1
|
Pouyande S, Bakhtiari AR, Ghasempouri SM. First insights into aliphatic and polycyclic aromatic hydrocarbons (PAHs) in hawksbill turtle (Eretmochelys imbricata) eggs from Persian Gulf, Iran. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 281:107287. [PMID: 40043339 DOI: 10.1016/j.aquatox.2025.107287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 01/25/2025] [Accepted: 02/11/2025] [Indexed: 03/12/2025]
Abstract
Petroleum pollution in marine ecosystems has raised great concern for both marine organisms and human health. The Persian Gulf, as a significant hotspot of petroleum pollution, is a crucial nesting area for hawksbill turtles (Eretmochelys imbricata) worldwide. In this work concentration level, source, and compositional profiles of polycyclic aromatic hydrocarbons (PAHs) and normal alkanes (n-alkanes) were analyzed in the yolk, albumen, and shell of hawksbill turtle eggs collected from 3 nests on the Persian Gulf coast of Iran. Twenty-eight PAHs and 19 n-alkanes were detected in samples. The highest levels of ƩPAHs and Ʃn-alkanes were found in yolk samples compared to the albumen and shell, possibly due to the high lipid content and lengthy duration of yolk formation. Comparable levels of pollutants were found in eggshells, indicating the potential for turtle eggshells to accumulate organic pollutants. The source of PAHs and n-alkanes in all samples primarily indicates petrogenic, suggesting extensive oil-producing activities and petroleum pollution in the Persian Gulf. Inter-nest variations in levels and profiles of PAHs and n-alkanes were observed in the eggs from the 3 nests, which might be related to the turtle's diets and migration patterns. Although this study provides the first monitoring data on organic pollutants for sea turtles in the Persian Gulf, more complementary researches are required in terms of monitoring petroleum biomarkers in foraging grounds, maternal blood, and their eggs in this region.
Collapse
Affiliation(s)
- Sara Pouyande
- Department of Environmental Science, Faculty of Natural Resources and Marine Science, Tarbiat Modares University, Noor, Iran
| | - Alireza Riyahi Bakhtiari
- Department of Environmental Science, Faculty of Natural Resources and Marine Science, Tarbiat Modares University, Noor, Iran.
| | - Seyed Mahmoud Ghasempouri
- Department of Environmental Science, Faculty of Natural Resources and Marine Science, Tarbiat Modares University, Noor, Iran
| |
Collapse
|
2
|
Monteiro FC, da Silva Carreira R, Gramlich KC, de Pinho JV, de Almeida RF, Vianna M, Massone CG, Hauser-Davis RA. Baseline polycyclic aromatic hydrocarbon maternal transfer data in Lesser Numbfish Narcine brasiliensis (Elasmobranchii: Batoidea) from an impacted estuary in Southeastern Brazil. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 110:104531. [PMID: 39117250 DOI: 10.1016/j.etap.2024.104531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 08/10/2024]
Abstract
Maternal offloading of polycyclic aromatic hydrocarbons (PAHs) poses a significant exposure route for developing embryos, with implications for subsequent generations. Despite known developmental effects regarding fish physiology and behavior, maternal PAH transfer assessments in elasmobranchii are still lacking. This study investigated PAH contamination and maternal transfer in one female Lesser Numbfish (Narcine brasiliensis) electric ray and seven embryos for the first time. Naphthalene was identified as the predominant low molecular weight PAH, and dibenzo[a,h]anthracene was the most abundant high molecular weight compound. Most embryos exhibited some level of PAH exposure, with varying accumulation patterns potentially influenced by size, developmental stage, and yolk absorption rates. Further investigation is warranted to understand the impacts of PAH maternal offloading on elasmobranchii uterine contents and embryos.
Collapse
Affiliation(s)
- Francielli Casanova Monteiro
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rua Marquês de São Vicente Street, 225, Gávea, Rio de Janeiro 22453-900, Brazil
| | - Renato da Silva Carreira
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rua Marquês de São Vicente Street, 225, Gávea, Rio de Janeiro 22453-900, Brazil.
| | - Kamila Cezar Gramlich
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rua Marquês de São Vicente Street, 225, Gávea, Rio de Janeiro 22453-900, Brazil
| | - Júlia Vianna de Pinho
- Instituto de Química, Departmento de Bioquímica, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro 21941-909, Brazil; Instituto Nacional de Controle de Qualidade em Saúde, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, Brazil; Programa de Pós-Graduação em Vigilância Sanitária, Instituto Nacional de Controle de Qualidade em Saúde, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, Brazil
| | - Regina Fonseca de Almeida
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rua Marquês de São Vicente Street, 225, Gávea, Rio de Janeiro 22453-900, Brazil
| | - Marcelo Vianna
- Laboratório de Biologia e Tecnologia Pesqueira, Departamento de Biologia Marinha, Instituto de Biologia, Universidade Federal do Rio de Janeiro (UFRJ), Avenida Carlos Chagas Filho, 373, CCS, Bl. A., Rio de Janeiro, Rio de Janeiro 21941-541, Brazil; Instituto Museu Aquário Marinho do Rio de Janeiro (IMAM), Centro de Pesquisas do Aquário do Rio de Janeiro, AquaRio, Rio de Janeiro, Brazil
| | - Carlos German Massone
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio), Rua Marquês de São Vicente Street, 225, Gávea, Rio de Janeiro 22453-900, Brazil.
| | - Rachel Ann Hauser-Davis
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz Foundation, Av. Brasil, 4365, Manguinhos, Rio de Janeiro 21040-360, Brazil.
| |
Collapse
|
3
|
Yaghmour F, Samara F, Al Hammadi M, Ahmad W, Abu-Farha N, Ploeg R, Gillett A, Yousuf M, Philip S, Els J, Budd J. Levels of polycyclic aromatic hydrocarbons and organochlorine pesticides in sea snakes (Elapidae: Hydrophiinae) from Sharjah, United Arab Emirates. MARINE POLLUTION BULLETIN 2024; 206:116666. [PMID: 38991611 DOI: 10.1016/j.marpolbul.2024.116666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/13/2024]
Abstract
This study reports OCP and PAH concentrations in the tissues of stranded sea snakes from Sharjah, UAE. Samples from 10 Hydrophis lapemoides, 2 Hydrophis ornatus and 1 Hydrophis curtus were analyzed. Muscle, liver and fat tissues were extracted using micro-QuEChERs, followed by d-SPE and analyzed using GC/MS. Higher concentrations of OCPs were detected, while PAHs were more frequently detected. Significant correlations suggest that OCPs and PAHs do bioaccumulate in the tissues of sea snakes. Additionally, OCPs with lower log Kow (octanol-water partition coefficient) values were mainly detected in the muscle samples of H. lapemoides, whereas OCPs with higher log Kow values were more commonly present in the liver and fat samples. The concentrations of OCPs reported in this study were higher than those previously documented in other marine reptiles in the UAE or sea snakes from different geographical regions.
Collapse
Affiliation(s)
- Fadi Yaghmour
- Hefaiyah Mountain Conservation Centre (Scientific Research Department), Environment and Protected Areas Authority, Sharjah, United Arab Emirates.
| | - Fatin Samara
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah, United Arab Emirates.
| | - Meera Al Hammadi
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| | - Waqas Ahmad
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| | - Nedal Abu-Farha
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| | - Richard Ploeg
- Veterinary Biosciences, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, Australia
| | - Amber Gillett
- Australia Zoo Wildlife Hospital, Beerwah, 4519, QLD, Australia
| | - Mohamed Yousuf
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah, United Arab Emirates
| | - Susannah Philip
- Breeding Centre of Endangered Arabian Wildlife (Veterinary Department), Environment and Protected Areas Authority, Sharjah, United Arab Emirates
| | - Johannes Els
- Breeding Centre of Endangered Arabian Wildlife (Veterinary Department), Environment and Protected Areas Authority, Sharjah, United Arab Emirates
| | - Jane Budd
- Breeding Centre of Endangered Arabian Wildlife (Veterinary Department), Environment and Protected Areas Authority, Sharjah, United Arab Emirates
| |
Collapse
|
4
|
Wang C, Lei W, Du L, Xu Y, Lou Y, Peng M, Gao D. Genome-wide DNA methylation changes in Oryzias melastigma embryos exposed to the water accommodated fraction of crude oil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 277:116325. [PMID: 38653019 DOI: 10.1016/j.ecoenv.2024.116325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/25/2024]
Abstract
The water accommodated fraction (WAF) of crude oil exerts considerable impacts on marine fish during embryonic stage. Clarifying changes in epigenetic modifications is helpful for understanding the molecular mechanism underlying the toxicity of embryonic WAF exposure. The aim of this study was to explore genome-wide DNA methylation changes in Oryzias melastigma embryos after exposure to the nominal total petroleum hydrocarbon concentration of 500 μg/L in WAF for 7 days. Whole-genome bisulfite sequencing revealed that 8.47 % and 8.46 % of all the genomic C sites were methylated in the control and WAF-exposed groups, respectively. Among the three sequence contexts, methylated CG site had the largest number in both the two groups. The sequence preferences of nearby methylated cytosines were consistent between the two groups. A total of 4798 differentially methylated regions (DMRs) were identified in the promoter region. Furthermore, Gene Ontology analysis revealed that DMR-related genes were enriched mainly for functions related to development and nervous system. Additionally, the Kyoto Encyclopedia of Genes and Genomes pathways enriched in DMR-related genes were related to nervous system and endocrine system. These novel findings provide comprehensive insights into the genome-wide DNA methylation landscape of O. melastigma following embryonic WAF exposure, shedding light on the epigenetic regulatory mechanisms underlying WAF-induced toxicity.
