1
|
Zhong H, Yao L, An H, Fang L, Liu X, Wang Q, Li Q, Liu D, Fan C, Zhang M, Zhang C, Zhang Y, Hao P. MrgD as a Novel Modeling and Treatment Target for Pulmonary Hypertension. Arterioscler Thromb Vasc Biol 2025; 45:e164-e183. [PMID: 40143817 DOI: 10.1161/atvbaha.124.322337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 03/10/2025] [Indexed: 03/28/2025]
Abstract
BACKGROUND The hyperproliferation of smooth muscle cells and deposition of collagen in the pulmonary artery are among the primary characteristics of pulmonary hypertension (PH). These processes contribute to vascular remodeling, ultimately leading to elevated pulmonary artery pressure and right ventricular failure. The MrgD (Mas-related G-protein-coupled receptor member D) exhibits close associations with certain cardiovascular diseases; however, its role in PH remains unclear. METHODS The effects of the absence or activation of MrgD on PH were investigated using PH animal models induced by Sugen5416+hypoxia, monocrotaline, as well as global or smooth muscle-specific knockout of MrgD. Signaling pathways regulated by MrgD were investigated using high-throughput screening of data from single-cell sequencing of mouse lungs and RNA sequencing of human pulmonary artery smooth muscle cells, as well as other molecular biology experiments. RESULTS We observed decreased MrgD levels in animal models and patients with PH. Both global and conditional knockout of MrgD exacerbated hypoxia-induced PH in mice. MrgD activation attenuated the PH phenotypes in several established models, although these protective effects were reversed in MrgD-knockout mice. Transcriptome analysis revealed a significantly differentially expressed gene, PIM1 (proviral integration site for Moloney murine leukemia virus 1), as a potential MrgD target. Silencing MrgD increased pulmonary artery smooth muscle cell proliferation by facilitating the AKT (protein kinase B)-mediated interaction of MAZ (MYC-associated Zinc-finger protein) with PIM1. MrgD activation inhibited this pathway and was ineffective in PH mice with pulmonary artery smooth muscle cells overexpressing PIM1. CONCLUSIONS MrgD deficiency in pulmonary arterioles increases susceptibility to PH, particularly in a hypoxic environment. MrgD is a potential modeling and therapeutic target for PH.
Collapse
MESH Headings
- Animals
- Disease Models, Animal
- Humans
- Mice, Knockout
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/physiopathology
- Pulmonary Artery/metabolism
- Pulmonary Artery/physiopathology
- Pulmonary Artery/pathology
- Signal Transduction
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Vascular Remodeling
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, G-Protein-Coupled/deficiency
- Cell Proliferation
- Mice, Inbred C57BL
- Male
- Hypoxia/complications
- Mice
- Cells, Cultured
- Monocrotaline
- Indoles
- Pyrroles
Collapse
Affiliation(s)
- Hongyu Zhong
- Department of Cardiology and State Key Laboratory for Innovation and Transformation of Luobing Theory (H.Z., L.Y., H.A., X.L., Q.L., D.L., C.F., M.Z., C.Z., Y.Z., P.H.), Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Lina Yao
- Department of Cardiology and State Key Laboratory for Innovation and Transformation of Luobing Theory (H.Z., L.Y., H.A., X.L., Q.L., D.L., C.F., M.Z., C.Z., Y.Z., P.H.), Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Huailong An
- Department of Cardiology and State Key Laboratory for Innovation and Transformation of Luobing Theory (H.Z., L.Y., H.A., X.L., Q.L., D.L., C.F., M.Z., C.Z., Y.Z., P.H.), Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Lijun Fang
- Department of Pulmonary and Critical Care Medicine (L.F.), Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiaolin Liu
- Department of Cardiology and State Key Laboratory for Innovation and Transformation of Luobing Theory (H.Z., L.Y., H.A., X.L., Q.L., D.L., C.F., M.Z., C.Z., Y.Z., P.H.), Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Qianqian Wang
- Department of Cardiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China (Q.W.)
| | - Qimou Li
- Department of Cardiology and State Key Laboratory for Innovation and Transformation of Luobing Theory (H.Z., L.Y., H.A., X.L., Q.L., D.L., C.F., M.Z., C.Z., Y.Z., P.H.), Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Dongdong Liu
- Department of Cardiology and State Key Laboratory for Innovation and Transformation of Luobing Theory (H.Z., L.Y., H.A., X.L., Q.L., D.L., C.F., M.Z., C.Z., Y.Z., P.H.), Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Cong Fan
- Department of Cardiology and State Key Laboratory for Innovation and Transformation of Luobing Theory (H.Z., L.Y., H.A., X.L., Q.L., D.L., C.F., M.Z., C.Z., Y.Z., P.H.), Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Mei Zhang
- Department of Cardiology and State Key Laboratory for Innovation and Transformation of Luobing Theory (H.Z., L.Y., H.A., X.L., Q.L., D.L., C.F., M.Z., C.Z., Y.Z., P.H.), Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Cheng Zhang
- Department of Cardiology and State Key Laboratory for Innovation and Transformation of Luobing Theory (H.Z., L.Y., H.A., X.L., Q.L., D.L., C.F., M.Z., C.Z., Y.Z., P.H.), Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yun Zhang
- Department of Cardiology and State Key Laboratory for Innovation and Transformation of Luobing Theory (H.Z., L.Y., H.A., X.L., Q.L., D.L., C.F., M.Z., C.Z., Y.Z., P.H.), Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Panpan Hao
- Department of Cardiology and State Key Laboratory for Innovation and Transformation of Luobing Theory (H.Z., L.Y., H.A., X.L., Q.L., D.L., C.F., M.Z., C.Z., Y.Z., P.H.), Qilu Hospital of Shandong University, Jinan, Shandong, China
| |
Collapse
|
2
|
Xu X, Xu P, Shen G, Peng X, Liu Z, Chen C, Yu W, Su Z, Lin J, Zheng G, Ye G, Wang P, Xie Z, Wu Y, Shen H, Li J. Targeting macrophage polarization by inhibiting Pim2 alleviates inflammatory arthritis via metabolic reprogramming. Cell Mol Immunol 2025; 22:418-436. [PMID: 40000906 PMCID: PMC11955556 DOI: 10.1038/s41423-025-01268-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 01/25/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Macrophage polarization and energy metabolic reprogramming play pivotal roles in the onset and progression of inflammatory arthritis. Moreover, although previous studies have reported that the proviral integration of Moloney virus 2 (Pim2) kinase is involved in various cancers through the mediation of aerobic glycolysis in cancer cells, its role in inflammatory arthritis remains unclear. In this study, we demonstrated that multiple metabolic enzymes are activated upon Pim2 upregulation during M1 macrophage polarization. Specifically, Pim2 directly phosphorylates PGK1-S203, PDHA1-S300, and PFKFB2-S466, thereby promoting glycolytic reprogramming. Pim2 expression was elevated in macrophages from patients with inflammatory arthritis and collagen-induced arthritis (CIA) model mice. Conditional knockout of Pim2 in macrophages or administration of the Pim2 inhibitor HJ-PI01 attenuated arthritis development by inhibiting M1 macrophage polarization. Through molecular docking and dynamic simulation, bexarotene was identified as an inhibitor of Pim2 that inhibits glycolysis and downstream M1 macrophage polarization, thereby mitigating the progression of inflammatory arthritis. For targeted treatment, neutrophil membrane-coated bexarotene (Bex)-loaded PLGA-based nanoparticles (NM@NP-Bex) were developed to slow the progression of inflammatory arthritis by suppressing the polarization of M1 macrophages, and these nanoparticles (NPs) exhibited superior therapeutic effects with fewer side effects. Taken together, the results of our study demonstrated that targeting Pim2 inhibition could effectively alleviate inflammatory arthritis via glycolysis inhibition and reversal of the M1/M2 macrophage imbalance. NM@NPs loaded with bexarotene could represent a promising targeted strategy for the treatment of inflammatory arthritis.
Collapse
Affiliation(s)
- Xiaojun Xu
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-Sen University, 3025# Shennan Road, Shenzhen, 518033, PR China
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518033, PR China
| | - Peitao Xu
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-Sen University, 3025# Shennan Road, Shenzhen, 518033, PR China
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518033, PR China
| | - Guozhen Shen
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-Sen University, 3025# Shennan Road, Shenzhen, 518033, PR China
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518033, PR China
| | - Xiaoshuai Peng
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-Sen University, 3025# Shennan Road, Shenzhen, 518033, PR China
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518033, PR China
| | - Zhidong Liu
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-Sen University, 3025# Shennan Road, Shenzhen, 518033, PR China
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518033, PR China
| | - Chaoqiang Chen
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-Sen University, 3025# Shennan Road, Shenzhen, 518033, PR China
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518033, PR China
| | - Wenhui Yu
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-Sen University, 3025# Shennan Road, Shenzhen, 518033, PR China
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518033, PR China
| | - Zepeng Su
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-Sen University, 3025# Shennan Road, Shenzhen, 518033, PR China
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518033, PR China
| | - Jiajie Lin
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-Sen University, 3025# Shennan Road, Shenzhen, 518033, PR China
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518033, PR China
| | - Guan Zheng
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-Sen University, 3025# Shennan Road, Shenzhen, 518033, PR China
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518033, PR China
| | - Guiwen Ye
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-Sen University, 3025# Shennan Road, Shenzhen, 518033, PR China
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518033, PR China
| | - Peng Wang
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-Sen University, 3025# Shennan Road, Shenzhen, 518033, PR China
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518033, PR China
| | - Zhongyu Xie
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-Sen University, 3025# Shennan Road, Shenzhen, 518033, PR China
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518033, PR China
| | - Yanfeng Wu
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518033, PR China.
- Center for Biotherapy, The Eighth Affiliated Hospital of Sun Yat-Sen University, 3025# Shennan Road, Shenzhen, 518033, PR China.
| | - Huiyong Shen
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-Sen University, 3025# Shennan Road, Shenzhen, 518033, PR China.
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518033, PR China.
| | - Jinteng Li
- Department of Orthopedics, The Eighth Affiliated Hospital of Sun Yat-Sen University, 3025# Shennan Road, Shenzhen, 518033, PR China.
- Guangdong Provincial Clinical Research Center for Orthopedic Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518033, PR China.
| |
Collapse
|
3
|
Abd El Hadi SR, Eldinary MA, Ghith A, Haffez H, Salman A, Sayed GA. Unravelling the potency of the 4-oxo-2-thioxo-1,2,3,4-tetrahydropyrimidine-5-carbonitrile scaffold with S-arylamide hybrids as PIM-1 kinase inhibitors: synthesis, biological activity and in silico studies. RSC Med Chem 2025:d5md00021a. [PMID: 40162200 PMCID: PMC11951167 DOI: 10.1039/d5md00021a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/11/2025] [Indexed: 04/02/2025] Open
Abstract
PIM-1 is a type of serine/threonine kinase that plays a crucial role in controlling several vital processes, including proliferation and apoptosis. New synthetic S-amide tetrahydropyrimidinone derivatives were designed and synthesized as PIM-1 inhibitors with potential anticancer activity. Several biochemical assays were performed for anticancer assessment, including PIM-1 inhibitory assays, MTT, apoptosis and cell cycle, gene expression analysis, c-MYC analysis, and ATPase inhibitory assays. Compounds (8c, 8d, 8g, 8h, 8k, and 8l) exhibited strong in vitro broad antiproliferative activity against MCF-7, DU-145, and PC-3, with a relatively higher SI index suggesting minimal cytotoxicity to normal cells. Furthermore, these compounds induced mixed late apoptosis and necrosis with cell cycle arrest at the G2/M phase. Moreover, compounds 8b, 8f, 8g, 8k, and 8l showed potent inhibitory action against PIM-1 kinase, with corresponding IC50 values of 660, 909, 373, 518, and 501 nM. In silico prediction studies of physiochemical properties, molecular dynamics, and induced fit docking studies were performed for these compounds to explain their potent biological activity. In conclusion, new pyrimidinone compounds (8c, 8d, 8g, 8h, 8k, and 8l) exhibit potential PIM-1 inhibitory activity and can be used as promising scaffolds for further optimization of new leads with selective PIM-inhibitors and anticancer activity.
Collapse
Affiliation(s)
- Soha R Abd El Hadi
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Egyptian Russian University, Badr City Cairo 11829 Egypt
| | - Manar A Eldinary
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Egyptian Russian University, Badr City Cairo 11829 Egypt
| | - Amna Ghith
- Discipline of Surgical Specialties, Adelaide Medical School, University of Adelaide, The Queen Elizabeth Hospital Woodville South SA 5011 Australia
- Robinson Research Institute, University of Adelaide Adelaide SA 5006 Australia
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Future University in Egypt Cairo 11835 Egypt
| | - Hesham Haffez
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University P.O. Box 11795 Cairo Egypt
- Center of Scientific Excellence "Helwan Structural Biology Research (HSBR)", Helwan University Cairo 11795 Egypt
| | - Aya Salman
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829 Cairo Egypt
| | - Ghadir A Sayed
- Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829 Cairo Egypt
| |
Collapse
|
4
|
Elkotamy MS, Elgohary MK, Alkabbani MA, Binjubair FA, Alanazi MM, Alsulaimany M, Al-Rashood ST, Ghabbour HA, Abdel-Aziz HA. Design, synthesis and biological evaluation of pyrazolo[3,4- b]pyridine derivatives as dual CDK2/PIM1 inhibitors with potent anti-cancer activity and selectivity. J Biomol Struct Dyn 2025:1-25. [PMID: 40079180 DOI: 10.1080/07391102.2025.2475233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 01/31/2025] [Indexed: 03/14/2025]
Abstract
The discovery of novel, selective inhibitors targeting CDK2 and PIM1 kinases, which regulate cell survival, proliferation, and treatment resistance, is crucial for advancing cancer therapy. This study reports the design, synthesis, and biological evaluation of three novel pyrazolo[3,4-b]pyridine derivatives (6a-c), confirmed via spectral analyses. These compounds were assessed for anti-cancer activity against breast, colon, liver, and cervical cancers using the MTT assay. Among the tested compounds, 6b exhibited superior efficacy, with higher selectivity indices for HCT-116 (15.05) and HepG2 (9.88) compared to the reference drug staurosporine. Mechanistic studies revealed that 6b induced apoptosis (63.04-fold increase) and arrested the cell cycle at the G0-G1 phase, highlighting its anti-proliferative effects. In an in-vivo solid Ehrlich carcinoma (SEC) mouse model, compound 6b significantly reduced tumor weight and volume, exceeding the efficacy of doxorubicin. Additionally, 6b potently inhibited CDK2 and PIM1 kinases (IC50: 0.27 and 0.67 µM, respectively) and reduced tumor-promoting TNF-alpha expression, as confirmed by histopathological and immunohistochemical studies. Computational analyses, including molecular docking, molecular dynamics simulations, and DFT calculations, provided insights into the binding stability and interaction mechanisms of 6b with CDK2 and PIM1, while in-silico pharmacokinetic and toxicity evaluations confirmed its favorable drug-like profile and safety. This study highlights compound 6b as a promising dual CDK2/PIM1 inhibitor with potent anti-cancer activity and selectivity, paving the way for its further optimization and development as a lead molecule in cancer therapy.
