1
|
Qasir H, Reyer H, Oster M, Ponsuksili S, Trakooljul N, Sommerfeld V, Rodehutscord M, Wimmers K. Effects of a transient lack of dietary mineral phosphorus on renal gene expression and plasma metabolites in two high-yielding laying hen strains. BMC Genomics 2025; 26:129. [PMID: 39930376 PMCID: PMC11812262 DOI: 10.1186/s12864-025-11294-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/27/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND There is an emerging body of evidence that current poultry feed is formulated in excess for phosphorus (P), which results in unnecessarily high P excretions. Sustainable concepts for agricultural P flows should trigger animal-intrinsic mechanisms for efficient P utilization. In the current study, Lohmann Brown (LB) and Lohmann Selected Leghorn (LSL) laying hens were fed either a high P diet (P+) with 1 g/kg mineral P supplement or a low P diet (P-) with 0 g/kg mineral P supplement for a period of 4 weeks prior to sampling. Before and after onset of laying, i.e., at 19 and 24 weeks of life, kidney and plasma samples were collected to investigate the endogenous P utilization in response to restricted dietary P, laying hen strain, and sexual maturation. RESULTS Plasma analyses of minerals and metabolites confirmed the response to a low P diet, which was characterized by a significant reduction in plasma P levels at week 19 in both strains. The plasma calcium (Ca) levels were tightly regulated throughout the entire experimental period. Notably, there was a numerical trend of increased plasma calcitriol levels in P- fed birds of both strains compared to the P + group, which might have mediated a substantial role regarding the adaptive responses to low P supply. At week 19, RNA sequencing of kidney identified 1,114 and 556 differentially expressed genes (DEGs) unique to the LB and LSL strains, respectively. The number of DEGs declined with increasing maturity of the hens culminating in 90 and 146 DEGs for LB and LSL strains at week 24. Analyses revealed an enrichment of pathways related to energy metabolism and cell cycle, particularly at week 19 in both strains. The diet-specific expression of target genes involved in P homeostasis highlighted transcripts related to active (SLC34A1, SLC20A2) and passive mineral transport (CLDN14, CLDN16), Ca utilization (STC1, CALB1), and acid-base balance (CA2, SLC4A1). CONCLUSIONS Results suggest that both laying hen strains adapted to the lack of mineral P supplements and achieved a physiological Ca: P-ratio in body compartments through endogenous regulation as evidenced via the endocrine profile.
Collapse
Affiliation(s)
- Hiba Qasir
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Henry Reyer
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Michael Oster
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Siriluck Ponsuksili
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Nares Trakooljul
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany
| | - Vera Sommerfeld
- Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 10, 70599, Stuttgart, Germany
| | - Markus Rodehutscord
- Institute of Animal Science, University of Hohenheim, Emil-Wolff-Str. 10, 70599, Stuttgart, Germany
| | - Klaus Wimmers
- Research Institute for Farm Animal Biology (FBN), Wilhelm-Stahl-Allee 2, 18196, Dummerstorf, Germany.
- Faculty of Agricultural and Environmental Sciences, University Rostock, Justus-von-Liebig-Weg 6, 18059, Rostock, Germany.
| |
Collapse
|
2
|
Eslam-Aghdam T, Hassanpour S, Zendehdel M. Role of the intracerebroventricular injection α- klotho on food intake in broiler chicken: a novel study. Poult Sci 2024; 103:104166. [PMID: 39214054 PMCID: PMC11402046 DOI: 10.1016/j.psj.2024.104166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
This novel study investigated the effects of intracerebroventricular (ICV) injection α- klotho and its interaction with neuropeptide Y (NPY) receptors on food intake in broiler chicken. This study included 4 experiments with 4 groups in each with 11 replicates per group. Birds were feed deprived 3 h prior injection, following injection returned to their cage and food provided. In experiment 1, group 1 received ICV injection of the saline and groups 2 to 4 received ICV injection of the α-klotho (1, 2, and 4 µg), respectively. In experiment 2, chicken received ICV injection of the saline, B5063 (NPY1 receptor antagonist, 1.25 µg), α-klotho (4 µg) and co-injection of the B5063 + α-klotho. In experiments 3 and 4, SF22 (NPY2 receptor antagonist, 1.25 µg), and SML0891 (NPY5 receptor antagonist, 1.25 µg) were injected instead of the B5063. Then consumed food was measured at 30, 60, and 120 min post the injection. Based on results, ICV injection of the α-klotho (2 and 4 µg) significantly decreased food intake (P < 0.05). Co-injection of the B5063 + α-klotho significantly amplified hypophagic effect of the α-klotho (P < 0.05). α-klotho-induced hypophagia was not influenced by SF22 or SML0891. These results suggest that α-klotho-induced hypophagia is mediated via NPY1 receptors in broiler chicken.
Collapse
Affiliation(s)
- Tahereh Eslam-Aghdam
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shahin Hassanpour
- Division of Physiology, Department of Basic Sciences, Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Morteza Zendehdel
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran, 14155-6453, Tehran, Iran
| |
Collapse
|
3
|
Garcia-Mejia RA, Sinclair-Black M, Blair LR, Angel R, Jaramillo B, Regmi P, Neupane N, Proszkowiec-Weglarz M, Arbe X, Cavero D, Ellestad LE. Physiological changes in the regulation of calcium and phosphorus utilization that occur after the onset of egg production in commercial laying hens. Front Physiol 2024; 15:1465817. [PMID: 39387099 PMCID: PMC11462062 DOI: 10.3389/fphys.2024.1465817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/05/2024] [Indexed: 10/12/2024] Open
Abstract
At the onset of egg production, physiological changes governing calcium and phosphorus utilization must occur to meet demands for medullary bone formation and eggshell mineralization. The objective of this study was to identify these changes and determine if they are influenced by dietary supplementation with 1α-hydroxycholecalciferol (AlphaD3™, Iluma Alliance). Commercial laying hens fed either a control or AlphaD3-supplemented diet beginning at 18 weeks of age were sampled at 18 (n = 8) and 31 weeks (n = 8/diet) to evaluate mRNA expression associated with calcium and phosphorus utilization in kidney, shell gland, ileum, and liver, circulating vitamin D3 metabolites, and bone quality parameters in humerus, tibia, and keel bone. Though diet did not heavily influence gene expression at 31 weeks, several significant differences were observed between 18- and 31-week-old hens. Heightened sensitivity to hormones regulating calcium and phosphorus homeostasis was observed at 31 weeks, indicated by increased parathyroid hormone receptor 1, calcium-sensing receptor, calcitonin receptor, and fibroblast growth factor 23 receptors in several tissues. Increased renal expression of 25-hydroxylase and vitamin D binding protein ( DBP ) at 31 weeks suggests kidney participates in local vitamin D3 25-hydroxylation and DBP synthesis after egg production begins. Biologically active 1,25(OH)2D3 was higher at 31 weeks, with correspondingly lower inactive 24,25(OH)2D3. Increased expression of plasma membrane calcium ATPase 1 and calbindin in kidney, shell gland, and ileum suggests these are key facilitators of calcium uptake. Elevated renal inorganic phosphorus transporter 1 and 2 and sodium-dependent phosphate transporter IIa at 31 weeks suggests increased phosphorus excretion following hyperphosphatemia due to bone breakdown for eggshell formation. Diet did influence bone quality parameters. Bone mineral density in both humerus and tibia was higher in AlphaD3-supplemented hens at 31 weeks. Tibial bone mineral content increased between 18 and 31 weeks, with AlphaD3-supplemented hens increasing more than control hens. Moreover, control hens exhibited diminished tibial breaking strength at 31 weeks compared to hens at 18 weeks, while AlphaD3-supplemented hens did not. Together, these results indicate supplementation with AlphaD3 enhanced bone mineralization during the medullary bone formation period and elucidate the adaptive pathways regulating calcium and phosphorus utilization after the onset of lay.