Collapse
Affiliation(s)
- Chenshi Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China; State Environmental Protection Key Laboratory of Marine Ecosystem Restoration, National Marine Environmental Monitoring Center, Dalian, China
| | - Wei Lei
- State Environmental Protection Key Laboratory of Marine Ecosystem Restoration, National Marine Environmental Monitoring Center, Dalian, China.
| | - Lichao Du
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Yiran Xu
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Yingbin Lou
- Dalian Ecological Environment Monitoring Center, Liaoning Province, Dalian, China
| | - Mo Peng
- Jiangsu Environmental Monitoring Center, Nanjing, China
| | - Dongxu Gao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China.
| |
Collapse
|
5
|
Feitosa AF, Menezes ÍBHMP, Duarte OS, S B Salmito-Vanderley C, Carneiro PBM, Azevedo RNA, Oliveira AHB, Luz ACS, Nascimento AP, Nascimento RF, Martins LL, Cavalcante RM, Feitosa CV. The impact of chronic and acute problems on sea turtles: The consequences of the oil spill and ingestion of anthropogenic debris on the tropical semi-arid coast of Ceará, Brazil. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 269:106867. [PMID: 38432024 DOI: 10.1016/j.aquatox.2024.106867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/11/2024] [Accepted: 02/17/2024] [Indexed: 03/05/2024]
Abstract
Sea turtle mortality is often related to materials that reach the coast from different anthropic activities worldwide. This study aimed to investigate whether sea turtle mortality was related to older marine problems, such as solid waste, or one of the largest oil spill accidents on the Brazilian coast, that occurred in 2019. We posed three questions: 1) Are there solid residues in the digestive tract samples, and which typology is the most abundant? 2) Can meso‑ and macro-waste marine pollutants cause mortality? 3) Is the dark material found really oil? A total of 25 gastrointestinal content (GC) samples were obtained, of which 22 ingested waste of anthropogenic origin and 18 were necropsied. These 22 samples were obtained during or after the 2019 oil spill, of which 17 specimens were affected, making it possible to suggest oil ingestion with the cause of death in the animals that could be necropsied. Macroscopic data showed that the most abundant solid waste was plastic (76.05 %), followed by fabrics (12.18 %) and oil-like materials. However, chemical data confirmed only three specimens with oil levels ranging from remnants to high. It was possible to infer possible causes of death in 16 of the total 18 necropsied cases: Most deaths were due to respiratory arrest (62.5 %), followed by pulmonary edema (12.5 %), cachexia syndrome (12.5 %), circulatory shock (6.25 %), and head trauma (6.25 %), which may have been caused by contact with solid waste, oil, or both. The study showed that not all dark material found in the GCs of turtles killed in oiled areas is truly oil, and in this sense, a chemical analysis step to prove the evidence of oil must be added to international protocols.
Collapse
Affiliation(s)
- Alice F Feitosa
- Laboratory of Population Dynamics and Marine Fish Ecology (Dipemar), Institute of Marine Sciences- Federal University of Ceará (LABOMAR-UFC), Av. Abolição, 3207-Meireles, CEP: 60165-081, Fortaleza, CE, Brazil; Tropical Marine Sciences Program/LABOMAR/UFC, Institute of Marine Sciences, Federal University of Ceará (LABOMAR-UFC), Av. Abolição, 3207-Meireles, CEP: 60165-081, Fortaleza, CE, Brazil; Verdeluz Institute, Fortaleza, CE, Brazil
| | - Ícaro B H M P Menezes
- Laboratory of Population Dynamics and Marine Fish Ecology (Dipemar), Institute of Marine Sciences- Federal University of Ceará (LABOMAR-UFC), Av. Abolição, 3207-Meireles, CEP: 60165-081, Fortaleza, CE, Brazil; Tropical Marine Sciences Program/LABOMAR/UFC, Institute of Marine Sciences, Federal University of Ceará (LABOMAR-UFC), Av. Abolição, 3207-Meireles, CEP: 60165-081, Fortaleza, CE, Brazil
| | - Oscar S Duarte
- Laboratory of Population Dynamics and Marine Fish Ecology (Dipemar), Institute of Marine Sciences- Federal University of Ceará (LABOMAR-UFC), Av. Abolição, 3207-Meireles, CEP: 60165-081, Fortaleza, CE, Brazil; Tropical Marine Sciences Program/LABOMAR/UFC, Institute of Marine Sciences, Federal University of Ceará (LABOMAR-UFC), Av. Abolição, 3207-Meireles, CEP: 60165-081, Fortaleza, CE, Brazil
| | - Carminda S B Salmito-Vanderley
- Laboratory of Population Dynamics and Marine Fish Ecology (Dipemar), Institute of Marine Sciences- Federal University of Ceará (LABOMAR-UFC), Av. Abolição, 3207-Meireles, CEP: 60165-081, Fortaleza, CE, Brazil; Integrated Biotechnology Center - Animal Reproduction, State University of Ceará, , Fortaleza, Brazil
| | - Pedro B M Carneiro
- Laboratory of Population Dynamics and Marine Fish Ecology (Dipemar), Institute of Marine Sciences- Federal University of Ceará (LABOMAR-UFC), Av. Abolição, 3207-Meireles, CEP: 60165-081, Fortaleza, CE, Brazil; Federal University of Delta do Parnaíba, Parnaíba, Brazil
| | - Rufino N A Azevedo
- Environmental Studies Laboratory (LEA), Analytical Chemistry and Physical Chemistry Dpto Campus Pici, Federal University of Ceará, Av. Mister Hull, s/n - Pici, CEP 60455-760, Fortaleza, CE, Brazil
| | - André H B Oliveira
- Tropical Marine Sciences Program/LABOMAR/UFC, Institute of Marine Sciences, Federal University of Ceará (LABOMAR-UFC), Av. Abolição, 3207-Meireles, CEP: 60165-081, Fortaleza, CE, Brazil; Environmental Studies Laboratory (LEA), Analytical Chemistry and Physical Chemistry Dpto Campus Pici, Federal University of Ceará, Av. Mister Hull, s/n - Pici, CEP 60455-760, Fortaleza, CE, Brazil; National Institute of Science and Technology in Tropical Marine Environments (INCT-AmbTropic, Phase II - Oil Spill), Brazil
| | - Ana C S Luz
- Environmental Studies Laboratory (LEA), Analytical Chemistry and Physical Chemistry Dpto Campus Pici, Federal University of Ceará, Av. Mister Hull, s/n - Pici, CEP 60455-760, Fortaleza, CE, Brazil
| | - Adriana P Nascimento
- Tropical Marine Sciences Program/LABOMAR/UFC, Institute of Marine Sciences, Federal University of Ceará (LABOMAR-UFC), Av. Abolição, 3207-Meireles, CEP: 60165-081, Fortaleza, CE, Brazil; Laboratory for Assessment of Organic Contaminants (LACOr), Institute of Marine Sciences- Federal University of Ceará (LABOMAR-UFC), Av. Abolição, 3207-Meireles, CEP: 60165-081, Fortaleza, CE, Brazil
| | - Ronaldo F Nascimento
- Environmental Studies Laboratory (LEA), Analytical Chemistry and Physical Chemistry Dpto Campus Pici, Federal University of Ceará, Av. Mister Hull, s/n - Pici, CEP 60455-760, Fortaleza, CE, Brazil
| | - Laercio L Martins
- Tropical Marine Sciences Program/LABOMAR/UFC, Institute of Marine Sciences, Federal University of Ceará (LABOMAR-UFC), Av. Abolição, 3207-Meireles, CEP: 60165-081, Fortaleza, CE, Brazil; Laboratory for Assessment of Organic Contaminants (LACOr), Institute of Marine Sciences- Federal University of Ceará (LABOMAR-UFC), Av. Abolição, 3207-Meireles, CEP: 60165-081, Fortaleza, CE, Brazil; Laboratory of Petroleum Engineering and Exploration (LENEP), North Fluminense State University (UENF), Macaé, Rio de Janeiro 27925-535, Brazil
| | - Rivelino M Cavalcante
- Tropical Marine Sciences Program/LABOMAR/UFC, Institute of Marine Sciences, Federal University of Ceará (LABOMAR-UFC), Av. Abolição, 3207-Meireles, CEP: 60165-081, Fortaleza, CE, Brazil; National Institute of Science and Technology in Tropical Marine Environments (INCT-AmbTropic, Phase II - Oil Spill), Brazil; Laboratory for Assessment of Organic Contaminants (LACOr), Institute of Marine Sciences- Federal University of Ceará (LABOMAR-UFC), Av. Abolição, 3207-Meireles, CEP: 60165-081, Fortaleza, CE, Brazil; Center of Chromatography Environmental and Petroleum (CECAMP/LABOMAR/UFC), Fortaleza, Brazil.
| | - Caroline V Feitosa
- Laboratory of Population Dynamics and Marine Fish Ecology (Dipemar), Institute of Marine Sciences- Federal University of Ceará (LABOMAR-UFC), Av. Abolição, 3207-Meireles, CEP: 60165-081, Fortaleza, CE, Brazil; Tropical Marine Sciences Program/LABOMAR/UFC, Institute of Marine Sciences, Federal University of Ceará (LABOMAR-UFC), Av. Abolição, 3207-Meireles, CEP: 60165-081, Fortaleza, CE, Brazil
| |
Collapse
|
6
|
de Souza Dias da Silva MF, Zanardi-Lamardo E, Valcarcel Rojas LA, de Oliveira Alves MD, Chimendes da Silva Neves V, de Araújo ME. Traces of oil in sea turtle feces. MARINE POLLUTION BULLETIN 2024; 200:116088. [PMID: 38309176 DOI: 10.1016/j.marpolbul.2024.116088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/23/2024] [Accepted: 01/27/2024] [Indexed: 02/05/2024]
Abstract
In 2019, an oil spill hit the Brazilian Northeast coast causing impact to several ecosystems, including sea turtles' breeding and feeding areas. This study aimed to investigate whether sea turtles were impacted by this oil disaster, correlating the oil found inside feces with a sandy-oiled sample collected on the beach some days after the accident. The fecal samples were collected in the upper mid-littoral reef areas during three consecutive days in February 2020. The results suggested that sea turtles consumed algae contaminated by petroleum. Hydrocarbons composition of oil inside feces was similar to the sandy-oiled sample, suggesting they were the same. Lighter aliphatic and polycyclic aromatic compounds were missing, indicating both sandy-oiled and oil inside the feces had experienced significant evaporation prior to collection. Although the long-term damage is still unknown, the data are novel and relevant to support future research and alert authorities about the risks to sea turtles.
Collapse
Affiliation(s)
- Matheus Felipe de Souza Dias da Silva
- Centro de Tecnologia e Geociências, Departamento de Oceanografia, Universidade Federal de Pernambuco, Av. Arquitetura, s/n, Cidade Universitária, Recife 50740-550, Pernambuco, Brazil
| | - Eliete Zanardi-Lamardo
- Centro de Tecnologia e Geociências, Departamento de Oceanografia, Universidade Federal de Pernambuco, Av. Arquitetura, s/n, Cidade Universitária, Recife 50740-550, Pernambuco, Brazil.
| | - Lino Angel Valcarcel Rojas
- Centro de Tecnologia e Geociências, Departamento de Oceanografia, Universidade Federal de Pernambuco, Av. Arquitetura, s/n, Cidade Universitária, Recife 50740-550, Pernambuco, Brazil
| | - Maria Danise de Oliveira Alves
- Faculdade Frassinetti do Recife, Av. Conde da Boa Vista, 921, Recife 50060-002, Pernambuco, Brazil; Associação de Pesquisa e Preservação de Ecossistemas Aquáticos - AQUASIS, Av. Pintor João Figueiredo - SESC - Iparana, Caucaia, 61627-250, Ceará, Brazil
| | | | - Maria Elisabeth de Araújo
- Centro de Tecnologia e Geociências, Departamento de Oceanografia, Universidade Federal de Pernambuco, Av. Arquitetura, s/n, Cidade Universitária, Recife 50740-550, Pernambuco, Brazil
| |
Collapse
|
7
|
Singh V, Negi R, Jacob M, Gayathri A, Rokade A, Sarma H, Kalita J, Tasfia ST, Bharti R, Wakid A, Suthar S, Kolipakam V, Qureshi Q. Polycyclic Aromatic Hydrocarbons (PAHs) in aquatic ecosystem exposed to the 2020 Baghjan oil spill in upper Assam, India: Short-term toxicity and ecological risk assessment. PLoS One 2023; 18:e0293601. [PMID: 38019821 PMCID: PMC10686499 DOI: 10.1371/journal.pone.0293601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
This study focuses on the short-term contamination and associated risks arising from the release of Polycyclic Aromatic Hydrocarbons (PAHs) due to the 2020 Baghjan oil blowout in upper Assam, India. Shortly after the Baghjan oil blowout, samples were collected from water, sediment, and fish species and examined for PAHs contents. The results of the analysis revealed ΣPAHs concentrations ranged between 0.21-691.31 μg L-1 (water); 37.6-395.8 μg Kg-1 (sediment); 104.3-7829.6 μg Kg-1 (fish). The prevalence of 3-4 ring low molecular weight PAHs compounds in water (87.17%), sediment (100%), and fish samples (93.17%) validate the petrogenic source of origin (oil spill). The geographic vicinity of the oil blowout is rich in wildlife; thus, leading to a significant mass mortality of several eco-sensitive species like fish, plants, microbes, reptiles, amphibians, birds and mammals including the Gangetic River dolphin. The initial ecological risk assessment suggested moderate to high-risk values (RQ >1) of majority PAHs concerning fish, daphnia, and algae species. This study highlights the need for recognizing the potential for short-term exposure to local species. To safeguard local ecosystems from potential future environmental disasters, it is imperative for the government to adopt a precautionary strategy.
