1
|
Lu MY, Wei YJ, Wang CW, Liang PC, Yeh ML, Tsai YS, Tsai PC, Ko YM, Lin CC, Chen KY, Lin YH, Jang TY, Hsieh MY, Lin ZY, Huang CF, Huang JF, Dai CY, Chuang WL, Yu ML. Mitochondrial mt12361A>G increased risk of metabolic dysfunction-associated steatotic liver disease among non-diabetes. World J Gastroenterol 2025; 31:103716. [PMID: 40093674 PMCID: PMC11886537 DOI: 10.3748/wjg.v31.i10.103716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/16/2025] [Accepted: 02/12/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Insulin resistance, lipotoxicity, and mitochondrial dysfunction contribute to the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD). Mitochondrial dysfunction impairs oxidative phosphorylation and increases reactive oxygen species production, leading to steatohepatitis and hepatic fibrosis. Artificial intelligence (AI) is a potent tool for disease diagnosis and risk stratification. AIM To investigate mitochondrial DNA polymorphisms in susceptibility to MASLD and establish an AI model for MASLD screening. METHODS Multiplex polymerase chain reaction was performed to comprehensively genotype 82 mitochondrial DNA variants in the screening dataset (n = 264). The significant mitochondrial single nucleotide polymorphism was validated in an independent cohort (n = 1046) using the Taqman® allelic discrimination assay. Random forest, eXtreme gradient boosting, Naive Bayes, and logistic regression algorithms were employed to construct an AI model for MASLD. RESULTS In the screening dataset, only mt12361A>G was significantly associated with MASLD. mt12361A>G showed borderline significance in MASLD patients with 2-3 cardiometabolic traits compared with controls in the validation dataset (P = 0.055). Multivariate regression analysis confirmed that mt12361A>G was an independent risk factor of MASLD [odds ratio (OR) = 2.54, 95% confidence interval (CI): 1.19-5.43, P = 0.016]. The genetic effect of mt12361A>G was significant in the non-diabetic group but not in the diabetic group. mt12361G carriers had a 2.8-fold higher risk than A carriers in the non-diabetic group (OR = 2.80, 95%CI: 1.22-6.41, P = 0.015). By integrating clinical features and mt12361A>G, random forest outperformed other algorithms in detecting MASLD [training area under the receiver operating characteristic curve (AUROC) = 1.000, validation AUROC = 0.876]. CONCLUSION The mt12361A>G variant increased the severity of MASLD in non-diabetic patients. AI supports the screening and management of MASLD in primary care settings.
Collapse
Affiliation(s)
- Ming-Ying Lu
- Hepatitis Center and Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- School of Medicine and Doctoral Program of Clinical and Experimental Medicine, College of Medicine and Center of Excellence for Metabolic Associated Fatty Liver Disease, National Sun Yat-sen University, Kaohsiung 80708, Taiwan
| | - Yu-Ju Wei
- Hepatitis Center and Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Chih-Wen Wang
- Hepatitis Center and Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Po-Cheng Liang
- Hepatitis Center and Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Ming-Lun Yeh
- Hepatitis Center and Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Yi-Shan Tsai
- Hepatitis Center and Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Pei-Chien Tsai
- Hepatitis Center and Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Yu-Min Ko
- Hepatitis Center and Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Ching-Chih Lin
- Hepatitis Center and Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Kuan-Yu Chen
- Hepatitis Center and Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Yi-Hung Lin
- Hepatitis Center and Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Tyng-Yuan Jang
- Hepatitis Center and Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Ming-Yen Hsieh
- Hepatitis Center and Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Zu-Yau Lin
- Hepatitis Center and Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Chung-Feng Huang
- Hepatitis Center and Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Jee-Fu Huang
- Hepatitis Center and Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Chia-Yen Dai
- Hepatitis Center and Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Wan-Long Chuang
- Hepatitis Center and Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Ming-Lung Yu
- Hepatitis Center and Hepatobiliary Division, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
- School of Medicine and Doctoral Program of Clinical and Experimental Medicine, College of Medicine and Center of Excellence for Metabolic Associated Fatty Liver Disease, National Sun Yat-sen University, Kaohsiung 80708, Taiwan
| |
Collapse
|
2
|
Lee HH, Lee HA, Kim EJ, Kim HY, Kim HC, Ahn SH, Lee H, Kim SU. Cardiovascular Risk From Metabolic Dysfunction-Associated Steatotic Liver Disease, Cardiometabolic Risk Factor Count, and Their Longitudinal Changes: A Nationwide Cohort Study. Am J Gastroenterol 2024:00000434-990000000-01508. [PMID: 39787330 DOI: 10.14309/ajg.0000000000003274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 12/12/2024] [Indexed: 01/12/2025]