Collapse
Affiliation(s)
| | | | - Lyssa R Blair
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Roselina Angel
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, United States
| | | | - Prafulla Regmi
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Nabin Neupane
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| | - Monika Proszkowiec-Weglarz
- Animal Biosciences and Biotechnology Laboratory, United States Department of Agriculture-Agricultural Research Service, Beltsville, MD, United States
| | | | | | - Laura E Ellestad
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| |
Collapse
|
4
|
Sinclair-Black M, Garcia-Mejia RA, Blair LR, Angel R, Arbe X, Cavero D, Ellestad LE. Circadian regulation of calcium and phosphorus homeostasis during the oviposition cycle in laying hens. Poult Sci 2024; 103:103209. [PMID: 38052129 PMCID: PMC10746567 DOI: 10.1016/j.psj.2023.103209] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 12/07/2023] Open
Abstract
Maintenance of calcium and phosphorus homeostasis in laying hens is crucial for preservation of skeletal integrity and eggshell quality, though physiological regulation of these systems is incompletely defined. To investigate changes in mineral and vitamin D3 homeostasis during the 24-h egg formation cycle, 32-wk-old commercial laying hens were sampled at 1, 3, 4, 6, 7, 8, 12, 15, 18, 21, 23, and 24 h post-oviposition (HPOP; n ≥ 4). Ovum location and egg calcification stage were recorded, and blood chemistry, plasma vitamin D3 metabolites, circulating parathyroid hormone (PTH), and expression of genes mediating uptake and utilization of calcium and phosphorus were evaluated. Elevated levels of renal 25-hydroxylase from 12 to 23 HPOP suggest this tissue might play a role in vitamin D3 25-hydroxylation during eggshell calcification. In shell gland, retinoid-x-receptor gamma upregulation between 6 and 8 HPOP followed by subsequently increased vitamin D receptor indicate that vitamin D3 signaling is important for eggshell calcification. Increased expression of PTH, calcitonin, and fibroblast growth factor 23 (FGF23) receptors in the shell gland between 18 and 24 HPOP suggest elevated sensitivity to these hormones toward the end of eggshell calcification. Shell gland sodium-calcium exchanger 1 was upregulated between 4 and 7 HPOP and plasma membrane calcium ATPase 1 increased throughout eggshell calcification, suggesting the primary calcium transporter may differ according to eggshell calcification stage. Expression in shell gland further indicated that bicarbonate synthesis precedes transport, where genes peaked at 6 to 7 and 12 to 18 HPOP, respectively. Inorganic phosphorus transporter 1 (PiT-1) expression peaked in kidney between 12 and 15 HPOP, likely to excrete excess circulating phosphorus, and in shell gland between 18 and 21 HPOP. Upregulation of FGF23 receptors and PiT-1 during late eggshell calcification suggest shell gland phosphorus uptake is important at this time. Together, these findings identified potentially novel hormonal pathways involved in calcium and phosphorus homeostasis along with associated circadian patterns in gene expression that can be used to devise strategies aimed at improving eggshell and skeletal strength in laying hens.
Collapse
Affiliation(s)
| | | | - Lyssa R Blair
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA
| | - Roselina Angel
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA
| | | | | | - Laura E Ellestad
- Department of Poultry Science, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
5
|
Sinclair-Black M, Garcia RA, Ellestad LE. Physiological regulation of calcium and phosphorus utilization in laying hens. Front Physiol 2023; 14:1112499. [PMID: 36824471 PMCID: PMC9942826 DOI: 10.3389/fphys.2023.1112499] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/27/2023] [Indexed: 02/10/2023] Open
Abstract
Commercial laying hens can produce one egg approximately every 24 h. During this process, regulatory systems that control vitamin D3 metabolism, calcium and phosphorus homeostasis, and intestinal uptake of these minerals work in concert to deliver components required for eggshell calcification and bone mineralization. Commercial production cycles have been extended in recent years to last through 100 weeks of age, and older hens often exhibit an increased prevalence of skeletal fractures and poor eggshell quality. Issues such as these arise, in part, through imbalances that occur in calcium and phosphorus utilization as hens age. As a result, an in-depth understanding of the mechanisms that drive calcium and phosphorus uptake and utilization is required to develop solutions to these welfare and economic challenges. This paper reviews factors that influence calcium and phosphorus homeostasis in laying hens, including eggshell formation and development and roles of cortical and medullary bone. Metabolism and actions of vitamin D3 and physiological regulation of calcium and phosphorus homeostasis in key tissues are also discussed. Areas that require further research in avian species, such as the role of fibroblast growth factor 23 in these processes and the metabolism and action of bioactive vitamin D3, are highlighted and the importance of using emerging technologies and establishing in vitro systems to perform functional and mechanistic studies is emphasized.
Collapse
Affiliation(s)
| | | | - Laura E. Ellestad
- Department of Poultry Science, University of Georgia, Athens, GA, United States
| |
Collapse
|
6
|
Sun L, Xin Q, Jiao H, Wang X, Zhao J, Li H, Zhou Y, Cao A, Wang J, Lin H. Effect of exogenous bile salts supplementation on the performance and hepatic lipid metabolism of aged laying hens. J Anim Sci 2023; 101:skad334. [PMID: 37773415 PMCID: PMC11025372 DOI: 10.1093/jas/skad334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 09/28/2023] [Indexed: 10/01/2023] Open
Abstract
Bile acids (BA), a series of hydroxylated steroids secreted by the liver, are involved in the digestion and absorption of dietary fats. In the present study, the effect of exogenous BAs on the performance and liver lipid metabolism of laying hens was investigated. Three hundred and sixty 50-wk-old Hy-line Brown hens were randomly allocated into three groups and subjected to one of the following treatments: fed with the basal diet (control, Con), the basal diet supplemented with 0.1 g/kg (0.1 g/kg BAs), or 0.2 g/kg (0.2 g/kg BAs) porcine BAs. Laying performance, egg quality, and blood parameters were measured during the 8-wk experimental period. The expression of genes related to hepatic lipid metabolism was determined at the end of experiment. The results showed that BAs treatments had no influence (P > 0.05) on laying rate, egg weight, and feed efficiency. BAs treatment, however, significantly decreased mortality of hens (P = 0.006). BAs treatment showed a transient negative influence on eggshell quality at week 4 but not at week 8. The yolk color on week 8 was increased by BAs treatments (P < 0.0001) compared to control. The duodenum index showed a tendency to be increased (P = 0.053) and jejunum index were increased (P = 0.007) by BAs treatment. Compared to control, BAs treatments decreased lipid droplet content (P < 0.0001) and TG content (P = 0.002) of liver. Fatty acid synthase activity was also decreased as an effect of BAs dietary supplementation. Compared to the control group, 0.1 g/kg BAs treatment increased (P < 0.05) the mRNA expression of genes Farnesoid X receptor (FXR) (P = 0.042), cytochrome P450 family 7 subfamily A member 1 (CYP7A1) (P = 0.002), and cytochrome P450 family 8 subfamily B member 1 (CYP8B1) (P = 0.017), fatty acid synthase (FAS) (P = 0.020), acetyl-CoA carboxylase (ACC) (P = 0.032), sterol regulatory element binding protein-1c (SREBP-1c) (P = 0.037), proliferator-activated receptor gamma (PPARγ) (P = 0.002), apolipoprotein B (APO-B) (P = 0.020), and very low density lipoprotein receptor (VLDLR) (P = 0.024). In conclusion, the addition of exogenous BAs reduces lipid accumulation in liver. BA supplementation reduces the mortality of hens and improves egg yolk color, with no unfavorable effect on laying performance. The result suggests that suppressed FAS activity is involved in the reduced hepatic lipid accumulation by BAs treatment.