Collapse
Affiliation(s)
- Vineet Singh
- Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India
| | - Ranjana Negi
- Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India
| | - Merin Jacob
- Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India
| | - Aaranya Gayathri
- Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India
| | - Anurag Rokade
- Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India
| | - Hiyashri Sarma
- Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India
| | - Jitul Kalita
- Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India
| | | | | | - Abdul Wakid
- Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India
- Aaranyak, Guwahati, Assam, India
| | - Surindra Suthar
- School of Environment & Natural Resources, Doon University, Dehradun, Uttarakhand, India
| | | | - Qamar Qureshi
- Wildlife Institute of India, Chandrabani, Dehradun, Uttarakhand, India
| |
Collapse
|
8
|
López-Berenguer G, Acosta-Dacal A, Luzardo PO, Peñalver J, Martínez-López E. Assessment of polycyclic aromatic hydrocarbons (PAHs) in mediterranean top marine predators stranded in SE Spain. CHEMOSPHERE 2023; 336:139306. [PMID: 37354956 DOI: 10.1016/j.chemosphere.2023.139306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants. Although they are not bioaccumulated in vertebrates, chronic exposures might still derive on serious toxic effects. We studied concentrations of 16 reference PAHs on blubber of two dolphin species (striped dolphin, n = 34; and bottlenose dolphin, n = 8) and one marine turtle (loggerhead turtle, n = 23) from the Mediterranean waters of SE Spain, an important or potential breeding area for these and other related species. Σ16 PAHs concentrations were relatively similar between the three species, but they were in the lower range in comparison to worldwide data. Of the six PAHs detected, fluoranthene was the only high molecular weight (HMW) PAH, so low molecular weight (LMW) PAHs predominated. Naphthalene and phenanthrene were invariably those PAHs with higher detection rates as well as those with higher concentrations. In accordance with the literature, sex and length did not have significant influence on PAHs concentrations, probably due to high metabolization rates which prevent for observation of such patterns. Despite LMW PAHs are considered less toxic, we cannot dismiss toxic effects. This is the first work assessing PAHs concentrations in cetaceans and sea turtles from the SE Spain, which could serve as the baseline for future research.
Collapse
Affiliation(s)
| | - A Acosta-Dacal
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Spain
| | - P O Luzardo
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Spain; Study Group on Wild Animal Conservation Medicine (GEMAS), Spain
| | - J Peñalver
- Area of Toxicology, University of Murcia, Spain; Fishing and Aquaculture Service (CARM), Murcia, Spain
| | - E Martínez-López
- Area of Toxicology, University of Murcia, Spain; Biomedical Research Institute of Murcia (IMIB-Arrixaca), Spain.
| |
Collapse
|
9
|
da Silva DAM, Gates JB, O'Neill SM, West JE, Ylitalo GM. Assessing hydroxylated polycyclic aromatic hydrocarbon (OHPAH) metabolites in bile of English sole (Parophrys vetulus) from Puget Sound, WA, USA by liquid chromatography/tandem mass spectrometry (LC-MS/MS). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161229. [PMID: 36586683 DOI: 10.1016/j.scitotenv.2022.161229] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/22/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental contaminants that are widely monitored in marine biota from urbanized areas, due to their toxicity to aquatic organisms. Teleost fish can quickly metabolize PAHs into hydroxylated forms (OHPAHs) that, in some cases, are more toxic than the parent (unmetabolized) PAHs. But due to this fast metabolism, monitoring traditional parent PAHs in fish can cause underestimation on assessing PAH exposure. In addition, environmental levels of individual OHPAH metabolites are lacking in the literature worldwide. Therefore, we developed a rapid and accurate analytical method in which a number of individual OHPAHs metabolites are measured simultaneously in fish bile, via liquid chromatography coupled with tandem mass spectrometry, including low and high molecular weight mono- and diol-OHPAHs. We analyzed bile samples of 119 English sole (Parophrys vetulus) collected from 14 Puget Sound, WA, USA, sites, which has multiple sources of PAHs, including urban stormwater runoff, wastewater effluents, as well as an inactive creosote facility. The mean (± SD) biliary summed OHPAH (∑OHPAH) concentrations determined in English sole from urban, near-urban, and non-urban sites were 790 ± 1400 (n = 46), 310 ± 330 (n = 44) and 130 ± 200 (n = 29) ng/mL, respectively, with a maximum reaching 9400 ng/mL in a sample from an urban site. We compared these novel biliary OHPAH metabolite data with parent PAHs measured in stomach content of the same individual sole. Biliary ∑OHPAH concentrations were significantly correlated with the levels of ∑PAH in stomach content, however, with major differences in their distribution. We also demonstrated that biliary OHPAH metabolite data in English sole can potentially be used to distinguish different sampling sites due to a specific variety and intensity of PAH sources in the aquatic environment, which makes this a very important analytical approach for assessing PAH exposure in the environment.
Collapse
Affiliation(s)
- Denis A M da Silva
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Boulevard East, Seattle, WA 98112, USA.
| | - Jonelle B Gates
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Boulevard East, Seattle, WA 98112, USA
| | - Sandra M O'Neill
- Marine Resources Division, Washington Department of Fish and Wildlife, 1111 Washington St SE, Olympia, WA 98501, USA
| | - James E West
- Marine Resources Division, Washington Department of Fish and Wildlife, 1111 Washington St SE, Olympia, WA 98501, USA
| | - Gina M Ylitalo
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Boulevard East, Seattle, WA 98112, USA
| |
Collapse
|
10
|
Salvarani PI, Vieira LR, Rendón-von Osten J, Morgado F. Hawksbill Sea Turtle ( Eretmochelys imbricata) Blood and Eggs Organochlorine Pesticides Concentrations and Embryonic Development in a Nesting Area (Yucatan Peninsula, Mexico). TOXICS 2023; 11:50. [PMID: 36668776 PMCID: PMC9865186 DOI: 10.3390/toxics11010050] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/21/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Environmental contaminants with chemical origins, such as organochlorine pesticides (OCPs) have major impacts on the health of marine animals, including sea turtles, due to the bioaccumulation of those substances by transference throughout the food chain. The effects of environmental pollution on the health of marine turtles are very important for management strategies and conservation. During recent decades, the south Gulf of Mexico and the Yucatan Peninsula have suffered from increasingly frequent disturbances from continental landmasses, river systems, urban wastewater runoff, port areas, tourism, industrial activities, pesticides from agricultural use, and other pollutants, such as metals, persistent organic pollutants (POPs) and hydrocarbons (from the oil industry activities), which contaminate water and sediments and worsen the environmental quality of the marine ecosystem in this region. In this study, we assessed the concentrations of OCPs in the blood and eggs of 60 hawksbill turtles (Eretmochelys imbricata) nesting at the Punta Xen turtle camp, and their effects on the nesting population's reproductive performance: specifically, maternal transfer and embryonic development were analyzed. Hematologic characteristics, including packed cell volume, white blood cell count, red blood cell count, and haemoglobin levels, and plasma chemistry values, including creatinine, blood urea nitrogen, uric acid, triglyceride, total cholesterol and glucose, were also measured. The general health of the turtles in this study, as well as their levels of urea, serum creatinine, glucose, uric, acid, cholesterol, and triglyceride, fell within normal ranges and was similar to other normal values, which could indicate the turtles' good energy levels and body conditions for nest-building activity, with all of the turtles able to successfully come ashore to nest. All the same, the obtained results also indicate that OCPs affect the nesting and reproductive performance of the hawksbill turtles, as well as their fertility and the development of the population of eggs and reproductive performance, specifically in terms of maternal transference and embryonic development. There were significant differences in the concentrations of OCPs (ΣHCHs and ΣDienes) between maternal blood and eggs, indicating that these chemicals are transferred from nesting females to eggs and, ultimately, to hatchlings. OCPs may, therefore, have an effect on the health and reproductive performance of hawksbill turtles, both in terms of their fertility and egg development. Conservation strategies need to be species-specific, due to differences in feeding, and address the reasons for any decline, focusing on regional assessments. Thus, accurate and comparable monitoring data are necessary, which requires the standardization of monitoring protocols.
Collapse
Affiliation(s)
- Patricia I. Salvarani
- Department of Biology and the Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Luis R. Vieira
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 2250-208 Matosinhos, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Jaime Rendón-von Osten
- Instituto Epomex, Universidad Autónoma de Campeche, Av Augustin de Melgar y Juan de la Barrera s/n, Campeche 24039, Mexico
| | - Fernando Morgado
- Department of Biology and the Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
11
|
Otten JG, Williams L, Refsnider JM. Survival outcomes of rehabilitated riverine turtles following a freshwater diluted bitumen oil spill. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119968. [PMID: 35977636 DOI: 10.1016/j.envpol.2022.119968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
Rehabilitation is often used to mitigate adverse effects of oil spills on wildlife. With an increase in production of alternatives to conventional crude oil such as diluted bitumen (dilbit), emergency spill responders and wildlife rehabilitators need information regarding the health and survival of free-ranging vertebrates exposed to dilbit under natural conditions. In 2010, one of the largest freshwater oil spills in the United States occurred in the Kalamazoo River in Michigan, when over 3.2 million liters of spilled dilbit impacted 56 km of riverine habitat. During 2010 and 2011 cleanup efforts, thousands of northern map turtles (Graptemys geographica) were captured from oiled stretches of the river, cleaned, rehabilitated, and released. We conducted extensive mark-recapture surveys in 2010, 2011, and 2018-2021, and used this dataset to evaluate the monthly survival probability of turtles 1-14 months post-spill and 8-11 years post-spill based on whether turtles were temporarily rehabilitated and released, overwintered in captivity and then released, or were released without rehabilitation. We found that rehabilitated or overwintered turtles had a higher probability of survival 1-14 months post-spill than non-rehabilitated turtles; however, 8-11 years post-spill the among-group differences in monthly survival probability had become negligible. Additionally, following the oil spill in 2010, nearly 6% of northern map turtles were recovered dead, died during rehabilitation, or suffered injuries that precluded release back into the wild. Our results demonstrate that exposure to dilbit in free ranging turtles causes direct mortality, while effort spent on the capture and rehabilitation of oiled freshwater turtles is important as it increases monthly survival 1-14 months post-spill.
