1
|
Yang Y, Qiu J, Kong J, Cao Y, Liu Y, Chen S, Wen Z, Sun F, Cao X. Development of a UPLC-MS/MS method for quantifying KPT-335 (Verdinexor) in feline plasma for a study of PK. Front Vet Sci 2024; 11:1438295. [PMID: 39132444 PMCID: PMC11310113 DOI: 10.3389/fvets.2024.1438295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 07/09/2024] [Indexed: 08/13/2024] Open
Abstract
KPT-335 (Verdinexor) is a novel SINE that potently inhibits the nucleoprotein Exportin 1 (XPO1/CRM1) of tumor cell lines and reduces the replication level of the influenza virus. KPT-335 is mainly used for the treatment of canine tumors. Drugs for the effective treatment of feline tumors are currently unavailable in China. KPT-335 may have potential in the treatment of cat tumors. However, the effects of KPT-335 in cats are unreported, and no relevant methodology has been established for pharmacokinetic studies. In this study, a UPLC-MS/MS method was developed to determine KPT-335 concentrations in cat plasma, followed by pharmacokinetic studies. Briefly, plasma proteins are precipitated with acetonitrile, and the supernatant was collected for detection after centrifugation. The linearity for KPT-335 in cat plasma was in the range of 5-1,000 ng/mL. Satisfactory accuracy and precision were obtained. The intra-day accuracy was between -4.10% and 10.48%, the precision was ≤4.65%; the inter-day accuracy was between -0.11% and 8.09%, and the precision was ≤5.85%. Intra-day and inter-day accuracy and precision were within regulatory limits. The results of preliminary pharmacokinetic studies were as follows: Tmax was 1.46 ± 0.51 h; Cmax was 239.54 ± 190.60 ng·mL-1; T1/2 was 5.16 ± 2.30 h; AUC0-t was 1439.85 ± 964.64 ng·mL-1·h. The AUC0-∞ was 1589.82 ± 1003.75 ng·mL-1·h. The purpose of this study was to develop a rapid and simple UPLC-MS/MS method to detect KPT-335 concentration in cat plasma and to conduct preliminary pharmacokinetic studies to support the future application of KPT-335 in felines.
Collapse
Affiliation(s)
- Yuxin Yang
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jicheng Qiu
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jingyuan Kong
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yuying Cao
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yu Liu
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Sumeng Chen
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Zeyu Wen
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Feifei Sun
- College of Animal Science and Technology, Anhui Agricultural University, Hefei, China
| | - Xingyuan Cao
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
2
|
Munoz J, Deshpande A, Rimsza L, Nowakowski GS, Kurzrock R. Navigating between Scylla and Charybdis: A roadmap to do better than Pola-RCHP in DLBCL. Cancer Treat Rev 2024; 124:102691. [PMID: 38310754 DOI: 10.1016/j.ctrv.2024.102691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/09/2024] [Accepted: 01/15/2024] [Indexed: 02/06/2024]
Abstract
In treating diffuse large B-cell lymphoma (DLBCL), oncologists have traditionally relied on the chemotherapy backbone of R-CHOP as standard of care. The two dangers that the hematologist must navigate between are the aggressive disease (Charybdis that in the absence of therapy systematically destroys all the ships) and the toxicity of the therapies (Scylla with its six monstrous heads that devours six crew members at a time), and hematologists have to navigate very carefully between both. Therefore, three different strategies were employed with the goal of improving cure rates: de-escalating regimens, escalating regimens, and replacement strategies. With a replacement strategy, a breakthrough in treatment was identified with polatuzumab vedotin (anti-CD79B antibody/drug conjugate) plus R-CHP. However, this regimen still did not achieve the elusive universal cure rate. Fortunately, advances in genomic and molecular technologies have allowed for an improved understanding of the heterogenous molecular nature of the disease to help develop and guide more targeted, precise, and individualized therapies. Additionally, new pharmaceutical technologies have led to the development of novel cellular therapies, such as chimeric antigen receptor (CAR) T-cell therapy, that could be more effective, while maintaining an acceptable safety profile. Thus, we aim to highlight the challenges of DLBCL therapy as well as the need to address therapeutic regimens eventually no longer tethered to a chemotherapy backbone. In the intersection of artificial intelligence and multi-omics (genomics, epigenomics, transcriptomics, proteomics, metabolomics), we propose the need to analyze multidimensional biologic datato launch a decisive attack against DLBCL in a targeted and individualized fashion.
Collapse
Affiliation(s)
- Javier Munoz
- Department of Hematology, Mayo Clinic Arizona, Phoenix, AZ, USA
| | | | - Lisa Rimsza
- Department of Pathology, Mayo Clinic Arizona, Phoenix, AZ, USA
| | - Grzegorz S Nowakowski
- Department of Internal Medicine, Division of Hematology, Mayo Clinic College of Medicine and Mayo Foundation, Rochester, MN, USA
| | - Razelle Kurzrock
- Medical College of Wisconsin, Milwaukee, WI, USA; WIN Consortium, Paris, France; University of Nebraska, Omaha, Nebraska, USA
| |
Collapse
|
3
|
Huang Q, Zhao R, Xu L, Hao X, Tao S. Treatment of multiple myeloma with selinexor: a review. Ther Adv Hematol 2024; 15:20406207231219442. [PMID: 38186637 PMCID: PMC10771077 DOI: 10.1177/20406207231219442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/20/2023] [Indexed: 01/09/2024] Open
Abstract
Over the last 20 years, breakthroughs in accessible therapies for the treatment of multiple myeloma (MM) have been made. Nevertheless, patients with MM resistant to immunomodulatory drugs, proteasome inhibitors, and anti-CD38 monoclonal antibodies have a very poor outcome. Therefore, it is necessary to explore new drugs for the treatment of MM. This review summarizes the mechanism of action of selinexor, relevant primary clinical trials, and recent developments in both patients with relapsed/refractory myeloma and patients with newly diagnosed myeloma. Selinexor may be useful for the treatment of refractory MM.
Collapse
Affiliation(s)
- Qianlei Huang
- Department of Hematology, The First Affiliated Hospital of Hainan Medical University, Hainan Province Clinical Medical Center, Haikou, China
| | - Ranran Zhao
- Department of Hematology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Lu Xu
- Department of Hematology, The First Affiliated Hospital of Hainan Medical University, Hainan Province Clinical Medical Center, Haikou, China
| | - Xinbao Hao
- Department of Hematology, The First Affiliated Hospital of Hainan Medical University, Hainan Province Clinical Medical Center, Haikou, China
| | - Shi Tao
- Department of Hematology, The First Affiliated Hospital of Hainan Medical University, Hainan Province Clinical Medical Center, 31 Longhua Road, Haikou 570102, China
| |
Collapse
|
4
|
Trkulja KL, Manji F, Kuruvilla J, Laister RC. Nuclear Export in Non-Hodgkin Lymphoma and Implications for Targeted XPO1 Inhibitors. Biomolecules 2023; 13:111. [PMID: 36671496 PMCID: PMC9855521 DOI: 10.3390/biom13010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/21/2022] [Accepted: 12/24/2022] [Indexed: 01/06/2023] Open
Abstract
Exportin-1 (XPO1) is a key player in the nuclear export pathway and is overexpressed in almost all cancers. This is especially relevant for non-Hodgkin lymphoma (NHL), where high XPO1 expression is associated with poor prognosis due to its oncogenic role in exporting proteins and RNA that are involved in cancer progression and treatment resistance. Here, we discuss the proteins and RNA transcripts that have been identified as XPO1 cargo in NHL lymphoma including tumour suppressors, immune modulators, and transcription factors, and their implications for oncogenesis. We then highlight the research to date on XPO1 inhibitors such as selinexor and other selective inhibitors of nuclear export (SINEs), which are used to treat some cases of non-Hodgkin lymphoma. In vitro, in vivo, and clinical studies investigating the anti-cancer effects of SINEs from bench to bedside, both as a single agent and in combination, are also reported. Finally, we discuss the limitations of the current research landscape and future directions to better understand and improve the clinical utility of SINE compounds in NHL.
Collapse
Affiliation(s)
- Kyla L. Trkulja
- Institute of Medical Science, University of Toronto, 27 King’s College Circle, Toronto, ON M5S 1A1, Canada
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, ON M5G 2C1, Canada
| | - Farheen Manji
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, ON M5G 2C1, Canada
| | - John Kuruvilla
- Institute of Medical Science, University of Toronto, 27 King’s College Circle, Toronto, ON M5S 1A1, Canada
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, ON M5G 2C1, Canada
| | - Rob C. Laister
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, 610 University Avenue, Toronto, ON M5G 2C1, Canada
| |
Collapse
|
5
|
Ben Barouch S, Bhella S, Kridel R, Kukreti V, Prica A, Crump M, Kuruvilla J. Long-term follow up of relapsed/refractory non-Hodgkin lymphoma patients treated with single-agent selinexor – a retrospective, single center study. Leuk Lymphoma 2022; 63:1879-1886. [DOI: 10.1080/10428194.2022.2047674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Sharon Ben Barouch
- Department of Medicine, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada
- Division of Hematology, Assuta Ashdod University Hospital, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Sita Bhella
- Department of Medicine, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada
| | - Robert Kridel
- Department of Medicine, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada
| | - Vishel Kukreti
- Department of Medicine, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada
| | - Anca Prica
- Department of Medicine, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada
| | - Michel Crump
- Department of Medicine, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada
| | - John Kuruvilla
- Department of Medicine, Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University of Toronto, Toronto, Canada
| |
Collapse
|
6
|
Yu H, Wu S, Liu S, Li X, Gai Y, Lin H, Wang Y, Edwards H, Ge Y, Wang G. Venetoclax enhances DNA damage induced by XPO1 inhibitors: A novel mechanism underlying the synergistic antileukaemic effect in acute myeloid leukaemia. J Cell Mol Med 2022; 26:2646-2657. [PMID: 35355406 PMCID: PMC9077288 DOI: 10.1111/jcmm.17274] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 11/26/2022] Open
Abstract
Acute myeloid leukaemia (AML) is a highly heterogeneous haematologic malignancy with poor prognosis. We previously showed synergistic antileukaemic interaction between exportin 1 (XPO1) inhibitor KPT-330 (Selinexor) and Bcl-2 inhibitor venetoclax (ABT-199) in preclinical models of AML, which was partially meditated by Mcl-1, although the full mechanism of action remains unknown. In this study, using real-time RT-PCR and Western blot analysis, we show that inhibition of XPO1 via KPT-330 or KPT-8602 (Eltanexor) decreases the mRNA and protein levels of c-Myc, CHK1, WEE1, RAD51 and RRM2. KPT-330 and KPT-8602 induce DNA damage, as determined by alkaline comet assay. In addition, we demonstrate that venetoclax enhances KPT-330- and KPT-8602-induced DNA damage, likely through inhibition of DNA damage repair. This study provides new insight into the molecular mechanism underlying the synergistic antileukaemic activity between venetoclax and XPO1 inhibitors against AML. Our data support the clinical evaluation of this promising combination therapy for the treatment of AML.
Collapse
Affiliation(s)
- Hanxi Yu
- National Engineering Laboratory for AIDS VaccineKey Laboratory for Molecular Enzymology and Engineeringthe Ministry of EducationSchool of Life SciencesJilin UniversityChangchunChina
| | - Shuangshuang Wu
- National Engineering Laboratory for AIDS VaccineKey Laboratory for Molecular Enzymology and Engineeringthe Ministry of EducationSchool of Life SciencesJilin UniversityChangchunChina
| | - Shuang Liu
- National Engineering Laboratory for AIDS VaccineKey Laboratory for Molecular Enzymology and Engineeringthe Ministry of EducationSchool of Life SciencesJilin UniversityChangchunChina
| | - Xinyu Li
- National Engineering Laboratory for AIDS VaccineKey Laboratory for Molecular Enzymology and Engineeringthe Ministry of EducationSchool of Life SciencesJilin UniversityChangchunChina
| | - Yuqing Gai
- National Engineering Laboratory for AIDS VaccineKey Laboratory for Molecular Enzymology and Engineeringthe Ministry of EducationSchool of Life SciencesJilin UniversityChangchunChina
| | - Hai Lin
- Department of Hematology and Oncologythe First Hospital of Jilin UniversityChangchunChina
| | - Yue Wang
- Department of Pediatric Hematology and Oncologythe First Hospital of Jilin UniversityChangchunChina
| | - Holly Edwards
- Department of Oncology and Molecular Therapeutics ProgramBarbara Ann Karmanos Cancer InstituteWayne State University School of MedicineDetroitMichiganUSA
| | - Yubin Ge
- Department of Oncology and Molecular Therapeutics ProgramBarbara Ann Karmanos Cancer InstituteWayne State University School of MedicineDetroitMichiganUSA
| | - Guan Wang
- National Engineering Laboratory for AIDS VaccineKey Laboratory for Molecular Enzymology and Engineeringthe Ministry of EducationSchool of Life SciencesJilin UniversityChangchunChina
| |
Collapse
|
7
|
Danilov AV, Magagnoli M, Matasar MJ. Translating the Biology of Diffuse Large B-cell Lymphoma Into Treatment. Oncologist 2022; 27:57-66. [PMID: 35305092 PMCID: PMC8842307 DOI: 10.1093/oncolo/oyab004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 11/17/2021] [Indexed: 12/16/2022] Open
Abstract
Abstract
Diffuse large B-cell lymphoma (DLBCL) is characterized by clinical and molecular heterogeneity; however, this heterogeneity is rarely taken into account by standard-of-care treatment approaches. While the disease was traditionally classified based on transcriptome signatures purporting the tumor cell of origin, recent classification systems have further differentiated these subtypes into clusters based on molecular and genetic features. Alongside a better understanding of the biology of the disease and the signaling pathways involved, emerging therapeutic agents may be better aimed at attacking distinct disease subsets. It is hoped that molecular subtyping at diagnosis will allow patients to be allocated to the appropriate treatment that targets their specific disease subtype, thus advancing the promise of precision medicine in lymphoma, an approach that is most needed. For high-risk disease subsets, this is particularly important, and much research is still needed to develop agents effective in this population. Here, we review recent advances in DLBCL biology and how they can be translated into clinical care.
