1
|
Lin X, Gao H, Xin M, Huang J, Li X, Zhou Y, Lv K, Huang X, Wang J, Zhou Y, Cui D, Fang C, Wu L, Shi X, Ma Z, Qian Y, Tong H, Dai J, Jin J, Huang J. α-Actinin-1 deficiency in megakaryocytes causes low platelet count, platelet dysfunction, and mitochondrial impairment. Blood Adv 2025; 9:1185-1201. [PMID: 39813624 PMCID: PMC11925533 DOI: 10.1182/bloodadvances.2024014805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/23/2024] [Accepted: 01/04/2025] [Indexed: 01/18/2025] Open
Abstract
ABSTRACT Cytoskeletal remodeling and mitochondrial bioenergetics play important roles in thrombocytopoiesis and platelet function. Recently, α-actinin-1 mutations have been reported in patients with congenital macrothrombocytopenia. However, the role and underlying mechanism of α-actinin-1 in thrombocytopoiesis and platelet function remain elusive. Using megakaryocyte (MK)-specific α-actinin-1 knockout (KO; PF4-Actn1-/-) mice, we demonstrated that PF4-Actn1-/- mice exhibited reduced platelet counts. The decreased platelet number in PF4-Actn1-/- mice was due to defects in thrombocytopoiesis. Hematoxylin and eosin staining and flow cytometry revealed a decrease in the number of MKs in the bone marrow of PF4-Actn1-/- mice. The absence of α-actinin-1 increased the proportion of 2 N-4 N MKs and decreased the proportion of 8 N-32 N MKs. Colony-forming unit-MK colony formation, the ratio of proplatelet formation-bearing MKs, and MK migration in response to stromal cell-derived factor-1 signaling were inhibited in PF4-Actn1-/- mice. Platelet spreading, clot retraction, aggregation, integrin αIIbβ3 activation, and CD62P exposure in response to various agonists were decreased in PF4-Actn1-/- platelets. Notably, PF4-Actn1-/- platelets inhibited calcium mobilization, reactive oxygen species (ROS) generation, and actin polymerization in response to collagen and thrombin. Furthermore, the PF4-Actn1-/- mice exhibited impaired hemostasis and thrombosis. Mechanistically, proteomic analysis of low-ploidy (2-4 N) and high-ploidy (≥8 N) PF4-Actn1-/- MKs revealed that α-actinin-1 deletion reduced platelet activation and mitochondrial function. PF4-Actn1-/- platelets and Actn1 KO 293T cells exhibited reduced mitochondrial membrane potential, mitochondrial ROS generation, mitochondrial calcium mobilization, and mitochondrial bioenergetics. Overall, in this study, we report that mice with α-actinin-1 deficiency in MKs exhibit low platelet count and impaired platelet function, thrombosis, and mitochondrial bioenergetics.
Collapse
Affiliation(s)
- Xiangjie Lin
- Department of Hematology, Zhejiang Key Laboratory for Precision Diagnosis and Treatment of Hematological Malignancies, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hanchen Gao
- Department of Hematology, Zhejiang Key Laboratory for Precision Diagnosis and Treatment of Hematological Malignancies, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Min Xin
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Huang
- Department of Hematology, Zhejiang Key Laboratory for Precision Diagnosis and Treatment of Hematological Malignancies, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xia Li
- Department of Hematology, Zhejiang Key Laboratory for Precision Diagnosis and Treatment of Hematological Malignancies, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yutong Zhou
- Department of Hematology, Zhejiang Key Laboratory for Precision Diagnosis and Treatment of Hematological Malignancies, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Keyu Lv
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Huang
- Department of Hematology, Zhejiang Key Laboratory for Precision Diagnosis and Treatment of Hematological Malignancies, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jinghan Wang
- Department of Hematology, Zhejiang Key Laboratory for Precision Diagnosis and Treatment of Hematological Malignancies, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yulan Zhou
- Department of Hematology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Dawei Cui
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chao Fang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lanlan Wu
- Department of Emergency Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaofeng Shi
- Department of Hematology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zhixin Ma
- Clinical Prenatal Diagnosis Center, Key Laboratory of Reproductive Genetics, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Qian
- Department of Hematology, Zhejiang Key Laboratory for Precision Diagnosis and Treatment of Hematological Malignancies, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongyan Tong
- Department of Hematology, Zhejiang Key Laboratory for Precision Diagnosis and Treatment of Hematological Malignancies, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Dai
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Jin
- Department of Hematology, Zhejiang Key Laboratory for Precision Diagnosis and Treatment of Hematological Malignancies, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
- Zhejiang Provincial Clinical Research Center for Hematological Disorders, Hangzhou, China
| | - Jiansong Huang
- Department of Hematology, Zhejiang Key Laboratory for Precision Diagnosis and Treatment of Hematological Malignancies, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
2
|
Sachs UJ, Reich M, Qiu D, Bayat B, Cooper N, Bein G. Platelet autoantibodies have an impact on the platelet count in patients. J Thromb Haemost 2025:S1538-7836(25)00114-X. [PMID: 40015377 DOI: 10.1016/j.jtha.2025.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/17/2025] [Accepted: 02/11/2025] [Indexed: 03/01/2025]
Abstract
BACKGROUND It is widely accepted that autoantibodies directed against platelet glycoproteins (GPs) are a major pathophysiological mechanism in immune thrombocytopenia, but little clinical data are available demonstrating an association between platelet antibodies and platelet counts. OBJECTIVES We hypothesized that if platelet antibodies are clinically relevant, the number of targeted GPs and antibody concentration should be associated with the extent of thrombocytopenia. METHODS Platelet antibodies were identified in a direct GP-specific test that detects antibodies against GPIIb/IIIa and GPIb/IX. Using laboratory data from 12 335 thrombocytopenic patients with and without GP-specific platelet antibodies, we conducted a large retrospective cohort study. RESULTS We identified 1469 adults with GP-specific platelet antibodies in our database with complete entries. Compared with 10 866 adults without antibodies, patients with antibodies had significantly lower median platelet counts (54 G/L [IQR, 29-89] vs 85 G/L [IQR, 52-123], P < .0001). Patients with antibodies against 2 GPs had significantly lower platelet counts than patients with antibodies against 1 GP (47 G/L [IQR, 26-81] vs 62 G/L [IQR, 32-99], P < .0001 for GPIIb/IIIa and 58 G/L [IQR, 32-99], P = .0004 for GPIb/IX). Increasing antibody levels correlated with decreasing platelet counts for anti-GPIIb/IIIa (R2 = .69; rho -0.84) and anti-GPIb/IX (R2 = .57; rho -0.6). CONCLUSION The presence of autoantibodies against GPIIb/IIIa or GPIb/IX is associated with lower platelet counts. More GPs targeted by autoantibodies and increasing antibody levels predict lower platelet counts. Platelet antibodies appear to be of clinical relevance.
Collapse
Affiliation(s)
- Ulrich J Sachs
- Institute for Clinical Immunology, Transfusion Medicine, and Haemostaseology, Justus Liebig University Giessen, Giessen, Germany; Department of Thrombosis and Haemostasis, Giessen and Marburg University Hospital, Campus Giessen, Giessen, Germany.
| | - Michelle Reich
- Institute for Clinical Immunology, Transfusion Medicine, and Haemostaseology, Justus Liebig University Giessen, Giessen, Germany
| | - Dan Qiu
- Clinical and Administrative Data Processing Department, Giessen and Marburg University Hospital, Campus Giessen, Giessen, Germany
| | - Behnaz Bayat
- Institute for Clinical Immunology, Transfusion Medicine, and Haemostaseology, Justus Liebig University Giessen, Giessen, Germany
| | - Nina Cooper
- Institute for Clinical Immunology, Transfusion Medicine, and Haemostaseology, Justus Liebig University Giessen, Giessen, Germany; Department of Thrombosis and Haemostasis, Giessen and Marburg University Hospital, Campus Giessen, Giessen, Germany
| | - Gregor Bein
- Institute for Clinical Immunology, Transfusion Medicine, and Haemostaseology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
3
|
Zhang Y, Yue Y, Cheng Y, Jiao H, Yan M. Antigen B from Echinococcus granulosus regulates macrophage phagocytosis by controlling TLR4 endocytosis in immune thrombocytopenia. Chem Biol Interact 2025; 406:111350. [PMID: 39674446 DOI: 10.1016/j.cbi.2024.111350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/07/2024] [Accepted: 12/12/2024] [Indexed: 12/16/2024]
Abstract
Immune thrombocytopenia (ITP) is characterized by a reduction in platelet counts, stemming from an autoimmune-mediated process where platelets are excessively cleared by macrophages. This enhanced phagocytosis is a cardinal pathogenic mechanism in ITP. Antigen B (AgB), a principal component of the Echinococcus granulosus cyst fluid, plays a pivotal role in safeguarding the parasite from host immune defenses by modulating macrophage activation. In this study, we explored the potential of AgB to regulate macrophage activation in the context of ITP. Our observations indicated a diminished presence of M1 macrophages and a reduced phagocytic capacity in patients infected with E. granulosus sensu stricto. We isolated AgB from E. granulosus cyst fluid (EgCF) and discovered that it could suppress the polarization of M1 macrophages and weaken their phagocytic activity via Fcγ receptors, consequently alleviating thrombocytopenia in an ITP mouse model. At the molecular level, AgB was found to suppress the activation of nuclear factor kappa B (NF-κB) and interferon regulatory factor 3 (IRF3) by impeding their nuclear translocation, leading to a reduction in the generation of inflammatory cytokines. Furthermore, AgB was shown to inhibit Toll-like receptor 4 (TLR4) endocytosis and the recycling of CD14. In aggregate, our findings uncover a novel immunomodulatory mechanism of AgB, which suppresses macrophage phagocytosis by regulating TLR4 endocytosis and the subsequent activation of NF-κB and IRF3 signaling pathways. These insights shed new light on the molecular intricacies of E. granulosus-induced immune evasion and suggest that AgB may serve as a promising therapeutic agent for ITP.
Collapse
Affiliation(s)
- Yunfei Zhang
- Department of Pediatrics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830054, China
| | - Yingbin Yue
- Department of Pediatrics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830054, China
| | - Yongfeng Cheng
- Department of Pediatrics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830054, China
| | - Hongjie Jiao
- Department of Pediatrics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830054, China
| | - Mei Yan
- Department of Pediatrics, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, 830054, China.
| |
Collapse
|
4
|
Evangelidis P, Tragiannidis K, Gavriilaki E, Tragiannidis A. Impact of Thrombopoietin Receptor Agonists on Pathophysiology of Pediatric Immune Thrombocytopenia. Curr Issues Mol Biol 2025; 47:65. [PMID: 39852180 PMCID: PMC11763769 DOI: 10.3390/cimb47010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/26/2025] Open
Abstract
Immune thrombocytopenia (ITP) in pediatric patients is a common cause of isolated thrombocytopenia. Various pathophysiological mechanisms are implicated in ITP pathogenesis, including the production of autoantibodies against components of platelets (PLTs) by B-cells, the activation of the complement system, phagocytosis by macrophages mediated by Fcγ receptors, the dysregulation of T cells, and reduced bone marrow megakaryopoiesis. ITP is commonly manifested with skin and mucosal bleeding, and it is a diagnosis of exclusion. In some ITP cases, the disease is self-limiting, and treatment is not required, but chronic-persistent disease can also be developed. In these cases, anti-CD20 monoclonal antibodies, such as rituximab and thrombopoietin (TPO) receptor agonists, can be used. TPO agonists have become standard of care today. It has been reported in the published literature that the efficacy of TPO-RAs can be up to 80% in the achievement of several end goals, such as PLT counts. In the current literature review, the data regarding the impact of TPO agonists in the pathogenesis of ITP and treatment outcomes of the patients are examined. In the era of precision medicine, targeted and individualized therapies are crucial to achieving better outcomes for pediatric patients with ITP, especially when chronic refractory disease is developed.