Collapse
Affiliation(s)
- Joshua G Otten
- Department of Environmental Sciences, University of Toledo, Wolfe Hall Suite 1235, 2801 W Bancroft St., Toledo, OH, 43606-3390, USA.
| | - Lisa Williams
- U.S. Fish and Wildlife Service, Michigan Field Office, 2651 Coolidge Road, Suite 101, East Lansing, MI, 48823, USA
| | - Jeanine M Refsnider
- Department of Environmental Sciences, University of Toledo, Wolfe Hall Suite 1235, 2801 W Bancroft St., Toledo, OH, 43606-3390, USA
| |
Collapse
|
12
|
Wainstein M, Harding LB, O'Neill SM, Boyd DT, Koontz F, Miller B, Klütsch CFC, Thomas PJ, Ylitalo GM. Highly contaminated river otters (Lontra canadensis) are effective biomonitors of environmental pollutant exposure. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:670. [PMID: 35970905 PMCID: PMC9378324 DOI: 10.1007/s10661-022-10272-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
River otters (Lontra canadensis) are apex predators that bioaccumulate contaminants via their diet, potentially serving as biomonitors of watershed health. They reside throughout the Green-Duwamish River, WA (USA), a watershed encompassing an extreme urbanization gradient, including a US Superfund site slated for a 17-year remediation. The objectives of this study were to document baseline contaminant levels in river otters, assess otters' utility as top trophic-level biomonitors of contaminant exposure, and evaluate the potential for health impacts on this species. We measured a suite of contaminants of concern, lipid content, nitrogen stable isotopes (δ15N), and microsatellite DNA markers in 69 otter scat samples collected from twelve sites. Landcover characteristics were used to group sampling sites into industrial (Superfund site), suburban, and rural development zones. Concentrations of polychlorinated biphenyls (PCBs), polybrominated diphenyl ether flame-retardants (PBDEs), dichlorodiphenyl-trichloroethane and its metabolites (DDTs), and polycyclic aromatic hydrocarbons (PAHs) increased significantly with increasing urbanization, and were best predicted by models that included development zone, suggesting that river otters are effective biomonitors, as defined in this study. Diet also played an important role, with lipid content, δ15N or both included in all best models. We recommend river otter scat be included in evaluating restoration efforts in this Superfund site, and as a potentially useful monitoring tool wherever otters are found. We also report ΣPCB and ΣPAH exposures among the highest published for wild river otters, with almost 70% of samples in the Superfund site exceeding established levels of concern.
Collapse
Affiliation(s)
- Michelle Wainstein
- Conservation, Research and Education Opportunities, Seattle, WA, 98107, USA.
| | - Louisa B Harding
- Washington Department of Fish and Wildlife, PO Box 43200, Olympia, WA, 98504-3200, USA
| | - Sandra M O'Neill
- Washington Department of Fish and Wildlife, PO Box 43200, Olympia, WA, 98504-3200, USA
| | - Daryle T Boyd
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Boulevard East, Seattle, WA, 98112-2097, USA
| | - Fred Koontz
- Woodland Park Zoo, 5500 Phinney Ave N, Seattle, WA, 98103, USA
| | - Bobbi Miller
- Woodland Park Zoo, 5500 Phinney Ave N, Seattle, WA, 98103, USA
| | - Cornelya F C Klütsch
- Division of Environment and Natural Resources, Norwegian Institute of Bioeconomy Research (NIBIO), NIBIO Svanhovd, NO-9925, Svanvik, Norway
| | - Philippe J Thomas
- Science and Technology Branch, Environment and Climate Change Canada, National Wildlife Research Center, 1125 Colonel By Drive, Raven Road, Ottawa, ON, K1A 0H3, Canada
| | - Gina M Ylitalo
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Boulevard East, Seattle, WA, 98112-2097, USA
| |
Collapse
|
13
|
Rêgo RDSC, Cazetta EA, Cutrim CHG, Miranda AS, Araújo APA, Araújo VA. Strandings of sea turtles on beaches around the oil capital in Brazil. NEOTROPICAL BIOLOGY AND CONSERVATION 2021. [DOI: 10.3897/neotropical.16.e68662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The south-western region of the Atlantic Ocean has feeding and nesting areas for the five species of sea turtles registered in Brazil, which are in different degrees of extinction threat, mainly due to anthropogenic factors. Fishing and the ingestion of solid waste, were identified as causing stranding and the mortality of sea turtles. In this work, data from the monitoring of beaches in the Municipalities of Macaé and Rio das Ostras, important oil zone in Brazil, in the north-central region of the State of Rio de Janeiro, were used in order to analyse the effects of seasonality on the sea turtle stranding. The monitoring was carried out daily from September 2017 to June 2019, in a study area covering 23.8 km long beach. Stranding data were obtained from active (n = 126) and passive (n = 66) monitoring of beaches and included the records of Chelonia mydas (n = 151), Caretta caretta (n = 23), Lepidochelys olivacea (n = 14), Dermochelys coriacea (n = 2) and Eretmochelys imbricata (n = 1). The largest stranding record occurred in the summer (n = 61) and spring (n = 60), a period compatible with the reproductive season of the species. The results obtained in this study emphasise the importance of the analysis of strandings of sea turtles, which provide relevant data on the biology of the group, the intra and interspecific dynamics and the state of conservation of these animals.
Collapse
|
14
|
Takeshita R, Bursian SJ, Colegrove KM, Collier TK, Deak K, Dean KM, De Guise S, DiPinto LM, Elferink CJ, Esbaugh AJ, Griffitt RJ, Grosell M, Harr KE, Incardona JP, Kwok RK, Lipton J, Mitchelmore CL, Morris JM, Peters ES, Roberts AP, Rowles TK, Rusiecki JA, Schwacke LH, Smith CR, Wetzel DL, Ziccardi MH, Hall AJ. A review of the toxicology of oil in vertebrates: what we have learned following the Deepwater Horizon oil spill. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2021; 24:355-394. [PMID: 34542016 DOI: 10.1080/10937404.2021.1975182] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In the wake of the Deepwater Horizon (DWH) oil spill, a number of government agencies, academic institutions, consultants, and nonprofit organizations conducted lab- and field-based research to understand the toxic effects of the oil. Lab testing was performed with a variety of fish, birds, turtles, and vertebrate cell lines (as well as invertebrates); field biologists conducted observations on fish, birds, turtles, and marine mammals; and epidemiologists carried out observational studies in humans. Eight years after the spill, scientists and resource managers held a workshop to summarize the similarities and differences in the effects of DWH oil on vertebrate taxa and to identify remaining gaps in our understanding of oil toxicity in wildlife and humans, building upon the cross-taxonomic synthesis initiated during the Natural Resource Damage Assessment. Across the studies, consistency was found in the types of toxic response observed in the different organisms. Impairment of stress responses and adrenal gland function, cardiotoxicity, immune system dysfunction, disruption of blood cells and their function, effects on locomotion, and oxidative damage were observed across taxa. This consistency suggests conservation in the mechanisms of action and disease pathogenesis. From a toxicological perspective, a logical progression of impacts was noted: from molecular and cellular effects that manifest as organ dysfunction, to systemic effects that compromise fitness, growth, reproductive potential, and survival. From a clinical perspective, adverse health effects from DWH oil spill exposure formed a suite of signs/symptomatic responses that at the highest doses/concentrations resulted in multi-organ system failure.
Collapse
Affiliation(s)
- Ryan Takeshita
- Conservation Medicine, National Marine Mammal Foundation, San Diego, California, United States
| | - Steven J Bursian
- Department of Animal Science, Michigan State University, East Lansing, Michigan, United States
| | - Kathleen M Colegrove
- College of Veterinary Medicine, Illinois at Urbana-Champaign, Brookfield, Illinois, United States
| | - Tracy K Collier
- Zoological Pathology Program, Huxley College of the Environment, Western Washington University, Bellingham, Washington, United States
| | - Kristina Deak
- College of Marine Sciences, University of South Florida, St. Petersburg, Florida, United States
| | | | - Sylvain De Guise
- Department of Pathobiology and Veterinary Sciences, University of Connecticut, Storrs, Connecticut, United States
| | - Lisa M DiPinto
- Office of Response and Restoration, NOAA, Silver Spring, Maryland, United States
| | - Cornelis J Elferink
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, United States
| | - Andrew J Esbaugh
- Marine Science Institute, University of Texas at Austin, Port Aransas, Texas, United States
| | - Robert J Griffitt
- Division of Coastal Sciences, School of Ocean Science and Engineering, University of Southern Mississippi, Gulfport, Mississippi, United States
| | - Martin Grosell
- RSMAS, University of Miami, Miami, Florida, United States
| | | | - John P Incardona
- NOAA Environmental Conservation Division, Northwest Fisheries Science Center, Seattle, Washington, United States
| | - Richard K Kwok
- Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, North Carolina, United States
| | | | - Carys L Mitchelmore
- University of Maryland Center of Environmental Science, Chesapeake Biological Laboratory, Solomons, Maryland, United States
| | - Jeffrey M Morris
- Health and Environment Division, Abt Associates, Boulder, Colorado, United States
| | - Edward S Peters
- Department of Epidemiology, LSU School of Public Health, New Orleans, Louisiana, United States
| | - Aaron P Roberts
- Advanced Environmental Research Institute and Department of Biological Sciences, University of North Texas, Denton, Texas, United States
| | - Teresa K Rowles
- NOAA Office of Protected Resources, National Marine Fisheries Service, Silver Spring, Maryland, United States
| | - Jennifer A Rusiecki
- Department of Preventive Medicine and Biostatistics, Uniformed Services University, Bethesda, Maryland, United States
| | - Lori H Schwacke
- Conservation Medicine, National Marine Mammal Foundation, San Diego, California, United States
| | - Cynthia R Smith
- Conservation Medicine, National Marine Mammal Foundation, San Diego, California, United States
| | - Dana L Wetzel
- Environmental Laboratory of Forensics, Mote Marine Laboratory, Sarasota, Florida, United States
| | - Michael H Ziccardi
- School of Veterinary Medicine, One Health Institute, University of California, Davis, California, United States
| | - Ailsa J Hall
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, UK
| |
Collapse
|
15
|
Muñoz CC, Hendriks AJ, Ragas AMJ, Vermeiren P. Internal and Maternal Distribution of Persistent Organic Pollutants in Sea Turtle Tissues: A Meta-Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:10012-10024. [PMID: 34218659 PMCID: PMC8382251 DOI: 10.1021/acs.est.1c02845] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We aimed to identify patterns in the internal distribution of persistent organic pollutants (POPs) and assess contributing factors using sea turtles and their offspring as a case study of a long-lived wildlife species. We systematically synthesized 40 years of data and developed a lipid database to test whether lipid-normalized POP concentrations are equal among tissues as expected under steady state for lipophilic compounds. Results supported equal partitioning among tissues with high blood flow or perfusion including the heart, kidney, muscle, and lung. Observed differences in the brain, fat, and blood plasma, however, suggest the physiological influence of the blood-brain barrier, limited perfusion, and protein content, respectively. Polybrominated diphenyl ethers partitioned comparably to legacy POPs. Polycyclic aromatic hydrocarbons, meanwhile, partitioned more into the lung, colon, and muscle compared to the liver under chronic and acute field exposure. Partitioning ratios of individual POPs among tissues were significantly related to the lipophilicity of compounds (as estimated by Kow) in half of the observed cases, and significant differences between juveniles and adults underscore physiological differences across life stages. The comprehensive tissue partitioning patterns presented here provide a quantitative basis to support comparative assessments of POP pollution derived from biomonitoring among multiple tissues.