Collapse
Affiliation(s)
- Lijing Sun
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, 61, Daizong Street, Taian City, Shandong Province 271018, PRChina
| | - Qian Xin
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, 61, Daizong Street, Taian City, Shandong Province 271018, PRChina
| | - Hongchao Jiao
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, 61, Daizong Street, Taian City, Shandong Province 271018, PRChina
| | - Xiaojuan Wang
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, 61, Daizong Street, Taian City, Shandong Province 271018, PRChina
| | - Jingpeng Zhao
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, 61, Daizong Street, Taian City, Shandong Province 271018, PRChina
| | - Haifang Li
- College of Life Sciences, Shandong Agricultural University, 61, Daizong Street, Taian City, Shandong Province 271018, PR China
| | - Yunlei Zhou
- College of Chemistry and Material Science, Shandong Agricultural University, 61, Daizong Street, Taian City, Shandong Province 271018, PR China
| | - Aizhi Cao
- Shandong Longchang Animal Health Products Co., Ltd., Jingshi Street, Jinan City, Shandong Province 250000, PR China
| | - Jianmin Wang
- Shandong Longchang Animal Health Products Co., Ltd., Jingshi Street, Jinan City, Shandong Province 250000, PR China
| | - Hai Lin
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Agricultural University, 61, Daizong Street, Taian City, Shandong Province 271018, PRChina
| |
Collapse
|
7
|
Lyu Z, Li H, Li X, Wang H, Jiao H, Wang X, Zhao J, Lin H. Fibroblast growth factor 23 inhibits osteogenic differentiation and mineralization of chicken bone marrow mesenchymal stem cells. Poult Sci 2022; 102:102287. [PMID: 36442309 PMCID: PMC9706642 DOI: 10.1016/j.psj.2022.102287] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022] Open
Abstract
Fibroblast growth factor 23 (FGF23), a bone-derived hormone, is involved in the reabsorption of phosphate (P) and the production of vitamin D hormones in the kidney. However, whether and how FGF23 regulates chicken bone metabolism remains largely unknown. In the present study, we investigated the effect of FGF23 on osteogenic differentiation and mineralization of chicken bone marrow mesenchymal stem cells (BMSCs). First, we found that the transcription of FGF23 was inhibited by β-glycerophosphate sodium (GPS, 5 mM, 10 mM, 20 mM) and 10-9 M 1, 25-dihydroxyvitamin D3 (1, 25(OH)2D3), but was stimulated by 10-7 M 1, 25(OH)2D3 and parathyroid hormone (PTH, 10-9 M, 10-8 M, 10-7 M). Second, overexpression of FGF23 by the FGF23 adenovirus (Adv-FGF23) suppressed the formation of mineralized nodules (P < 0.001) and alkaline phosphatase (ALP) activity (P < 0.05) in both differentiated and mineralized osteoblasts. Administration of FGF receptor 3 (FGFR3) inhibitor (50 nM) was sufficient to restore the FGF23-decreased ALP activity (P < 0.05), but not for the formation of mineralized nodules. In addition, the phosphorylation of ERK increased considerably with Adv-FGF23 overexpression (P < 0.05). Administration of an ERK-specific inhibitor (10 μM) could down-regulate the phosphorylation of ERK (P-ERK) (P < 0.05) and slightly restored the Adv-FGF23-reduction of ALP activity (P = 0.08). In summary, our data suggest that GPS, 1, 25(OH)2D3, and PTH could regulate FGF23 mRNA expression in vitro. FGF23 is a negative regulator of bone remodeling. FGF23 not only inhibits BMSCs osteogenesis through the FGFR3-ERK signaling pathway but also suppresses the mineralization of mature osteoblasts.
Collapse
Affiliation(s)
- Zhengtian Lyu
- Department of Animal Science, Shandong Agricultural University, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Key Lab for Animal Biotechnology and Disease Control and Prevention, Taian City, Shandong Province, 271018, China
| | - Haifang Li
- Department of Life Science, Shandong Agricultural University, Taian City, Shandong Province, 271018, China
| | - Xin Li
- Department of Animal Science, Shandong Agricultural University, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Key Lab for Animal Biotechnology and Disease Control and Prevention, Taian City, Shandong Province, 271018, China
| | - Hui Wang
- Department of Animal Science, Shandong Agricultural University, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Key Lab for Animal Biotechnology and Disease Control and Prevention, Taian City, Shandong Province, 271018, China
| | - Hongchao Jiao
- Department of Animal Science, Shandong Agricultural University, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Key Lab for Animal Biotechnology and Disease Control and Prevention, Taian City, Shandong Province, 271018, China
| | - Xiaojuan Wang
- Department of Animal Science, Shandong Agricultural University, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Key Lab for Animal Biotechnology and Disease Control and Prevention, Taian City, Shandong Province, 271018, China
| | - Jingpeng Zhao
- Department of Animal Science, Shandong Agricultural University, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Key Lab for Animal Biotechnology and Disease Control and Prevention, Taian City, Shandong Province, 271018, China
| | - Hai Lin
- Department of Animal Science, Shandong Agricultural University, Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Key Lab for Animal Biotechnology and Disease Control and Prevention, Taian City, Shandong Province, 271018, China.
| |
Collapse
|
8
|
Yan J, Pan C, Liu Y, Liao X, Chen J, Zhu Y, Huang X, Yang X, Ren Z. Dietary vitamin D3 deprivation suppresses fibroblast growth factor 23 signals by reducing serum phosphorus levels in laying hens. ANIMAL NUTRITION 2022; 9:23-30. [PMID: 35949979 PMCID: PMC9344313 DOI: 10.1016/j.aninu.2021.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/28/2021] [Accepted: 07/18/2021] [Indexed: 11/30/2022]
Abstract
The present study was carried out to evaluate the effect of dietary supplemental vitamin D3 on fibroblast growth factor 23 (FGF23) signals as well as phosphorus homeostasis and metabolism in laying hens. Fourteen 40-week-old Hy-Line Brown layers were randomly assigned into 2 treatments: 1) vitamin D3 restriction group (n = 7) fed 0 IU/kg vitamin D3 diet, and 2) regular vitamin D3 group (n = 7) fed 1,600 IU/kg vitamin D3 diet. The study lasted for 21 d. Serum parameters, phosphorus and calcium excretion status, and tissue expressions of type II sodium-phosphate co-transporters (NPt2), FGF23 signals and vitamin D3 metabolic regulators were determined. Hens fed the vitamin D3 restricted diet had decreased serum phosphorus levels (by 31.3%, P = 0.028) when compared to those fed regular vitamin D3 diet. In response to the decreased serum phosphorus, the vitamin D3 restricted laying hens exhibited: 1) suppressed kidney expressions of 25-hydroxyvitamin D 1-α-hydroxylase (CYP27B1, by 52.8%, P = 0.036) and 1,25-dihydroxyvitamin D 24-hydroxylase (CYP24A1, by 99.4%, P = 0.032); 2) suppressed serum levels of FGF23 (by 14.6%, P = 0.048) and increased serum alkaline phosphatase level (by 414.1%, P = 0.012); 3) decreased calvaria mRNA expressions of fibroblast growth factor receptors (FGFR1, by 85.2%, P = 0.003, FGFR2, by 89.4%, P = 0.014, FGFR3, by 88.8%, P = 0.017, FGFR4, by 89.6%, P = 0.030); 4) decreased kidney mRNA expressions of FGFR1 (by 65.5%, P = 0.021), FGFR4 (by 66.0%, P = 0.050) and KLOTHO (by 68.8%, P = 0.038); 5) decreased kidney protein expression of type 2a sodium-phosphorus co-transporters (by 54.3%, P = 0.039); and 6) increased percent excreta calcium (by 26.9%, P = 0.002). In conclusion, the deprivation of dietary vitamin D3 decreased FGF23 signals in laying hens by reducing serum FGF23 level and suppressing calvaria and kidney mRNA expressions of FGF23 receptors.