Collapse
Affiliation(s)
- Paschalis Evangelidis
- 2nd Propedeutic Department of Internal Medicine, Hippocration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (P.E.); (E.G.)
| | - Konstantinos Tragiannidis
- Children & Adolescent Hematology-Oncology Unit, Second Department of Pediatrics, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Eleni Gavriilaki
- 2nd Propedeutic Department of Internal Medicine, Hippocration Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece; (P.E.); (E.G.)
| | - Athanasios Tragiannidis
- Children & Adolescent Hematology-Oncology Unit, Second Department of Pediatrics, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
5
|
Schoenaker JM, Nelson VS, Henderickx JGE, Terveer EM, Jansen AJG, Porcelijn L, Netelenbos T, Schipperus MR, Kapur R. The intestinal flora: The key to unraveling heterogeneity in immune thrombocytopenia? Blood Rev 2025; 69:101252. [PMID: 39672701 DOI: 10.1016/j.blre.2024.101252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/22/2024] [Accepted: 12/01/2024] [Indexed: 12/15/2024]
Abstract
Immune thrombocytopenia (ITP) is an autoimmune bleeding disorder characterized by enhanced platelet destruction and impaired platelet production, due to a loss of immune tolerance that leads to targeting of platelets and megakaryocytes by glycoprotein-autoantibodies and/or cytotoxic T cells. There is a high degree of heterogeneity in ITP patients signified by unpredictable disease trajectories and treatment responses. Initial studies in humans have identified intestinal microbiota perturbance in ITP. Recently, gut microbial perturbance has been linked to other autoimmune diseases. Based on these findings, we hypothesize that intestinal microbiota may influence ITP pathophysiology through several mechanisms, including induction of platelet-autoantibody production, increasing complement-dependent platelet cytotoxicity, disturbing T cell homeostasis, impairing megakaryocyte function, and increasing platelet-desialylation and -clearance. The pathophysiological heterogeneity of ITP may, at least in part, be attributed to a perturbed intestinal microbiota. Therefore, a better understanding of intestinal microbiota in ITP may result in a more personalized therapeutic approach.
Collapse
MESH Headings
- Humans
- Gastrointestinal Microbiome/immunology
- Purpura, Thrombocytopenic, Idiopathic/microbiology
- Purpura, Thrombocytopenic, Idiopathic/etiology
- Purpura, Thrombocytopenic, Idiopathic/immunology
- Purpura, Thrombocytopenic, Idiopathic/metabolism
- Purpura, Thrombocytopenic, Idiopathic/pathology
- Blood Platelets/immunology
- Blood Platelets/metabolism
- Blood Platelets/pathology
- Animals
- Disease Susceptibility
- Autoantibodies/immunology
Collapse
Affiliation(s)
- Jente M Schoenaker
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, the Netherlands.
| | - Vivianne S Nelson
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, the Netherlands; Department of Hematology, HagaZiekenhuis, 2545 AA The Hague, the Netherlands; Department of Hematology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands.
| | - Jannie G E Henderickx
- Center for Microbiome Analyses and Therapeutics, Leiden University Center of Infectious Diseases (LU-CID), Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; Department of Medical Microbiology, Leiden University Center of Infectious Diseases (LU-CID) Research, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands.
| | - Elisabeth M Terveer
- Department of Medical Microbiology, Leiden University Center of Infectious Diseases (LU-CID) Research, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands; Netherlands Donor Feces Bank, LUCID Medical Microbiology & Infection Prevention, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands.
| | - A J Gerard Jansen
- Department of Hematology, Erasmus MC, University Medical Center Rotterdam, 3015 GD Rotterdam, the Netherlands.
| | - Leendert Porcelijn
- Sanquin Diagnostic Services, Department of Immunohematology Diagnostics, Sanquin, 1066 CX Amsterdam, the Netherlands.
| | - Tanja Netelenbos
- Department of Hematology, HagaZiekenhuis, 2545 AA The Hague, the Netherlands.
| | | | - Rick Kapur
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, 1066 CX Amsterdam, the Netherlands.
| |
Collapse
|
6
|
Jiang Y, Li J, Huang J, Zhang Z, Liu X, Wang N, Huang C, Wang R, Zhang L, Han J, Bai X, Huang D, Zhou L. Targeted proteomics profiling reveals valuable biomarkers in the diagnosis of primary immune thrombocytopaenia. Br J Haematol 2025; 206:133-143. [PMID: 39313912 DOI: 10.1111/bjh.19760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 08/27/2024] [Indexed: 09/25/2024]
Abstract
The lack of biomarkers for accurate diagnosis and prognosis is a major clinical challenge of primary immune thrombocytopaenia (ITP). Using an Olink proteomics platform with a 92 immune response-related human protein panel, we analysed plasma samples from ITP patients (ITP, n = 40), patients with thrombocytopaenia secondary to other causes (Non-ITP, n = 19) and healthy controls (NC, n = 18), of a discovery cohort as well as a validation cohort (ITP, n = 36; NC, n = 20). A total of 10 differentially expressed proteins (DEPs) were identified in the ITP group compared with the non-ITP and NC groups of the discovery cohort. These include CXCL11, GZMH, ARG1, TGF-β1, ANGPT1, CXCL12, CD40-L, PDGF subunit B, IL4 and TNFSF14. Furthermore, least absolute shrinkage and selection operator regression analysis showed some of these DEPs, such as CXCL11, TGF-β1, ARG1 and GZMH to be significant in differentiating between patients with ITP and healthy controls (validation area under the curve = 0.87). The analysis demonstrated that the ITP group has a specific proteomic profile relative to non-ITP and NC groups. In summary, we report for the first time that Olink precision proteomics can specifically detect up-regulated inflammatory proteins as potential diagnostic biomarkers for ITP.
Collapse
Affiliation(s)
- Yizhi Jiang
- Department of Hematology, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
- NHC Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jizhe Li
- Department of Hematology, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Jun Huang
- Department of Hematology, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Zichan Zhang
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, China
| | - Xiaocen Liu
- Department of Nuclear Medicine, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Nana Wang
- Department of Hematology, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Chen Huang
- Department of Hematology, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Ran Wang
- Department of Hematology, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Lanxin Zhang
- Department of Hematology, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - JingJing Han
- NHC Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xia Bai
- NHC Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Dongping Huang
- Department of Hematology, The First Affiliated Hospital of Wannan Medical College, Wuhu, China
| | - Lu Zhou
- NHC Key Laboratory of Thrombosis and Hemostasis, Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Department of Hematology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
7
|
Li Q, Marcoux G, Hu Y, Rebetz J, Guo L, Semple E, Provan D, Xu S, Hou M, Peng J, Semple JW. Autoimmune effector mechanisms associated with a defective immunosuppressive axis in immune thrombocytopenia (ITP). Autoimmun Rev 2024; 23:103677. [PMID: 39515406 DOI: 10.1016/j.autrev.2024.103677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Immune thrombocytopenia (ITP) is an autoimmune disease characterized by an isolated thrombocytopenia and variable phenotype as some patients suffer no bleeding whilst others have bleeding from mild to severe, which may be fatal. This variability probably reflects the disease's complex pathophysiology; a dysregulated hyperreactive immune effector cell response involving the entire adaptive immune system (e.g. B and T cell subsets) that leads to platelet and megakaryocyte (MK) destruction. It appears that these effector responses are due to a breakdown in immune tolerance, and this is characterized by defects in several immunosuppressive cell types. These include defective T regulatory cells (Tregs), B regulatory cells (Bregs) and Myeloid-derived suppressor cells (MDSC), all of which are all intimately associated with antigen presenting cells (APC) such as dendritic cells (DC). The loss of this immunosuppressive axis allows for the activation of unchecked autoreactive T cells and B cells, leading to the development of autoantibodies and cytotoxic T cells (CTL), which can directly destroy platelets in the periphery and inhibit MK platelet production in the bone marrow (BM). This review will focus on the effector cell mechanisms in ITP and highlight the defective immunosuppressive axis that appears responsible for this platelet-specific immune hyperreactivity.
Collapse
Affiliation(s)
- Qizhao Li
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Geneviève Marcoux
- Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden
| | - Yuefen Hu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Johan Rebetz
- Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden
| | - Li Guo
- Bloodworks Northwest Research Institute, Seattle, USA; Division of Hematology and Oncology, University of Washington; Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, USA
| | | | - Drew Provan
- Department of Haematology, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, UK
| | - Shuqian Xu
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| | - Ming Hou
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Jun Peng
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - John W Semple
- Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden; Clinical Immunology and Transfusion Medicine, Office of Medical Services, Region Skåne, Lund, Sweden; Departments of Pharmacology, Medicine and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.
| |
Collapse
|
8
|
Semple JW, Schifferli A, Cooper N, Saad H, Mytych DT, Chea LS, Newland A. Immune thrombocytopenia: Pathophysiology and impacts of Romiplostim treatment. Blood Rev 2024; 67:101222. [PMID: 38942688 DOI: 10.1016/j.blre.2024.101222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/04/2024] [Accepted: 06/18/2024] [Indexed: 06/30/2024]
Abstract
Immune thrombocytopenia (ITP) is an autoimmune bleeding disease caused by immune-mediated platelet destruction and decreased platelet production. ITP is characterized by an isolated thrombocytopenia (<100 × 109/L) and increased risk of bleeding. The disease has a complex pathophysiology wherein immune tolerance breakdown leads to platelet and megakaryocyte destruction. Therapeutics such as corticosteroids, intravenous immunoglobulins (IVIg), rituximab, and thrombopoietin receptor agonists (TPO-RAs) aim to increase platelet counts to prevent hemorrhage and increase quality of life. TPO-RAs act via stimulation of TPO receptors on megakaryocytes to directly stimulate platelet production. Romiplostim is a TPO-RA that has become a mainstay in the treatment of ITP. Treatment significantly increases megakaryocyte maturation and growth leading to improved platelet production and it has recently been shown to have additional immunomodulatory effects in treated patients. This review will highlight the complex pathophysiology of ITP and discuss the usage of Romiplostim in ITP and its ability to potentially immunomodulate autoimmunity.
Collapse
Affiliation(s)
- John W Semple
- Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden, Clinical Immunology and Transfusion Medicine, Office of Medical Services, Region Skåne, Lund, Sweden; Departments of Pharmacology, Medicine and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, USA.
| | - Alexandra Schifferli
- Department of Hematology/Oncology, University Children's Hospital Basel, Basel, Switzerland
| | | | | | | | | | - Adrian Newland
- Barts and The London School of Medicine and Dentistry, London, UK.
| |
Collapse
|
9
|
Wang W, Xu X, Xu Y, Zhan Y, Wu C, Xiao X, Cheng C, Gao C. Quercetin, a key active ingredient of Jianpi Zishen Xiehuo Formula, suppresses M1 macrophage polarization and platelet phagocytosis by inhibiting STAT3 activation based on network pharmacology. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4219-4233. [PMID: 38055068 DOI: 10.1007/s00210-023-02870-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 11/21/2023] [Indexed: 12/07/2023]
Abstract
Primary immune thrombocytopenia (ITP) is an autoimmune hemorrhagic disease, and abnormal M1 macrophage polarization participates in the pathogenesis of ITP. Jianpi Zishen Xiehuo (JZX) Formula has a good therapeutic effect on ITP. However, its key active ingredients and molecular mechanisms remain unclear. In this study, we explored the key active ingredients and potential targets of JZX in treating ITP using network pharmacology combined with in vitro experimental verification. A total of 157 active ingredients of JZX were identified from public databases, and quercetin was the most important one. One hundred sixty-five intersection targets of active ingredients in JZX, ITP, and macrophage polarization were obtained by Venn diagram. The top three potential targets were signal transducer and activator of transcription 3 (STAT3), protein kinase B (PKB/AKT) 1, and c-JUN through protein-protein interaction analysis. Molecular docking showed that quercetin had strong binding affinities with them all. In vitro experiment, CD16+ monocytes increased in ITP patients compared with healthy controls, which indicated a M1/M2 polarization imbalance in ITP. The expression levels of M1 polarization markers, CD86, CD80, and inducible nitric oxide synthase (iNOS), M1 polarization-associated cytokines, tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6), and antibody-opsonized platelet phagocytosis significantly increased in THP-1 macrophages stimulated with lipopolysaccharide (LPS). Quercetin markedly inhibited the expressions of M1 markers, decreased the levels of TNF-α and IL-6, and down-regulated the phosphorylated STAT3 (p-STAT3) protein, which confirmed the prediction by network pharmacology and molecular docking. Importantly, quercetin significantly reduced the phagocytosis of antibody opsonised platelet. In conclusion, quercetin suppressed platelet phagocytosis in M1 macrophages via its anti-inflammatory effects and may serve as a potential drug for the treatment of ITP. Quercetin could be a key ingredient for JZX against ITP.