Abstract
INTRODUCTION Metabolic dysfunction-associated steatotic liver disease (MASLD) is associated with incident cardiovascular disease (CVD). However, CVD risk could vary across and within individuals with MASLD. We investigated the cardiovascular implications of MASLD, cardiometabolic risk factor count, and their longitudinal changes. METHODS From nationwide health screening data, we included adults aged 20-79 years without increased/excessive alcohol intake, concomitant liver diseases, and prior CVD at baseline examination in 2009 (N = 7,292,497). Participants were classified according to MASLD status; those with MASLD were further categorized by their count of qualifying cardiometabolic risk factors (1-5). Individuals who underwent follow-up examinations in 2011 (N = 4,198,672) were additionally classified according to their baseline and follow-up MASLD status; those with persistent MASLD were further categorized by combination of baseline and follow-up cardiometabolic risk factor counts. The risk of incident CVD was assessed using multivariable-adjusted Cox model. RESULTS Over a median follow-up of 12.3 years, 220,088 new CVD events occurred. The presence of MASLD was associated with higher incidence of CVD. Among participants with MASLD, the risk of CVD increased gradually with higher cardiometabolic risk factor count (per 1-higher; hazard ratio [HR] 1.18, 95% confidence interval [CI] 1.18-1.19). The development of MASLD during follow-up was associated with higher risk of CVD (HR 1.28, 95% CI 1.25-1.31), whereas the regression of MASLD was associated with lower risk of CVD (HR 0.84, 95% CI 0.82-0.86). Among individuals with persistent MASLD, gaining and losing cardiometabolic risk factor count during follow-up were associated with elevated and reduced risk of CVD, respectively. DISCUSSION MASLD status, cardiometabolic risk factor count, and their longitudinal changes were all associated with the risk of incident CVD. Accurate identification of these markers may facilitate personalized management of MASLD-related CVD risk.
Collapse
Affiliation(s)
- Hyeok-Hee Lee
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Institute for Innovation in Digital Healthcare, Yonsei University, Seoul, South Korea
| | - Han Ah Lee
- Department of Internal Medicine, Chung-Ang University Hospital, Seoul, South Korea
| | - Eun-Jin Kim
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Institute for Innovation in Digital Healthcare, Yonsei University, Seoul, South Korea
| | - Hwi Young Kim
- Department of Internal Medicine, Ewha Womans University College of Medicine, Seoul, South Korea
| | - Hyeon Chang Kim
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Institute for Innovation in Digital Healthcare, Yonsei University, Seoul, South Korea
| | - Sang Hoon Ahn
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Yonsei Liver Center, Severance Hospital, Seoul, South Korea
| | - Hokyou Lee
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Institute for Innovation in Digital Healthcare, Yonsei University, Seoul, South Korea
| | - Seung Up Kim
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
- Yonsei Liver Center, Severance Hospital, Seoul, South Korea
| |
Collapse
|
3
|
Wang J, Zhao F, Brouwer LA, Buist-Homan M, Wolters JC, Moshage H, Harmsen MC. Collagen-rich liver-derived extracellular matrix hydrogels augment survival and function of primary rat liver sinusoidal endothelial cells and hepatocytes. Int J Biol Macromol 2024; 278:134717. [PMID: 39142477 DOI: 10.1016/j.ijbiomac.2024.134717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/11/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
Liver sinusoidal endothelial cells (LSECs) are key targets for addressing metabolic dysfunction-associated steatotic liver disease (MASLD). However, isolating and culturing primary LSECs is challenging due to rapid dedifferentiation, resulting in loss of function. The extracellular matrix (ECM) likely plays a crucial role in maintaining the fate and function of LSECs. In this study, we explored the influence of liver-ECM (L-ECM) on liver cells and developed culture conditions that maintain the differentiated function of liver cells in vitro for prolonged periods. Porcine liver-derived L-ECM, containing 34.9 % protein, 0.045 % glycosaminoglycans, and negligible residual DNA (41.2 ng/mg), was utilized to culture primary rat liver cells in generated hydrogels. Proteomic analyses and molecular weight distribution of proteins of solubilized L-ECM revealed the typical diverse ECM core matrisome, with abundant collagens. L-ECM hydrogels showed suitable stiffness and stress relaxation properties. Furthermore, we demonstrated that collagen-rich L-ECM hydrogels enhanced LSECs' and hepatocytes' viability, and reduced the dedifferentiation rate of LSECs. In addition, hepatocyte function was maintained longer by culture on L-ECM hydrogels compared to traditional culturing. These beneficial effects are likely attributed to the bioactive macromolecules including collagens, and mechanical and microarchitectural properties of the L-ECM hydrogels.
