extraction protocol was employed. Patients were divided into groups with and without fungal infections, identified using multiplex PCR. The groups were compared based on demographic data, comorbidities, pandemic wave number, and clinical outcomes. Results: Out of 288 patients, 96 (33.3%) had fungal infections, with Candida spp. being the most common. Patients with fungal infections had higher rates of obesity (35.4% vs. 21.4%, p = 0.010) and a higher Charlson comorbidity index (CCI > 2) (37.5% vs 25.0%, p = 0.027). Ventilator use was significantly higher in the fungal infection group (45.8% vs. 18.8%; p < 0.001), as was ICU admission (39.6% vs. 26.6%; p = 0.024) and mortality (32.3% vs 12.0%; p < 0.001). The distribution of different fungal species varied across the pandemic waves, with no statistical significance (p = 0.209). The mortality risk notably increased with the degree of drug resistance (OR for three or more drug resistances = 6.71, p < 0.001). The second, fourth, and fifth pandemic waves were significantly associated with higher mortality risk (OR = 3.72, 3.61, and 4.08, respectively, all p < 0.001). Aspergillus spp. and Mucor spp. infections were significantly associated with increased mortality risk (OR = 4.61 and 6.08, respectively, both p < 0.001). Conclusions: Our study indicates a significant presence of fungal co-infections among severe COVID-19 patients that is associated with increased morbidity and mortality, particularly in patients with drug-resistant infections. These findings underline the necessity for comprehensive diagnostic approaches and tailored treatment strategies in managing COVID-19 patients, especially during specific pandemic waves and in patients with particular fungal infections. Further research is required to understand the implications of these co-infections and their management.
Collapse
Affiliation(s)
- Iulia Bogdan
- Department XIII, Discipline of Infectious Diseases, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Doctoral School, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | | | - Aditya Nelluri
- School of General Medicine, Sri Siddhartha Medical College, Tumakuru 572107, India
| | - Ram Kiran Maganti
- School of General Medicine, Sri Devaraj Urs Academy of Higher Education and Research, Kolar 563101, India
| | - Felix Bratosin
- Department XIII, Discipline of Infectious Diseases, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
- Doctoral School, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Roxana Manuela Fericean
- Doctoral School, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Catalin Dumitru
- Department of Obstetrics and Gynecology, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Paula Irina Barata
- Department of Physiology, Faculty of Medicine, "Vasile Goldis" Western University of Arad, 310025 Arad, Romania
- Center for Research and Innovation in Precision Medicine of Respiratory Diseases, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Gianina Tapalaga
- Department of Odontotherapy and Endodontics, Faculty of Dental Medicine, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| | - Iosif Marincu
- Department XIII, Discipline of Infectious Diseases, "Victor Babes" University of Medicine and Pharmacy, 300041 Timisoara, Romania
| |
Collapse
|
13
|
Pallotta F, Brescini L, Ianovitz A, Luchetti I, Franca L, Canovari B, Cerutti E, Barchiesi F. The Clinical Characteristics of Bloodstream Infections Due to Candida spp. in Patients Hospitalized in Intensive Care Units during the SARS-CoV-2 Pandemic: The Results of a Multicenter Study. J Fungi (Basel) 2023; 9:642. [PMID: 37367578 DOI: 10.3390/jof9060642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023] Open
Abstract
Candidemia is a serious health threat. Whether this infection has a greater incidence and a higher mortality rate in patients with COVID-19 is still debated. In this multicenter, retrospective, observational study, we aimed to identify the clinical characteristics associated with the 30-day mortality in critically ill patients with candidemia and to define the differences in candidemic patients with and without COVID-19. Over a three-year period (2019-2021), we identified 53 critically ill patients with candidemia, 18 of whom (34%) had COVID-19 and were hospitalized in four ICUs. The most frequent comorbidities were cardiovascular (42%), neurological (17%), chronic pulmonary diseases, chronic kidney failure, and solid tumors (13% each). A significantly higher proportion of COVID-19 patients had pneumonia, ARDS, septic shock, and were undergoing an ECMO procedure. On the contrary, non-COVID-19 patients had undergone previous surgeries and had used TPN more frequently. The mortality rate in the overall population was 43%: 39% and 46% in the COVID-19 and non-COVID-19 patients, respectively. The independent risk factors associated with a higher mortality were CVVH (HR 29.08 [CI 95% 3.37-250]) and a Charlson's score of > 3 (HR 9.346 [CI 95% 1.054-82.861]). In conclusion, we demonstrated that candidemia still has a high mortality rate in patients admitted to ICUs, irrespective of infection due to SARS-CoV-2.