Collapse
Affiliation(s)
- Mahmoud S Elkotamy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Egyptian-Russian University, Badr City, Egypt
| | - Mohamed K Elgohary
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Egyptian-Russian University, Badr City, Egypt
| | | | - Faizah A Binjubair
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Manal M Alanazi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Marwa Alsulaimany
- Department of Pharmacognosy and Pharmaceutical Chemistry, College of Pharmacy, Taibah University, Medina, Saudi Arabia
| | - Sara T Al-Rashood
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hazem A Ghabbour
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Australia
| | - Hatem A Abdel-Aziz
- Applied Organic Chemistry Department, National Research Center, Dokki, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| |
Collapse
|
5
|
Lesgidou N, Koukiali A, Nikolakaki E, Giannakouros T, Vlassi M. PIM-1L Kinase Binds to and Inactivates SRPK1: A Biochemical and Molecular Dynamics Study. Proteins 2025; 93:629-653. [PMID: 39462863 PMCID: PMC11809128 DOI: 10.1002/prot.26757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/29/2024]
Abstract
SR/RS dipeptide repeats vary in both length and position, and are phosphorylated by SR protein kinases (SRPKs). PIM-1L, the long isoform of PIM-1 kinase, the splicing of which has been implicated in acute myeloid leukemia, contains a domain that consists largely of repeating SR/RS and SH/HS dipeptides (SR/SH-rich). In order to extend our knowledge on the specificity and cellular functions of SRPK1, here we investigate whether PIM-1L could act as substrate of SRPK1 by a combination of biochemical and computational approaches. Our biochemical data showed that the SR/SH-rich domain of PIM-1L was able to associate with SRPK1, yet it could not act as a substrate but, instead, inactivated the kinase. In line with our biochemical data, molecular modeling followed by a microsecond-scale all-atom molecular dynamics (MD) simulation suggests that the SR/SH-rich domain acts as a pseudo-docking peptide that binds to the same acidic docking-groove used in other SRPK1 interactions and induces inactive SRPK1 conformations. Comparative community network analysis of the MD trajectories, unraveled the dynamic architecture of apo SRPK1 and notable alterations of allosteric communications upon PIM-1L peptide binding. This analysis also allowed us to identify key SRPK1 residues, including unique ones, with a pivotal role in mediating allosteric signal propagation within the kinase core. Interestingly, most of the identified amino acids correspond to cancer-associated amino acid changes, validating our results. In total, this work provides insights not only on the details of SRPK1 inhibition by the PIM-1L SR/SH-domain, but also contributes to an in-depth understanding of SRPK1 regulation.
Collapse
Affiliation(s)
- Nastazia Lesgidou
- Institute of Biosciences and ApplicationsNational Center for Scientific Research “Demokritos”AthensGreece
| | - Anastasia Koukiali
- Laboratory of Biochemistry, Department of ChemistryAristotle UniversityThessalonikiGreece
| | - Eleni Nikolakaki
- Laboratory of Biochemistry, Department of ChemistryAristotle UniversityThessalonikiGreece
| | - Thomas Giannakouros
- Laboratory of Biochemistry, Department of ChemistryAristotle UniversityThessalonikiGreece
| | - Metaxia Vlassi
- Institute of Biosciences and ApplicationsNational Center for Scientific Research “Demokritos”AthensGreece
| |
Collapse
|
6
|
Rathi A, Noor S, Khan S, Khan F, Anjum F, Ashraf A, Taiyab A, Islam A, Imtaiyaz Hassan M, Haque MM. Investigating pH-induced conformational switch in PIM-1: An integrated multi spectroscopic and MD simulation study. Comput Biol Chem 2024; 113:108265. [PMID: 39488934 DOI: 10.1016/j.compbiolchem.2024.108265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/07/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Abstract
PIM-1 is a Ser/Thr kinase, which has been extensively studied as a potential target for cancer therapy due to its significant roles in various cancers, including prostate and breast cancers. Given its importance in cancer, researchers are investigating the structure of PIM-1 for pharmacological inhibition to discover therapeutic intervention. This study examines structural and conformational changes in PIM-1 across different pH using various spectroscopic and computational techniques. Spectroscopic results indicate that PIM-1 maintains its secondary and tertiary structure within the pH range of 7.0-9.0. However, protein aggregation occurs in the acidic pH range of 5.0-6.0. Additionally, kinase assays suggested that PIM-1 activity is optimal within the pH range of 7.0-9.0. Subsequently, we performed a 100 ns all-atom molecular dynamics (MD) simulation to see the effect of pH on PIM-1 structural stability at the molecular level. MD simulation analysis revealed that PIM-1 retains its native conformation in alkaline conditions, with some residual fluctuations in acidic conditions as well. A strong correlation was observed between our MD simulation, spectroscopic, and enzymatic activity studies. Understanding the pH-dependent structural changes of PIM-1 can provide insights into its role in disease conditions and cellular homeostasis, particularly regarding protein function under varying pH conditions.
Collapse
Affiliation(s)
- Aanchal Rathi
- Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Saba Noor
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Shama Khan
- South African Medical Research Council Vaccines and Infectious Diseases Analytics Research Unit, University of the Witwatersrand, Faculty of Health Science, Johannesburg, South Africa
| | - Faizya Khan
- Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Farah Anjum
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, PO Box 11099, Taif 21944, Saudi Arabia
| | - Anam Ashraf
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Aaliya Taiyab
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Md Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| | - Mohammad Mahfuzul Haque
- Department of Biotechnology, Faculty of Life Sciences, Jamia Millia Islamia, New Delhi 110025, India.
| |
Collapse
|
7
|
Arora S, Vachhani P, Bose P. Investigational drugs in early phase trials for myelofibrosis. Expert Opin Investig Drugs 2024; 33:1231-1244. [PMID: 39604120 PMCID: PMC11669310 DOI: 10.1080/13543784.2024.2434696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
INTRODUCTION Myelofibrosis (MF) is a chronic myeloproliferative neoplasm characterized by bone marrow fibrosis, cytopenias, and organomegaly. Four JAK inhibitors are US-FDA approved for treatment of MF. While these drugs reduce symptom burden and spleen size to varying degrees, they do not affect the natural disease course or decrease the risk of leukemic transformation. Therefore, there is a strong need for newer therapies to further advance the field and improve the outcomes of MF. In this review, we cover novel therapies for MF currently in early stages of development. AREAS COVERED We present the latest data from early phase clinical trials in MF using drugs with diverse therapeutic mechanisms, including novel JAK-STAT pathway inhibitors, epigenetic therapies, antifibrotic agents, and immunotherapeutic strategies. Additionally, we cover drugs targeted toward anemia improvement in MF. EXPERT OPINION Numerous agents representing diverse drug classes are in clinical development for MF. While deeper and durable improvements in splenomegaly, symptoms, and anemia are the main clinical objectives, a number of putative biomarkers are being assessed as measures of potential 'disease modification.' Although JAK inhibitor monotherapy represents the current standard, it is hoped that JAK inhibitor-based rational combinations and driver mutation-specific therapies will soon usher in a new era.
Collapse
Affiliation(s)
- Sankalp Arora
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Pankit Vachhani
- Department of Medicine, Division of Hematology and Oncology, The University of Alabama at Birmingham, Birmingham, AL
| | - Prithviraj Bose
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
8
|
Cui D, Zhang Y, Zheng B, Chen L, Wei J, Lin D, Huang M, Du H, Chen Q. Pim1 is Critical in T-cell-independent B-cell Response and MAPK Activation in B Cells. J Mol Biol 2024; 436:168824. [PMID: 39505064 DOI: 10.1016/j.jmb.2024.168824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 11/08/2024]
Abstract
The Pim family consists of three members that encode a distinct class of highly conserved serine/threonine kinases. In this study, we generated and examined mice with hematopoiesis-specific deletion of Pim1 and bone marrow (BM) chimeric mice with B-cell-specific targeted deletion of Pim1. Pim1 was expressed at all stages of B-cell development and hematopoietic-specific deletion of Pim1 altered B-cell development in BM, spleen and peritoneal. However, Pim1 deficiency did not affect T-cell development. Studies of BM chimeric mice showed that Pim1 is required in a cell-intrinsic manner to maintain normal B-cell development. Pim1 deficiency led to significant changes in B cell antibody responses. Additionally, Pim1 deficiency resulted in reduced B cell receptor (BCR)-induced cell proliferation and cell cycle progression. Examination of the various BCR-activated signaling pathways in Pim1-deficient B cells reveals defective activation of mitogen-activated protein kinases (MAPKs), which are known to regulate genes involved in cell proliferation and survival. qRT-PCR analysis of BCR-engaged B cells from Pim1-deficient B cells revealed reduced expression of cyclin-dependent kinase (CDK) and cyclin genes, including CDK2, CCNB1 and CCNE1. In conclusion, Pim1 plays a crucial role in B-cell development and B cell activation.
Collapse
Affiliation(s)
- Dongya Cui
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian, China
| | - Yongguang Zhang
- Center for Precision Medicine, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| | - Baijiao Zheng
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian, China
| | - Liling Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian, China
| | - Jianhui Wei
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian, China
| | - Danfeng Lin
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian, China
| | - Miaohui Huang
- Department of Reproductive Medicine, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| | - Hekang Du
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian, China
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, Fujian, China.
| |
Collapse
|
9
|
Hussein BRM, Mohammed HH, Ahmed EA, Alshazly O, Mohamed MFA, Omran OA. Design, synthesis, and anti-breast cancer activity evaluation of novel 3-cyanopyridine derivatives as PIM-1 inhibitors. Mol Divers 2024:10.1007/s11030-024-11010-8. [PMID: 39521748 DOI: 10.1007/s11030-024-11010-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 09/30/2024] [Indexed: 11/16/2024]
Abstract
A novel series of cyanopyridines 7a-j were synthesized via a one-pot multicomponent reaction of arylidene 4 with ammonium acetate 5 and respective methylaryl/heterylketones 6a-j in ethanol using vanillin as a natural starting material. Moreover, the regioselective alkylation reaction was studied by the treatment of cyanopyridines 7a-f and 7j with CH3I in the presence of K2CO3 in DMF to afford O-methylcyanopyridines 8a-g (major) and N-methylcyanopyridines 9a-g (minor), whereas bipyridine 7h gave bipyridinium iodide salt 10. All of the designed cyanopyridines were evaluated as anti-breast cancer (MCF-7) cell lines via PIM Kinase inhibitory activity, and the results displayed that some of them showed high activities, especially compounds 7h and 8f, which showed excellent activities against MCF-7 with IC50 values of 1.89 and 1.69 μM, respectively, more potent than the reference drug doxorubicin. Mechanistically, compounds 7h and 8f exhibited strong in vitro PIM-1 kinase inhibitory activity with an IC50 of 0.281 and 0.58 μM, respectively, compared to the reference staurosporine. Moreover, compound 7h arrested the tumor cells at the S phase and caused cell death mainly by inducing early and late apoptosis. Molecular docking studies against PIM-1 revealed good binding modes of the synthesized compound and showed agreement with the biological results.
Collapse
Affiliation(s)
- Bahgat R M Hussein
- Department of Chemistry, Faculty of Science, Sohag University, Sohag, 82524, Egypt.
| | - Hayam H Mohammed
- Department of Chemistry, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| | - Eman A Ahmed
- Department of Chemistry, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| | - Omar Alshazly
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, Sohag, 82524, Egypt
| | - Mamdouh F A Mohamed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sohag University, Sohag, 82524, Egypt
| | - Omran A Omran
- Department of Chemistry, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| |
Collapse
|
10
|
Choudhury R, Bahadi CK, Ray IP, Dash P, Pattanaik I, Mishra S, Mohapatra SR, Patnaik S, Nikhil K. PIM1 kinase and its diverse substrate in solid tumors. Cell Commun Signal 2024; 22:529. [PMID: 39487435 PMCID: PMC11531143 DOI: 10.1186/s12964-024-01898-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 10/18/2024] [Indexed: 11/04/2024] Open
Abstract
The PIM kinase family, consisting of PIM1, PIM2, and PIM3, is a group of serine/threonine protein kinases crucial for cellular growth, immunoregulation, and oncogenesis. PIM1 kinase is often overexpressed in solid and hematopoietic malignancies, promoting cell survival, proliferation, migration, and senescence by activating key genes. In vitro and in vivo studies have established the oncogenic potential of PIM1 kinases. These kinases have been implicated in tumor progression, metastasis, and resistance to chemotherapy, underscoring their potential as a therapeutic target for cancer therapy. This review delves into the intricate molecular mechanisms through which PIM1 interacts with specific substrates in different tumor tissues, leading to diverse outcomes in various human cancers. Over the past decade, the inhibition of PIM1 in cancers has garnered significant attention as a potential standalone treatment. Various in vitro, in vivo, and early clinical trial data have provided support for this approach to varying extents. Novel compounds that inhibit PIM1 kinase have shown effectiveness and a favorable toxicity profile in preclinical studies. Several of these substances are now being studied in clinical trials due to their promising outcomes. This article provides a thorough examination of the PIM1 kinase pathways and the recent advancements in producing PIM1 kinase inhibitors for the treatment of cancer.
Collapse
Affiliation(s)
- Rituparna Choudhury
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-Be-University, Bhubaneswar, 751024, India
| | - Chandan Kumar Bahadi
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-Be-University, Bhubaneswar, 751024, India
| | - Ipsa Pratibimbita Ray
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-Be-University, Bhubaneswar, 751024, India
| | - Pragyanshree Dash
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-Be-University, Bhubaneswar, 751024, India
| | - Isha Pattanaik
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-Be-University, Bhubaneswar, 751024, India
| | - Suman Mishra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-Be-University, Bhubaneswar, 751024, India
| | - Soumya R Mohapatra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-Be-University, Bhubaneswar, 751024, India
| | - Srinivas Patnaik
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-Be-University, Bhubaneswar, 751024, India
| | - Kumar Nikhil
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed-to-Be-University, Bhubaneswar, 751024, India.
| |
Collapse
|
11
|
Baek HS, Kim N, Park JW, Kwon TK, Kim S. The role of Pim-1 kinases in inflammatory signaling pathways. Inflamm Res 2024; 73:1671-1685. [PMID: 39079978 PMCID: PMC11457682 DOI: 10.1007/s00011-024-01924-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 10/02/2024] Open
Abstract
OBJECTIVE AND DESIGN This observational study investigated the regulatory mechanism of Pim-1 in inflammatory signaling pathways. MATERIALS THP-1, RAW 264.7, BV2, and Jurkat human T cell lines were used. TREATMENT None. METHODS Lipopolysaccharide (LPS) was used to induce inflammation, followed by PIM1 knockdown. Western blot, immunoprecipitation, immunofluorescence, and RT-PCR assays were used to assess the effect of PIM1 knockdown on LPS-induced inflammation. RESULTS PIM1 knockdown in macrophage-like THP-1 cells suppressed LPS-induced upregulation of pro-inflammatory cytokines, inducible nitric oxide synthase, cyclooxygenase-2, phosphorylated Janus kinase, signal transducer and activator of transcription 3, extracellular signal-regulated kinase, c-Jun N-terminal kinase, p38, and nuclear factor kappa B p65 (NF-κB p65). It also suppressed upregulation of inhibitor of NF-κB kinase α/β and enhanced the nuclear translocation of NF-κB p65. Moreover, it inhibited the upregulation of Nod-like receptor family pyrin domain-containing 3 (NLRP3) and cleavage of caspase-1 induced by co-treatment of LPS with adenosine triphosphate. Additionally, p-transforming growth factor-β-activated kinase 1 (TAK1) interacted with Pim-1. All three members of Pim kinases (Pim-1, Pim-2, and Pim-3) were required for LPS-mediated inflammation in macrophages; however, unlike Pim-1 and Pim-3, Pim-2 functioned as a negative regulator of T cell activity. CONCLUSIONS Pim-1 interacts with TAK1 in LPS-induced inflammatory responses and is involved in MAPK/NF-κB/NLRP3 signaling pathways. Additionally, considering the negative regulatory role of Pim-2 in T cells, further in-depth studies on their respective functions are needed.
Collapse
Affiliation(s)
- Hye Suk Baek
- Department of Immunology, School of Medicine, Keimyung University, Daegu, 42601, Republic of Korea
| | - Nacksung Kim
- Department of Pharmacology, Chonnam University, Gwangju, 61469, Republic of Korea
| | - Jong Wook Park
- Department of Immunology, School of Medicine, Keimyung University, Daegu, 42601, Republic of Korea
- Institute of Medical Science, Keimyung University, Daegu, 42601, Republic of Korea
- Institute for Cancer Research, Keimyung University Dongsan Medical Center, Dalseo-gu, Daegu, 42601, Republic of Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu, 42601, Republic of Korea
- Institute of Medical Science, Keimyung University, Daegu, 42601, Republic of Korea
- Institute for Cancer Research, Keimyung University Dongsan Medical Center, Dalseo-gu, Daegu, 42601, Republic of Korea
- Center for Forensic Pharmaceutical Science, Keimyung University, Daegu, 42601, Republic of Korea
| | - Shin Kim
- Department of Immunology, School of Medicine, Keimyung University, Daegu, 42601, Republic of Korea.
- Institute of Medical Science, Keimyung University, Daegu, 42601, Republic of Korea.
