1
|
Cheng K, Chen Q, Chen Z, Cai Y, Cai H, Wu S, Gao P, Cai Y, Wu Z, Zhou J, Peng B, Wang X. PLEK2 promotes migration and invasion in pancreatic ductal adenocarcinoma by MMP1 through IL-17 pathway. Mol Cell Biochem 2025; 480:2401-2412. [PMID: 39117976 DOI: 10.1007/s11010-024-05078-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by poor prognosis primarily due to metastasis. Accumulating evidence suggests that PLEK2 acts as an oncogene in various tumors. This study aimed to investigate the effects of PLEK2 on PDAC. Expression analysis of PLEK2 was conducted using qRT-PCR, Western blot, and immunohistochemistry in PDAC. Wound healing and transwell assays were performed to evaluate the impact of PLEK2 on cell migration and invasion. A xenograft tumor model was employed to assess the in vivo proliferation of PLEK2. Additionally, the downstream pathway of PLEK2 was analyzed through RNA-seq and confirmed by Western blot analysis. The results demonstrated the upregulation of PLEK2 expression in tumor specimens. High PLEK2 expression was significantly associated with poor overall survival and advanced TNM stages. Correlation analyses revealed positive correlations between PLEK2 and TGF-β, EGFR, and MMP1. Wound healing and transwell assays demonstrated that PLEK2 promoted PDAC cell migration and invasion, potentially through the activation of the epithelial-to-mesenchymal transition process. The in vivo experiment further confirmed that PLEK2 knockdown suppressed tumor growth. RNA-seq analysis revealed PLEK2's regulation of MMP1 and activation of p-ERK and p-STAT3, which were verified by Western blot analysis. Overall, the present study suggests that PLEK2 may play a tumor-promoting role in PDAC. These findings provide valuable insights into the molecular mechanisms of pancreatic cancer and highlight the potential of PLEK2 as a therapeutic target.
Collapse
Affiliation(s)
- Ke Cheng
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Qiangxing Chen
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Zixin Chen
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Yu Cai
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - He Cai
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Shangdi Wu
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Pan Gao
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Yunqiang Cai
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Zhong Wu
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Jin Zhou
- Division of Liver Surgery, Department of General Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Bing Peng
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Xin Wang
- Division of Pancreatic Surgery, Department of General Surgery, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
2
|
Liu FF, Li K. Molecular characterization underlying IFN-α2 treatment in polycythemia vera: a transcriptomic overview. Mol Cell Biochem 2025:10.1007/s11010-025-05238-7. [PMID: 40029555 DOI: 10.1007/s11010-025-05238-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/19/2025] [Indexed: 03/05/2025]
Abstract
Polycythemia vera (PV) is the most common chronic myeloproliferative neoplasm (MPN) in adults. Pegylated interferon-α2 (IFN-α2) is an effective and safe drug for the treatment of PV. However, the mechanisms of its action in PV are still not fully understood. Using the WGCNA and Limma algorithm, we found a subset of IFN-α2 sensitive genes and four gene co-expression modules. Meanwhile, we also found 820 genes were differentially expressed in PV compared with healthy controls. By integrating the above results, several differentially expressed genes (DEGs) that were up- or down-regulated in PV but showed opposite alterations in the IFN-α2-treated group were found. These genes were mainly related to three types of biological processes (metal ion homeostasis, metabolic/catabolic process, and Jak-STAT signaling pathway), the dysfunctions of which were prevalent in PV. Moreover, we applied another threshold-free analysis method to compare global gene expression between IFN-α2 treated PV, PV, and control groups. Results showed the transcriptome changes of PV versus controls were negatively correlated with that of IFN-α2 treated versus untreated PV, indicating IFN-α2 treatment could partially reverse the dysregulated gene expression profile due to PV pathology. In summary, interferon may alleviate the progression of PV through multiple pathways. The findings may be of assistance in understanding the molecular basis underlying this treatment.
Collapse
Affiliation(s)
- Fang-Fang Liu
- Department of Pathology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, People's Republic of China
| | - Ke Li
- Department of Blood Transfusion, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Hankou District, Wuhan, 430030, Hubei, People's Republic of China.
| |
Collapse
|
3
|
Zhuo Q, Zhang Z, Fang X. New insights into the mechanisms of red blood cell enucleation: From basics to clinical applications. EJHAEM 2024; 5:1301-1311. [PMID: 39691252 PMCID: PMC11647694 DOI: 10.1002/jha2.1051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 12/19/2024]
Abstract
Background Red blood cell (RBC) enucleation is a crucial step in the process of erythropoiesis. By removing the nucleus, RBCs gain greater flexibility, enabling them to traverse narrow capillaries with ease, thereby enhancing the efficiency of oxygen and carbon dioxide transport. This transformation underscores the intricate balance between cellular structure and function essential for maintaining homeostasis. Topic This review delves into the multifaceted enucleation process, outlining its complex steps that encompass protein sorting, vesicle trafficking, cytoskeletal remodeling, and apoptosis regulation, while also exploring the potential of enhancing the enucleation rate of RBCs in vitro. We emphasize the intricate regulation of this process, which is orchestrated by multiple factors. This includes transcription factors that meticulously guide protein synthesis and sorting through the modulation of gene expression, as well as non-coding RNAs that play a pivotal role in post-transcriptional regulation during various stages of RBC enucleation. Additionally, macrophages participate in the enucleation process by engulfing and clearing the extruded nuclei, further ensuring the proper development of RBCs. Although many studies have deeply explored the molecular mechanisms of enucleation, the roles of apoptosis and anti-apoptotic processes in RBC enucleation remain incompletely understood. Implication In this review, we aim to comprehensively summarize the RBC enucleation process and explore the progress made in ex vivo RBC generation. In the future, a deeper understanding of the enucleation process could provide significant benefits to patients suffering from anemia and other related conditions.
Collapse
Affiliation(s)
- Qianli Zhuo
- China National Center for BioinformationBeijingChina
- Beijing Institute of Genomics, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhaojun Zhang
- China National Center for BioinformationBeijingChina
- Beijing Institute of Genomics, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Beijing Key Laboratory of Genome and Precision Medicine TechnologiesBeijingChina
| | - Xiangdong Fang
- China National Center for BioinformationBeijingChina
- Beijing Institute of Genomics, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- Beijing Key Laboratory of Genome and Precision Medicine TechnologiesBeijingChina
| |
Collapse
|
4
|
Han X, Zhang A, Wang P, Bi H, Ren K, Li E, Yang X, Aydemir I, Tao K, Lin J, Abdulkadir SA, Yang J, Ji P. Pleckstrin-2 Mediates the Activation of AKT in Prostate Cancer and Is Repressed by Androgen Receptor. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:1986-1996. [PMID: 39069167 PMCID: PMC11423716 DOI: 10.1016/j.ajpath.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/16/2024] [Accepted: 07/09/2024] [Indexed: 07/30/2024]
Abstract
Phosphoinositide 3-kinase (PI3K)-AKT and androgen receptor (AR) pathways are commonly activated in prostate cancers. Their reciprocal regulation makes advanced prostate cancers difficult to treat. The current study shows that pleckstrin-2 (PLEK2), a proto-oncoprotein involved in the activation and stabilization of AKT, connects these two pathways. Genetic evidence provided herein suggests that Plek2 deficiency largely reverted tumorigenesis in Pten prostate-specific knockout mice and that overexpression of PLEK2 promoted the proliferation and colony formation of prostate cancer cells in vitro. In addition, PLEK2 was negatively regulated by AR, AR transcriptionally repressed PLEK2 through binding to the PLEK2 promoter region, and overexpression of AR reduced PLEK2 expression, which inactivated AKT. Conversely, knockdown of AR in prostate cancer cells increased PLEK2 expression and activated the AKT pathway. This reciprocal inhibitory loop can be pharmacologically targeted using the PLEK2 inhibitor. PLEK2 inhibitor dose-dependently inhibited prostate cancer cell proliferation with the inactivation of AKT. Overall, the current study uncovered a crucial role of PLEK2 in prostate cancer proliferation and provided the rationale for targeting PLEK2 to treat prostate cancers.