Collapse
Affiliation(s)
| | - Massimo Magagnoli
- Humanitas Cancer Center, Humanitas Clinical and Research Center – IRCCS, Rozzano, Milan, Italy
| | | |
Collapse
|
8
|
Kim E, Mordovkina DA, Sorokin A. Targeting XPO1-Dependent Nuclear Export in Cancer. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:S178-S70. [PMID: 35501995 DOI: 10.1134/s0006297922140140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 09/29/2021] [Accepted: 10/08/2021] [Indexed: 06/14/2023]
Abstract
Nucleocytoplasmic transport of macromolecules is tightly regulated in eukaryotic cells. XPO1 is a transport factor responsible for the nuclear export of several hundred protein and RNA substrates. Elevated levels of XPO1 and recurrent mutations have been reported in multiple cancers and linked to advanced disease stage and poor survival. In recent years, several novel small-molecule inhibitors of XPO1 were developed and extensively tested in preclinical cancer models and eventually in clinical trials. In this brief review, we summarize the functions of XPO1, its role in cancer, and the latest results of clinical trials of XPO1 inhibitors.
Collapse
Affiliation(s)
- Ekaterina Kim
- The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Daria A Mordovkina
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Alexey Sorokin
- The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
9
|
Liu S, Qiao W, Sun Q, Luo Y. Chromosome Region Maintenance 1 (XPO1/CRM1) as an Anticancer Target and Discovery of Its Inhibitor. J Med Chem 2021; 64:15534-15548. [PMID: 34669417 DOI: 10.1021/acs.jmedchem.1c01145] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Chromosome region maintenance 1 (CRM1) is a major nuclear export receptor protein and contributes to cell homeostasis by mediating the transport of cargo from the nucleus to the cytoplasm. CRM1 is a therapeutic target comprised of several tumor types, including osteosarcoma, multiple myeloma, gliomas, and pancreatic cancer. In the past decade, dozens of CRM1 inhibitors have been discovered and developed, including KPT-330, which received FDA approval for multiple myeloma (MM) and diffuse large B-cell lymphoma (DLBCL) in 2019 and 2020, respectively. This review summarizes the biological functions of CRM1, the current understanding of the role CRM1 plays in cancer, the discovery of CRM1 small-molecule inhibitors, preclinical and clinical studies on KPT-330, and other recently developed inhibitors. A new CRM1 inhibition mechanism and structural dynamics are discussed. Through this review, we hope to guide the future design and optimization of CRM1 inhibitors.
Collapse
Affiliation(s)
- Song Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenliang Qiao
- Lung Cancer Center, Laboratory of Lung Cancer, West China Medical School, Sichuan University, Chengdu 610041, China
| | - Qingxiang Sun
- State Key Laboratory of Biotherapy, Department of Pathology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Youfu Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
10
|
Seymour EK, Khan HY, Li Y, Chaker M, Muqbil I, Aboukameel A, Ramchandren R, Houde C, Sterbis G, Yang J, Bhutani D, Pregja S, Reichel K, Huddlestun A, Neveux C, Corona K, Landesman Y, Shah J, Kauffman M, Shacham S, Mohammad RM, Azmi AS, Zonder JA. Selinexor in Combination with R-CHOP for Frontline Treatment of Non-Hodgkin Lymphoma: Results of a Phase I Study. Clin Cancer Res 2021; 27:3307-3316. [PMID: 33785483 PMCID: PMC8197746 DOI: 10.1158/1078-0432.ccr-20-4929] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/12/2021] [Accepted: 03/26/2021] [Indexed: 12/31/2022]
Abstract
PURPOSE The nuclear exporter protein exportin-1 (XPO1) is overexpressed in non-Hodgkin lymphoma (NHL) and correlates with poor prognosis. We evaluated enhancing R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone) activity in NHL by targeted inhibition of XPO1 using the selective inhibitor of nuclear export (SINE) compounds. PATIENTS AND METHODS We evaluated the antitumor activity of SINE compounds in combination with CHO chemotherapy in vitro and in vivo. Newly diagnosed NHL patients in a phase I dose-escalation study received R-CHOP for 6 cycles with weekly selinexor (60, 80, and 100 mg), then selinexor maintenance therapy for one year. RT-PCR, Western blotting, and RNA sequencing were performed on patient blood samples. RESULTS SINE compounds synergized with CHO in vitro in NHL cell lines and in vivo in our murine xenograft model. In our phase I study, selinexor was dosed at 60 mg (n = 6) and 80 mg (n = 6). The most common adverse events (AE) among 12 patients were fatigue (67%) and nausea (100%). Grade 3-4 AEs were infrequent. Ten evaluable patients had an overall response rate of 100% and complete remission rate of 90% with sustained remissions (median follow-up: 476 days). Maximally tolerated dose was not reached; however, the recommended phase II dose was 60 mg selinexor weekly after evaluating tolerability and discontinuation rates for each dose cohort. Analysis of patient blood samples revealed downregulation of XPO1 and several prosurvival markers. CONCLUSIONS SINE compounds enhance the activity of CHO in vitro and in vivo. Selinexor in combination with R-CHOP was generally well tolerated and showed encouraging efficacy in NHL (NCT03147885).
Collapse
Affiliation(s)
- Erlene K Seymour
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Husain Yar Khan
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Yiwei Li
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Mahmoud Chaker
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Irfana Muqbil
- Department of Chemistry, University of Detroit Mercy, Detroit, Michigan
| | - Amro Aboukameel
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | | | | | | | - Jay Yang
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Divaya Bhutani
- Department of Oncology, Columbia University, New York, New York
| | | | - Kathy Reichel
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | | | | | - Kelly Corona
- Karyopharm Therapeutics Inc., Newton, Massachusetts
| | | | - Jatin Shah
- Karyopharm Therapeutics Inc., Newton, Massachusetts
| | | | | | - Ramzi M Mohammad
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan
| | - Asfar S Azmi
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan.
| | - Jeffrey A Zonder
- Department of Oncology, Wayne State University School of Medicine, Detroit, Michigan.
| |
Collapse
|
11
|
Pharmacokinetics of Selinexor: The First-in-Class Selective Inhibitor of Nuclear Export. Clin Pharmacokinet 2021; 60:957-969. [PMID: 33928519 DOI: 10.1007/s40262-021-01016-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2021] [Indexed: 02/07/2023]
Abstract
The functionality of many tumor suppressor proteins (TSPs) and oncoprotein transcript RNAs largely depend on their location within the cell. The exportin 1 complex (XPO1) transports many of these molecules from the nucleus into the cytoplasm, thereby inactivating TSPs and activating oncoprotein transcript RNAs. Aberrations of these molecules or XPO1 can increase this translocation process, leading to oncogenesis. Selinexor is a selective inhibitor of nuclear export and is an active agent in various malignancies. It is currently approved for relapsed or refractory diffuse large B-cell lymphoma as well as multiple myeloma. Following oral administration, selinexor exhibits linear and time-independent pharmacokinetics (PK) across a wide dose range, with moderately rapid absorption (time to reach maximum concentration [Tmax] 2-4 h) and moderate elimination (half-life [t½] 6-8 h). Selinexor PK observed among patients with various solid tumors and hematologic malignancies is consistent irrespective of disease. Population PK analyses demonstrated the PK of selinexor is well-described by a two-compartment model, with significant relationships for body weight on apparent clearance and apparent central volume of distribution, and sex on apparent clearance, which result in clinically non-relevant changes in exposure. These analyses also suggested selinexor PK are not significantly impacted by various concomitant medications and organ dysfunction (hepatic/renal). The time course of selinexor PK appears similar between pediatric and adult patients, although higher exposures have been observed among pediatric patients relative to adults administered similar milligrams per meter squared (mg/m2) doses of selinexor.
Collapse
|
12
|
Azmi AS, Uddin MH, Mohammad RM. The nuclear export protein XPO1 - from biology to targeted therapy. Nat Rev Clin Oncol 2021; 18:152-169. [PMID: 33173198 DOI: 10.1038/s41571-020-00442-4] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2020] [Indexed: 12/23/2022]
Abstract
Exportin 1 (XPO1), also known as chromosome region maintenance protein 1, plays a crucial role in maintaining cellular homeostasis via the regulated export of a range of cargoes, including proteins and several classes of RNAs, from the nucleus to the cytoplasm. Dysregulation of this protein plays a pivotal role in the development of various solid and haematological malignancies. Furthermore, XPO1 is associated with resistance to several standard-of-care therapies, including chemotherapies and targeted therapies, making it an attractive target of novel cancer therapies. Over the years, a number of selective inhibitors of nuclear export have been developed. However, only selinexor has been clinically validated. The novel mechanism of action of XPO1 inhibitors implies a different toxicity profile to that of other agents and has proved challenging in certain settings. Nonetheless, data from clinical trials have led to the approval of the XPO1 inhibitor selinexor (plus dexamethasone) as a fifth-line therapy for patients with multiple myeloma and as a monotherapy for patients with relapsed and/or refractory diffuse large B cell lymphoma. In this Review, we summarize the progress and challenges in the development of nuclear export inhibitors and discuss the potential of emerging combination therapies and biomarkers of response.
Collapse
MESH Headings
- Antineoplastic Agents/therapeutic use
- Cell Line, Tumor
- Dexamethasone/therapeutic use
- Drug Resistance, Neoplasm/genetics
- Hematologic Neoplasms/drug therapy
- Hematologic Neoplasms/genetics
- Hematologic Neoplasms/pathology
- Humans
- Hydrazines/therapeutic use
- Karyopherins/antagonists & inhibitors
- Karyopherins/genetics
- Lymphoma, Large B-Cell, Diffuse/drug therapy
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/pathology
- Molecular Targeted Therapy
- Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors
- Receptors, Cytoplasmic and Nuclear/genetics
- Triazoles/therapeutic use
- Exportin 1 Protein
Collapse
Affiliation(s)
- Asfar S Azmi
- Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Mohammed H Uddin
- Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ramzi M Mohammad
- Karmanos Cancer Institute, Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
13
|
Horesh N, Weiler-Sagie M, Ringelstein-Harlev S. Single agent oral selinexor as a key to potential cure in refractory diffuse large B-cell lymphoma: case report and literature review. AMERICAN JOURNAL OF BLOOD RESEARCH 2021; 11:111-117. [PMID: 33796398 PMCID: PMC8010607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Relapsed/refractory diffuse large B-cell lymphoma (DLBCL) portends a poor prognosis, with an estimated overall survival of less than 6 months. In the presented case, a female patient with DLBCL refractory to multiple lines of therapy, including chimeric antigen receptor T-cells, was treated with single-agent selinexor, achieving partial response following 5 months of treatment, which allowed the patient to proceed to potentially curative allogeneic stem cell transplantion. This approach enabled the patient, who would otherwise have been considered a candidate for palliative care, to achieve the most prolonged complete response since her first lymphoma-specific treatment. This outcome implies that early identification of relapsed/refractory patients who may benefit most from this drug - either as a single agent or in drug combinations - is imperative.
Collapse
Affiliation(s)
- Nurit Horesh
- Department of Hematology and Bone Marrow Transplantation, Rambam Health Care CampusHaifa, Israel
| | | | | |
Collapse
|
14
|
Walker JS, Garzon R, Lapalombella R. Selinexor for advanced hematologic malignancies. Leuk Lymphoma 2020; 61:2335-2350. [DOI: 10.1080/10428194.2020.1775210] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Janek S. Walker
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Ramiro Garzon
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Rosa Lapalombella
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
15
|
Ben-Barouch S, Kuruvilla J. Selinexor (KTP-330) - a selective inhibitor of nuclear export (SINE): anti-tumor activity in diffuse large B-cell lymphoma (DLBCL). Expert Opin Investig Drugs 2019; 29:15-21. [PMID: 31847605 DOI: 10.1080/13543784.2020.1706087] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Introduction: Selinexor is a first-in-class, oral therapeutic that selectively inhibits nuclear export. It has received fast track designation from the FDA for the treatment of relapsed or refractory diffuse large B-cell lymphoma (DLBCL) recently, and continues to be evaluated as a potential treatment for DLBCL.Area covered: This article reviews the available data from clinical trials regarding the efficacy of selinexor in DLBCL and highlights the key toxicity issues and how they may best be managed. Ongoing and future studies in DLBCL are also discussed.Expert opinion: More translational studies are necessary to leverage the unique mechanism action and rationally inform the use of selinexor in combination strategies. There are several different genetic subtypes of DLBCL, but it is not clear if these classifications will identify patients that may benefit from targeted therapies. The broad potential mechanism of action of selinexor will require careful analysis to inform predictive or prognostic biomarkers. Further evaluation of selinexor in combination with standard lymphoma regimens could identify deliverable promising regimens. Future randomized trials are key for registration and to determine the optimal role for this first-in-class agent.
Collapse
Affiliation(s)
- Sharon Ben-Barouch
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Department of Medicine, University of Toronto, Toronto, Canada
| | - John Kuruvilla
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, Department of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
16
|
Allegra A, Innao V, Allegra AG, Leanza R, Musolino C. Selective Inhibitors of Nuclear Export in the Treatment of Hematologic Malignancies. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2019; 19:689-698. [PMID: 31543372 DOI: 10.1016/j.clml.2019.08.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/08/2019] [Accepted: 08/22/2019] [Indexed: 02/07/2023]
Abstract
The correct localization of molecules between nucleus and cytoplasm is fundamental for cellular homeostasis and is controlled by a bidirectional transport system. Exportin 1 (XPO1) regulates the passage of numerous cancer-related proteins. In this review, we summarize the development of a novel class of antitumor agents, known as selective inhibitors of nuclear export (SINEs). We report results of preclinical studies and clinical trials, and discuss the mechanism of action of SINEs and their effects in multiple myeloma, non-Hodgkin lymphomas, lymphoblastic leukemia, and acute and chronic myeloid leukemia. In the future, the numerous experimental studies currently underway will allow us to define the role of SINEs and will possibly permit these substances to be introduced into daily clinical practice.