- Center for Forensic Pharmaceutical Science, Keimyung University, Daegu, 42601, Republic of Korea.
| |
Collapse
|
12
|
Bojarska J, Breza M, Borowiecki P, Madura ID, Kaczmarek K, Ziora ZM, Wolf WM. An experimental and computational investigation of the cyclopentene-containing peptide-derived compounds: focus on pseudo-cyclic motifs via intramolecular interactions. ROYAL SOCIETY OPEN SCIENCE 2024; 11:40962. [PMID: 39386982 PMCID: PMC11462612 DOI: 10.1098/rsos.240962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 10/12/2024]
Abstract
Conformational flexibility is one of the main disadvantages of peptide-based compounds. We focus on their molecular 'chameleonicity' related to forming pseudo-cyclic motifs via modulation of weak intramolecular interactions. It is an appealing strategy for controlling equilibrium between the polar open and the nonpolar closed conformations. Within this context, we report here the crystal structure of the (R)-(2-tert-butoxycarbonyl)amino-1-oxo-3-phenyl)propyl)-1-cyclopentene (1), synthesis of which in high yield was achieved by a facile multi-step protocol. Our Cambridge Structural Database (CSD) overview for the peptide-based crystals revealed the exclusivity of this compound from the viewpoint of the unusual pseudo-bicyclic system via C-H…O and C-O…π interactions, in which cyclopentene shields the amide bond. Notably, cyclopentene as a bioisostere of proline is an appealing scaffold in medicinal chemistry. An extensive combined experimental and computational study provided more profound insight into the supramolecular landscape of 1 with respect to similar derivatives deposited in the CSD, including the tendency of cyclopentene for the generation of pseudo-cyclic motifs through weak H-bonding and π-based intramolecular interactions. These weak interactions have been examined by either the quantum theory of 'atoms-in-molecules' (QTAIM) or complex Hirshfeld surface methodology, including enrichment ratios, molecular electrostatic potential surfaces and energy frameworks. In all analysed crystals, all types of H-bonded motifs involving cyclopentene are formed at all levels of supramolecular architecture. A library of cyclopentene-based H-bonding synthons is provided. A molecular docking study depicted vital interactions of cyclopentene with key amino acid residues inside the active sites of two prominent protein kinases, uncovering the therapeutic potential of 1 against breast cancer. To a large extent, dispersion forces have significance in stabilizing the supramolecular structure of both ligand and bio-complex ligand-protein. Finally, the satisfactory in silico bio-pharmacokinetic profile of 1 related to drug-likeness and blood-brain barrier permeation was also revealed.
Collapse
Affiliation(s)
- Joanna Bojarska
- Chemistry Department, Institute of Ecological and Inorganic Chemistry, Technical University of Lodz, 116 Zeromskiego St., Lodz90-924, Poland
| | - Martin Breza
- Department of Physical Chemistry, Slovak Technical University, Radlinskeho 9, BratislavaSK-81237, Slovakia
| | - Paweł Borowiecki
- Laboratory of Biocatalysis and Biotransformation, Department of Drugs Technology and Biotechnology, Faculty of Chemistry, Warsaw University of Technology, 75 Koszykowa St., Warsaw00-662, Poland
| | - Izabela D. Madura
- Faculty of Chemistry, Warsaw University of Technology, 3 Noakowskiego St., Warsaw00-664, Poland
| | - Krzysztof Kaczmarek
- Institute of Organic Chemistry, Faculty of Chemistry, Lodz University of Technology, 116 Zeromskiego St., Lodz90-924, Poland
| | - Zyta M. Ziora
- Institute for Molecular Bioscience, The University of Queensland, St LuciaQLD 4072, Australia
| | - Wojciech M. Wolf
- Chemistry Department, Institute of Ecological and Inorganic Chemistry, Technical University of Lodz, 116 Zeromskiego St., Lodz90-924, Poland
| |
Collapse
|
13
|
Nakata M, Kosaka N, Kawauchi K, Miyoshi D. Quantitative Effects of the Loop Region on Topology, Thermodynamics, and Cation Binding of DNA G-quadruplexes. ACS OMEGA 2024; 9:35028-35036. [PMID: 39157113 PMCID: PMC11325513 DOI: 10.1021/acsomega.4c05008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 08/20/2024]
Abstract
The thermal stability of G-quadruplexes is important for their biological roles. G-quadruplexes are stable in the presence of cations such as K+ and Na+ because these cations coordinate in the G-quartet of four guanine bases. It is well known that the number of G-quartets and the configuration of the guanine bases affect the binding affinity of the cation. Recently, structures formed in the loop regions connecting the guanine stretches have attracted significant attention, because the loop region affects G-quadruplex properties, such as topology, thermal stability, and interactions with proteins and small molecules. Considering these effects, the loop region can also affect the binding affinity of the cations. Here, we designed a series of G-quadruplex-forming DNA sequences that contain a hairpin in a loop region and investigated the effects of the sequence and structure of the loop region on the cation binding affinity as well as the thermal stability of the G-quadruplex as a whole. First, structural analysis of the DNA sequences showed that the hairpin at the loop plays a key role in determining G4 topology (strand orientation). Second, in the case of the G-quadruplexes with the hairpin-forming loop region, it was found that a longer loop length led to a higher thermodynamic stability of the G-quadruplex as well as higher cation binding affinity. In contrast, an unstructured loop region did not lead to such effects. Interestingly, the cation binding affinity was correlated to the thermodynamic stability of the hairpin structure at the loop region. It was quantitatively demonstrated that the stable loop region stabilized the whole G-quadruplex structure, which induced higher cation binding affinity. These systematic and quantitative results showed that the loop region is one of the determinants of cation binding and expanded the possibilities of drug development targeting G4s by stabilizing the loop region.
Collapse
Affiliation(s)
- Minori Nakata
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20, Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Naoki Kosaka
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20, Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Keiko Kawauchi
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20, Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| | - Daisuke Miyoshi
- Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, 7-1-20, Minatojima-minamimachi, Chuo-ku, Kobe 650-0047, Japan
| |
Collapse
|
14
|
Ren S, Sun C, Zhai W, Wei W, Liu J. Gaining new insights into the etiology of ulcerative colitis through a cross-tissue transcriptome-wide association study. Front Genet 2024; 15:1425370. [PMID: 39092429 PMCID: PMC11291327 DOI: 10.3389/fgene.2024.1425370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 06/25/2024] [Indexed: 08/04/2024] Open
Abstract
Background Genome-wide association studies (GWASs) have identified 38 loci associated with ulcerative colitis (UC) susceptibility, but the risk genes and their biological mechanisms remained to be comprehensively elucidated. Methods Multi-marker analysis of genomic annotation (MAGMA) software was used to annotate genes on GWAS summary statistics of UC from FinnGen database. Genetic analysis was performed to identify risk genes. Cross-tissue transcriptome-wide association study (TWAS) using the unified test for molecular signatures (UTMOST) was performed to compare GWAS summary statistics with gene expression matrix (from Genotype-Tissue Expression Project) for data integration. Subsequently, we used FUSION software to select key genes from the individual tissues. Additionally, conditional and joint analysis was conducted to improve our understanding on UC. Fine-mapping of causal gene sets (FOCUS) software was employed to accurately locate risk genes. The results of the four genetic analyses (MAGMA, UTMOST, FUSION and FOCUS) were combined to obtain a set of UC risk genes. Finally, Mendelian randomization (MR) analysis and Bayesian colocalization analysis were conducted to determine the causal relationship between the risk genes and UC. To test the robustness of our findings, the same approaches were taken to verify the GWAS data of UC on IEU. Results Multiple correction tests screened PIM3 as a risk gene for UC. The results of Bayesian colocalization analysis showed that the posterior probability of hypothesis 4 was 0.997 and 0.954 in the validation dataset. MR was conducted using the inverse variance weighting method and two single nucleotide polymorphisms (SNPs, rs28645887 and rs62231924) were included in the analysis (p < 0.001, 95%CI: 1.45-1.89). In the validation dataset, MR result was p < 0.001, 95%CI: 1.19-1.72, indicating a clear causal relationship between PIM3 and UC. Conclusion Our study validated PIM3 as a key risk gene for UC and its expression level may be related to the risk of UC, providing a novel reference for further improving the current understanding on the genetic structure of UC.
Collapse
Affiliation(s)
- Shijie Ren
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Chaodi Sun
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Wenjing Zhai
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Wenli Wei
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Jianping Liu
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
- Department of Gastroenterology, The First Affiliated Hospital of Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| |
Collapse
|
15
|
Noura M, Tomita S, Yasuda T, Tsuzuki S, Kiyoi H, Hayakawa F. NUP98-BPTF promotes oncogenic transformation through PIM1 upregulation. Cancer Med 2024; 13:e7445. [PMID: 38940430 PMCID: PMC11212001 DOI: 10.1002/cam4.7445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024] Open
Abstract
INTRODUCTION Nucleoporin 98 (NUP98) fusion proteins are recurrently found in leukemia and are associated with unfavorable clinical outcomes. They are distributed to the nucleus and contribute to leukemogenesis via aberrant transcriptional regulation. We previously identified NUP98-BPTF (NB) fusion in patients with T-cell acute lymphoblastic leukemia (T-ALL) using next-generation sequencing. The FG-repeat of NUP98 and the PHD finger and bromodomain of bromodomain PHD finger transcription factor (BPTF) are retained in the fusion. Like other NUP98 fusion proteins, NB is considered to regulate genes that are essential for leukemogenesis. However, its target genes or pathways remain unknown. MATERIALS AND METHODS To investigate the potential oncogenic properties of the NB fusion protein, we lentivirally transduced a doxycycline-inducible NB expression vector into mouse NIH3T3 fibroblasts and human Jurkat T-ALL cells. RESULTS NB promoted the transformation of mouse NIH3T3 fibroblasts by upregulating the proto-oncogene Pim1, which encodes a serine/threonine kinase. NB transcriptionally regulated Pim1 expression by binding to its promoter and activated MYC and mTORC1 signaling. PIM1 knockdown or pharmacological inhibition of mTORC1 signaling suppressed NB-induced NIH3T3 cell transformation. Furthermore, NB enhanced the survival of human Jurkat T-ALL cells by inactivating the pro-apoptotic protein BCL2-associated agonist of cell death (BAD). CONCLUSION We demonstrated the pivotal role of NB in cell transformation and survival and identified PIM1as a key downstream target of NB. These findings propose a promising therapeutic strategy for patients with NB fusion-positive leukemia.
Collapse
Affiliation(s)
- Mina Noura
- Division of Cellular and Genetic Sciences, Department of Integrated Health SciencesNagoya University Graduate School of MedicineNagoyaJapan
| | - Sakura Tomita
- Division of Cellular and Genetic Sciences, Department of Integrated Health SciencesNagoya University Graduate School of MedicineNagoyaJapan
| | - Takahiko Yasuda
- Clinical Research Center, National Hospital Organization Nagoya Medical CenterNagoyaJapan
| | - Shinobu Tsuzuki
- Department of BiochemistryAichi Medical University School of MedicineNagakuteJapan
| | - Hitoshi Kiyoi
- Department of Hematology and OncologyNagoya University Graduate School of MedicineNagoyaJapan
| | - Fumihiko Hayakawa
- Division of Cellular and Genetic Sciences, Department of Integrated Health SciencesNagoya University Graduate School of MedicineNagoyaJapan
| |
Collapse
|
16
|
Zhang Z, Huang J, Zhang Z, Shen H, Tang X, Wu D, Bao X, Xu G, Chen S. Application of omics in the diagnosis, prognosis, and treatment of acute myeloid leukemia. Biomark Res 2024; 12:60. [PMID: 38858750 PMCID: PMC11165883 DOI: 10.1186/s40364-024-00600-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/17/2024] [Indexed: 06/12/2024] Open
Abstract
Acute myeloid leukemia (AML) is the most frequent leukemia in adults with a high mortality rate. Current diagnostic criteria and selections of therapeutic strategies are generally based on gene mutations and cytogenetic abnormalities. Chemotherapy, targeted therapies, and hematopoietic stem cell transplantation (HSCT) are the major therapeutic strategies for AML. Two dilemmas in the clinical management of AML are related to its poor prognosis. One is the inaccurate risk stratification at diagnosis, leading to incorrect treatment selections. The other is the frequent resistance to chemotherapy and/or targeted therapies. Genomic features have been the focus of AML studies. However, the DNA-level aberrations do not always predict the expression levels of genes and proteins and the latter is more closely linked to disease phenotypes. With the development of high-throughput sequencing and mass spectrometry technologies, studying downstream effectors including RNA, proteins, and metabolites becomes possible. Transcriptomics can reveal gene expression and regulatory networks, proteomics can discover protein expression and signaling pathways intimately associated with the disease, and metabolomics can reflect precise changes in metabolites during disease progression. Moreover, omics profiling at the single-cell level enables studying cellular components and hierarchies of the AML microenvironment. The abundance of data from different omics layers enables the better risk stratification of AML by identifying prognosis-related biomarkers, and has the prospective application in identifying drug targets, therefore potentially discovering solutions to the two dilemmas. In this review, we summarize the existing AML studies using omics methods, both separately and combined, covering research fields of disease diagnosis, risk stratification, prognosis prediction, chemotherapy, as well as targeted therapy. Finally, we discuss the directions and challenges in the application of multi-omics in precision medicine of AML. Our review may inspire both omics researchers and clinical physicians to study AML from a different angle.
Collapse
Affiliation(s)
- Zhiyu Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, Jiangsu, China
- Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, 215123, Jiangsu Province, China
| | - Jiayi Huang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhibo Zhang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hongjie Shen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaowen Tang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Depei Wu
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiebing Bao
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Guoqiang Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and College of Pharmaceutical Sciences, Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Suzhou Key Laboratory of Drug Research for Prevention and Treatment of Hyperlipidemic Diseases, Soochow University, Suzhou, 215123, Jiangsu, China.
- Suzhou International Joint Laboratory for Diagnosis and Treatment of Brain Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, Jiangsu, China.
- MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College of Soochow University, Suzhou, 215123, Jiangsu Province, China.
| | - Suning Chen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, the First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
17
|
Glitscher M, Benz NI, Sabino C, Murra RO, Hein S, Zahn T, Mhedhbi I, Stefanova D, Bender D, Werner S, Hildt E. Inhibition of Pim kinases triggers a broad antiviral activity by affecting innate immunity and via the PI3K-Akt-mTOR axis the endolysosomal system. Antiviral Res 2024; 226:105891. [PMID: 38649071 DOI: 10.1016/j.antiviral.2024.105891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Zoonoses such as ZIKV and SARS-CoV-2 pose a severe risk to global health. There is urgent need for broad antiviral strategies based on host-targets filling gaps between pathogen emergence and availability of therapeutic or preventive strategies. Significant reduction of pathogen titers decreases spread of infections and thereby ensures health systems not being overloaded and public life to continue. Based on previously observed interference with FGFR1/2-signaling dependent impact on interferon stimulated gene (ISG)-expression, we identified Pim kinases as promising druggable cellular target. We therefore focused on analyzing the potential of pan-Pim kinase inhibition to trigger a broad antiviral response. The pan-Pim kinase inhibitor AZD1208 exerted an extraordinarily high antiviral effect against various ZIKV isolates, SARS-CoV-2 and HBV. This was reflected by strong reduction in viral RNA, proteins and released infectious particles. Especially in case of SARS-CoV-2, AZD1208 led to a complete removal of viral traces in cells. Kinome-analysis revealed vast changes in kinase landscape upon AZD1208 treatment, especially for inflammation and the PI3K/Akt-pathway. For ZIKV, a clear correlation between antiviral effect and increase in ISG-expression was observed. Based on a cell culture model with impaired ISG-induction, activation of the PI3K-Akt-mTOR axis, leading to major changes in the endolysosomal equilibrium, was identified as second pillar of the antiviral effect triggered by AZD1208-dependent Pim kinase inhibition, also against HBV. We identified Pim-kinases as cellular target for a broad antiviral activity. The antiviral effect exerted by inhibition of Pim kinases is based on at least two pillars: innate immunity and modulation of the endolysosomal system.