Collapse
Affiliation(s)
- Xu Han
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
| | - Ali Zhang
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
| | - Pan Wang
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
| | - Honghao Bi
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
| | - Kehan Ren
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
| | - Ermin Li
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
| | - Ximing Yang
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
| | - Inci Aydemir
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
| | - Kara Tao
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Jeffrey Lin
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Sarki A Abdulkadir
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois; Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Jing Yang
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois
| | - Peng Ji
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois.
| |
Collapse
|
5
|
Han X, Mei Y, Mishra RK, Bi H, Jain AD, Schiltz GE, Zhao B, Sukhanova M, Wang P, Grigorescu AA, Weber PC, Piwinski JJ, Prado MA, Paulo JA, Stephens L, Anderson KE, Abrams CS, Yang J, Ji P. Targeting pleckstrin-2/Akt signaling reduces proliferation in myeloproliferative neoplasm models. J Clin Invest 2023; 133:e159638. [PMID: 36719747 PMCID: PMC10014099 DOI: 10.1172/jci159638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 01/25/2023] [Indexed: 02/01/2023] Open
Abstract
Myeloproliferative neoplasms (MPNs) are characterized by the activated JAK2/STAT pathway. Pleckstrin-2 (Plek2) is a downstream target of the JAK2/STAT5 pathway and is overexpressed in patients with MPNs. We previously revealed that Plek2 plays critical roles in the pathogenesis of JAK2-mutated MPNs. The nonessential roles of Plek2 under physiologic conditions make it an ideal target for MPN therapy. Here, we identified first-in-class Plek2 inhibitors through an in silico high-throughput screening approach and cell-based assays, followed by the synthesis of analogs. Plek2-specific small-molecule inhibitors showed potent inhibitory effects on cell proliferation. Mechanistically, Plek2 interacts with and enhances the activity of Akt through the recruitment of downstream effector proteins. The Plek2-signaling complex also includes Hsp72, which protects Akt from degradation. These functions were blocked by Plek2 inhibitors via their direct binding to the Plek2 dishevelled, Egl-10 and pleckstrin (DEP) domain. The role of Plek2 in activating Akt signaling was further confirmed in vivo using a hematopoietic-specific Pten-knockout mouse model. We next tested Plek2 inhibitors alone or in combination with an Akt inhibitor in various MPN mouse models, which showed significant therapeutic efficacies similar to that seen with the genetic depletion of Plek2. The Plek2 inhibitor was also effective in reducing proliferation of CD34-positive cells from MPN patients. Our studies reveal a Plek2/Akt complex that drives cell proliferation and can be targeted by a class of antiproliferative compounds for MPN therapy.
Collapse
Affiliation(s)
- Xu Han
- Department of Pathology, Feinberg School of Medicine
- Robert H. Lurie Comprehensive Cancer Center
| | - Yang Mei
- Department of Pathology, Feinberg School of Medicine
- Robert H. Lurie Comprehensive Cancer Center
| | - Rama K. Mishra
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine
| | - Honghao Bi
- Department of Pathology, Feinberg School of Medicine
- Robert H. Lurie Comprehensive Cancer Center
| | | | - Gary E. Schiltz
- Robert H. Lurie Comprehensive Cancer Center
- Department of Chemistry, and
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Baobing Zhao
- Department of Pathology, Feinberg School of Medicine
- Robert H. Lurie Comprehensive Cancer Center
| | - Madina Sukhanova
- Department of Pathology, Feinberg School of Medicine
- Robert H. Lurie Comprehensive Cancer Center
| | - Pan Wang
- Department of Pathology, Feinberg School of Medicine
| | - Arabela A. Grigorescu
- Department of Molecular Biosciences, Weinberg College of Arts & Sciences, Northwestern University, Evanston, Illinois, USA
| | | | | | - Miguel A. Prado
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, USA
| | - Len Stephens
- Signaling Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Karen E. Anderson
- Signaling Programme, The Babraham Institute, Cambridge, United Kingdom
| | - Charles S. Abrams
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jing Yang
- Department of Pathology, Feinberg School of Medicine
- Robert H. Lurie Comprehensive Cancer Center
| | - Peng Ji
- Department of Pathology, Feinberg School of Medicine
- Robert H. Lurie Comprehensive Cancer Center
| |
Collapse
|
6
|
Lu Z, Xu G, Li Y, Lu C, Shen Y, Zhao B. Discovery of N-arylcinnamamides as novel erythroblast enucleation inducers. Bioorg Chem 2022; 128:106105. [PMID: 36031698 DOI: 10.1016/j.bioorg.2022.106105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/12/2022] [Accepted: 08/17/2022] [Indexed: 01/28/2023]
Abstract
Derivation of mature red blood cells (RBCs) from stem cells in vitro is a promising solution to the current shortage of blood supply, in which terminal enucleation is the rate-limiting step. Here we discovered two cinnamamides B8 and B16 showed potential activities of enhancing the enucleation of erythroblasts through the screening of "in-house" compound library. Subsequently, twenty-four N-arylcinnamamides were rationally designed and synthesized on the basis of the structure of B8 and B16, in which N-(9H-carbazol-2-yl)cinnamamide (KS-2) significantly elevated the percentage of reticulocytes in the cultured mouse fetal liver cells in vitro (relative enucleation = 2.43). The underlying mechanism of KS-2 in promoting mouse erythroid enucleation is accelerating the process of cell cycle exit via p53 activation in late stage erythrocytes. These results strongly suggest that compound KS-2 is worthy of further study as a potential erythrocyte enucleation inducer.
Collapse
Affiliation(s)
- Zhiyuan Lu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Guangsen Xu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Yanxia Li
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Chunhua Lu
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yuemao Shen
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Baobing Zhao
- Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, China; NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
7
|
Bagchi A, Devaraju N, Chambayil K, Rajendiran V, Venkatesan V, Sayed N, Pai AA, Nath A, David E, Nakamura Y, Balasubramanian P, Srivastava A, Thangavel S, Mohankumar KM, Velayudhan SR. Erythroid lineage-specific lentiviral RNAi vectors suitable for molecular functional studies and therapeutic applications. Sci Rep 2022; 12:14033. [PMID: 35982069 PMCID: PMC9388678 DOI: 10.1038/s41598-022-13783-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/27/2022] [Indexed: 12/02/2022] Open
Abstract
Numerous genes exert multifaceted roles in hematopoiesis. Therefore, we generated novel lineage-specific RNA interference (RNAi) lentiviral vectors, H23B-Ery-Lin-shRNA and H234B-Ery-Lin-shRNA, to probe the functions of these genes in erythroid cells without affecting other hematopoietic lineages. The lineage specificity of these vectors was confirmed by transducing multiple hematopoietic cells to express a fluorescent protein. Unlike the previously reported erythroid lineage RNAi vector, our vectors were designed for cloning the short hairpin RNAs (shRNAs) for any gene, and they also provide superior knockdown of the target gene expression with a single shRNA integration per cell. High-level lineage-specific downregulation of BCL11A and ZBTB7A, two well-characterized transcriptional repressors of HBG in adult erythroid cells, was achieved with substantial induction of fetal hemoglobin with a single-copy lentiviral vector integration. Transduction of primary healthy donor CD34+ cells with these vectors resulted in >80% reduction in the target protein levels and up to 40% elevation in the γ-chain levels in the differentiated erythroid cells. Xenotransplantation of the human CD34+ cells transduced with H23B-Ery-Lin-shBCL11A LV in immunocompromised mice showed ~ 60% reduction in BCL11A protein expression with ~ 40% elevation of γ-chain levels in the erythroid cells derived from the transduced CD34+ cells. Overall, the novel erythroid lineage-specific lentiviral RNAi vectors described in this study provide a high-level knockdown of target gene expression in the erythroid cells, making them suitable for their use in gene therapy for hemoglobinopathies. Additionally, the design of these vectors also makes them ideal for high-throughput RNAi screening for studying normal and pathological erythropoiesis.
