1
|
Mei AHC, Laganà A, Osman R, Cho HJ. Melanoma antigen genes (MAGE); novel functional targets in multiple myeloma. Semin Hematol 2025; 62:43-49. [PMID: 39580273 DOI: 10.1053/j.seminhematol.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/09/2024] [Accepted: 10/22/2024] [Indexed: 11/25/2024]
Abstract
Melanoma Antigen Genes (MAGE) are expressed in a broad range of cancers, including multiple myeloma. MAGE have been under investigation for more than 3 decades as targets for immune therapy, while in parallel, interrogation of their functions has revealed activities that may be particularly critical in multiple myeloma. MAGE-C1 is expressed in about 75% of newly diagnosed cases and this is maintained through the natural history of the disease. In contrast, MAGE-A3 is expressed in about 35% of newly diagnosed cases, but this increases to more than 75% after relapse. MAGE-A3 expression was associated with poor clinical outcome and resistance to chemotherapy. Translational studies have revealed that MAGE-A3 regulates cell cycling and apoptosis in myeloma cells. Genomic, gene expression, and multiomic studies demonstrate relations with high-risk subgroups of patients. MAGE-A3 mediates these functions through partnership with Kap1 to form a ubiquitin ligase complex. Structural analysis of the interaction between MAGE-A3 and Kap1 gives insight into the biochemical activity and substrate specificity and suggests novel pharmacologic strategies to inhibit them. These studies demonstrating MAGE-A3 oncogenic functions suggest that it may also be a suitable target for small molecule inhibition in multiple myeloma that may be broadly applicable to other cancers that express it.
Collapse
Affiliation(s)
- Anna Huo-Chang Mei
- Multiple Myeloma Center of Excellence, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York NY USA
| | - Alessandro Laganà
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York NY USA
| | - Roman Osman
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Hearn Jay Cho
- Multiple Myeloma Center of Excellence, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York NY USA; The Multiple Myeloma Research Foundation, Norwalk, CT.
| |
Collapse
|
2
|
Pu J, Liu T, Sharma A, Jiang L, Wei F, Ren X, Schmidt-Wolf IGH, Hou J. Advances in adoptive cellular immunotherapy and therapeutic breakthroughs in multiple myeloma. Exp Hematol Oncol 2024; 13:105. [PMID: 39468695 PMCID: PMC11514856 DOI: 10.1186/s40164-024-00576-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 10/14/2024] [Indexed: 10/30/2024] Open
Abstract
The basic idea of modulating the immune system to better recognize and fight tumor cells has led to the successful introduction of adoptive cellular immunotherapy (ACT). ACT-based treatment regimens, in which the patient's own immune cells are isolated and subsequently expanded (ex vivo) and reinfused, have also contributed significantly to the development of a personalized treatment strategy. Complementing this, the unprecedented advances in ACTs as chimeric antigen receptor (CAR)-T cell therapies and their derivatives such as CAR-NK, CAR-macrophages, CAR-γδT and CAR-NKT have further maximized the therapeutic outcomes. Herein, we provide a comprehensive overview of the development of ACTs in multiple myeloma (MM) and outline how they have evolved from an experimental form to a mainstay of standard clinical settings. Besides, we provide insights into cytokine-induced killer cell (CIK) therapy, an alternative form of ACT that (as CIK or CAR-CIK) has enormous potential in the clinical spectrum of MM. We also summarize the results of the major preclinical and clinical studies of adoptive cell therapy in MM and address the current challenges (such as cytokine release syndrome (CRS) and neurotoxicity) that limit its complete success in the cancer landscape.
Collapse
Affiliation(s)
- Jingjing Pu
- Department of Integrated Oncology, Center for Integrated Oncology (CIO) Bonn, University Hospital Bonn, 53127, Bonn, NRW, Germany
- Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Ting Liu
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), 53127, Bonn, NRW, Germany
| | - Amit Sharma
- Department of Integrated Oncology, Center for Integrated Oncology (CIO) Bonn, University Hospital Bonn, 53127, Bonn, NRW, Germany
| | - Liping Jiang
- Wuxi Maternity and Child Health Care Hospital, Wuxi School of Medicine, Jiangnan University, Wuxi, 214002, Jiangsu, China
| | - Feng Wei
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300070, China
| | - Xiubao Ren
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, 300070, China.
| | - Ingo G H Schmidt-Wolf
- Department of Integrated Oncology, Center for Integrated Oncology (CIO) Bonn, University Hospital Bonn, 53127, Bonn, NRW, Germany.
| | - Jian Hou
- Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| |
Collapse
|
3
|
Righetto GL, Yin Y, Duda DM, Vu V, Szewczyk MM, Zeng H, Li Y, Loppnau P, Mei T, Li YY, Seitova A, Patrick AN, Brazeau JF, Chaudhry C, Barsyte-Lovejoy D, Santhakumar V, Halabelian L. Probing the CRL4 DCAF12 interactions with MAGEA3 and CCT5 di-Glu C-terminal degrons. PNAS NEXUS 2024; 3:pgae153. [PMID: 38665159 PMCID: PMC11044963 DOI: 10.1093/pnasnexus/pgae153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 04/02/2024] [Indexed: 04/28/2024]
Abstract
Damaged DNA-binding protein-1 (DDB1)- and CUL4-associated factor 12 (DCAF12) serves as the substrate recognition component within the Cullin4-RING E3 ligase (CRL4) complex, capable of identifying C-terminal double-glutamic acid degrons to promote the degradation of specific substrates through the ubiquitin proteasome system. Melanoma-associated antigen 3 (MAGEA3) and T-complex protein 1 subunit epsilon (CCT5) proteins have been identified as cellular targets of DCAF12. To further characterize the interactions between DCAF12 and both MAGEA3 and CCT5, we developed a suite of biophysical and proximity-based cellular NanoBRET assays showing that the C-terminal degron peptides of both MAGEA3 and CCT5 form nanomolar affinity interactions with DCAF12 in vitro and in cells. Furthermore, we report here the 3.17 Å cryo-EM structure of DDB1-DCAF12-MAGEA3 complex revealing the key DCAF12 residues responsible for C-terminal degron recognition and binding. Our study provides new insights and tools to enable the discovery of small molecule handles targeting the WD40-repeat domain of DCAF12 for future proteolysis targeting chimera design and development.
Collapse
Affiliation(s)
- Germanna Lima Righetto
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Yanting Yin
- Structural and Protein Sciences, Therapeutics Discovery, Janssen Research and Development, Spring House, PA 19044, USA
| | - David M Duda
- Structural and Protein Sciences, Therapeutics Discovery, Janssen Research and Development, Spring House, PA 19044, USA
| | - Victoria Vu
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Magdalena M Szewczyk
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Hong Zeng
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Yanjun Li
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Peter Loppnau
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Tony Mei
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Yen-Yen Li
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Alma Seitova
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Aaron N Patrick
- Discovery Technology and Molecular Pharmacology, Therapeutics Discovery, Janssen Research and Development, LLC, Welsh and McKean Roads, Spring House, PA 19477, USA
| | - Jean-Francois Brazeau
- Discovery Chemistry, Therapeutics Discovery, Janssen Research and Development, LLC, 3210 Merryfield Row, La Jolla, CA 92121, USA
| | - Charu Chaudhry
- Discovery Technology and Molecular Pharmacology, Therapeutics Discovery, Janssen Research and Development, LLC, Welsh and McKean Roads, Spring House, PA 19477, USA
| | - Dalia Barsyte-Lovejoy
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | - Levon Halabelian
- Structural Genomics Consortium, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
4
|
Verma S, Swain D, Kushwaha PP, Brahmbhatt S, Gupta K, Sundi D, Gupta S. Melanoma Antigen Family A (MAGE A) as Promising Biomarkers and Therapeutic Targets in Bladder Cancer. Cancers (Basel) 2024; 16:246. [PMID: 38254738 PMCID: PMC10813664 DOI: 10.3390/cancers16020246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/19/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
The Melanoma Antigen Gene (MAGE) is a large family of highly conserved proteins that share a common MAGE homology domain. Interestingly, many MAGE family members exhibit restricted expression in reproductive tissues but are abnormally expressed in various human malignancies, including bladder cancer, which is a common urinary malignancy associated with high morbidity and mortality rates. The recent literature suggests a more prominent role for MAGEA family members in driving bladder tumorigenesis. This review highlights the role of MAGEA proteins, the potential for them to serve as diagnostic or prognostic biomarker(s), and as therapeutic targets for bladder cancer.
Collapse
Affiliation(s)
- Shiv Verma
- Department of Urology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (S.V.); (P.P.K.); (K.G.)
- The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Diya Swain
- College of Arts and Sciences, Case Western Reserve University, Cleveland, OH 44106, USA; (D.S.); (S.B.)
| | - Prem Prakash Kushwaha
- Department of Urology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (S.V.); (P.P.K.); (K.G.)
- The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Smit Brahmbhatt
- College of Arts and Sciences, Case Western Reserve University, Cleveland, OH 44106, USA; (D.S.); (S.B.)
| | - Karishma Gupta
- Department of Urology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (S.V.); (P.P.K.); (K.G.)
- The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Debasish Sundi
- Department of Urology, Division of Urologic Oncology, The Ohio State University Comprehensive Cancer Center, James Cancer Hospital & Wexner Medical Center, Columbus, OH 43210, USA;
| | - Sanjay Gupta
- Department of Urology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (S.V.); (P.P.K.); (K.G.)
- The Urology Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Nutrition, Case Western Reserve University, Cleveland, OH 44106, USA
- Division of General Medical Sciences, Case Comprehensive Cancer Center, Cleveland, OH 44106, USA
| |
Collapse
|
5
|
Rahman MM, Masum MHU, Talukder A, Akter R. An in silico reverse vaccinology approach to design a novel multiepitope peptide vaccine for non-small cell lung cancers. INFORMATICS IN MEDICINE UNLOCKED 2023. [DOI: 10.1016/j.imu.2023.101169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
6
|
Wang D, Gu W, Chen W, Zhou J, Yu L, Kook Kim B, Zhang X, Seung Kim J. Advanced nanovaccines based on engineering nanomaterials for accurately enhanced cancer immunotherapy. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Liu M, Li J, Wang Y, Ghaffar M, Yang Y, Wang M, Li C. MAGEA6 positively regulates MSMO1 and promotes the migration and invasion of oesophageal cancer cells. Exp Ther Med 2022; 23:204. [PMID: 35126707 PMCID: PMC8796618 DOI: 10.3892/etm.2022.11127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 08/02/2021] [Indexed: 11/20/2022] Open
Abstract
The melanoma antigen gene family A (MAGEA) family of proteins comprises of cancer-testis antigens that are highly expressed in a number of tumours but are minimally expressed in normal cells. Due to its expression characteristics, this protein family has become a popular target for anti-cancer drugs and immunotherapy research over recent years. Although, elevated expression levels of MAGEA6 has been found in different types of tumours, there remains to be insufficient information on the function of MAGEA6 and its associated gene regulation pathways. The present study used Transwell, Cell Counting Kit-8 and wound healing assays to analyse the effects of MAGEA6 on Eca109 cell invasion, migration and proliferation. The main functions and pathways involved in MAGEA6 were predicted by Illumina Hiseq screening for mutually regulated genes and core genes. Eca109 cell line with a high expression of MAGEA6 was a stable cell line obtained by transfection in the early stage, and this cell line was used in subsequent experiments. Transcriptome sequencing was performed on this cell line and the Eca109 cell line that normally expressed MAGEA6. It was revealed that a high expression of MAGEA6 conferred a significant stimulating effect on cell proliferation whilst also significantly increasing cell invasion and migration. Transcriptomic analysis identified 14 differentially expressed genes and 13 core regulatory genes closely associated with MAGEA6 expression regulation, such as methylsterol monooxygenase 1 (MSMO1). The present study suggest that MAGEA6 positively regulated MSMO1 expression, which may serve an oncogenic role in cells through this regulatory effect. Overall, this provided a novel route of investigation for an in-depth study of the regulatory function of MAGEA6.
Collapse
Affiliation(s)
- Manyu Liu
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P.R. China
| | - Jintao Li
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P.R. China
| | - Yangjunqi Wang
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P.R. China
| | - Maliha Ghaffar
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P.R. China
| | - Yishu Yang
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P.R. China
| | - Minglian Wang
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P.R. China
| | - Changshuo Li
- Beijing Key Laboratory of Environmental and Viral Oncology, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, P.R. China
| |
Collapse
|
8
|
Luo H, Zhang D, Wang F, Wang Q, Wu Y, Gou M, Hu Y, Zhang W, Huang J, Gong Y, Pan L, Li T, Zhao P, Zhang D, Qu Y, Liu Z, Jiang T, Dai Y, Guo T, Zhu J, Ye L, Zhang L, Liu W, Yi Q, Zheng Y. ALCAM-EGFR interaction regulates myelomagenesis. Blood Adv 2021; 5:5269-5282. [PMID: 34592762 PMCID: PMC9152994 DOI: 10.1182/bloodadvances.2021004695] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 07/28/2021] [Indexed: 02/05/2023] Open
Abstract
Multiple myeloma, a plasma cell malignancy in the bone marrow, remains largely incurable with currently available therapeutics. In this study, we discovered that the activated leukocyte cell adhesion molecule (ALCAM) interacted with epidermal growth factor receptor (EGFR), and regulated myelomagenesis. ALCAM was a negative regulator of myeloma clonogenicity. ALCAM expression was positively correlated with patients' survival. ALCAM-knockdown myeloma cells displayed enhanced colony formation in the presence of bone marrow stromal cells (BMSCs). BMSCs supported myeloma colony formation by secreted epidermal growth factor (EGF), which bound with its receptor (EGFR) on myeloma cells and activated Mek/Erk cell signaling, PI3K/Akt cell signaling, and hedgehog pathway. ALCAM could also bind with EGFR, block EGF from binding to EGFR, and abolish EGFR-initiated cell signaling. Hence, our study identifies ALCAM as a novel negative regulator of myeloma pathogenesis.