Collapse
|
9
|
Li T, Cao S, Liao X, Shao Y, Zhang L, Lu L, Liu Z, Luo X. The Effects of Inorganic Phosphorus Levels on Phosphorus Utilization, Local Bone-Derived Regulators, and BMP/MAPK Pathway in Primary Cultured Osteoblasts of Broiler Chicks. Front Vet Sci 2022; 9:855405. [PMID: 35392115 PMCID: PMC8983115 DOI: 10.3389/fvets.2022.855405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/03/2022] [Indexed: 02/01/2023] Open
Abstract
Understanding the underlying mechanisms that regulate the bone phosphorus (P) utilization would be helpful for developing feasible strategies to improve utilization efficiency of P in poultry. We aimed to investigate the effects of inorganic P levels on P utilization, local bone-derived regulators and bone morphogenetic protein/mitogen-activated protein kinase (BMP/MAPK) pathway in primary cultured osteoblasts of broiler chicks in order to address whether local bone-derived regulators or BMP/MAPK pathway was involved in regulating the bone P utilization of broilers using an in vitro model. The primary cultured tibial osteoblasts of broiler chicks were randomly divided into one of five treatments with six replicates for each treatment. Then, cells were respectively incubated with 0.0, 0.5, 1.0, 1.5, or 2.0 mmol/L of added P as NaH2PO4 for 24 days. The results showed that as added P levels increased, tibial osteoblastic P retention rate, number and area of mineralized nodules, the mRNA expressions of endopeptidases on the X chromosome (PHEX), dentin matrix protein 1 (DMP1), bone morphogenetic protein 2 (BMP2), and the mRNA and protein expressions of matrix extracellular phosphoglycoprotein (MEPE) increased linearly (p < 0.001) or quadratically (p < 0.04), while extracellular signal-regulated kinase 1 (ERK1) mRNA expression and c-Jun N-terminal kinase 1 (JNK1) phosphorylated level decreased linearly (p < 0.02) or quadratically (p < 0.01). Correlation analyses showed that tibial osteoblastic P retention rate was positively correlated (r = 0.452–0.564, p < 0.03) with MEPE and BMP2 mRNA expressions. Furthermore, both number and area of mineralized nodules were positively correlated (r = 0.414–0.612, p < 0.03) with PHEX, DMP1, MEPE, and BMP2 mRNA expressions but negatively correlated (r = −0.566 to −0.414, p < 0.04) with the ERK1 mRNA expression and JNK1 phosphorylated level. These results suggested that P utilization in primary cultured tibial osteoblasts of broiler chicks might be partly regulated by PHEX, DMP1, MEPE, BMP2, ERK1, and JNK1.
Collapse
Affiliation(s)
- Tingting Li
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Sumei Cao
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiudong Liao
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuxin Shao
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liyang Zhang
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lin Lu
- Mineral Nutrition Research Division, State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xugang Luo
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- *Correspondence: Xugang Luo
| |
Collapse
|
10
|
Wang X, Li P, Zhao J, Jiao H, Lin H. The temporal gene expression profiles of calcium and phosphorus transporters in Hy-Line Brown layers. Poult Sci 2022; 101:101736. [PMID: 35202896 PMCID: PMC8866894 DOI: 10.1016/j.psj.2022.101736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/21/2021] [Accepted: 01/12/2022] [Indexed: 11/07/2022] Open
Abstract
Calcium and phosphorus homeostasis is crucial for the performance and bone health of laying hens. The calcium and phosphorus transporters play an important role in calcium and phosphorus absorption, reabsorption, and excretion. In the present study, Hy-Line Brown layers were sampled at brooding period (1, 4, 6 wk), growing and developing period (12, 18 wk) and laying period (20, 28, 80 wk) respectively, and the calcium transporters CaBP-D28k and PMCA1b and phosphorus transporters NPt2a and NPt2b were respectively measured in duodenum, jejunum, ileum and kidney. The result showed that serum calcium increased (P < 0.0001) and phosphorus level fluctuated (P = 0.0019), while alkaline phosphatase activity decreased with age (P < 0.0001). The mRNA and protein expressions of CaBP-D28k in small intestine elevated after maturity (P ≤ 0.0001). In contrast, the PMCA1b mRNA showed a trend to increase with age in jejunum (P = 0.0059) and ileum (P = 0.0825) whereas there was a decrease for PMCA1b protein in 12-18 wk (P ≤ 0.0009). The peak of NPt2b mRNA were observed at 28 wk in duodenum (P = 0.0001) and jejunum (P = 0.0622) and 1 wk in ileum (P < 0.0001). The NPt2b protein expression reached the top point at 4 or 6 wk and 20 wk and decreased to the lowest point around 12 wk (P ≤ 0.0850). In kidney, CaBP-D28k mRNA was not influenced by age (P = 0.4999), while PMCA1b highly expressed in 6-12 wk (P = 0.0003). The protein expressions of CaBP-D28k (P = 0.0148) and PMCA1b (P = 0.0003) decreased with age and lowly expressed in 12-18 wk and increased thereafter. In contrast, NPt2a expression increased steadily with age and decreased at 80 wk (P < 0.0001). In conclusion, the expressions of intestinal calcium and phosphorus transporters were changed by age, intestinal CaBP-D28k and renal NPt2a showed a dramatic increase after maturity, which coincide with the increased calcium and phosphorus requirement for egg production.
Collapse
|
11
|
Influence of dietary phosphorus concentrations on the performance of rearing pigeons (Columba livia), and bone properties of squabs. Poult Sci 2022; 101:101744. [PMID: 35220034 PMCID: PMC8881650 DOI: 10.1016/j.psj.2022.101744] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/04/2022] [Accepted: 01/16/2022] [Indexed: 11/22/2022] Open
Abstract
The objective of this study was to investigate the effects of dietary P levels on the performance of rearing pigeons, and bone characteristics of squabs from 7 to 21 d of age. A total of 192 pairs of adult Silver King pigeons (40 wk of age) were used. The pigeons were randomly allocated to one of 4 treatment groups, each consisting of eight replicates of 6 pigeon pairs per replicate. Dietary treatments included the basal diet (containing 0.3% of P), the basal diet supplemented with 0.2, 0.4, or 0.8% inorganic P. And the dietary Ca content was kept at 1.40% across all treatments. The experimental diets were fed to parent pigeons as corn-soybean complete pellet feed, and squabs fed with crop milk secreted by parent pigeons. Pigeons in the group of 0.4% supplemental non-phytate phosphorus (NPP) had shorter (P = 0.045) oviposition interval than those in the control group and group of 0.8% NPP. When the diet was supplemented with 0.8% of NPP, the least average egg weight was observed (P = 0.006). Female breeding birds had much higher (P < 0.01) Ca, P, and ALP in serum than male ones. At 7-d of age, dietary P supplementation influenced P and Ca content in tibia ash of squabs (P < 0.05). The tibia ash Ca content in the group of 0.2% NPP was the highest among the treatments (P = 0.007). At d 21 of age, both the birds in the group of 0.4 and 0.8% NPP had higher tibia breaking strength (P < 0.01) and tibia ash contents (P < 0.001) compared to the ones in the control group. In conclusion, the P deficiency in the diet of parent pigeons could cause poor bone mineralization of squabs, especially impaired the bone-breaking strength and bone ash content. The 0.8% of NPP supplementation in the diet has a positive influence on mineralization of squabs although production depression was observed. Both P and Ca metabolism of female breeding birds were more active than male ones at earlier time points of rearing period. The desirable supplemental NPP level in diet for breeding pigeon was 0.4% according to the performance data in the present trial. The recommended Ca: P ratio for pigeons, which was different from the optimum value for broilers, needs to be studied in the future.