Collapse
Affiliation(s)
- Abhirup Bagchi
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Vellore, Tamil Nadu, 632002, India
- Department of Biotechnology, Thiruvalluvar University, Vellore, Tamil Nadu, 632115, India
| | - Nivedhitha Devaraju
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Vellore, Tamil Nadu, 632002, India
- Manipal Academy of Higher Education, Manipal, Karnataka, 576119, India
| | - Karthik Chambayil
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Vellore, Tamil Nadu, 632002, India
- Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, 695011, India
| | - Vignesh Rajendiran
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Vellore, Tamil Nadu, 632002, India
- Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, 695011, India
| | - Vigneshwaran Venkatesan
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Vellore, Tamil Nadu, 632002, India
- Manipal Academy of Higher Education, Manipal, Karnataka, 576119, India
| | - Nilofer Sayed
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Vellore, Tamil Nadu, 632002, India
| | - Aswin Anand Pai
- Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, 695011, India
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu, 632004, India
| | - Aneesha Nath
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Vellore, Tamil Nadu, 632002, India
- Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, 695011, India
| | - Ernest David
- Department of Biotechnology, Thiruvalluvar University, Vellore, Tamil Nadu, 632115, India
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research Center, Ibaraki, 3050074, Japan
| | - Poonkuzhali Balasubramanian
- Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, 695011, India
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu, 632004, India
| | - Alok Srivastava
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Vellore, Tamil Nadu, 632002, India
- Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananthapuram, Kerala, 695011, India
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu, 632004, India
| | - Saravanabhavan Thangavel
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Vellore, Tamil Nadu, 632002, India
- Manipal Academy of Higher Education, Manipal, Karnataka, 576119, India
| | - Kumarasamypet M Mohankumar
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Vellore, Tamil Nadu, 632002, India.
- Manipal Academy of Higher Education, Manipal, Karnataka, 576119, India.
| | - Shaji R Velayudhan
- Center for Stem Cell Research (A Unit of inStem, Bengaluru, India), Christian Medical College, Vellore, Tamil Nadu, 632002, India.
- Department of Biotechnology, Thiruvalluvar University, Vellore, Tamil Nadu, 632115, India.
- Department of Haematology, Christian Medical College, Vellore, Tamil Nadu, 632004, India.
| |
Collapse
|
8
|
Lu Z, Huang L, Li Y, Xu Y, Zhang R, Zhou Q, Sun Q, Lu Y, Chen J, Shen Y, Li J, Zhao B. Fine-Tuning of Cholesterol Homeostasis Controls Erythroid Differentiation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102669. [PMID: 34739188 PMCID: PMC8805577 DOI: 10.1002/advs.202102669] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/01/2021] [Indexed: 05/12/2023]
Abstract
Lipid metabolism is essential for stemness maintenance, self-renewal, and differentiation of stem cells, however, the regulatory function of cholesterol metabolism in erythroid differentiation is poorly studied. In the present study, a critical role for cholesterol homeostasis in terminal erythropoiesis is uncovered. The master transcriptional factor GATA1 binds to Sterol-regulatory element binding protein 2 (SREBP2) to downregulate cholesterol biosynthesis, leading to a gradual reduction in intracellular cholesterol levels. It is further shown that reduced cholesterol functions to block erythroid proliferation via the cholesterol/mTORC1/ribosome biogenesis axis, which coordinates cell cycle exit in the late stages of erythroid differentiation. The interaction of GATA1 and SREBP2 also provides a feedback loop for regulating globin expression through the transcriptional control of NFE2 by SREBP2. Importantly, it is shown that disrupting intracellular cholesterol hemostasis resulted in defect of terminal erythroid differentiation in vivo. These findings demonstrate that fine-tuning of cholesterol homeostasis emerges as a key mechanism for regulating erythropoiesis.
Collapse
Affiliation(s)
- Zhiyuan Lu
- Key Laboratory of Chemical Biology (Ministry of Education)School of Pharmaceutical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Lixia Huang
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Yanxia Li
- Key Laboratory of Chemical Biology (Ministry of Education)School of Pharmaceutical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Yan Xu
- Key Laboratory of Chemical Biology (Ministry of Education)School of Pharmaceutical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Ruihao Zhang
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Qian Zhou
- Key Laboratory of Chemical Biology (Ministry of Education)School of Pharmaceutical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Qi Sun
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Yi Lu
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Junjie Chen
- Analysis and Measurement CenterSchool of Pharmaceutical SciencesXiamen UniversityXiamenFujian361001China
| | - Yuemao Shen
- Key Laboratory of Chemical Biology (Ministry of Education)School of Pharmaceutical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Jian Li
- Department of Biochemistry and Molecular BiologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012China
| | - Baobing Zhao
- Key Laboratory of Chemical Biology (Ministry of Education)School of Pharmaceutical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012China
- Department of PharmacologySchool of Pharmaceutical SciencesCheeloo College of MedicineShandong UniversityJinanShandong250012China
| |
Collapse
|
9
|
Wang G, Zhou Q, Xu Y, Zhao B. Emerging Roles of Pleckstrin-2 Beyond Cell Spreading. Front Cell Dev Biol 2021; 9:768238. [PMID: 34869363 PMCID: PMC8637889 DOI: 10.3389/fcell.2021.768238] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/14/2021] [Indexed: 11/17/2022] Open
Abstract
Pleckstrin-2 is a member of pleckstrin family with well-defined structural features that was first identified in 1999. Over the past 20 years, our understanding of PLEK2 biology has been limited to cell spreading. Recently, increasing evidences support that PLEK2 plays important roles in other cellular events beyond cell spreading, such as erythropoiesis, tumorigenesis and metastasis. It serves as a potential diagnostic and prognostic biomarker as well as an attractive target for the treatment of cancers. Herein, we summary the protein structure and molecular interactions of pleckstrin-2, with an emphasis on its regulatory roles in tumorigenesis.
Collapse
Affiliation(s)
- Gengchen Wang
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qian Zhou
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yan Xu
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Baobing Zhao
- Department of Pharmacology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.,Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
10
|
Murphy ZC, Murphy K, Myers J, Getman M, Couch T, Schulz VP, Lezon-Geyda K, Palumbo C, Yan H, Mohandas N, Gallagher PG, Steiner LA. Regulation of RNA polymerase II activity is essential for terminal erythroid maturation. Blood 2021; 138:1740-1756. [PMID: 34075391 PMCID: PMC8569412 DOI: 10.1182/blood.2020009903] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 04/30/2021] [Indexed: 11/20/2022] Open
Abstract
The terminal maturation of human erythroblasts requires significant changes in gene expression in the context of dramatic nuclear condensation. Defects in this process are associated with inherited anemias and myelodysplastic syndromes. The progressively dense appearance of the condensing nucleus in maturing erythroblasts led to the assumption that heterochromatin accumulation underlies this process, but despite extensive study, the precise mechanisms underlying this essential biologic process remain elusive. To delineate the epigenetic changes associated with the terminal maturation of human erythroblasts, we performed mass spectrometry of histone posttranslational modifications combined with chromatin immunoprecipitation coupled with high-throughput sequencing, Assay for Transposase Accessible Chromatin, and RNA sequencing. Our studies revealed that the terminal maturation of human erythroblasts is associated with a dramatic decline in histone marks associated with active transcription elongation, without accumulation of heterochromatin. Chromatin structure and gene expression were instead correlated with dynamic changes in occupancy of elongation competent RNA polymerase II, suggesting that terminal erythroid maturation is controlled largely at the level of transcription. We further demonstrate that RNA polymerase II "pausing" is highly correlated with transcriptional repression, with elongation competent RNA polymerase II becoming a scare resource in late-stage erythroblasts, allocated to erythroid-specific genes. Functional studies confirmed an essential role for maturation stage-specific regulation of RNA polymerase II activity during erythroid maturation and demonstrate a critical role for HEXIM1 in the regulation of gene expression and RNA polymerase II activity in maturing erythroblasts. Taken together, our findings reveal important insights into the mechanisms that regulate terminal erythroid maturation and provide a novel paradigm for understanding normal and perturbed erythropoiesis.