Collapse
Affiliation(s)
- Wei Wang
- Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Gan He Road, Shanghai, 200437, China
| | - Xuewen Xu
- Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Gan He Road, Shanghai, 200437, China
| | - Yang Xu
- Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Gan He Road, Shanghai, 200437, China
| | - Yueping Zhan
- Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Gan He Road, Shanghai, 200437, China
| | - Chuanyong Wu
- Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Gan He Road, Shanghai, 200437, China
| | - Xiao Xiao
- Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Gan He Road, Shanghai, 200437, China
| | - Cheng Cheng
- Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Gan He Road, Shanghai, 200437, China
| | - Chunfang Gao
- Clinical Laboratory Medicine Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Gan He Road, Shanghai, 200437, China.
| |
Collapse
|
10
|
Won KD, Gil Gonzalez L, Cruz-Leal Y, Pavon Oro A, Lazarus AH. Antagonism of the Platelet-Activating Factor Pathway Mitigates Inflammatory Adverse Events Driven by Anti-erythrocyte Antibody Therapy in Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:1531-1539. [PMID: 38506555 DOI: 10.4049/jimmunol.2300638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/26/2024] [Indexed: 03/21/2024]
Abstract
Immune thrombocytopenia (ITP) is an autoimmune disease characterized by low platelet counts primarily due to antiplatelet autoantibodies. Anti-D is a donor-derived polyclonal Ab against the rhesus D Ag on erythrocytes used to treat ITP. Unfortunately, adverse inflammatory/hypersensitivity reactions and a Food and Drug Administration-issued black box warning have limited its clinical use. This underscores the imperative to understand the inflammatory pathway associated with anti-erythrocyte Ab-based therapies. TER119 is an erythrocyte-specific Ab with anti-D-like therapeutic activity in murine ITP, while also exhibiting a distinct inflammatory signature involving production of CCL2, CCL5, and CXCL9 but not IFN-γ. Therefore, TER119 has been used to elucidate the potential mechanism underlying the adverse inflammatory activity associated with anti-erythrocyte Ab therapy in murine ITP. Prior work has demonstrated that TER119 administration is associated with a dramatic decrease in body temperature and inflammatory cytokine/chemokine production. The work presented in the current study demonstrates that inhibiting the highly inflammatory platelet-activating factor (PAF) pathway with PAF receptor antagonists prevents TER119-driven changes in body temperature and inhibits the production of the CCL2, CCL5, and CXCL9 inflammatory cytokines in CD-1 mice. Phagocytic cells and a functional TER119 Fc region were found to be necessary for TER119-induced body temperature changes and increases in CXCL9 and CCL2. Taken together, this work reveals the novel requirement of the PAF pathway in causing adverse inflammatory activity associated with anti-erythrocyte Ab therapy in a murine model and provides a strategy of mitigating these potential reactions without altering therapeutic activity.
Collapse
Affiliation(s)
- Kevin Doyoon Won
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Medicine and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Lazaro Gil Gonzalez
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Yoelys Cruz-Leal
- Innovation and Portfolio Management, Canadian Blood Services, Ottawa, Ontario, Canada
| | - Alequis Pavon Oro
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
| | - Alan H Lazarus
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Department of Medicine and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Innovation and Portfolio Management, Canadian Blood Services, Ottawa, Ontario, Canada
| |
Collapse
|
11
|
Varsha KK, Yang X, Cannon AS, Zhong Y, Nagarkatti M, Nagarkatti P. Identification of miRNAs that target Fcγ receptor-mediated phagocytosis during macrophage activation syndrome. Front Immunol 2024; 15:1355315. [PMID: 38558807 PMCID: PMC10981272 DOI: 10.3389/fimmu.2024.1355315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/27/2024] [Indexed: 04/04/2024] Open
Abstract
Macrophage activation syndrome (MAS) is a life-threatening complication of systemic juvenile arthritis, accompanied by cytokine storm and hemophagocytosis. In addition, COVID-19-related hyperinflammation shares clinical features of MAS. Mechanisms that activate macrophages in MAS remain unclear. Here, we identify the role of miRNA in increased phagocytosis and interleukin-12 (IL-12) production by macrophages in a murine model of MAS. MAS significantly increased F4/80+ macrophages and phagocytosis in the mouse liver. Gene expression profile revealed the induction of Fcγ receptor-mediated phagocytosis (FGRP) and IL-12 production in the liver. Phagocytosis pathways such as High-affinity IgE receptor is known as Fc epsilon RI -signaling and pattern recognition receptors involved in the recognition of bacteria and viruses and phagosome formation were also significantly upregulated. In MAS, miR-136-5p and miR-501-3p targeted and caused increased expression of Fcgr3, Fcgr4, and Fcgr1 genes in FGRP pathway and consequent increase in phagocytosis by macrophages, whereas miR-129-1-3p and miR-150-3p targeted and induced Il-12. Transcriptome analysis of patients with MAS revealed the upregulation of FGRP and FCGR gene expression. A target analysis of gene expression data from a patient with MAS discovered that miR-136-5p targets FCGR2A and FCGR3A/3B, the human orthologs of mouse Fcgr3 and Fcgr4, and miR-501-3p targets FCGR1A, the human ortholog of mouse Fcgr1. Together, we demonstrate the novel role of miRNAs during MAS pathogenesis, thereby suggesting miRNA mimic-based therapy to control the hyperactivation of macrophages in patients with MAS as well as use overexpression of FCGR genes as a marker for MAS classification.
Collapse
Affiliation(s)
| | | | | | | | | | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina School of Medicine, Columbia, SC, United States
| |
Collapse
|
12
|
An O, Deppermann C. Platelet lifespan and mechanisms for clearance. Curr Opin Hematol 2024; 31:6-15. [PMID: 37905750 DOI: 10.1097/moh.0000000000000792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
PURPOSE OF REVIEW Activated or aged platelets are removed from circulation under (patho)physiologic conditions, the exact mechanism of platelet clearance under such conditions remains unclear and are currently being investigated. This review focuses on recent findings and controversies regarding platelet clearance and the disruption of platelet life cycle. RECENT FINDINGS The platelet life span is determined by glycosylation of platelet surface receptors with sialic acid. Recently, it was shown that platelet activation and granule release leads to desialylation of glycans and accelerated clearance of platelets under pathological conditions. This phenomenon was demonstrated to be a main reason for thrombocytopenia being a complication in several infections and immune disorders. SUMMARY Although we have recently gained some insight into how aged platelets are cleared from circulation, we are still not seeing the full picture. Further investigations of the platelet clearance pathways under pathophysiologic conditions are needed as well as studies to unravel the connection between platelet clearance and platelet production.
Collapse
Affiliation(s)
- Olga An
- Center for Thrombosis and Hemostasis, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | | |
Collapse
|
13
|
Ames P, Baal N, Speckmann M, Michel G, Ratke J, Klesser C, Cooper N, Takahashi D, Bayat B, Bein G, Santoso S. In vitro analysis of anti-HPA-1a dependent platelet phagocytosis and its inhibition using a new whole blood phagocytosis assay (WHOPPA). Front Immunol 2023; 14:1283704. [PMID: 38077345 PMCID: PMC10702767 DOI: 10.3389/fimmu.2023.1283704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023] Open
Abstract
Fetal and neonatal alloimmune thrombocytopenia (FNAIT) is a serious bleeding condition mostly caused by the reaction between maternal anti-HPA-1a antibodies and fetal platelets. This reaction leads to Fc-dependent platelet phagocytosis. Although several serological methods have been developed to identify maternal antibodies, a reliable laboratory parameter as a prognostic tool for FNAIT severity is still lacking. In this study, we developed whole blood platelet phagocytosis assay (WHOPPA), a flow cytometry-based phagocytosis assay that uses a pH-sensitive fluorescent dye (pHrodo-SE) to analyze anti-HPA-1a-dependent platelet phagocytosis in whole blood. WHOPPA revealed a high phagocytosis rate for the anti-HPA-1a opsonized platelets by monocytes but not by neutrophils. Analysis of different monocyte populations showed that all monocyte subsets, including classical (CD14++CD16-), intermediate (CD14++CD16+), and nonclassical (CD14+CD16++) monocytes, were able to engulf opsonized platelets. A unique monocyte subset, termed shifted monocytes (CD14+CD16-), showed the highest phagocytosis rate and was detected after platelet engulfment. FcγR inhibition tests revealed that except for FcγRIIa, FcγRI and FcγRIII on monocytes were responsible for the phagocytosis of anti-HPA-1a opsonized platelets. Analysis of anti-HPA-1a antibodies from FNAIT cases (n = 7) showed the phagocytosis of HPA-1aa but not of HPA-1bb platelets by monocytes. The phagocytosis rate was highly correlated with bound antibodies measured by flow cytometry (p < 0001; r = 0.9214) and MAIPA assay (p < 0.001; r = 0.7692). The phagocytosis rates were equal for type I and II anti-HPA-1a antibodies recognizing the plexin-semaphoring-integrin (PSI) domain and PSI/epidermal growth factor 1 domain of β3 integrin, respectively. By contrast, type III anti-HPA-1a antibodies reacting with αvβ3 integrin did not induce platelet phagocytosis. Furthermore, effector-silenced mAbs against HPA-1a inhibited the phagocytosis of anti-HPA-1a opsonized platelets. In conclusion, WHOPPA is a reliable in vitro platelet phagocytosis assay that mimics the phagocytosis of anti-HPA-1a opsonized platelets in whole blood. This assay allows to prove platelet phagocytosis ex vivo and evaluate the inhibitory capacity of different inhibitors as therapeutically strategies for the prevention of fetal thrombocytopenia in FNAIT in the future.
Collapse
Affiliation(s)
- Paula Ames
- Institute for Clinical Immunology, Transfusion Medicine and Hemostasis, Justus Liebig University, Giessen, Germany
| | - Nelli Baal
- Institute for Clinical Immunology, Transfusion Medicine and Hemostasis, Justus Liebig University, Giessen, Germany
| | - Martin Speckmann
- Institute for Clinical Immunology, Transfusion Medicine and Hemostasis, Justus Liebig University, Giessen, Germany
- Flow Cytometry Core Facility, Justus Liebig University, Giessen, Germany
| | - Gabriela Michel
- Institute for Clinical Immunology, Transfusion Medicine and Hemostasis, Justus Liebig University, Giessen, Germany
| | - Judith Ratke
- Institute for Clinical Immunology, Transfusion Medicine and Hemostasis, Justus Liebig University, Giessen, Germany
| | - Christina Klesser
- Institute for Clinical Immunology, Transfusion Medicine and Hemostasis, Justus Liebig University, Giessen, Germany
| | - Nina Cooper
- Institute for Clinical Immunology, Transfusion Medicine and Hemostasis, Justus Liebig University, Giessen, Germany
| | | | - Behnaz Bayat
- Institute for Clinical Immunology, Transfusion Medicine and Hemostasis, Justus Liebig University, Giessen, Germany
| | - Gregor Bein
- Institute for Clinical Immunology, Transfusion Medicine and Hemostasis, Justus Liebig University, Giessen, Germany
| | - Sentot Santoso
- Institute for Clinical Immunology, Transfusion Medicine and Hemostasis, Justus Liebig University, Giessen, Germany
| |
Collapse
|
14
|
Zhang W, Yuan X, Wang Z, Xu J, Ye S, Jiang P, Du X, Liu F, Lin F, Zhang R, Ma L, Li C. Study on the Treatment of ITP Mice with IVIG Sourced from Distinct Sex-Special Plasma (DSP-IVIG). Int J Mol Sci 2023; 24:15993. [PMID: 37958975 PMCID: PMC10648144 DOI: 10.3390/ijms242115993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
Intravenous immunoglobulin (IVIG) is a first-line drug prepared from human plasma for the treatment of autoimmune diseases (AIDs), especially immune thrombocytopenia (ITP). Significant differences exist in protein types and expression levels between male and female plasma, and the prevalence of autoimmune diseases varies between sexes. The present study seeks to explore potential variations in IVIG sourced from distinct sex-specific plasma (DSP-IVIG), including IVIG sourced from female plasma (F-IVIG), IVIG sourced from male plasma (M-IVIG), and IVIG sourced from a blend of male and female plasma (Mix-IVIG). To address this question, we used an ITP mouse model and a monocyte-macrophage inflammation model treated with DSP IVIG. The analysis of proteomics in mice suggested that the pathogenesis and treatment of ITP may involve FcγRs mediated phagocytosis, apoptosis, Th17, cytokines, chemokines, and more. Key indicators, including the mouse spleen index, CD16+ macrophages, M1, M2, IL-6, IL-27, and IL-13, all indicated that the efficacy in improving ITP was highest for M-IVIG. Subsequent cell experiments revealed that M-IVIG exhibited a more potent ability to inhibit monocyte phagocytosis. It induced more necrotic M2 cells and fewer viable M2, resulting in weaker M2 phagocytosis. M-IVIG also demonstrated superiority in the downregulation of surface makers CD36, CD68, and CD16 on M1 macrophages, a weaker capacity to activate complement, and a stronger binding ability to FcγRs on the THP-1 surface. In summary, DSP-IVIG effectively mitigated inflammation in ITP mice and monocytes and macrophages. However, M-IVIG exhibited advantages in improving the spleen index, regulating the number and typing of M1 and M2 macrophages, and inhibiting macrophage-mediated inflammation compared to F-IVIG and Mix-IVIG.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Li Ma
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China; (W.Z.); (Z.W.); (J.X.); (S.Y.); (P.J.); (X.D.); (F.L.); (F.L.); (R.Z.)