Collapse
Affiliation(s)
- Mirco Glitscher
- Department of Virology, Paul-Ehrlich-Institute, Paul-Ehrlich-Straße 51-59, D63225, Langen, Germany
| | - Nuka Ivalu Benz
- Department of Virology, Paul-Ehrlich-Institute, Paul-Ehrlich-Straße 51-59, D63225, Langen, Germany
| | - Catarina Sabino
- Department of Virology, Paul-Ehrlich-Institute, Paul-Ehrlich-Straße 51-59, D63225, Langen, Germany
| | - Robin Oliver Murra
- Department of Virology, Paul-Ehrlich-Institute, Paul-Ehrlich-Straße 51-59, D63225, Langen, Germany
| | - Sascha Hein
- Department of Virology, Paul-Ehrlich-Institute, Paul-Ehrlich-Straße 51-59, D63225, Langen, Germany
| | - Tobias Zahn
- Department of Virology, Paul-Ehrlich-Institute, Paul-Ehrlich-Straße 51-59, D63225, Langen, Germany
| | - Ines Mhedhbi
- Department of Virology, Paul-Ehrlich-Institute, Paul-Ehrlich-Straße 51-59, D63225, Langen, Germany
| | - Debora Stefanova
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Otto-Stern-Weg 7, 8093, Zurich, Switzerland
| | - Daniela Bender
- Department of Virology, Paul-Ehrlich-Institute, Paul-Ehrlich-Straße 51-59, D63225, Langen, Germany
| | - Sabine Werner
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, Otto-Stern-Weg 7, 8093, Zurich, Switzerland
| | - Eberhard Hildt
- Department of Virology, Paul-Ehrlich-Institute, Paul-Ehrlich-Straße 51-59, D63225, Langen, Germany.
| |
Collapse
|
18
|
Rout AK, Dehury B, Parida SN, Rout SS, Jena R, Kaushik N, Kaushik NK, Pradhan SK, Sahoo CR, Singh AK, Arya M, Behera BK. A review on structure-function mechanism and signaling pathway of serine/threonine protein PIM kinases as a therapeutic target. Int J Biol Macromol 2024; 270:132030. [PMID: 38704069 DOI: 10.1016/j.ijbiomac.2024.132030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/05/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
The proviral integration for the Moloney murine leukemia virus (PIM) kinases, belonging to serine/threonine kinase family, have been found to be overexpressed in various types of cancers, such as prostate, breast, colon, endometrial, gastric, and pancreatic cancer. The three isoforms PIM kinases i.e., PIM1, PIM2, and PIM3 share a high degree of sequence and structural similarity and phosphorylate substrates controlling tumorigenic phenotypes like proliferation and cell survival. Targeting short-lived PIM kinases presents an intriguing strategy as in vivo knock-down studies result in non-lethal phenotypes, indicating that clinical inhibition of PIM might have fewer adverse effects. The ATP binding site (hinge region) possesses distinctive attributes, which led to the development of novel small molecule scaffolds that target either one or all three PIM isoforms. Machine learning and structure-based approaches have been at the forefront of developing novel and effective chemical therapeutics against PIM in preclinical and clinical settings, and none have yet received approval for cancer treatment. The stability of PIM isoforms is maintained by PIM kinase activity, which leads to resistance against PIM inhibitors and chemotherapy; thus, to overcome such effects, PIM proteolysis targeting chimeras (PROTACs) are now being developed that specifically degrade PIM proteins. In this review, we recapitulate an overview of the oncogenic functions of PIM kinases, their structure, function, and crucial signaling network in different types of cancer, and the potential of pharmacological small-molecule inhibitors. Further, our comprehensive review also provides valuable insights for developing novel antitumor drugs that specifically target PIM kinases in the future. In conclusion, we provide insights into the benefits of degrading PIM kinases as opposed to blocking their catalytic activity to address the oncogenic potential of PIM kinases.
Collapse
Affiliation(s)
- Ajaya Kumar Rout
- Rani Lakshmi Bai Central Agricultural University, Jhansi-284003, Uttar Pradesh, India
| | - Budheswar Dehury
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal-576104, India
| | - Satya Narayan Parida
- Rani Lakshmi Bai Central Agricultural University, Jhansi-284003, Uttar Pradesh, India
| | - Sushree Swati Rout
- Department of Zoology, Fakir Mohan University, Balasore-756089, Odisha, India
| | - Rajkumar Jena
- Department of Zoology, Fakir Mohan University, Balasore-756089, Odisha, India
| | - Neha Kaushik
- Department of Biotechnology, The University of Suwon, Hwaseong si, South Korea
| | | | - Sukanta Kumar Pradhan
- Department of Bioinformatics, Odisha University of Agriculture and Technology, Bhubaneswar-751003, Odisha, India
| | - Chita Ranjan Sahoo
- ICMR-Regional Medical Research Centre, Department of Health Research, Ministry of Health and Family Welfare, Government of India, Bhubaneswar-751023, India
| | - Ashok Kumar Singh
- Rani Lakshmi Bai Central Agricultural University, Jhansi-284003, Uttar Pradesh, India
| | - Meenakshi Arya
- Rani Lakshmi Bai Central Agricultural University, Jhansi-284003, Uttar Pradesh, India.
| | - Bijay Kumar Behera
- Rani Lakshmi Bai Central Agricultural University, Jhansi-284003, Uttar Pradesh, India.
| |
Collapse
|
19
|
Yang J, Yu YC, Wang ZX, Li QQ, Ding N, Leng XJ, Cai J, Zhang MY, Wang JJ, Zhou Y, Wei TH, Xue X, Dai WC, Sun SL, Yang Y, Li NG, Shi ZH. Research strategies of small molecules as chemotherapeutics to overcome multiple myeloma resistance. Eur J Med Chem 2024; 271:116435. [PMID: 38648728 DOI: 10.1016/j.ejmech.2024.116435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/08/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
Multiple myeloma (MM), a cancer of plasma cells, is the second most common hematological malignancy which is characterized by aberrant plasma cells infiltration in the bone marrow and complex heterogeneous cytogenetic abnormalities. Over the past two decades, novel treatment strategies such as proteasome inhibitors, immunomodulators, and monoclonal antibodies have significantly improved the relative survival rate of MM patients. However, the development of drug resistance results in the majority of MM patients suffering from relapse, limited treatment options and uncontrolled disease progression after relapse. There are urgent needs to develop and explore novel MM treatment strategies to overcome drug resistance and improve efficacy. Here, we review the recent small molecule therapeutic strategies for MM, and introduce potential new targets and corresponding modulators in detail. In addition, this paper also summarizes the progress of multi-target inhibitor therapy and protein degradation technology in the treatment of MM.
Collapse
Affiliation(s)
- Jin Yang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Yan-Cheng Yu
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Zi-Xuan Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Qing-Qing Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Ning Ding
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Xue-Jiao Leng
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Jiao Cai
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Meng-Yuan Zhang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Jing-Jing Wang
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Yun Zhou
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Tian-Hua Wei
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Xin Xue
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Wei-Chen Dai
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China
| | - Shan-Liang Sun
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China.
| | - Ye Yang
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China.
| | - Nian-Guang Li
- National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing, Jiangsu, 210023, China.
| | - Zhi-Hao Shi
- Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, 639 Longmian Avenue, Nanjing, Jiangsu, 211198, China.
| |
Collapse
|
20
|
Sharma A, Dubey R, Gupta S, Asati V, Kumar V, Kumar D, Mahapatra DK, Jaiswal M, Jain SK, Bharti SK. PIM kinase inhibitors: an updated patent review (2016-present). Expert Opin Ther Pat 2024; 34:365-382. [PMID: 38842051 DOI: 10.1080/13543776.2024.2365411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/24/2024] [Indexed: 06/07/2024]
Abstract
INTRODUCTION PIM Kinases (PIM-1, PIM-2, and PIM-3) have been reported to play crucial role in signaling cascades that govern cell survival, proliferation, and differentiation. Over-expression of these kinases leads to hematological malignancies such as diffuse large B cell lymphomas (DLBCL), multiple myeloma, leukemia, lymphoma and prostate cancer etc. PIM kinases as biomarkers and potential therapeutic targets have shown promise toward precision cancer therapy. The selective PIM-1, PIM-2, and/or PIM-3 isoform inhibitors have shown significant results in patients with advanced stages of cancer including relapsed/refractory cancer. AREAS COVERED A comprehensive literature review of PIM Kinases (PIM-1, PIM-2, and PIM-3) in oncogenesis, the patented PIM kinase inhibitors (2016-Present), and their pharmacological and structural insights have been highlighted. EXPERT OPINION Recently, PIM kinases viz. PIM-1, PIM-2, and PIM-3 (members of the serine/threonine protein kinase family) as therapeutic targets have attracted considerable interest in oncology especially in hematological malignancies. The patented PIM kinase inhibitors comprised of heterocyclic (fused)ring structure(s) like indole, pyridine, pyrazine, pyrazole, pyridazine, piperazine, thiazole, oxadiazole, quinoline, triazolo-pyridine, pyrazolo-pyridine, imidazo-pyridazine, oxadiazole-thione, pyrazolo-pyrimidine, triazolo-pyridazine, imidazo-pyridazine, pyrazolo-quinazoline and pyrazolo-pyridine etc. showed promising results in cancer chemotherapy.
Collapse
Affiliation(s)
- Anushka Sharma
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India
| | - Rahul Dubey
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India
| | - Shankar Gupta
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India
| | - Vivek Asati
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, India
| | - Vipul Kumar
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), Delhi Pharmaceutical Sciences and Research University, India
| | - Dileep Kumar
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth University, Pune, India
| | - Debarshi Kar Mahapatra
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, India
| | - Meenakshi Jaiswal
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, India
| | - Sanmati Kumar Jain
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, India
| | - Sanjay Kumar Bharti
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, India
| |
Collapse
|
21
|
Pyle LC, Kim J, Bradfield J, Damrauer SM, D'Andrea K, Einhorn LH, Godse R, Hakonarson H, Kanetsky PA, Kember RL, Jacobs LA, Maxwell KN, Rader DJ, Vaughn DJ, Weathers B, Wubbenhorst B, Regeneron Genetics Center Research Team, Cancer Genomics Research Laboratory, Greene MH, Nathanson KL, Stewart DR. Germline Exome Sequencing for Men with Testicular Germ Cell Tumor Reveals Coding Defects in Chromosomal Segregation and Protein-targeting Genes. Eur Urol 2024; 85:337-345. [PMID: 37246069 PMCID: PMC10676450 DOI: 10.1016/j.eururo.2023.05.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/21/2023] [Accepted: 05/09/2023] [Indexed: 05/30/2023]
Abstract
BACKGROUND Testicular germ cell tumor (TGCT) is the most common cancer among young White men. TGCT is highly heritable, although there are no known high-penetrance predisposition genes. CHEK2 is associated with moderate TGCT risk. OBJECTIVE To identify coding genomic variants associated with predisposition to TGCT. DESIGN, SETTING, AND PARTICIPANTS The study involved 293 men with familial or bilateral (high risk; HR)-TGCT representing 228 unique families and 3157 cancer-free controls. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS We carried out exome sequencing and gene burden analysis to identify associations with TGCT risk. RESULTS AND LIMITATIONS Gene burden association identified several genes, including loss-of-function variants of NIN and QRSL1. We identified no statistically significant association with the sex- and germ-cell development pathways (hypergeometric overlap test: p = 0.65 for truncating variants, p = 0.47 for all variants) or evidence of associations with the regions previously identified via genome-wide association studies (GWAS). When considering all significant coding variants together with genes associated with TGCT on GWAS, there were associations with three major pathways: mitosis/cell cycle (Gene Ontology identity GO:1903047: observed/expected variant ratio [O/E] 6.17, false discovery rate [FDR] 1.53 × 10-11), co-translational protein targeting (GO:0006613: O/E 18.62, FDR 1.35 × 10-10), and sex differentiation (GO:0007548: O/E 5.25, FDR 1.90 × 10-4). CONCLUSIONS To the best of our knowledge, this study is the largest to date on men with HR-TGCT. As in previous studies, we identified associations with variants for several genes, suggesting multigenic heritability. We identified associations with co-translational protein targeting, and chromosomal segregation and sex determination, identified via GWAS. Our results suggest potentially druggable targets for TGCT prevention or treatment. PATIENT SUMMARY We searched for gene variations that increase the risk of testicular cancer and found numerous new specific variants that contribute to this risk. Our results support the idea that many gene variants inherited together contribute to the risk of testicular cancer.
Collapse
Affiliation(s)
- Louise C Pyle
- Rare Disease Institute, Center for Genetic Medicine, Children's National Hospital, Washington, DC, USA; Department of Precision Medicine, George Washington University, Washington, DC, USA; Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jung Kim
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | | | - Scott M Damrauer
- Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kurt D'Andrea
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Rama Godse
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hakon Hakonarson
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Peter A Kanetsky
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Rachel L Kember
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Linda A Jacobs
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kara N Maxwell
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel J Rader
- Division of Human Genetics, Department of Pediatrics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David J Vaughn
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Division of Hematology/Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Benita Weathers
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bradley Wubbenhorst
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | | | - Mark H Greene
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA
| | - Katherine L Nathanson
- Division of Translational Medicine and Human Genetics, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Douglas R Stewart
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, MD, USA.
| |
Collapse
|
22
|
Cristian M, Așchie M, Mitroi AF, Deacu M, Boșoteanu M, Bălțătescu GI, Stoica AG, Nicolau AA, Enciu M, Crețu AM, Caloian AD, Orășanu CI, Poinăreanu I. The impact of MYD88 and PIM1 in mature large B-cell non-Hodgkin lymphomas: Defining element of their evolution and prognosis. Medicine (Baltimore) 2024; 103:e36269. [PMID: 38335426 PMCID: PMC10860999 DOI: 10.1097/md.0000000000036269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 02/12/2024] Open
Abstract
Sequence studies of the entire exome and transcriptome of lymphoma tissues have identified MYD88 and PIM1 as involved in the development and oncogenic signaling. We aimed to determine the frequency of MYD88 and PIM1 mutations, as well as their expressions in conjunction with the clinicopathological parameters identified in mature large B-cell non-Hodgkin lymphomas. The ten-year retrospective study included 50 cases of mature large B-cell lymphoma, diagnosed at the Pathology Department of the Emergency County Hospital of Constanţa and Săcele County Hospital of Brasov. They were statistically analyzed by demographic, clinicopathological, and morphogenetic characteristics. We used a real-time polymerase chain reaction technique to identify PIM1 and MYD88 mutations as well as an immunohistochemical technique to evaluate the expressions of the 2 genes. Patients with lymphoma in the small bowel, spleen, brain, and testis had a low-performance status Eastern Cooperative Oncology Group (P = .001). The Eastern Cooperative Oncology Group performance status represented an independent risk factor predicting mortality (HR = 9.372, P < .001). An increased lactate dehydrogenase value was associated with a low survival (P = .002). The international prognostic index score represents a negative risk factor in terms of patient survival (HR = 4.654, P < .001). In cases of diffuse large B-cell lymphoma (DLBCL), immunopositivity of MYD88 is associated with non-germinal center B-cell origin (P < .001). The multivariate analysis observed the association between high lactate dehydrogenase value and the immunohistochemical expression of PIM1 or with the mutant status of the PIM1 gene representing negative prognostic factors (HR = 2.066, P = .042, respectively HR = 3.100, P = .004). In conclusion, our preliminary data suggest that the oncogenic mutations of PIM1 and MYD88 in our DLBCL cohort may improve the diagnosis and prognosis of DLBCL patients in an advanced stage.