Collapse
Affiliation(s)
| | | | - Jacquelyn Myers
- Department of Pediatrics and
- Genomics Resource Center, University of Rochester, Rochester, NY
| | | | | | | | | | - Cal Palumbo
- Genomics Resource Center, University of Rochester, Rochester, NY
| | | | | | | | | |
Collapse
|
11
|
Pleckstrin-2 as a Prognostic Factor and Mediator of Gastric Cancer Progression. Gastroenterol Res Pract 2021; 2021:5527387. [PMID: 34394345 PMCID: PMC8360755 DOI: 10.1155/2021/5527387] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 07/06/2021] [Indexed: 12/13/2022] Open
Abstract
Pleckstrin-2 (PLEK2) is a crucial mediator of cytoskeletal reorganization. However, the potential roles of PLEK2 in gastric cancer are still unknown. PLEK2 expression in gastric cancer was examined by western blotting and real-time PCR. Survival analysis was utilized to test the clinical impacts of the levels of PLEK2 in gastric cancer patients. In vitro and in vivo studies were used to estimate the potential roles played by PLEK2 in modulating gastric cancer proliferation, self-renewal, and tumourigenicity. Bioinformatics approaches were used to monitor the effect of PLEK2 on epithelial-mesenchymal transition (EMT) signalling pathways. PLEK2 expression was significantly upregulated in gastric cancer as compared with nontumour samples. Kaplan-Meier plotter analysis revealed that gastric cancer patients with higher PLEK2 levels had substantially poorer overall survival compared with gastric cancer patients with lower PLEK2 levels. The upregulation or downregulation of PLEK2 in gastric cancer cell lines effectively enhanced or inhibited cell proliferation and proinvasive behaviour, respectively. Additionally, we also found that PLEK2 enhanced EMT through downregulating E-cadherin expression and upregulating Vimentin expression. Our findings demonstrated that PLEK2 plays a potential role in gastric cancer and may be a novel therapeutic target for gastric cancer.
Collapse
|
12
|
Kałuzińska Ż, Kołat D, Bednarek AK, Płuciennik E. PLEK2, RRM2, GCSH: A Novel WWOX-Dependent Biomarker Triad of Glioblastoma at the Crossroads of Cytoskeleton Reorganization and Metabolism Alterations. Cancers (Basel) 2021; 13:2955. [PMID: 34204789 PMCID: PMC8231639 DOI: 10.3390/cancers13122955] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/30/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma is one of the deadliest human cancers. Its malignancy depends on cytoskeleton reorganization, which is related to, e.g., epithelial-to-mesenchymal transition and metastasis. The malignant phenotype of glioblastoma is also affected by the WWOX gene, which is lost in nearly a quarter of gliomas. Although the role of WWOX in the cytoskeleton rearrangement has been found in neural progenitor cells, its function as a modulator of cytoskeleton in gliomas was not investigated. Therefore, this study aimed to investigate the role of WWOX and its collaborators in cytoskeleton dynamics of glioblastoma. Methodology on RNA-seq data integrated the use of databases, bioinformatics tools, web-based platforms, and machine learning algorithm, and the obtained results were validated through microarray data. PLEK2, RRM2, and GCSH were the most relevant WWOX-dependent genes that could serve as novel biomarkers. Other genes important in the context of cytoskeleton (BMP4, CCL11, CUX2, DUSP7, FAM92B, GRIN2B, HOXA1, HOXA10, KIF20A, NF2, SPOCK1, TTR, UHRF1, and WT1), metabolism (MTHFD2), or correlation with WWOX (COL3A1, KIF20A, RNF141, and RXRG) were also discovered. For the first time, we propose that changes in WWOX expression dictate a myriad of alterations that affect both glioblastoma cytoskeleton and metabolism, rendering new therapeutic possibilities.
Collapse
Affiliation(s)
- Żaneta Kałuzińska
- Department of Molecular Carcinogenesis, Medical University of Lodz, 90-752 Lodz, Poland; (D.K.); (A.K.B.); (E.P.)
| | | | | | | |
Collapse
|
13
|
Feola M, Zamperone A, Moskop D, Chen H, Casu C, Lama D, Di Martino J, Djedaini M, Papa L, Martinez MR, Choesang T, Bravo-Cordero JJ, MacKay M, Zumbo P, Brinkman N, Abrams CS, Rivella S, Hattangadi S, Mason CE, Hoffman R, Ji P, Follenzi A, Ginzburg YZ. Pleckstrin-2 is essential for erythropoiesis in β-thalassemic mice, reducing apoptosis and enhancing enucleation. Commun Biol 2021; 4:517. [PMID: 33941818 PMCID: PMC8093212 DOI: 10.1038/s42003-021-02046-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 03/23/2021] [Indexed: 02/03/2023] Open
Abstract
Erythropoiesis involves complex interrelated molecular signals influencing cell survival, differentiation, and enucleation. Diseases associated with ineffective erythropoiesis, such as β-thalassemias, exhibit erythroid expansion and defective enucleation. Clear mechanistic determinants of what make erythropoiesis effective are lacking. We previously demonstrated that exogenous transferrin ameliorates ineffective erythropoiesis in β-thalassemic mice. In the current work, we utilize transferrin treatment to elucidate a molecular signature of ineffective erythropoiesis in β-thalassemia. We hypothesize that compensatory mechanisms are required in β-thalassemic erythropoiesis to prevent apoptosis and enhance enucleation. We identify pleckstrin-2-a STAT5-dependent lipid binding protein downstream of erythropoietin-as an important regulatory node. We demonstrate that partial loss of pleckstrin-2 leads to worsening ineffective erythropoiesis and pleckstrin-2 knockout leads to embryonic lethality in β-thalassemic mice. In addition, the membrane-associated active form of pleckstrin-2 occurs at an earlier stage during β-thalassemic erythropoiesis. Furthermore, membrane-associated activated pleckstrin-2 decreases cofilin mitochondrial localization in β-thalassemic erythroblasts and pleckstrin-2 knockdown in vitro induces cofilin-mediated apoptosis in β-thalassemic erythroblasts. Lastly, pleckstrin-2 enhances enucleation by interacting with and activating RacGTPases in β-thalassemic erythroblasts. This data elucidates the important compensatory role of pleckstrin-2 in β-thalassemia and provides support for the development of targeted therapeutics in diseases of ineffective erythropoiesis.
Collapse
Affiliation(s)
- Maria Feola
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- University of Piemonte Orientale, Amedeo Avogadro, Novara, Italy
| | - Andrea Zamperone
- Perlmutter Cancer Center, New York University Langone Medical Center, New York, NY, USA
| | - Daniel Moskop
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Huiyong Chen
- Erythropoiesis Laboratory, New York Blood Center, New York, NY, USA
- Hunan Province Key Laboratory of Basic and Applied Hematology, School of Life Sciences, Central South University, Changsha, China
| | - Carla Casu
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Dechen Lama
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Julie Di Martino
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mansour Djedaini
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Luena Papa
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marc Ruiz Martinez
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tenzin Choesang
- Erythropoiesis Laboratory, New York Blood Center, New York, NY, USA
| | | | | | - Paul Zumbo
- Weill Cornell Medical College, New York, NY, USA
| | | | - Charles S Abrams
- Perelman Center for Advanced Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | | | | | - Ronald Hoffman
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peng Ji
- Northwestern University, Chicago, IL, USA
| | - Antonia Follenzi
- University of Piemonte Orientale, Amedeo Avogadro, Novara, Italy
| | - Yelena Z Ginzburg
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
14
|
Guy A, Poisson J, James C. Pathogenesis of cardiovascular events in BCR-ABL1-negative myeloproliferative neoplasms. Leukemia 2021; 35:935-955. [PMID: 33658660 DOI: 10.1038/s41375-021-01170-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/11/2021] [Accepted: 01/28/2021] [Indexed: 02/07/2023]
Abstract
Thrombosis, both in arterial and venous territories, is the major complication of myeloproliferative neoplasms and is responsible for a high rate of morbidity and mortality. The currently accepted risk factors are an age over 60 years and a history of thrombosis. However, many complex mechanisms contribute to this increased prothrombotic risk, with involvement of all blood cell types, plasmatic factors, and endothelial cells. Besides, some cardiovascular events may originate from arterial vasospasm that could contribute to thrombotic complications. In this review, we discuss recent results obtained in mouse models in the light of data obtained from clinical studies. We emphasize on actors of thrombosis that are currently not targeted with current therapeutics but could be promising targets, i.e, neutrophil extracellular traps and vascular reactivity.