Collapse
|
12
|
Cao S, Li T, Shao Y, Zhang L, Lu L, Zhang R, Hou S, Luo X, Liao X. Regulation of bone phosphorus retention and bone development possibly by related hormones and local bone-derived regulators in broiler chicks. J Anim Sci Biotechnol 2021; 12:88. [PMID: 34380559 PMCID: PMC8359065 DOI: 10.1186/s40104-021-00610-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 06/02/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Phosphorus is essential for bone mineralization in broilers, however, the underlying mechanisms remain unclear. We aimed to investigate whether bone phosphorus retention and bone development might be regulated by related hormones and local bone-derived regulators in broilers. METHODS Broilers were fed diets containing different levels of non-phytate phosphorus (NPP) 0.15%, 0.25%, 0.35%, 0.45% and 0.55% or 0.15%, 0.22%, 0.29%, 0.36% and 0.43% from 1 to 21 or 22 to 42 days of age. Serum and tibia samples were collected for determinations of bone phosphorus retention and bone development parameters, related hormones and local bone-derived regulators of broiler chickens on d 14, 28 and 42, respectively. RESULTS Tibia ash phosphorus, total phosphorus accumulation in tibia ash (TPTA), bone mineral concentration (BMC), bone mineral density (BMD), bone breaking strength (BBS), and ash on d 14, 28 or 42, serum 1,25-dihydroxyvitamin D3 (1,25(OH)2D3) on d 28 and 42, mRNA expressions of tibia fibroblast growth factor 23 (FGF23) and dentin matrix protein 1 (DMP1) on d 14 and 28 increased linearly or quadratically (P < 0.05), while serum parathyroid hormone (PTH) on d 28, tibia alkaline phosphatase (ALP) on d 14, 28 and 42, bone gal protein (BGP) on d 14, and mRNA expression of tibia phosphate-regulating gene with homologies to endopeptidases on the X chromosome (PHEX) on d 14 and 28 decreased linearly or quadratically (P < 0.04) as dietary NPP level increased. TPTA, BMC, BMD, and ash on d 28 and 42, BBS on d 28, and ash phosphorus on d 42 were positively correlated (r = 0.389 to 0.486, P < 0.03) with serum 1,25(OH)2D3. All of the above parameters were positively correlated (r = 0.380 to 0.689, P < 0.05) with tibia DMP1 mRNA expression on d 14, 28 and 42, but negatively correlated (r = - 0.609 to - 0.538, P < 0.02) with serum PTH on d 28, tibia ALP on d 14, 28 and 42, and BGP on d 14. TPTA, BMC and ash on d 14 and BMD on d 28 were negatively correlated (r = - 0.397 to - 0.362, P < 0.03) with tibia PHEX mRNA expression, and BMD on d 28 was positively correlated (r = 0.384, P = 0.04) with tibia FGF23 mRNA expression. CONCLUSIONS These results suggested that bone phosphorus retention and bone development parameters had moderate to strong correlations with serum PTH and 1,25(OH)2D3 and tibia DMP1, PHEX, FGF23, ALP and BGP in broilers during the whole growth period, and thus they might be partly regulated by these related hormones and local bone-derived regulators.
Collapse
Affiliation(s)
- Sumei Cao
- Mineral Nutrition Research Division,State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China.,Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225000, People's Republic of China.,Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Tingting Li
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225000, People's Republic of China
| | - Yuxin Shao
- Mineral Nutrition Research Division,State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Liyang Zhang
- Mineral Nutrition Research Division,State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Lin Lu
- Mineral Nutrition Research Division,State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Rijun Zhang
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Shuisheng Hou
- Mineral Nutrition Research Division,State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China
| | - Xugang Luo
- Poultry Mineral Nutrition Laboratory, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225000, People's Republic of China.
| | - Xiudong Liao
- Mineral Nutrition Research Division,State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China.
| |
Collapse
|
13
|
Glycerol-3-phosphate and fibroblast growth factor 23 regulation. Curr Opin Nephrol Hypertens 2021; 30:397-403. [PMID: 33901058 PMCID: PMC8312345 DOI: 10.1097/mnh.0000000000000715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Both classical and nonclassical factors regulate fibroblast growth factor 23 (FGF23), with impacts on gene expression and proteolytic cleavage. Here, we review recent publications that extend current knowledge on these factors. RECENT FINDINGS Emerging nonclassical FGF23 regulators such as erythropoietin cause a balanced increase in FGF23 expression and cleavage, with minimal or no increase in biologically active intact FGF23 (iFGF23) in blood. However, circulating FGF23 profiles may not reflect the bone marrow microenvironment. For example, granulocyte colony-stimulating factor increases local marrow iFGF23 levels without impacting circulating iFGF23 levels. The view that phosphate does not increase bone FGF23 production also warrants reconsideration, as phosphate can reduce iFGF23 cleavage and phosphate-containing calciprotein particles increase FGF23 expression. Finally, a screen of renal venous plasma identifies glycerol-3-phosphate as a kidney-derived molecule that circulates to bone and bone marrow, where it is converted to lysophosphatidic acid and signals through a G-protein coupled receptor to increase FGF23 synthesis. SUMMARY FGF23 regulation is complex, requiring consideration of known and emerging stimuli, expression and cleavage, and circulating and local levels. Recent work identifies glycerol-3-phosphate as an FGF23 regulator derived from the injured kidney; whether it participates in FGF23 production downstream of classical or nonclassical factors requires further study.
Collapse
|
14
|
Wang X, Liu Z, Zhao J, Jiao H, Lin H. Dusk feeding in laying hens is shifted by light program via involvement of clock genes. J Anim Physiol Anim Nutr (Berl) 2021; 105:1103-1112. [PMID: 33774881 DOI: 10.1111/jpn.13528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 11/30/2022]
Abstract
Dusk feeding is practised probably to satisfy the energy requirement during night. However, little is known on the changes with clock gene expressions during this feeding behaviour. In our present study, the linkage of clock gene expressions and feeding behaviour in dusk feeding was investigated in laying hens under two lighting programs: the conventional lighting program (Control) with a light period from 05:00 AM to 21:00 PM and a dark period from 21:00 PM to 05:00 AM; or the shifted lighting program group (SLP) with a light period from 02:00 AM to 18:00 PM and a dark period from 18:00 PM to 02:00 AM. The gene expression-related appetite and circadian rhythm were investigated in hypothalamus and proventriculus at 1, 3 and 5 h before scotophase. The results demonstrated that dusk feeding was synchronously shifted with altered lighting program, dusk feeding was observed from 5 h before scotophase in both groups. The expressions of anorexigenic gene proopiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript (CART) were downregulated (p < 0.05) during dusk feeding and changed in pace with lighting program. The expressions of clock gene period 2 (Per2) and cryptochrome 1 (Cry1) in hypothalamus were downregulated (p < 0.05) during dusk feeding and shifted by lighting program. In the proventriculus, ghrelin expression was decreased (p < 0.05) during dusk feeding by lighting program. In conclusion, the expressions of clock genes Per2 and Cry1 are linked with the downregulated expressions of anorexigenic genes, POMC and CART, and in turn the augmented feed intake at dusk.