| | - Changqing Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences & Peking Union Medical College, Chengdu 610052, China; (W.Z.); (Z.W.); (J.X.); (S.Y.); (P.J.); (X.D.); (F.L.); (F.L.); (R.Z.)
| |
Collapse
|
15
|
Szittner Z, Bentlage AEH, Temming AR, Schmidt DE, Visser R, Lissenberg-Thunnissen S, Mok JY, van Esch WJE, Sonneveld ME, de Graaf EL, Wuhrer M, Porcelijn L, de Haas M, van der Schoot CE, Vidarsson G. Cellular surface plasmon resonance-based detection of anti-HPA-1a antibody glycosylation in fetal and neonatal alloimmune thrombocytopenia. Front Immunol 2023; 14:1225603. [PMID: 37868955 PMCID: PMC10585714 DOI: 10.3389/fimmu.2023.1225603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 09/06/2023] [Indexed: 10/24/2023] Open
Abstract
Fetal and neonatal alloimmune thrombocytopenia (FNAIT) can occur due to maternal IgG antibodies targeting platelet antigens, causing life-threatening bleeding in the neonate. However, the disease manifests itself in only a fraction of pregnancies, most commonly with anti-HPA-1a antibodies. We found that in particular, the core fucosylation in the IgG-Fc tail is highly variable in anti-HPA-1a IgG, which strongly influences the binding to leukocyte IgG-Fc receptors IIIa/b (FcγRIIIa/b). Currently, gold-standard IgG-glycoanalytics rely on complicated methods (e.g., mass spectrometry (MS)) that are not suited for diagnostic purposes. Our aim was to provide a simplified method to quantify the biological activity of IgG antibodies targeting cells. We developed a cellular surface plasmon resonance imaging (cSPRi) technique based on FcγRIII-binding to IgG-opsonized cells and compared the results with MS. The strength of platelet binding to FcγR was monitored under flow using both WT FcγRIIIa (sensitive to Fc glycosylation status) and mutant FcγRIIIa-N162A (insensitive to Fc glycosylation status). The quality of the anti-HPA-1a glycosylation was monitored as the ratio of binding signals from the WT versus FcγRIIIa-N162A, using glycoengineered recombinant anti-platelet HPA-1a as a standard. The method was validated with 143 plasma samples with anti-HPA-1a antibodies analyzed by MS with known clinical outcomes and tested for validation of the method. The ratio of patient signal from the WT versus FcγRIIIa-N162A correlated with the fucosylation of the HPA-1a antibodies measured by MS (r=-0.52). Significantly, FNAIT disease severity based on Buchanan bleeding score was similarly discriminated against by MS and cSPRi. In conclusion, the use of IgG receptors, in this case, FcγRIIIa, on SPR chips can yield quantitative and qualitative information on platelet-bound anti-HPA-1a antibodies. Using opsonized cells in this manner circumvents the need for purification of specific antibodies and laborious MS analysis to obtain qualitative antibody traits such as IgG fucosylation, for which no clinical test is currently available.
Collapse
Affiliation(s)
- Zoltán Szittner
- Immunoglobulin Research Laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
- Landsteiner Laboratory Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Arthur E. H. Bentlage
- Immunoglobulin Research Laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| | - A. Robin Temming
- Immunoglobulin Research Laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
- Landsteiner Laboratory Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - David E. Schmidt
- Immunoglobulin Research Laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
- Landsteiner Laboratory Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Remco Visser
- Immunoglobulin Research Laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
- Landsteiner Laboratory Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Suzanne Lissenberg-Thunnissen
- Immunoglobulin Research Laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
- Landsteiner Laboratory Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | | | | | - Myrthe E. Sonneveld
- Immunoglobulin Research Laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
- Landsteiner Laboratory Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Erik L. de Graaf
- Immunoglobulin Research Laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
- Landsteiner Laboratory Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Leendert Porcelijn
- Department of Immunohematology Diagnostics, Sanquin, Amsterdam, Netherlands
| | - Masja de Haas
- Department of Immunohematology Diagnostics, Sanquin, Amsterdam, Netherlands
- Translational Immunohematology, Research, Amsterdam, Netherlands
- Department of Hematology, Leiden University Medical Centre, Leiden, Netherlands
| | - C. Ellen van der Schoot
- Immunoglobulin Research Laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
- Landsteiner Laboratory Amsterdam University Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Gestur Vidarsson
- Immunoglobulin Research Laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, Netherlands
- Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
16
|
Roeser A, Lazarus AH, Mahévas M. B cells and antibodies in refractory immune thrombocytopenia. Br J Haematol 2023; 203:43-53. [PMID: 37002711 DOI: 10.1111/bjh.18773] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/11/2023] [Indexed: 04/03/2023]
Abstract
Immune thrombocytopenia (ITP) is an acquired bleeding disorder mediated by pathogenic autoantibodies secreted by plasma cells (PCs) in many patients. In refractory ITP patients, the persistence of splenic and bone marrow autoreactive long-lived PCs (LLPCs) may explain primary failure of rituximab and splenectomy respectively. The reactivation of autoreactive memory B cells generating new autoreactive PCs contributes to relapses after initial response to rituximab. Emerging strategies targeting B cells and PCs aim to prevent the settlement of splenic LLPCs with the combination of anti-BAFF and rituximab, to deplete autoreactive PCs with anti-CD38 antibodies, and to induce deeper B-cell depletion in tissues with novel anti-CD20 monoclonal antibodies and anti-CD19 therapies. Alternative strategies, focused on controlling autoantibody mediated effects, have also been developed, including SYK and BTK inhibitors, complement inhibitors, FcRn blockers and inhibitors of platelet desialylation.
Collapse
Affiliation(s)
- Anaïs Roeser
- Institut Necker Enfants Malades (INEM), INSERM U1151/CNRS UMS 8253, ATIP-Avenir TeamAI2B, Paris, France
- Service de Médecine Interne, Centre Hospitalier Universitaire Henri-Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Est Créteil (UPEC), Créteil, France
| | - Alan H Lazarus
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Unity Health Toronto, Toronto, Ontario, Canada
- Departments of Medicine and Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Innovation and Portfolio Management, Canadian Blood Services, Ottawa, Ontario, Canada
| | - Matthieu Mahévas
- Institut Necker Enfants Malades (INEM), INSERM U1151/CNRS UMS 8253, ATIP-Avenir TeamAI2B, Paris, France
- Service de Médecine Interne, Centre Hospitalier Universitaire Henri-Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Est Créteil (UPEC), Créteil, France
| |
Collapse
|
17
|
Goyal VD, Pahade A, Misra G, Kaira V. Mitral valve replacement in patients of rheumatic heart disease associated with immune thrombocytopenia. Indian J Thorac Cardiovasc Surg 2023; 39:516-521. [PMID: 37609607 PMCID: PMC10441999 DOI: 10.1007/s12055-023-01517-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/02/2023] [Accepted: 04/05/2023] [Indexed: 08/24/2023] Open
Abstract
Immune thrombocytopenia in association with rheumatic heart disease is not commonly seen. Surgical management of rheumatic heart disease becomes more challenging in the presence of immune thrombocytopenia. The risk of complications increases manifold and judicious medical management before, during, and after surgery is imperative. We discuss two such cases, the complications we faced and the problems we anticipated before, and their prevention. Both patients were managed without using immunoglobulins or doing splenectomy. The literature on valve replacement in patients of immune thrombocytopenia and the implications of immune thrombocytopenia in the management of patients with rheumatic heart disease is also reviewed.
Collapse
Affiliation(s)
| | - Akhilesh Pahade
- Department of Anaesthesia, SRMS, IMS, Bareilly, UP 243202 India
| | - Gaurav Misra
- Department of Anaesthesia, SRMS, IMS, Bareilly, UP 243202 India
| | - Vaanika Kaira
- Department of Pathology, SRMS, IMS, Bareilly, UP 243202 India
| |
Collapse
|
18
|
Li CC, Munalisa R, Lee HY, Lien TS, Chan H, Hung SC, Sun DS, Cheng CF, Chang HH. Restraint Stress-Induced Immunosuppression Is Associated with Concurrent Macrophage Pyroptosis Cell Death in Mice. Int J Mol Sci 2023; 24:12877. [PMID: 37629059 PMCID: PMC10454201 DOI: 10.3390/ijms241612877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Psychological stress is widely acknowledged as a major contributor to immunosuppression, rendering individuals more susceptible to various diseases. The complex interplay between the nervous, endocrine, and immune systems underlies stress-induced immunosuppression. However, the underlying mechanisms of psychological-stress-induced immunosuppression remain unclear. In this study, we utilized a restraint stress mouse model known for its suitability in investigating physiological regulations during psychological stress. Comparing it with cold exposure, we observed markedly elevated levels of stress hormones corticosterone and cortisol in the plasma of mice subjected to restraint stress. Furthermore, restraint-stress-induced immunosuppression differed from the intravenous immunoglobulin-like immunosuppression observed in cold exposure, with restraint stress leading to increased macrophage cell death in the spleen. Suppression of pyroptosis through treatments of inflammasome inhibitors markedly ameliorated restraint-stress-induced spleen infiltration and pyroptosis cell death of macrophages in mice. These findings suggest that the macrophage pyroptosis associated with restraint stress may contribute to its immunosuppressive effects. These insights have implications for the development of treatments targeting stress-induced immunosuppression, emphasizing the need for further investigation into the underlying mechanisms.
Collapse
Affiliation(s)
- Chi-Cheng Li
- Department of Hematology and Oncology, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan;
- Center of Stem Cell & Precision Medicine, Hualien Tzu Chi Hospital, Hualien 970, Taiwan
| | - Rina Munalisa
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 970, Taiwan; (R.M.); (H.-Y.L.); (T.-S.L.); (H.C.); (S.-C.H.); (D.-S.S.)
| | - Hsuan-Yun Lee
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 970, Taiwan; (R.M.); (H.-Y.L.); (T.-S.L.); (H.C.); (S.-C.H.); (D.-S.S.)
| | - Te-Sheng Lien
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 970, Taiwan; (R.M.); (H.-Y.L.); (T.-S.L.); (H.C.); (S.-C.H.); (D.-S.S.)
| | - Hao Chan
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 970, Taiwan; (R.M.); (H.-Y.L.); (T.-S.L.); (H.C.); (S.-C.H.); (D.-S.S.)
| | - Shih-Che Hung
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 970, Taiwan; (R.M.); (H.-Y.L.); (T.-S.L.); (H.C.); (S.-C.H.); (D.-S.S.)
| | - Der-Shan Sun
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 970, Taiwan; (R.M.); (H.-Y.L.); (T.-S.L.); (H.C.); (S.-C.H.); (D.-S.S.)
| | - Ching-Feng Cheng
- Department of Pediatrics, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei 231, Taiwan;
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Hsin-Hou Chang
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien 970, Taiwan; (R.M.); (H.-Y.L.); (T.-S.L.); (H.C.); (S.-C.H.); (D.-S.S.)
| |
Collapse
|
19
|
Xiao Z, Murakhovskaya I. Rituximab resistance in ITP and beyond. Front Immunol 2023; 14:1215216. [PMID: 37575230 PMCID: PMC10422042 DOI: 10.3389/fimmu.2023.1215216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 07/10/2023] [Indexed: 08/15/2023] Open
Abstract
The pathophysiology of immune thrombocytopenia (ITP) is complex and encompasses innate and adaptive immune responses, as well as megakaryocyte dysfunction. Rituximab is administered in relapsed cases and has the added benefit of inducing treatment-free remission in over 50% of patients. Nevertheless, the responses to this therapy are not long-lasting, and resistance development is frequent. B cells, T cells, and plasma cells play a role in developing resistance. To overcome this resistance, targeting these pathways through splenectomy and novel therapies that target FcγR pathway, FcRn, complement, B cells, plasma cells, and T cells can be useful. This review will summarize the pathogenetic mechanisms implicated in rituximab resistance and examine the potential therapeutic interventions to overcome it. This review will explore the efficacy of established therapies, as well as novel therapeutic approaches and agents currently in development.