Collapse
Affiliation(s)
- Alexandre Guy
- UMR1034, Inserm, Biology of Cardiovascular Diseases, University of Bordeaux, Pessac, France.,Department of Biomedicine, University Hospital Basel, Basel, Switzerland
| | - Johanne Poisson
- Inserm, Centre de recherche sur l'inflammation, University of Paris, Paris, France.,Geriatrics Department, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
| | - Chloe James
- UMR1034, Inserm, Biology of Cardiovascular Diseases, University of Bordeaux, Pessac, France. .,Laboratoire d'Hématologie, CHU de Bordeaux, Pessac, France.
| |
Collapse
|
15
|
Mei Y, Liu Y, Ji P. Understanding terminal erythropoiesis: An update on chromatin condensation, enucleation, and reticulocyte maturation. Blood Rev 2021; 46:100740. [PMID: 32798012 DOI: 10.1016/j.blre.2020.100740] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/02/2020] [Accepted: 08/05/2020] [Indexed: 12/19/2022]
Abstract
A characteristic feature of terminal erythropoiesis in mammals is extrusion of the highly condensed nucleus out of the cytoplasm. Other vertebrates, including fish, reptiles, amphibians, and birds, undergo nuclear condensation but do not enucleate. Enucleation provides mammals evolutionary advantages by gaining extra space for hemoglobin and being more flexible to migrate through capillaries. Nascent reticulocytes further mature into red blood cells through membrane and proteome remodeling and organelle clearance. Over the past decade, novel molecular mechanisms and signaling pathways have been uncovered that play important roles in chromatin condensation, enucleation, and reticulocyte maturation. These advances not only increase understanding of the physiology of erythropoiesis, but also facilitate efforts in generating in vitro red blood cells for various translational application. In the present review, recent studies in epigenetic modification and release of histones during chromatin condensation are highlighted. New insights in enucleation, including protein sorting, vesicle trafficking, transcriptional regulation, noncoding RNA, cytoskeleton remodeling, erythroblastic islands, and cytokinesis, are summarized. Moreover, organelle clearance and proteolysis mediated by ubiquitin-proteasome degradation during reticulocytes maturation is also examined. Perspectives for future directions in this rapidly evolving research area are also provided.
Collapse
Affiliation(s)
- Yang Mei
- Department of Pathology, Northwestern University, Chicago, IL, USA.
| | - Yijie Liu
- Department of Pathology, Northwestern University, Chicago, IL, USA.
| | - Peng Ji
- Department of Pathology, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
16
|
Menon V, Ghaffari S. Erythroid enucleation: a gateway into a "bloody" world. Exp Hematol 2021; 95:13-22. [PMID: 33440185 PMCID: PMC8147720 DOI: 10.1016/j.exphem.2021.01.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 12/18/2022]
Abstract
Erythropoiesis is an intricate process starting in hematopoietic stem cells and leading to the daily production of 200 billion red blood cells (RBCs). Enucleation is a greatly complex and rate-limiting step during terminal maturation of mammalian RBC production involving expulsion of the nucleus from the orthochromatic erythroblasts, resulting in the formation of reticulocytes. The dynamic enucleation process involves many factors ranging from cytoskeletal proteins to transcription factors to microRNAs. Lack of optimum terminal erythroid maturation and enucleation has been an impediment to optimum RBC production ex vivo. Major efforts in the past two decades have exposed some of the mechanisms that govern the enucleation process. This review focuses in detail on mechanisms implicated in enucleation and discusses the future perspectives of this fascinating process.
Collapse
Affiliation(s)
- Vijay Menon
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Saghi Ghaffari
- Department of Cell, Developmental & Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY; Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY; Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY.
| |
Collapse
|
17
|
Liu Y, Mei Y, Han X, Korobova FV, Prado MA, Yang J, Peng Z, Paulo JA, Gygi SP, Finley D, Ji P. Membrane skeleton modulates erythroid proteome remodeling and organelle clearance. Blood 2021; 137:398-409. [PMID: 33036023 PMCID: PMC7819763 DOI: 10.1182/blood.2020006673] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 09/22/2020] [Indexed: 01/26/2023] Open
Abstract
The final stages of mammalian erythropoiesis involve enucleation, membrane and proteome remodeling, and organelle clearance. Concomitantly, the erythroid membrane skeleton establishes a unique pseudohexagonal spectrin meshwork that is connected to the membrane through junctional complexes. The mechanism and signaling pathways involved in the coordination of these processes are unclear. The results of our study revealed an unexpected role of the membrane skeleton in the modulation of proteome remodeling and organelle clearance during the final stages of erythropoiesis. We found that diaphanous-related formin mDia2 is a master regulator of the integrity of the membrane skeleton through polymerization of actin protofilament in the junctional complex. The mDia2-deficient terminal erythroid cell contained a disorganized and rigid membrane skeleton that was ineffective in detaching the extruded nucleus. In addition, the disrupted skeleton failed to activate the endosomal sorting complex required for transport-III (ESCRT-III) complex, which led to a global defect in proteome remodeling, endolysosomal trafficking, and autophagic organelle clearance. Chmp5, a component of the ESCRT-III complex, is regulated by mDia2-dependent activation of the serum response factor and is essential for membrane remodeling and autophagosome-lysosome fusion. Mice with loss of Chmp5 in hematopoietic cells in vivo resembled the phenotypes in mDia2-knockout mice. Furthermore, overexpression of Chmp5 in mDia2-deficient hematopoietic stem and progenitor cells significantly restored terminal erythropoiesis in vivo. These findings reveal a formin-regulated signaling pathway that connects the membrane skeleton to proteome remodeling, enucleation, and organelle clearance during terminal erythropoiesis.
Collapse
Affiliation(s)
- Yijie Liu
- Department of Pathology, Feinberg School of Medicine
- Robert H. Lurie Comprehensive Cancer Center, and
| | - Yang Mei
- Department of Pathology, Feinberg School of Medicine
- Robert H. Lurie Comprehensive Cancer Center, and
| | - Xu Han
- Department of Pathology, Feinberg School of Medicine
- Robert H. Lurie Comprehensive Cancer Center, and
| | - Farida V Korobova
- Center for Advanced Microscopy, Northwestern University, Chicago, IL
| | - Miguel A Prado
- Department of Cell Biology, Harvard Medical School, Boston, MA; and
| | - Jing Yang
- Department of Pathology, Feinberg School of Medicine
- Robert H. Lurie Comprehensive Cancer Center, and
| | - Zhangli Peng
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA; and
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA; and
| | - Daniel Finley
- Department of Cell Biology, Harvard Medical School, Boston, MA; and
| | - Peng Ji
- Department of Pathology, Feinberg School of Medicine
- Robert H. Lurie Comprehensive Cancer Center, and
| |
Collapse
|
18
|
Wilson AC, Kumar PL, Lee S, Parker MM, Arora I, Morrow JD, Wouters EFM, Casaburi R, Rennard SI, Lomas DA, Agusti A, Tal-Singer R, Dransfield MT, Wells JM, Bhatt SP, Washko G, Thannickal VJ, Tiwari HK, Hersh CP, Castaldi PJ, Silverman EK, McDonald MLN. Heme metabolism genes Downregulated in COPD Cachexia. Respir Res 2020; 21:100. [PMID: 32354332 PMCID: PMC7193359 DOI: 10.1186/s12931-020-01336-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/11/2020] [Indexed: 11/27/2022] Open
Abstract
INTRODUCTION Cachexia contributes to increased mortality and reduced quality of life in Chronic Obstructive Pulmonary Disease (COPD) and may be associated with underlying gene expression changes. Our goal was to identify differential gene expression signatures associated with COPD cachexia in current and former smokers. METHODS We analyzed whole-blood gene expression data from participants with COPD in a discovery cohort (COPDGene, N = 400) and assessed replication (ECLIPSE, N = 114). To approximate the consensus definition using available criteria, cachexia was defined as weight-loss > 5% in the past 12 months or low body mass index (BMI) (< 20 kg/m2) and 1/3 criteria: decreased muscle strength (six-minute walk distance < 350 m), anemia (hemoglobin < 12 g/dl), and low fat-free mass index (FFMI) (< 15 kg/m2 among women and < 17 kg/m2 among men) in COPDGene. In ECLIPSE, cachexia was defined as weight-loss > 5% in the past 12 months or low BMI and 3/5 criteria: decreased muscle strength, anorexia, abnormal biochemistry (anemia or high c-reactive protein (> 5 mg/l)), fatigue, and low FFMI. Differential gene expression was assessed between cachectic and non-cachectic subjects, adjusting for age, sex, white blood cell counts, and technical covariates. Gene set enrichment analysis was performed using MSigDB. RESULTS The prevalence of COPD cachexia was 13.7% in COPDGene and 7.9% in ECLIPSE. Fourteen genes were differentially downregulated in cachectic versus non-cachectic COPD patients in COPDGene (FDR < 0.05) and ECLIPSE (FDR < 0.05). DISCUSSION Several replicated genes regulating heme metabolism were downregulated among participants with COPD cachexia. Impaired heme biosynthesis may contribute to cachexia development through free-iron buildup and oxidative tissue damage.