Collapse
Affiliation(s)
- Hongmei Luo
- Department of Hematology, West China Hospital
- State Key Laboratory of Biotherapy and Cancer Center, Sichuan University, Chengdu, China
| | - Dan Zhang
- Department of Hematology, West China Hospital
- State Key Laboratory of Biotherapy and Cancer Center, Sichuan University, Chengdu, China
| | - Fangfang Wang
- Department of Hematology, West China Hospital
- State Key Laboratory of Biotherapy and Cancer Center, Sichuan University, Chengdu, China
| | - Qiang Wang
- Center for Translational Research in Hematological Malignancies, Cancer Center, Houston Methodist Hospital, Houston, TX
| | - Yu Wu
- Department of Hematology, West China Hospital
| | - Maling Gou
- State Key Laboratory of Biotherapy and Cancer Center, Sichuan University, Chengdu, China
| | - Yiguo Hu
- State Key Laboratory of Biotherapy and Cancer Center, Sichuan University, Chengdu, China
| | | | - Jingcao Huang
- Department of Hematology, West China Hospital
- State Key Laboratory of Biotherapy and Cancer Center, Sichuan University, Chengdu, China
| | - Yuping Gong
- Department of Hematology, West China Hospital
| | - Ling Pan
- Department of Hematology, West China Hospital
| | - Tianshu Li
- Center for Translational Research in Hematological Malignancies, Cancer Center, Houston Methodist Hospital, Houston, TX
| | - Pan Zhao
- Department of Hematology, West China Hospital
| | | | - Ying Qu
- Department of Hematology, West China Hospital
- State Key Laboratory of Biotherapy and Cancer Center, Sichuan University, Chengdu, China
| | - Zhigang Liu
- Department of Hematology, West China Hospital
| | - Tao Jiang
- Department of Hematology, West China Hospital
| | - Yang Dai
- Department of Hematology, West China Hospital
| | | | - Jiang Zhu
- Department of Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Lingqun Ye
- Center for Translational Research in Hematological Malignancies, Cancer Center, Houston Methodist Hospital, Houston, TX
| | - Li Zhang
- Department of Hematology, West China Hospital
| | | | - Qing Yi
- Center for Translational Research in Hematological Malignancies, Cancer Center, Houston Methodist Hospital, Houston, TX
| | - Yuhuan Zheng
- Department of Hematology, West China Hospital
- State Key Laboratory of Biotherapy and Cancer Center, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Wu SC, Münger K. Role and Clinical Utility of Cancer/Testis Antigens in Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2021; 13:cancers13225690. [PMID: 34830845 PMCID: PMC8616139 DOI: 10.3390/cancers13225690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/03/2021] [Accepted: 11/11/2021] [Indexed: 12/15/2022] Open
Abstract
Cancer/testis (CT) antigens exhibit selective expression predominantly in immunoprivileged tissues in non-pathological contexts but are aberrantly expressed in diverse cancers. Due to their expression pattern, they have historically been attractive targets for immunotherapies. A growing number of studies implicate CT antigens in almost all hallmarks of cancer, suggesting that they may act as cancer drivers. CT antigens are expressed in head and neck squamous cell carcinomas. However, their role in the pathogenesis of these cancers remains poorly studied. Given that CT antigens hold intriguing potential as therapeutic targets and as biomarkers for prognosis and that they can provide novel insights into oncogenic mechanisms, their further study in the context of head and squamous cell carcinoma is warranted.
Collapse
Affiliation(s)
- Sharon Changshan Wu
- Molecular Microbiology Program, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, MA 02111, USA;
| | - Karl Münger
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
- Correspondence:
| |
Collapse
|
10
|
Shires K, Wyk TV, Wienand K. The expression of multiple cancer/testis antigens can potentially be used to detect circulating disease and clonal evolution in the peripheral blood of multiple myeloma patients. Blood Res 2021; 56:156-165. [PMID: 34462402 PMCID: PMC8478621 DOI: 10.5045/br.2021.2020335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/16/2021] [Accepted: 07/08/2021] [Indexed: 11/17/2022] Open
Abstract
Background It is thought that cancer/testis antigens (CTAs) are expressed in a cascade-like manner in multiple myeloma as the disease progresses. In this pilot study, we investigated the co-expression of several CTAs in the peripheral blood (PB) during patient therapy to establish whether monitoring multiple CTAs allows for the prediction of relapse and clonal evolution. Methods We examined the co-expression of MAGEC1, MAGEA3, PRAME, and BAGE2 via quantitative reverse transcription-polymerase chain reaction (qRT-PCR) duplex assays in the PB mononuclear cells of 10 patients on chemotherapy at 3-month intervals, and correlated the levels to those of two basic clinical monitoring markers, serum b-2-microglobulin and serum M protein. Clonal evolution was investigated using flow cytometry to label the circulating malignant stem cell components with MAGEC1, PRAME, and MAGEA3 antibodies. Results Simultaneous monitoring of MAGEC1/PRAME provided sensitive detection of circulating malignant cells in easily accessible PB samples; transcript levels increased prior to changes in indicators of clinical relapse. While MAGEA3/BAGE2 expression levels did not offer earlier prediction of relapse, they provided insight into significant changes occurring within the malignant cell population; the addition of either CTA to a MAGEC1-monitoring panel allowed for better classification of the relapse event (clonal evolution), which in turn could potentially guide treatment strategies in the future. Conclusion This pilot study supports the novel idea of determining the levels and CTA expression patterns of the total circulating malignant cell population (pro-B/pre-B stem cell progenitors and proliferating plasma cells) as an alternate disease monitoring methodology.
Collapse
Affiliation(s)
- Karen Shires
- Division of Haematology, Department of Pathology, University of Cape Town and National Health Laboratory Service/Groote Schuur Hospital, South Africa
| | - Teagan Van Wyk
- Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Kirsty Wienand
- Division of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
11
|
Multipeptide stimulated PBMCs generate T EM/T CM for adoptive cell therapy in multiple myeloma. Oncotarget 2021; 12:2051-2067. [PMID: 34611479 PMCID: PMC8487724 DOI: 10.18632/oncotarget.28067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 08/13/2021] [Indexed: 12/05/2022] Open
Abstract
Multiple Myeloma (MM) patients suffer disease relapse due to the development of therapeutic resistance. Increasing evidence suggests that immunotherapeutic strategies can provide durable responses. Here we evaluate the possibility of adoptive cell transfer (ACT) by generating ex vivo T cells from peripheral blood mononuclear cells (PBMCs) isolated from MM patients by employing our previously devised protocols. We designed peptides from antigens (Ags) including cancer testis antigens (CTAs) that are over expressed in MM. We exposed PBMCs from different healthy donors (HDs) to single peptides. We observed reproducible Ag-specific cluster of differentiation 4+ (CD4+) and CD8+ T cell responses on exposure of PBMCs to different single peptide sequences. These peptide sequences were used to compile four different peptide cocktails. Naïve T cells from PBMCs from MM patients or HDs recognized the cognate Ag in all four peptide cocktails, leading to generation of multiclonal Ag-specific CD4+ and CD8+ effector and central memory T (TEM and TCM, respectively) cells which produced interferon-gamma (IFN-γ), granzyme B and perforin on secondary restimulation. Furthermore, this study demonstrated that immune cells from MM patients are capable of switching metabolic programs to induce effector and memory responses. Multiple peptides and cocktails were identified that induce IFN-γ+, T1-type, metabolically active T cells, thereby paving the way for feasibility testing of ACT in phase I clinical trials.
Collapse
|
12
|
Oncogenic activity and cellular functionality of melanoma associated antigen A3. Biochem Pharmacol 2021; 192:114700. [PMID: 34303709 DOI: 10.1016/j.bcp.2021.114700] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 12/27/2022]
Abstract
Cancer testis antigen Melanoma associated antigen A3 (MAGE-A3) has been subject of research for many years. Being expressed in various tumor types and influencing proliferation, metastasis, and tumor pathogenicity, MAGE-A3 is an attractive target for cancer therapy, particularly because in healthy tissues, MAGE-A3 is only expressed in testes and placenta. MAGE-A3 acts as a cellular master regulator by stimulating E3 ubiquitin ligase tripartite motif-containing protein 28 (TRIM28), resulting in regulation of various cellular targets. These include tumor suppressor protein p53 and cellular energy sensor AMP-activated protein kinase (AMPK). The restricted expression of MAGE-A3 in tumor cells makes MAGE-A3 an attractive target for vaccine-based immune therapy. However, although phase I and phase II clinical trials involving MAGE-A3-specific immunotherapeutic interventions were promising, large phase III studies failed. This article gives an overview about the role of MAGE-A3 as a cellular master switch and discusses approaches to improve MAGE-A3-based immunotherapies.
Collapse
|
13
|
Keshavarz-Fathi M, Rezaei N. Cancer Immunoprevention: Current Status and Future Directions. Arch Immunol Ther Exp (Warsz) 2021; 69:3. [PMID: 33638703 DOI: 10.1007/s00005-021-00604-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 02/06/2021] [Indexed: 12/24/2022]
Abstract
Cancer is one of the most serious diseases affecting health and the second leading cause of death worldwide. Despite the development of various therapeutic modalities to deal with cancer, limited improvement in overall survival of patients has been yielded. Since there is no certain cure for cancer, detection of premalignant lesions, and prevention of their progression are vital to the decline of high morbidity and mortality of cancer. Among approaches to cancer prevention, immunoprevention has gained further attention in recent years. Deep understanding of the tumor/immune system interplay and successful prevention of virally-induced malignancies by vaccines have paved the way toward broadening cancer immunoprevention application. The identification of tumor antigens in premalignant lesions was the turning point in cancer immunoprevention that led to designing preventive vaccines for various malignancies including multiple myeloma, colorectal, and breast cancer. In addition to vaccines, immune checkpoint inhibitors are also being tested for the prevention of oral squamous cell carcinoma (SCC), and imiquimod which is an established drug for the prevention of skin SCC, is a non-specific immunomodulator. Herein, to provide a bench-to-bedside understanding of cancer immunoprevention, we will review the role of the immune system in suppression and promotion of tumors, immunoprevention of virally-induced cancers, identification of tumor antigens in premalignant lesions, and clinical advances of cancer immunoprevention.
Collapse
Affiliation(s)
- Mahsa Keshavarz-Fathi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, 14194, Tehran, Iran.
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, 14194, Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Cancer Immunology Project (CIP), Universal Scientific Education and Research Network (USERN), Stockholm, Sweden.
| |
Collapse
|
14
|
Tubin S, Khan MK, Gupta S, Jeremic B. Biology of NSCLC: Interplay between Cancer Cells, Radiation and Tumor Immune Microenvironment. Cancers (Basel) 2021; 13:775. [PMID: 33673332 PMCID: PMC7918834 DOI: 10.3390/cancers13040775] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/12/2022] Open
Abstract
The overall prognosis and survival of non-small cell lung cancer (NSCLC) patients remain poor. The immune system plays an integral role in driving tumor control, tumor progression, and overall survival of NSCLC patients. While the tumor cells possess many ways to escape the immune system, conventional radiotherapy (RT) approaches, which are directly cytotoxic to tumors, can further add additional immune suppression to the tumor microenvironment by destroying many of the lymphocytes that circulate within the irradiated tumor environment. Thus, the current immunogenic balance, determined by the tumor- and radiation-inhibitory effects is significantly shifted towards immunosuppression, leading to poor clinical outcomes. However, newer emerging evidence suggests that tumor immunosuppression is an "elastic process" that can be manipulated and converted back into an immunostimulant environment that can actually improve patient outcome. In this review we will discuss the natural immunosuppressive effects of NSCLC cells and conventional RT approaches, and then shift the focus on immunomodulation through novel, emerging immuno- and RT approaches that promise to generate immunostimulatory effects to enhance tumor control and patient outcome. We further describe some of the mechanisms by which these newer approaches are thought to be working and set the stage for future trials and additional preclinical work.
Collapse
Affiliation(s)
- Slavisa Tubin
- MedAustron Ion Therapy Center, Marie Curie-Straße 5, 2700 Wiener Neustadt, Austria
| | - Mohammad K. Khan
- Department of Radiation Oncology, Winship Cancer Institute, Emory University School of Medicine, 1365-C Clifton Road, Atlanta, GA 30322, USA;
| | - Seema Gupta
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA;
| | - Branislav Jeremic
- Research Institute of Clinical Medicine, 13 Tevdore Mgdveli, Tbilisi 0112, Georgia;
| |
Collapse
|
15
|
Yang SW, Huang X, Lin W, Min J, Miller DJ, Mayasundari A, Rodrigues P, Griffith EC, Gee CT, Li L, Li W, Lee RE, Rankovic Z, Chen T, Potts PR. Structural basis for substrate recognition and chemical inhibition of oncogenic MAGE ubiquitin ligases. Nat Commun 2020; 11:4931. [PMID: 33004795 PMCID: PMC7529893 DOI: 10.1038/s41467-020-18708-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 09/08/2020] [Indexed: 12/17/2022] Open
Abstract
Testis-restricted melanoma antigen (MAGE) proteins are frequently hijacked in cancer and play a critical role in tumorigenesis. MAGEs assemble with E3 ubiquitin ligases and function as substrate adaptors that direct the ubiquitination of novel targets, including key tumor suppressors. However, how MAGEs recognize their targets is unknown and has impeded the development of MAGE-directed therapeutics. Here, we report the structural basis for substrate recognition by MAGE ubiquitin ligases. Biochemical analysis of the degron motif recognized by MAGE-A11 and the crystal structure of MAGE-A11 bound to the PCF11 substrate uncovered a conserved substrate binding cleft (SBC) in MAGEs. Mutation of the SBC disrupted substrate recognition by MAGEs and blocked MAGE-A11 oncogenic activity. A chemical screen for inhibitors of MAGE-A11:substrate interaction identified 4-Aminoquinolines as potent inhibitors of MAGE-A11 that show selective cytotoxicity. These findings provide important insights into the large family of MAGE ubiquitin ligases and identify approaches for developing cancer-specific therapeutics.