Collapse
Affiliation(s)
- Francesco Pallotta
- Dipartimento di Scienze Biomediche e Sanità Pubblica, Università Politecnica delle Marche, 60126 Ancona, Italy
- Clinica Malattie Infettive, Azienda Ospedaliera Universitaria Ospedali Riuniti Umberto I-Lancisi-Salesi, 60126 Ancona, Italy
| | - Lucia Brescini
- Dipartimento di Scienze Biomediche e Sanità Pubblica, Università Politecnica delle Marche, 60126 Ancona, Italy
- Clinica Malattie Infettive, Azienda Ospedaliera Universitaria Ospedali Riuniti Umberto I-Lancisi-Salesi, 60126 Ancona, Italy
| | - Arianna Ianovitz
- Dipartimento di Scienze Biomediche e Sanità Pubblica, Università Politecnica delle Marche, 60126 Ancona, Italy
- Clinica Malattie Infettive, Azienda Ospedaliera Universitaria Ospedali Riuniti Umberto I-Lancisi-Salesi, 60126 Ancona, Italy
| | - Ilenia Luchetti
- Dipartimento di Scienze Biomediche e Sanità Pubblica, Università Politecnica delle Marche, 60126 Ancona, Italy
- Clinica Malattie Infettive, Azienda Ospedaliera Universitaria Ospedali Riuniti Umberto I-Lancisi-Salesi, 60126 Ancona, Italy
| | - Lucia Franca
- Dipartimento di Scienze Biomediche e Sanità Pubblica, Università Politecnica delle Marche, 60126 Ancona, Italy
- Malattie Infettive, Azienda Sanitaria Territoriale Pesaro-Urbino, 61029 Pesaro, Italy
| | - Benedetta Canovari
- Malattie Infettive, Azienda Sanitaria Territoriale Pesaro-Urbino, 61029 Pesaro, Italy
| | - Elisabetta Cerutti
- Anestesia e Rianimazione dei Trapianti e Chirurgia Maggiore, Azienda Ospedaliera Universitaria Ospedali Riuniti Umberto I-Lancisi-Salesi, 60126 Ancona, Italy
| | - Francesco Barchiesi
- Dipartimento di Scienze Biomediche e Sanità Pubblica, Università Politecnica delle Marche, 60126 Ancona, Italy
- Malattie Infettive, Azienda Sanitaria Territoriale Pesaro-Urbino, 61029 Pesaro, Italy
| |
Collapse
|
14
|
Roman-Montes CM, Bojorges-Aguilar S, Corral-Herrera EA, Rangel-Cordero A, Díaz-Lomelí P, Cervantes-Sanchez A, Martinez-Guerra BA, Rajme-López S, Tamez-Torres KM, Martínez-Gamboa RA, González-Lara MF, Ponce-de-Leon A, Sifuentes-Osornio J. Fungal Infections in the ICU during the COVID-19 Pandemic in Mexico. J Fungi (Basel) 2023; 9:583. [PMID: 37233294 PMCID: PMC10219464 DOI: 10.3390/jof9050583] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
Background: Invasive Fungal Infections (IFI) are emergent complications of COVID-19. In this study, we aim to describe the prevalence, related factors, and outcomes of IFI in critical COVID-19 patients. Methods: We conducted a nested case-control study of all COVID-19 patients in the intensive care unit (ICU) who developed any IFI and matched age and sex controls for comparison (1:1) to evaluate IFI-related factors. Descriptive and comparative analyses were made, and the risk factors for IFI were compared versus controls. Results: We found an overall IFI prevalence of 9.3% in COVID-19 patients in the ICU, 5.6% in COVID-19-associated pulmonary aspergillosis (CAPA), and 2.5% in invasive candidiasis (IC). IFI patients had higher SOFA scores, increased frequency of vasopressor use, myocardial injury, and more empirical antibiotic use. CAPA was classified as possible in 68% and 32% as probable by ECMM/ISHAM consensus criteria, and 57.5% of mortality was found. Candidemia was more frequent for C. parapsilosis Fluconazole resistant outbreak early in the pandemic, with a mortality of 28%. Factors related to IFI in multivariable analysis were SOFA score > 2 (aOR 5.1, 95% CI 1.5-16.8, p = 0.007) and empiric antibiotics for COVID-19 (aOR 30, 95% CI 10.2-87.6, p = <0.01). Conclusions: We found a 9.3% prevalence of IFIs in critically ill patients with COVID-19 in a single center in Mexico; factors related to IFI were associated with higher SOFA scores and empiric antibiotic use for COVID-19. CAPA is the most frequent type of IFI. We did not find a mortality difference.
Collapse
Affiliation(s)
- Carla M. Roman-Montes
- Infectious Diseases Department, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City 14080, Mexico; (C.M.R.-M.); (S.B.-A.); (E.A.C.-H.); (B.A.M.-G.); (S.R.-L.); (K.M.T.-T.)
- Clinical Microbiology Laboratory, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City 14080, Mexico; (A.R.-C.); (P.D.-L.); (A.C.-S.); (R.A.M.-G.); (A.P.-d.-L.)
| | - Saul Bojorges-Aguilar
- Infectious Diseases Department, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City 14080, Mexico; (C.M.R.-M.); (S.B.-A.); (E.A.C.-H.); (B.A.M.-G.); (S.R.-L.); (K.M.T.-T.)