Collapse
Affiliation(s)
- Ava C Wilson
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Preeti L Kumar
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sool Lee
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Margaret M Parker
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Itika Arora
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jarrett D Morrow
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Emiel F M Wouters
- Centre of expertise for chronic organ failure, Horn, the Netherlands
| | - Richard Casaburi
- Rehabilitation Clinical Trials Center, Los Angeles Biomedical Research Institute at Harbor Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Stephen I Rennard
- Department of Medicine, Nebraska Medical Center, Omaha, NE, USA
- BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - David A Lomas
- UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Alvar Agusti
- Fundació Investigació Sanitària Illes Balears (FISIB), Ciber Enfermedades Respiratorias (CIBERES), Barcelona, Catalunya, Spain
- Thorax Institute, Hospital Clinic, IDIBAPS, University of Barcelona, Barcelona, Spain
| | | | - Mark T Dransfield
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - J Michael Wells
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Surya P Bhatt
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - George Washko
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Victor J Thannickal
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hemant K Tiwari
- Department of Biostatistics, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Craig P Hersh
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Peter J Castaldi
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Merry-Lynn N McDonald
- Department of Epidemiology, School of Public Health, University of Alabama at Birmingham, Birmingham, AL, USA.
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
19
|
Experimental Modeling of Myeloproliferative Neoplasms. Genes (Basel) 2019; 10:genes10100813. [PMID: 31618985 PMCID: PMC6826898 DOI: 10.3390/genes10100813] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 09/29/2019] [Accepted: 10/12/2019] [Indexed: 12/25/2022] Open
Abstract
Myeloproliferative neoplasms (MPN) are genetically very complex and heterogeneous diseases in which the acquisition of a somatic driver mutation triggers three main myeloid cytokine receptors, and phenotypically expresses as polycythemia vera (PV), essential thrombocytosis (ET), and primary myelofibrosis (PMF). The course of the diseases may be influenced by germline predispositions, modifying mutations, their order of acquisition and environmental factors such as aging and inflammation. Deciphering these contributory elements, their mutual interrelationships, and their contribution to MPN pathogenesis brings important insights into the diseases. Animal models (mainly mouse and zebrafish) have already significantly contributed to understanding the role of several acquired and germline mutations in MPN oncogenic signaling. Novel technologies such as induced pluripotent stem cells (iPSCs) and precise genome editing (using CRISPR/Cas9) contribute to the emerging understanding of MPN pathogenesis and clonal architecture, and form a convenient platform for evaluating drug efficacy. In this overview, the genetic landscape of MPN is briefly described, with an attempt to cover the main discoveries of the last 15 years. Mouse and zebrafish models of the driver mutations are discussed and followed by a review of recent progress in modeling MPN with patient-derived iPSCs and CRISPR/Cas9 gene editing.
Collapse
|
20
|
Mourão LC, Baptista RDP, de Almeida ZB, Grynberg P, Pucci MM, Castro-Gomes T, Fontes CJF, Rathore S, Sharma YD, da Silva-Pereira RA, Bemquerer MP, Braga ÉM. Anti-band 3 and anti-spectrin antibodies are increased in Plasmodium vivax infection and are associated with anemia. Sci Rep 2018; 8:8762. [PMID: 29884876 PMCID: PMC5993813 DOI: 10.1038/s41598-018-27109-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/18/2018] [Indexed: 11/09/2022] Open
Abstract
Clearance of non-infected red blood cells (nRBCs) is one of the main components of anemia associated with Plasmodium vivax malaria. Recently, we have shown that anemic patients with P. vivax infection had elevated levels of anti-RBCs antibodies, which could enhance in vitro phagocytosis of nRBCs and decrease their deformability. Using immunoproteomics, here we characterized erythrocytic antigens that are differentially recognized by autoantibodies from anemic and non-anemic patients with acute vivax malaria. Protein spots exclusively recognized by anemic P. vivax-infected patients were identified by mass spectrometry revealing band 3 and spectrin as the main targets. To confirm this finding, antibody responses against these specific proteins were assessed by ELISA. In addition, an inverse association between hemoglobin and anti-band 3 or anti-spectrin antibodies levels was found. Anemic patients had higher levels of IgG against both band 3 and spectrin than the non-anemic ones. To determine if these autoantibodies were elicited because of molecular mimicry, we used in silico analysis and identified P. vivax proteins that share homology with human RBC proteins such as spectrin, suggesting that infection drives autoimmune responses. These findings suggest that band 3 and spectrin are potential targets of autoantibodies that may be relevant for P. vivax malaria-associated anemia.
Collapse
Affiliation(s)
- Luiza Carvalho Mourão
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | | | - Maíra Mazzoni Pucci
- Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, MG, Brazil
| | - Thiago Castro-Gomes
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | - Sumit Rathore
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | - Yagya D Sharma
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India
| | | | | | - Érika Martins Braga
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
21
|
Zhao B, Mei Y, Cao L, Zhang J, Sumagin R, Yang J, Gao J, Schipma MJ, Wang Y, Thorsheim C, Zhao L, Stalker T, Stein B, Wen QJ, Crispino JD, Abrams CS, Ji P. Loss of pleckstrin-2 reverts lethality and vascular occlusions in JAK2V617F-positive myeloproliferative neoplasms. J Clin Invest 2017; 128:125-140. [PMID: 29202466 DOI: 10.1172/jci94518] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 10/17/2017] [Indexed: 12/19/2022] Open
Abstract
V617F driver mutation of JAK2 is the leading cause of the Philadelphia-chromosome-negative myeloproliferative neoplasms (MPNs). Although thrombosis is a leading cause of mortality and morbidity in MPNs, the mechanisms underlying their pathogenesis are unclear. Here, we identified pleckstrin-2 (Plek2) as a downstream target of the JAK2/STAT5 pathway in erythroid and myeloid cells, and showed that it is upregulated in a JAK2V617F-positive MPN mouse model and in patients with MPNs. Loss of Plek2 ameliorated JAK2V617F-induced myeloproliferative phenotypes including erythrocytosis, neutrophilia, thrombocytosis, and splenomegaly, thereby reverting the widespread vascular occlusions and lethality in JAK2V617F-knockin mice. Additionally, we demonstrated that a reduction in red blood cell mass was the main contributing factor in the reversion of vascular occlusions. Thus, our study identifies Plek2 as an effector of the JAK2/STAT5 pathway and a key factor in the pathogenesis of JAK2V617F-induced MPNs, pointing to Plek2 as a viable target for the treatment of MPNs.