Collapse
Affiliation(s)
- Xiaojuan Wang
- Department of Animal Science & Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Shandong, China
| | - Zengmin Liu
- Department of Animal Science & Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Shandong, China
| | - Jingpeng Zhao
- Department of Animal Science & Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Shandong, China
| | - Hongchao Jiao
- Department of Animal Science & Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Shandong, China
| | - Hai Lin
- Department of Animal Science & Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Shandong, China
| |
Collapse
|
15
|
Xin Q, Wang M, Jiao H, Zhao J, Li H, Wang X, Lin H. Prolonged scotophase within a 24 hour light regime improves eggshell quality by enhancing calcium deposition in laying hens. Poult Sci 2021; 100:101098. [PMID: 34051406 PMCID: PMC8165574 DOI: 10.1016/j.psj.2021.101098] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/08/2021] [Accepted: 02/27/2021] [Indexed: 11/26/2022] Open
Abstract
Calcium (Ca) and phosphorus (P) transporters are responsible for their absorption and transport in small intestine and kidney, contributing to eggshell formation. The light-dark cycle is a primary cue in the reproduction of laying hen. In this study, we investigated the effect of different light-dark programs on eggshell quality and the expression of genes related to Ca and P transportation in laying hens. Seventy-two 56-week-old laying hens were randomly divided into two groups and reared at 16-h light and 8-h dark (control) or 9-h light and 15-h dark regime (long dark phase, LDP). The expressions of calcium transporter calbindin-D28k (CaBP-D28k), plasma membrane Ca ATPase 1b (PMCA1b), and phosphorus transporter NaPi-IIb (NPt2b) and NaPi-IIa (NPt2a) were measured in the small intestine, kidney, and eggshell gland. The results showed that feed intake (P < 0.001) and egg weight (P = 0.05) were decreased by LDP treatment. Compared with control, the eggshell hardness was increased (P = 0.011) by LDP treatment, but the eggshell thickness and the percentage of eggshell were not changed. The Ca and P contents in eggshell were increased by LDP treatment. During the scotophase, LDP-hens showed higher serum Ca (P = 0.0056) and P levels (P = 0.079) but lower alkaline phosphatase (ALP) activity than that of control hens. In the duodenum, the relative higher expression of CaBP-D28k and PMCA1b in scotophase compared to photophase was masked by LDP treatment. The expression of CaBP-D28k and osteopontin (OPN) in the eggshell gland were increased by LDP treatment, compared to control hens. In the jejunum, the protein expression levels of CaBP-D28k and PMCA1b decreased during photophase in LDP-hens. The result indicates that the increased blood Ca and P concentration during scotophase by LPD treatment is beneficial to the deposition of Ca and P in the eggshell. The result offers an alternative strategy for managing laying hens with poor eggshell quality.
Collapse
Affiliation(s)
- Qian Xin
- College of Animal Science and Techonology, Shandong Key Lab for Animal Biotechnology and Disease Control, Taian, Shandong 271018, China
| | - Minghui Wang
- College of Animal Science and Techonology, Shandong Key Lab for Animal Biotechnology and Disease Control, Taian, Shandong 271018, China
| | - Hongchao Jiao
- College of Animal Science and Techonology, Shandong Key Lab for Animal Biotechnology and Disease Control, Taian, Shandong 271018, China
| | - Jingpeng Zhao
- College of Animal Science and Techonology, Shandong Key Lab for Animal Biotechnology and Disease Control, Taian, Shandong 271018, China
| | - Haifang Li
- College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Xiaojuan Wang
- College of Animal Science and Techonology, Shandong Key Lab for Animal Biotechnology and Disease Control, Taian, Shandong 271018, China
| | - Hai Lin
- College of Animal Science and Techonology, Shandong Key Lab for Animal Biotechnology and Disease Control, Taian, Shandong 271018, China.
| |
Collapse
|
16
|
Liu J, Dong C, Zhai Z, Tang L, Wang L. Glyphosate-induced lipid metabolism disorder contributes to hepatotoxicity in juvenile common carp. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116186. [PMID: 33302084 DOI: 10.1016/j.envpol.2020.116186] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/12/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
Residues of glyphosate (GLY) are widely detected in aquatic systems, raising potential environmental threats and public health concerns, but the mechanism underlying GLY-induced hepatotoxicity in fish has not been fully elucidated yet. This study was designed to explore the hepatotoxic mechanism using juvenile common carp exposed to GLY for 45 d, and plasma and liver samples were collected at 15 d, 30 d, and 45 d to analyze the assays. First, GLY-induced hepatic damage was confirmed by serum liver damage biomarker and hepatic histopathological analysis. Next, changes in oxidative stress biomarkers, gene expression levels of pro- and anti-inflammatory cytokines, and lipid metabolism-related parameters in collected samples were analyzed to clarify their roles in GLY-induced hepatic damage. Data showed that oxidative stress was an early event during GLY exposure, followed by hepatic inflammatory response. Lipid metabolism disorder was a late event during GLY exposure, as evidenced by overproduced hepatic free fatty acids, enhanced lipogenesis-related gene expression levels, reduced lipolysis-related gene expression levels, and resultant hepatic lipid accumulation. Collectively, these findings demonstrate that GLY induces hepatotoxicity in fish through involvement of oxidative stress, inflammatory response, and lipid metabolism disorder, which are intimately interrelated with each other during GLY exposure.
Collapse
Affiliation(s)
- Jingbo Liu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China
| | - Chenyu Dong
- The Third Affiliated Hospital of Sun Yat-sen University, 600 Tianhe Road, Tianhe District, Guangzhou City, Guangdong Province, 510000, China
| | - Zhenzhen Zhai
- Tai'an City Central Hospital, 29 Longtan Road, Tai'an City, Shandong Province, 271000, China
| | - Liang Tang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China
| | - Lin Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China; Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, Shandong Province, 271018, China.
| |
Collapse
|
17
|
Ren ZZ, Yan JK, Pan C, Liu YL, Wen HY, Yang X, Huang XH, Lei XG, Yang XJ. Supplemental Nicotinamide Dose-Dependently Regulates Body Phosphorus Excretion via Altering Type II Sodium-Phosphate Co-Transporter Expressions in Laying Hens. J Nutr 2020; 150:2070-2076. [PMID: 32470983 DOI: 10.1093/jn/nxaa148] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/31/2020] [Accepted: 05/04/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Dietary supplemental nicotinamide is used to treat hyperphosphatemia in humans. However, the mechanisms of its impact on body phosphorus homeostasis remain unclear. OBJECTIVE This study was to determine effects and molecular mechanisms of 3 dietary nicotinamide concentrations on body phosphorus homeostasis in laying hens. METHODS Hy-Line Brown layers (total = 21; 40 wk old; body weight: 1,876 ± 24 g) were individually housed (n = 7) and fed a corn-soybean meal-based diet supplemented with nicotinamide at 20 (N20), 140 (N140), and 1000 (N1000) mg/kg for 21 d. Serum phosphorus and fibroblast growth factor 23 (FGF23) concentrations, phosphorus and calcium excretion, and mRNA and/or protein of type II sodium-phosphate co-transporters (NPt2a, NPt2ab) and FGF23 and FGF23 receptors were measured in the intestines, calvaria, kidney, and liver. RESULTS Hens in the N1000 group had a 16% lower serum phosphorus concentration and 22% greater phosphorus excretion than those in the N20 or N140 group (P ≤ 0.05). Compared with hens in the N20 group, hens in the N140 and N1000 groups, which did not differ, had 15-21% lower serum FGF23 concentrations, 19-22% greater calcium excretion, 43-56% lower ileum NPT2b protein production, and 1.5- to 1.6-fold greater kidney NPT2a protein production, respectively (all differences at P ≤ 0.05). CONCLUSIONS Supplementing high concentrations of nicotinamide in diets for laying hens led to accelerated phosphorus and calcium excretions and decreased serum phosphorus and FGF23 concentrations, which were associated with downregulated intestinal NPt2b protein production. Our findings exclude kidney NPt2a protein production as a primary mechanism for the nicotinamide-induced body phosphorus loss.