Collapse
Affiliation(s)
| | - Irina Murakhovskaya
- Division of Hematology, Department of Hematology-Oncology, Montefiore Medical Center, Albert Einstein College of Medicine, New York City, NY, United States
| |
Collapse
|
20
|
Norris PAA, Tawhidi Z, Sachs UJ, Cserti-Gazdewich CM, Lin Y, Callum J, Gil Gonzalez L, Shan Y, Branch DR, Lazarus AH. Serum from half of patients with immune thrombocytopenia trigger macrophage phagocytosis of platelets. Blood Adv 2023; 7:3561-3572. [PMID: 37042934 PMCID: PMC10368862 DOI: 10.1182/bloodadvances.2022009423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/21/2023] [Accepted: 04/05/2023] [Indexed: 04/13/2023] Open
Abstract
Humoral antiplatelet factors, such as autoantibodies, are thought to primarily clear platelets by triggering macrophage phagocytosis in immune thrombocytopenia (ITP). However, there are few studies characterizing the capacity and mechanisms of humoral factor-triggered macrophage phagocytosis of platelets using specimens from patients with ITP. Here, we assessed sera from a cohort of 24 patients with ITP for the capacity to trigger macrophage phagocytosis of normal donor platelets and characterized the contribution of humoral factors to phagocytosis. Sera that produced a phagocytosis magnitude greater than a normal human serum mean + 2 standard deviations were considered phagocytosis-positive. Overall, 42% (8/19) of MHC I alloantibody-negative ITP sera were phagocytosis-positive. The indirect monoclonal antibody immobilization of platelet antigens assay was used to detect immunoglobulin G (IgG) autoantibodies to glycoproteins (GP)IIb/IIIa, GPIb/IX, and GPIa/IIa. Autoantibody-positive sera triggered a higher mean magnitude of phagocytosis than autoantibody-negative sera. Phagocytosis correlated inversely with platelet counts among autoantibody-positive patients but not among autoantibody-negative patients. Select phagocytosis-positive sera were separated into IgG-purified and -depleted fractions via protein G and reassessed for phagocytosis. Phagocytosis was largely retained in the purified IgG fractions. In addition, we assessed serum concentrations of C-reactive protein, serum amyloid P, and pentraxin 3 as potential phagocytosis modulators. Pentraxin 3 concentrations correlated inversely with platelet counts among patients positive for autoantibodies. Taken together, sera from approximately half of the patients with ITP studied triggered macrophage phagocytosis of platelets beyond a normal level. An important role for antiplatelet autoantibodies in phagocytosis is supported; a role for pentraxins such as pentraxin 3 may be suggested.
Collapse
Affiliation(s)
- Peter A. A. Norris
- Innovation and Portfolio Management, Canadian Blood Services, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
| | - Zoya Tawhidi
- Innovation and Portfolio Management, Canadian Blood Services, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
| | - Ulrich J. Sachs
- Institute for Clinical Immunology, Transfusion Medicine, and Haemostasis, Justus Liebig University, Giessen, Germany
- Department of Thrombosis and Haemostasis, Giessen University Hospital, Giessen, Germany
| | - Christine M. Cserti-Gazdewich
- Innovation and Portfolio Management, Canadian Blood Services, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Laboratory Medicine Program, University Health Network, Toronto, ON, Canada
- University of Toronto Quality in Utilization, Education and Safety in Transfusion Research Program, University of Toronto, Toronto, ON, Canada
| | - Yulia Lin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- University of Toronto Quality in Utilization, Education and Safety in Transfusion Research Program, University of Toronto, Toronto, ON, Canada
- Precision Diagnostics and Therapeutics Program, Sunnybrook Health Sciences Centre, Toronto, Canada
| | - Jeannie Callum
- Innovation and Portfolio Management, Canadian Blood Services, Toronto, ON, Canada
- University of Toronto Quality in Utilization, Education and Safety in Transfusion Research Program, University of Toronto, Toronto, ON, Canada
- Department of Pathology and Molecular Medicine, Kingston Health Sciences Centre and Queen’s University, Kingston, ON, Canada
| | - Lazaro Gil Gonzalez
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
| | - Yuexin Shan
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
| | - Donald R. Branch
- Innovation and Portfolio Management, Canadian Blood Services, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON, Canada
- University of Toronto Quality in Utilization, Education and Safety in Transfusion Research Program, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- Division of Hematology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Alan H. Lazarus
- Innovation and Portfolio Management, Canadian Blood Services, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Keenan Research Centre for Biomedical Science, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON, Canada
- Toronto Platelet Immunobiology Group, Toronto, ON, Canada
- University of Toronto Quality in Utilization, Education and Safety in Transfusion Research Program, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
21
|
Liu J, Zhang Y, Li Z, Li J, Zhang L, Song Y, Lyu Z, Wang C, Gou L, Quan M, Xiao J, Song H. The effect of antinuclear antibody titre and its variation on outcomes in children with primary immune thrombocytopenia. Br J Haematol 2023. [PMID: 36929463 DOI: 10.1111/bjh.18732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/18/2023]
Abstract
Antinuclear antibody (ANA) can be positive in children with primary immune thrombocytopenia (ITP), but the effect of ANA titre and its variation on outcomes of children with primary ITP remains unclear. Here, we conducted a single-centre retrospective cohort study of children with primary ITP at the Peking Union Medical College Hospital in China. A total of 324 children with primary ITP included in this study were followed for a median time of 25 months. In this cohort, 39.2% had an ANA titre of 1:160 or higher. Results from a generalized estimating equation model revealed that patients with higher ANA titres had lower platelet counts at onset but a higher recovery rate of subsequent platelet counts. Results from Cox regression models adjusted for potential confounders revealed that patients with ANA titres of 1:160 or more were more likely to develop to autoimmune disease (AID) than those without, and the risk of AID development increased with the rise of ANA titres (p value for trend less than 0.001). These data highlight the predictive value of ANA titre for platelet counts and the risk of AID development in children with primary ITP.
Collapse
Affiliation(s)
- Jing Liu
- Department of Pediatrics, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuelun Zhang
- Medical Research Center, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhuo Li
- Department of Pediatrics, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Ji Li
- Department of Pediatrics, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Lejia Zhang
- Department of Pediatrics, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuqing Song
- Department of Pediatrics, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Zichao Lyu
- Department of Pediatrics, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Changyan Wang
- Department of Pediatrics, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Lijuan Gou
- Department of Pediatrics, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Meiying Quan
- Department of Pediatrics, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Juan Xiao
- Department of Pediatrics, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Hongmei Song
- Department of Pediatrics, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
22
|
Platelet Desialylation Is a Novel Mechanism and Therapeutic Target in Daboia siamensis and Agkistrodon halys Envenomation-Induced Thrombocytopenia. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227779. [PMID: 36431880 PMCID: PMC9695323 DOI: 10.3390/molecules27227779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022]
Abstract
Venom-induced thrombocytopenia (VIT) is one of the most important hemotoxic effects of a snakebite, which is often associated with venom-induced consumptive coagulopathy (VICC). Refractory thrombocytopenia without significant coagulation abnormalities has also been reported after envenomation by some viperid snakes; however, the mechanisms are not well understood and therapeutic strategies are lacking. Here, we found that patients injured by Daboia siamensis or Agkistrodon halys snakes, who were resistant to standard antivenom treatment, had developed coagulopathy-independent thrombocytopenia. Venoms from these viperid snakes, rather than from the elapid snake (Bungarus multicinctus), induced platelet surface expression of neuraminidase-1 (NEU-1), and significantly increased the desialylation of the glycoproteins on human platelets. The desialylated platelets caused by viperid snake venoms were further internalized by macrophages, which resulted in reduced platelet numbers in peripheral blood. Importantly, neuraminidase inhibitor significantly decreased viper venom-induced platelet desialylation, therefore inhibiting platelet phagocytosis by macrophages, and alleviating venom-induced thrombocytopenia. Collectively, these findings support an important role for desialylated platelet clearance in the progression of viper envenomation-induced, coagulopathy-independent thrombocytopenia. Our study demonstrates that the neuraminidase inhibitor may be a potential therapy or adjuvant therapy to treat snakebite-induced thrombocytopenia.
Collapse
|
23
|
van Osch TLJ, Steuten J, Nouta J, Koeleman CAM, Bentlage AEH, Heidt S, Mulder A, Voorberg J, van Ham SM, Wuhrer M, Ten Brinke A, Vidarsson G. Phagocytosis of platelets opsonized with differently glycosylated anti-HLA hIgG1 by monocyte-derived macrophages. Platelets 2022; 34:2129604. [PMID: 36185007 DOI: 10.1080/09537104.2022.2129604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2022]
Abstract
Immune-mediated platelet refractoriness (PR) remains a significant problem in the setting of platelet transfusion and is predominantly caused by the presence of alloantibodies directed against class I human leukocyte antigens (HLA). Opsonization of donor platelets with these alloantibodies can result in rapid clearance after transfusion via multiple mechanisms, including antibody dependent cellular phagocytosis (ADCP). Interestingly, not all alloimmunized patients develop PR to unmatched platelet transfusions, suggesting variation in HLA-specific IgG responses between patients. Previously, we observed that the glycosylation profile of anti-HLA antibodies was highly variable between PR patients, especially with respect to Fc galactosylation, sialylation and fucosylation. In the current study, we investigated the effect of different Fc glycosylation patterns, with known effects on complement deposition and FcγR binding, on phagocytosis of opsonized platelets by monocyte-derived human macrophages. We found that the phagocytosis of antibody- and complement-opsonized platelets, by monocyte derived M1 macrophages, was unaffected by these qualitative IgG-glycan differences.
Collapse
Affiliation(s)
- Thijs L J van Osch
- Immunoglobulin Research laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, The Netherlands.,Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Juulke Steuten
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Jan Nouta
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Carolien A M Koeleman
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Arthur E H Bentlage
- Immunoglobulin Research laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, The Netherlands.,Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| | - Sebastiaan Heidt
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Arend Mulder
- Department of Immunology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jan Voorberg
- Department of Molecular Hematology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands and
| | - S Marieke van Ham
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands.,Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Manfred Wuhrer
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, The Netherlands
| | - Anja Ten Brinke
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Gestur Vidarsson
- Immunoglobulin Research laboratory, Department of Experimental Immunohematology, Sanquin Research, Amsterdam, The Netherlands.,Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
24
|
Xiong Y, Li Y, Cui X, Zhang L, Yang X, Liu H. ADAP restraint of STAT1 signaling regulates macrophage phagocytosis in immune thrombocytopenia. Cell Mol Immunol 2022; 19:898-912. [PMID: 35637282 PMCID: PMC9149338 DOI: 10.1038/s41423-022-00881-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 05/09/2022] [Indexed: 01/08/2023] Open
Abstract
Heightened platelet phagocytosis by macrophages accompanied by an increase in IFN-γ play key roles in the etiology of immune thrombocytopenia (ITP); however, it remains elusive how macrophage-mediated platelet clearance is regulated in ITP. Here, we report that adhesion and degranulation-protein adaptor protein (ADAP) restrains platelet phagocytosis by macrophages in ITP via modulation of signal transducer and activator of transcription 1 (STAT1)-FcγR signaling. We show that ITP was associated with the underexpression of ADAP in splenic macrophages. Furthermore, macrophages from Adap-/- mice exhibited elevated platelet phagocytosis and upregulated proinflammatory signaling, and thrombocytopenia in Adap-/- mice was mitigated by the depletion of macrophages. Mechanistically, ADAP interacted and competed with STAT1 binding to importin α5. ADAP deficiency potentiated STAT1 nuclear entry, leading to a selective enhancement of FcγRI/IV transcription in macrophages. Moreover, pharmacological inhibition of STAT1 or disruption of the STAT1-importin α5 interaction relieved thrombocytopenia in Adap-/- mice. Thus, our findings not only reveal a critical role for ADAP as an intracellular immune checkpoint for shaping macrophage phagocytosis in ITP but also identify the ADAP-STAT1-importin α5 module as a promising therapeutic target in the treatment of ITP.