Collapse
Affiliation(s)
- Baobing Zhao
- Department of Pathology, Feinberg School of Medicine, and.,The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| | - Yang Mei
- Department of Pathology, Feinberg School of Medicine, and.,The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| | - Lan Cao
- Department of Pathology, Feinberg School of Medicine, and.,Department of Hematology and Oncology, Children's Hospital of Soochow University, Suzhou, China
| | - Jingxin Zhang
- Department of Pathology, Feinberg School of Medicine, and.,The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| | - Ronen Sumagin
- Department of Pathology, Feinberg School of Medicine, and.,The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| | - Jing Yang
- Department of Pathology, Feinberg School of Medicine, and.,The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| | - Juehua Gao
- Department of Pathology, Feinberg School of Medicine, and.,The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| | - Matthew J Schipma
- Center for Genetic Medicine, Northwestern University, Chicago, Illinois, USA
| | - Yanfeng Wang
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chelsea Thorsheim
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Liang Zhao
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Timothy Stalker
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Brady Stein
- The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA.,Division of Hematology and Oncology, Department of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Qiang Jeremy Wen
- The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA.,Division of Hematology and Oncology, Department of Medicine, Northwestern University, Chicago, Illinois, USA
| | - John D Crispino
- The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA.,Division of Hematology and Oncology, Department of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Charles S Abrams
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Peng Ji
- Department of Pathology, Feinberg School of Medicine, and.,The Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
22
|
Luo ST, Zhang DM, Qin Q, Lu L, Luo M, Guo FC, Shi HS, Jiang L, Shao B, Li M, Yang HS, Wei YQ. The Promotion of Erythropoiesis via the Regulation of Reactive Oxygen Species by Lactic Acid. Sci Rep 2017; 7:38105. [PMID: 28165036 PMCID: PMC5292721 DOI: 10.1038/srep38105] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 10/27/2016] [Indexed: 02/05/2023] Open
Abstract
The simultaneous increases in blood lactic acid and erythrocytes after intense exercise could suggest a link between lactate and the erythropoiesis. However, the effects of lactic acid on erythropoiesis remain to be elucidated. Here, we utilized a mouse model to determine the role of lactic acid in this process in parallel with studies using leukaemic K562 cells. Treatment of K562 cells in vitro with lactic acid increased the mRNA and protein expression of haemoglobin genes and the frequency of GPA+ cells. Also, increases in haematocrit and CD71−/Ter119+ erythroid cells were observed in lactic acid-treated mice, which showed a physiological increase in blood lactate. Mouse bone marrow CD34+/CD117− cells showed an increase in erythroid burst-forming units after stimulation with lactic acid in vitro. Furthermore, lactic acid increased the intracellular reactive oxygen species (ROS) content in bone marrow and in K562 cells. Erythroid differentiation induced in Haematopoietic Stem Cells (HSCs) and K562 cells by lactic acid was abolished by reducing ROS levels with SOD or 2-mercaptoethanol, which suggests that ROS is a critical regulator of this process. These findings provide a better understanding of the role of lactic acid in cellular metabolism and physiological functions.
Collapse
Affiliation(s)
- Shun-Tao Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610064, China
| | - Dong-Mei Zhang
- Center of Reproductive Medicine, Department of Gynecology and Obstetrics, State Key Laboratory of Biotherapy, West China Second Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Qing Qin
- Department of Oncology, Chengdu Shang Jin Nan Fu Hospital, Chengdu, Sichuan 610041, China
| | - Lian Lu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610064, China
| | - Min Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610064, China
| | - Fu-Chun Guo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610064, China
| | - Hua-Shan Shi
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, and Head and Neck Oncology Department of Cancer Center, West China Hospital, Chengdu, 610064, China
| | - Li Jiang
- West China Hospital, West China Medical School, Sichuan University, Chengdu, 610064, China
| | - Bin Shao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610064, China
| | - Meng Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610064, China
| | - Han-Shuo Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610064, China
| | - Yu-Quan Wei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu, 610064, China
| |
Collapse
|
23
|
Chen BH, Hivert MF, Peters MJ, Pilling LC, Hogan JD, Pham LM, Harries LW, Fox CS, Bandinelli S, Dehghan A, Hernandez DG, Hofman A, Hong J, Joehanes R, Johnson AD, Munson PJ, Rybin DV, Singleton AB, Uitterlinden AG, Ying S, Melzer D, Levy D, van Meurs JBJ, Ferrucci L, Florez JC, Dupuis J, Meigs JB, Kolaczyk ED. Peripheral Blood Transcriptomic Signatures of Fasting Glucose and Insulin Concentrations. Diabetes 2016; 65:3794-3804. [PMID: 27625022 PMCID: PMC5127245 DOI: 10.2337/db16-0470] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 09/04/2016] [Indexed: 01/09/2023]
Abstract
Genome-wide association studies (GWAS) have successfully identified genetic loci associated with glycemic traits. However, characterizing the functional significance of these loci has proven challenging. We sought to gain insights into the regulation of fasting insulin and fasting glucose through the use of gene expression microarray data from peripheral blood samples of participants without diabetes in the Framingham Heart Study (FHS) (n = 5,056), the Rotterdam Study (RS) (n = 723), and the InCHIANTI Study (Invecchiare in Chianti) (n = 595). Using a false discovery rate q <0.05, we identified three transcripts associated with fasting glucose and 433 transcripts associated with fasting insulin levels after adjusting for age, sex, technical covariates, and complete blood cell counts. Among the findings, circulating IGF2BP2 transcript levels were positively associated with fasting insulin in both the FHS and RS. Using 1000 Genomes-imputed genotype data, we identified 47,587 cis-expression quantitative trait loci (eQTL) and 6,695 trans-eQTL associated with the 433 significant insulin-associated transcripts. Of note, we identified a trans-eQTL (rs592423), where the A allele was associated with higher IGF2BP2 levels and with fasting insulin in an independent genetic meta-analysis comprised of 50,823 individuals. We conclude that integration of genomic and transcriptomic data implicate circulating IGF2BP2 mRNA levels associated with glucose and insulin homeostasis.