Collapse
Affiliation(s)
- Miruna Cristian
- Faculty of Medicine, “Ovidius” University of Constanta, Constanța, Romania
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology – CEDMOG, “Ovidius” University of Constanta, Constanța, Romania
- Department of Clinical Pathology, “Sf. Apostol Andrei” Emergency County Hospital, Constanta, Romania
| | - Mariana Așchie
- Faculty of Medicine, “Ovidius” University of Constanta, Constanța, Romania
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology – CEDMOG, “Ovidius” University of Constanta, Constanța, Romania
- Department of Clinical Pathology, “Sf. Apostol Andrei” Emergency County Hospital, Constanta, Romania
- Academy of Medical Sciences, Bucharest, Romania
- Academy of Romanian Scientists, Bucharest, Romania
| | - Anca-Florentina Mitroi
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology – CEDMOG, “Ovidius” University of Constanta, Constanța, Romania
- Department of Clinical Pathology, “Sf. Apostol Andrei” Emergency County Hospital, Constanta, Romania
| | - Mariana Deacu
- Faculty of Medicine, “Ovidius” University of Constanta, Constanța, Romania
- Department of Clinical Pathology, “Sf. Apostol Andrei” Emergency County Hospital, Constanta, Romania
| | - Mădălina Boșoteanu
- Faculty of Medicine, “Ovidius” University of Constanta, Constanța, Romania
- Department of Clinical Pathology, “Sf. Apostol Andrei” Emergency County Hospital, Constanta, Romania
| | - Gabriela-Izabela Bălțătescu
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology – CEDMOG, “Ovidius” University of Constanta, Constanța, Romania
- Department of Clinical Pathology, “Sf. Apostol Andrei” Emergency County Hospital, Constanta, Romania
| | - Andreea-Georgiana Stoica
- Faculty of Medicine, “Ovidius” University of Constanta, Constanța, Romania
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology – CEDMOG, “Ovidius” University of Constanta, Constanța, Romania
- Department of Hematology, “Sf. Apostol Andrei” Emergency County Hospital, Constanta, Romania
| | - Anca-Antonela Nicolau
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology – CEDMOG, “Ovidius” University of Constanta, Constanța, Romania
- Department of Clinical Pathology, “Sf. Apostol Andrei” Emergency County Hospital, Constanta, Romania
| | - Manuela Enciu
- Faculty of Medicine, “Ovidius” University of Constanta, Constanța, Romania
- Department of Clinical Pathology, “Sf. Apostol Andrei” Emergency County Hospital, Constanta, Romania
| | - Ana-Maria Crețu
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology – CEDMOG, “Ovidius” University of Constanta, Constanța, Romania
- Department of Clinical Pathology, “Sf. Apostol Andrei” Emergency County Hospital, Constanta, Romania
| | - Andreea-Daniela Caloian
- Faculty of Medicine, “Ovidius” University of Constanta, Constanța, Romania
- Department of Hemato-Oncology, “Ovidius” Clinical Hospital, Constanta, Romania
| | - Cristian-Ionuț Orășanu
- Faculty of Medicine, “Ovidius” University of Constanta, Constanța, Romania
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology – CEDMOG, “Ovidius” University of Constanta, Constanța, Romania
- Department of Clinical Pathology, “Sf. Apostol Andrei” Emergency County Hospital, Constanta, Romania
| | - Ionuț Poinăreanu
- Faculty of Medicine, “Ovidius” University of Constanta, Constanța, Romania
- Department of Pathology, Săcele Municipal Hospital, Brasov, Romania
| |
Collapse
|
23
|
Atalay P, Ozpolat B. PIM3 Kinase: A Promising Novel Target in Solid Cancers. Cancers (Basel) 2024; 16:535. [PMID: 38339286 PMCID: PMC10854964 DOI: 10.3390/cancers16030535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 02/12/2024] Open
Abstract
PIM3 (provirus-integrating Moloney site 3) is a serine/threonine kinase and belongs to the PIM family (PIM1, PIM2, and PIM3). PIM3 is a proto-oncogene that is frequently overexpressed in cancers originating from endoderm-derived tissues, such as the liver, pancreas, colon, stomach, prostate, and breast cancer. PIM3 plays a critical role in activating multiple oncogenic signaling pathways promoting cancer cell proliferation, survival, invasion, tumor growth, metastasis, and progression, as well as chemo- and radiation therapy resistance and immunosuppressive microenvironment. Genetic inhibition of PIM3 expression suppresses in vitro cell proliferation and in vivo tumor growth and metastasis in mice with solid cancers, indicating that PIM3 is a potential therapeutic target. Although several pan-PIM inhibitors entered phase I clinical trials in hematological cancers, there are currently no FDA-approved inhibitors for the treatment of patients. This review provides an overview of recent developments and insights into the role of PIM3 in various cancers and its potential as a novel molecular target for cancer therapy. We also discuss the current status of PIM-targeted therapies in clinical trials.
Collapse
Affiliation(s)
- Pinar Atalay
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA;
| | - Bulent Ozpolat
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA;
- Methodist Neil Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
24
|
Chen S, Yang Y, Yuan Y, Bo Liu. Targeting PIM kinases in cancer therapy: An update on pharmacological small-molecule inhibitors. Eur J Med Chem 2024; 264:116016. [PMID: 38071792 DOI: 10.1016/j.ejmech.2023.116016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/15/2023] [Accepted: 11/28/2023] [Indexed: 12/30/2023]
Abstract
PIM kinases, a serine/threonine kinase family with three isoforms, has been well-known to participate in multiple physiological processes by phosphorylating various downstream targets. Accumulating evidence has recently unveiled that aberrant upregulation of PIM kinases (PIM1, PIM2, and PIM3) are closely associated with tumor cell proliferation, migration, survival, and even resistance. Inhibiting or silencing of PIM kinases has been reported have remarkable antitumor effects, such as anti-proliferation, pro-apoptosis and resensitivity, indicating the therapeutic potential of PIM kinases as potential druggable targets in many types of human cancers. More recently, several pharmacological small-molecule inhibitors have been preclinically and clinically evaluated and showed their therapeutic potential; however, none of them has been approved for clinical application so far. Thus, in this perspective, we focus on summarizing the oncogenic roles of PIM kinases, key signaling network, and pharmacological small-molecule inhibitors, which will provide a new clue on discovering more candidate antitumor drugs targeting PIM kinases in the future.
Collapse
Affiliation(s)
- Siwei Chen
- Department of Thoracic Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yushang Yang
- Department of Thoracic Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yong Yuan
- Department of Thoracic Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Bo Liu
- Department of Thoracic Surgery, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
25
|
Karati D, Saha A, Roy S, Mukherjee S. PIM Kinase Inhibitors as Novel Promising Therapeutic Scaffolds in Cancer Therapy. Curr Top Med Chem 2024; 24:2489-2508. [PMID: 39297470 DOI: 10.2174/0115680266321659240906114742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 11/21/2024]
Abstract
Cancer involves the uncontrolled, abnormal growth of cells and affects other tissues. Kinase has an impact on proliferating the cells and causing cancer. For the purpose of treating cancer, PIM kinase is a potential target. The pro-viral Integration site for moloney murine leukaemia virus (PIM) kinases is responsible for the tumorigenesis, by phosphorylating the proteins that control the cell cycle and cell proliferation. PIM-1, PIM-2, and PIM-3 are the three distinct isoforms of PIM kinases. The JAK/STAT pathway is essential for controlling how PIM genes are expressed. PIM kinase is also linked withPI3K/AKT/mTOR pathway in various types of cancers. The overexpression of PIM kinase will cause cancer. Currently, there are significant efforts being made in medication design and development to target its inhibition. A few small chemical inhibitors (E.g., SGI-1776, AZD1208, LGH447) that specifically target the PIM proteins' adenosine triphosphate (ATP)-binding domain have been identified. PIM kinase antagonists have a remarkable effect on different types of cancer. Despite conducting clinical trials on SGI-1776, the first PIM inhibitory agent, was prematurely withdrawn, making it unable to generate concept evidence. On the other hand, in recent years, it has aided in hastening the identification of multiple new PIM inhibitors. Cyanopyridines and Pyrazolo[1,5-a]pyrimidinecan act as potent PIM kinase inhibitors for cancer therapy. We explore the involvement of oncogenic transcription factor c-Mycandmi-RNA in relation to PIM kinase. In this article, we highlight the oncogenic effects, and structural insights into PIM kinase inhibitors for the treatment of cancer.
Collapse
Affiliation(s)
- Dipanjan Karati
- Department of Pharmaceutical Technology, School of Pharmacy, Techno India University, Kolkata 700091, West Bengal, India
| | - Ankur Saha
- Department of Pharmaceutical Technology, School of Pharmacy, Techno India University, Kolkata 700091, West Bengal, India
| | - Souvik Roy
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata - Group of Institutions, 124, B.L Saha Road, Kolkata 700053, West Bengal, India
| | - Swarupananda Mukherjee
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata - Group of Institutions, 124, B.L Saha Road, Kolkata 700053, West Bengal, India
| |
Collapse
|
26
|
Shi Y, Yuan Q, Chen Y, Li X, Zhou Y, Zhou H, Peng F, Jiang Y, Qiao Y, Zhao J, Zhang C, Wang J, Liu K, Dong Z. Corynoline inhibits esophageal squamous cell carcinoma growth via targeting Pim-3. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155235. [PMID: 38128397 DOI: 10.1016/j.phymed.2023.155235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/09/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Esophageal squamous cell carcinoma (ESCC) is an aggressive and deadly malignancy characterized by late-stage diagnosis, therapy resistance, and a poor 5-year survival rate. Finding novel therapeutic targets and their inhibitors for ESCC prevention and therapy is urgently needed. METHODS We investigated the proviral integration site for maloney murine leukemia virus 3 (Pim-3) protein levels using immunohistochemistry. Using Methyl Thiazolyl Tetrazolium and clone formation assay, we verified the function of Pim-3 in cell proliferation. The binding and inhibition of Pim-3 by corynoline were verified by computer docking, pull-down assay, cellular thermal shift assay, and kinase assay. Cell proliferation, Western blot, and a patient-derived xenograft tumor model were performed to elucidate the mechanism of corynoline inhibiting ESCC growth. RESULTS Pim-3 was highly expressed in ESCC and played an oncogenic role. The augmentation of Pim-3 enhanced cell proliferation and tumor development by phosphorylating mitogen-activated protein kinase 1 (MAPK1) at T185 and Y187. The deletion of Pim-3 induced apoptosis with upregulated cleaved caspase-9 and lower Bcl2 associated agonist of cell death (BAD) phosphorylation at S112. Additionally, binding assays demonstrated corynoline directly bound with Pim-3, inhibiting its activity, and suppressing ESCC growth. CONCLUSIONS Our findings suggest that Pim-3 promotes ESCC progression. Corynoline inhibits ESCC progression through targeting Pim-3.
Collapse
Affiliation(s)
- Yunshu Shi
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China; China-US (Henan) Hormel Cancer Institute, Zhengzhou 450000, China; Tianjian Laboratory for Advanced Biomedical Sciences, Zhengzhou, Henan 450052, China
| | - Qiang Yuan
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China; China-US (Henan) Hormel Cancer Institute, Zhengzhou 450000, China; Tianjian Laboratory for Advanced Biomedical Sciences, Zhengzhou, Henan 450052, China
| | - Yingying Chen
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Xiaoyu Li
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Yujuan Zhou
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Hao Zhou
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Feng Peng
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Yanan Jiang
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China; China-US (Henan) Hormel Cancer Institute, Zhengzhou 450000, China; Tianjian Laboratory for Advanced Biomedical Sciences, Zhengzhou, Henan 450052, China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, Henan 450000, China; Center for Basic Medical Research, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450000, China
| | - Yan Qiao
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Jimin Zhao
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, Henan 450000, China; Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan 450000, China; Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, Henan 450000, China
| | - Chi Zhang
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Junyong Wang
- Center for Basic Medical Research, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450000, China.
| | - Kangdong Liu
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China; China-US (Henan) Hormel Cancer Institute, Zhengzhou 450000, China; Tianjian Laboratory for Advanced Biomedical Sciences, Zhengzhou, Henan 450052, China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, Henan 450000, China; Center for Basic Medical Research, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan 450000, China; Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan 450000, China; Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, Henan 450000, China.
| | - Zigang Dong
- The Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450000, China; China-US (Henan) Hormel Cancer Institute, Zhengzhou 450000, China; Tianjian Laboratory for Advanced Biomedical Sciences, Zhengzhou, Henan 450052, China; State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, Henan 450000, China; Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, Henan 450000, China.
| |
Collapse
|
27
|
Park YS, kim J, Ryu YS, moon JH, shin YJ, kim JH, hong SW, jung SA, lee S, kim SM, lee DH, kim DY, yun H, you JE, yoon DI, kim CH, koh DI, jin DH. Mutant PIK3CA as a negative predictive biomarker for treatment with a highly selective PIM1 inhibitor in human colon cancer. Cancer Biol Ther 2023; 24:2246208. [PMID: 37621144 PMCID: PMC10461515 DOI: 10.1080/15384047.2023.2246208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 02/07/2023] [Accepted: 06/02/2023] [Indexed: 08/26/2023] Open
Abstract
Significant improvement in targeted therapy for colorectal cancer (CRC) has occurred over the past few decades since the approval of the EGFR inhibitor cetuximab. However, cetuximab is used only for patients possessing the wild-type oncogene KRAS, NRAS, and BRAF, and even most of these eventually acquire therapeutic resistance, via activation of parallel oncogenic pathways such as RAS-MAPK or PI3K/Akt/mTOR. The two aforementioned pathways also contribute to the development of therapeutic resistance in CRC patients, due to compensatory and feedback mechanisms. Therefore, combination drug therapies (versus monotherapy) targeting these multiple pathways may be necessary for further efficacy against CRC. In this study, we identified PIK3CA mutant (PIK3CA MT) as a determinant of resistance to SMI-4a, a highly selective PIM1 kinase inhibitor, in CRC cell lines. In CRC cell lines, SMI-4a showed its effect only in PIK3CA wild type (PIK3CA WT) cell lines, while PIK3CA MT cells did not respond to SMI-4a in cell death assays. In vivo xenograft and PDX experiments confirmed that PIK3CA MT is responsible for the resistance to SMI-4a. Inhibition of PIK3CA MT by PI3K inhibitors restored SMI-4a sensitivity in PIK3CA MT CRC cell lines. Taken together, these results demonstrate that sensitivity to SMI-4a is determined by the PIK3CA genotype and that co-targeting of PI3K and PIM1 in PIK3CA MT CRC patients could be a promising and novel therapeutic approach for refractory CRC patients.
Collapse
Affiliation(s)
- Yoon Sun Park
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Joseph kim
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Yea Seong Ryu
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
| | - Jai-Hee moon
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
| | - Yu Jin shin
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
| | - Jeong Hee kim
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
| | - Seung-Woo hong
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
| | - Soo-A jung
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
| | - Seul lee
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
| | - Seung-Mi kim
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
| | - Dae Hee lee
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
| | - Do Yeon kim
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hyeseon yun
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ji-Eun you
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Dong Il yoon
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Chul Hee kim
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Dong-In koh
- Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
| | - Dong-Hoon jin
- Department of Pharmacology, University of Ulsan College of Medicine, Seoul, Republic of Korea
- Department of Convergence Medicine, Asan Institute for Life Science, Asan Medical Center, Seoul, Republic of Korea
| |
Collapse
|
28
|
Al-Qadhi MA, Allam HA, Fahim SH, Yahya TAA, Ragab FAF. Design and synthesis of certain 7-Aryl-2-Methyl-3-Substituted Pyrazolo{1,5-a}Pyrimidines as multikinase inhibitors. Eur J Med Chem 2023; 262:115918. [PMID: 37922829 DOI: 10.1016/j.ejmech.2023.115918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023]
Abstract
Four new series 7a-e, 8a-e, 9a-e, and 10a-e of 7-aryl-3-substituted pyrazolo[1,5-a]pyrimidines were synthesized and tested for their RTK and STK inhibitory activity. Compound 7d demonstrated potent enzymatic inhibitory activity against TrkA and ALK2 with IC50 0.087and 0.105 μM, respectively, and potent antiproliferative activity against KM12 and EKVX cell lines with IC50 0.82 and 4.13 μM, respectively. Compound 10e showed good enzyme inhibitory activity against TrkA, ALK2, c-KIT, EGFR, PIM1, CK2α, CHK1, and CDK2 in submicromolar values. Additionally 10e revealed antiproliferative activity against MCF7, HCT116 and EKVX with IC50 3.36, 1.40 and 3.49 μM, respectively; with good safety profile. Moreover, 10e showed cell cycle arrest at the G1/S phase and G1 phase in MCF7 and HCT116 cells with good apoptotic effect. Molecular docking studies were fulfilled for compound 10e and illustrated good interaction with the hot spots of the active site of the tested enzymes.