Collapse
Affiliation(s)
- Yiwei Xiong
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, China
| | - Yanli Li
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, China
| | - Xinxing Cui
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, China
| | - Lifeng Zhang
- Department of General Surgery, Dushu Lake Hospital Affiliated to Soochow University, Medical Center of Soochow University, Suzhou, 215123, China
| | - Xiaodong Yang
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Hebin Liu
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, China.
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China.
| |
Collapse
|
25
|
Thrombocytopenia and splenic platelet directed immune responses after intravenous ChAdOx1 nCov-19 administration. Blood 2022; 140:478-490. [PMID: 35486845 PMCID: PMC9060731 DOI: 10.1182/blood.2021014712] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/14/2022] [Indexed: 11/20/2022] Open
Abstract
Vaccines against SARS-CoV-2 are based on a range of novel platforms, with adenovirus-based approaches (like ChAdOx1 nCov-19) being one of them. Recently a novel complication of SARS-CoV-2 targeted adenovirus vaccines has emerged: immune thrombocytopenia (ITP), either isolated, or accompanied by thrombosis (then termed VITT). This complication is characterized by low platelet counts, and in the case of VITT also by platelet-activating platelet factor 4 (PF4) antibodies reminiscent of heparin-induced thrombocytopenia leading to a prothrombotic state with clot formation at unusual anatomic sites. Here, we detected anti-platelet antibodies targeting platelet glycoprotein receptors in 30% of patients with proven VITT (n=27), as well as 42% of patients with isolated thrombocytopenia after ChAdOx1 nCov-19 vaccination (n=26), indicating broad antiplatelet autoimmunity in these clinical entities. We employ in vitro and in vivo models to characterize possible mechanisms of these platelet-targeted autoimmune responses leading to thrombocytopenia. We show that intravenous but not intramuscular injection of ChAdOx1 nCov-19 triggers platelet-adenovirus aggregate formation and platelet activation. After intravenous injection, these aggregates are phagocytosed by macrophages in the spleen and platelet remnants are found in the marginal zone and follicles. This is followed by a pronounced B-cell response with the emergence of circulating antibodies binding to platelets. Our work contributes to the understanding of platelet associated complications after ChAdOx1 nCov-19 administration and highlights accidental intravenous injection as a potential mechanism of platelet targeted autoimmunity. Hence, preventing intravenous injection when administering adenovirus-based vaccines could be a potential measure against platelet associated pathologies following the vaccination.
Collapse
|
26
|
Delidakis G, Kim JE, George K, Georgiou G. Improving Antibody Therapeutics by Manipulating the Fc Domain: Immunological and Structural Considerations. Annu Rev Biomed Eng 2022; 24:249-274. [PMID: 35363537 PMCID: PMC9648538 DOI: 10.1146/annurev-bioeng-082721-024500] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Interactions between the crystallizable fragment (Fc) domain of antibodies and a plethora of cellular Fc receptors (FcRs) or soluble proteins form a critical link between humoral and innate immunity. In particular, the immunoglobulin G Fc domain is critical for the clearance of target cells by processes that include (a) cytotoxicity, phagocytosis, or complement lysis; (b) modulation of inflammation; (c) antigen presentation; (d) antibody-mediated receptor clustering; and (e) cytokine release. More than 30 Fc-engineered antibodies aimed primarily at tailoring these effects for optimal therapeutic outcomes are in clinical evaluation or have already been approved. Nonetheless, our understanding of how FcR engagement impacts various immune cell phenotypes is still largely incomplete. Recent insights into FcR biology coupled with advances in Fc:FcR structural analysis, Fc engineering, and mouse models that recapitulate human biology are helping to fill in existing knowledge gaps. These advances will provide a blueprint on how to fine-tune the Fc domain to achieve optimal therapeutic efficacy. Expected final online publication date for the Annual Review of Biomedical Engineering, Volume 24 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- George Delidakis
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, USA;
| | - Jin Eyun Kim
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, USA
| | - Katia George
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| | - George Georgiou
- Department of Chemical Engineering, University of Texas at Austin, Austin, Texas, USA; .,Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas, USA.,Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
27
|
Shen C, Liu M, Mackeigan DT, Chen ZY, Chen P, Karakas D, Li J, Norris PAA, Li J, Deng Y, Long C, Lai R, Ni H. Viper venoms drive the macrophages and hepatocytes to sequester and clear platelets: novel mechanism and therapeutic strategy for venom-induced thrombocytopenia. Arch Toxicol 2021; 95:3589-3599. [PMID: 34519865 DOI: 10.1007/s00204-021-03154-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/02/2021] [Indexed: 11/25/2022]
Abstract
Venomous snakebites cause clinical manifestations that range from local to systemic and are considered a significant global health challenge. Persistent or refractory thrombocytopenia has been frequently reported in snakebite patients, especially in cases caused by viperidae snakes. Viper envenomation-induced thrombocytopenia may persist in the absence of significant consumption coagulopathy even after the antivenom treatment, yet the mechanism remains largely unknown. Our study aims to investigate the mechanism and discover novel therapeutic targets for coagulopathy-independent thrombocytopenia caused by viper envenomation. Here we found that patients bitten by Protobothrops mucrosquamatus and Trimeresurus stejnegeri, rather than Naja. atra may develop antivenom-resistant and coagulopathy-independent thrombocytopenia. Crude venoms and the derived C-type lectin-like proteins from these vipers significantly increased platelet surface expression of neuraminidase and platelet desialylation, therefore led to platelet ingestion by both macrophages and hepatocytes in vitro, and drastically decreased peripheral platelet counts in vivo. Our study is the first to demonstrate that desialylation-mediated platelet clearance is a novel mechanism of viper envenomation-induced refractory thrombocytopenia and C-type lectin-like proteins derived from the viper venoms contribute to snake venom-induced thrombocytopenia. The results of this study suggest the inhibition of platelet desialylation as a novel therapeutic strategy against viper venom-induced refractory thrombocytopenia.
Collapse
Affiliation(s)
- Chuanbin Shen
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A1, Canada
- Department of Laboratory Medicine, LKSKI-Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, ON, M5B 1W8, Canada
| | - Ming Liu
- Department of Molecular and Cell Biology, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Daniel Thomas Mackeigan
- Department of Laboratory Medicine, LKSKI-Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, ON, M5B 1W8, Canada
- Department of Physiology, University of Toronto, Toronto, ON, M5S 1A1, Canada
| | - Zi Yan Chen
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A1, Canada
- Department of Laboratory Medicine, LKSKI-Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, ON, M5B 1W8, Canada
- Canadian Blood Services Centre for Innovation, Toronto, ON, M5G 2M1, Canada
| | - Pingguo Chen
- Department of Laboratory Medicine, LKSKI-Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, ON, M5B 1W8, Canada
- Canadian Blood Services Centre for Innovation, Toronto, ON, M5G 2M1, Canada
| | - Danielle Karakas
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A1, Canada
- Department of Laboratory Medicine, LKSKI-Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, ON, M5B 1W8, Canada
| | - June Li
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A1, Canada
- Department of Laboratory Medicine, LKSKI-Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, ON, M5B 1W8, Canada
- Canadian Blood Services Centre for Innovation, Toronto, ON, M5G 2M1, Canada
| | - Peter A A Norris
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A1, Canada
- Department of Laboratory Medicine, LKSKI-Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, ON, M5B 1W8, Canada
- Canadian Blood Services Centre for Innovation, Toronto, ON, M5G 2M1, Canada
| | - Jiayao Li
- Hospital of Traditional Chinese Medicine of Wuzhou City, Wuzhou, 543002, Guangxi, China
| | - Yanling Deng
- Hospital of Traditional Chinese Medicine of Wuzhou City, Wuzhou, 543002, Guangxi, China
| | - Chengbo Long
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, Kunming Institute of Zoology, Kunming, 650223, Yunnan, China
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Ren Lai
- Key Laboratory of Bioactive Peptides of Yunnan Province/Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, Kunming Institute of Zoology, Kunming, 650223, Yunnan, China.
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.
| | - Heyu Ni
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, M5S 1A1, Canada.
- Department of Laboratory Medicine, LKSKI-Keenan Research Centre for Biomedical Science, St. Michael's Hospital, and Toronto Platelet Immunobiology Group, Toronto, ON, M5B 1W8, Canada.
- Department of Physiology, University of Toronto, Toronto, ON, M5S 1A1, Canada.
- Canadian Blood Services Centre for Innovation, Toronto, ON, M5G 2M1, Canada.
- Department of Medicine, University of Toronto, Toronto, ON, M5S 1A1, Canada.
- Department of Laboratory Medicine and Pathobiology, Department of Medicine and Department of Physiology, University of TorontoCanadian Blood Services Centre for Innovation, St. Michael's Hospital, Room 421, LKSKI - Keenan Research Centre, 209 Victoria Street, Toronto, ON, M5B 1W8, Canada.
| |
Collapse
|
28
|
Tong H, Ding Y, Gui X, Sun Z, Wang G, Zhang S, Xu Z, Wang X, Xu X, Ju W, Li Y, Li Z, Zeng L, Xu K, Qiao J. Dimethyl fumarate inhibits antibody-induced platelet destruction in immune thrombocytopenia mouse. Thromb J 2021; 19:61. [PMID: 34454532 PMCID: PMC8403390 DOI: 10.1186/s12959-021-00314-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 08/19/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Immune thrombocytopenia (ITP) is an autoimmune disease characterized as a low platelet count resulting from immune-mediated platelet destruction. Dimethyl fumarate (DMF) is widely applied for the treatment of several autoimmune diseases with immunosuppressive effect. However, whether it ameliorates ITP is unclear. This study aims to evaluate whether DMF has a preventive effect on ITP in mice. METHODS DMF (30, 60 or 90 mg/kg body weight) was intraperitoneally injected into mice followed by injection of rat anti-mouse integrin GPIIb/CD41antibody to induce ITP. Peripheral blood was isolated to measure platelet count and spleen mononuclear cells were extracted to measure Th1 and Treg cells along with detecting the levels of IFN-γ, and TGFβ-1 in plasma and CD68 expression in spleen by immuohistochemical staining. Additionally, macrophage cell line RAW264.7 was cultured and treated with DMF followed by analysis of cell apoptosis and cycle, and the expression of FcγRI, FcγRIIb and FcγRIV mRNA. RESULTS DMF significantly inhibited antiplatelet antibody-induced platelet destruction, decreased Th1 cells and the expression of T-bet and IFN-γ, upregulated Treg cells and the expression of Foxp3 and TGF-β1 as well as reduced CD68 expression in the spleen of ITP mouse. DMF-treated RAW264.7 cells showed S-phase arrest, increased apoptosis and downregulated expression of FcγRI and FcγRIV. Meanwhile, in vitro treatment of DMF also decreased the expression of cyclin D1 and E2, reduced Bcl-2 level and increased Bax expression and caspase-3 activation. CONCLUSIONS In conclusion, DMF prevents antibody-mediated platelet destruction in ITP mice possibly through promoting apoptosis, indicating that it might be used as a new approach for the treatment of ITP.