Collapse
Affiliation(s)
- Junyu Wang
- University of Groningen, University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, the Netherlands; University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, the Netherlands.
| | - Fenghua Zhao
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, the Netherlands; University of Groningen, University Medical Centre Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials Science, Groningen, the Netherlands; University of Groningen, University Medical Centre Groningen, Department of Biomedical Engineering, Groningen, the Netherlands.
| | - Linda A Brouwer
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, the Netherlands.
| | - Manon Buist-Homan
- University of Groningen, University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, the Netherlands; University of Groningen, University Medical Center Groningen, Department of Laboratory Medicine, Groningen, the Netherlands.
| | - Justina C Wolters
- University of Groningen, University Medical Centre Groningen, Department of Pediatrics, Groningen, the Netherlands; University of Groningen, University Medical Centre Groningen, Interfaculty Mass Spectrometry Center, Groningen, the Netherlands.
| | - Han Moshage
- University of Groningen, University Medical Center Groningen, Department of Gastroenterology and Hepatology, Groningen, the Netherlands; University of Groningen, University Medical Center Groningen, Department of Laboratory Medicine, Groningen, the Netherlands.
| | - Martin C Harmsen
- University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, the Netherlands; University of Groningen, University Medical Centre Groningen, W.J. Kolff Institute for Biomedical Engineering and Materials Science, Groningen, the Netherlands; University of Groningen, University Medical Centre Groningen, Groningen Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands.
| |
Collapse
|
4
|
Liu CJ, Seto WK, Yu ML. Dual-etiology MAFLD: the interactions between viral hepatitis B, viral hepatitis C, alcohol, and MAFLD. Hepatol Int 2024; 18:897-908. [PMID: 39115632 DOI: 10.1007/s12072-024-10699-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/03/2024] [Indexed: 10/05/2024]
Abstract
Metabolic dysfunction-associated fatty liver disease (MAFLD) and viral hepatitis due to chronic hepatitis B virus (HBV) or hepatitis C virus (HCV) infection are common liver diseases worldwide. Excessive alcohol consumption and alcoholic liver disease (ALD) are also emerging health problems. Therefore, in clinical practice, we may encounter subjects with dual etiology of liver diseases such as coexisting MAFLD/HBV, MAFLD/HCV, and MAFLD/ALD. In this review, we summarize the epidemiology, clinical features, and mutual interactions of MAFLD with coexisting HBV, HCV, or ALD. The impact of MAFLD on the progression of liver diseases and treatment outcomes in patients with chronic viral hepatitis and the clinical questions to be addressed regarding dual MAFLD and ALD are also discussed.
Collapse
Affiliation(s)
- Chun-Jen Liu
- Hepatitis Research Center, National Taiwan University College of Medicine and, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei, Taiwan
| | - Wai Kay Seto
- Department of Medicine, School of Clinical Medicine, The University of Hong Kong, Pok Fu Lam, China.
| | - Ming-Lung Yu
- Hepatobiliary Division, Department of Internal Medicine, Center of Hepatitis Research, College of Medicine and Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.