Collapse
Affiliation(s)
- Cynthia C Muñoz
- Department of Environmental Science, Institute for Water and Wetland Research, Radboud University, 6500 GL Nijmegen, The Netherlands
| | - A Jan Hendriks
- Department of Environmental Science, Institute for Water and Wetland Research, Radboud University, 6500 GL Nijmegen, The Netherlands
| | - Ad M J Ragas
- Department of Environmental Science, Institute for Water and Wetland Research, Radboud University, 6500 GL Nijmegen, The Netherlands
| | - Peter Vermeiren
- Department of Environmental Science, Institute for Water and Wetland Research, Radboud University, 6500 GL Nijmegen, The Netherlands
| |
Collapse
|
16
|
Ruberg EJ, Elliott JE, Williams TD. Review of petroleum toxicity and identifying common endpoints for future research on diluted bitumen toxicity in marine mammals. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:537-551. [PMID: 33761025 PMCID: PMC8060214 DOI: 10.1007/s10646-021-02373-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 02/15/2021] [Indexed: 05/15/2023]
Abstract
Large volumes of conventional crude oil continue to be shipped by sea from production to consumption areas across the globe. In addition, unconventional petroleum products also transverse pelagic habitats; for example, diluted bitumen from Canada's oilsands which is shipped along the Pacific coast to the United States and Asia. Therefore, there is a continuing need to assess the toxicological consequences of chronic and catastrophic petroleum spillage on marine wildlife. Peer-reviewed literature on the toxicity of unconventional petroleum such as diluted bitumen exists for teleost fish, but not for fauna such as marine mammals. In order to inform research needs for unconventional petroleum toxicity we conducted a comprehensive literature review of conventional petroleum toxicity on marine mammals. The common endpoints observed in conventional crude oil exposures and oil spills include hematological injury, modulation of immune function and organ weight, genotoxicity, eye irritation, neurotoxicity, lung disease, adrenal dysfunction, metabolic and clinical abnormalities related to oiling of the pelage, behavioural impacts, decreased reproductive success, mortality, and population-level declines. Based on our findings and the body of literature we accessed, our recommendations for future research include: 1) improved baseline data on PAH and metals exposure in marine mammals, 2) improved pre- and post-spill data on marine mammal populations, 3) the use of surrogate mammalian models for petroleum toxicity testing, and 4) the need for empirical data on the toxicity of unconventional petroleum to marine mammals.
Collapse
Affiliation(s)
- E J Ruberg
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - J E Elliott
- Pacific Wildlife Research Centre, Environment and Climate Change Canada, Delta, BC, Canada.
| | - T D Williams
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
17
|
Ruberg EJ, Williams TD, Elliott JE. Review of petroleum toxicity in marine reptiles. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:525-536. [PMID: 33725237 PMCID: PMC8060228 DOI: 10.1007/s10646-021-02359-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
Worldwide petroleum exploration and transportation continue to impact the health of the marine environment through both catastrophic and chronic spillage. Of the impacted fauna, marine reptiles are often overlooked. While marine reptiles are sensitive to xenobiotics, there is a paucity of petroleum toxicity data for these specialized fauna in peer reviewed literature. Here we review the known impacts of petroleum spillage to marine reptiles, specifically to marine turtles and iguanas with an emphasis on physiology and fitness related toxicological effects. Secondly, we recommend standardized toxicity testing on surrogate species to elucidate the mechanisms by which petroleum related mortalities occur in the field following catastrophic spillage and to better link physiological and fitness related endpoints. Finally, we propose that marine reptiles could serve as sentinel species for marine ecosystem monitoring in the case of petroleum spillage. Comprehensive petroleum toxicity data on marine reptiles is needed in order to serve as a foundation for future research with newer, unconventional crude oils of unknown toxicity such as diluted bitumen.
Collapse
Affiliation(s)
- Elizabeth J Ruberg
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Tony D Williams
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - John E Elliott
- Pacific Wildlife Research Centre, Environment and Climate Change Canada, Delta, BC, Canada.
| |
Collapse
|
18
|
Wu Z, Yin K, Wu J, Zhu Z, Duan JA, He J. Recent advances in femtosecond laser-structured Janus membranes with asymmetric surface wettability. NANOSCALE 2021; 13:2209-2226. [PMID: 33480955 DOI: 10.1039/d0nr06639g] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Janus wettability membranes have received much attention because of their asymmetric surface wettability. On the basis of this distinctiveness from traditional symmetrical membranes, relevant scholars have been inspired to pursue many innovations utilizing such membranes. Femtosecond laser microfabrication shows many advantages, such as precision, short time, and environmental friendliness, over traditional fabrication methods. Now this has been applied in structuring Janus membranes by researchers. This review covers recent advances in femtosecond laser-structured Janus membranes with asymmetric surface wettability. The background in femtosecond laser-structured Janus membranes is first discussed, focusing on the Janus wettability membrane and femtosecond laser microfabrication. Then the applications of Janus membranes are introduced, which are divided into unidirectional fluid transport, oil-water separation, fog harvesting, and seawater desalination. Finally, based on femtosecond laser-structured Janus membranes, some existing problems are pointed out and future perspectives proposed.
Collapse
Affiliation(s)
- Zhipeng Wu
- Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, China.
| | - Kai Yin
- Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, China. and The State Key Laboratory of High Performance and Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
| | - Junrui Wu
- Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, China.
| | - Zhuo Zhu
- Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, China.
| | - Ji-An Duan
- The State Key Laboratory of High Performance and Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.
| | - Jun He
- Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha 410083, China.
| |
Collapse
|
19
|
Martins MF, Costa PG, Bianchini A. Maternal transfer of polycyclic aromatic hydrocarbons in an endangered elasmobranch, the Brazilian guitarfish. CHEMOSPHERE 2021; 263:128275. [PMID: 33297219 DOI: 10.1016/j.chemosphere.2020.128275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 06/12/2023]
Abstract
Maternal transfer of contaminants is an important route of exposure for many species during embryonic development, which might compromise the organism throughout its life cycle. Here, we report the maternal offloading of polycyclic aromatic hydrocarbons (PAHs) in an elasmobranch, the Brazilian guitarfish Pseudobatos horkelii. Eighteen PAHs were determined by gas chromatography in maternal liver and uterine content (uterine eggs and early-stage development embryos) samples to determine the maternal transfer rate. The mean rate of PAHs offloaded to the offspring was of 13%, with high variability among individual congener transfer (0.7-29.9%) and benzo[b]fluoranthene attaining the highest maternal transfer rates. Differential transfer rates were attributed to physicochemical proprieties of each compound, with low molecular level PAHs presenting the highest rates. A depuration mechanism in which females decrease their maternal transfer rate as a function of size, related to consecutive reproductive cycles was not properly observed in this study. From a conservation perspective, these results indicate that elasmobranchs embryos of an endangered species can be exposed to PAHs during their development and, considering the possible harmful effects of these compounds to other early life stage organisms, deleterious effects could be a possibility, although this was not analyzed herein.
Collapse
Affiliation(s)
- Mariana F Martins
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal Do Rio Grande-FURG, Av. Itália Km 8, 96203-900, Rio Grande, Brazil.
| | - Patrícia G Costa
- Programa de Pós-Graduação em Ciências Fisiológicas, Instituto de Ciências Biológicas, Universidade Federal Do Rio Grande-FURG, Av. Itália Km 8, 96203-900, Rio Grande, Brazil
| | - Adalto Bianchini
- Instituto de Ciências Biológicas, Universidade Federal Do Rio Grande-FURG, Av. Itália Km 8, 96203-900, Rio Grande, Brazil
| |
Collapse
|
20
|
Anulacion BF, Ylitalo GM, Sol SY, da Silva DAM, Lomax DP, Johnson LL. Temporal trends in aluminum smelter-derived polycyclic aromatic hydrocarbons in outmigrant juvenile Chinook salmon from Kitimat, British Columbia, Canada. MARINE POLLUTION BULLETIN 2020; 157:111284. [PMID: 32469746 DOI: 10.1016/j.marpolbul.2020.111284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Revised: 05/15/2020] [Accepted: 05/17/2020] [Indexed: 06/11/2023]
Abstract
Aluminum smelter-derived polycyclic aromatic hydrocarbons (PAHs) in outmigrant juvenile Chinook salmon were evaluated in Kitimat Arm, British Columbia, Canada from 2000 to 2004, and in 2015. Decades of continual smelter operations by Rio Tinto resulted in PAH contamination of marine sediments at levels associated with adverse effects in juvenile salmon. Recently, smelter operations have undergone process changes to reduce PAH input to the environment. The PAH concentrations in juvenile Chinook salmon observed in 2000 to 2004, at sites nearest the smelter were comparable to salmon in other urban areas where reduced disease resistance was observed; the levels were lower in 2015 than 2000-2004 suggesting that the recent process changes were effective. Further, these data establish a benchmark for assessing any future changes affecting PAH input and the potential risks to the receiving environment.