Collapse
Affiliation(s)
- Seung Wook Yang
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Pl, Memphis, TN, 38105, USA
| | - Xin Huang
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Pl, Memphis, TN, 38105, USA
| | - Wenwei Lin
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Pl, Memphis, TN, 38105, USA
| | - Jaeki Min
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Pl, Memphis, TN, 38105, USA
| | - Darcie J Miller
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Pl, Memphis, TN, 38105, USA
| | - Anand Mayasundari
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Pl, Memphis, TN, 38105, USA
| | - Patrick Rodrigues
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital, 262 Danny Thomas Pl, Memphis, TN, 38105, USA
| | - Elizabeth C Griffith
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Pl, Memphis, TN, 38105, USA
| | - Clifford T Gee
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Pl, Memphis, TN, 38105, USA
| | - Lei Li
- Division of Computational Biomedicine, Department of Biological Chemistry, School of Medicine, University of California Irvine, 5270 California Ave, Irvine, CA, 92617, USA
| | - Wei Li
- Division of Computational Biomedicine, Department of Biological Chemistry, School of Medicine, University of California Irvine, 5270 California Ave, Irvine, CA, 92617, USA
| | - Richard E Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Pl, Memphis, TN, 38105, USA
| | - Zoran Rankovic
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Pl, Memphis, TN, 38105, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, 262 Danny Thomas Pl, Memphis, TN, 38105, USA
| | - Patrick Ryan Potts
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Pl, Memphis, TN, 38105, USA.
| |
Collapse
|
16
|
Das B, Senapati S. Immunological and functional aspects of MAGEA3 cancer/testis antigen. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 125:121-147. [PMID: 33931137 DOI: 10.1016/bs.apcsb.2020.08.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Identification of ectopic gene activation in cancer cells serves as a basis for both gene signature-guided tumor targeting and unearthing of oncogenic mechanisms to expand the understanding of tumor biology/oncogenic process. Proteins expressed only in germ cells of testis and/or placenta (immunoprivileged organs) and in malignancies are called cancer testis antigens; they are antigenic because of the lack of antigen presentation by those specific cell types (germ cells), which limits the exposure of the proteins to the immune cells. Since the Cancer Testis Antigens (CTAs) are immunogenic and expressed in a wide variety of cancer types, CT antigens have become interesting target for immunotherapy against cancer. Among CT antigens MAGEA family is reported to have 12 members (MAGEA1 to MAGEA12). The current review highlights the studies on MAGEA3 which is a CT antigen and reported in almost all types of cancer. MAGEA3 is well tried for cancer immunotherapy. Recent advances on its functional and immunological aspect warranted much deliberation on effective therapeutic approach, thus making it a more interesting target for cancer therapy.
Collapse
Affiliation(s)
- Biswajit Das
- Tumor Microenvironment and Animal Models Lab, Department of Cancer Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India; Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shantibhusan Senapati
- Tumor Microenvironment and Animal Models Lab, Department of Cancer Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India.
| |
Collapse
|
17
|
Gao X, Li Q, Chen G, He H, Ma Y. MAGEA3 promotes proliferation and suppresses apoptosis in cervical cancer cells by inhibiting the KAP1/p53 signaling pathway. Am J Transl Res 2020; 12:3596-3612. [PMID: 32774721 PMCID: PMC7407682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 06/03/2020] [Indexed: 06/11/2023]
Abstract
Melanoma-associated antigen A3 (MAGEA3), a member of the cancer-testis antigen (CTA) family, is aberrantly expressed in various cancer types. Accumulating evidence indicates that MAGEA3 plays a vital role in the pathogenesis and development of various cancers. However, the underlying mechanisms behind the tumor-promoting effect of MAGEA3 remain unclear, particularly in cervical cancer (CC). The present study investigated the effects of MAGEA3 on CC cell proliferation and apoptosis as well as the underlying molecular mechanism. Cell Counting Kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), and flow cytometry assays were used to evaluate the effects of MAGE-A3 on proliferation, cell cycle, and apoptosis. Co-immunoprecipitation (Co-IP), dual-luciferase reporter, western blotting, and quantitative RT-PCR assays were performed to investigate the regulatory mechanisms of MAGEA3 in CC cells. Compared to the control, MAGE-A3 overexpression markedly promoted the proliferation of SiHa cells in vitro and in vivo, increased the proportion of cells in S phase, and suppressed apoptosis. However, MAGEA3 knockdown inhibited proliferation, blocked the cell cycle in G1 phase, and induced apoptosis in HeLa cells. Further mechanistic study revealed that MAGEA3 interacts with KAP1, thereby suppressing p53 transcriptional activity, thus suppressing p53-mediated regulation of the expression of genes involved in the cell cycle (p21, cyclin D1) and apoptosis (Bax, Bcl-2, and PUMA). Collectively, our results, both in vivo and in vitro, indicate that the expression of MAGEA3 contributes to CC cell proliferation and tumor growth and exerts tumor-promoting effects by regulating the KAP1/p53 signaling pathway.
Collapse
Affiliation(s)
- Xinping Gao
- Department of Obstetrics and Gynecology, Shenzhen SAMII Medical CenterShenzhen, Guangdong, China
| | - Qing Li
- Department of Obstetrics and Gynecology, Affiliated Hospital of Hebei University, Hebei University Medical CollegeBaoding, Hebei, China
| | - Guobin Chen
- Department of Obstetrics and Gynecology, Shenzhen Maternity and Child Healthcare HospitalShenzhen, Guangdong, China
| | - Haipeng He
- Department of Obstetrics and Gynecology, Affiliated Hospital of Hebei University, Hebei University Medical CollegeBaoding, Hebei, China
| | - Ying Ma
- Department of Obstetrics and Gynecology, Affiliated Hospital of Hebei University, Hebei University Medical CollegeBaoding, Hebei, China
| |
Collapse
|
18
|
Das B, Senapati S. Functional and mechanistic studies reveal MAGEA3 as a pro-survival factor in pancreatic cancer cells. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:294. [PMID: 31287009 PMCID: PMC6615156 DOI: 10.1186/s13046-019-1272-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/10/2019] [Indexed: 12/17/2022]
Abstract
Background In the era of personalized therapy, functional annotation of less frequent genetic aberrations will be instrumental in adapting effective therapeutic in clinic. Overexpression of Melanoma associated antigen A3 (MAGEA3) is reported in certain pancreatic cancer (PCA) patients. The major objective of the current study was to investigate the functional role of MAGEA3 in pancreatic cancer cells (PCCs) growth and survival. Methods Using overexpression (tet-on regulated system and constitutive expression system) and knockdown (by siRNA and shRNA) approach, we dissected the mechanistic role of MAGEA3 in pancreatic cancer pathogenesis. We generated MAGEA3 expressing stable PCA cell lines and mouse primary pancreatic epithelial cells. MAGEA3 was also depleted in certain MAGEA3 positive PCCs by siRNA or shRNA. The stable cells were subjected to in vitro assays like proliferation and survival assays under growth factor deprivation or in the presence of cytotoxic drugs. The MAGEA3 overexpressing or depleted stable PCCs were evaluated in vivo using xenograft model to check the role of MAGEA3 in tumor progression. We also dissected the mechanism behind the MAGEA3 role in tumor progression using western blot analysis and CCL2 neutralization. Results MAGEA3 overexpression in PCA cells did not alter the cell proliferation but protected the cells during growth factor deprivation and also in the presence of cytotoxic drugs. However, depletion of MAGEA3 in MAGEA3 positive cells resulted in reduced cell proliferation and increased apoptosis upon growth factor deprivation and also in response to cytotoxic drugs. The in vivo xenograft study revealed that overexpression of MAGEA3 promoted tumor growth however depleting the same hindered the tumor progression. Mechanistically, our in vitro and in vivo study revealed that MAGEA3 has tumor-promoting role by reducing macro-autophagy and overexpressing pro-survival molecules like CCL2 and survivin. Conclusion Our data proves tumor-promoting role of MAGEA3 and provides the rationale to target MAGEA3 and/or its functional mediators like CCL2 for PCA, which may have a better impact in PCA therapy. Electronic supplementary material The online version of this article (10.1186/s13046-019-1272-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Biswajit Das
- Tumor Microenvironment and Animal Models Lab, Institute of Life Sciences, Bhubaneswar, Odisha, 751023, India.,Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shantibhusan Senapati
- Tumor Microenvironment and Animal Models Lab, Institute of Life Sciences, Bhubaneswar, Odisha, 751023, India.
| |
Collapse
|
19
|
Liu Y, Wen L, Ma L, Kang Y, Liu KY, Huang XJ, Ruan GR, Lu J. MAGE genes: Prognostic indicators in AL amyloidosis patients. J Cell Mol Med 2019; 23:5672-5678. [PMID: 31222935 PMCID: PMC6653474 DOI: 10.1111/jcmm.14475] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 05/15/2019] [Accepted: 05/20/2019] [Indexed: 01/30/2023] Open
Abstract
A high frequency of MAGE-CT (cancer testis) antigens are expressed in Multiple Myeloma (MM) patients; however, in other plasma cell dyscrasias, their potential function remains unclear. We measured the expression of MAGE-CT genes (MAGE-C1/CT7, MAGE-A3, MAGE-C2/CT10) in 105 newly diagnosed amyloid light-chain (AL) amyloidosis patients between June 2013 and January 2018 at Peking University People's Hospital using real-time quantitative polymerase chain reaction. In the newly diagnosed AL patients, the positive expression rates of patients with MAGE-C1/CT7, MAGE-C2/CT10 and MAGE-A3 were 83.8% (88/105), 56.71% (38/67) and 22.0% (13/59) respectively. There was no significant correlation between organ propensity and MAGE-CT gene expression. Changes in the MAGE-C1/CT7 levels were consistent with a therapeutic effect. The expression levels of MAGE-C1/CT7, MAGE-C2/CT10 and MAGE-A3 provide potentially effective clinical indicators for auxiliary diagnoses and monitoring treatment efficacy in AL amyloidosis patients.
Collapse
Affiliation(s)
- Yang Liu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Lei Wen
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Ling Ma
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Ying Kang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Kai-Yan Liu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| | - Guo-Rui Ruan
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China
| | - Jin Lu
- Peking University People's Hospital, Peking University Institute of Hematology, Beijing, China.,Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, China.,Collaborative Innovation Center of Hematology, Peking University, Beijing, China.,Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
| |
Collapse
|
20
|
Rodrigues-Junior DM, Biassi TP, de Albuquerque GE, Carlin V, Buri MV, Machado-Junior J, Vettore AL. Downregulation of DCC sensitizes multiple myeloma cells to bortezomib treatment. Mol Med Rep 2019; 19:5023-5029. [PMID: 31059005 DOI: 10.3892/mmr.2019.10142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 12/12/2018] [Indexed: 11/06/2022] Open
Abstract
Multiple myeloma (MM) is an incurable disease; a better understanding of the molecular aspects of this hematological malignancy could contribute to the development of new treatment strategies and help to improve the survival rates of patients with MM. Previously, the methylation status of the deleted in colorectal cancer (DCC) gene was correlated with the survival rate of patients with MM, thus the main goal of this study was to understand DCC contribution to MM tumorigenesis, and to assess the impact of DCC inhibition in the MM response to treatment with bortezomib. Our results demonstrated that hypermethylation of the DCC promoter inhibits gene expression, and DCC silencing is significantly correlated with a reduction in cell viability and an increase in cell death induced by bortezomib. In conclusion, our results suggested that hypermethylation is an important mechanism of DCC expression regulation in MM and that the absence of DCC contributes to the enhanced sensitivity to treatment with bortezomib.