Collapse
Affiliation(s)
- Alessandro Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi," University of Messina, Messina, Italy.
| | - Vanessa Innao
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi," University of Messina, Messina, Italy
| | - Andrea Gaetano Allegra
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi," University of Messina, Messina, Italy
| | - Rossana Leanza
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi," University of Messina, Messina, Italy
| | - Caterina Musolino
- Division of Hematology, Department of Human Pathology in Adulthood and Childhood "Gaetano Barresi," University of Messina, Messina, Italy
| |
Collapse
|
17
|
Pre-clinical anti-tumor activity of Bruton's Tyrosine Kinase inhibitor in Hodgkin's Lymphoma cellular and subcutaneous tumor model. Heliyon 2019; 5:e02290. [PMID: 31508518 PMCID: PMC6726720 DOI: 10.1016/j.heliyon.2019.e02290] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/31/2019] [Accepted: 08/08/2019] [Indexed: 11/21/2022] Open
Abstract
Bruton's Tyrosine Kinase (BTK) is a member of the TEC family and plays a central role in B-cell signaling, activation, proliferation and differentiation. Here we evaluated the impact of BTK inhibitor Ibrutinib on a panel of HL models in vitro and in vivo. Ibrutinib suppressed viability and induced apoptosis in 4 HL cell lines in a dose and time dependent manner. Molecular analysis showed induction of both apoptotic and autophagy markers. Ibrutinib treatment resulted in suppression of BTK and other downstream targets including PI3K, mTOR and RICTOR. Ibrutinib given at 50 mg/kg p.o daily for three weeks caused statistically significant inhibition of HL cell line derived subcutaneous xenografts (p < 0.01) in ICR-SCID mice. Molecular analysis of residual tumor tissue revealed down-regulation of BTK; its related markers and autophagy markers. Our studies are the first showing in vitro and in vivo action of BTK inhibition in classical HL. A phase II study examining the activity of ibrutinib in relapsed or refractory HL is currently enrolling (NCT02824029).
Collapse
|
18
|
Wang AY, Liu H. The past, present, and future of CRM1/XPO1 inhibitors. Stem Cell Investig 2019; 6:6. [PMID: 30976603 DOI: 10.21037/sci.2019.02.03] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 11/11/2018] [Indexed: 12/31/2022]
Abstract
Therapies targeted at inhibiting nucleo-cytoplasmic transport have found broad applications in the field of oncology. Chromosome region maintenance 1 (CRM1), better known as exportin 1 (XPO1), is the protein transporter responsible for the nucleo-cytoplasmic shuttling of most of the tumor suppressor proteins (TSP) and growth regulatory factors. XPO1 is also upregulated in many malignancies and associated with a poor prognosis. Its inhibition has been a target of therapy, and hence, the selective inhibitors of nuclear transport (SINE) compounds were developed as a novel class of anti-cancer agents. The most well-known SINE agent is selinexor (KPT-330) and has been widely tested in phase I and II clinical trials in both solid tumors and hematologic malignancies. This review discusses how dysregulation of XPO1 promotes tumorigenesis, the historical considerations in the development of SINE compounds, and their role in current clinical therapies.
Collapse
Affiliation(s)
- Amy Y Wang
- Department of Medicine, Section of Hematology/Oncology, University of Chicago Medicine, Chicago, IL, USA
| | - Hongtao Liu
- Department of Medicine, Section of Hematology/Oncology, University of Chicago Medicine, Chicago, IL, USA
| |
Collapse
|
19
|
Spinner MA, Varma G, Advani RH. Novel Approaches in Waldenström Macroglobulinemia. Hematol Oncol Clin North Am 2018; 32:875-890. [DOI: 10.1016/j.hoc.2018.05.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
20
|
Beck M, Schirmacher P, Singer S. Alterations of the nuclear transport system in hepatocellular carcinoma - New basis for therapeutic strategies. J Hepatol 2017; 67:1051-1061. [PMID: 28673770 DOI: 10.1016/j.jhep.2017.06.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 06/20/2017] [Accepted: 06/21/2017] [Indexed: 12/20/2022]
Abstract
Hepatocellular carcinoma (HCC) is among the most prevalent human malignancies worldwide with rising incidence in industrialised countries, few therapeutic options and poor prognosis. To expand and improve therapeutic strategies, identification of drug targets involved in several liver cancer-related pathways is crucial. Virtually all signal transduction cascades cross the nuclear envelope and therefore require components of the nuclear transport system (NTS), including nuclear transport receptors (e.g. importins and exportins) and the nuclear pore complex. Accordingly, members of the NTS represent promising targets for therapeutic intervention. Selective inhibitors of nuclear export have already entered clinical trials for various malignancies. Herein, we review the current knowledge regarding alterations of the NTS and their potential for targeted therapy in HCC.
Collapse
Affiliation(s)
- Martin Beck
- European Molecular Biology Laboratory, Heidelberg, Germany
| | | | - Stephan Singer
- European Molecular Biology Laboratory, Heidelberg, Germany; Institute of Pathology, University Hospital Heidelberg, Germany.
| |
Collapse
|
21
|
Peripheral T-cell lymphomas: Focusing on novel agents in relapsed and refractory disease. Cancer Treat Rev 2017; 60:120-129. [DOI: 10.1016/j.ctrv.2017.09.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 12/24/2022]
|
22
|
Argnani L, Broccoli A, Zinzani PL. Cutaneous T-cell lymphomas: Focusing on novel agents in relapsed and refractory disease. Cancer Treat Rev 2017; 61:61-69. [PMID: 29102679 DOI: 10.1016/j.ctrv.2017.10.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 10/16/2017] [Accepted: 10/21/2017] [Indexed: 11/24/2022]
Abstract
Patients with relapsed or refractory cutaneous T-cell lymphoma (CTCL) display a dismal prognosis and their therapy represents an unmet medical need, as the best treatment strategy is yet to be determined. Exciting data on novel targeted agents are now emerging from recently concluded and ongoing clinical trials in patients with relapsed and refractory CTCL. Three FDA approved compounds are used as single agents including the oral retinoid bexarotene and histone deacetylase inhibitors romidepsin and vorinostat. Brentuximab vedotin, an anti-CD30 drug-conjugated monoclonal antibody, has received from European Commission the orphan designation but has not been approved by EMA yet. Several other molecules have demonstrated their activity in the same context and combination strategies are being explored. Participation in a well designed clinical trial is encouraged, as the introduction of novel agents will continue to expand the therapeutics options available in the management of CTCL.
Collapse
Affiliation(s)
- Lisa Argnani
- Institute of Hematology "L. e A. Seràgnoli", University of Bologna, Bologna, Italy
| | - Alessandro Broccoli
- Institute of Hematology "L. e A. Seràgnoli", University of Bologna, Bologna, Italy
| | - Pier Luigi Zinzani
- Institute of Hematology "L. e A. Seràgnoli", University of Bologna, Bologna, Italy.
| |
Collapse
|
23
|
Zhang F, Virshup DM, Cheong JK. Oncogenic RAS-induced CK1α drives nuclear FOXO proteolysis. Oncogene 2017; 37:363-376. [PMID: 28945225 PMCID: PMC5799771 DOI: 10.1038/onc.2017.334] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 07/30/2017] [Accepted: 08/12/2017] [Indexed: 12/18/2022]
Abstract
Evasion of forkhead box O (FOXO) family of longevity-related transcription factors-mediated growth suppression is necessary to promote cancer development. Since somatic alterations or mutations and transcriptional dysregulation of the FOXO genes are infrequent in human cancers, it remains unclear how these tumour suppressors are eliminated from cancer cells. The protein stability of FOXO3A is regulated by Casein Kinase 1 alpha (CK1α) in an oncogenic RAS-specific manner, but whether this mode of regulation extends to related FOXO family members is unknown. Here we report that CK1α similarly destabilizes FOXO4 in RAS-mutant cells by phosphorylation at serines 265/268. The CK1α-dependent phosphoregulation of FOXO4 is primed, in part, by the PI3K/AKT effector axis of oncogenic RAS signalling. In addition, mutant RAS coordinately elevates proteasome subunit expression and proteolytic activity to eradicate nuclear FOXO4 proteins from RAS-mutant cancer cells. Importantly, dual inhibition of CK1α and the proteasome synergistically inhibited the growth of multiple RAS-mutant human cancer cell lines of diverse tissue origin by blockade of nuclear FOXO4 degradation and induction of caspase-dependent apoptosis. Our findings challenge the current paradigm that nuclear export regulates the proteolysis of FOXO3A/4 tumour suppressors in the context of cancer and illustrates how oncogenic RAS-mediated degradation of FOXOs, via post-translational mechanisms, blocks these important tumour suppressors.
Collapse
Affiliation(s)
- F Zhang
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore
| | - D M Virshup
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore.,Department of Biochemistry, National University of Singapore, Singapore.,Department of Pediatrics, Duke University School of Medicine, Durham, NC, USA
| | - J K Cheong
- Programme in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore
| |
Collapse
|
24
|
Muz B, Azab F, de la Puente P, Landesman Y, Azab AK. Selinexor Overcomes Hypoxia-Induced Drug Resistance in Multiple Myeloma. Transl Oncol 2017; 10:632-640. [PMID: 28668761 PMCID: PMC5496204 DOI: 10.1016/j.tranon.2017.04.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 04/20/2017] [Accepted: 04/24/2017] [Indexed: 01/07/2023] Open
Abstract
Increased levels of the nuclear export protein, exportin 1 (XPO1), were demonstrated in multiple myeloma (MM) patients. Targeting XPO1 with selinexor (the selective inhibitor of nuclear export; SINE compound KPT-330) demonstrates broad antitumor activity also in patient cells resistant to bortezomib; hence, it is a promising target in MM patients. Hypoxia is known to mediate tumor progression and drug resistance (including bortezomib resistance) in MM cells. In this study, we tested the effects of selinexor alone or in combination with bortezomib in normoxia and hypoxia on MM cell survival and apoptosis in vitro and in vivo. In vitro, selinexor alone decreased survival and increased apoptosis, resensitizing MM cells to bortezomib. In vivo, we examined the effects of selinexor alone on tumor initiation and tumor progression, as well as selinexor in combination with bortezomib, on tumor growth in a bortezomib-resistant MM xenograft mouse model. Selinexor, used as a single agent, delayed tumor initiation and tumor progression, prolonging mice survival. In bortezomib-resistant xenografts, selinexor overcame drug resistance, significantly decreasing tumor burden and extending mice survival when combined with bortezomib.
Collapse
Affiliation(s)
- Barbara Muz
- Department of Radiation Oncology, Cancer Biology Division, Washington University in Saint Louis School of Medicine, Saint Louis, MO 63108, USA
| | - Feda Azab
- Department of Radiation Oncology, Cancer Biology Division, Washington University in Saint Louis School of Medicine, Saint Louis, MO 63108, USA
| | - Pilar de la Puente
- Department of Radiation Oncology, Cancer Biology Division, Washington University in Saint Louis School of Medicine, Saint Louis, MO 63108, USA
| | | | - Abdel Kareem Azab
- Department of Radiation Oncology, Cancer Biology Division, Washington University in Saint Louis School of Medicine, Saint Louis, MO 63108, USA.
| |
Collapse
|
25
|
Soung YH, Kashyap T, Nguyen T, Yadav G, Chang H, Landesman Y, Chung J. Selective Inhibitors of Nuclear Export (SINE) compounds block proliferation and migration of triple negative breast cancer cells by restoring expression of ARRDC3. Oncotarget 2017; 8:52935-52947. [PMID: 28881784 PMCID: PMC5581083 DOI: 10.18632/oncotarget.17987] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 05/06/2017] [Indexed: 11/25/2022] Open
Abstract
Arrestin-related domain-containing protein-3 (ARRDC3) is one of 6 mammalian arrestins, which suppresses metastasis by inducing degradation of phosphorylated β2-adrenergic receptor (β2 AR) and integrin β4 (ITG β4). Our previous studies demonstrated that expression of ARRDC3 is epigentically silenced in Triple Negative Breast Cancer (TNBC) cells, and the forced expression of ARRDC3 significantly reduced the invasive potential of TNBC cells. In the current study, we found that Selective Inhibitors of Nuclear Export (SINE) compounds (KPT-185 and selinexor (KPT-330)) restore ARRDC3 expression in TNBC cell lines (MDA-MB-231 and MDA-MB-468) at both the mRNA and protein level in a dose and time course dependent manner. SINE compounds inhibit the proliferation, pro-invasive migration and anchorage independent growth of the TNBC cells by restoring ARRDC3 expression. We found that ARRDC3 expression is lower in TNBC cell lines than those of luminal breast cancer cell lines, and inversely correlated with IC50s of selinexor. Analysis of tissue microarray confirmed that ARRDC3 expression in patient samples is significantly lower in the majority of TNBC tumors relative to normal tissue. In vivo, selinexor inhibited the tumor growth of MDA-MB-231 xenografts by nearly 100% compared with vehicle treated animals. Furthermore, immunohistochemical analysis of TNBC tumors from selinexor treated mice revealed increased ARRDC3 expression versus vehicle treated animals. Our results suggest that restoration of ARRDC3 expression is an important antineoplastic mechanism of SINE compounds in TNBC, and therefore selinexor could be an effective treatment option for breast tumors with down-regulated ARRDC3.