Collapse
Affiliation(s)
- Bernadita F Anulacion
- Environmental Fisheries and Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries, National Oceanic and Atmospheric Administration, 2725 Montlake Boulevard East, Seattle, WA 98112, USA.
| | - Gina M Ylitalo
- Environmental Fisheries and Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries, National Oceanic and Atmospheric Administration, 2725 Montlake Boulevard East, Seattle, WA 98112, USA
| | - Sean Y Sol
- Environmental Fisheries and Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries, National Oceanic and Atmospheric Administration, 2725 Montlake Boulevard East, Seattle, WA 98112, USA
| | - Denis A M da Silva
- Environmental Fisheries and Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries, National Oceanic and Atmospheric Administration, 2725 Montlake Boulevard East, Seattle, WA 98112, USA
| | - Daniel P Lomax
- Environmental Fisheries and Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries, National Oceanic and Atmospheric Administration, 2725 Montlake Boulevard East, Seattle, WA 98112, USA
| | - Lyndal L Johnson
- Environmental Fisheries and Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries, National Oceanic and Atmospheric Administration, 2725 Montlake Boulevard East, Seattle, WA 98112, USA
| |
Collapse
|
21
|
Tracking foraging green turtles in the Republic of the Congo: insights into spatial ecology from a data poor region. ORYX 2020. [DOI: 10.1017/s0030605319000309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
AbstractGlobally, marine turtles are considered threatened throughout their range, and therefore conservation practitioners are increasingly investing resources in marine protected areas to protect key life history stages and critical habitats, including foraging grounds, nesting beaches and inter-nesting areas. Empirical data on the distribution of these habitats and/or the spatial ecology and behaviour of individuals of many marine turtle populations are often lacking, undermining conservation efforts, particularly along the Atlantic coast of Africa. Here we contribute to the knowledge base in this region by describing patterns of habitat use for nine green turtles Chelonia mydas tagged with satellite platform transmitter terminals at a foraging ground in Loango Bay, Republic of the Congo, one of only a few documented mainland foraging grounds for marine turtles in Central Africa. Analyses of these data revealed that core areas of habitat use and occupancy for a wide range of size/age classes were restricted to shallow waters adjacent to Pointe Indienne in Loango Bay, with most individuals showing periods of high fidelity to this area. These data are timely given the Congolese government recently announced its intention to create a marine conservation zone to protect marine turtles in Loango Bay. Despite the small sample size of this study, these data exemplify the need for comprehensive strategies that span national jurisdictions, as we provide the first documented evidence of linkages between green turtle foraging sites in Central Africa (Loango Bay, Republic of the Congo) and Southern Africa (Mussulo Bay, Angola).
Collapse
|
22
|
Muñoz CC, Vermeiren P. Maternal Transfer of Persistent Organic Pollutants to Sea Turtle Eggs: A Meta-Analysis Addressing Knowledge and Data Gaps Toward an Improved Synthesis of Research Outputs. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:9-29. [PMID: 31560792 DOI: 10.1002/etc.4585] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/10/2019] [Accepted: 08/29/2019] [Indexed: 05/14/2023]
Abstract
Maternal transfer of persistent organic pollutants (POPs) confronts developing embryos with a pollution legacy and poses conservation concerns due to its potential impacts unto subsequent generations. We conducted a systematic review focusing on: 1) processes of POP maternal transfer, 2) challenges and opportunities to synthesizing current knowledge on POP concentrations in eggs, and 3) a meta-analysis of patterns in current egg pollution data. Results suggest selective maternal transfer of individual compounds. These relate to biological factors such as the foraging and remigration behavior, and to the selective mobilization of POPs during vitellogenesis, such as increased diffusion limitation for lipophilic POPs and slower release and higher reabsorption of apolar POPs. A key gap relates to knowledge of further selective toxicokinetics during embryonic development, as research to date has mainly focused on initial uptake into eggs. Challenges in the synthesis of current data on egg contamination profiles relate to methodological differences, varying analytical approaches, restricted data access, and reporting transparency among studies. To increase opportunities in the use of current data, we propose best practice guidelines, and synthesize a database on POP concentrations within sea turtle eggs. The meta-analysis revealed a geographical and taxonomic bias on the West Atlantic Ocean, including the Gulf of Mexico and Caribbean Sea, with most studies conducted on green turtles. Concentrations of POPs show temporal patterns related to trends in usage, production, release, and persistence in the environment, often with regional patterns. The trophic level has the potential to influence POP patterns with higher concentrations in loggerheads compared to other species, but this is confounded by temporal and geographic trends. We argue for more mechanistically process-focused and methodologically comparable research. Environ Toxicol Chem 2019;39:9-29. © 2019 SETAC.
Collapse
Affiliation(s)
- Cynthia C Muñoz
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi, Japan
| | - Peter Vermeiren
- Faculty of Agriculture and Marine Science, Kochi University, Nankoku, Kochi, Japan
| |
Collapse
|
23
|
Hapke WB, Black RW, Eagles-Smith CA, Smith CD, Johnson L, Ylitalo GM, Boyd D, Davis JW, Eldridge SLC, Nilsen EB. Contaminant Concentrations in Sediments, Aquatic Invertebrates, and Fish in Proximity to Rail Tracks Used for Coal Transport in the Pacific Northwest (USA): A Baseline Assessment. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 77:549-574. [PMID: 31538223 DOI: 10.1007/s00244-019-00667-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 08/31/2019] [Indexed: 06/10/2023]
Abstract
Railway transport of coal poses an environmental risk, because coal dust contains polycyclic aromatic hydrocarbons (PAHs), mercury, and other trace metals. In the Pacific Northwest of the United States, proposed infrastructure projects could result in an increase in coal transport by train through the Columbia River corridor. Baseline information is needed on current distributions, levels, and spatial patterns of coal dust-derived contaminants in habitats and organisms adjacent to existing coal transport lines. To that end, we collected aquatic surface sediments, aquatic insects, and juvenile fish in 2014 and 2015 from Horsethief Lake State Park and Steigerwald National Wildlife Refuge, both located in Washington state close to the rail line and within the Columbia River Gorge National Scenic Area. Two subsites in each area were selected: one close to the rail line and one far from the rail line. Detected PAH concentrations were relatively low compared with those measured at more urbanized areas. Some contaminants were measured at higher concentrations at the subsites close to the rail line, but it was not possible to link the contaminants to a definitive source. Trace metal concentrations were only slightly higher than background concentrations, but a few of the more sensitive benchmarks were exceeded, including those for arsenic, lead, and selenium in fish tissue and fluoranthene, cadmium, copper, manganese, nickel, zinc, iron, and arsenic in sediments. At Horsethief Lake, Chinook salmon and yellow perch showed lower total mercury body burdens than other species, but PAH body burdens did not differ significantly among species. Differences in the species caught among subsites and the low number of invertebrate samples rendered food web comparisons difficult, but these data show that the PAHs and trace metals, including mercury, are accumulating in these wetland sites and in some resident organisms.
Collapse
Affiliation(s)
- Whitney B Hapke
- Oregon Water Science Center, U.S. Geological Survey, 2130 SW 5th Ave., Portland, OR, 97201, USA
| | - Robert W Black
- Washington Water Science Center, U.S. Geological Survey, 934 Broadway, Suite 300, Tacoma, WA, 98402, USA
| | - Collin A Eagles-Smith
- Forest and Rangeland Ecosystem Science Center (FRESC), U.S. Geological Survey, 3200 SW Jefferson Way, Corvallis, OR, 97331, USA
| | - Cassandra D Smith
- Oregon Water Science Center, U.S. Geological Survey, 2130 SW 5th Ave., Portland, OR, 97201, USA
| | - Lyndal Johnson
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Boulevard East, Seattle, WA, 98112, USA
| | - Gina M Ylitalo
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Boulevard East, Seattle, WA, 98112, USA
| | - Daryle Boyd
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Boulevard East, Seattle, WA, 98112, USA
| | - Jay W Davis
- Washington Fish and Wildlife Office, U.S. Fish & Wildlife Service, 510 Desmond Dr. SE, Suite 102, Lacey, WA, 98503, USA
| | - Sara L Caldwell Eldridge
- Wyoming-Montana Water Science Center, U.S. Geological Survey, 3162 Bozeman Ave, Helena, MT, 59601, USA
| | - Elena B Nilsen
- Oregon Water Science Center, U.S. Geological Survey, 2130 SW 5th Ave., Portland, OR, 97201, USA.
| |
Collapse
|
24
|
Harms CA, McClellan-Green P, Godfrey MH, Christiansen EF, Broadhurst HJ, Godard-Codding CAJ. Crude Oil and Dispersant Cause Acute Clinicopathological Abnormalities in Hatchling Loggerhead Sea Turtles ( Caretta caretta). Front Vet Sci 2019; 6:344. [PMID: 31681804 PMCID: PMC6803492 DOI: 10.3389/fvets.2019.00344] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 09/23/2019] [Indexed: 11/22/2022] Open
Abstract
Following the explosion of the Deepwater Horizon MC252 oil rig in 2010, 319 live sea turtles exposed to crude oil and oil-dispersant (Corexit) combinations were admitted to rehabilitation centers for decontamination and treatment. Treatment of oiled sea turtles was guided by expected physiological and pathological effects of crude oil exposure extrapolated from studies in other species and from a single loggerhead sea turtle (Caretta caretta) study. While invaluable starting points, inherent limitations to extrapolation, and small sample size of the experimental exposure study, reduce their utility for clinical guidance and for assessing oil spill impacts. Effects of dispersants were not included in the previous experimental exposure study, and cannot be effectively isolated in the analysis of field data from actual spills. A terminal study of pivotal temperature of sex determination using eggs salvaged from doomed loggerhead nests provided an opportunity for an ancillary exposure study to investigate the acute effects of crude oil, dispersant, and a crude oil/dispersant combination in sea turtle hatchlings. Eggs were incubated at 27.2-30.8°C, and hatchlings were randomly assigned to control, oil, dispersant, and combined oil/dispersant exposures for 1 or 4 days. Contaminant exposures were started after a 3 day post-hatching period simulating nest emergence. Turtles were placed in individual glass bowls containing aged seawater and exposed to oil (Gulf Coast-Mixed Crude Oil Sweet, CAS #8002-05-9, 0.833 mL/L) and/or dispersant (Corexit 9500A, 0.083 mL/L), replicating concentrations encountered during oil spills and subsequent response. Statistically significant differences between treatments and non-exposed controls were detected for PCV, AST, uric acid, glucose, calcium, phosphorus, total protein, albumin, globulin, potassium, and sodium. The principal dyscrasias reflected acute osmolar, electrolyte and hydration challenges that were more numerous and greater in combined oil/dispersant exposures at 4 days. Clinicopathological findings were supported by a failure to gain weight (associated with normal hatchling hydration in seawater) in dispersant and combination exposed hatchlings. These findings can help guide clinical response for sea turtles exposed to crude oil and crude oil/dispersant combinations, and indicate potential impacts on wildlife to consider when deploying dispersants in an oil spill response.