- School of Medicine and Doctoral Program of Clinical and Experimental Medicine, College of Medicine and Center of Excellence for Metabolic Associated Fatty Liver Disease, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| |
Collapse
|
5
|
Ren TY, Eslam M, Fan JG. Incretin-based therapy in the management of metabolic dysfunction-associated steatotic liver disease (MASLD): one piece of the puzzle: Editorial on "Comparison of glucagon-like peptide-1 receptor agonists and thiazolidinediones on treating nonalcoholic fatty liver disease: A network meta-analysis". Clin Mol Hepatol 2024; 30:649-652. [PMID: 39038961 PMCID: PMC11540406 DOI: 10.3350/cmh.2024.0558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 07/20/2024] [Indexed: 07/24/2024] Open
Affiliation(s)
- Tian-Yi Ren
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mohammed Eslam
- Storr Liver Centre, Westmead Institute for Medical Research, Westmead Hospital and University of Sydney, NSW, Australia
| | - Jian-Gao Fan
- Department of Gastroenterology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Lab of Pediatric Gastroenterology and Nutrition, Shanghai, China
| |
Collapse
|
6
|
Isaac R, Bandyopadhyay G, Rohm TV, Kang S, Wang J, Pokhrel N, Sakane S, Zapata R, Libster AM, Vinik Y, Berhan A, Kisseleva T, Borok Z, Zick Y, Telese F, Webster NJG, Olefsky JM. TM7SF3 controls TEAD1 splicing to prevent MASH-induced liver fibrosis. Cell Metab 2024; 36:1030-1043.e7. [PMID: 38670107 PMCID: PMC11113091 DOI: 10.1016/j.cmet.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/29/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024]
Abstract
The mechanisms of hepatic stellate cell (HSC) activation and the development of liver fibrosis are not fully understood. Here, we show that deletion of a nuclear seven transmembrane protein, TM7SF3, accelerates HSC activation in liver organoids, primary human HSCs, and in vivo in metabolic-dysfunction-associated steatohepatitis (MASH) mice, leading to activation of the fibrogenic program and HSC proliferation. Thus, TM7SF3 knockdown promotes alternative splicing of the Hippo pathway transcription factor, TEAD1, by inhibiting the splicing factor heterogeneous nuclear ribonucleoprotein U (hnRNPU). This results in the exclusion of the inhibitory exon 5, generating a more active form of TEAD1 and triggering HSC activation. Furthermore, inhibiting TEAD1 alternative splicing with a specific antisense oligomer (ASO) deactivates HSCs in vitro and reduces MASH diet-induced liver fibrosis. In conclusion, by inhibiting TEAD1 alternative splicing, TM7SF3 plays a pivotal role in mitigating HSC activation and the progression of MASH-related fibrosis.
Collapse
Affiliation(s)
- Roi Isaac
- Division of Endocrinology & Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Gautam Bandyopadhyay
- Division of Endocrinology & Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Theresa V Rohm
- Division of Endocrinology & Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Sion Kang
- Division of Endocrinology & Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Jinyue Wang
- Division of Endocrinology & Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Narayan Pokhrel
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Sadatsugu Sakane
- Division of Endocrinology & Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; Department of Surgery, University of California San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Rizaldy Zapata
- Division of Endocrinology & Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Avraham M Libster
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Yaron Vinik
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Asres Berhan
- Division of Pulmonary, Critical Care, Sleep Medicine and Physiology, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Tatiana Kisseleva
- Department of Surgery, University of California San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Zea Borok
- Division of Pulmonary, Critical Care, Sleep Medicine and Physiology, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Yehiel Zick
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Francesca Telese
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, USA
| | - Nicholas J G Webster
- Division of Endocrinology & Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA; VA San Diego Healthcare System, San Diego, CA, USA
| | - Jerrold M Olefsky
- Division of Endocrinology & Metabolism, Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
7
|
Johira Y, Nakahara T, Yamaoka K, Fujii Y, Uchikawa S, Fujino H, Ono A, Murakami E, Kawaoka T, Miki D, Tsuge M, Oka S. Impact of MAFLD criteria on postoperative recurrence of non-B, non-C HCC. Eur J Gastroenterol Hepatol 2024; 36:430-437. [PMID: 38407856 DOI: 10.1097/meg.0000000000002720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
BACKGROUND This study aimed to clarify the population in whom the presence of metabolic dysfunction-associated fatty liver disease (MAFLD) especially contributes to recurrence after liver resection for non-B, non-C hepatocellular carcinoma (NBNC-HCC). METHODS Of the 199 patients who underwent liver resection for NBNC-HCC, those who exceeded Milan criteria and with pathologically proven vascular invasion, intrahepatic metastasis, and positive resection margins were excluded, and the remaining 94 were eligible for this study. We explored factors contributing to postoperative recurrence in populations with and without advanced liver fibrosis. RESULTS Independent factors contributing to postoperative recurrence in the study population were male sex ( P = 0.023) and presence of type 2 diabetes (DM) ( P = 0.006) and advanced liver fibrosis ( P < 0.001). Factors in cases with advanced liver fibrosis (n = 43) were non-overweight ( P = 0.02), type 2 DM ( P = 0.006), and preoperative alpha-fetoprotein level of 8.2 ng/ml or higher ( P = 0.021). In cases without advanced liver fibrosis (n = 51), only presence of all three MAFLD criteria was related to recurrence. CONCLUSION Liver fibrosis is a strong factor contributing to postoperative recurrence of NBNC-HCC, as previously reported. In patients with advanced liver fibrosis, presence of type 2 DM was the only factor associated with recurrence among MAFLD criteria. On the other hand, in patients without advanced liver fibrosis, the combination of all MAFLD criteria, rather than a specific criterion alone, contributed to recurrence. MAFLD criteria were found to have utility as predictors of postoperative recurrence in NBNC-HCC.