Collapse
Affiliation(s)
- Young Hwa Soung
- Department of Pathology, Stony Brook Medicine, Stony Brook, NY 11794, USA
| | | | - Thalia Nguyen
- University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Garima Yadav
- Department of Pathology, Stony Brook Medicine, Stony Brook, NY 11794, USA
| | - Hua Chang
- Karyopharm Therapeutics, Inc. Newton, MA 02459, USA
| | | | - Jun Chung
- Department of Pathology, Stony Brook Medicine, Stony Brook, NY 11794, USA
| |
Collapse
|
26
|
Selective inhibition of nuclear export with selinexor in patients with non-Hodgkin lymphoma. Blood 2017; 129:3175-3183. [PMID: 28468797 DOI: 10.1182/blood-2016-11-750174] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 04/26/2017] [Indexed: 12/19/2022] Open
Abstract
Patients with relapsed or refractory (R/R) non-Hodgkin lymphoma (NHL) have a poor prognosis and limited treatment options. We evaluated selinexor, an orally bioavailable, first-in-class inhibitor of the nuclear export protein XPO1, in this phase 1 trial to assess safety and determine a recommended phase 2 dose (RP2D). Seventy-nine patients with various NHL histologies, including diffuse large B-cell lymphoma, Richter's transformation, mantle cell lymphoma, follicular lymphoma, and chronic lymphocytic leukemia, were enrolled. In the dose-escalation phase, patients received 3 to 80 mg/m2 of selinexor in 3- or 4-week cycles and were assessed for toxicities, pharmacokinetics, and antitumor activity. In the dose-expansion phase, patients were treated with selinexor at 35 or 60 mg/m2 The most common grade 3 to 4 drug-related adverse events were thrombocytopenia (47%), neutropenia (32%), anemia (27%), leukopenia (16%), fatigue (11%), and hyponatremia (10%). Tumor biopsies showed decreases in cell-signaling pathways (Bcl-2, Bcl-6, c-Myc), reduced proliferation (Ki67), nuclear localization of XPO1 cargos (p53, PTEN), and increased apoptosis after treatment. Twenty-two (31%) of the 70 evaluable patients had an objective responses, including 4 complete responses and 18 partial responses, which were observed across a spectrum of NHL subtypes. A dose of 35 mg/m2 (60 mg) was identified as the RP2D. These findings suggest that inhibition of XPO1 with oral selinexor at 35 mg/m2 is a safe therapy with encouraging and durable anticancer activity in patients with R/R NHL. The trial was registered at www.clinicaltrials.gov as #NCT01607892.
Collapse
|
27
|
Camus V, Miloudi H, Taly A, Sola B, Jardin F. XPO1 in B cell hematological malignancies: from recurrent somatic mutations to targeted therapy. J Hematol Oncol 2017; 10:47. [PMID: 28196522 PMCID: PMC5307790 DOI: 10.1186/s13045-017-0412-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 01/31/2017] [Indexed: 02/07/2023] Open
Abstract
Many recent publications highlight the large role of the pivotal eukaryotic nuclear export protein exportin-1 (XPO1) in the oncogenesis of several malignancies, and there is emerging evidence that XPO1 inhibition is a key target against cancer. The clinical validation of the pharmacological inhibition of XPO1 was recently achieved with the development of the selective inhibitor of nuclear export compounds, displaying an interesting anti-tumor activity in patients with massive pre-treated hematological malignancies. Recent reports have shown molecular alterations in the gene encoding XPO1 and showed a mutation hotspot (E571K) in the following two hematological malignancies with similar phenotypes and natural histories: primary mediastinal diffuse large B cell lymphoma and classical Hodgkin's lymphoma. Emerging evidence suggests that the mutant XPO1 E571K plays a role in carcinogenesis, and this variant is quantifiable in tumor and plasma cell-free DNA of patients using highly sensitive molecular biology techniques, such as digital PCR and next-generation sequencing. Therefore, it was proposed that the XPO1 E571K variant may serve as a minimal residual disease tool in this setting. To clarify and summarize the recent findings on the role of XPO1 in B cell hematological malignancies, we conducted a literature search to present the major publications establishing the landscape of XPO1 molecular alterations, their impact on the XPO1 protein, their interest as biomarkers, and investigations into the development of new XPO1-targeted therapies in B cell hematological malignancies.
Collapse
Affiliation(s)
- Vincent Camus
- Normandie Univ, INSERM U1245, UNICAEN, UNIROUEN, Caen, France
- Department of Hematology, Centre Henri Becquerel, Rouen, France
| | - Hadjer Miloudi
- Normandie Univ, INSERM U1245, UNICAEN, UNIROUEN, Caen, France
| | - Antoine Taly
- Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, CNRS, Université Paris Diderot, Paris, France
| | - Brigitte Sola
- Normandie Univ, INSERM U1245, UNICAEN, UNIROUEN, Caen, France.
| | - Fabrice Jardin
- Normandie Univ, INSERM U1245, UNICAEN, UNIROUEN, Caen, France
- Department of Hematology, Centre Henri Becquerel, Rouen, France
| |
Collapse
|
28
|
Muqbil I, Aboukameel A, Elloul S, Carlson R, Senapedis W, Baloglu E, Kauffman M, Shacham S, Bhutani D, Zonder J, Azmi AS, Mohammad RM. Anti-tumor activity of selective inhibitor of nuclear export (SINE) compounds, is enhanced in non-Hodgkin lymphoma through combination with mTOR inhibitor and dexamethasone. Cancer Lett 2016; 383:309-317. [PMID: 27693556 PMCID: PMC5584550 DOI: 10.1016/j.canlet.2016.09.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/05/2016] [Accepted: 09/06/2016] [Indexed: 11/21/2022]
Abstract
In previous studies we demonstrated that targeting the nuclear exporter protein exportin-1 (CRM1/XPO1) by a selective inhibitor of nuclear export (SINE) compound is a viable therapeutic strategy against Non-Hodgkin Lymphoma (NHL). Our studies along with pre-clinical work from others led to the evaluation of the lead SINE compound, selinexor, in a phase 1 trial in patients with CLL or NHL (NCT02303392). Continuing our previous work, we studied combinations of selinexor-dexamethasone (DEX) and selinexor-everolimus (EVER) in NHL. Combination of selinexor with DEX or EVER resulted in enhanced cytotoxicity in WSU-DLCL2 and WSU-FSCCL cells which was consistent with enhanced apoptosis. Molecular analysis showed enhancement in the activation of apoptotic signaling and down-regulation of XPO1. This enhancement is consistent with the mechanism of action of these drugs in that both selinexor and DEX antagonize NF-κB (p65) and mTOR (EVER target) is an XPO1 cargo protein. SINE compounds, KPT-251 and KPT-276, showed activities similar to CHOP (cyclophosphamide-hydroxydaunorubicin-oncovin-prednisone) regimen in subcutaneous and disseminated NHL xenograft models in vivo. In both animal models the anti-lymphoma activity of selinexor is enhanced through combination with DEX or EVER. The in vivo activity of selinexor and related SINE compounds relative to 'standard of care' treatment is consistent with the objective responses observed in Phase I NHL patients treated with selinexor. Our pre-clinical data provide a rational basis for testing these combinations in Phase II NHL trials.
Collapse
MESH Headings
- Acrylamides/pharmacology
- Active Transport, Cell Nucleus/drug effects
- Animals
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Apoptosis/drug effects
- Cell Line, Tumor
- Cell Survival/drug effects
- Cyclophosphamide/pharmacology
- Dexamethasone/pharmacology
- Dose-Response Relationship, Drug
- Doxorubicin/pharmacology
- Drug Synergism
- Everolimus/pharmacology
- Humans
- Hydrazines/pharmacology
- Karyopherins/antagonists & inhibitors
- Karyopherins/metabolism
- Lymphoma, Non-Hodgkin/drug therapy
- Lymphoma, Non-Hodgkin/enzymology
- Lymphoma, Non-Hodgkin/pathology
- Mice, Inbred ICR
- Mice, SCID
- Oxadiazoles/pharmacology
- Prednisone/pharmacology
- Protein Kinase Inhibitors/pharmacology
- Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors
- Receptors, Cytoplasmic and Nuclear/metabolism
- Signal Transduction/drug effects
- TOR Serine-Threonine Kinases/antagonists & inhibitors
- TOR Serine-Threonine Kinases/metabolism
- Thiazoles/pharmacology
- Time Factors
- Transcription Factor RelA/antagonists & inhibitors
- Transcription Factor RelA/metabolism
- Triazoles/pharmacology
- Tumor Burden/drug effects
- Vincristine/pharmacology
- Xenograft Model Antitumor Assays
- Exportin 1 Protein
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Asfar S Azmi
- Department of Oncology, Wayne State University, USA
| | | |
Collapse
|
29
|
Turner JG, Dawson JL, Grant S, Shain KH, Dalton WS, Dai Y, Meads M, Baz R, Kauffman M, Shacham S, Sullivan DM. Treatment of acquired drug resistance in multiple myeloma by combination therapy with XPO1 and topoisomerase II inhibitors. J Hematol Oncol 2016; 9:73. [PMID: 27557643 PMCID: PMC4997728 DOI: 10.1186/s13045-016-0304-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 08/18/2016] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Acquired drug resistance is the greatest obstacle to the successful treatment of multiple myeloma (MM). Despite recent advanced treatment options such as liposomal formulations, proteasome inhibitors, immunomodulatory drugs, myeloma-targeted antibodies, and histone deacetylase inhibitors, MM is still considered an incurable disease. METHODS We investigated whether the clinical exportin 1 (XPO1) inhibitor selinexor (KPT-330), when combined with pegylated liposomal doxorubicin (PLD) or doxorubicin hydrochloride, could overcome acquired drug resistance in multidrug-resistant human MM xenograft tumors, four different multidrug-resistant MM cell lines, or ex vivo MM biopsies from relapsed/refractory patients. Mechanistic studies were performed to assess co-localization of topoisomerase II alpha (TOP2A), DNA damage, and siRNA knockdown of drug targets. RESULTS Selinexor was found to restore sensitivity of multidrug-resistant 8226B25, 8226Dox6, 8226Dox40, and U266PSR human MM cells to doxorubicin to levels found in parental myeloma cell lines. NOD/SCID-γ mice challenged with drug-resistant or parental U266 human MM and treated with selinexor/PLD had significantly decreased tumor growth and increased survival with minimal toxicity. Selinexor/doxorubicin treatment selectively induced apoptosis in CD138/light-chain-positive MM cells without affecting non-myeloma cells in ex vivo-treated bone marrow aspirates from newly diagnosed or relapsed/refractory MM patients. Selinexor inhibited XPO1-TOP2A protein complexes (proximity ligation assay), preventing nuclear export of TOP2A in both parental and multidrug-resistant MM cell lines. Selinexor/doxorubicin treatment significantly increased DNA damage (comet assay/γ-H2AX) in both parental and drug-resistant MM cells. TOP2A knockdown reversed both the anti-tumor effect and significantly reduced DNA damage induced by selinexor/doxorubicin treatment. CONCLUSIONS The combination of an XPO1 inhibitor and liposomal doxorubicin was highly effective against acquired drug resistance in in vitro MM models, in in vivo xenograft studies, and in ex vivo samples obtained from patients with relapsed/refractory myeloma. This drug combination synergistically induced TOP2A-mediated DNA damage and subsequent apoptosis. In addition, based on our preclinical data, we have initiated a phase I/II study with the XPO1 inhibitor selinexor and PLD (ClinicalTrials.gov NCT02186834). Initial results from both preclinical and clinical trials have shown significant promise for this drug combination for the treatment of MM.
Collapse
Affiliation(s)
- Joel G. Turner
- Chemical Biology and Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL USA
| | - Jana L. Dawson
- Chemical Biology and Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL USA
| | - Steven Grant
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA USA
| | - Kenneth H. Shain
- Chemical Biology and Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL USA
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL USA
| | - William S. Dalton
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL USA
- M2Gen® Biotechnologies, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL USA
| | - Yun Dai
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA USA
| | - Mark Meads
- Chemical Biology and Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL USA
| | - Rachid Baz
- Chemical Biology and Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL USA
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL USA
| | | | | | - Daniel M. Sullivan
- Chemical Biology and Molecular Medicine Program, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL USA
- Department of Blood and Marrow Transplantation, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL USA
- H. Lee Moffitt Cancer Center & Research Institute, 12902 Magnolia Drive, Tampa, FL 33612 USA
| |
Collapse
|
30
|
Mahipal A, Malafa M. Importins and exportins as therapeutic targets in cancer. Pharmacol Ther 2016; 164:135-43. [PMID: 27113410 DOI: 10.1016/j.pharmthera.2016.03.020] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 03/08/2016] [Indexed: 01/01/2023]
Abstract
The nuclear transport proteins, importins and exportins (karyopherin-β proteins), may play an important role in cancer by transporting key mediators of oncogenesis across the nuclear membrane in cancer cells. During nucleocytoplasmic transport of tumor suppressor proteins and cell cycle regulators during the processing of these proteins, aberrant cellular growth signaling and inactivation of apoptosis can occur, both critical to growth and development of tumors. Karyopherin-β proteins bind to these cargo proteins and RanGTP for active transport across the nuclear membrane through the nuclear pore complex. Importins and exportins are overexpressed in multiple tumors including melanoma, pancreatic, breast, colon, gastric, prostate, esophageal, lung cancer, and lymphomas. Furthermore, some of the karyopherin-β proteins such as exportin-1 have been implicated in drug resistance in cancer. Importin and exportin inhibitors are being considered as therapeutic targets against cancer and have shown preclinical anticancer activity. Moreover, synergistic activity has been observed with various chemotherapeutic and targeted agents. However, clinical development of the exportin-1 inhibitor leptomycin B was stopped due to adverse events, including vomiting, anorexia, and dehydration. Selinexor, a selective nuclear export inhibitor, is being tested in multiple clinical trials both as a single agent and in combination with chemotherapy. Selinexor has demonstrated clinical activity in multiple cancers, especially acute myelogenous leukemia and multiple myeloma. The roles of other importin and exportin inhibitors still need to be investigated clinically. Targeting the key mediators of nucleocytoplasmic transport in cancer cells represents a novel strategy in cancer intervention with the potential to significantly affect outcomes.