Collapse
Affiliation(s)
- Dorival Mendes Rodrigues-Junior
- Department of Biological Sciences, Laboratório de Biologia Molecular do Câncer, UNIFESP, Universidade Federal de São Paulo, Campus Diadema, São Paulo 04039‑032, Brazil
| | - Thaís Priscila Biassi
- Department of Biological Sciences, Laboratório de Biologia Molecular do Câncer, UNIFESP, Universidade Federal de São Paulo, Campus Diadema, São Paulo 04039‑032, Brazil
| | - Gabriela Estrela de Albuquerque
- Department of Biological Sciences, Laboratório de Biologia Molecular do Câncer, UNIFESP, Universidade Federal de São Paulo, Campus Diadema, São Paulo 04039‑032, Brazil
| | - Viviane Carlin
- Department of Biological Sciences, Laboratório de Biologia Molecular do Câncer, UNIFESP, Universidade Federal de São Paulo, Campus Diadema, São Paulo 04039‑032, Brazil
| | - Marcus Vinicius Buri
- Department of Biochemistry, Insitute of Pharmacology, Universidade Federal de São Paulo, Campus São Paulo, São Paulo 04044‑020, Brazil
| | - Joel Machado-Junior
- Department of Biological Sciences, Laboratório de Biologia Molecular do Câncer, UNIFESP, Universidade Federal de São Paulo, Campus Diadema, São Paulo 04039‑032, Brazil
| | - Andre Luiz Vettore
- Department of Biological Sciences, Laboratório de Biologia Molecular do Câncer, UNIFESP, Universidade Federal de São Paulo, Campus Diadema, São Paulo 04039‑032, Brazil
| |
Collapse
|
21
|
Shires K, Van Wyk T. The role of Cancer/Testis Antigens in Multiple Myeloma pathogenesis and their application in disease monitoring and therapy. Crit Rev Oncol Hematol 2018; 132:17-26. [PMID: 30447924 DOI: 10.1016/j.critrevonc.2018.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/22/2018] [Accepted: 09/12/2018] [Indexed: 12/17/2022] Open
Abstract
A unique group of genes, encoding tumour associated antigens, known as the Cancer/Testis Antigens (CTAs), have been explored as novel markers of disease progression and as targets of immunotherapy in several cancers, including the haematological malignancy Multiple Myeloma (MM). This review aims to update the knowledge of CTA involvement in MM pathogenesis and how their potential as biomarkers for disease monitoring and targets of immunotherapy has been explored in the MM disease arena. Despite the initial promise of these antigens, their use as immunotherapy targets has not been successful, yet with a greater understanding of their role in disease pathogenesis they may still have a significant role to play as biomarkers of disease and therapeutic targets.
Collapse
Affiliation(s)
- Karen Shires
- Division of Haematology, Department of Pathology, University of Cape Town and National Health Laboratory Service/Groote Schuur Hospital, Cape Town, South Africa.
| | - Teagan Van Wyk
- Department of Medicine, University of Cape Town, South Africa
| |
Collapse
|
22
|
Gordeeva O. Cancer-testis antigens: Unique cancer stem cell biomarkers and targets for cancer therapy. Semin Cancer Biol 2018; 53:75-89. [PMID: 30171980 DOI: 10.1016/j.semcancer.2018.08.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 08/15/2018] [Accepted: 08/17/2018] [Indexed: 02/07/2023]
Abstract
Cancer-testis antigens (CTAs) are considered as unique and promising cancer biomarkers and targets for cancer therapy. CTAs are multifunctional protein group with specific expression patterns in normal embryonic and adult cells and various types of cancer cells. CTAs are involved in regulating of the basic cellular processes during development, stem cell differentiation and carcinogenesis though the biological roles and cell functions of CTA families remain largely unclear. Analysis of CTA expression patterns in embryonic germ and somatic cells, pluripotent and multipotent stem cells, cancer stem cells and their cell descendants indicates that rearrangements of characteristic CTA profiles (aberrant expression) could be associated with cancer transformation and failure of the developmental program of cell lineage specification and germ line restriction. Therefore, aberrant CTA profiles can be used as panels of biomarkers for diagnoses and the selection of cancer treatment strategies. Moreover, immunogenic CTAs are prospective targets for cancer immunotherapy. Clinical trials testing broad range of cancer therapeutic vaccines against antigens of MAGEA and NY-ESO-1 families for treating various cancers have shown mixed clinical efficiency, safety and tolerability, suggesting the requirement of in-depth research of CTA expression in normal and cancer stem cells and extensive clinical trials for improving cancer immunotherapy technologies. This review focuses on recent advancement in study of CTAs in normal and cancer cells, particularly in normal and cancer stem cells, and provides a new insight into CTA expression patterns during normal and cancer stem cell lineage development. Additionally, new approaches in development of effective CTA-based therapies exclusively targeting cancer stem cells will be discussed.
Collapse
Affiliation(s)
- Olga Gordeeva
- Laboratory of Cell and Molecular Mechanisms of Histogenesis, Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, Moscow, 119334, Russia.
| |
Collapse
|
23
|
Jin S, Cao S, Grigorev A, Li J, Meng Q, Wang C, Feng M, Hu J, Jiang F, Yu Y. Establishment of cancer/testis antigen profiling based on clinicopathological characteristics in resected pathological stage III non-small cell lung cancer. Cancer Manag Res 2018; 10:2031-2046. [PMID: 30038519 PMCID: PMC6053259 DOI: 10.2147/cmar.s164043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Background Cancer/testis antigen (CTA) expression was found to be highly heterogeneous in previous studies. We aimed to establish a precision CTA profiling in resected stage III non-small cell lung cancer (NSCLC) and demonstrate the best CTA combination covering the widest range of NSCLC cases. Materials and methods The expression of 10 CTAs was evaluated in 200 resected stage III NSCLC tissue specimens at protein level. Hierarchical clustering and python programming language analyses was used to demonstrate CTA expression and coverage. Results The most commonly expressed CTAs for total cases were MAGEA1 (60.0%), MAGEA10 (50.0%), and KK-LC-1 (47.5%). CTA expression was histology dependent, and concurrent expression was common. The best 2, 3, and 4 CTA combination covered 72.0%, 76.5%, and 79.5% of total cases, respectively. Stratified analysis based on variable clinicopathological characteristics achieved the maximum coverage of 92.3% with only 2 CTA combination in patients with features of male sex, positive smoking history, and adenocarcinoma, compared with a 85.0% coverage when 10 CTAs were assessed. Selected CTA expression was correlated with prognosis based on subgroup analysis. No significant difference was found between CTA expression and epidermal growth factor receptor mutant status. Conclusion We established an individualized CTA profiling in resected stage III NSCLC based on 10 CTA expression. With the help of computer programming language, the goal of the maximum CTA expression coverage was reached by using the least CTA combination based on sex, smoking history, and histology. These results were significant for the further study of CTA-specific T-cell immunotherapy.
Collapse
Affiliation(s)
- Shi Jin
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China,
| | - Shoubo Cao
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China, .,Department of Medical Oncology, Linyi People's Hospital, Linyi City, People's Republic of China
| | - Aleksei Grigorev
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, People's Republic of China
| | - Jianhua Li
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
| | - Qingwei Meng
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China,
| | - Chunyan Wang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China, .,Department of Medical Oncology, Linyi People's Hospital, Linyi City, People's Republic of China
| | - Meiyan Feng
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China,
| | - Jing Hu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China,
| | - Feng Jiang
- School of Computer Science and Technology, Harbin Institute of Technology, Harbin, People's Republic of China
| | - Yan Yu
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, People's Republic of China,
| |
Collapse
|
24
|
Cho JH. Immunotherapy for Non-small-cell Lung Cancer: Current Status and Future Obstacles. Immune Netw 2017; 17:378-391. [PMID: 29302251 PMCID: PMC5746608 DOI: 10.4110/in.2017.17.6.378] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 11/10/2017] [Accepted: 11/14/2017] [Indexed: 12/19/2022] Open
Abstract
Lung cancer is one of the leading causes of death worldwide. There are 2 major subtypes of lung cancer, non-small-cell lung cancer (NSCLC) and small-cell lung cancer (SCLC). Studies show that NSCLC is the more prevalent type of lung cancer that accounts for approximately 80%-85% of cases. Although, various treatment methods, such as chemotherapy, surgery, and radiation therapy have been used to treat lung cancer patients, there is an emergent need to develop more effective approaches to deal with advanced stages of tumors. Recently, immunotherapy has emerged as a new approach to combat with such tumors. The development and success of programmed cell death 1 (PD-1)/program death-ligand 1 (PD-L1) inhibitors and cytotoxic T-lymphocyte antigen 4 (CTLA-4) blockades in treating metastatic cancers opens a new pavement for the future research. The current mini review discusses the significance of immune checkpoint inhibitors in promoting the death of tumor cells. Additionally, this review also addresses the importance of tumor-specific antigens (neoantigens) in the development of cancer vaccines and major challenges associated with this therapy. Immunotherapy can be a promising approach to treat NSCLC because it stimulates host's own immune system to recognize cancer cells. Therefore, future research should focus on the development of new methodologies to identify novel checkpoint inhibitors and potential neoantigens.
Collapse
Affiliation(s)
- Ju Hwan Cho
- Arthur G. James Cancer Hospital Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
25
|
Malhotra J, Jabbour SK, Aisner J. Current state of immunotherapy for non-small cell lung cancer. Transl Lung Cancer Res 2017; 6:196-211. [PMID: 28529902 PMCID: PMC5420529 DOI: 10.21037/tlcr.2017.03.01] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 02/22/2017] [Indexed: 12/26/2022]
Abstract
Lung cancer is the leading cause of cancer mortality and non-small cell lung cancer (NSCLC) accounts for more than 85% of all lung cancers. Platinum-based doublet chemotherapy is the standard first-line treatment for metastatic NSCLC when genomic testing reveals no targetable alteration such as epidermal growth factor receptor (EGFR) mutations, anaplastic lymphoma kinase (ALK) or ROS1 translocation/re-arrangements. But, chemotherapy produces response rates ranging only between 15-30%. For patients whose disease progresses on first-line chemotherapy, second-line therapy historically consists of taxane-based salvage chemotherapy with a response rate of less than 25%. Recently, immunotherapy with checkpoint inhibitor agents have demonstrated responses in advanced NSCLC, with some patients exhibiting durable responses after discontinuing therapy. In 2015, two immune checkpoint inhibitors targeting programmed cell death-1 (PD-1), nivolumab and pembrolizumab were approved for second-line therapy of NSCLC. In 2016, another checkpoint inhibitor targeting program death-ligand 1 (PD-L1), atezolizumab was approved for the same indication. Moreover, pembrolizumab also received approval in 2016 for first-line NSCLC treatment in patients with high PD-L1 expressing tumors. Immunotherapy for NSCLC has therefore, recently evolved into a true treatment modality with the acceptance of PD-1 and PD-L1 inhibitors as the new standard of care for second-line treatment. However, it is still at the discretion of the treating physician whether to use PD-1 or PD-L1 inhibitor as data to compare these two pathways is lacking. Focus is now also on exploring their role in the adjuvant and consolidation settings for NSCLC as well as on exploring novel combinations combining these agents with chemotherapy or radiation. Research is also needed in the development of predictive and prognostic biomarkers for these agents. While vaccine therapy trials in NSCLC have so far failed to show significant clinical benefit, the demonstration of enhanced immune response in these trials suggest the vaccine therapy needs additional evaluation in combination with other therapeutic modalities especially checkpoint inhibition.
Collapse
Affiliation(s)
- Jyoti Malhotra
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Salma K Jabbour
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Joseph Aisner
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
26
|
Lee AK, Potts PR. A Comprehensive Guide to the MAGE Family of Ubiquitin Ligases. J Mol Biol 2017; 429:1114-1142. [PMID: 28300603 DOI: 10.1016/j.jmb.2017.03.005] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/07/2017] [Accepted: 03/07/2017] [Indexed: 12/28/2022]
Abstract
Melanoma antigen (MAGE) genes are conserved in all eukaryotes and encode for proteins sharing a common MAGE homology domain. Although only a single MAGE gene exists in lower eukaryotes, the MAGE family rapidly expanded in eutherians and consists of more than 50 highly conserved genes in humans. A subset of MAGEs initially garnered interest as cancer biomarkers and immunotherapeutic targets due to their antigenic properties and unique expression pattern that is primary restricted to germ cells and aberrantly reactivated in various cancers. However, further investigation revealed that MAGEs not only drive tumorigenesis but also regulate pathways essential for diverse cellular and developmental processes. Therefore, MAGEs are implicated in a broad range of diseases including neurodevelopmental, renal, and lung disorders, and cancer. Recent biochemical and biophysical studies indicate that MAGEs assemble with E3 RING ubiquitin ligases to form MAGE-RING ligases (MRLs) and act as regulators of ubiquitination by modulating ligase activity, substrate specification, and subcellular localization. Here, we present a comprehensive guide to MAGEs highlighting the molecular mechanisms of MRLs and their physiological roles in germ cell and neural development, oncogenic functions in cancer, and potential as therapeutic targets in disease.
Collapse
Affiliation(s)
- Anna K Lee
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA
| | - Patrick Ryan Potts
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105-3678, USA.
| |
Collapse
|
27
|
Xu P, Zhang L, Wang X, Zhou D, Ouyang J, Chen B. Expression of MAGE-C1/CT7 provides prognostic information in multiple myeloma. Leuk Lymphoma 2016; 58:244-246. [PMID: 27248683 DOI: 10.1080/10428194.2016.1187271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Peipei Xu
- a Department of Hematology , The Affiliated Drum Tower Hospital of Nanjing University Medical School , Nanjing , People's Republic of China
| | - Liyu Zhang
- a Department of Hematology , The Affiliated Drum Tower Hospital of Nanjing University Medical School , Nanjing , People's Republic of China
| | - Xiaohui Wang
- a Department of Hematology , The Affiliated Drum Tower Hospital of Nanjing University Medical School , Nanjing , People's Republic of China
| | - Di Zhou
- a Department of Hematology , The Affiliated Drum Tower Hospital of Nanjing University Medical School , Nanjing , People's Republic of China
| | - Jian Ouyang
- a Department of Hematology , The Affiliated Drum Tower Hospital of Nanjing University Medical School , Nanjing , People's Republic of China
| | - Bing Chen
- a Department of Hematology , The Affiliated Drum Tower Hospital of Nanjing University Medical School , Nanjing , People's Republic of China
| |
Collapse
|
28
|
Oncogenic cancer/testis antigens: prime candidates for immunotherapy. Oncotarget 2016; 6:15772-87. [PMID: 26158218 PMCID: PMC4599236 DOI: 10.18632/oncotarget.4694] [Citation(s) in RCA: 245] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 06/21/2015] [Indexed: 12/15/2022] Open
Abstract
Recent developments have set the stage for immunotherapy as a supplement to conventional cancer treatment. Consequently, a significant effort is required to further improve efficacy and specificity, particularly the identification of optimal therapeutic targets for clinical testing. Cancer/testis antigens are immunogenic, highly cancer-specific, and frequently expressed in various types of cancer, which make them promising candidate targets for cancer immunotherapy, including cancer vaccination and adoptive T-cell transfer with chimeric T-cell receptors. Our current understanding of tumor immunology and immune escape suggests that targeting oncogenic antigens may be beneficial, meaning that identification of cancer/testis antigens with oncogenic properties is of high priority. Recent work from our lab and others provide evidence that many cancer/testis antigens, in fact, have oncogenic functions, including support of growth, survival and metastasis. This novel insight into the function of cancer/testis antigens has the potential to deliver more effective cancer vaccines. Moreover, immune targeting of oncogenic cancer/testis antigens in combination with conventional cytotoxic therapies or novel immunotherapies such as checkpoint blockade or adoptive transfer, represents a highly synergistic approach with the potential to improve patient survival.