Collapse
Affiliation(s)
- Craig A. Harms
- Department of Clinical Sciences and Center for Marine Sciences and Technology, College of Veterinary Medicine, North Carolina State University, Morehead City, NC, United States
| | - Patricia McClellan-Green
- Department of Biological Sciences and Center for Marine Sciences and Technology, North Carolina State University, Morehead City, NC, United States
| | - Matthew H. Godfrey
- Department of Clinical Sciences and Center for Marine Sciences and Technology, College of Veterinary Medicine, North Carolina State University, Morehead City, NC, United States
- North Carolina Wildlife Resources Commission, Beaufort, NC, United States
- Nicholas School of the Environment, Duke University Marine Lab, Beaufort, NC, United States
| | - Emily F. Christiansen
- Department of Clinical Sciences and Center for Marine Sciences and Technology, College of Veterinary Medicine, North Carolina State University, Morehead City, NC, United States
| | - Heather J. Broadhurst
- Department of Clinical Sciences and Center for Marine Sciences and Technology, College of Veterinary Medicine, North Carolina State University, Morehead City, NC, United States
| | - Céline A. J. Godard-Codding
- The Institute of Environmental and Human Health, Texas Tech University and TTU Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
25
|
Vijayasarathy S, Baduel C, Hof C, Bell I, Del Mar Gómez Ramos M, Ramos MJG, Kock M, Gaus C. Multi-residue screening of non-polar hazardous chemicals in green turtle blood from different foraging regions of the Great Barrier Reef. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 652:862-868. [PMID: 30380492 DOI: 10.1016/j.scitotenv.2018.10.094] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/04/2018] [Accepted: 10/07/2018] [Indexed: 06/08/2023]
Abstract
Green turtles spend a large part of their lifecycle foraging in nearshore seagrass habitats, which are often in close proximity to sources of anthropogenic contaminants. As most biomonitoring studies focus on a limited number of targeted chemical groups, this study was designed to screen for a wider range of hazardous chemicals that may not have been considered in prior studies. Whole blood of sub-adult green turtles (Chelonia mydas) were sampled from three different locations, a remote, offshore 'control' site; and two coastal 'case' sites influenced by urban and agricultural activities on the Great Barrier Reef in North Queensland, Australia. In order to screen blood samples for chemicals across a wide range of KOW's, a modified QuEChER's extraction method was used. The samples were analysed using a multi-residue gas chromatography with tandem mass spectrometry system (GC-MS/MS method that allowed simultaneous quantification of polychlorinated biphenyls (PCBs), polychlorinated diphenyl ethers (PBDES), organochlorine pesticides (OCPs) and polycyclic aromatic hydrocarbons (PAHs). While PBDEs, PCBs and OCPS were below the limits of quantification, PAHs were detected in all turtle blood samples. However, PAH levels were relatively low (maximum ΣPAH = 13 ng/mL ww) and comparable to or less than those reported from other green turtles globally. The present study provides the first baseline PAH levels in blood samples from green turtles from nearshore and offshore locations in the Southern Hemisphere.
Collapse
Affiliation(s)
- Soumini Vijayasarathy
- Queensland Alliance for Environmental Health Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, Australia.
| | - Christine Baduel
- Université Grenoble Alpes, IRD, CNRS, Grenoble INP, IGE, Grenoble, France
| | - Christine Hof
- Queensland Alliance for Environmental Health Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, Australia; Species Conservation and Indigenous Partnerships Unit, World Wildlife Fund for Nature-Australia, Brisbane, Australia
| | - Ian Bell
- Aquatic Species Program, Department of Environment and Science, Townsville, Australia
| | - María Del Mar Gómez Ramos
- Chemistry and Physics Department, University of Almeria, Agrifood Campus of International Excellence (ceiA3), 04120 Almería, Spain
| | - María José Gómez Ramos
- Chemistry and Physics Department, University of Almeria, Agrifood Campus of International Excellence (ceiA3), 04120 Almería, Spain
| | - Marjolijn Kock
- Queensland Alliance for Environmental Health Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, Australia
| | - Caroline Gaus
- Queensland Alliance for Environmental Health Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, Brisbane, Australia
| |
Collapse
|
26
|
Bembenek-Bailey SA, Niemuth JN, McClellan-Green PD, Godfrey MH, Harms CA, Gracz H, Stoskopf MK. NMR Metabolomic Analysis of Skeletal Muscle, Heart, and Liver of Hatchling Loggerhead Sea Turtles ( Caretta caretta) Experimentally Exposed to Crude Oil and/or Corexit. Metabolites 2019; 9:E21. [PMID: 30691098 PMCID: PMC6410094 DOI: 10.3390/metabo9020021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/20/2019] [Accepted: 01/23/2019] [Indexed: 12/19/2022] Open
Abstract
We used nuclear magnetic spectroscopy (NMR) to evaluate the metabolic impacts of crude oil, Corexit 5900A, a dispersant, and a crude oil Corexit 5900A mixture exposure on skeletal muscle, heart, and liver physiology of hatchling loggerhead sea turtles (Caretta caretta). Tissue samples were obtained from 22 seven-day-old hatchlings after a four day cutaneous exposure to environmentally relevant concentrations of crude oil, Corexit 5900A, a combination of crude oil and Corexit 9500A, or a seawater control. We identified 38 metabolites in the aqueous extracts of the liver, and 30 metabolites in both the skeletal and heart muscle aqueous extracts, including organic acids/osmolytes, energy compounds, amino acids, ketone bodies, nucleosides, and nucleotides. Skeletal muscle lactate, creatines, and taurine concentrations were significantly lower in hatchlings exposed to crude oil than in control hatchlings. Lactate, taurine, and cholines appeared to be the basis of some variation in hatchling heart samples, and liver inosine, uracil, and uridine appeared to be influenced by Corexit and crude oil exposure. Observed decreases in concentrations of lactate and creatines may reflect energy depletion in skeletal muscle of oil-exposed animals, while decreased taurine concentrations in these animals may reflect higher oxidative stress.
Collapse
Affiliation(s)
- Stasia A Bembenek-Bailey
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA.
- Fisheries, Wildlife, and Conservation Biology, College of Natural Resources, North Carolina State University, Raleigh, NC 27695, USA.
- Environmental Medicine Consortium, North Carolina State University, Raleigh, NC 27607, USA.
| | - Jennifer N Niemuth
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA.
- Fisheries, Wildlife, and Conservation Biology, College of Natural Resources, North Carolina State University, Raleigh, NC 27695, USA.
- Environmental Medicine Consortium, North Carolina State University, Raleigh, NC 27607, USA.
| | - Patricia D McClellan-Green
- Center for Marine Sciences and Technology, North Carolina State University, Morehead City, NC 28557, USA.
| | - Matthew H Godfrey
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA.
- Environmental Medicine Consortium, North Carolina State University, Raleigh, NC 27607, USA.
- Sea Turtle Project, North Carolina Wildlife Resources Commission, Beaufort, NC 28516, USA.
- Nicholas School of the Environment, Duke University Marine Lab, Beaufort, NC 28516, USA.
| | - Craig A Harms
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA.
- Fisheries, Wildlife, and Conservation Biology, College of Natural Resources, North Carolina State University, Raleigh, NC 27695, USA.
- Environmental Medicine Consortium, North Carolina State University, Raleigh, NC 27607, USA.
- Center for Marine Sciences and Technology, North Carolina State University, Morehead City, NC 28557, USA.
| | - Hanna Gracz
- Environmental Medicine Consortium, North Carolina State University, Raleigh, NC 27607, USA.
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27607, USA.
| | - Michael K Stoskopf
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27607, USA.
- Fisheries, Wildlife, and Conservation Biology, College of Natural Resources, North Carolina State University, Raleigh, NC 27695, USA.
- Environmental Medicine Consortium, North Carolina State University, Raleigh, NC 27607, USA.
- Center for Marine Sciences and Technology, North Carolina State University, Morehead City, NC 28557, USA.
| |
Collapse
|
27
|
Idowu I, Johnson W, Francisco O, Obal T, Marvin C, Thomas PJ, Sandau CD, Stetefeld J, Tomy GT. Comprehensive two-dimensional gas chromatography high-resolution mass spectrometry for the analysis of substituted and unsubstituted polycyclic aromatic compounds in environmental samples. J Chromatogr A 2018; 1579:106-114. [DOI: 10.1016/j.chroma.2018.10.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 10/11/2018] [Accepted: 10/16/2018] [Indexed: 10/28/2022]
|
28
|
Lundin JI, Ylitalo GM, Giles DA, Seely EA, Anulacion BF, Boyd DT, Hempelmann JA, Parsons KM, Booth RK, Wasser SK. Pre-oil spill baseline profiling for contaminants in Southern Resident killer whale fecal samples indicates possible exposure to vessel exhaust. MARINE POLLUTION BULLETIN 2018; 136:448-453. [PMID: 30509828 DOI: 10.1016/j.marpolbul.2018.09.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 09/07/2018] [Accepted: 09/09/2018] [Indexed: 06/09/2023]
Abstract
The Southern Resident killer whale population (Orcinus orca) was listed as endangered in 2005 and shows little sign of recovery. Exposure to contaminants and risk of an oil spill are identified threats. Previous studies on contaminants have largely focused on legacy pollutants. Here we measure polycyclic aromatic hydrocarbons (PAHs) in whale fecal (scat) samples. PAHs are a diverse group of hazardous compounds (e.g., carcinogenic, mutagenic), and are a component of crude and refined oil as well as motor exhaust. The central finding from this study indicates low concentrations of the measured PAHs (<10 ppb, wet weight), as expected; however, PAHs were as high as 104 ppb prior to implementation of guidelines mandating increased distance between vessels and whales. While causality is unclear, the potential PAH exposure from vessels warrants continued monitoring. Historical precedent similarly emphasizes the importance of having pre-oil spill exposure data available as baseline to guide remediation goals.