Collapse
Affiliation(s)
- Amit Mahipal
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, United States
| | - Mokenge Malafa
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, United States.
| |
Collapse
|
31
|
Xie QL, Liu Y, Zhu Y. Chromosome region maintenance 1 expression and its association with clinical pathological features in primary carcinoma of the liver. Exp Ther Med 2016; 12:59-68. [PMID: 27347018 PMCID: PMC4907041 DOI: 10.3892/etm.2016.3283] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 02/19/2016] [Indexed: 12/18/2022] Open
Abstract
Liver cancer is the third leading cause of cancer-associated mortality worldwide. Recurrence and metastasis are the major factors affecting the prognosis; thus, investigation of the underlying molecular mechanisms of invasion and metastasis, and detection of novel drug target may improve the mortality rate of liver cancer patients. Chromosome region maintenance 1 (CRM1) recognizes specific leucine-rich nuclear export signal sequences, and its overexpression is associated with tumor-suppressor gene inactivation, proliferation, invasion and resistance to chemotherapy. The aim of the present study was to examine the association of CRM1 expression with the clinical and pathological features of primary liver cancer. In total, 152 cases diagnosed with liver cancer were included. CRM1 expression was detected in cancer tissues and adjacent normal tissues by immunohistochemical assay. No statistically significant difference was found between the CRM1 expression levels in tumor and adjacent normal tissues (P=0.106). However, CRM1 expression in adjacent normal tissues was higher compared with that in tumor tissues in the negative hepatitis B envelope antigen (HBeAg; P=0.029) and low differentiation (P=0.004) groups. In tumor tissues, CRM1 expression was significantly correlated with differentiation (P=0.045), whereas in adjacent normal tissues, CRM1 expression was significantly correlated with the tumor diameter (P=0.004). Therefore, it can be concluded that CRM1 is highly expressed in both tumor and adjacent normal tissues. Furthermore, CRM1 expression is associated with the tumor differentiation degree and diameter. Lower differentiation and larger tumor diameter resulted in higher CRM1 expression in adjacent normal tissues, and higher tendency for invasion and metastasis. In addition, the risk of invasion and metastasis remains in chronic hepatitis B patients with negative HBeAg.
Collapse
Affiliation(s)
- Qiao-Ling Xie
- Department of Infectious Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R. China
| | - Yue Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R. China
| | - Ying Zhu
- Department of Infectious Diseases, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116000, P.R. China
| |
Collapse
|
32
|
Attiyeh EF, Maris JM, Lock R, Reynolds CP, Kang MH, Carol H, Gorlick R, Kolb EA, Keir ST, Wu J, Landesman Y, Shacham S, Lyalin D, Kurmasheva RT, Houghton PJ, Smith MA. Pharmacodynamic and genomic markers associated with response to the XPO1/CRM1 inhibitor selinexor (KPT-330): A report from the pediatric preclinical testing program. Pediatr Blood Cancer 2016; 63:276-86. [PMID: 26398108 PMCID: PMC4722540 DOI: 10.1002/pbc.25727] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 08/06/2015] [Indexed: 12/29/2022]
Abstract
BACKGROUND Selinexor (KPT-330) is an inhibitor of the major nuclear export receptor, exportin 1 (XPO1, also termed chromosome region maintenance 1, CRM1) that has demonstrated activity in preclinical models and clinical activity against several solid and hematological cancers. PROCEDURES Selinexor was tested against the Pediatric Preclinical Testing Program (PPTP) in vitro cell line panel at concentrations from 1.0 nM to 10 μM and against the PPTP in vivo xenograft panels administered orally at a dose of 10 mg/kg thrice weekly for 4 weeks. RESULTS Selinexor demonstrated cytotoxic activity in vitro, with a median relative IC50 value of 123 nM (range 13.0 nM to >10 μM). Selinexor induced significant differences in event-free survival (EFS) distribution in 29 of 38 (76%) of the evaluable solid tumor xenografts and in five of eight (63%) of the evaluable ALL xenografts. Objective responses (partial or complete responses, PR/CR) were observed for 4 of 38 solid tumor xenografts including Wilms tumor, medulloblastoma (n = 2), and ependymoma models. For the ALL panel, two of eight (25%) xenografts achieved either CR or maintained CR. Two responding xenografts had FBXW7 mutations at R465 and two had SMARCA4 mutations. Selinexor induced p53, p21, and cleaved PARP in several solid tumor models. CONCLUSIONS Selinexor induced regression against several solid tumor and ALL xenografts and slowed tumor growth in a larger number of models. Pharmacodynamic effects for XPO1 inhibition were noted. Defining the relationship between selinexor systemic exposures in mice and humans will be important in assessing the clinical relevance of these results.
Collapse
Affiliation(s)
- Edward F. Attiyeh
- Children’s Hospital of Philadelphia, University of Pennsylvania School of Medicine and Abramson Family Cancer Research Institute, Philadelphia, PA
| | - John M. Maris
- Children’s Hospital of Philadelphia, University of Pennsylvania School of Medicine and Abramson Family Cancer Research Institute, Philadelphia, PA
| | - Richard Lock
- Children’s Cancer Institute Australia for Medical Research, Randwick, NSW, Australia
| | | | - Min H. Kang
- Texas Tech University Health Sciences Center, Lubbock, TX
| | - Hernan Carol
- Children’s Cancer Institute Australia for Medical Research, Randwick, NSW, Australia
| | | | | | | | - Jianrong Wu
- St. Jude Children’s Research Hospital, Memphis, TN
| | | | | | | | | | | | | |
Collapse
|
33
|
Mohammad RM, Muqbil I, Lowe L, Yedjou C, Hsu HY, Lin LT, Siegelin MD, Fimognari C, Kumar NB, Dou QP, Yang H, Samadi AK, Russo GL, Spagnuolo C, Ray SK, Chakrabarti M, Morre JD, Coley HM, Honoki K, Fujii H, Georgakilas AG, Amedei A, Niccolai E, Amin A, Ashraf SS, Helferich WG, Yang X, Boosani CS, Guha G, Bhakta D, Ciriolo MR, Aquilano K, Chen S, Mohammed SI, Keith WN, Bilsland A, Halicka D, Nowsheen S, Azmi AS. Broad targeting of resistance to apoptosis in cancer. Semin Cancer Biol 2015; 35 Suppl:S78-S103. [PMID: 25936818 PMCID: PMC4720504 DOI: 10.1016/j.semcancer.2015.03.001] [Citation(s) in RCA: 596] [Impact Index Per Article: 59.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 03/04/2015] [Accepted: 03/04/2015] [Indexed: 12/15/2022]
Abstract
Apoptosis or programmed cell death is natural way of removing aged cells from the body. Most of the anti-cancer therapies trigger apoptosis induction and related cell death networks to eliminate malignant cells. However, in cancer, de-regulated apoptotic signaling, particularly the activation of an anti-apoptotic systems, allows cancer cells to escape this program leading to uncontrolled proliferation resulting in tumor survival, therapeutic resistance and recurrence of cancer. This resistance is a complicated phenomenon that emanates from the interactions of various molecules and signaling pathways. In this comprehensive review we discuss the various factors contributing to apoptosis resistance in cancers. The key resistance targets that are discussed include (1) Bcl-2 and Mcl-1 proteins; (2) autophagy processes; (3) necrosis and necroptosis; (4) heat shock protein signaling; (5) the proteasome pathway; (6) epigenetic mechanisms; and (7) aberrant nuclear export signaling. The shortcomings of current therapeutic modalities are highlighted and a broad spectrum strategy using approaches including (a) gossypol; (b) epigallocatechin-3-gallate; (c) UMI-77 (d) triptolide and (e) selinexor that can be used to overcome cell death resistance is presented. This review provides a roadmap for the design of successful anti-cancer strategies that overcome resistance to apoptosis for better therapeutic outcome in patients with cancer.
Collapse
Affiliation(s)
- Ramzi M Mohammad
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States; Interim translational Research Institute, Hamad Medical Corporation, Doha, Qatar.
| | - Irfana Muqbil
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| | - Leroy Lowe
- Getting to Know Cancer, Truro, Nova Scotia, Canada
| | - Clement Yedjou
- C-SET, [Jackson, #229] State University, Jackson, MS, United States
| | - Hsue-Yin Hsu
- Department of Life Sciences, Tzu-Chi University, Hualien, Taiwan
| | - Liang-Tzung Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Markus David Siegelin
- Department of Pathology and Cell Biology, Columbia University, New York City, NY, United States
| | - Carmela Fimognari
- Dipartimento di Scienze per la Qualità della Vita Alma Mater Studiorum-Università di Bologna, Italy
| | - Nagi B Kumar
- Moffit Cancer Center, University of South Florida College of Medicine, Tampa, FL, United States
| | - Q Ping Dou
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States; Departments of Pharmacology and Pathology, Karmanos Cancer Institute, Detroit MI, United States
| | - Huanjie Yang
- The School of Life Science and Technology, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | | | - Gian Luigi Russo
- Institute of Food Sciences National Research Council, Avellino, Italy
| | - Carmela Spagnuolo
- Institute of Food Sciences National Research Council, Avellino, Italy
| | - Swapan K Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Mrinmay Chakrabarti
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - James D Morre
- Mor-NuCo, Inc, Purdue Research Park, West Lafayette, IN, United States
| | - Helen M Coley
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, United Kingdom
| | - Kanya Honoki
- Department of Orthopedic Surgery, Nara Medical University, Kashihara, Japan
| | - Hiromasa Fujii
- Department of Orthopedic Surgery, Nara Medical University, Kashihara, Japan
| | - Alexandros G Georgakilas
- Department of Physics, School of Applied Mathematical and Physical Sciences, National Technical University of Athens, Zografou 15780, Athens, Greece
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, university of florence, Italy
| | - Elena Niccolai
- Department of Experimental and Clinical Medicine, university of florence, Italy
| | - Amr Amin
- Department of Biology, College of Science, UAE University, United Arab Emirates; Faculty of Science, Cairo University, Egypt
| | - S Salman Ashraf
- Department of Chemistry, College of Science, UAE University, United Arab Emirates
| | - William G Helferich
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Xujuan Yang
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Chandra S Boosani
- Department of BioMedical Sciences, School of Medicine Creighton University, Omaha NE, United States
| | - Gunjan Guha
- School of Chemical and Bio Technology, SASTRA University, Thanjavur, India
| | - Dipita Bhakta
- School of Chemical and Bio Technology, SASTRA University, Thanjavur, India
| | | | - Katia Aquilano
- Department of Biology, University of Rome "Tor Vergata", Italy
| | - Sophie Chen
- Ovarian and Prostate Cancer Research Trust Laboratory, Guildford, Surrey, United Kingdom
| | - Sulma I Mohammed
- Department of Comparative Pathobiology and Purdue University Center for Cancer Research, Purdue, West Lafayette, IN, United States
| | - W Nicol Keith
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Ireland
| | - Alan Bilsland
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Ireland
| | - Dorota Halicka
- Department of Pathology, New York Medical College, Valhalla, NY, United States
| | - Somaira Nowsheen
- Mayo Graduate School, Mayo Medical School, Mayo Clinic Medical Scientist Training Program, Rochester, MN, United States
| | - Asfar S Azmi
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, United States
| |
Collapse
|
34
|
Ohkoshi S, Yano M, Matsuda Y. Oncogenic role of p21 in hepatocarcinogenesis suggests a new treatment strategy. World J Gastroenterol 2015; 21:12150-12156. [PMID: 26576099 PMCID: PMC4641132 DOI: 10.3748/wjg.v21.i42.12150] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/30/2015] [Accepted: 08/31/2015] [Indexed: 02/06/2023] Open
Abstract
A well-known tumor suppressor, p21, acts paradoxically by promoting tumor growth in some cellular conditions. These conflicting functions have been demonstrated in association with the HBx gene and in hepatocarcinogenesis. The molecular behavior of p21 depends on its subcellular localization. Nuclear p21 may inhibit cell proliferation and be proapoptotic, while cytoplasmic p21 may have oncogenic and anti-apoptotic functions. Because most typical tumor suppressive proteins also have different effects according to subcellular localization, elucidating the regulatory mechanisms underlying nucleo-cytoplasmic transport of these proteins would be significant and may lead to a new strategy for anti-hepatocellular carcinoma (HCC) therapy. Chromosome region maintenance 1 (CRM1) is a major nuclear export receptor involved in transport of tumor suppressors from nucleus to cytoplasm. Expression of CRM1 is enhanced in a variety of malignancies and in vitro studies have shown the efficacy of specific inhibition of CRM1 against cancer cell lines. Interestingly, interferon may keep p21 in the nucleus; this is one of the mechanisms of its anti-hepatocarcinogenic function. Here we review the oncogenic property of p21, which depends on its subcellular localization, and discuss the rationale underlying a new strategy for HCC treatment and prevention.
Collapse
MESH Headings
- Active Transport, Cell Nucleus/drug effects
- Animals
- Antineoplastic Agents/therapeutic use
- Biomarkers, Tumor/metabolism
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Cyclin-Dependent Kinase Inhibitor p21/genetics
- Cyclin-Dependent Kinase Inhibitor p21/metabolism
- Drug Design
- Humans
- Karyopherins/metabolism
- Liver Neoplasms/drug therapy
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Molecular Targeted Therapy
- Oncogene Proteins/metabolism
- Receptors, Cytoplasmic and Nuclear/metabolism
- Signal Transduction
- Tumor Suppressor Proteins/metabolism
- Exportin 1 Protein
Collapse
|
35
|
Azmi AS, Muqbil I, Wu J, Aboukameel A, Senapedis W, Baloglu E, Bollig-Fischer A, Dyson G, Kauffman M, Landesman Y, Shacham S, Philip PA, Mohammad RM. Targeting the Nuclear Export Protein XPO1/CRM1 Reverses Epithelial to Mesenchymal Transition. Sci Rep 2015; 5:16077. [PMID: 26536918 PMCID: PMC4633607 DOI: 10.1038/srep16077] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 09/29/2015] [Indexed: 12/11/2022] Open
Abstract
Here we demonstrate for the first time that targeted inhibition of nuclear exporter protein exportin 1 (XPO1) also known as chromosome maintenance region 1 (CRM1) by Selective Inhibitor of Nuclear Export (SINE) compounds results in reversal of EMT in snail-transduced primary human mammary epithelial cells (HMECs). SINE compounds selinexor (KPT-330) and KPT-185, leptomycin B (LMB as +ve control) but not KPT-301 (-ve control) reverse EMT, suppress mesenchymal markers and consequently induce growth inhibition, apoptosis and prevent spheroid formation. SINE treatment resulted in nuclear retention of snail regulator FBXL5 that was concurrent with suppression of snail and down-regulation of mesenchymal markers. FBXL5 siRNA or transfection with cys528 mut-Xpo1 (lacking SINE binding site) markedly abrogated SINE activity highlighting an XPO1 and FBXL5 mediated mechanism of action. Silencing XPO1 or snail caused re-expression of FBXL5 as well as EMT reversal. Pathway analysis on SINE treated HMECs further verified the involvement of additional F-Box family proteins and confirmed the suppression of snail network. Oral administration of selinexor (15 mg/kg p.o. QoDx3/week for 3weeks) resulted in complete cures (no tumor rebound at 120 days) of HMLER-Snail xenografts. These findings raise the unique possibility of blocking EMT at the nuclear pore.