Collapse
Affiliation(s)
- Brian H Chen
- Longitudinal Studies Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD
- Framingham Heart Study, National Heart, Lung, and Blood Institute, Framingham, MA
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, MD
| | - Marie-France Hivert
- Department of Population Medicine, Harvard Pilgrim Health Care Institute, Harvard Medical School, Boston, MA
- Diabetes Research Center, Department of Medicine, Massachusetts General Hospital, Boston, MA
- Department of Medicine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Marjolein J Peters
- Department of Internal Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
- Netherlands Genomics Initiative-sponsored Netherlands Consortium for Healthy Aging, Leiden and Rotterdam, the Netherlands
| | - Luke C Pilling
- Epidemiology and Public Health Group, Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, U.K
| | - John D Hogan
- Program in Bioinformatics, Boston University, Boston, MA
| | - Lisa M Pham
- Program in Bioinformatics, Boston University, Boston, MA
| | - Lorna W Harries
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, U.K
| | - Caroline S Fox
- Framingham Heart Study, National Heart, Lung, and Blood Institute, Framingham, MA
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, MD
| | - Stefania Bandinelli
- Geriatric Rehabilitation Unit, Azienda Sanitaria di Firenze, Florence, Italy
| | - Abbas Dehghan
- Department of Epidemiology, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Dena G Hernandez
- Laboratory of Neurogenetics, Intramural Research Program, National Institute on Aging, National Institutes of Health, Bethesda, MD
| | - Albert Hofman
- Department of Epidemiology, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Jaeyoung Hong
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - Roby Joehanes
- Framingham Heart Study, National Heart, Lung, and Blood Institute, Framingham, MA
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, MD
- Hebrew SeniorLife, Harvard Medical School, Boston, MA
| | - Andrew D Johnson
- Framingham Heart Study, National Heart, Lung, and Blood Institute, Framingham, MA
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, MD
| | - Peter J Munson
- Mathematical and Statistical Computing Laboratory, Center for Information Technology, National Institutes of Health, Bethesda, MD
| | - Denis V Rybin
- Data Coordinating Center, Boston University, Boston, MA
| | - Andrew B Singleton
- Laboratory of Neurogenetics, Intramural Research Program, National Institute on Aging, National Institutes of Health, Bethesda, MD
| | - André G Uitterlinden
- Department of Internal Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
- Netherlands Genomics Initiative-sponsored Netherlands Consortium for Healthy Aging, Leiden and Rotterdam, the Netherlands
- Department of Epidemiology, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Saixia Ying
- Mathematical and Statistical Computing Laboratory, Center for Information Technology, National Institutes of Health, Bethesda, MD
| | | | - David Melzer
- Epidemiology and Public Health Group, Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, U.K
| | - Daniel Levy
- Framingham Heart Study, National Heart, Lung, and Blood Institute, Framingham, MA
- Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, Bethesda, MD
| | - Joyce B J van Meurs
- Department of Internal Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, the Netherlands
- Netherlands Genomics Initiative-sponsored Netherlands Consortium for Healthy Aging, Leiden and Rotterdam, the Netherlands
| | - Luigi Ferrucci
- Longitudinal Studies Section, Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD
| | - Jose C Florez
- Diabetes Research Center, Department of Medicine, Massachusetts General Hospital, Boston, MA
- Center for Human Genetic Research, Massachusetts General Hospital, Boston, MA
- Metabolism Program and Program in Medical and Population Genetics, Broad Institute, Cambridge, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Josée Dupuis
- Framingham Heart Study, National Heart, Lung, and Blood Institute, Framingham, MA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA
| | - James B Meigs
- Metabolism Program and Program in Medical and Population Genetics, Broad Institute, Cambridge, MA
- Department of Medicine, Harvard Medical School, Boston, MA
- Division of General Internal Medicine, Massachusetts General Hospital, Boston, MA
| | - Eric D Kolaczyk
- Program in Bioinformatics, Boston University, Boston, MA
- Department of Mathematics and Statistics, Boston University, MA
| |
Collapse
|
24
|
Auburn H, Zuckerman M, Smith M. Analysis of Epstein-Barr virus and cellular gene expression during the early phases of Epstein-Barr virus lytic induction. J Med Microbiol 2016; 65:1243-1252. [PMID: 27625030 DOI: 10.1099/jmm.0.000352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In order to develop novel host/pathogen real-time PCR assays for routine diagnostic use, early gene expression patterns from both Epstein-Barr virus (EBV) and Raji cells were examined after inducing the lytic life cycle using 12-O-tetradecanoyl-13-phorbol ester and sodium butyrate. Real-time PCR identified several highly induced (>90-fold) EBV lytic genes over a 48 h time course during the lytic induction phase. Latent genes were induced at low levels during this phase. The cellular response to lytic viral replication is poorly understood. Whole human genome microarray analysis identified 113 cellular genes regulated twofold or more by EBV, including 63 upregulated and 46 downregulated genes, over a 24 h time course post-induction. The most upregulated gene was CHI3L1, a chitinase-3-like 1 protein (18.1-fold; P<0.0084), and the most downregulated gene was TYMS, a thymidylate synthetase (-7.6-fold). Gene Ontology enrichment analysis using MetaCore software revealed cell cycle (core), cell cycle (role of anaphase-promoting complex) in cell cycle regulation) and lymphatic diseases as the most significantly represented biological network processes, canonical pathways and disease biomarkers, respectively. Chemotaxis, DNA damage and inflammation (IL-4 signalling) together with lymphoproliferative disorders and non-Hodgkin's lymphoma were significantly represented biological processes and disease biomarkers.
Collapse
Affiliation(s)
- Helen Auburn
- Department of Virology, South London Specialist Virology Centre, King's College NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
| | - Mark Zuckerman
- Department of Virology, South London Specialist Virology Centre, King's College NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
| | - Melvyn Smith
- Department of Virology, South London Specialist Virology Centre, King's College NHS Foundation Trust, Denmark Hill, London SE5 9RS, UK
| |
Collapse
|
25
|
Abstract
Mammalian terminal erythropoiesis involves gradual but dramatic chromatin condensation steps that are essential for cell differentiation. Chromatin and nuclear condensation is followed by a unique enucleation process, which is believed to liberate more spaces for hemoglobin enrichment and enable the generation of a physically flexible mature red blood cell. Although these processes have been known for decades, the mechanisms are still unclear. Our recent study reveals an unexpected nuclear opening formation during mouse terminal erythropoiesis that requires caspase-3 activity. Major histones, except H2AZ, are partially released from the opening, which is important for chromatin condensation. Block of the nuclear opening through caspase inhibitor or knockdown of caspase-3 inhibits chromatin condensation and enucleation. We also demonstrate that nuclear opening and histone release are cell cycle regulated. These studies reveal a novel mechanism for chromatin condensation in mammalia terminal erythropoiesis.
Collapse
Affiliation(s)
- Baobing Zhao
- a Department of Pathology , Feinberg School of Medicine, Northwestern University , Chicago , IL , USA
| | - Jing Yang
- a Department of Pathology , Feinberg School of Medicine, Northwestern University , Chicago , IL , USA
| | - Peng Ji
- a Department of Pathology , Feinberg School of Medicine, Northwestern University , Chicago , IL , USA
| |
Collapse
|
26
|
Zhao B, Mei Y, Yang J, Ji P. Erythropoietin-regulated oxidative stress negatively affects enucleation during terminal erythropoiesis. Exp Hematol 2016; 44:975-81. [PMID: 27364565 DOI: 10.1016/j.exphem.2016.06.249] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 05/26/2016] [Accepted: 06/16/2016] [Indexed: 12/21/2022]
Abstract
Differentiating erythroblasts are exposed to an oxidative environment. The dynamics of oxidative status during terminal erythropoiesis and how they affect cell differentiation in response to erythropoietin (Epo) are unclear. Here, we show that Epo induces reactive oxygen species (ROS) production in the early stages of terminal erythropoiesis. The levels of ROS correlate with CD71 surface expression and the uptake of iron and transferrin. ROS decreases in the late stages of terminal erythropoiesis, when the cells are preparing for enucleation. Consistently, treatment of erythroblasts with a low dose (5 mM) of N-acetyl-cysteine (NAC), a ROS scavenger, promotes enucleation. However, a high dose (20 mM) of NAC leads to significant cell death. Our study reveals an important function of Epo in regulating the dynamics of oxidative status and enucleation.
Collapse
Affiliation(s)
- Baobing Zhao
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Yang Mei
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jing Yang
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Peng Ji
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
27
|
KLF1-null neonates display hydrops fetalis and a deranged erythroid transcriptome. Blood 2015; 125:2405-17. [PMID: 25724378 DOI: 10.1182/blood-2014-08-590968] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 02/21/2015] [Indexed: 12/14/2022] Open
Abstract
We describe a case of severe neonatal anemia with kernicterus caused by compound heterozygosity for null mutations in KLF1, each inherited from asymptomatic parents. One of the mutations is novel. This is the first described case of a KLF1-null human. The phenotype of severe nonspherocytic hemolytic anemia, jaundice, hepatosplenomegaly, and marked erythroblastosis is more severe than that present in congenital dyserythropoietic anemia type IV as a result of dominant mutations in the second zinc-finger of KLF1. There was a very high level of HbF expression into childhood (>70%), consistent with a key role for KLF1 in human hemoglobin switching. We performed RNA-seq on circulating erythroblasts and found that human KLF1 acts like mouse Klf1 to coordinate expression of many genes required to build a red cell including those encoding globins, cytoskeletal components, AHSP, heme synthesis enzymes, cell-cycle regulators, and blood group antigens. We identify novel KLF1 target genes including KIF23 and KIF11 which are required for proper cytokinesis. We also identify new roles for KLF1 in autophagy, global transcriptional control, and RNA splicing. We suggest loss of KLF1 should be considered in otherwise unexplained cases of severe neonatal NSHA or hydrops fetalis.
Collapse
|
28
|
Ji P. New Insights into the Mechanisms of Mammalian Erythroid Chromatin Condensation and Enucleation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 316:159-82. [DOI: 10.1016/bs.ircmb.2015.01.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|