Collapse
Affiliation(s)
- Yusuke Johira
- Department of Gastroenterology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Alabdul Razzak I, Noureddin M, Trivedi HD. From Nonalcoholic Fatty Liver Disease to Metabolic Dysfunction-Associated Steatotic Liver Disease: Out with the Old, in with the New. J Clin Med 2024; 13:880. [PMID: 38337575 PMCID: PMC10856125 DOI: 10.3390/jcm13030880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver disease (CLD) affecting a quarter of the global population [...].
Collapse
Affiliation(s)
- Iyiad Alabdul Razzak
- Department of Medicine, St. Elizabeth’s Medical Center, Tufts School of Medicine, Boston, MA 02111, USA
| | - Mazen Noureddin
- Houston Research Institute and Houston Methodist Hospital, Houston, TX 77030, USA
| | - Hirsh D. Trivedi
- Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Karsh Division of Gastroenterology, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
9
|
Min BH, Devi S, Kwon GH, Gupta H, Jeong JJ, Sharma SP, Won SM, Oh KK, Yoon SJ, Park HJ, Eom JA, Jeong MK, Hyun JY, Stalin N, Park TS, Choi J, Lee DY, Han SH, Kim DJ, Suk KT. Gut microbiota-derived indole compounds attenuate metabolic dysfunction-associated steatotic liver disease by improving fat metabolism and inflammation. Gut Microbes 2024; 16:2307568. [PMID: 38299316 PMCID: PMC10841017 DOI: 10.1080/19490976.2024.2307568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 02/02/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most common chronic liver disease, and its prevalence has increased worldwide in recent years. Additionally, there is a close relationship between MASLD and gut microbiota-derived metabolites. However, the mechanisms of MASLD and its metabolites are still unclear. We demonstrated decreased indole-3-propionic acid (IPA) and indole-3-acetic acid (IAA) in the feces of patients with hepatic steatosis compared to healthy controls. Here, IPA and IAA administration ameliorated hepatic steatosis and inflammation in an animal model of WD-induced MASLD by suppressing the NF-κB signaling pathway through a reduction in endotoxin levels and inactivation of macrophages. Bifidobacterium bifidum metabolizes tryptophan to produce IAA, and B. bifidum effectively prevents hepatic steatosis and inflammation through the production of IAA. Our study demonstrates that IPA and IAA derived from the gut microbiota have novel preventive or therapeutic potential for MASLD treatment.
Collapse
Affiliation(s)
- Byeong Hyun Min
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Shivani Devi
- Department of Life Science, Gachon University, Sungnam, Republic of Korea
| | - Goo Hyun Kwon
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Haripriya Gupta
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Jin-Ju Jeong
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Satya Priya Sharma
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Sung-Min Won
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Ki-Kwang Oh
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Sang Jun Yoon
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Hee Jin Park
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Jung A Eom
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Min Kyo Jeong
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Ji Ye Hyun
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Nattan Stalin
- Department of Life Science, Gachon University, Sungnam, Republic of Korea
| | - Tae-Sik Park
- Department of Life Science, Gachon University, Sungnam, Republic of Korea
| | - Jieun Choi
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute of Agricultural and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Do Yup Lee
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute of Agricultural and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Sang Hak Han
- Department of Pathology, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Dong Joon Kim
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Ki Tae Suk
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| |
Collapse
|