Collapse
Affiliation(s)
- Asfar S. Azmi
- Department of Oncology, Wayne State University School of Medicine, Detroit MI 48201
| | - Irfana Muqbil
- Department of Oncology, Wayne State University School of Medicine, Detroit MI 48201
| | - Jack Wu
- Department of Oncology, Wayne State University School of Medicine, Detroit MI 48201
| | - Amro Aboukameel
- Department of Oncology, Wayne State University School of Medicine, Detroit MI 48201
| | | | | | | | - Gregory Dyson
- Department of Oncology, Wayne State University School of Medicine, Detroit MI 48201
| | | | | | | | - Philip A. Philip
- Department of Oncology, Wayne State University School of Medicine, Detroit MI 48201
| | - Ramzi M. Mohammad
- Department of Oncology, Wayne State University School of Medicine, Detroit MI 48201
- iTRI Hamad Medical Corporation, Doha Qatar
| |
Collapse
|
36
|
Tabe Y, Kojima K, Yamamoto S, Sekihara K, Matsushita H, Davis RE, Wang Z, Ma W, Ishizawa J, Kazuno S, Kauffman M, Shacham S, Fujimura T, Ueno T, Miida T, Andreeff M. Ribosomal Biogenesis and Translational Flux Inhibition by the Selective Inhibitor of Nuclear Export (SINE) XPO1 Antagonist KPT-185. PLoS One 2015; 10:e0137210. [PMID: 26340096 PMCID: PMC4560410 DOI: 10.1371/journal.pone.0137210] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 08/13/2015] [Indexed: 01/01/2023] Open
Abstract
Mantle cell lymphoma (MCL) is an aggressive B-cell lymphoma characterized by the aberrant expression of several growth-regulating, oncogenic effectors. Exportin 1 (XPO1) mediates the nucleocytoplasmic transport of numerous molecules including oncogenic growth-regulating factors, RNAs, and ribosomal subunits. In MCL cells, the small molecule KPT-185 blocks XPO1 function and exerts anti-proliferative effects. In this study, we investigated the molecular mechanisms of this putative anti-tumor effect on MCL cells using cell growth/viability assays, immunoblotting, gene expression analysis, and absolute quantification proteomics. KPT-185 exhibited a p53-independent anti-lymphoma effect on MCL cells, by suppression of oncogenic mediators (e.g., XPO1, cyclin D1, c-Myc, PIM1, and Bcl-2 family members), repression of ribosomal biogenesis, and downregulation of translation/chaperone proteins (e.g., PIM2, EEF1A1, EEF2, and HSP70) that are part of the translational/transcriptional network regulated by heat shock factor 1. These results elucidate a novel mechanism in which ribosomal biogenesis appears to be a key component through which XPO1 contributes to tumor cell survival. Thus, we propose that the blockade of XPO1 could be a promising, novel strategy for the treatment of MCL and other malignancies overexpressing XPO1.
Collapse
Affiliation(s)
- Yoko Tabe
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas M. D. Anderson Cancer Center, Houston, TX, United States of America
- Department of Clinical Laboratory Medicine, Biomedical Research Center Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Kensuke Kojima
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas M. D. Anderson Cancer Center, Houston, TX, United States of America
| | - Shinichi Yamamoto
- Department of Clinical Laboratory Medicine, Biomedical Research Center Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Leading Center for the Development and Research of Cancer Medicine, Biomedical Research Center Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Kazumasa Sekihara
- Department of Clinical Laboratory Medicine, Biomedical Research Center Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Leading Center for the Development and Research of Cancer Medicine, Biomedical Research Center Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Hiromichi Matsushita
- Department of Laboratory Medicine, Tokai University of Medicine, Kanagawa, Japan
| | - Richard Eric Davis
- Department of Lymphoma and Myeloma, The University of Texas M. D. Anderson Cancer Center, Houston, TX, United States of America
| | - Zhiqiang Wang
- Department of Lymphoma and Myeloma, The University of Texas M. D. Anderson Cancer Center, Houston, TX, United States of America
| | - Wencai Ma
- Department of Lymphoma and Myeloma, The University of Texas M. D. Anderson Cancer Center, Houston, TX, United States of America
| | - Jo Ishizawa
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas M. D. Anderson Cancer Center, Houston, TX, United States of America
| | - Saiko Kazuno
- Laboratory of Proteomics and Biomolecular Science, Biomedical Research Center Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Michael Kauffman
- Karyopharm Therapeutics Inc., Natick, MA, United States of America
| | - Sharon Shacham
- Karyopharm Therapeutics Inc., Natick, MA, United States of America
| | - Tsutomu Fujimura
- Laboratory of Proteomics and Biomolecular Science, Biomedical Research Center Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Takashi Ueno
- Laboratory of Proteomics and Biomolecular Science, Biomedical Research Center Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Takashi Miida
- Department of Clinical Laboratory Medicine, Biomedical Research Center Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Michael Andreeff
- Section of Molecular Hematology and Therapy, Department of Leukemia, The University of Texas M. D. Anderson Cancer Center, Houston, TX, United States of America
| |
Collapse
|
37
|
Dickmanns A, Kehlenbach RH, Fahrenkrog B. Nuclear Pore Complexes and Nucleocytoplasmic Transport: From Structure to Function to Disease. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 320:171-233. [PMID: 26614874 DOI: 10.1016/bs.ircmb.2015.07.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nucleocytoplasmic transport is an essential cellular activity and occurs via nuclear pore complexes (NPCs) that reside in the double membrane of the nuclear envelope. Significant progress has been made during the past few years in unravelling the ultrastructural organization of NPCs and their constituents, the nucleoporins, by cryo-electron tomography and X-ray crystallography. Mass spectrometry and genomic approaches have provided deeper insight into the specific regulation and fine tuning of individual nuclear transport pathways. Recent research has also focused on the roles nucleoporins play in health and disease, some of which go beyond nucleocytoplasmic transport. Here we review emerging results aimed at understanding NPC architecture and nucleocytoplasmic transport at the atomic level, elucidating the specific function individual nucleoporins play in nuclear trafficking, and finally lighting up the contribution of nucleoporins and nuclear transport receptors in human diseases, such as cancer and certain genetic disorders.
Collapse
Affiliation(s)
- Achim Dickmanns
- Abteilung für Molekulare Strukturbiologie, Institut für Mikrobiologie und Genetik, Göttinger Zentrum für Molekulare Biowissenschaften, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Ralph H Kehlenbach
- Department of Molecular Biology, Faculty of Medicine, Georg-August-University of Göttingen, Göttingen, Germany
| | - Birthe Fahrenkrog
- Institute of Molecular Biology and Medicine, Université Libre de Bruxelles, Charleroi, Belgium
| |
Collapse
|
38
|
Wulan WN, Heydet D, Walker EJ, Gahan ME, Ghildyal R. Nucleocytoplasmic transport of nucleocapsid proteins of enveloped RNA viruses. Front Microbiol 2015; 6:553. [PMID: 26082769 PMCID: PMC4451415 DOI: 10.3389/fmicb.2015.00553] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 05/19/2015] [Indexed: 12/25/2022] Open
Abstract
Most viruses with non-segmented single stranded RNA genomes complete their life cycle in the cytoplasm of infected cells. However, despite undergoing replication in the cytoplasm, the structural proteins of some of these RNA viruses localize to the nucleus at specific times in the virus life cycle, primarily early in infection. Limited evidence suggests that this enhances successful viral replication by interfering with or inhibiting the host antiviral response. Nucleocapsid proteins of RNA viruses have a well-established, essential cytoplasmic role in virus replication and assembly. Intriguingly, nucleocapsid proteins of some RNA viruses also localize to the nucleus/nucleolus of infected cells. Their nuclear function is less well understood although significant advances have been made in recent years. This review will focus on the nucleocapsid protein of cytoplasmic enveloped RNA viruses, including their localization to the nucleus/nucleolus and function therein. A greater understanding of the nuclear localization of nucleocapsid proteins has the potential to enhance therapeutic strategies as it can be a target for the development of live-attenuated vaccines or antiviral drugs.
Collapse
Affiliation(s)
- Wahyu N Wulan
- Centre for Research in Therapeutic Solutions, University of Canberra, Bruce, ACT Australia ; Faculty of Education, Science, Technology and Mathematics, University of Canberra, Bruce, ACT Australia
| | - Deborah Heydet
- Centre for Research in Therapeutic Solutions, University of Canberra, Bruce, ACT Australia
| | - Erin J Walker
- Centre for Research in Therapeutic Solutions, University of Canberra, Bruce, ACT Australia
| | - Michelle E Gahan
- Faculty of Education, Science, Technology and Mathematics, University of Canberra, Bruce, ACT Australia
| | - Reena Ghildyal
- Centre for Research in Therapeutic Solutions, University of Canberra, Bruce, ACT Australia ; Faculty of Education, Science, Technology and Mathematics, University of Canberra, Bruce, ACT Australia
| |
Collapse
|
39
|
Das A, Wei G, Parikh K, Liu D. Selective inhibitors of nuclear export (SINE) in hematological malignancies. Exp Hematol Oncol 2015; 4:7. [PMID: 25745591 PMCID: PMC4350974 DOI: 10.1186/s40164-015-0002-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Accepted: 02/03/2015] [Indexed: 11/10/2022] Open
Abstract
Regulated nucleo-cytoplasmic transport plays a major role in maintaining cellular homeostasis. CRM1 (chromosome region maintenance 1 or exportin 1 or XPO 1) is responsible for the nucleo-cytoplasmic transport of more than 200 proteins, including most of the tumor suppressor proteins (TSP). CRM1 is overexpressed in pancreatic cancer, osteosarcoma, glioma, cervical and hematological malignancies. This inspired the development of novel agents that selectively inhibit nuclear exportins (SINEs). In this review we focus on the significance of CRM1 in carcinogenesis and review the new development of SINE inhibitiors in hematological malignancies. Selinexor (KPT-330) as the first-in-human SINE agent represents this novel class of anti-cancer agents.
Collapse
Affiliation(s)
- Arundhati Das
- Department of Medicine, Westchester Medical Center, Valhalla, NY 10595 USA
| | - Guoqing Wei
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kaushal Parikh
- Department of Medicine, Westchester Medical Center, Valhalla, NY 10595 USA
| | - Delong Liu
- Henan Cancer Hospital, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
40
|
Gravina GL, Senapedis W, McCauley D, Baloglu E, Shacham S, Festuccia C. Nucleo-cytoplasmic transport as a therapeutic target of cancer. J Hematol Oncol 2014; 7:85. [PMID: 25476752 PMCID: PMC4272779 DOI: 10.1186/s13045-014-0085-1] [Citation(s) in RCA: 202] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 11/09/2014] [Indexed: 12/19/2022] Open
Abstract
Shuttling of specific proteins out of the nucleus is essential for the regulation of the cell cycle and proliferation of both normal and malignant tissues. Dysregulation of this fundamental process may affect many other important cellular processes such as tumor growth, inflammatory response, cell cycle, and apoptosis. It is known that XPO1 (Exportin-1/Chromosome Region Maintenance 1/CRM1) is the main mediator of nuclear export in many cell types. Nuclear proteins exported to the cytoplasm by XPO1 include the drug targets topoisomerase IIα (topo IIα) and BCR-ABL and tumor suppressor proteins such as Rb, APC, p53, p21, and p27. XPO1 can mediate cell proliferation through several pathways: (i) the sub-cellular localization of NES-containing oncogenes and tumor suppressor proteins, (ii) the control of the mitotic apparatus and chromosome segregation, and (iii) the maintenance of nuclear and chromosomal structures. The XPO1 protein is elevated in ovarian carcinoma, glioma, osteosarcoma, pancreatic and cervical cancer. There is a growing body of research indicating that XPO1 may have an important role as a prognostic marker in solid tumors. Because of this, nuclear export inhibition through XPO1 is a potential target for therapeutic intervention in many cancers. The best understood XPO1 inhibitors are the small molecule nuclear export inhibitors (NEIs; Leptomycin B and derivatives, ratjadones, PKF050-638, valtrate, ACA, CBS9106, selinexor/KPT-330, and verdinexor/KPT-335). Selinexor and verdinexor are orally bioavailable, highly potent, small molecules that are classified as Selective Inhibitors of Nuclear Export (SINE). KPT-330 is the only NEI currently in Phase I/II human clinical trials in hematological and solid cancers. Of all the potential targets in nuclear cytoplasmic transport, the nuclear export receptor XPO1 remains the best understood and most advanced therapeutic target for the treatment of cancer.