Collapse
Affiliation(s)
- Zhou Zheng Ren
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Jia Kun Yan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Chong Pan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yan Li Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Hao Yu Wen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xin Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xin Huo Huang
- Nano Vitamin Engineering Research Center of Shaanxi Province, Xi'an, China
| | - Xin Gen Lei
- Department of Animal Science, Cornell University, Ithaca, NY, USA
| | - Xiao Jun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
18
|
Gloux A, Le Roy N, Ezagal J, Même N, Hennequet-Antier C, Piketty ML, Prié D, Benzoni G, Gautron J, Nys Y, Narcy A, Duclos MJ. Possible roles of parathyroid hormone, 1.25(OH) 2D 3, and fibroblast growth factor 23 on genes controlling calcium metabolism across different tissues of the laying hen. Domest Anim Endocrinol 2020; 72:106407. [PMID: 32006872 DOI: 10.1016/j.domaniend.2019.106407] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/08/2019] [Accepted: 10/16/2019] [Indexed: 12/20/2022]
Abstract
This study provides an integrative description of candidate gene expression across tissues involved in calcium (Ca) metabolism during the egg laying cycle, using the well-defined model of Ca supply as fine or coarse particles of calcium carbonate (CaCO3). Plasma and tissue samples were collected from hens at the peak of laying at 0 to 1, 9 to 10, and 18 to 19 h postovulation (PO). After mRNA preparation from the parathyroid gland, medullary bone, liver, kidney, duodenum, and jejunum, gene expressions were quantified using RT-qPCR. The highest levels of parathyroid hormone (PTH) mRNA in the parathyroid gland (P < 0.05), and of the active form of vitamin D3 1.25(OH)2D3 in the plasma (P < 0.01) were observed at 18 to 19 h PO. During this active phase of eggshell formation, bone resorption was attested to high levels of plasma inorganic phosphorus (iP) and the receptor activation of nuclear factor-κB expression in the bone (P < 0.001 and P < 0.05, respectively). At this stage, 5 genes of the transcellular and the paracellular Ca absorption pathways in the intestine (P < 0.05) and the Ca channel transient receptor potential cation channel subfamily V member 5 (P < 0.05), involved in its reabsorption in the kidney, were overexpressed. At 0 to 1 h PO during the subsequent daylight period, 2 candidates of the transcellular and the paracellular Ca pathways (P < 0.05) remained at high levels in the intestine, while calbindin D 28K expression was the highest in the kidney (P < 0.05). As PTH mRNA and 1.25(OH)2D3 were low, bone accretion was likely active at this stage. The phosphaturic hormone fibroblast growth factor 23 (FGF23) was overexpressed at 18 to 19 h PO (P < 0.05) in the bone when plasma iP was high, which suggested a role in the subsequent reduction of P reabsorption in the kidney, as attested to the decreased expression of P cotransporters, leading to iP clearance from the plasma at 0 to 1 h PO (P < 0.05). The low levels of 1.25(OH)2D3 at this stage coincided with increased expression of the 24-hydroxylase gene in the kidney (P < 0.05). In hens fed fine particles of CaCO3, higher plasma levels of 1,25(OH)2D3 and higher expression of several genes involved in bone turnover reflected a stronger challenge to Ca homeostasis. Altogether, these data support the hypothesis that FGF23 could drive vitamin D metabolism in the laying hen, as previously documented in other species and explain the tight link between P and Ca metabolisms.
Collapse
Affiliation(s)
- A Gloux
- BOA, INRAE, Université de Tours, 37380 Nouzilly, France.
| | - N Le Roy
- BOA, INRAE, Université de Tours, 37380 Nouzilly, France
| | - J Ezagal
- BOA, INRAE, Université de Tours, 37380 Nouzilly, France
| | - N Même
- BOA, INRAE, Université de Tours, 37380 Nouzilly, France
| | | | - M L Piketty
- Service des Explorations Fonctionnelles, G.H. Necker Enfants Malades, Université Paris Descartes Faculté de Médecine, INSERM U11513, 75743 Paris cedex 15, France
| | - D Prié
- Service des Explorations Fonctionnelles, G.H. Necker Enfants Malades, Université Paris Descartes Faculté de Médecine, INSERM U11513, 75743 Paris cedex 15, France
| | - G Benzoni
- Neovia, Route de Talhouët, 56250 Saint-Nolff, France
| | - J Gautron
- BOA, INRAE, Université de Tours, 37380 Nouzilly, France
| | - Y Nys
- BOA, INRAE, Université de Tours, 37380 Nouzilly, France
| | - A Narcy
- BOA, INRAE, Université de Tours, 37380 Nouzilly, France
| | - M J Duclos
- BOA, INRAE, Université de Tours, 37380 Nouzilly, France.
| |
Collapse
|
19
|
Dietary Phytase and Lactic Acid-Treated CerealGrains Differently Affected Calcium and PhosphorusHomeostasis from Intestinal Uptake to SystemicMetabolism in a Pig Model. Nutrients 2020; 12:nu12051542. [PMID: 32466313 PMCID: PMC7284645 DOI: 10.3390/nu12051542] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 12/14/2022] Open
Abstract
High intestinal availability of dietary phosphorus (P) may impair calcium (Ca)homeostasis and bone integrity. In the present study, we investigated the effect of phytasesupplementation in comparison to the soaking of cereal grains in 2.5% lactic acid (LA) on intestinalCa and P absorption; intestinal, renal, and bone gene expression regarding Ca and P homeostasis;bone parameters; and serum levels of regulatory hormones in growing pigs. Thirty-two pigs wererandomly assigned to one of four diets in a 2 × 2 factorial design in four replicate batches for 19days. The diets comprised either untreated or LA-treated wheat and maize without and withphytase supplementation (500 phytase units/kg). Although both treatments improved the Pbalance, phytase and LA-treated cereals differently modulated gene expression related to intestinalabsorption, and renal and bone metabolism of Ca and P, thereby altering homeostatic regulatorymechanisms as indicated by serum Ca, P, vitamin D, and fibroblast growth factor 23 levels.Moreover, phytase increased the gene expression related to reabsorption of Ca in the kidney,whereas LA-treated cereals decreased the expression of genes for osteoclastogenesis in bones,indicating an unbalanced systemic availability of minerals. In conclusion, high intestinalavailability of dietary P may impair Ca homeostasis and bone integrity.