Collapse
|
29
|
Veit JA, Heine D, Thierauf J, Lennerz J, Shetty S, Schuler PJ, Whiteside T, Beutner D, Meyer M, Grünewald I, Ritter G, Gnjatic S, Sikora AG, Hoffmann TK, Laban S. Expression and clinical significance of MAGE and NY-ESO-1 cancer-testis antigens in adenoid cystic carcinoma of the head and neck. Head Neck 2016; 38:1008-16. [PMID: 26874246 DOI: 10.1002/hed.24403] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Adenoid cystic carcinoma (ACC) of the head and neck is a rare but highly malignant tumor. Cancer-testis antigens (CTAs) represent an immunogenic family of cancer-specific proteins and thus represent an attractive target for immunotherapy. METHODS Eighty-four cases of ACC were identified, the CTAs pan-Melanoma antigen (pan-MAGE; M3H67) and New York esophageal squamous cell carcinoma (NY-ESO-1; E978) were detected immunohistochemically (IHC) and correlated with clinical data. RESULTS Expression of NY-ESO-1 was found in 48 of 84 patients (57.1%) and of pan-MAGE in 28 of 84 patients (31.2%). Median overall survival (OS) in NY-ESO-1 positive versus negative patients was 130.8 and 282.0 months (p = .223), respectively. OS in pan-MAGE positive versus negative patients was 105.3 and 190.5 months, respectively (p = .096). Patients expressing both NY-ESO-1 and pan-MAGE simultaneously had significantly reduced OS with a median of 90.5 months compared with 282.0 months in negative patients (p = .047). CONCLUSION A significant fraction of patients with ACC show expression of the CTAs NY-ESO-1 and/or pan-MAGE with promising immunotherapeutic implications. © 2016 Wiley Periodicals, Inc. Head Neck 38: 1008-1016, 2016.
Collapse
Affiliation(s)
- Johannes A Veit
- Department of Oto-Rhino-Laryngology and Head and Neck Surgery, University Medical Center Ulm, Ulm, Germany
| | - Daniela Heine
- Department of Oto-Rhino-Laryngology and Head and Neck Surgery, University Medical Center Ulm, Ulm, Germany
| | - Julia Thierauf
- Department of Oto-Rhino-Laryngology and Head and Neck Surgery, University Medical Center Ulm, Ulm, Germany
| | - Jochen Lennerz
- Department of Pathology, Center for Integrated Diagnostics, Massachusetts General Hospital, Boston, Massachusetts
| | - Subasch Shetty
- Department of Ear, Nose and Throat Surgery, Kensington Hospital, Whangarei, New Zealand
| | - Patrick J Schuler
- Department of Oto-Rhino-Laryngology and Head and Neck Surgery, University Medical Center Ulm, Ulm, Germany
| | - Theresa Whiteside
- Department of Pathology, University of Pittsburgh, Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Dirk Beutner
- Department of Otorhinolaryngology, University of Cologne, Cologne, Germany
| | - Moritz Meyer
- Department of Otorhinolaryngology, University of Cologne, Cologne, Germany
| | - Inga Grünewald
- Institute of Pathology, University of Cologne, Cologne, Germany
| | - Gerd Ritter
- Ludwig Institute for Cancer Research and Memorial Sloan Kettering Cancer Center, New York, New York
| | - Sacha Gnjatic
- Icahn School of Medicine at Mount Sinai, Mount Sinai Hospital, New York, New York
| | - Andrew G Sikora
- Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, Texas
| | - Thomas K Hoffmann
- Department of Oto-Rhino-Laryngology and Head and Neck Surgery, University Medical Center Ulm, Ulm, Germany
| | - Simon Laban
- Department of Oto-Rhino-Laryngology and Head and Neck Surgery, University Medical Center Ulm, Ulm, Germany
| |
Collapse
|
30
|
Xie C, Subhash VV, Datta A, Liem N, Tan SH, Yeo MS, Tan WL, Koh V, Yan FL, Wong FY, Wong WK, So J, Tan IB, Padmanabhan N, Yap CT, Tan P, Goh LK, Yong WP. Melanoma associated antigen (MAGE)-A3 promotes cell proliferation and chemotherapeutic drug resistance in gastric cancer. Cell Oncol (Dordr) 2016; 39:175-86. [PMID: 26868260 DOI: 10.1007/s13402-015-0261-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2015] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Melanoma-associated antigen (MAGE)-A3 is a member of the family of cancer-testis antigens and has been found to be epigenetically regulated and aberrantly expressed in various cancer types. It has also been found that MAGE-A3 expression may correlate with an aggressive clinical course and with chemo-resistance. The objectives of this study were to assess the relationship between MAGE-A3 promoter methylation and expression and (1) gastric cancer patient survival and (2) its functional consequences in gastric cancer-derived cells. METHODS Samples from two independent gastric cancer cohorts (including matched non-malignant gastric samples) were included in this study. MAGE-A3 methylation and mRNA expression levels were determined by methylation-specific PCR (MSP) and quantitative real-time PCR (qPCR), respectively. MAGE-A3 expression was knocked down in MKN1 gastric cancer-derived cells using miRNAs. In addition, in vitro cell proliferation, colony formation, apoptosis, cell cycle, drug treatment, immunohistochemistry and Western blot assays were performed. RESULTS Clinical analysis of 223 primary patient-derived samples (ntumor = 161, nnormal = 62) showed a significant inverse correlation between MAGE-A3 promoter methylation and expression in the cancer samples (R = -0.63, p = 5.99e-19). A lower MAGE-A3 methylation level was found to be associated with a worse patient survival (HR: 1.5, 95 % CI: 1.02-2.37, p = 0.04). In addition, we found that miRNA-mediated knockdown of MAGE-A3 expression in MKN1 cells caused a reduction in its proliferation and colony forming capacities, respectively. Under stress conditions MAGE-A3 was found to regulate the expression of Bax and p21. MAGE-A3 knock down also led to an increase in Puma and Noxa expression, thus contributing to an enhanced docetaxel sensitivity in the gastric cancer-derived cells. CONCLUSIONS From our results we conclude that MAGE-A3 expression is regulated epigenetically by promoter methylation, and that its expression contributes to gastric cell proliferation and drug sensitivity. This study underscores the potential implications of MAGE-A3 as a therapeutic target and prognostic marker in gastric cancer patients.
Collapse
Affiliation(s)
- Chen Xie
- Department of Haematology-Oncology, National University Hospital, Level 7, NUHS Tower Block, 1E, Kent Ridge Road, Singapore, 119228, Singapore
| | - Vinod Vijay Subhash
- Department of Haematology-Oncology, National University Hospital, Level 7, NUHS Tower Block, 1E, Kent Ridge Road, Singapore, 119228, Singapore.,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Arpita Datta
- Department of Physiology, National University of Singapore, Singapore, Singapore
| | - Natalia Liem
- Department of Haematology-Oncology, National University Hospital, Level 7, NUHS Tower Block, 1E, Kent Ridge Road, Singapore, 119228, Singapore
| | - Shi Hui Tan
- Department of Haematology-Oncology, National University Hospital, Level 7, NUHS Tower Block, 1E, Kent Ridge Road, Singapore, 119228, Singapore.,Centre for Quantitative Medicine, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Mei Shi Yeo
- Department of Haematology-Oncology, National University Hospital, Level 7, NUHS Tower Block, 1E, Kent Ridge Road, Singapore, 119228, Singapore
| | - Woei Loon Tan
- Department of Haematology-Oncology, National University Hospital, Level 7, NUHS Tower Block, 1E, Kent Ridge Road, Singapore, 119228, Singapore
| | - Vivien Koh
- Department of Haematology-Oncology, National University Hospital, Level 7, NUHS Tower Block, 1E, Kent Ridge Road, Singapore, 119228, Singapore
| | - Fui Leng Yan
- Department of Haematology-Oncology, National University Hospital, Level 7, NUHS Tower Block, 1E, Kent Ridge Road, Singapore, 119228, Singapore
| | - Foong Ying Wong
- Department of Haematology-Oncology, National University Hospital, Level 7, NUHS Tower Block, 1E, Kent Ridge Road, Singapore, 119228, Singapore
| | - Wai Keong Wong
- Departments of Pathology and General Surgery, Singapore General Hospital, Singapore, Singapore
| | - Jimmy So
- Departments of Medicine, Surgery, and Pathology, National University Health System, Singapore, Singapore
| | - Iain Beehuat Tan
- Department of Medical Oncology, National Cancer Centre Singapore, Singapore, Singapore
| | - Nisha Padmanabhan
- Department of Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Celestial T Yap
- Department of Physiology, National University of Singapore, Singapore, Singapore.,National University Cancer Institute, Singapore, Singapore
| | - Patrick Tan
- Department of Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Liang Kee Goh
- Centre for Quantitative Medicine, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Wei Peng Yong
- Department of Haematology-Oncology, National University Hospital, Level 7, NUHS Tower Block, 1E, Kent Ridge Road, Singapore, 119228, Singapore. .,Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
31
|
Colombo M, Mirandola L, Reidy A, Suvorava N, Konala V, Chiaramonte R, Grizzi F, Rahman RL, Jenkins MR, Nugyen DD, Dalhbeck S, Cobos E, Figueroa JA, Chiriva-Internati M. Targeting Tumor Initiating Cells through Inhibition of Cancer Testis Antigens and Notch Signaling: A Hypothesis. Int Rev Immunol 2016; 34:188-99. [PMID: 25901861 DOI: 10.3109/08830185.2015.1027629] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Tumor initiating cells (TICs) differ from normal stem cells (SCs) in their ability to initiate tumorigenesis, invasive growth, metastasis and the acquisition of chemo and/or radio-resistance. Over the past years, several studies have indicated the potential role of the Notch system as a key regulator of cellular stemness and tumor development. Furthermore, the expression of cancer testis antigens (CTA) in TICs, and their role in SC differentiation and biology, has become an important area of investigation. Here, we propose a model in which CTA expression and Notch signaling interacts to maintain the sustainability of self-replicating tumor populations, ultimately leading to the development of metastasis, drug resistance and cancer progression. We hypothesize that Notch-CTA interactions in TICs offer a novel opportunity for meaningful therapeutic interventions in cancer.
Collapse
Affiliation(s)
- Michela Colombo
- Department of Health Sciences, Università degli Studi di Milano , Milano , Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Lavrov AV, Chelysheva EY, Smirnikhina SA, Shukhov OA, Turkina AG, Adilgereeva EP, Kutsev SI. Frequent variations in cancer-related genes may play prognostic role in treatment of patients with chronic myeloid leukemia. BMC Genet 2016; 17 Suppl 1:14. [PMID: 26822197 PMCID: PMC4895599 DOI: 10.1186/s12863-015-0308-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Genome variability of host genome and cancer cells play critical role in diversity of response to existing therapies and overall success in treating oncological diseases. In chronic myeloid leukemia targeted therapy with tyrosine kinase inhibitors demonstrates high efficacy in most of the patients. However about 15 % of patients demonstrate primary resistance to standard therapy. Whole exome sequencing is a good tool for unbiased search of genetic variations important for prognosis of survival and therapy efficacy in many cancers. We apply this approach to CML patients with optimal response and failure of tyrosine kinase therapy. RESULTS We analyzed exome variations between optimal responders and failures and found 7 variants in cancer-related genes with different genotypes in two groups of patients. Five of them were found in optimal responders: rs11579366, rs1990236, rs176037, rs10653661, rs3803264 and two in failures: rs3099950, rs9471966. These variants were found in genes associated with cancers (ANKRD35, DNAH9, MAGEC1, TOX3) or participating in cancer-related signaling pathways (THSD1, MORN2, PTCRA). CONCLUSION We found gene variants which may become early predictors of the therapy outcome and allow development of new early prognostic tests for estimation of therapy efficacy in CML patients. Normal genetic variation may influence therapy efficacy during targeted treatment of cancers.