Collapse
Affiliation(s)
- Mustafa A Al-Qadhi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Sana'a University, P.O. Box, 18084, Sana'a, Yemen
| | - Heba Abdelrasheed Allam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box, 11562, Egypt.
| | - Samar H Fahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box, 11562, Egypt
| | - Tawfeek A A Yahya
- Department of Medicinal Chemistry, Faculty of Pharmacy, Sana'a University, P.O. Box, 18084, Sana'a, Yemen
| | - Fatma A F Ragab
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box, 11562, Egypt
| |
Collapse
|
29
|
Guo Y, Li X, Yuan R, Ren J, Huang Y, Yu Y, Tian H. KZ02 enhances the radiosensitivity of BRAF-mutated CRC in vitro and in vivo. Eur J Pharmacol 2023; 959:176060. [PMID: 37775019 DOI: 10.1016/j.ejphar.2023.176060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 10/01/2023]
Abstract
Colorectal cancer (CRC) is a common malignant tumor with a high incidence and mortality worldwide. Preoperative chemoradiotherapy is a common treatment for patients with metastatic colorectal cancer (mCRC) as it reduces colostomy and local recurrence. The RAS (rat sarcoma)-RAF (extracellular signal-regulated kinase)-MEK (mitogen-activated protein kinase)-ERK (extracellular signal-regulated kinase) pathway regulates important cellular processes in the CRC. Abnormal ERK activation stimulates cell growth and provides a survival advantage. Our group has previously reported that the compound KZ02 has a stronger ability to inhibit tumor growth than AZD6244 (a MEK inhibitor). In this study, we evaluated the antitumor activity of KZ02 in combination with ionizing radiation (IR) and investigated its mechanism of action in BRAF-mutated colorectal cancer. Our results showed that this combination kills tumor cells better than either radiation or drugs alone, both in vivo and in vitro. Furthermore, studies have shown that KZ02 inhibits ERK overactivation. The combination resulted in a G1 phase arrest, a reduction in the radioresistant S phase, and aggravating DNA damage. It can also inhibit Pim-1 (Moloney murine leukemia virus-1), p-BAD (Bcl-2 associated agonist of cell death), Bcl-2 (B-cell lymphoma 2) and Bcl-XL (B-cell lymphoma-extra large) levels and promote apoptosis when combined with radiation. Our results suggest that KZ02 significantly increases the radiosensitivity of BRAF-mutated CRC cells by perturbing the cell cycle, increasing DNA damage, and promoting tumor apoptosis.
Collapse
Affiliation(s)
- Yuying Guo
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin, China
| | - Xuejiao Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin, China
| | - Renbin Yuan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin, China
| | - Jingming Ren
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin, China
| | - Yichi Huang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin, China
| | - Yanxiang Yu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin, China
| | - Hongqi Tian
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Peking Union Medical College and Chinese Academy of Medical Science, Tianjin, China.
| |
Collapse
|
30
|
Patel MR, Donnellan W, Byrne M, Asch AS, Zeidan AM, Baer MR, Fathi AT, Kuykendall AT, Zheng F, Walker C, Cheng L, Marando C, Savona MR. Phase 1/2 Study of the Pan-PIM Kinase Inhibitor INCB053914 Alone or in Combination With Standard-of-Care Agents in Patients With Advanced Hematologic Malignancies. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2023; 23:674-686. [PMID: 37290996 DOI: 10.1016/j.clml.2023.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/28/2023] [Accepted: 05/01/2023] [Indexed: 06/10/2023]
Abstract
BACKGROUND The Proviral Integration site of Moloney murine leukemia virus (PIM) kinases are implicated in tumorigenesis; the pan-PIM kinase inhibitor, INCB053914, demonstrated antitumor activity in hematologic malignancy preclinical models. PATIENTS AND METHODS This phase 1/2 study evaluated oral INCB053914 alone or combined with standard-of-care agents for advanced hematologic malignancies (NCT02587598). In Parts 1/2 (monotherapy), patients (≥18 years) had acute leukemia, high-risk myelodysplastic syndrome (MDS), MDS/myeloproliferative neoplasm, myelofibrosis (MF), multiple myeloma, or lymphoproliferative neoplasms. In Parts 3/4 (combination therapy), patients had relapsed/refractory or newly diagnosed (≥65 years, unfit for intensive chemotherapy) acute myeloid leukemia (AML) or MF with suboptimal ruxolitinib response. RESULTS Parts 1/2 (n = 58): 6 patients experienced dose-limiting toxicities (DLTs), most commonly aspartate aminotransferase/alanine aminotransferase-elevated (AST/ALT; each n = 4). Fifty-seven patients (98.3%) had treatment-emergent adverse events (TEAEs), most commonly ALT-elevated and fatigue (36.2% each); 48 (82.8%) had grade ≥3 TEAEs, most commonly anemia (31.0%); 8 (13.8%) had grade ≥3 ALT/AST-elevated TEAEs. Parts 3/4 (n = 39): for INCB053914 + cytarabine (AML; n = 6), 2 patients experienced DLTs (grade 3 maculopapular rash, n = 1; grade 3 ALT-elevated and grade 4 hypophosphatemia, n = 1); for INCB053914 + azacitidine (AML; n = 16), 1 patient experienced a DLT (grade 3 maculopapular rash). Two complete responses were observed (1 with incomplete count recovery). For INCB053914 + ruxolitinib (MF; n = 17), no DLTs occurred; 3 patients achieved best reduction of >25% spleen volume at week 12 or 24. CONCLUSION INCB053914 was generally well tolerated as monotherapy and in combinations; TEAEs were most commonly ALT/AST-elevated. Limited responses were observed with combinations. Future studies are needed to identify rational, effective combination strategies.
Collapse
Affiliation(s)
- Manish R Patel
- Florida Cancer Specialists/Sarah Cannon Research Institute, Sarasota, FL.
| | | | - Michael Byrne
- Division of Hematology/Oncology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN
| | - Adam S Asch
- Stephenson Cancer Center, Oklahoma University, Oklahoma City, OK
| | - Amer M Zeidan
- Yale University and Yale Cancer Center, New Haven, CT
| | - Maria R Baer
- University of Maryland Greenebaum Comprehensive Cancer Center, Baltimore, MD
| | - Amir T Fathi
- Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | | | | | | | | | | | - Michael R Savona
- Division of Hematology/Oncology, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN
| |
Collapse
|
31
|
Zhang ML, Zhao X, Li WX, Wang XY, Niu M, Zhang H, Chen YL, Kong DX, Gao Y, Guo YM, Bai ZF, Zhao YL, Tang JF, Xiao XH. Yin/Yang associated differential responses to Psoralea corylifolia Linn. In rat models: an integrated metabolomics and transcriptomics study. Chin Med 2023; 18:102. [PMID: 37592331 PMCID: PMC10433582 DOI: 10.1186/s13020-023-00793-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 06/28/2023] [Indexed: 08/19/2023] Open
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Psoralea corylifolia Linn. (BGZ) is a commonly used traditional Chinese medicine (TCM) for the treatment of kidney-yang deficiency syndrome (Yangsyn) with good curative effect and security. However, BGZ was also reported to induce liver injury in recent years. According to TCM theory, taking BGZ may induce a series of adverse reactions in patients with kidney-yin deficiency syndrome (Yinsyn), which suggests that BGZ-induced liver damage may be related to its unreasonable clinical use. AIM OF THE STUDY Liver injury caused by TCM is a rare but potentially serious adverse drug reaction, and the identification of predisposed individuals for drug-induced liver injury (DILI) remains challenging. The study aimed to investigate the differential responses to BGZ in Yangsyn and Yinsyn rat models and identify the corresponding characteristic biomarkers. MATERIALS AND METHODS The corresponding animal models of Yangsyn and Yinsyn were induced by hydrocortisone and thyroxine + reserpine respectively. Body weight, organ index, serum biochemistry, and Hematoxylin and Eosin (HE) staining were used to evaluate the liver toxicity effect of BGZ on rats with Yangsyn and Yinsyn. Transcriptomics and metabonomics were used to screen the representative biomarkers (including metabolites and differentially expressed genes (DEGs)) changed by BGZ in Yangsyn and Yinsyn rats, respectively. RESULTS The level changes of liver organ index, alanine aminotransferase (ALT), and aspartate aminotransferase (AST), suggested that BGZ has liver-protective and liver-damaging effects on Yangsyn and Yinsyn rats, respectively, and the results also were confirmed by the pathological changes of liver tissue. The results showed that 102 DEGs and 27 metabolites were significantly regulated related to BGZ's protective effect on Yangsyn, which is mainly associated with the glycerophospholipid metabolism, arachidonic acid metabolism, pantothenate, and coenzyme A (CoA) biosynthesis pathways. While 28 DEGs and 31 metabolites, related to the pathway of pantothenate and CoA biosynthesis, were significantly regulated for the BGZ-induced liver injury in Yinsyn. Furthermore, 4 DEGs (aldehyde dehydrogenase 1 family member B1 (Aldh1b1), solute carrier family 25 member 25 (Slc25a25), Pim-3 proto-oncogene, serine/threonine kinase (Pim3), out at first homolog (Oaf)) and 4 metabolites (phosphatidate, phosphatidylcholine, N-Acetylleucine, biliverdin) in the Yangsyn group and 1 DEG [galectin 5 (Lgals5)] and 1 metabolite (5-amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxylate) in Yinsyn group were significantly correlated to the ALT and AST levels of BGZ treated and untreated groups (receiver operating characteristic (ROC) ≥ 0.9). CONCLUSIONS Yinsyn and Yangsyn are the predisposed syndromes for BGZ to exert liver damage and liver protection respectively, which are mainly related to the regulation of amino acid metabolism, lipid metabolism, energy metabolism, and metabolism of cofactors and vitamins. The results further suggest that attention should be paid to the selection of predisposed populations when using drugs related to the regulation of energy metabolism, and the Yinsyn/Yangsyn animal models based on the theory of TCM syndromes may be a feasible method for identifying the susceptible population to receive TCM.
Collapse
Affiliation(s)
- Ming-Liang Zhang
- Henan Province Engineering Laboratory for Clinical Evaluation Technology of Chinese Medicine, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Xu Zhao
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Military Institute of Chinese Materia, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Wei-Xia Li
- Henan Province Engineering Laboratory for Clinical Evaluation Technology of Chinese Medicine, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
- Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Xiao-Yan Wang
- Henan Province Engineering Laboratory for Clinical Evaluation Technology of Chinese Medicine, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
- Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Ming Niu
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Military Institute of Chinese Materia, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Hui Zhang
- Henan Province Engineering Laboratory for Clinical Evaluation Technology of Chinese Medicine, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
- Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Yu-Long Chen
- Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - De-Xin Kong
- Henan Province Engineering Laboratory for Clinical Evaluation Technology of Chinese Medicine, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China
- Henan University of Traditional Chinese Medicine, Zhengzhou, China
| | - Yuan Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yu-Ming Guo
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Military Institute of Chinese Materia, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Zhao-Fang Bai
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China
- Military Institute of Chinese Materia, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yan-Ling Zhao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Department of Pharmacy, The Fifth Medical Center of PLA General Hospital, Beijing, China.
| | - Jin-Fa Tang
- Henan Province Engineering Laboratory for Clinical Evaluation Technology of Chinese Medicine, The First Affiliated Hospital of Henan University of Traditional Chinese Medicine, Zhengzhou, China.
| | - Xiao-He Xiao
- Senior Department of Hepatology, The Fifth Medical Center of PLA General Hospital, Beijing, China.
| |
Collapse
|
32
|
Wińska P, Wielechowska M, Koronkiewicz M, Borowiecki P. Synthesis and Anticancer Activity of Novel Dual Inhibitors of Human Protein Kinases CK2 and PIM-1. Pharmaceutics 2023; 15:1991. [PMID: 37514177 PMCID: PMC10385865 DOI: 10.3390/pharmaceutics15071991] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/05/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
CK2 and PIM-1 are serine/threonine kinases involved in the regulation of many essential processes, such as proliferation, differentiation, and apoptosis. Inhibition of CK2 and PIM-1 kinase activity has been shown to significantly reduce the viability of cancer cells by inducing apoptosis. A series of novel amino alcohol derivatives of parental DMAT were designed and synthesized as potent dual CK2/PIM-1 inhibitors. Concomitantly with the inhibition studies toward recombinant CK2 and PIM-1, the influence of the obtained compounds on the viability of three human carcinoma cell lines, i.e., acute lymphoblastic leukemia (CCRF-CEM), human chronic myelogenous leukemia (K-562), and breast cancer (MCF-7), as well as non-cancerous cells (Vero), was evaluated using an MTT assay. Induction of apoptosis and cell cycle progression after treatment with the most active compound and a lead compound were studied by flow-cytometry-based assay. Additionally, autophagy induction in K-562 cells and intracellular inhibition of CK2 and PIM-1 in all the tested cell lines were evaluated by qualitative/quantitative fluorescence-based assay and Western blot method, respectively. Among the newly developed inhibitors, 1,1,1-trifluoro-3-[(4,5,6,7-tetrabromo-1H-benzimidazol-2-yl)amino]propan-2-ol demonstrates the highest selectivity and the most prominent proapoptotic properties towards the studied cancer cells, especially towards acute lymphoblastic leukemia, in addition to inducing autophagy in K-562 cells.
Collapse
Affiliation(s)
- Patrycja Wińska
- Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
| | - Monika Wielechowska
- Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
| | | | - Paweł Borowiecki
- Faculty of Chemistry, Warsaw University of Technology, 00-664 Warsaw, Poland
| |
Collapse
|
33
|
Nock S, Karim E, Unsworth AJ. Pim Kinases: Important Regulators of Cardiovascular Disease. Int J Mol Sci 2023; 24:11582. [PMID: 37511341 PMCID: PMC10380471 DOI: 10.3390/ijms241411582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Pim Kinases; Pim-1, Pim-2, and Pim-3, are a family of constitutively active serine/threonine kinases, widely associated with cell survival, proliferation, and migration. Historically considered to be functionally redundant, independent roles for the individual isoforms have been described. Whilst most established for their role in cancer progression, there is increasing evidence for wider pathological roles of Pim kinases within the context of cardiovascular disease, including inflammation, thrombosis, and cardiac injury. The Pim kinase isoforms have widespread expression in cardiovascular tissues, including the heart, coronary artery, aorta, and blood, and have been demonstrated to be upregulated in several co-morbidities/risk factors for cardiovascular disease. Pim kinase inhibition may thus be a desirable therapeutic for a multi-targeted approach to treat cardiovascular disease and some of the associated risk factors. In this review, we discuss what is known about Pim kinase expression and activity in cells of the cardiovascular system, identify areas where the role of Pim kinase has yet to be fully explored and characterised and review the suitability of targeting Pim kinase for the prevention and treatment of cardiovascular events in high-risk individuals.
Collapse
Affiliation(s)
| | | | - Amanda J. Unsworth
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester M1 5GD, UK
| |
Collapse
|
34
|
Ferreri AJM, Calimeri T, Cwynarski K, Dietrich J, Grommes C, Hoang-Xuan K, Hu LS, Illerhaus G, Nayak L, Ponzoni M, Batchelor TT. Primary central nervous system lymphoma. Nat Rev Dis Primers 2023; 9:29. [PMID: 37322012 PMCID: PMC10637780 DOI: 10.1038/s41572-023-00439-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/08/2023] [Indexed: 06/17/2023]
Abstract
Primary central nervous system lymphoma (PCNSL) is a diffuse large B cell lymphoma in which the brain, spinal cord, leptomeninges and/or eyes are exclusive sites of disease. Pathophysiology is incompletely understood, although a central role seems to comprise immunoglobulins binding to self-proteins expressed in the central nervous system (CNS) and alterations of genes involved in B cell receptor, Toll-like receptor and NF-κB signalling. Other factors such as T cells, macrophages or microglia, endothelial cells, chemokines, and interleukins, probably also have important roles. Clinical presentation varies depending on the involved regions of the CNS. Standard of care includes methotrexate-based polychemotherapy followed by age-tailored thiotepa-based conditioned autologous stem cell transplantation and, in patients unsuitable for such treatment, consolidation with whole-brain radiotherapy or single-drug maintenance. Personalized treatment, primary radiotherapy and only supportive care should be considered in unfit, frail patients. Despite available treatments, 15-25% of patients do not respond to chemotherapy and 25-50% relapse after initial response. Relapse rates are higher in older patients, although the prognosis of patients experiencing relapse is poor independent of age. Further research is needed to identify diagnostic biomarkers, treatments with higher efficacy and less neurotoxicity, strategies to improve the penetration of drugs into the CNS, and roles of other therapies such as immunotherapies and adoptive cell therapies.