Collapse
Affiliation(s)
- Huan Tong
- Blood Diseases Institute, Xuzhou Medical University, 84 West Huaihai Road, Quanshan District, Xuzhou, 221002, Jiangsu, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, 221002, China
| | - Yangyang Ding
- Blood Diseases Institute, Xuzhou Medical University, 84 West Huaihai Road, Quanshan District, Xuzhou, 221002, Jiangsu, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, 221002, China
| | - Xiang Gui
- Blood Diseases Institute, Xuzhou Medical University, 84 West Huaihai Road, Quanshan District, Xuzhou, 221002, Jiangsu, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, 221002, China
| | - Zengtian Sun
- Blood Diseases Institute, Xuzhou Medical University, 84 West Huaihai Road, Quanshan District, Xuzhou, 221002, Jiangsu, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, 221002, China
| | - Guozhang Wang
- Blood Diseases Institute, Xuzhou Medical University, 84 West Huaihai Road, Quanshan District, Xuzhou, 221002, Jiangsu, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, 221002, China
| | - Sixuan Zhang
- Blood Diseases Institute, Xuzhou Medical University, 84 West Huaihai Road, Quanshan District, Xuzhou, 221002, Jiangsu, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, 221002, China
| | - Zhengqing Xu
- Blood Diseases Institute, Xuzhou Medical University, 84 West Huaihai Road, Quanshan District, Xuzhou, 221002, Jiangsu, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, 221002, China
| | - Xiamin Wang
- Blood Diseases Institute, Xuzhou Medical University, 84 West Huaihai Road, Quanshan District, Xuzhou, 221002, Jiangsu, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, 221002, China
| | - Xiaoqi Xu
- Blood Diseases Institute, Xuzhou Medical University, 84 West Huaihai Road, Quanshan District, Xuzhou, 221002, Jiangsu, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, 221002, China
| | - Wen Ju
- Blood Diseases Institute, Xuzhou Medical University, 84 West Huaihai Road, Quanshan District, Xuzhou, 221002, Jiangsu, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, 221002, China
| | - Yue Li
- School of Medical Technology, Xuzhou Medical University, Xuzhou, 221002, China
| | - Zhenyu Li
- Blood Diseases Institute, Xuzhou Medical University, 84 West Huaihai Road, Quanshan District, Xuzhou, 221002, Jiangsu, China.,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China.,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, 221002, China
| | - Lingyu Zeng
- Blood Diseases Institute, Xuzhou Medical University, 84 West Huaihai Road, Quanshan District, Xuzhou, 221002, Jiangsu, China. .,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China. .,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, 221002, China. .,School of Medical Technology, Xuzhou Medical University, Xuzhou, 221002, China.
| | - Kailin Xu
- Blood Diseases Institute, Xuzhou Medical University, 84 West Huaihai Road, Quanshan District, Xuzhou, 221002, Jiangsu, China. .,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China. .,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, 221002, China.
| | - Jianlin Qiao
- Blood Diseases Institute, Xuzhou Medical University, 84 West Huaihai Road, Quanshan District, Xuzhou, 221002, Jiangsu, China. .,Department of Hematology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China. .,Key Laboratory of Bone Marrow Stem Cell, Jiangsu Province, Xuzhou, 221002, China.
| |
Collapse
|
29
|
Monnet C, Jacque E, de Romeuf C, Fontayne A, Abache T, Fournier N, Dupont G, Derache D, Engrand A, Bauduin A, Terrier A, Seifert A, Beghin C, Longue A, Masiello N, Danino L, Nogre M, Raia A, Dhainaut F, Fauconnier L, Togbe D, Reitinger C, Nimmerjahn F, Stevens W, Chtourou S, Mondon P. The Dual Targeting of FcRn and FcγRs via Monomeric Fc Fragments Results in Strong Inhibition of IgG-Dependent Autoimmune Pathologies. Front Immunol 2021; 12:728322. [PMID: 34512662 PMCID: PMC8427755 DOI: 10.3389/fimmu.2021.728322] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/09/2021] [Indexed: 12/12/2022] Open
Abstract
Novel molecules that directly target the neonatal Fc receptor (FcRn) and/or Fc gamma receptors (FcγRs) are emerging as promising treatments for immunoglobulin G (IgG)-dependent autoimmune pathologies. Mutated Fc regions and monoclonal antibodies that target FcRn are currently in clinical development and hold promise for reducing the levels of circulating IgG. Additionally, engineered structures containing multimeric Fc regions allow the dual targeting of FcRn and FcγRs; however, their tolerance needs to first be validated in phase I clinical studies. Here, for the first time, we have developed a modified monomeric recombinant Fc optimized for binding to all FcRns and FcγRs without the drawback of possible tolerance associated with FcγR cross-linking. A rational approach using Fc engineering allowed the selection of LFBD192, an Fc with a combination of six mutations that exhibits improved binding to human FcRn and FcγR as well as mouse FcRn and FcγRIV. The potency of LFBD192 was compared with that of intravenous immunoglobulin (IVIg), an FcRn blocker (Fc-MST-HN), and a trimeric Fc that blocks FcRn and/or immune complex-mediated cell activation through FcγR without triggering an immune reaction in several in vitro tests and validated in three mouse models of autoimmune disease.
Collapse
MESH Headings
- Animals
- Antirheumatic Agents/metabolism
- Antirheumatic Agents/pharmacology
- Arthritis, Experimental/genetics
- Arthritis, Experimental/immunology
- Arthritis, Experimental/metabolism
- Arthritis, Experimental/prevention & control
- Autoimmunity/drug effects
- Binding, Competitive
- Complement C5a/metabolism
- Female
- Histocompatibility Antigens Class I/genetics
- Histocompatibility Antigens Class I/immunology
- Histocompatibility Antigens Class I/metabolism
- Humans
- Immunoglobulin Fc Fragments/genetics
- Immunoglobulin Fc Fragments/immunology
- Immunoglobulin Fc Fragments/metabolism
- Immunoglobulin Fc Fragments/pharmacology
- Interleukin-2/metabolism
- Jurkat Cells
- Kinetics
- Mice, Inbred C57BL
- Mice, Transgenic
- Mutation
- Phagocytosis/drug effects
- Platelet Aggregation/drug effects
- Protein Binding
- Protein Engineering
- Receptors, Fc/antagonists & inhibitors
- Receptors, Fc/genetics
- Receptors, Fc/immunology
- Receptors, Fc/metabolism
- Receptors, IgG/antagonists & inhibitors
- Receptors, IgG/genetics
- Receptors, IgG/immunology
- Receptors, IgG/metabolism
- Secretory Pathway
- Signal Transduction
- THP-1 Cells
- Mice
Collapse
Affiliation(s)
- Céline Monnet
- LFB Biotechnologies, Innovation Department, Les Ulis, France
| | - Emilie Jacque
- LFB Biotechnologies, Innovation Department, Les Ulis, France
| | | | | | - Toufik Abache
- LFB Biotechnologies, Innovation Department, Les Ulis, France
| | | | - Gilles Dupont
- LFB Biotechnologies, Innovation Department, Les Ulis, France
| | | | - Anais Engrand
- LFB Biotechnologies, Innovation Department, Les Ulis, France
| | - Aurélie Bauduin
- LFB Biotechnologies, Innovation Department, Les Ulis, France
| | - Aurélie Terrier
- LFB Biotechnologies, Innovation Department, Les Ulis, France
| | | | - Cécile Beghin
- LFB Biotechnologies, Innovation Department, Les Ulis, France
| | - Alain Longue
- LFB Biotechnologies, Innovation Department, Les Ulis, France
| | | | - Laetitia Danino
- LFB Biotechnologies, Innovation Department, Les Ulis, France
| | - Michel Nogre
- LFB Biotechnologies, Innovation Department, Les Ulis, France
| | - Anais Raia
- LFB Biotechnologies, Innovation Department, Les Ulis, France
| | | | | | | | - Carmen Reitinger
- Division of Genetics, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Falk Nimmerjahn
- Division of Genetics, Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Wil Stevens
- LFB Biotechnologies, Innovation Department, Les Ulis, France
| | - Sami Chtourou
- LFB Biotechnologies, Innovation Department, Les Ulis, France
| | - Philippe Mondon
- LFB Biotechnologies, Innovation Department, Les Ulis, France
| |
Collapse
|
30
|
Potential Diagnostic Approaches for Prediction of Therapeutic Responses in Immune Thrombocytopenia. J Clin Med 2021; 10:jcm10153403. [PMID: 34362187 PMCID: PMC8347743 DOI: 10.3390/jcm10153403] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 12/13/2022] Open
Abstract
Immune thrombocytopenia (ITP) is an autoimmune bleeding disorder in which, via unresolved mechanisms, platelets and megakaryocytes (MKs) are targeted by autoantibodies and/or T cells resulting in increased platelet destruction and impairment of MK function. Over the years, several therapeutic modalities have become available for ITP, however, therapeutic management has proven to be very challenging in several cases. Patients refractory to treatment can develop a clinically worsening disease course, treatment-induced toxicities and are predisposed to development of potentially life-endangering bleedings. It is therefore of critical importance to timely identify potential refractory patients, for which novel diagnostic approaches are urgently needed in order to monitor and predict specific therapeutic responses. In this paper, we propose promising diagnostic investigations into immune functions and characteristics in ITP, which may potentially be exploited to help predict platelet count responses and thereby distinguish therapeutic responders from non-responders. This importantly includes analysis of T cell homeostasis, which generally appears to be disturbed in ITP due to decreased and/or dysfunctional T regulatory cells (Tregs) leading to loss of immune tolerance and initiation/perpetuation of ITP, and this may be normalized by several therapeutic modalities. Additional avenues to explore in possible prediction of therapeutic responses include examination of platelet surface sialic acids, platelet apoptosis, monocyte surface markers, B regulatory cells and platelet microparticles. Initial studies have started evaluating these markers in relation to response to various treatments including glucocorticosteroids (GCs), intravenous immunoglobulins (IVIg) and/or thrombopoietin receptor agonists (TPO-RA), however, further studies are highly warranted. The systematic molecular analysis of a broad panel of immune functions may ultimately help guide and improve personalized therapeutic management in ITP.
Collapse
|
31
|
Razanamahery J, Humbert S, Emile JF, Cohen-Aubart F, Fontan J, Maksud P, Audia S, Haroche J. Immune Thrombocytopenia Revealing Enriched IgG-4 Peri-Renal Rosai-Dorfman Disease Successfully Treated with Rituximab: A Case Report and Literature Review. Front Med (Lausanne) 2021; 8:678456. [PMID: 34222286 PMCID: PMC8244783 DOI: 10.3389/fmed.2021.678456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/13/2021] [Indexed: 12/03/2022] Open
Abstract
Immune thrombocytopenia (ITP) is a rare autoimmune-mediated condition characterized by isolated thrombocytopenia (<100 G/L) after exclusion of other causes. Mostly primary, it is associated with hematological malignancy, autoimmune disorders, or infection in 20% of patients. It is exceptionally described in patients with histiocytosis, mostly in children (seven patients in literature). We report a case of a 69-year-old man with ITP leading to the diagnosis of histiocytosis. At ITP's diagnosis, the patient had elevated gamma-globulins leading to computed tomography showing bilateral peri-renal infiltration. The biopsy showed enriched IgG-4 peri-renal Rosai Dorfman disease with MAP2K1 mutation, although peri-renal infiltration is highly suggestive of Erdheim-Chester disease. This overlapping association was described in men with mutation in MAP2K1 gene. Macrophages are implicated in the pathophysiology of ITP in multiple ways, notably by the phagocytosis of opsonized platelets and their function of antigen-presenting cells able to stimulate autoreactive T cells. Histiocytic cells derivate from monocyte-macrophage lineage. Activation of macrophages in active histiocytosis is responsible for consequential platelet destruction in ITP associated histiocytosis. Finally, this case highlights a rare presentation of ITP revealing histiocytosis, both being efficiently treated with rituximab.