Collapse
Affiliation(s)
- Jessica I Lundin
- Center for Conservation Biology, Department of Biology, University of Washington, Seattle, WA 98195, United States of America.
| | - Gina M Ylitalo
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd E, Seattle, WA 98112, United States of America
| | - Deborah A Giles
- University of Washington Friday Harbor Labs, Friday Harbor, WA 98250, United States of America
| | - Elizabeth A Seely
- Center for Conservation Biology, Department of Biology, University of Washington, Seattle, WA 98195, United States of America
| | - Bernadita F Anulacion
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd E, Seattle, WA 98112, United States of America
| | - Daryle T Boyd
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd E, Seattle, WA 98112, United States of America
| | - Jennifer A Hempelmann
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd E, Seattle, WA 98112, United States of America
| | - Kim M Parsons
- Alaska Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 7600 Sand Point Way N.E., Building 4, Seattle, WA 98115, United States of America; Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd E, Seattle, WA 98112, United States of America
| | - Rebecca K Booth
- Center for Conservation Biology, Department of Biology, University of Washington, Seattle, WA 98195, United States of America
| | - Samuel K Wasser
- Center for Conservation Biology, Department of Biology, University of Washington, Seattle, WA 98195, United States of America
| |
Collapse
|
29
|
Caillouet CW, Raborn SW, Shaver DJ, Putman NF, Gallaway BJ, Mansfield KL. Did Declining Carrying Capacity for the Kemp's Ridley Sea Turtle Population Within the Gulf of Mexico Contribute to the Nesting Setback in 2010−2017? CHELONIAN CONSERVATION AND BIOLOGY 2018. [DOI: 10.2744/ccb-1283.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | - Scott W. Raborn
- LGL Ecological Research Associates, Inc., Bryan, Texas 77801 USA []
| | - Donna J. Shaver
- Padre Island National Seashore, Corpus Christi, Texas 78480-1300 USA []
| | - Nathan F. Putman
- LGL Ecological Research Associates, Inc., Bryan, Texas 77801 USA []
| | | | - Katherine L. Mansfield
- Marine Turtle Research Group, Department of Biology, University of Central Florida, Orlando, Florida 32816 USA []
| |
Collapse
|
30
|
Stimmelmayr R, Ylitalo GM, Sheffield G, Beckmen KB, Burek-Huntington KA, Metcalf V, Rowles T. Oil fouling in three subsistence-harvested ringed (Phoca hispida) and spotted seals (Phoca largha) from the Bering Strait region, Alaska: Polycyclic aromatic hydrocarbon bile and tissue levels and pathological findings. MARINE POLLUTION BULLETIN 2018; 130:311-323. [PMID: 29866565 DOI: 10.1016/j.marpolbul.2018.02.040] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 02/09/2018] [Accepted: 02/21/2018] [Indexed: 06/08/2023]
Abstract
Oil spills of unknown origin were detected in three oil-fouled, ice-associated seals from the Alaska Bering Strait region collected by Alaska Native subsistence hunters during fall 2012. Bile analyses of two oiled seals indicated exposure to fluorescent polycyclic aromatic hydrocarbon (PAH) metabolites but levels of some metabolites were similar to or lower than biliary levels in harvested unoiled ice seals. Oiled seals had elevated tissue PAH concentrations compared to tissue levels of PAHs determined in unoiled ice seals. However, regardless of oiling status, tissue PAH levels were relatively low (<50 ng/g, wet weight) likely due to rapid PAH metabolism and elimination demonstrated previously by vertebrates. Hepatic, pulmonary, and cardiac lesions were observed in oiled seals in conjunction with measurable PAHs in their tissue and bile. This is the first study to report tissue and bile PAH concentrations and pathologic findings of oiled ice seals from the U.S. Arctic.
Collapse
Affiliation(s)
- Raphaela Stimmelmayr
- Department of Wildlife Management, North Slope Borough, Box 69, Barrow, AK 99723, USA; Institute of Arctic Biology, University of Alaska Fairbanks, 902 N. Koyukuk Dr., P.O. Box 757000, Fairbanks, AK 99775-70, USA.
| | - Gina M Ylitalo
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd East, Seattle, WA 98112, USA.
| | - Gay Sheffield
- Alaska Sea Grant, University of Alaska Fairbanks-Marine Advisory Program, Pouch 400, Nome, AK 99762, USA.
| | - Kimberlee B Beckmen
- Alaska Department of Fish and Game, 1300 College Rd. Fairbanks, AK 99701-1551, USA.
| | | | - Vera Metcalf
- Eskimo Walrus Commission, Box 948, Nome, AK 99762, USA.
| | - Teri Rowles
- Office of Protected Resources, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 1315 East-West Highway, Silver Spring, MD 20910, USA.
| |
Collapse
|
31
|
Muñoz CC, Vermeiren P. Profiles of environmental contaminants in hawksbill turtle egg yolks reflect local to distant pollution sources among nesting beaches in the Yucatán Peninsula, Mexico. MARINE ENVIRONMENTAL RESEARCH 2018; 135:43-54. [PMID: 29395262 DOI: 10.1016/j.marenvres.2018.01.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 01/10/2018] [Accepted: 01/18/2018] [Indexed: 06/07/2023]
Abstract
Knowledge of spatial variation in pollutant profiles among sea turtle nesting locations is limited. This poses challenges in identifying processes shaping this variability and sets constraints to the conservation management of sea turtles and their use as biomonitoring tools for environmental pollutants. We aimed to increase understanding of the spatial variation in polycyclic aromatic hydrocarbon (PAH), organochlorine pesticide (OCP) and polychlorinated biphenyl (PCB) compounds among nesting beaches. We link the spatial variation to turtle migration patterns and the persistence of these pollutants. Specifically, using gas chromatography, we confirmed maternal transfer of a large number of compounds (n = 68 out of 69) among 104 eggs collected from 21 nests across three nesting beaches within the Yucatán Peninsula, one of the world's most important rookeries for hawksbill turtles (Eretmochelys imbricata). High variation in PAH profiles was observed among beaches, using multivariate correspondence analysis and univariate Peto-Prentice tests, reflecting local acquisition during recent migration movements. Diagnostic PAH ratios reflected petrogenic origins in Celestún, the beach closest to petroleum industries in the Gulf of Mexico. By contrast, pollution profiles of OCPs and PCBs showed high similarity among beaches, reflecting the long-term accumulation of these pollutants at regional scales. Therefore, spatial planning of protected areas and the use of turtle eggs in biomonitoring needs to account for the spatial variation in pollution profiles among nesting beaches.
Collapse
|
32
|
Cocci P, Mosconi G, Bracchetti L, Nalocca JM, Frapiccini E, Marini M, Caprioli G, Sagratini G, Palermo FA. Investigating the potential impact of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) on gene biomarker expression and global DNA methylation in loggerhead sea turtles (Caretta caretta) from the Adriatic Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 619-620:49-57. [PMID: 29136534 DOI: 10.1016/j.scitotenv.2017.11.118] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 11/07/2017] [Accepted: 11/09/2017] [Indexed: 06/07/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) are priority contaminants that bioaccumulate through the food webs and affect the biology of a variety of resident and migratory species, including sea turtles. Few studies have evaluated toxicological biomarkers of exposure to PAHs and PCBs in these animals. The present paper reports the results of an initial field study to quantify the association between plasma concentrations of PAHs/PCBs and whole blood cell expression of gene biomarkers in juvenile loggerhead sea turtles (Caretta caretta) rescued along the Italian coasts of the northern and central areas of the Adriatic Sea. While detectable levels of PAHs were found in all plasma samples examined, only three PCB congeners (PCB52, PCB95, and PCB149) were noted, with detection percentages ranging between 48% and 57%. A significant correlation was found between 3 of the 6 gene biomarkers assessed (HSP60, CYP1A and ERα) and plasma levels of some PAH congeners. In contrast, no significant association between PCB burden and gene expression was observed. The global DNA methylation levels were significantly and positively correlated with the concentrations of most of the PAHs and only one of the PCB congeners (PCB52). The relation between PAH concentration and gene expression in whole blood cells suggests that these genes may respond to environmental contaminant exposure and are promising candidates for the development of biomarkers for monitoring sea turtle exposure to persistent organic pollutants (POPs).
Collapse
Affiliation(s)
- Paolo Cocci
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, I-62032 Camerino, MC, Italy
| | - Gilberto Mosconi
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, I-62032 Camerino, MC, Italy
| | - Luca Bracchetti
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, I-62032 Camerino, MC, Italy
| | - John Mark Nalocca
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, I-62032 Camerino, MC, Italy
| | - Emanuela Frapiccini
- Institute of Marine Sciences (CBR-ISMAR), National Research Council, Largo Fiera della Pesca 2, 60125 Ancona, AN, Italy
| | - Mauro Marini
- Institute of Marine Sciences (CBR-ISMAR), National Research Council, Largo Fiera della Pesca 2, 60125 Ancona, AN, Italy
| | - Giovanni Caprioli
- School of Pharmacy, University of Camerino, Via Sant'Agostino 1, I-62032 Camerino, MC, Italy
| | - Gianni Sagratini
- School of Pharmacy, University of Camerino, Via Sant'Agostino 1, I-62032 Camerino, MC, Italy
| | - Francesco Alessandro Palermo
- School of Biosciences and Veterinary Medicine, University of Camerino, Via Gentile III Da Varano, I-62032 Camerino, MC, Italy.
| |
Collapse
|
33
|
Idowu I, Francisco O, Thomas PJ, Johnson W, Marvin C, Stetefeld J, Tomy GT. Validation of a simultaneous method for determining polycyclic aromatic compounds and alkylated isomers in biota. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2018; 32:277-287. [PMID: 29178235 DOI: 10.1002/rcm.8035] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/07/2017] [Accepted: 11/08/2017] [Indexed: 06/07/2023]
Abstract
RATIONALE There is a need for a validated method to improve detection limits and simultaneously quantify polycyclic aromatic compounds (PACs, both parent and alkylated homologues) in biota by gas chromatography/tandem mass spectrometry because of their environmental significance. The validation of the method was performed in accordance to the Eurachem Guide to Quality in Analytical Chemistry. METHODS Gas chromatography coupled with a triple quadrupole mass spectrometer used in multiple reaction monitoring (MRM) mode was used for detection and quantification. Retention time windows and selective MRM ion transitions were optimized for a suite of PACs. The developed method was validated by comparing our measurements made on a reference material of freeze-dried mussel tissue (Mytilus edulis) with the certified values. RESULTS Linearity was observed between 10-1000 pg/μL (PAHs) and 2-500 pg/μL (alkyl-PACs including S-based PACs). The overall mean (±SD) for the limits of detection of 43 PACs studied were 0.305 ± 0.276 and 2.69 ± 1.10 ng/g, respectively. For the 14 certified target analytes, the percent relative error ranged from 1.3 to 33%. With the exception of benzo(a)pyrene, the between-day and within-day repeatability for all target analytes was lower than 15% RSD. CONCLUSIONS This is the first report of a fully validated method to simultaneously quantify PACs in biota performed in an ISO accredited laboratory.
Collapse
Affiliation(s)
- Ifeoluwa Idowu
- Centre for Oil and Gas Research and Development, Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Olga Francisco
- Centre for Oil and Gas Research and Development, Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Philippe J Thomas
- Environment and Climate Change Canada, National Wildlife Research Centre, Ottawa, Ontario, K1A 0H3, Canada
| | - Wesley Johnson
- Centre for Oil and Gas Research and Development, Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Chris Marvin
- Environment and Climate Change Canada, National Water Research Institute, Burlington, Ontario, L7R 4A6, Canada
| | - Jörg Stetefeld
- Centre for Oil and Gas Research and Development, Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Gregg T Tomy
- Centre for Oil and Gas Research and Development, Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| |
Collapse
|
34
|
Mitchelmore CL, Bishop CA, Collier TK. Toxicological estimation of mortality of oceanic sea turtles oiled during the Deepwater Horizon oil spill. ENDANGER SPECIES RES 2017. [DOI: 10.3354/esr00758] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
35
|
Wallace BP, Brosnan T, McLamb D, Rowles T, Ruder E, Schroeder B, Schwacke L, Stacy B, Sullivan L, Takeshita R, Wehner D. Effects of the Deepwater Horizon oil spill on protected marine species. ENDANGER SPECIES RES 2017. [DOI: 10.3354/esr00789] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|