Collapse
Affiliation(s)
- Alexander V Lavrov
- Laboratory of Mutagenesis, Federal State Budgetary Institution "Research Centre for Medical Genetics", Moskvorechie, 1, Moscow, 115478, Russia. .,Department of Molecular and Cellular Genetics, State Budgetary Educational Institution of Higher Professional Education "Russian National Research Medical University named after N.I. Pirogov" of Ministry of Health of the Russian Federation, Moscow, Russia.
| | - Ekaterina Y Chelysheva
- Scientific and Advisory Department of Chemotherapy of Myeloproliferative Disorders, Federal State-Funded Institution National Research Center for Hematology of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Svetlana A Smirnikhina
- Laboratory of Mutagenesis, Federal State Budgetary Institution "Research Centre for Medical Genetics", Moskvorechie, 1, Moscow, 115478, Russia
| | - Oleg A Shukhov
- Scientific and Advisory Department of Chemotherapy of Myeloproliferative Disorders, Federal State-Funded Institution National Research Center for Hematology of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Anna G Turkina
- Scientific and Advisory Department of Chemotherapy of Myeloproliferative Disorders, Federal State-Funded Institution National Research Center for Hematology of the Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Elmira P Adilgereeva
- Laboratory of Mutagenesis, Federal State Budgetary Institution "Research Centre for Medical Genetics", Moskvorechie, 1, Moscow, 115478, Russia
| | - Sergey I Kutsev
- Laboratory of Mutagenesis, Federal State Budgetary Institution "Research Centre for Medical Genetics", Moskvorechie, 1, Moscow, 115478, Russia.,Department of Molecular and Cellular Genetics, State Budgetary Educational Institution of Higher Professional Education "Russian National Research Medical University named after N.I. Pirogov" of Ministry of Health of the Russian Federation, Moscow, Russia
| |
Collapse
|
33
|
Ghafouri-Fard S, Seifi-Alan M, Shamsi R, Esfandiary A. Immunotherapy in Multiple Myeloma Using Cancer-Testis Antigens. IRANIAN JOURNAL OF CANCER PREVENTION 2015; 8:e3755. [PMID: 26634107 PMCID: PMC4667235 DOI: 10.17795/ijcp-3755] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 08/29/2015] [Accepted: 09/22/2015] [Indexed: 11/25/2022]
Abstract
Context: Multiple myeloma (MM) is a B-cell malignancy characterized by monoclonal expansion of abnormal plasma cells in the bone marrow. It accounts for 10% of hematological malignancies. Although patients respond to a wide range of anticancer modalities, relapse occurs in a significant number of the cases. Immunotherapeutic approaches have been evolved to tackle this problem. Cancer-testis antigens CTAs as a group of tumor-associated antigens are appropriate targets for cancer immunotherapy as they have restricted expression pattern in normal tissues except for testis which is an immune-privileged site. Expression of these antigens has been assessed in different malignancies including MM. Evidence Acquisition: We performed a computerized search of the MEDLINE/PubMed databases with key words: multiple myeloma, cancer-testis antigen, and cancer stem cell and immunotherapy. Results: Several CTAs including NY-ESO-1, MAGE and GAGE family have been shown to be expressed in MM patients. Cellular and humoral immune responses against these antigens have been detected in MM patients. Conclusions: The frequent and high expression level of CTAs in MM patients shows that these antigens can be applied as cancer biomarkers as well as targets for immunotherapy in these patients.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| | - Mahnaz Seifi-Alan
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| | - Roshanak Shamsi
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| | - Ali Esfandiary
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| |
Collapse
|
34
|
Lajmi N, Luetkens T, Yousef S, Templin J, Cao Y, Hildebrandt Y, Bartels K, Kröger N, Atanackovic D. Cancer-testis antigen MAGEC2 promotes proliferation and resistance to apoptosis in Multiple Myeloma. Br J Haematol 2015; 171:752-62. [DOI: 10.1111/bjh.13762] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 07/23/2015] [Indexed: 12/17/2022]
Affiliation(s)
- Nesrine Lajmi
- Hematology and Hematologic Malignancies; University of Utah; Huntsman Cancer Institute; Salt Lake City UT USA
- Oncology/Haematology/Bone Marrow Transplantation with the section Pneumology; University Medical Centre Hamburg-Eppendorf; Hamburg Germany
| | - Tim Luetkens
- Hematology and Hematologic Malignancies; University of Utah; Huntsman Cancer Institute; Salt Lake City UT USA
- Oncology/Haematology/Bone Marrow Transplantation with the section Pneumology; University Medical Centre Hamburg-Eppendorf; Hamburg Germany
| | - Sara Yousef
- Hematology and Hematologic Malignancies; University of Utah; Huntsman Cancer Institute; Salt Lake City UT USA
- Oncology/Haematology/Bone Marrow Transplantation with the section Pneumology; University Medical Centre Hamburg-Eppendorf; Hamburg Germany
- Stem Cell Transplantation; University Medical Centre Hamburg-Eppendorf; Hamburg Germany
| | - Julia Templin
- Hematology and Hematologic Malignancies; University of Utah; Huntsman Cancer Institute; Salt Lake City UT USA
- Oncology/Haematology/Bone Marrow Transplantation with the section Pneumology; University Medical Centre Hamburg-Eppendorf; Hamburg Germany
| | - Yanran Cao
- Oncology/Haematology/Bone Marrow Transplantation with the section Pneumology; University Medical Centre Hamburg-Eppendorf; Hamburg Germany
| | - York Hildebrandt
- Stem Cell Transplantation; University Medical Centre Hamburg-Eppendorf; Hamburg Germany
| | - Katrin Bartels
- Oncology/Haematology/Bone Marrow Transplantation with the section Pneumology; University Medical Centre Hamburg-Eppendorf; Hamburg Germany
| | - Nicolaus Kröger
- Stem Cell Transplantation; University Medical Centre Hamburg-Eppendorf; Hamburg Germany
| | - Djordje Atanackovic
- Hematology and Hematologic Malignancies; University of Utah; Huntsman Cancer Institute; Salt Lake City UT USA
- Oncology/Haematology/Bone Marrow Transplantation with the section Pneumology; University Medical Centre Hamburg-Eppendorf; Hamburg Germany
| |
Collapse
|
35
|
Weon JL, Potts PR. The MAGE protein family and cancer. Curr Opin Cell Biol 2015; 37:1-8. [PMID: 26342994 DOI: 10.1016/j.ceb.2015.08.002] [Citation(s) in RCA: 170] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 08/17/2015] [Indexed: 12/21/2022]
Abstract
The Melanoma Antigen Gene (MAGE) protein family is a large, highly conserved group of proteins that share a common MAGE homology domain. Intriguingly, many MAGE proteins are restricted in expression to reproductive tissues, but are aberrantly expressed in a wide variety of cancer types. Originally discovered as antigens on tumor cells and developed as cancer immunotherapy targets, recent literature suggests a more prominent role for MAGEs in driving tumorigenesis. This review will highlight recent developments into the function of MAGEs as oncogenes, their mechanisms of action in regulation of ubiquitin ligases, and outstanding questions in the field.
Collapse
Affiliation(s)
- Jenny L Weon
- Departments of Physiology, Pharmacology, and Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, United States
| | - Patrick Ryan Potts
- Departments of Physiology, Pharmacology, and Biochemistry, UT Southwestern Medical Center, Dallas, TX 75390, United States.
| |
Collapse
|
36
|
Esfandiary A, Ghafouri-Fard S. MAGE-A3: an immunogenic target used in clinical practice. Immunotherapy 2015; 7:683-704. [PMID: 26100270 DOI: 10.2217/imt.15.29] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Melanoma antigen family A, 3 (MAGE-A3) is a cancer-testis antigen whose expression has been demonstrated in a wide array of malignancies including melanoma, brain, breast, lung and ovarian cancer. In addition, its ability to elicit spontaneous humoral and cellular immune responses has been shown in cancer patients. As antigen-specific immune responses can be stimulated by immunization with MAGE-A3, several clinical trials have used MAGE-A3 vaccines to observe clinical responses. The frequent expressions of this antigen in various tumors and its immunogenicity in cancer patients have led to application of this antigen in cancer immunotherapy. However, the results of recent clinical trials indicate that there is a need for research in the vaccine design, adjuvant selection as well as patient selection criteria.
Collapse
Affiliation(s)
- Ali Esfandiary
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran 19857-17443, Iran
| |
Collapse
|
37
|
Cancer-testis antigen SLLP1 represents a promising target for the immunotherapy of multiple myeloma. J Transl Med 2015; 13:197. [PMID: 26088750 PMCID: PMC4474344 DOI: 10.1186/s12967-015-0562-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 06/03/2015] [Indexed: 11/22/2022] Open
Abstract
Background Most patients with multiple myeloma (MM) will relapse after an initial response and eventually succumb to their disease. This is due to the persistence of chemotherapy-resistant tumor cells in the patients’ bone marrow (BM) and immunotherapeutic approaches could contribute to eradicating these remaining cells. We evaluated SLLP1 as a potential
immunotherapeutic target for MM. Methods We determined SLLP1 expression in myeloma cell lines and 394 BM samples from myeloma patients (n = 177) and BM samples from healthy donors (n = 11). 896 blood samples and 64 BM samples from myeloma patients (n = 263) and blood from healthy donors (n = 112) were analyzed for anti-SLLP1 antibodies. Seropositive patients were evaluated regarding SLLP1-specific T cells. Results Most cell lines showed SLLP1 RNA and protein expression while it was absent from normal BM. Of 177 patients 41% evidenced SLLP1 expression at least once during the course of their disease and 44% of newly diagnosed patients were SLLP1-positive. Expression of SLLP1 was associated with adverse cytogenetics and with negative prognostic factors including the patient’s age, number of BM-infiltrating plasma cells, serum albumin, β2-microglobulin, creatinine, and hemoglobin. Among patients treated with allogeneic stem cell transplantation those with SLLP1 expression showed a trend towards a reduced overall survival. Spontaneous anti-SLLP humoral immunity was detectable in 9.5% of patients but none of the seropositive patients evidenced SLLP1-specific T cells. However, antigen-specific T cells could readily be induced in vitro after stimulation with SLLP1. Conclusions SLLP1 represents a promising target for the immunotherapy of MM, in particular for the adoptive transfer of T cell receptor-transduced T cells.
Collapse
|
38
|
Wienand K, Shires K. The use of MAGE C1 and flow cytometry to determine the malignant cell type in multiple myeloma. PLoS One 2015; 10:e0120734. [PMID: 25793710 PMCID: PMC4368436 DOI: 10.1371/journal.pone.0120734] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 01/26/2015] [Indexed: 12/22/2022] Open
Abstract
The malignant cell phenotype of Multiple Myeloma (MM) remains unclear with studies proposing it to be either clonotypic B or proliferating plasma cells. Cancer/testis antigen MAGE C1 is being extensively studied in MM and it has been suggested that it is involved in the pathogenesis of the cancer. Therefore, we report on the use of MAGE C1 to determine the malignant cell phenotype in MM using flow cytometry. Bone marrow aspirate (BM) and peripheral blood (PB) was collected from twelve MM patients at diagnosis, as well as three MM disease-free controls. Mononuclear cells were isolated using density-gradient centrifugation, and stabilized in 80% ethanol, before analysis via flow cytometry using relevant antibodies against B cell development cell-surface markers and nuclear MAGE C1. MAGE C1 expression was observed consistently in the early stem cells (CD34+) and early pro-B to pre-B cells (CD34+/-/CD19+), as well as the proliferating plasma cells in both the MM PB and BM, while no expression was observed in the corresponding control samples. Monoclonality indicated a common origin of these cell types suggesting that the CD34+/MAGE C1+ are the primary malignant cell phenotype that sustains the downstream B cell maturation processes. Furthermore, this malignant cell phenotype was not restricted to the BM but also found in the circulating PB cells.
Collapse
Affiliation(s)
- Kirsty Wienand
- Division of Haematology, University of Cape Town, Cape Town, South Africa
| | - Karen Shires
- Division of Haematology, University of Cape Town, Cape Town, South Africa
- Division of Haematology, National Health Laboratory Services/Groote Schuur Hospital, Cape Town, South Africa
- * E-mail:
| |
Collapse
|
39
|
Abstract
SUMMARY Approximately 200,000 people will develop lung cancer in the USA this year. Roughly 85% of those will die of their disease. Standard chemotherapeutic agents have modestly prolonged survival in this population. The discovery of activating mutations, and their inhibitors has had a more significant impact, but this is limited to the small percentage of the population that harbor the currently known mutations with approved therapeutics. Recent advances in the field of immune checkpoint inhibitors like CTLA4 or PD1 have reinvigorated the interest in immunotherapy. In this review, we will analyze the most significant findings in the field of lung cancer vaccines, and will focus on the different methods of immune activation that attempt to induce a tumor specific response.