Collapse
Affiliation(s)
| | - Teresa Calimeri
- Lymphoma Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Kate Cwynarski
- Department of Haematology, University College Hospital, London, UK
| | - Jorg Dietrich
- Cancer and Neurotoxicity Clinic and Brain Repair Research Program, Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Christian Grommes
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Khê Hoang-Xuan
- APHP, Groupe Hospitalier Salpêtrière, Sorbonne Université, IHU, ICM, Service de Neurologie 2, Paris, France
| | - Leland S Hu
- Department of Radiology, Neuroradiology Division, Mayo Clinic, Phoenix, AZ, USA
| | - Gerald Illerhaus
- Clinic of Hematology, Oncology and Palliative Care, Klinikum Stuttgart, Stuttgart, Germany
| | - Lakshmi Nayak
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Maurilio Ponzoni
- Pathology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Ateneo Vita-Salute San Raffaele, Milan, Italy
| | - Tracy T Batchelor
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
35
|
Mansour B, Salem YA, Attallah KM, El-kawy OA, Ibrahim IT, Abdel-Aziz NI. Cyanopyridinone- and Cyanopyridine-Based Cancer Cell Pim-1 Inhibitors: Design, Synthesis, Radiolabeling, Biodistribution, and Molecular Modeling Simulation. ACS OMEGA 2023; 8:19351-19366. [PMID: 37305261 PMCID: PMC10249106 DOI: 10.1021/acsomega.2c08304] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/10/2023] [Indexed: 06/13/2023]
Abstract
In this study, two new series of 3-cyanopyridinones (3a-e) and 3-cyanopyridines (4a-e) were synthesized and evaluated for their cytotoxicity and Pim-1 kinase inhibitory activity adopting 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT) assay and in vitro Pim-1 kinase inhibition assay, respectively. Most of the tested compounds revealed promising cytotoxicity against HepG-2, HCT-116, MCF-7, and PC-3 cell lines. Among them, compounds 4c and 4d showed more potent cytotoxicity against the HePG2 cell line with IC50 = 8.02 ± 0.38 and 6.95 ± 0.34 μM, respectively, than that of the reference 5-FU (IC50 = 9.42 ± 0.46 μM). Moreover, compound 4c was more potent against HCT-116 (IC50 = 7.15 ± 0.35 μM) than 5-FU (IC50 = 8.01 ± 0.39 μM), while compound 4d with IC50 = 8.35 ± 0.42 μM displayed comparable activity to that of the reference drug. Furthermore, high cytotoxic activity was manifested by compounds 4c and 4d against MCF-7 and PC3 cell lines. Our results have also indicated that compounds 4b, 4c, and 4d elicited remarkable inhibition of Pim-1 kinase; 4b and 4c showed equipotent inhibitory activity to that of the reference quercetagetin. Meanwhile, 4d displayed IC50 = 0.46 ± 0.02 μM, showed the best inhibitory activity among the tested compounds, and was more potent than quercetagetin (IC50 = 0.56 ± 0.03 μM). For optimization of the results, docking study of the most potent compounds 4c and 4d in the Pim-1 kinase active site was carried out and compared with both quercetagetin and the reported Pim-1 inhibitor A (VRV), and the results were consistent with those of the biological study. Consequently, compounds 4c and 4d are worthy of further investigations toward the discovery of Pim-1 kinase inhibitors as drug candidates for cancer therapy. Compound 4b was successfully radiolabeled with radioiodine-131, and its biodistribution in Ehrlich ascites carcinoma (EAC)-bearing mice showed more observable uptake in tumor sites, and hence, it can be introduced as a new radiolabeled agent for tumor imaging and therapy.
Collapse
Affiliation(s)
- Basem Mansour
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Dakahlia, Egypt
| | - Yomna A. Salem
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Sinai University − Kantara Branch, Ismailia 41636, Egypt
| | - Khaled M. Attallah
- Labeled
Compound Department, Hot Lab Center, Egyptian
Atomic Energy Authority, Cairo 13759, Egypt
| | - O. A. El-kawy
- Labeled
Compound Department, Hot Lab Center, Egyptian
Atomic Energy Authority, Cairo 13759, Egypt
| | - Ismail T. Ibrahim
- Labeled
Compound Department, Hot Lab Center, Egyptian
Atomic Energy Authority, Cairo 13759, Egypt
| | - Naglaa I. Abdel-Aziz
- Department
of Pharmaceutical Chemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Dakahlia, Egypt
- Department
of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura 35516, Egypt
| |
Collapse
|
36
|
Metwally AM, Kasem AAHM, Youssif MI, Hassan SM, Abdel Wahab AHA, Refaat LA. Lymphocyte to monocyte ratio predicts survival and is epigenetically linked to miR-222-3p and miR-26b-5p in diffuse large B cell lymphoma. Sci Rep 2023; 13:4899. [PMID: 36966176 PMCID: PMC10039925 DOI: 10.1038/s41598-023-31700-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 03/16/2023] [Indexed: 03/27/2023] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-Hodgkin lymphoma. 10-20% of the patients present with bone marrow (BM) involvement which predicts a worse survival. This study aimed to determine the prognostic significance of serum miR-222-3p, miR-26b-5p, EBV-miR-BHRF1-2-5p, and EBV-miR-BHRF1-2-3p and correlate their levels to clinical and haematological markers in DLBCL with special emphasis on the lymphocyte-monocyte ratio (LMR) and neutrophil-monocyte ratio. We also studied the role of BM BMI1 and PIM2 proteins in predicting BM infiltration. Serum miRNAs were studied on 40 DLBCL and 18 normal individuals using qRT-PCR. BMI1 and PIM2 proteins were studied on BM biopsies by immunohistochemistry. The results were correlated with clinical and follow-up data. All the studied miRNAs were dysregulated in DLBCL serum samples. BMI1 and PIM2 were expressed in 67% and 77.5% of BM samples, respectively. LMR was significantly associated with disease-free survival (DFS) (P = 0.022), miR-222-3P (P = 0.043), and miR-26b-5p (P = 0.043). EBV-miR-BHRF1-2-3p was significantly correlated to haemoglobin level (P = 0.027). MiR-222-3p, miR-26b-5p, and EBV-miR-BHRF1-2-5p expressions were significantly correlated to each other (P = 0.001). There was no significant correlation between the studied markers and follow-up data. LMR is a simple method for predicting survival in DLBCL. MiR-222-3p and miR-26b-5p may be implicated in an immunological mechanism affecting patients' immunity and accordingly influence LMR. The correlation between miR-222-3p, miR-26b-5p, and EBV-miR-BHRF1-2-5p may indicate a common mechanism among the 3 miRNAs that may explain DLBCL pathogenesis.
Collapse
Affiliation(s)
- Ayman Mohamed Metwally
- Technology of Medical Laboratory Department, College of Applied Health Science Technology, Misr University for Science and Technology, 77, Almotamayez District, 6th October, Egypt.
| | | | - Magda Ismail Youssif
- Department of Histochemistry and Cell Biology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Safia Mohammed Hassan
- Department of Histochemistry and Cell Biology, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | | | - Lobna Ahmed Refaat
- Clinical Pathology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| |
Collapse
|
37
|
Chen Y, Wang Y, Wang J, Zhou Z, Cao S, Zhang J. Strategies of Targeting CK2 in Drug Discovery: Challenges, Opportunities, and Emerging Prospects. J Med Chem 2023; 66:2257-2281. [PMID: 36745746 DOI: 10.1021/acs.jmedchem.2c01523] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
CK2 (casein kinase 2) is a serine/threonine protein kinase that is ubiquitous in eukaryotic cells and plays important roles in a variety of cellular functions, including cell growth, apoptosis, circadian rhythms, DNA damage repair, transcription, and translation. CK2 is involved in cancer pathogenesis and the occurrence of many diseases. Therefore, targeting CK2 is a promising therapeutic strategy. Although many CK2-specific small-molecule inhibitors have been developed, only CX-4945 has progressed to clinical trials. In recent years, novel CK2 inhibitors have gradually become a research hotspot, which is expected to overcome the limitations of traditional inhibitors. Herein, we summarize the structure, biological functions, and disease relevance of CK2 and emphatically analyze the structure-activity relationship (SAR) and binding modes of small-molecule CK2 inhibitors. We also discuss the latest progress of novel strategies, providing insights into new drugs targeting CK2 for clinical practice.
Collapse
Affiliation(s)
- Yijia Chen
- Joint Research Institution of Altitude Health, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,College of Life Sciences, Sichuan University, Chengdu, Sichuan 610064, China
| | - Yuxi Wang
- Joint Research Institution of Altitude Health, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,Tianfu Jincheng Laboratory, Chengdu, Sichuan 610041, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Zhilan Zhou
- Joint Research Institution of Altitude Health, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shu Cao
- West China School of Stomatology Sichuan University, Chengdu, Sichuan 610064, China
| | - Jifa Zhang
- Joint Research Institution of Altitude Health, Department of Respiratory and Critical Care Medicine, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,Targeted Tracer Research and Development Laboratory, Institute of Respiratory Health, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China.,Tianfu Jincheng Laboratory, Chengdu, Sichuan 610041, China
| |
Collapse
|
38
|
Improved Targeting of Therapeutics by Nanocarrier-Based Delivery in Cancer Immunotherapy and Their Future Perspectives. BIONANOSCIENCE 2023. [DOI: 10.1007/s12668-023-01065-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
39
|
Roy S, Bhattacharya S. Chemical Information and Computational Modeling of Targeting Hybrid Nucleic Acid Structures of PIM1 Sequences by Synthetic Pyrrole-Imidazole Carboxamide Drugs. J Chem Inf Model 2022; 62:6411-6422. [PMID: 35687766 DOI: 10.1021/acs.jcim.1c01500] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
DNA can adopt various distinct structural motifs, such as quadruplex, duplex, i-motifs, etc. which have multifarious applications in biomedical therapeutics. Quadruplex-duplex hybrids (QDHs) consist of the juxtaposed quadruplex and duplex motifs and are thermally stable and biologically relevant. Selective binding toward these secondary structures plays an important role in the evaluation of the structure-specific ligands. Herein, several small molecules containing anthraquinone conjugated oligopyrrole, oligoimidazole, and pyrrole-imidazole derivatives have been screened for the binding of the quadruplex-duplex nucleic acid hybrids formed in PIM1 sequences through docking and molecular dynamics (MD) simulation studies. The binding interaction of the anthraquinone polypyrrole ligands has also been checked by performing different biophysical experiments. PIM1, being a coactivator of the MYC oncogene, can be targeted by these small molecules to control MYC expression which is overexpressed in the majority of human cancer cells. Accordingly, these cancer cell-specific and blood-compatible anthraquinone conjugated oligopyrrole ligands can be employed for anticancer therapeutic applications. Thus, the structure-activity relationship (SAR) of the screened ligands manifested prudent structural information for designing PIM1 QDHs targeting small molecules.
Collapse
Affiliation(s)
- Soma Roy
- School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Santanu Bhattacharya
- School of Applied & Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India.,Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
40
|
Xu L, Meng YC, Guo P, Li M, Shao L, Huang JH. Recent Research Advances in Small-Molecule Pan-PIM Inhibitors. PHARMACEUTICAL FRONTS 2022. [DOI: 10.1055/s-0042-1758692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
PIM kinase is consequently emerging as a promising target for cancer therapeutics and immunomodulation. PIM kinases are overexpressed in a variety of hematological malignancies and solid tumors, and their inhibition has become a strong therapeutic interest. Currently, some pan-PIM kinase inhibitors are being developed under different phases of clinical trials. Based on the different scaffold structures, they can be classified into various subclasses. The X-ray structure of the kinase complex outlines the rationale of hit compound confirmation in the early stage. Structure–activity relationships allow us to rationally explore chemical space and further optimize multiple physicochemical and biological properties. This review focuses on the discovery and development of small-molecule pan-PIM kinase inhibitors in the current research, and hopes to provide guidance for future exploration of the inhibitors.
Collapse
Affiliation(s)
- Lei Xu
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Yu-Cheng Meng
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Peng Guo
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Ming Li
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| | - Lei Shao
- Microbial Pharmacology Laboratory, Shanghai University of Medicine and Health Sciences, Shanghai, People's Republic of China
| | - Jun-Hai Huang
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai, People's Republic of China
| |
Collapse
|
41
|
Gao AY, Diaz Espinosa AM, Gianì F, Pham TX, Carver CM, Aravamudhan A, Bartman CM, Ligresti G, Caporarello N, Schafer MJ, Haak AJ. Pim-1 kinase is a positive feedback regulator of the senescent lung fibroblast inflammatory secretome. Am J Physiol Lung Cell Mol Physiol 2022; 323:L685-L697. [PMID: 36223640 PMCID: PMC9744654 DOI: 10.1152/ajplung.00023.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 09/01/2022] [Accepted: 09/26/2022] [Indexed: 12/15/2022] Open
Abstract
Cellular senescence is emerging as a driver of idiopathic pulmonary fibrosis (IPF), a progressive and fatal disease with limited effective therapies. The senescence-associated secretory phenotype (SASP), involving the release of inflammatory cytokines and profibrotic growth factors by senescent cells, is thought to be a product of multiple cell types in IPF, including lung fibroblasts. NF-κB is a master regulator of the SASP, and its activity depends on the phosphorylation of p65/RelA. The purpose of this study was to assess the role of Pim-1 kinase as a driver of NF-κB-induced production of inflammatory cytokines from low-passage IPF fibroblast cultures displaying markers of senescence. Our results demonstrate that Pim-1 kinase phosphorylates p65/RelA, activating NF-κB activity and enhancing IL-6 production, which in turn amplifies the expression of PIM1, generating a positive feedback loop. In addition, targeting Pim-1 kinase with a small molecule inhibitor dramatically inhibited the expression of a broad array of cytokines and chemokines in IPF-derived fibroblasts. Furthermore, we provide evidence that Pim-1 overexpression in low-passage human lung fibroblasts is sufficient to drive premature senescence, in vitro. These findings highlight the therapeutic potential of targeting Pim-1 kinase to reprogram the secretome of senescent fibroblasts and halt IPF progression.
Collapse
Affiliation(s)
- Ashley Y Gao
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
- Department of Ophthalmology, Mayo Clinic, Rochester, Minnesota
| | - Ana M Diaz Espinosa
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Fiorenza Gianì
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
- Department of Clinical and Experimental Medicine, University of Catania, Garibaldi-Nesima Medical Centel, Catania, Italy
| | - Tho X Pham
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Chase M Carver
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Aja Aravamudhan
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Colleen M Bartman
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Giovanni Ligresti
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Nunzia Caporarello
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
| | - Marissa J Schafer
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
- Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | - Andrew J Haak
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
42
|
Yoon SB, Hong H, Lim HJ, Choi JH, Choi YP, Seo SW, Lee HW, Chae CH, Park WK, Kim HY, Jeong D, De TQ, Myung CS, Cho H. A novel IRAK4/PIM1 inhibitor ameliorates rheumatoid arthritis and lymphoid malignancy by blocking the TLR/MYD88-mediated NF-κB pathway. Acta Pharm Sin B 2022; 13:1093-1109. [PMID: 36970199 PMCID: PMC10031381 DOI: 10.1016/j.apsb.2022.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/27/2022] [Accepted: 10/19/2022] [Indexed: 12/10/2022] Open
Abstract
Interleukin-1 receptor-associated kinase 4 (IRAK4) is a pivotal enzyme in the Toll-like receptor (TLR)/MYD88 dependent signaling pathway, which is highly activated in rheumatoid arthritis tissues and activated B cell-like diffuse large B-cell lymphoma (ABC-DLBCL). Inflammatory responses followed by IRAK4 activation promote B-cell proliferation and aggressiveness of lymphoma. Moreover, proviral integration site for Moloney murine leukemia virus 1 (PIM1) functions as an anti-apoptotic kinase in propagation of ABC-DLBCL with ibrutinib resistance. We developed a dual IRAK4/PIM1 inhibitor KIC-0101 that potently suppresses the NF-κB pathway and proinflammatory cytokine induction in vitro and in vivo. In rheumatoid arthritis mouse models, treatment with KIC-0101 significantly ameliorated cartilage damage and inflammation. KIC-0101 inhibited the nuclear translocation of NF-κB and activation of JAK/STAT pathway in ABC-DLBCLs. In addition, KIC-0101 exhibited an anti-tumor effect on ibrutinib-resistant cells by synergistic dual suppression of TLR/MYD88-mediated NF-κB pathway and PIM1 kinase. Our results suggest that KIC-0101 is a promising drug candidate for autoimmune diseases and ibrutinib-resistant B-cell lymphomas.