Collapse
Affiliation(s)
- Giovanni Luca Gravina
- />Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | | | - Dilara McCauley
- />Karyopharm Therapeutics, Inc., 85 Wells Avenue, Newton, MA USA
| | - Erkan Baloglu
- />Karyopharm Therapeutics, Inc., 85 Wells Avenue, Newton, MA USA
| | - Sharon Shacham
- />Karyopharm Therapeutics, Inc., 85 Wells Avenue, Newton, MA USA
| | - Claudio Festuccia
- />Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| |
Collapse
|
41
|
Zheng Y, Gery S, Sun H, Shacham S, Kauffman M, Koeffler HP. KPT-330 inhibitor of XPO1-mediated nuclear export has anti-proliferative activity in hepatocellular carcinoma. Cancer Chemother Pharmacol 2014; 74:487-95. [PMID: 25030088 PMCID: PMC4146741 DOI: 10.1007/s00280-014-2495-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 05/22/2014] [Indexed: 12/14/2022]
Abstract
PURPOSE Exportin-1 (XPO1, CRM1) mediates the nuclear export of several key growth regulatory and tumor suppressor proteins. Cancer cells often overexpress XPO1 resulting in cytoplasmic mislocalization and aberrant activity of its target proteins. Orally bioavailable selective inhibitors of nuclear export (SINE) that irreversibly bind to and inhibit the function of XPO1 have been recently developed. The aim of this study was to investigate the efficacy of the clinical staged, orally available, SINE compound, KPT-330 in hepatocellular carcinoma (HCC). METHODS In silico, meta-analysis showed that XPO1 is overexpressed in HCC. Six HCC cell lines were treated with KPT-330, and cell proliferation and expression of cell growth regulators were examined by cell proliferation assays and Western blot analysis, respectively. The in vivo anti-cancer activity of KPT-330 was examined in a HCC xenograft murine model. RESULTS KPT-330 reduced the viability of HCC cell lines in vitro and this anti-proliferative effect was associated with cell cycle arrest and induction of apoptosis. The expression of the pro-apoptotic protein PUMA was markedly up-regulated by KPT-330. In addition, SINE treatment increased the expression of the tumor suppressor proteins p53 and p27, while it reduced the expression of HCC promoting proteins, c-Myc and c-Met. XPO1 levels itself were also down-regulated following KPT-330 treatment. Finally, a HCC xenograft murine model showed that treatment of mice with oral KPT-330 significantly inhibited tumor growth with little evidence of toxicity. CONCLUSION Our results suggest that SINE compounds, such as KPT-330, are promising novel drugs for the targeted therapy of HCC.
Collapse
Affiliation(s)
- Yun Zheng
- Cedars-Sinai Medical Center, UCLA School of Medicine Los Angeles, CA
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology, Collaborative Innovation Center for Cancer Medicine China
| | - Sigal Gery
- Cedars-Sinai Medical Center, UCLA School of Medicine Los Angeles, CA
| | - Haibo Sun
- Cedars-Sinai Medical Center, UCLA School of Medicine Los Angeles, CA
| | | | | | - H. Phillip Koeffler
- Cedars-Sinai Medical Center, UCLA School of Medicine Los Angeles, CA
- NCIS, CSI at National University of Singapore, Singapore
| |
Collapse
|
42
|
Turner JG, Dawson J, Cubitt CL, Baz R, Sullivan DM. Inhibition of CRM1-dependent nuclear export sensitizes malignant cells to cytotoxic and targeted agents. Semin Cancer Biol 2014; 27:62-73. [PMID: 24631834 PMCID: PMC4108511 DOI: 10.1016/j.semcancer.2014.03.001] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 02/25/2014] [Accepted: 03/01/2014] [Indexed: 10/25/2022]
Abstract
Nuclear-cytoplasmic trafficking of proteins is a significant factor in the development of cancer and drug resistance. Subcellular localization of exported proteins linked to cancer development include those involved in cell growth and proliferation, apoptosis, cell cycle regulation, transformation, angiogenesis, cell adhesion, invasion, and metastasis. Here, we examined the basic mechanisms involved in the export of proteins from the nucleus to the cytoplasm. All proteins over 40kDa use the nuclear pore complex to gain entry or exit from the nucleus, with the primary nuclear export molecule involved in these processes being chromosome region maintenance 1 (CRM1, exportin 1 or XPO1). Proteins exported from the nucleus must possess a hydrophobic nuclear export signal (NES) peptide that binds to a hydrophobic groove containing an active-site Cys528 in the CRM1 protein. CRM1 inhibitors function largely by covalent modification of the active site Cys528 and prevent binding to the cargo protein NES. In the absence of a CRM1 inhibitor, CRM1 binds cooperatively to the NES of the cargo protein and RanGTP, forming a trimer that is actively transported out of the nucleus by facilitated diffusion. Nuclear export can be blocked by CRM1 inhibitors, NES peptide inhibitors or by preventing post-translational modification of cargo proteins. Clinical trials using the classic CRM1 inhibitor leptomycin B proved too toxic for patients; however, a new generation of less toxic small molecule inhibitors is being used in clinical trials in patients with both hematological malignancies and solid tumors. Additional trials are being initiated using small-molecule CRM1 inhibitors in combination with chemotherapeutics such as pegylated liposomal doxorubicin. In this review, we present evidence that combining the new CRM1 inhibitors with other classes of therapeutics may prove effective in the treatment of cancer. Potential combinatorial therapies discussed include the use of CRM1 inhibitors and the addition of alkylating agents (melphalan), anthracyclines (doxorubicin and daunomycin), BRAF inhibitors, platinum drugs (cisplatin and oxaliplatin), proteosome inhibitors (bortezomib and carfilzomib), or tyrosine-kinase inhibitors (imatinib). Also, the sequence of treatment may be important for combination therapy. We found that the most effective treatment regimen involved first priming the cancer cells with the CRM1 inhibitor followed by doxorubicin, bortezomib, carfilzomib, or melphalan. This order sensitized both de novo and acquired drug-resistant cancer cell lines.
Collapse
Affiliation(s)
- Joel G Turner
- Department of Blood and Marrow Transplantation and Chemical Biology and Molecular Medicine Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Jana Dawson
- Department of Blood and Marrow Transplantation and Chemical Biology and Molecular Medicine Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Christopher L Cubitt
- Translational Research Core Laboratory, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Rachid Baz
- Department of Malignant Hematology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Daniel M Sullivan
- Department of Blood and Marrow Transplantation and Chemical Biology and Molecular Medicine Program, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA.
| |
Collapse
|
43
|
Muqbil I, Wu J, Aboukameel A, Mohammad RM, Azmi AS. Snail nuclear transport: the gateways regulating epithelial-to-mesenchymal transition? Semin Cancer Biol 2014; 27:39-45. [PMID: 24954011 PMCID: PMC4165636 DOI: 10.1016/j.semcancer.2014.06.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 06/09/2014] [Indexed: 12/25/2022]
Abstract
Epithelial-to-mesenchymal transition (EMT) and the reverse process (MET) play central role in organ developmental biology. It is a fine tuned process that when disturbed leads to pathological conditions especially cancers with aggressive and metastatic behavior. Snail is an oncogene that has been well established to be a promoter of EMT through direct repression of epithelial morphology promoter E-cadherin. It can function in the nucleus, in the cytosol and as discovered recently, extracellularly through secretory vesicular structures. The intracellular transport of snail has for long been shown to be regulated by the nuclear pore complex. One of the Karyopherins, importin alpha, mediates snail import, while exportin 1 (Xpo1) also known as chromosome maintenance region 1 (CRM1) is its major nuclear exporter. A number of additional biological regulators are emerging that directly modulate Snail stability by altering its subcellular localization. These observations indicate that targeting the nuclear transport machinery could be an important and as of yet, unexplored avenue for therapeutic intervention against the EMT processes in cancer. In parallel, a number of novel agents that disrupt nuclear transport have recently been discovered and are being explored for their anti-cancer effects in the early clinical settings. Through this review we provide insights on the mechanisms regulating snail subcellular localization and how this impacts EMT. We discuss strategies on how the nuclear transport function can be harnessed to rein in EMT through modulation of snail signaling.
Collapse
Affiliation(s)
- Irfana Muqbil
- Department of Oncology, Karmanos Cancer Institute, USA
| | - Jack Wu
- Department of Oncology, Karmanos Cancer Institute, USA
| | | | - Ramzi M Mohammad
- Department of Oncology, Karmanos Cancer Institute, USA; Division of Research, Hamad Medical Corporation, Doha, Qatar
| | - Asfar S Azmi
- Department of Pathology, Wayne State University, School of Medicine, Detroit, MI, USA.
| |
Collapse
|
44
|
Senapedis WT, Baloglu E, Landesman Y. Clinical translation of nuclear export inhibitors in cancer. Semin Cancer Biol 2014; 27:74-86. [DOI: 10.1016/j.semcancer.2014.04.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 04/10/2014] [Indexed: 01/18/2023]
|
45
|
Sun H, Hattori N, Chien W, Sun Q, Sudo M, E-Ling GL, Ding L, Lim SL, Shacham S, Kauffman M, Nakamaki T, Koeffler HP. KPT-330 has antitumour activity against non-small cell lung cancer. Br J Cancer 2014; 111:281-91. [PMID: 24946002 PMCID: PMC4102938 DOI: 10.1038/bjc.2014.260] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 04/14/2014] [Accepted: 04/23/2014] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND We investigated the biologic and pharmacologic activities of a chromosome region maintenance 1 (CRM1) inhibitor against human non-small cell lung cancer (NSCLC) cells both in vitro and in vivo. METHODS The in vitro and in vivo effects of a novel CRM1 inhibitor (KPT-330) for a large number of anticancer parameters were evaluated using a large panel of 11 NSCLC cell lines containing different key driver mutations. Mice bearing human NSCLC xenografts were treated with KPT-330, and tumour growth was assessed. RESULTS KPT-330 inhibited proliferation and induced cell cycle arrest and apoptosis-related proteins in 11 NSCLC cells lines. Moreover, the combination of KPT-330 with cisplatin synergistically enhanced the cell kill of the NSCLC cells in vitro. Human NSCLC tumours growing in immunodeficient mice were markedly inhibited by KPT-330. Also, KPT-330 was effective even against NSCLC cells with a transforming mutation of either exon 20 of EGFR, TP53, phosphatase and tensin homologue, RAS or PIK3CA, suggesting the drug might be effective against a variety of lung cancers irrespective of their driver mutation. CONCLUSIONS Our results support clinical testing of KPT-330 as a novel therapeutic strategy for NSCLC.
Collapse
Affiliation(s)
- H Sun
- Department of Hematology and Oncology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - N Hattori
- Cancer Science Institute of Singapore, National Cancer Institute, NUS, Singapore, Singapore
| | - W Chien
- Cancer Science Institute of Singapore, National Cancer Institute, NUS, Singapore, Singapore
| | - Q Sun
- Cancer Science Institute of Singapore, National Cancer Institute, NUS, Singapore, Singapore
| | - M Sudo
- Cancer Science Institute of Singapore, National Cancer Institute, NUS, Singapore, Singapore
| | - G L E-Ling
- Cancer Science Institute of Singapore, National Cancer Institute, NUS, Singapore, Singapore
| | - L Ding
- Cancer Science Institute of Singapore, National Cancer Institute, NUS, Singapore, Singapore
| | - S L Lim
- Cancer Science Institute of Singapore, National Cancer Institute, NUS, Singapore, Singapore
| | - S Shacham
- Karyopharm Therapeutics, Boston, MA 01760, USA
| | - M Kauffman
- Karyopharm Therapeutics, Boston, MA 01760, USA
| | - T Nakamaki
- Division of Hematology, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - H P Koeffler
- Department of Hematology and Oncology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Cancer Science Institute of Singapore, National Cancer Institute, NUS, Singapore, Singapore
| |
Collapse
|
46
|
Yoshimura M, Ishizawa J, Ruvolo V, Dilip A, Quintás-Cardama A, McDonnell TJ, Neelapu SS, Kwak LW, Shacham S, Kauffman M, Tabe Y, Yokoo M, Kimura S, Andreeff M, Kojima K. Induction of p53-mediated transcription and apoptosis by exportin-1 (XPO1) inhibition in mantle cell lymphoma. Cancer Sci 2014; 105:795-801. [PMID: 24766216 PMCID: PMC4106990 DOI: 10.1111/cas.12430] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 04/21/2014] [Accepted: 04/22/2014] [Indexed: 12/17/2022] Open
Abstract
The nuclear transporter exportin-1 (XPO1) is highly expressed in mantle cell lymphoma (MCL) cells, and is believed to be associated with the pathogenesis of this disease. XPO1-selective inhibitors of nuclear export (SINE) compounds have been shown to induce apoptosis in MCL cells. Given that p53 is a cargo protein of XPO1, we sought to determine the significance of p53 activation through XPO1 inhibition in SINE-induced apoptosis of MCL cells. We investigated the prognostic impact of XPO1 expression in MCL cells using Oncomine analysis. The significance of p53 mutational/functional status on sensitivity to XPO1 inhibition in cell models and primary MCL samples, and the functional role of p53-mediated apoptosis signaling, were also examined. Increased XPO1 expression was associated with poor prognosis in MCL patients. The XPO1 inhibitor KPT-185 induced apoptosis in MCL cells through p53-dependent and -independent mechanisms, and p53 status was a critical determinant of its apoptosis induction. The KPT-185-induced, p53-mediated apoptosis in the MCL cells occurred in a transcription-dependent manner. Exportin-1 appears to influence patient survival in MCL, and the SINE XPO1 antagonist KPT-185 effectively activates p53-mediated transcription and apoptosis, which would provide a novel strategy for the therapy of MCL.