Collapse
Affiliation(s)
- Jerome Razanamahery
- Internal Medicine Department and Clinical Immunology, Dijon University Hospital, Dijon, France
| | - Sebastien Humbert
- Internal Medicine Department, Besancon University Hospital, Besançon, France
| | - Jean-Francois Emile
- Department of Pathology, Ambroise-Paré Hospital, Assistance-Publique Hopitaux de Paris, Paris, France
| | - Fleur Cohen-Aubart
- Sorbonne Université, Assistance Publique Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Internal Medicine Department 2, National Reference Center for Histiocytosis, Paris, France
| | - Jean Fontan
- Department of Haematology, Besancon University Hospital, Besançon, France
| | - Philippe Maksud
- Department of Nuclear Medicine, Pitié-Salpêtrière Hospital, Paris, France
| | - Sylvain Audia
- Internal Medicine Department and Clinical Immunology, Dijon University Hospital, Dijon, France
| | - Julien Haroche
- Sorbonne Université, Assistance Publique Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Internal Medicine Department 2, National Reference Center for Histiocytosis, Paris, France
| |
Collapse
|
32
|
New insights into IVIg mechanisms and alternatives in autoimmune and inflammatory diseases. Curr Opin Hematol 2021; 27:392-398. [PMID: 32868670 DOI: 10.1097/moh.0000000000000609] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Intravenous immunoglobulin (IVIg) is an effective treatment for an increasing number of autoimmune and inflammatory conditions. However, IVIg continues to be limited by problems of potential shortages and cost. A number of mechanisms have been described for IVIg, which have been captured in newly emergent IVIg mimetic and IVIg alternative therapies. This review discusses the recent developments in IVIg mimetics and alternatives. RECENT FINDINGS Newly emergent IVIg mimetics and alternatives capture major proposed mechanisms of IVIg, including FcγR blockade, FcRn inhibition, complement inhibition, immune complex mimetics and sialylated IgG. Many of these emergent therapies have promising preclinical and clinical trial results. SUMMARY Significant research has been undertaken into the mechanism of IVIg in the treatment of autoimmune and inflammatory disease. Understanding the major IVIg mechanisms has allowed for rational development of IVIg mimetics and alternatives for several IVIg-treatable diseases.
Collapse
|
33
|
Immune Thrombocytopenia: Recent Advances in Pathogenesis and Treatments. Hemasphere 2021; 5:e574. [PMID: 34095758 PMCID: PMC8171374 DOI: 10.1097/hs9.0000000000000574] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/08/2021] [Indexed: 11/26/2022] Open
Abstract
Immune thrombocytopenia (ITP) is a rare autoimmune disease due to both a peripheral destruction of platelets and an inappropriate bone marrow production. Although the primary triggering factors of ITP remain unknown, a loss of immune tolerance-mostly represented by a regulatory T-cell defect-allows T follicular helper cells to stimulate autoreactive splenic B cells that differentiate into antiplatelet antibody-producing plasma cells. Glycoprotein IIb/IIIa is the main target of antiplatelet antibodies leading to platelet phagocytosis by splenic macrophages, through interactions with Fc gamma receptors (FcγRs) and complement receptors. This allows macrophages to activate autoreactive T cells by their antigen-presenting functions. Moreover, the activation of the classical complement pathway participates to platelet opsonization and also to their destruction by complement-dependent cytotoxicity. Platelet destruction is also mediated by a FcγR-independent pathway, involving platelet desialylation that favors their binding to the Ashwell-Morell receptor and their clearance in the liver. Cytotoxic T cells also contribute to ITP pathogenesis by mediating cytotoxicity against megakaryocytes and peripheral platelets. The deficient megakaryopoiesis resulting from both the humoral and the cytotoxic immune responses is sustained by inappropriate levels of thrombopoietin, the major growth factor of megakaryocytes. The better understanding of ITP pathogenesis has provided important therapeutic advances. B cell-targeting therapies and thrombopoietin-receptor agonists (TPO-RAs) have been used for years. New emerging therapeutic strategies that inhibit FcγR signaling, the neonatal Fc receptor or the classical complement pathway, will deeply modify the management of ITP in the near future.
Collapse
|
34
|
Bussel JB, Soff G, Balduzzi A, Cooper N, Lawrence T, Semple JW. A Review of Romiplostim Mechanism of Action and Clinical Applicability. Drug Des Devel Ther 2021; 15:2243-2268. [PMID: 34079225 PMCID: PMC8165097 DOI: 10.2147/dddt.s299591] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 05/06/2021] [Indexed: 12/17/2022] Open
Abstract
Thrombocytopenia results from a variety of conditions, including radiation, chemotherapy, autoimmune disease, bone marrow disorders, pathologic conditions associated with surgical procedures, hematopoietic stem cell transplant (HSCT), and hematologic disorders associated with severe aplastic anemia. Immune thrombocytopenia (ITP) is caused by immune reactions that accelerate destruction and reduce production of platelets. Thrombopoietin (TPO) is a critical component of platelet production pathways, and TPO receptor agonists (TPO-RAs) are important for the management of ITP by increasing platelet production and reducing the need for other treatments. Romiplostim is a TPO-RA approved for use in patients with ITP in the United States, European Union, Australia, and several countries in Africa and Asia, as well as for use in patients with refractory aplastic anemia in Japan and Korea. Romiplostim binds to and activates the TPO receptor on megakaryocyte precursors, thus promoting cell proliferation and viability, resulting in increased platelet production. Through this mechanism, romiplostim reduces the need for other treatments and decreases bleeding events in patients with thrombocytopenia. In addition to its efficacy in ITP, studies have shown that romiplostim is effective in improving platelet counts in various settings, thereby highlighting the versatility of romiplostim. The efficacy of romiplostim in such disorders is currently under investigation. Here, we review the structure, mechanism, pharmacokinetics, and pharmacodynamics of romiplostim. We also summarize the clinical evidence supporting its use in ITP and other disorders that involve thrombocytopenia, including chemotherapy-induced thrombocytopenia, aplastic anemia, acute radiation syndrome, perisurgical thrombocytopenia, post-HSCT thrombocytopenia, and liver disease.
Collapse
Affiliation(s)
- James B Bussel
- Department of Pediatrics, Division of Hematology, Weill Cornell Medicine, New York, NY, USA
| | - Gerald Soff
- Department of Medicine, Hematology Service, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Adriana Balduzzi
- Clinica Pediatrica Università degli Studi di Milano Bicocca, Ospedale San Gerardo, Monza, Italy
| | | | | | - John W Semple
- Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden
- Department of Pharmacology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
35
|
Anti-inflammatory activity of CD44 antibodies in murine immune thrombocytopenia is mediated by Fcγ receptor inhibition. Blood 2021; 137:2114-2124. [PMID: 33662988 DOI: 10.1182/blood.2020009497] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/11/2021] [Indexed: 02/03/2023] Open
Abstract
Monoclonal immunoglobulin G (IgG) antibodies to CD44 (anti-CD44) are anti-inflammatory in numerous murine autoimmune models, but the mechanisms are poorly understood. Anti-CD44 anti-inflammatory activity shows complete therapeutic concordance with IV immunoglobulin (IVIg) in treating autoimmune disease models, making anti-CD44 a potential IVIg alternative. In murine immune thrombocytopenia (ITP), there is no mechanistic explanation for anti-CD44 activity, although anti-CD44 ameliorates disease similarly to IVIg. Here, we demonstrate a novel anti-inflammatory mechanism of anti-CD44 that explains disease amelioration by anti-CD44 in murine ITP. Macrophages treated with anti-CD44 in vitro had dramatically suppressed phagocytosis through FcγRs in 2 separate systems of IgG-opsonized platelets and erythrocytes. Phagocytosis inhibition by anti-CD44 was mediated by blockade of the FcγR IgG binding site without changing surface FcγR expression. Anti-CD44 of different subclasses revealed that FcγR blockade was specific to receptors that could be engaged by the respective anti-CD44 subclass, and Fc-deactivated anti-CD44 variants lost all FcγR-inhibiting activity. In vivo, anti-CD44 functioned analogously in the murine passive ITP model and protected mice from ITP when thrombocytopenia was induced through an FcγR that could be engaged by the CD44 antibody's subclass. Consistent with FcγR blockade, Fc-deactivated variants of anti-CD44 were completely unable to ameliorate ITP. Together, anti-CD44 inhibits macrophage FcγR function and ameliorates ITP consistent with an FcγR blockade mechanism. Anti-CD44 is a potential IVIg alternative and may be of particular benefit in ITP because of the significant role that FcγRs play in human ITP pathophysiology.
Collapse
|
36
|
Emerging Therapies in Immune Thrombocytopenia. J Clin Med 2021; 10:jcm10051004. [PMID: 33801294 PMCID: PMC7958340 DOI: 10.3390/jcm10051004] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 12/11/2022] Open
Abstract
Immune thrombocytopenia (ITP) is a rare autoimmune disorder caused by peripheral platelet destruction and inappropriate bone marrow production. The management of ITP is based on the utilization of steroids, intravenous immunoglobulins, rituximab, thrombopoietin receptor agonists (TPO-RAs), immunosuppressants and splenectomy. Recent advances in the understanding of its pathogenesis have opened new fields of therapeutic interventions. The phagocytosis of platelets by splenic macrophages could be inhibited by spleen tyrosine kinase (Syk) or Bruton tyrosine kinase (BTK) inhibitors. The clearance of antiplatelet antibodies could be accelerated by blocking the neonatal Fc receptor (FcRn), while new strategies targeting B cells and/or plasma cells could improve the reduction of pathogenic autoantibodies. The inhibition of the classical complement pathway that participates in platelet destruction also represents a new target. Platelet desialylation has emerged as a new mechanism of platelet destruction in ITP, and the inhibition of neuraminidase could dampen this phenomenon. T cells that support the autoimmune B cell response also represent an interesting target. Beyond the inhibition of the autoimmune response, new TPO-RAs that stimulate platelet production have been developed. The upcoming challenges will be the determination of predictive factors of response to treatments at a patient scale to optimize their management.
Collapse
|
37
|
Kapur R. Monocytes as potential therapeutic sensors in glucocorticoid-treated newly diagnosed immune thrombocytopenia. Br J Haematol 2020; 192:233-234. [PMID: 33338258 DOI: 10.1111/bjh.17204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 10/06/2020] [Indexed: 01/19/2023]
Affiliation(s)
- Rick Kapur
- Sanquin Research, Department of Experimental Immunohematology, Amsterdam and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
38
|
Williams EL, Stimpson ML, Lait PJP, Schewitz-Bowers LP, Jones LV, Dhanda AD, Lee RWJ, Bradbury CA. Glucocorticoid treatment in patients with newly diagnosed immune thrombocytopenia switches CD14 ++ CD16 + intermediate monocytes from a pro-inflammatory to an anti-inflammatory phenotype. Br J Haematol 2020; 192:375-384. [PMID: 33338291 DOI: 10.1111/bjh.17205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/15/2022]
Abstract
Immune thrombocytopenia (ITP) is thought to result from an aberrant adaptive autoimmune response, involving autoantibodies, B and T lymphocytes, directed at platelets and megakaryocytes. Previous reports have demonstrated skewed CD4+ T-helper subset distribution and enhanced production of pro-inflammatory cytokines such as interleukin 17A and interferon gamma. The role of monocytes (MCs) in ITP is less widely described, but innate immune cells have a role in shaping CD4+ T-cell phenotypes. Glucocorticoids (GCs) are commonly used for first-line ITP treatment and modulate a broad range of immune cells including T cells and MCs. Using multiparameter flow cytometry analysis, we demonstrate the expansion of intermediate MCs (CD14++ CD16+ ) in untreated patients with newly diagnosed ITP, with these cells displaying a pro-inflammatory phenotype, characterised by enhanced expression of CD64 and CD80. After 2 weeks of prednisolone treatment (1 mg/kg daily), the proportion of intermediate MCs reduced, with enhanced expression of the anti-inflammatory markers CD206 and CD163. Healthy control MCs were distinctly different than MCs from patients with ITP before and after GC treatment. Furthermore, the GC-induced phenotype was not observed in patients with chronic ITP receiving thrombopoietin receptor agonists. These data suggest a role of MCs in ITP pathogenesis and clinical response to GC therapy.
Collapse
Affiliation(s)
- Emily L Williams
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Madeleine L Stimpson
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Philippa J P Lait
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | | | - Lauren V Jones
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Ashwin D Dhanda
- Faculty of Health, Peninsula Institute of Health Research, University of Plymouth, Plymouth, UK.,South West Liver Unit, Derriford Hospital, University Hospitals Plymouth NHS Trust, Plymouth, UK
| | - Richard W J Lee
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.,University Hospitals Bristol NHS Foundation Trust, Bristol, UK.,Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Charlotte A Bradbury
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.,University Hospitals Bristol NHS Foundation Trust, Bristol, UK
| |
Collapse
|
39
|
Kapur R. Fine‐tuning the treatment toolbox of immune thrombocytopenia: fostamatinib as a second‐line therapy. Br J Haematol 2020; 190:817-818. [DOI: 10.1111/bjh.16958] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 06/18/2020] [Indexed: 01/01/2023]
Affiliation(s)
- Rick Kapur
- Sanquin Research Department of Experimental Immunohematology Amsterdam and Landsteiner Laboratory Amsterdam UMCUniversity of Amsterdam Amsterdam The Netherlands
| |
Collapse
|