- Clinical Microbiology Laboratory, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City 14080, Mexico; (A.R.-C.); (P.D.-L.); (A.C.-S.); (R.A.M.-G.); (A.P.-d.-L.)
| | - Ever Arturo Corral-Herrera
- Infectious Diseases Department, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City 14080, Mexico; (C.M.R.-M.); (S.B.-A.); (E.A.C.-H.); (B.A.M.-G.); (S.R.-L.); (K.M.T.-T.)
- Clinical Microbiology Laboratory, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City 14080, Mexico; (A.R.-C.); (P.D.-L.); (A.C.-S.); (R.A.M.-G.); (A.P.-d.-L.)
| | - Andrea Rangel-Cordero
- Clinical Microbiology Laboratory, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City 14080, Mexico; (A.R.-C.); (P.D.-L.); (A.C.-S.); (R.A.M.-G.); (A.P.-d.-L.)
| | - Paulette Díaz-Lomelí
- Clinical Microbiology Laboratory, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City 14080, Mexico; (A.R.-C.); (P.D.-L.); (A.C.-S.); (R.A.M.-G.); (A.P.-d.-L.)
| | - Axel Cervantes-Sanchez
- Clinical Microbiology Laboratory, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City 14080, Mexico; (A.R.-C.); (P.D.-L.); (A.C.-S.); (R.A.M.-G.); (A.P.-d.-L.)
| | - Bernardo A. Martinez-Guerra
- Infectious Diseases Department, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City 14080, Mexico; (C.M.R.-M.); (S.B.-A.); (E.A.C.-H.); (B.A.M.-G.); (S.R.-L.); (K.M.T.-T.)
- Clinical Microbiology Laboratory, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City 14080, Mexico; (A.R.-C.); (P.D.-L.); (A.C.-S.); (R.A.M.-G.); (A.P.-d.-L.)
| | - Sandra Rajme-López
- Infectious Diseases Department, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City 14080, Mexico; (C.M.R.-M.); (S.B.-A.); (E.A.C.-H.); (B.A.M.-G.); (S.R.-L.); (K.M.T.-T.)
- Clinical Microbiology Laboratory, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City 14080, Mexico; (A.R.-C.); (P.D.-L.); (A.C.-S.); (R.A.M.-G.); (A.P.-d.-L.)
| | - Karla María Tamez-Torres
- Infectious Diseases Department, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City 14080, Mexico; (C.M.R.-M.); (S.B.-A.); (E.A.C.-H.); (B.A.M.-G.); (S.R.-L.); (K.M.T.-T.)
- Clinical Microbiology Laboratory, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City 14080, Mexico; (A.R.-C.); (P.D.-L.); (A.C.-S.); (R.A.M.-G.); (A.P.-d.-L.)
| | - Rosa Areli Martínez-Gamboa
- Clinical Microbiology Laboratory, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City 14080, Mexico; (A.R.-C.); (P.D.-L.); (A.C.-S.); (R.A.M.-G.); (A.P.-d.-L.)
| | - Maria Fernanda González-Lara
- Infectious Diseases Department, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City 14080, Mexico; (C.M.R.-M.); (S.B.-A.); (E.A.C.-H.); (B.A.M.-G.); (S.R.-L.); (K.M.T.-T.)
- Clinical Microbiology Laboratory, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City 14080, Mexico; (A.R.-C.); (P.D.-L.); (A.C.-S.); (R.A.M.-G.); (A.P.-d.-L.)
| | - Alfredo Ponce-de-Leon
- Clinical Microbiology Laboratory, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City 14080, Mexico; (A.R.-C.); (P.D.-L.); (A.C.-S.); (R.A.M.-G.); (A.P.-d.-L.)
| | - José Sifuentes-Osornio
- General Direction, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City 14080, Mexico;
| |
Collapse
|
15
|
Lower Concentrations of Amphotericin B Combined with Ent-Hardwickiic Acid Are Effective against Candida Strains. Antibiotics (Basel) 2023; 12:antibiotics12030509. [PMID: 36978378 PMCID: PMC10044661 DOI: 10.3390/antibiotics12030509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/17/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Life-threatening Candida infections have increased with the COVID-19 pandemic, and the already limited arsenal of antifungal drugs has become even more restricted due to its side effects associated with complications after SARS-CoV-2 infection. Drug combination strategies have the potential to reduce the risk of side effects without loss of therapeutic efficacy. The aim of this study was to evaluate the combination of ent-hardwickiic acid with low concentrations of amphotericin B against Candida strains. The minimum inhibitory concentration (MIC) values were determined for amphotericin B and ent-hardwickiic acid as isolated compounds and for 77 combinations of amphotericin B and ent-hardwickiic acid concentrations that were assessed by using the checkerboard microdilution method. Time–kill assays were performed in order to assess the fungistatic or fungicidal nature of the different combinations. The strategy of combining both compounds markedly reduced the MIC values from 16 µg/mL to 1 µg/mL of amphotericin B and from 12.5 µg/mL to 6.25 µg/mL of ent-hardwickiic acid, from isolated to combined, against C. albicans resistant to azoles. The combination of 1 µg/mL of amphotericin B with 6.25 µg/mL of ent-hardwickiic acid killed all the cells of the same strain within four hours of incubation.
Collapse
|