Collapse
MESH Headings
- Acrylates/pharmacology
- Animals
- Apoptosis/drug effects
- Apoptosis/genetics
- Gene Expression Regulation, Neoplastic
- Genes, p53
- Humans
- Karyopherins/genetics
- Karyopherins/metabolism
- Lymphoma, Mantle-Cell/genetics
- Lymphoma, Mantle-Cell/mortality
- Lymphoma, Mantle-Cell/pathology
- Mice
- Mice, Transgenic
- Mutation
- Prognosis
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Transcription, Genetic
- Triazoles/pharmacology
- Tumor Cells, Cultured
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
- Exportin 1 Protein
Collapse
Affiliation(s)
- Mariko Yoshimura
- Hematology, Respiratory Medicine and Oncology, Department of Medicine, Saga UniversitySaga, Japan
| | - Jo Ishizawa
- Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer CenterHouston, Texas
| | - Vivian Ruvolo
- Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer CenterHouston, Texas
| | - Archana Dilip
- Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer CenterHouston, Texas
| | | | - Timothy J McDonnell
- Department of Hematopathology, The University of Texas MD Anderson Cancer CenterHouston, Texas
| | - Sattva S Neelapu
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer CenterHouston, Texas
| | - Larry W Kwak
- Department of Lymphoma and Myeloma, The University of Texas MD Anderson Cancer CenterHouston, Texas
| | | | | | - Yoko Tabe
- Department of Clinical Laboratory Medicine, Juntendo University School of MedicineTokyo, Japan
| | - Masako Yokoo
- Hematology, Respiratory Medicine and Oncology, Department of Medicine, Saga UniversitySaga, Japan
| | - Shinya Kimura
- Hematology, Respiratory Medicine and Oncology, Department of Medicine, Saga UniversitySaga, Japan
| | - Michael Andreeff
- Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer CenterHouston, Texas
| | - Kensuke Kojima
- Hematology, Respiratory Medicine and Oncology, Department of Medicine, Saga UniversitySaga, Japan
- Molecular Hematology and Therapy, Department of Leukemia, The University of Texas MD Anderson Cancer CenterHouston, Texas
| |
Collapse
|
47
|
Gao J, Azmi AS, Aboukameel A, Kauffman M, Shacham S, Abou-Samra AB, Mohammad RM. Nuclear retention of Fbw7 by specific inhibitors of nuclear export leads to Notch1 degradation in pancreatic cancer. Oncotarget 2014; 5:3444-54. [PMID: 24899509 PMCID: PMC4116494 DOI: 10.18632/oncotarget.1813] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 03/19/2014] [Indexed: 01/09/2023] Open
Abstract
Chromosome maintenance region 1 (CRM1) also called Exportin 1 (Xpo1), a protein found elevated in pancreatic ductal adenocarcinoma (PDAC), blocks tumor suppressor protein (TSP) function through constant nuclear export. Earlier we had shown that targeting CRM1 by our newly developed specific inhibitors of nuclear export (SINE) leads to inhibition of pancreatic cancer cell proliferation and tumor growth arrest. In this paper we define the mechanism of SINE action. Our lead SINE KPT-185 inhibits PDAC cell growth, cell migration, tumor invasion and induces apoptosis and G2-M cell cycle arrest in low nano molar range (IC50s~150 nM). Mechanistically we demonstrate that the activity of KPT-185 is associated with nuclear retention of Fbw7; which degrades nuclear Notch-1 leading to decreased tumor promoting markers such as C-Myc, Cyclin-D1, Hes1 and VEGF. The orally bioavailable SINE (KPT-251) showed potent anti-tumor activity in a Colo-357 PDAC xenografts model; residual tumor analysis showed activation of Fbw7 concomitant with attenuation of Notch1 and its downstream genes. These results suggest that the antitumor activity of KPT-185 is in part due to nuclear retention of Fbw7 and consequent Notch1 degradation. The new CRM1 inhibitors, therefore, hold strong potential and warrant further clinical investigations for PDAC.
Collapse
MESH Headings
- Acrylates/pharmacology
- Active Transport, Cell Nucleus/drug effects
- Animals
- Apoptosis/drug effects
- Carcinoma, Pancreatic Ductal/drug therapy
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/metabolism
- Cell Cycle Checkpoints/drug effects
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Cell Line, Tumor
- Cell Movement
- Cell Nucleus/metabolism
- F-Box Proteins/genetics
- F-Box Proteins/metabolism
- F-Box-WD Repeat-Containing Protein 7
- Female
- Humans
- Karyopherins/genetics
- Karyopherins/metabolism
- Mice
- Mice, Inbred ICR
- Mice, SCID
- Pancreatic Neoplasms/drug therapy
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/metabolism
- Prognosis
- Receptor, Notch1/genetics
- Receptor, Notch1/metabolism
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Triazoles/pharmacology
- Ubiquitin-Protein Ligases/genetics
- Ubiquitin-Protein Ligases/metabolism
- Xenograft Model Antitumor Assays
- Exportin 1 Protein
Collapse
Affiliation(s)
- Jiankun Gao
- Sichuan College of Traditional Chinese Medicine, Mianyang, Sichuan, People's Republic of China
- Department of Oncology, Karmanos Cancer Institute, Detroit, Michigan, USA
| | - Asfar S. Azmi
- Department of Pathology, School of Medicine, Wayne State University, Detroit, Michigan, USA
| | - Amro Aboukameel
- Department of Oncology, Karmanos Cancer Institute, Detroit, Michigan, USA
| | | | | | | | - Ramzi M. Mohammad
- Department of Oncology, Karmanos Cancer Institute, Detroit, Michigan, USA
- Hamad Medical Corporation, Doha, Qatar
| |
Collapse
|
48
|
Nuclear trafficking in health and disease. Curr Opin Cell Biol 2014; 28:28-35. [PMID: 24530809 DOI: 10.1016/j.ceb.2014.01.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 01/12/2014] [Accepted: 01/19/2014] [Indexed: 01/07/2023]
Abstract
In eukaryotic cells, the cytoplasm and the nucleus are separated by a double-membraned nuclear envelope (NE). Thus, transport of molecules between the nucleus and the cytoplasm occurs via gateways termed the nuclear pore complexes (NPCs), which are the largest intracellular channels in nature. While small molecules can passively translocate through the NPC, large molecules are actively imported into the nucleus by interacting with receptors that bind nuclear pore complex proteins (Nups). Regulatory factors then function in assembly and disassembly of transport complexes. Signaling pathways, cell cycle, pathogens, and other physiopathological conditions regulate various constituents of the nuclear transport machinery. Here, we will discuss several findings related to modulation of nuclear transport during physiological and pathological conditions, including tumorigenesis, viral infection, and congenital syndrome. We will also explore chemical biological approaches that are being used as probes to reveal new mechanisms that regulate nucleocytoplasmic trafficking and that are serving as starting points for drug development.
Collapse
|
49
|
London CA, Bernabe LF, Barnard S, Kisseberth WC, Borgatti A, Henson M, Wilson H, Jensen K, Ito D, Modiano JF, Bear MD, Pennell ML, Saint-Martin JR, McCauley D, Kauffman M, Shacham S. Preclinical evaluation of the novel, orally bioavailable Selective Inhibitor of Nuclear Export (SINE) KPT-335 in spontaneous canine cancer: results of a phase I study. PLoS One 2014; 9:e87585. [PMID: 24503695 PMCID: PMC3913620 DOI: 10.1371/journal.pone.0087585] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 12/28/2013] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The purpose of this study was to evaluate the activity of Selective Inhibitors of Nuclear Export (SINE) compounds that inhibit the function of the nuclear export protein Exportin 1 (XPO1/CRM1) against canine tumor cell lines and perform a Phase I clinical trial of KPT-335 in dogs with spontaneous cancer to provide a preliminary assessment of biologic activity and tolerability. METHODS AND FINDINGS Canine tumor cell lines derived from non-Hodgkin lymphoma (NHL), mast cell tumor, melanoma and osteosarcoma exhibited growth inhibition and apoptosis in response to nanomolar concentrations of SINE compounds; NHL cells were particularly sensitive with IC50 concentrations ranging from 2-42 nM. A Phase I clinical trial of KPT-335 was performed in 17 dogs with NHL (naive or relapsed), mast cell tumor or osteosarcoma. The maximum tolerated dose was 1.75 mg/kg given orally twice/week (Monday/Thursday) although biologic activity was observed at 1 mg/kg. Clinical benefit (CB) including partial response to therapy (PR, n = 2) and stable disease (SD, n = 7) was observed in 9/14 dogs with NHL with a median time to progression (TTP) for responders of 66 days (range 35-256 days). A dose expansion study was performed in 6 dogs with NHL given 1.5 mg/kg KPT-335 Monday/Wednesday/Friday; CB was observed in 4/6 dogs with a median TTP for responders of 83 days (range 35-354 days). Toxicities were primarily gastrointestinal consisting of anorexia, weight loss, vomiting and diarrhea and were manageable with supportive care, dose modulation and administration of low dose prednisone; hepatotoxicity, anorexia and weight loss were the dose limiting toxicities. CONCLUSIONS This study provides evidence that the novel orally bioavailable XPO1 inhibitor KPT-335 is safe and exhibits activity in a relevant, spontaneous large animal model of cancer. Data from this study provides critical new information that lays the groundwork for evaluation of SINE compounds in human cancer.
Collapse
Affiliation(s)
- Cheryl A. London
- Departments of Veterinary Biosciences and Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Luis Feo Bernabe
- Departments of Veterinary Biosciences and Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Sandra Barnard
- Departments of Veterinary Biosciences and Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - William C. Kisseberth
- Departments of Veterinary Biosciences and Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Antonella Borgatti
- Department of Veterinary Clinical Sciences and Masonic Cancer Center, University of Minnesota, Minneapolis/St. Paul, Minnesota, United States of America
| | - Mike Henson
- Department of Veterinary Clinical Sciences and Masonic Cancer Center, University of Minnesota, Minneapolis/St. Paul, Minnesota, United States of America
| | - Heather Wilson
- Department of Small Animal Clinical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Kiersten Jensen
- Department of Veterinary Clinical Sciences and Masonic Cancer Center, University of Minnesota, Minneapolis/St. Paul, Minnesota, United States of America
| | - Daisuke Ito
- Department of Veterinary Clinical Sciences and Masonic Cancer Center, University of Minnesota, Minneapolis/St. Paul, Minnesota, United States of America
| | - Jaime F. Modiano
- Department of Veterinary Clinical Sciences and Masonic Cancer Center, University of Minnesota, Minneapolis/St. Paul, Minnesota, United States of America
| | - Misty D. Bear
- Departments of Veterinary Biosciences and Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Michael L. Pennell
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, Ohio, United States of America
| | | | - Dilara McCauley
- Karyopharm Therapeutics, Natick, Massachusetts, United States of America
| | - Michael Kauffman
- Karyopharm Therapeutics, Natick, Massachusetts, United States of America
| | - Sharon Shacham
- Karyopharm Therapeutics, Natick, Massachusetts, United States of America
| |
Collapse
|
50
|
Walker CJ, Oaks JJ, Santhanam R, Neviani P, Harb JG, Ferenchak G, Ellis JJ, Landesman Y, Eisfeld AK, Gabrail NY, Smith CL, Caligiuri MA, Hokland P, Roy DC, Reid A, Milojkovic D, Goldman JM, Apperley J, Garzon R, Marcucci G, Shacham S, Kauffman MG, Perrotti D. Preclinical and clinical efficacy of XPO1/CRM1 inhibition by the karyopherin inhibitor KPT-330 in Ph+ leukemias. Blood 2013; 122:3034-44. [PMID: 23970380 PMCID: PMC3811176 DOI: 10.1182/blood-2013-04-495374] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 08/11/2013] [Indexed: 02/07/2023] Open
Abstract
As tyrosine kinase inhibitors (TKIs) fail to induce long-term response in blast crisis chronic myelogenous leukemia (CML-BC) and Philadelphia chromosome-positive (Ph(+)) acute lymphoblastic leukemia (ALL), novel therapies targeting leukemia-dysregulated pathways are necessary. Exportin-1 (XPO1), also known as chromosome maintenance protein 1, regulates cell growth and differentiation by controlling the nucleocytoplasmic trafficking of proteins and RNAs, some of which are aberrantly modulated in BCR-ABL1(+) leukemias. Using CD34(+) progenitors from CML, B-ALL, and healthy individuals, we found that XPO1 expression was markedly increased, mostly in a TKI-sensitive manner, in CML-BC and Ph(+) B-ALL. Notably, XPO1 was also elevated in Ph(-) B-ALL. Moreover, the clinically relevant XPO1 inhibitor KPT-330 strongly triggered apoptosis and impaired the clonogenic potential of leukemic, but not normal, CD34(+) progenitors, and increased survival of BCR-ABL1(+) mice, 50% of which remained alive and, mostly, became BCR-ABL1 negative. Moreover, KPT-330 compassionate use in a patient with TKI-resistant CML undergoing disease progression significantly reduced white blood cell count, blast cells, splenomegaly, lactate dehydrogenase levels, and bone pain. Mechanistically, KPT-330 altered the subcellular localization of leukemia-regulated factors including RNA-binding heterogeneous nuclear ribonucleoprotein A1 and the oncogene SET, thereby inducing reactivation of protein phosphatase 2A tumor suppressor and inhibition of BCR-ABL1 in CML-BC cells. Because XPO1 is important for leukemic cell survival, KPT-330 may represent an alternative therapy for TKI-refractory Ph(+) leukemias.
Collapse
MESH Headings
- Adult
- Animals
- Antigens, CD34/genetics
- Antigens, CD34/metabolism
- Antineoplastic Agents/pharmacology
- Apoptosis/drug effects
- Cell Proliferation/drug effects
- Clinical Trials, Phase I as Topic
- DNA-Binding Proteins
- Drug Evaluation, Preclinical
- Fusion Proteins, bcr-abl/antagonists & inhibitors
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Gene Expression Regulation, Leukemic/drug effects
- Histone Chaperones/antagonists & inhibitors
- Histone Chaperones/genetics
- Histone Chaperones/metabolism
- Humans
- Hydrazines/pharmacology
- Karyopherins/antagonists & inhibitors
- Karyopherins/genetics
- Karyopherins/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Male
- Mice
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics
- Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology
- Protein Kinase Inhibitors/pharmacology
- Protein Transport
- Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Ribonucleoproteins/antagonists & inhibitors
- Ribonucleoproteins/genetics
- Ribonucleoproteins/metabolism
- Transcription Factors/antagonists & inhibitors
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Triazoles/pharmacology
- Exportin 1 Protein
Collapse
Affiliation(s)
- Christopher J Walker
- Human Cancer Genetics Program, Department Molecular Virology Immunology and Medical Genetics
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|