Collapse
Affiliation(s)
- Jyoti Malhotra
- Icahn School of medicine at Mount Sinai, Tisch Cancer Institute, Division of Hematology & Oncology, 1 Gustave L Levy Place, Box 1128, New York, NY 10029, USA
| | - Denise Odea
- Icahn School of medicine at Mount Sinai, Tisch Cancer Institute, Division of Hematology & Oncology, 1 Gustave L Levy Place, Box 1128, New York, NY 10029, USA
| | - Jorge E Gomez
- Icahn School of medicine at Mount Sinai, Tisch Cancer Institute, Division of Hematology & Oncology, 1 Gustave L Levy Place, Box 1128, New York, NY 10029, USA
| |
Collapse
|
40
|
Fichtner S, Hose D, Engelhardt M, Meißner T, Neuber B, Krasniqi F, Raab M, Schönland S, Ho AD, Goldschmidt H, Hundemer M. Association of Antigen-Specific T-cell Responses with Antigen Expression and Immunoparalysis in Multiple Myeloma. Clin Cancer Res 2015; 21:1712-21. [DOI: 10.1158/1078-0432.ccr-14-1618] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 12/31/2014] [Indexed: 11/16/2022]
|
41
|
Kobold S, Merk M, Hofer L, Peters P, Bucala R, Endres S. The macrophage migration inhibitory factor (MIF)-homologue D-dopachrome tautomerase is a therapeutic target in a murine melanoma model. Oncotarget 2014; 5:103-7. [PMID: 24406307 PMCID: PMC3960192 DOI: 10.18632/oncotarget.1560] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
The macrophage migration inhibitory factor (MIF)-homologue D- dopachrome tautomerase (D-DT) recently has been described to have similar functions as MIF. However, the role of D-DT, as opposed to MIF, in tumor biology remains unknown. We hypothesized that D-DT could represent a target for therapeutic interventions in cancer. We analyzed the production of D-DT in the murine melanoma model B16F10 and the murine breast cancer model 4T1 by western blot and ELISA. D-DT was released by tumor cells both in vitro and in vivo. RT-PCR revealed the expression of the D-DT receptor CD74 on both tumor cell lines. Tumor bearing mice had higher serum levels of D-DT compared to healthy controls. Remarkably, knock-down of D-DT by siRNA reduced proliferation of B16F10 cells in BrDU-assay and rendered them more prone to apoptosis induction, as shown by flow cytometry. In vivo neutralization of D-DT by antibodies reduced tumor progression in the B16F10 subcutaneous syngeneic tumor model. In summary, we could show that D-DT and its receptor are expressed in the murine tumors B16F10 and 4T1. Knock-down of D-DT through siRNA or blocking by antibodies reduced proliferation of B16F10 tumor cells. This qualifies D-DT for further evaluation as a therapeutic target.
Collapse
Affiliation(s)
- Sebastian Kobold
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Internal Medicine IV, Ludwig-Maximilians-Universität München, Munich, Germany, Member of the German Center for Lung Research
| | | | | | | | | | | |
Collapse
|
42
|
Luetkens T, Kobold S, Cao Y, Ristic M, Schilling G, Tams S, Bartels BM, Templin J, Bartels K, Hildebrandt Y, Yousef S, Marx A, Haag F, Bokemeyer C, Kröger N, Atanackovic D. Functional autoantibodies against SSX-2 and NY-ESO-1 in multiple myeloma patients after allogeneic stem cell transplantation. Cancer Immunol Immunother 2014; 63:1151-62. [PMID: 25078248 PMCID: PMC11029676 DOI: 10.1007/s00262-014-1588-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 07/13/2014] [Indexed: 11/28/2022]
Abstract
BACKGROUND Multiple myeloma (MM) is the malignancy with the most frequent expression of the highly immunogenic cancer-testis antigens (CTA), and we have performed the first analysis of longitudinal expression, immunological properties, and fine specificity of CTA-specific antibody responses in MM. METHODS Frequency and characteristics of antibody responses against cancer-testis antigens MAGE-A3, NY-ESO-1, PRAME, and SSX-2 were analyzed using peripheral blood (N = 1094) and bone marrow (N = 200) plasma samples from 194 MM patients. RESULTS We found that antibody responses against CTA were surprisingly rare, only 2.6 and 3.1 % of patients evidenced NY-ESO-1- and SSX-2-specific antibodies, respectively. NY-ESO-1-specific responses were observed during disease progression, while anti-SSX-2 antibodies appeared after allogeneic stem cell transplantation and persisted during clinical remission. We found that NY-ESO-1- and SSX-2-specific antibodies were both capable of activating complement and increasing CTA uptake by antigen-presenting cells. SSX-2-specific antibodies were restricted to IgG3, NY-ESO-1 responses to IgG1 and IgG3. Remarkably, NY-ESO-1-positive sera recognized various non-contiguous regions, while SSX-2-specific responses were directed against a single 6mer epitope, SSX-2(85-90). CONCLUSIONS We conclude that primary autoantibodies against intracellular MM-specific tumor antigens SSX-2 and NY-ESO-1 are rare but functional. While their contribution to disease control still remains unclear, our data demonstrate their theoretic ability to affect cellular anti-tumor immunity by formation and uptake of mono- and polyvalent immune complexes.
Collapse
Affiliation(s)
- Tim Luetkens
- Department of Internal Medicine II, Oncology/Hematology/Bone Marrow Transplantation with the Section Pneumology, University Cancer Center Hamburg (Hubertus Wald Tumorzentrum), University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
- Division of Hematology and Hematologic Malignancies, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT USA
| | - Sebastian Kobold
- Department of Internal Medicine II, Oncology/Hematology/Bone Marrow Transplantation with the Section Pneumology, University Cancer Center Hamburg (Hubertus Wald Tumorzentrum), University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
- Division of Clinical Pharmacology, Department of Internal Medicine, Ludwig-Maximilian University, Munich, Germany
| | - Yanran Cao
- Department of Internal Medicine II, Oncology/Hematology/Bone Marrow Transplantation with the Section Pneumology, University Cancer Center Hamburg (Hubertus Wald Tumorzentrum), University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Marina Ristic
- Department of Internal Medicine II, Oncology/Hematology/Bone Marrow Transplantation with the Section Pneumology, University Cancer Center Hamburg (Hubertus Wald Tumorzentrum), University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Georgia Schilling
- Department of Internal Medicine II, Oncology/Hematology/Bone Marrow Transplantation with the Section Pneumology, University Cancer Center Hamburg (Hubertus Wald Tumorzentrum), University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Sinje Tams
- Department of Internal Medicine II, Oncology/Hematology/Bone Marrow Transplantation with the Section Pneumology, University Cancer Center Hamburg (Hubertus Wald Tumorzentrum), University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Britta Marlen Bartels
- Department of Internal Medicine II, Oncology/Hematology/Bone Marrow Transplantation with the Section Pneumology, University Cancer Center Hamburg (Hubertus Wald Tumorzentrum), University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Julia Templin
- Department of Internal Medicine II, Oncology/Hematology/Bone Marrow Transplantation with the Section Pneumology, University Cancer Center Hamburg (Hubertus Wald Tumorzentrum), University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Katrin Bartels
- Department of Internal Medicine II, Oncology/Hematology/Bone Marrow Transplantation with the Section Pneumology, University Cancer Center Hamburg (Hubertus Wald Tumorzentrum), University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - York Hildebrandt
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sara Yousef
- Department of Internal Medicine II, Oncology/Hematology/Bone Marrow Transplantation with the Section Pneumology, University Cancer Center Hamburg (Hubertus Wald Tumorzentrum), University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Andreas Marx
- Institute for Pathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Friedrich Haag
- Institute for Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Carsten Bokemeyer
- Department of Internal Medicine II, Oncology/Hematology/Bone Marrow Transplantation with the Section Pneumology, University Cancer Center Hamburg (Hubertus Wald Tumorzentrum), University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
| | - Nicolaus Kröger
- Department of Stem Cell Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Djordje Atanackovic
- Department of Internal Medicine II, Oncology/Hematology/Bone Marrow Transplantation with the Section Pneumology, University Cancer Center Hamburg (Hubertus Wald Tumorzentrum), University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany
- Division of Hematology and Hematologic Malignancies, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT USA
| |
Collapse
|
43
|
Tyler EM, Jungbluth AA, Gnjatic S, O'Reilly RJ, Koehne G. Cancer-testis antigen 7 expression and immune responses following allogeneic stem cell transplantation for multiple myeloma. Cancer Immunol Res 2014; 2:547-58. [PMID: 24894092 PMCID: PMC5705031 DOI: 10.1158/2326-6066.cir-13-0174] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cancer-testis antigen 7 (CT7) is the most frequently and consistently expressed MAGE antigen in multiple myeloma, exhibits tissue-restricted expression, and is an independent negative prognostic factor for multiple myeloma. We sought to characterize CT7 protein expression in the bone marrow of patients with multiple myeloma undergoing allogeneic T cell-depleted hematopoietic stem cell transplantation (alloTCD-HSCT), and to examine the significance of CT7-specific cellular immune responses. We further aimed to determine CT7-derived immunogenic epitopes and their associated allelic restrictions. CT7 protein expression in neoplastic CD138(+) plasma cells was evaluated by immunohistochemistry in bone marrow biopsies from 10 patients. CT7 was present in 8 of 10 patients. Longitudinal analyses of the 10 patients revealed an association between CT7 expression and prognosis. Longitudinal monitoring of CT7-specific T cells revealed an association between increased frequencies of CT7-specific T cells and reductions in specific myeloma markers. Epitope-specific reactivity to the nonamer FLAMLKNTV was detected by intracellular IFNγ assay in peripheral blood (PB) and bone marrow-derived T cells from HLA-A*0201(+) patients. Serial monitoring of PB CT7-specific T-cell frequencies in 4 HLA-A*0201(+) patients by HLA-A*0201-CT7(1087-1095) tetramer staining revealed an association with disease course. Phenotypic analyses revealed bone marrow enrichment for central memory CT7-specific T cells, while effector memory cells dominated the PB. Together, these findings support the development of immunotherapeutic strategies that aim to enhance CT7-directed immune responses for the treatment of multiple myeloma.
Collapse
Affiliation(s)
- Eleanor M Tyler
- Authors' Affiliations: Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences; Sloan-Kettering Institute; Department of Pathology, Bone Marrow Transplant Service, Department of Pediatrics, and Adult Bone Marrow Transplant Service, Division of Hematologic Oncology, Department of Medicine, Memorial Sloan-Kettering Cancer Center; The Tisch Cancer Institute, Hess Center for Science and Medicine, Icahn School of Medicine at Mount Sinai; and Weill Medical College of Cornell University, New York, New YorkAuthors' Affiliations: Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences; Sloan-Kettering Institute; Department of Pathology, Bone Marrow Transplant Service, Department of Pediatrics, and Adult Bone Marrow Transplant Service, Division of Hematologic Oncology, Department of Medicine, Memorial Sloan-Kettering Cancer Center; The Tisch Cancer Institute, Hess Center for Science and Medicine, Icahn School of Medicine at Mount Sinai; and Weill Medical College of Cornell University, New York, New York
| | - Achim A Jungbluth
- Authors' Affiliations: Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences; Sloan-Kettering Institute; Department of Pathology, Bone Marrow Transplant Service, Department of Pediatrics, and Adult Bone Marrow Transplant Service, Division of Hematologic Oncology, Department of Medicine, Memorial Sloan-Kettering Cancer Center; The Tisch Cancer Institute, Hess Center for Science and Medicine, Icahn School of Medicine at Mount Sinai; and Weill Medical College of Cornell University, New York, New York
| | - Sacha Gnjatic
- Authors' Affiliations: Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences; Sloan-Kettering Institute; Department of Pathology, Bone Marrow Transplant Service, Department of Pediatrics, and Adult Bone Marrow Transplant Service, Division of Hematologic Oncology, Department of Medicine, Memorial Sloan-Kettering Cancer Center; The Tisch Cancer Institute, Hess Center for Science and Medicine, Icahn School of Medicine at Mount Sinai; and Weill Medical College of Cornell University, New York, New York
| | - Richard J O'Reilly
- Authors' Affiliations: Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences; Sloan-Kettering Institute; Department of Pathology, Bone Marrow Transplant Service, Department of Pediatrics, and Adult Bone Marrow Transplant Service, Division of Hematologic Oncology, Department of Medicine, Memorial Sloan-Kettering Cancer Center; The Tisch Cancer Institute, Hess Center for Science and Medicine, Icahn School of Medicine at Mount Sinai; and Weill Medical College of Cornell University, New York, New YorkAuthors' Affiliations: Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences; Sloan-Kettering Institute; Department of Pathology, Bone Marrow Transplant Service, Department of Pediatrics, and Adult Bone Marrow Transplant Service, Division of Hematologic Oncology, Department of Medicine, Memorial Sloan-Kettering Cancer Center; The Tisch Cancer Institute, Hess Center for Science and Medicine, Icahn School of Medicine at Mount Sinai; and Weill Medical College of Cornell University, New York, New YorkAuthors' Affiliations: Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences; Sloan-Kettering Institute; Department of Pathology, Bone Marrow Transplant Service, Department of Pediatrics, and Adult Bone Marrow Transplant Service, Division of Hematologic Oncology, Department of Medicine, Memorial Sloan-Kettering Cancer Center; The Tisch Cancer Institute, Hess Center for Science and Medicine, Icahn School of Medicine at Mount Sinai; and Weill Medical College of Cornell University, New York, New York
| | - Guenther Koehne
- Authors' Affiliations: Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences; Sloan-Kettering Institute; Department of Pathology, Bone Marrow Transplant Service, Department of Pediatrics, and Adult Bone Marrow Transplant Service, Division of Hematologic Oncology, Department of Medicine, Memorial Sloan-Kettering Cancer Center; The Tisch Cancer Institute, Hess Center for Science and Medicine, Icahn School of Medicine at Mount Sinai; and Weill Medical College of Cornell University, New York, New YorkAuthors' Affiliations: Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences; Sloan-Kettering Institute; Department of Pathology, Bone Marrow Transplant Service, Department of Pediatrics, and Adult Bone Marrow Transplant Service, Division of Hematologic Oncology, Department of Medicine, Memorial Sloan-Kettering Cancer Center; The Tisch Cancer Institute, Hess Center for Science and Medicine, Icahn School of Medicine at Mount Sinai; and Weill Medical College of Cornell University, New York, New York
| |
Collapse
|
44
|
He L, Ji JN, Liu SQ, Xue E, Liang Q, Ma Z. Expression of cancer-testis antigen in multiple myeloma. JOURNAL OF HUAZHONG UNIVERSITY OF SCIENCE AND TECHNOLOGY. MEDICAL SCIENCES = HUA ZHONG KE JI DA XUE XUE BAO. YI XUE YING DE WEN BAN = HUAZHONG KEJI DAXUE XUEBAO. YIXUE YINGDEWEN BAN 2014; 34:181-185. [PMID: 24710929 DOI: 10.1007/s11596-014-1255-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 02/25/2014] [Indexed: 11/25/2022]
Abstract
Recently, the immunotherapy has been highlighted among cancer treatments. Cancer-testis antigen (CTA) has been studied in a variety of solid tumors because of its specific expression in tumors, and testis, ovary and placenta tissues, but not in other normal tissues. In order to provide a new approach for multiple myeloma (MM) immunotherapy, we examined the CTA expression in MM cell lines, and primary myeloma cells in patients with MM. Reverse transcriptase-polymerase chain reaction (RT-PCR) was used to detect the mRNA expression of MAGE-C1/CT7, SSX1, SSX2 and SSX4 in MM cell lines of RPMI-8226 and U266, and bone marrow (BM) cells of 25 MM patients and 18 healthy volunteers. The results showed that the 4 CTAs were expressed in RPMI-8226 and U266 cell lines. The positive expression rate of MAGE-C1/CT7, SSX1, SSX2 and SSX4 in the BM cells of 25 MM patients was 28% (7/25), 80% (20/25), 40% (10/25) and 68% (17/25), respectively. In contrast, the expression of any member of the CTAs was not detected in BM cells of 18 healthy volunteers. The expression of two or more CTAs was detected in 80% (20/25) MM patients, and that of at least one CTA in 88% (22/25). The mRNA expression levels of SSX1 and SSX4 were significantly higher in patients with MM at stage III than in those at stage I and II (P<0.05). No statistically significant differences were observed in the mRNA expression levels of MAGE-C1/CT7 and SSX2 in further stratified analyses by age, gender, MM types and percentage of MM cells in BM (P>0.05). In conclusion, our present study showed that MAGE-C1/CT7, SSX1, SSX2 and SSX4 were co-expressed in MM cell lines and the primary myeloma cells in MM patients, but not expressed in BM cells of healthy subjects. The mRNA levels of SSX1 and SSX4 are associated with MM clinical stage. This work may provide a new insight into MM immunotherapy in the future.