Collapse
|
43
|
Boșoteanu M, Cristian M, Așchie M, Deacu M, Mitroi AF, Brînzan CS, Bălțătescu GI. Proteomics and genomics of a monomorphic epitheliotropic intestinal T-cell lymphoma: An extremely rare case report and short review of literature. Medicine (Baltimore) 2022; 101:e31951. [PMID: 36451465 PMCID: PMC9704947 DOI: 10.1097/md.0000000000031951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
RATIONALE Monomorphic epitheliotropic intestinal T-cell lymphoma, formerly known as enteropathy-associated T-cell lymphoma, is an extremely rare, aggressive peripheral extranodal T-cell lymphoma, that is infrequent in native European and Caucasian populations. The current study presents the clinicopathological features, diagnostic approach, and clinical outcomes of this rare entity of lymphoma and highlights the importance of the early diagnosis of monomorphic epitheliotropic intestinal T-cell lymphoma (MEITL). PATIENT CONCERNS Main symptoms and/or important clinical findings: We present the case of a 69-year-old male patient presenting with an abdominal mass, intestinal transit disorder, and weight loss. The abdominal computed tomography (CT) revealed features suggestive of a malignancy. Following clinical and imaging investigations, surgical resection of the small intestine with other areas of involvement has been performed and further to the histopathological examination and immunohistochemical testing are mandatory. DIAGNOSES AND INTERVENTIONS Histopathological evaluation of the tumor revealed a proliferation of medium- to large-sized monomorphic lymphocytes, with vesicular nuclei, prominent nucleoli, and a moderate amount of clear to pale eosinophilic cytoplasm, with an association of infrequent Reed-Sternberg-like cells. Immunohistochemical assessment of the aforementioned tumor using CD3, CD8, CD5, CD20, and CD30 confirmed the T cell proliferation line and the monomorphic epitheliotropic intestinal T-cell lymphoma diagnosis. LESSONS The current report highlights the importance of early diagnosis of MEITL owing to its poor prognosis and presents histopathological features that help distinguish MEITL from inflammatory bowel diseases and less aggressive T-cell lymphomas.
Collapse
Affiliation(s)
- Mădălina Boșoteanu
- Faculty of Medicine, “Ovidius” University of Constanta, Romania
- Department of Clinical Pathology, “Sf. Apostol Andrei” Emergency County Hospital, Constanta, Romania
| | - Miruna Cristian
- Faculty of Medicine, “Ovidius” University of Constanta, Romania
- Department of Clinical Pathology, “Sf. Apostol Andrei” Emergency County Hospital, Constanta, Romania
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology - CEDMOG, “Ovidius” University of Constanta, Romania
- * Correspondence: Miruna Cristian, Department of Pathology, Emergency County Hospital ”Sf. Apostol Andrei”, Constanta, 145, Bd. Tomis, Constanta 900591, Romania (e-mail: )
| | - Mariana Așchie
- Department of Clinical Pathology, “Sf. Apostol Andrei” Emergency County Hospital, Constanta, Romania
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology - CEDMOG, “Ovidius” University of Constanta, Romania
- Academy of Medical Sciences, Bucharest, Romania
| | - Mariana Deacu
- Faculty of Medicine, “Ovidius” University of Constanta, Romania
- Department of Clinical Pathology, “Sf. Apostol Andrei” Emergency County Hospital, Constanta, Romania
| | - Anca Florentina Mitroi
- Department of Clinical Pathology, “Sf. Apostol Andrei” Emergency County Hospital, Constanta, Romania
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology - CEDMOG, “Ovidius” University of Constanta, Romania
| | - Costel Stelian Brînzan
- Department of Clinical Pathology, “Sf. Apostol Andrei” Emergency County Hospital, Constanta, Romania
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology - CEDMOG, “Ovidius” University of Constanta, Romania
| | - Gabriela Izabela Bălțătescu
- Department of Clinical Pathology, “Sf. Apostol Andrei” Emergency County Hospital, Constanta, Romania
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology - CEDMOG, “Ovidius” University of Constanta, Romania
| |
Collapse
|
44
|
IRF2 Cooperates with Phosphoprotein of Spring Viremia of Carp Virus to Suppress Antiviral Response in Zebrafish. J Virol 2022; 96:e0131422. [PMID: 36314827 PMCID: PMC9683000 DOI: 10.1128/jvi.01314-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
IFN regulatory factor (IRF) 2 belongs to the IRF1 subfamily, and its functions are not yet fully understood. In this study, we showed that IRF2a was a negative regulator of the interferon (IFN) response induced by spring viremia of carp virus (SVCV). Irf2a-/- knockout zebrafish were less susceptible to SVCV than wild-type fish. Transcriptomic analysis reveals that differentially expressed genes (DEGs) in the irf2a-/- and irf2a+/+ cells derived caudal fins were mainly involved in cytokine-cytokine receptor interaction, mitogen-activated protein kinase (MAPK) signaling pathway, and transforming growth factor-beta (TGF-beta) signaling pathway. Interestingly, the basal expression levels of interferon stimulating genes (ISGs), including pkz, mx, apol, and stat1 were higher in the irf2a-/- cells than irf2a+/+ cells, suggesting that they may contribute to the increased viral resistance of the irf2a-/- cells. Overexpression of IRF2a inhibited the activation of ifnφ1 and ifnφ3 induced by SVCV and poly(I:C) in the epithelioma papulosum cyprini (EPC) cells. Further, it was found that SVCV phosphoprotein (SVCV-P) could interact with IRF2a to promote IRF2a nuclear translocation and protein stability via suppressing K48-linked ubiquitination of IRF2a. Both IRF2a and SVCV-P not only destabilized STAT1a but reduced its translocation into the nucleus. Our work demonstrates that IRF2a cooperates with SVCV-P to suppress host antiviral response against viral infection in zebrafish. IMPORTANCE Interferon regulatory factors (IRFs) are central in the regulation of interferon-mediated antiviral immunity. Here, we reported that IRF2a suppressed interferon response and promoted virus replication in zebrafish. The suppressive effects were enhanced by the phosphoprotein of the spring viremia of carp virus (SVCV) via inhibition of K48-linked ubiquitination of IRF2a. IRF2a and SVCV phosphoprotein cooperated to degrade STAT1 and block its nuclear translocation. Our work demonstrated that IRFs and STATs were targeted by the virus through posttranslational modifications to repress interferon-mediated antiviral response in lower vertebrates.
Collapse
|
45
|
Mung KL, Meinander A, Koskinen PJ. PIM
kinases phosphorylate lactate dehydrogenase A at serine 161 and suppress its nuclear ubiquitination. FEBS J 2022; 290:2489-2502. [PMID: 36239424 DOI: 10.1111/febs.16653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/14/2022] [Accepted: 10/13/2022] [Indexed: 11/07/2022]
Abstract
Lactate dehydrogenase A (LDHA) is a glycolytic enzyme catalysing the reversible conversion of pyruvate to lactate. It has been implicated as a substrate for PIM kinases, yet the relevant target sites and functional consequences of phosphorylation have remained unknown. Here, we show that all three PIM family members can phosphorylate LDHA at serine 161. When we investigated the physiological consequences of this phosphorylation in PC3 prostate cancer and MCF7 breast cancer cells, we noticed that it suppressed ubiquitin-mediated degradation of nuclear LDHA and promoted interactions between LDHA and 14-3-3 proteins. By contrast, in CRISPR/Cas9-edited knock-out cells lacking all three PIM family members, ubiquitination of nuclear LDHA was dramatically increased followed by its decreased expression. Our data suggest that PIM kinases support nuclear LDHA expression and activities by promoting phosphorylation-dependent interactions of LDHA with 14-3-3ε, which shields nuclear LDHA from ubiquitin-mediated degradation.
Collapse
Affiliation(s)
| | - Annika Meinander
- Faculty of Science and Engineering, Cell Biology, BioCity Åbo Akademi University Turku Finland
| | | |
Collapse
|
46
|
Aboukhatwa SM, Ibrahim AO, Aoyama H, Al-Behery AS, Shaldam MA, El-Ashmawy G, Tawfik HO. Nicotinonitrile-derived apoptotic inducers: Design, synthesis, X-ray crystal structure and Pim kinase inhibition. Bioorg Chem 2022; 129:106126. [PMID: 36108589 DOI: 10.1016/j.bioorg.2022.106126] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/24/2022] [Accepted: 09/01/2022] [Indexed: 12/29/2022]
Abstract
Although a plethora of targeted anticancer small molecule drugs became available, the low response rate and drug resistance imply the continuous need for expanding the anticancer chemical space. In this study, a novel series of nicotinonitrile derivatives was designed, synthesized and evaluated for cytotoxic activities in HepG2 and MCF-7 cells. All derivatives showed high to moderate cytotoxic activity against both cell lines, with cell-type and chemotype-dependent cytotoxic potential. The normal HEK-293 T cells were ca. 50-fold less susceptible to the cytotoxic effect of the inhibitors. The in vitro enzyme inhibitory activity of selected active cytotoxic derivatives 8c, 8e, 9a, 9e and 12 showed that they have sub- to one digit micromolar 50 % inhibitory concentration (IC50) against the three Pim kinase isoforms, with 8e being the most potent (IC50 ≤ 0.28 μM against three Pim kinases), comparable to the pan kinase inhibitor, Staurosporine. In HepG2, 8e induced cell cycle arrest at the G2/M phase. Apoptotic mechanistic studies with 8c and 8e in HepG2 cells, indicated a significant upregulation in both P53 and caspase-3 relative gene expression, as well as increased Bax/Bcl-2 protein expression level. Further, docking studies combined with molecular dynamic simulation showed a stable complex with high binding affinity of 8e to Pim-1 kinase; exploiting a negative electrostatic potential surface interaction with the added dimethyl amino group in the new compounds. Moreover, in silico ADME profile prediction indicated that all compounds are orally bioavailable and most of them can penetrate the blood-brain barrier. This study presents novel nicotinonitrile derivatives as auspicious hits for further optimization as antiproliferative agents against liver cancer cells and promising pan Pim kinase inhibitors at submicromolar concentrations.
Collapse
Affiliation(s)
- Shaimaa M Aboukhatwa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt.
| | - Amera O Ibrahim
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Hiroshi Aoyama
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Ahmed S Al-Behery
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Moataz A Shaldam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Ghada El-Ashmawy
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Haytham O Tawfik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| |
Collapse
|
47
|
Development of novel cyanopyridines as PIM-1 kinase inhibitors with potent anti-prostate cancer activity: Synthesis, biological evaluation, nanoparticles formulation and molecular dynamics simulation. Bioorg Chem 2022; 129:106122. [PMID: 36084418 DOI: 10.1016/j.bioorg.2022.106122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/18/2022] [Accepted: 08/30/2022] [Indexed: 11/21/2022]
Abstract
Recently, inhibition of PIM-1 enzyme is found as an effective route in the fight against proliferation of cancer. Herein, new cyano pyridines that target PIM-1 kinase were designed, synthesized, and biologically evaluated. Two prostate cell lines were used to examine each of the new compounds in vitro for anticancer activity, namely, PC-3 and DU-145. The cyanopyridine derivatives 2b, 3b, 4b, and 5b with an N,N-dimethyl phenyl group at the pyridine ring's 4-position showed considerable antitumor effect on the tested cell lines. Additionally, the high selectivity index revealed that these compounds were less cytotoxic to normal WI-38 cells. Furthermore, they exhibited strong inhibitory effect on PIM-1 having IC50 = 0.248, 0.13, 0.326 and 0.245 μM, respectively. The most powerful derivatives2b, 3b, 4b, and 5b, were chosen for further examination of their inhibitory potential on both kinases (PIM-2 and PIM-3). Interestingly, upon loading compound 3b in a cubosomes formulation with nanometric size, improvements in cytotoxicity and inhibitory effect on PIM-1 kinase were observed. In silico ADME parameters study revealed that compound 3b is orally bioavailable without penetration to the blood-brain barrier. Further, the docking simulations revealed the ability of our potent compounds to well accommodate the PIM-1 kinase active site forming stable complexes. In a 150 ns MD simulation, the most powerful PIM-1 inhibitor 3b produced stable complex with the PIM-1 enzyme (RMSD = 1.76). Furthermore, the 3b-PIM-1 complex has the low binding free energy (-242.2 kJ/mol) according to the MM-PBSA calculations.
Collapse
|
48
|
Casuscelli F, Ardini E, Avanzi N, Badari A, Casale E, Disingrini T, Donati D, Ermoli A, Felder ER, Galvani A, Isacchi A, Menichincheri M, Montemartini M, Orrenius C, Piutti C, Salom B, Papeo G. Stereoselective synthesis of 3,4-dihydropyrrolo[1,2-a]pyrazin-1(2H)-one derivatives as PIM kinase inhibitors inspired from marine alkaloids. Chirality 2022; 34:1437-1452. [PMID: 35959859 DOI: 10.1002/chir.23501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 11/11/2022]
Abstract
We previously demonstrated that natural product-inspired 3,4-dihydropyrrolo[1,2-a]pyrazin-1(2H)-ones derivatives delivered potent and selective PIM kinases inhibitors however with non-optimal ADME/PK properties and modest oral bioavailability. Herein, we describe a structure-based scaffold decoration and a stereoselective approach to this chemical class. The synthesis, structure-activity relationship studies, chiral analysis, and pharmacokinetic data of compounds from this inhibitor class are presented herein. Compound 20c demonstrated excellent potency on PIM1 and PIM2 with exquisite kinases selectivity and PK properties that efficiently and dose-dependently promoted c-Myc degradation and appear to be promising lead compounds for further development.
Collapse
Affiliation(s)
- Francesco Casuscelli
- Oncology, Nerviano Medical Sciences, Nerviano (Mi), Italy.,Accelera, Nerviano Medical Sciences, Nerviano, Milan, Italy
| | - Elena Ardini
- Oncology, Nerviano Medical Sciences, Nerviano (Mi), Italy
| | - Nilla Avanzi
- Oncology, Nerviano Medical Sciences, Nerviano (Mi), Italy
| | | | - Elena Casale
- Oncology, Nerviano Medical Sciences, Nerviano (Mi), Italy
| | | | - Daniele Donati
- Oncology, Nerviano Medical Sciences, Nerviano (Mi), Italy
| | | | | | - Arturo Galvani
- Oncology, Nerviano Medical Sciences, Nerviano (Mi), Italy
| | | | | | | | | | - Claudia Piutti
- Accelera, Nerviano Medical Sciences, Nerviano, Milan, Italy
| | - Barbara Salom
- Oncology, Nerviano Medical Sciences, Nerviano (Mi), Italy
| | - Gianluca Papeo
- Oncology, Nerviano Medical Sciences, Nerviano (Mi), Italy
| |
Collapse
|
49
|
Genomic Mutation Landscape of Primary Breast Lymphoma: Next-Generation Sequencing Analysis. DISEASE MARKERS 2022; 2022:6441139. [PMID: 35937947 PMCID: PMC9355762 DOI: 10.1155/2022/6441139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/03/2022] [Indexed: 11/18/2022]
Abstract
Primary breast lymphoma (PBL) is a rare subtype of non-Hodgkin's lymphoma (NHL) with rapid progression and high risk of central nervous system metastasis. We have investigated 40 PBL patients retrospectively, and 16 of them were sequenced by a target panel of 112 genes related with lymphoma. Next-generation sequencing (NGS) identified 203 mutations spanning 35 genes and revealed seven potential protein-changing genes (PIM1, MYD88, DTX1, CD79B, KMT2D, TNFAIP3, and ITPKB) with high frequency, referring crucial roles in lymphomagenesis. Our result suggested that PIM1 mutation is correlated with the age and pathological type of PBL patients. Gene TNFAIP3 and KMT2D mutation is only related to the pathological type and primary site, respectively. These high-mutant genes detected in PBL indicated a tendency to shorten overall survival (OS) and progression-free survival (PFS), which may lead to poor prognosis. Furthermore, the nuclear factor kappa-B (NF-κB) pathway and related regulatory factors are essential for the development of targeted therapy as well.
Collapse
|
50
|
Ding J, Yang X, Huang H, Wang B. Role of PIM2 in acute lung injury induced by sepsis. Exp Ther Med 2022; 24:543. [PMID: 35978927 PMCID: PMC9366265 DOI: 10.3892/etm.2022.11480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 03/28/2022] [Indexed: 11/06/2022] Open
Affiliation(s)
- Juncai Ding
- Department of Pediatrics, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
| | - Xiufang Yang
- Department of Pediatrics, Zhongshan People's Hospital Affiliated to Sun Yat‑sen University, Zhongshan, Guangdong 528403, P.R. China
| | - Huijuan Huang
- Department of Pediatrics, Zhongshan People's Hospital Affiliated to Sun Yat‑sen University, Zhongshan, Guangdong 528403, P.R. China
| | - Bo Wang
- Department of Pediatrics, Guangdong Women and Children Hospital, Guangzhou, Guangdong 511442, P.R. China
| |
Collapse
|