Collapse
Affiliation(s)
- Li He
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Jing-Na Ji
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Shang-Qin Liu
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Er Xue
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Qing Liang
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Zi Ma
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| |
Collapse
|
45
|
Laban S, Atanackovic D, Luetkens T, Knecht R, Busch CJ, Freytag M, Spagnoli G, Ritter G, Hoffmann TK, Knuth A, Sauter G, Wilczak W, Blessmann M, Borgmann K, Muenscher A, Clauditz TS. Simultaneous cytoplasmic and nuclear protein expression of melanoma antigen-A family and NY-ESO-1 cancer-testis antigens represents an independent marker for poor survival in head and neck cancer. Int J Cancer 2014; 135:1142-52. [PMID: 24482145 DOI: 10.1002/ijc.28752] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 12/21/2013] [Accepted: 01/08/2014] [Indexed: 02/01/2023]
Abstract
The prognosis of head and neck squamous cell carcinoma (HNSCC) patients remains poor. The identification of high-risk subgroups is needed for the development of custom-tailored therapies. The expression of cancer-testis antigens (CTAs) has been linked to a worse prognosis in other cancer types; however, their prognostic value in HNSCC is unclear because only few patients have been examined and data on CTA protein expression are sparse. A tissue microarray consisting of tumor samples from 453 HNSCC patients was evaluated for the expression of CTA proteins using immunohistochemistry. Frequency of expression and the subcellular expression pattern (nuclear, cytoplasmic, or both) was recorded. Protein expression of melanoma antigen (MAGE)-A family CTA, MAGE-C family CTA and NY-ESO-1 was found in approximately 30, 7 and 4% of tumors, respectively. The subcellular expression pattern in particular had a marked impact on the patients' prognosis. Median overall survival (OS) of patients with (i) simultaneous cytoplasmic and nuclear expression compared to (ii) either cytoplasmic or nuclear expression and (iii) negative patients was 23.0 versus 109.0 versus 102.5 months, for pan-MAGE (p < 0.0001), 46.6 versus 50.0 versus 109.0 for MAGE-A3/A4 (p = 0.0074) and 13.3 versus 50.0 versus 100.2 months for NY-ESO-1 (p = 0.0019). By multivariate analysis, these factors were confirmed as independent markers for poor survival. HNSCC patients showing protein expression of MAGE-A family members or NY-ESO-1 represent a subgroup with an extraordinarily poor survival. The development of immunotherapeutic strategies targeting these CTA may, therefore, be a promising approach to improve the outcome of HNSCC patients.
Collapse
Affiliation(s)
- Simon Laban
- Department of Otorhinolaryngology and Head and Neck Surgery, Head and Neck Cancer Center of the University Cancer Center Hamburg, University Medical Center Hamburg Eppendorf, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Zhang Y, Bao L, Lu J, Liu KY, Li JL, Qin YZ, Chen H, Li LD, Kong Y, Shi HX, Lai YY, Liu YR, Jiang B, Chen SS, Huang XJ, Ruan GR. The clinical value of the quantitative detection of four cancer-testis antigen genes in multiple myeloma. Mol Cancer 2014; 13:25. [PMID: 24499297 PMCID: PMC3922338 DOI: 10.1186/1476-4598-13-25] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 12/20/2013] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Cancer-testis (CT) antigen genes might promote the progression of multiple myeloma (MM). CT antigens may act as diagnostic and prognostic markers in MM, but their expression levels and clinical implications in this disease are not fully understood. This study measured the expression levels of four CT antigen genes in Chinese patients with MM and explored their clinical implications. METHODS Real-time quantitative polymerase chain reaction (qPCR) was used to quantify the expression of MAGE-C1/CT7, MAGE-A3, MAGE-C2/CT10 and SSX-2 mRNA in 256 bone marrow samples from 144 MM patients. RESULTS In the newly diagnosed patients, the positive expression rates were 88.5% for MAGE-C1/CT7, 82.1% for MAGE-C2/CT10, 76.9% for MAGE-A3 and 25.6% for SSX-2. The expression levels and the number of co-expressed CT antigens correlated significantly with several clinical indicators, including the percentage of plasma cells infiltrating the bone marrow, abnormal chromosome karyotypes and the clinical course. CONCLUSION MAGE-C1/CT7, MAGE-A3, MAGE-C2/CT10 and SSX-2 expression levels provide potentially effective clinical indicators for the auxiliary diagnosis and monitoring of treatment efficacy in MM.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Xiao-Jun Huang
- Peking University People's Hospital and Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, No,11 Xi-Zhi-Men South Street, 100044 Beijing, China.
| | | |
Collapse
|
47
|
Pagotto A, Caballero OL, Volkmar N, Devalle S, Simpson AJG, Lu X, Christianson JC. Centrosomal localisation of the cancer/testis (CT) antigens NY-ESO-1 and MAGE-C1 is regulated by proteasome activity in tumour cells. PLoS One 2013; 8:e83212. [PMID: 24340093 PMCID: PMC3858345 DOI: 10.1371/journal.pone.0083212] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 10/31/2013] [Indexed: 02/03/2023] Open
Abstract
The Cancer/Testis (CT) antigen family of genes are transcriptionally repressed in most human tissues but are atypically re-expressed in many malignant tumour types. Their restricted expression profile makes CT antigens ideal targets for cancer immunotherapy. As little is known about whether CT antigens may be regulated by post-translational processing, we investigated the mechanisms governing degradation of NY-ESO-1 and MAGE-C1 in selected cancer cell lines. Inhibitors of proteasome-mediated degradation induced the partitioning of NY-ESO-1 and MAGE-C1 into a detergent insoluble fraction. Moreover, this treatment also resulted in increased localisation of NY-ESO-1 and MAGE-C1 at the centrosome. Despite their interaction, relocation of either NY-ESO-1 or MAGE-C1 to the centrosome could occur independently of each other. Using a series of truncated fragments, the regions corresponding to NY-ESO-191-150 and MAGE-C1900-1116 were established as important for controlling both stability and localisation of these CT antigens. Our findings demonstrate that the steady state levels of NY-ESO-1 and MAGE-C1 are regulated by proteasomal degradation and that both behave as aggregation-prone proteins upon accumulation. With proteasome inhibitors being increasingly used as front-line treatment in cancer, these data raise issues about CT antigen processing for antigenic presentation and therefore immunogenicity in cancer patients.
Collapse
Affiliation(s)
- Anna Pagotto
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, United Kingdom
| | - Otavia L. Caballero
- Ludwig Collaborative Group, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Norbert Volkmar
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, United Kingdom
| | - Sylvie Devalle
- Ludwig Institute for Cancer Research, New York Branch at Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Andrew J. G. Simpson
- Ludwig Collaborative Group, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
| | - Xin Lu
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, United Kingdom
- * E-mail:
| | - John C. Christianson
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford, United Kingdom
| |
Collapse
|
48
|
Caballero OL, Cohen T, Gurung S, Chua R, Lee P, Chen YT, Jat P, Simpson AJG. Effects of CT-Xp gene knock down in melanoma cell lines. Oncotarget 2013; 4:531-41. [PMID: 23625514 PMCID: PMC3720601 DOI: 10.18632/oncotarget.921] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Cancer/testis (CT) genes are encoded by genes that are normally expressed only in the human germ line but which are activated in various malignancies. CT proteins are frequently immunogenic in cancer patients and their expression is highly restricted to tumors. They are thus important targets for anticancer immunotherapy. In several different tumor types, the expression of CT-X genes is associated with advanced disease and poor outcome, indicating that their expression might contribute to tumorigenesis. CT-X genes encoding members of the MAGE protein family on Xq28 have been shown to potentially influence the tumorigenic phenotype. We used small interfering RNA (siRNA) to investigate whether CT-X mapping to the short arm of the X-chromosome might also have tumorigenic properties and therefore be potentially targeted by functional inhibitors in a therapeutic setting. siRNAs specific to GAGE, SSX and XAGE1 were used in cell proliferation, migration and cell survival assays using cell lines derived from melanoma, a tumor type known to present high frequencies of expression of CT antigens. We found that of these, those specific to GAGE and XAGE1 most significantly impeded melanoma cell migration and invasion and those specific to SSX4 and XAGE1 decreased the clonogenic survival of melanoma cells. Our results suggest that GAGE, XAGE1 and SSX4 might each have a role in tumor progression and are possible therapeutic targets for the treatment of melanoma and other malignancies.
Collapse
Affiliation(s)
- Otavia L Caballero
- Ludwig Institute for Cancer Research, New York Branch at Memorial Sloan-Kettering Cancer Center, New York, USA.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Giralt S, Koehne G. Allogeneic Hematopoietic Stem Cell Transplantation for Multiple Myeloma: What Place, If Any? Curr Hematol Malig Rep 2013; 8:284-90. [DOI: 10.1007/s11899-013-0185-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
50
|
Oya H, Kanda M, Takami H, Hibino S, Shimizu D, Niwa Y, Koike M, Nomoto S, Yamada S, Nishikawa Y, Asai M, Fujii T, Nakayama G, Sugimoto H, Fujiwara M, Kodera Y. Overexpression of melanoma-associated antigen D4 is an independent prognostic factor in squamous cell carcinoma of the esophagus. Dis Esophagus 2013; 28:188-95. [PMID: 24147998 DOI: 10.1111/dote.12156] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
To pursue an urgently needed treatment target for esophageal cancer (EC), we investigated the function of the recently discovered melanoma-associated antigen (MAGE)-D4 in squamous cell EC. MAGE-D4 messenger RNA (mRNA) expression was analyzed in nine EC cell lines using quantitative reverse transcription polymerase chain reaction. In 65 surgical specimens of squamous cell EC with no prior neoadjuvant therapy, MAGE-D4 mRNA expression in EC tissues and corresponding normal tissues was analyzed and compared, and evaluated in terms of clinicopathological factors. In representative cases, MAGE-D4 protein distribution was analyzed immunohistochemically. The heterogeneity of MAGE-D4 mRNA expression was confirmed in EC cell lines by quantitative reverse transcription polymerase chain reaction. In surgical specimens, MAGE-D4 mRNA expression was significantly higher in EC tissues than in corresponding normal tissues (P < 0.001). Patients with the highest MAGE-D4 mRNA expression in EC tissues (top quartile, n = 17) had significantly shorter overall survival than patients with low expression (2-year survival: 44% and 73%, respectively, P = 0.006). Univariate analysis identified age (≥65 years), lymphatic involvement, and high MAGE-D4 mRNA expression as significant prognostic factors; high MAGE-D4 mRNA expression was also an independent prognostic factor in multivariable analysis (hazard ratio: 2.194; P = 0.039) and was significantly associated with Brinkman index (P = 0.008) and preoperative carcinoembryonic antigen level (P = 0.002). Immunohistochemical MAGE-D4b expression was consistent with MAGE-D4 mRNA profiling. Our results suggest that MAGE-D4 overexpression influences tumor progression, and MADE-D4 can be a prognostic marker and a potential molecular target in squamous cell EC.
Collapse
Affiliation(s)
- H Oya
- Department of Gastroenterological Surgery (Surgery II), Nagoya University Graduate School of Medicine, Nagoya, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|