Collapse
|
20
|
Ren Z, Yan J, Hu Q, Liu X, Pan C, Liu Y, Zhang X, Yang X, Yang X. Phosphorus Restriction Changes the Expression of Fibroblast Growth Factor 23 and Its Receptors in Laying Hens. Front Physiol 2020; 11:85. [PMID: 32116791 PMCID: PMC7034339 DOI: 10.3389/fphys.2020.00085] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/27/2020] [Indexed: 12/31/2022] Open
Abstract
Dietary phosphorus oversupply wastes non-renewable natural resources and raises environmental concerns in animal agriculture. We hypothesized that laying hens do not need large safety margins for dietary phosphorus because of the existence of fibroblast growth factor 23 (FGF23). In experiment 1, a total of 504 Hy-Line Brown laying hens (40-week-old) were randomly assigned to seven diets (for each diet, six replicates of 12 hens), containing 0.12, 0.17, 0.22, 0.27, 0.32, 0.37, and 0.42% non-phytate phosphorus, respectively, for 15 weeks. In experiment 2, a total of 14 Hy-Line Brown laying hens (40-week-old) were randomly assigned to two diets: (1) phosphorus restricted (n = 7) diet containing 0.14% non-phytate phosphorus, and (2) regular phosphorus (n = 7) diet containing 0.32% non-phytate phosphorus, for 21 days. Laying performance and egg quality were investigated in experiments 1 and 2. Phosphorus excretion and physiological changes were determined in experiment 2. It was found that dietary non-phytate phosphorus levels had no effects (P > 0.05) on laying performance and egg quality in either experiment. In experiment 2, laying hens fed 0.14% non-phytate phosphorus had decreased phosphorus excretion (by 52.6%, P < 0.001) when compared to those fed 0.32% non-phytate phosphorus. In response to the 0.14% non-phytate phosphorus diet, laying hens in experiment 2 exhibited: (1) suppressed calvaria mRNA expressions of FGF23 (by 57.8%, P < 0.001) and fibroblast growth factor receptor 1 (FGFR1, by 52.8%, P = 0.012), (2) decreased serum levels of FGF23 (by 41.7%, P = 0.011) and phosphorus (by 40.3%, P < 0.001), (3) decreased kidney mRNA expressions of FGFR1 (by 66.0%, P = 0.040) and FGFR4 (by 63.3%, P = 0.012) and decreased kidney protein expression of type 2a sodium-phosphorus co-transporter (NPt2a, by 51%, P = 0.025), (4) increased duodenum protein expression of NPt2b (by 45%, P = 0.032), and (5) increased excretion of calcium (by 22.9%, P ≤ 0.024). Collectively, decreasing dietary non-phytate phosphorus by up to 0.12% had no negative effects on egg-production performance but significantly decreased phosphorus excretion in laying hens. The laying hens adjusted to low-phosphorus diets by increasing intestinal NPt2b protein production, which was associated with decreased serum FGF23 concentration. Decreasing dietary non-phytate phosphorus is suggested to laying-hen nutritionists.
Collapse
Affiliation(s)
- Zhouzheng Ren
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jiakun Yan
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Qianli Hu
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xinshuai Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Chong Pan
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yanli Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xiaozhen Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xin Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
21
|
Gloux A, Duclos MJ, Brionne A, Bourin M, Nys Y, Réhault-Godbert S. Integrative analysis of transcriptomic data related to the liver of laying hens: from physiological basics to newly identified functions. BMC Genomics 2019; 20:821. [PMID: 31699050 PMCID: PMC6839265 DOI: 10.1186/s12864-019-6185-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 10/15/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND At sexual maturity, the liver of laying hens undergoes many metabolic changes to support vitellogenesis. In published transcriptomic approaches, hundreds of genes were reported to be overexpressed in laying hens and functional gene annotation using gene ontology tools have essentially revealed an enrichment in lipid and protein metabolisms. We reanalyzed some data from a previously published article comparing 38-week old versus 10-week old hens to give a more integrative view of the functions stimulated in the liver at sexual maturity and to move beyond current physiological knowledge. Functions were defined based on information available in Uniprot database and published literature. RESULTS Of the 516 genes previously shown to be overexpressed in the liver of laying hens, 475 were intracellular (1.23-50.72 fold changes), while only 36 were predicted to be secreted (1.35-66.93 fold changes) and 5 had no related information on their cellular location. Besides lipogenesis and protein metabolism, we demonstrated that the liver of laying hens overexpresses several clock genes (which supports the circadian control of liver metabolic functions) and was likely to be involved in a liver/brain/liver circuit (neurotransmitter transport), in thyroid and steroid hormones metabolisms. Many genes were associated with anatomical structure development, organ homeostasis but also regulation of blood pressure. As expected, several secreted proteins are incorporated in yolky follicles but we also evidenced that some proteins are likely participating in fertilization (ZP1, MFGE8, LINC00954, OVOCH1) and in thyroid hormone maturation (CPQ). We also proposed that secreted proteins (PHOSPHO1, FGF23, BMP7 but also vitamin-binding proteins) may contribute to the development of peripheral organs including the formation of medullar bones to provide labile calcium for eggshell formation. Thirteen genes are uniquely found in chicken/bird but not in human species, which strengthens that some of these genes may be specifically related to avian reproduction. CONCLUSIONS This study gives additional hypotheses on some molecular actors and mechanisms that are involved in basic physiological function of the liver at sexual maturity of hen. It also revealed some additional functions that accompany reproductive capacities of laying hens, and that are usually underestimated when using classical gene ontology approaches.
Collapse
Affiliation(s)
- Audrey Gloux
- BOA, INRA, Université de Tours, 37380, Nouzilly, France.
| | | | | | - Marie Bourin
- Institut Technique de l'Aviculture (ITAVI), Centre INRA Val de Loire, F-37380, Nouzilly, France
| | - Yves Nys
- BOA, INRA, Université de Tours, 37380, Nouzilly, France
| | | |
Collapse
|
22
|
Li P, Wang R, Jiao H, Wang X, Zhao J, Lin H. Effects of Dietary Phosphorus Level on the Expression of Calcium and Phosphorus Transporters in Laying Hens. Front Physiol 2018; 9:627. [PMID: 29910739 PMCID: PMC5992381 DOI: 10.3389/fphys.2018.00627] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/09/2018] [Indexed: 12/02/2022] Open
Abstract
The transport of calcium and phosphorus is mainly relied on their corresponding transporters. The aim of this study was to determine the effect of dietary phosphorus level on the expression of the relevant calcium and phosphorus transporters in laying hens, which has a large amount of calcium and phosphorus input from intestine and output from kidney and eggshell gland. Thirty-six 25-week-old Hy-line Brown hens were fed diets with different available phosphorus level (AP, 0.15, 0.41, and 0.82%), respectively. The expression of phosphorus transporters type IIa and type IIb Na/Pi co-transporter (NPt2a, NPt2b), calcium transporter calbindin-D28k (CaBP-D28k), and plasma membrane Ca ATPase 1b (PMCA1b) were measured in small intestine, kidney, and eggshell gland by RT-PCR and western blot. The results showed that serum calcitriol and PTH concentrations were not affected (P > 0.05) by dietary AP levels. Duodenum had the highest mRNA and protein expression level of NPt2b than jejunum and ileum (P < 0.05). The protein expression abundance of CaBP-D28k and PMCA1b were higher in duodenum than that in jejunum and ileum (P < 0.05). 0.15%-AP diet upregulated the ileal mRNA expression level of NPt2b and renal mRNA expression level of NPt2a (P < 0.05), while downregulated the protein abundance of NPt2b and CaBP-D28k mRNA expression in shell gland (P < 0.05). In conclusion, both the Ca and P transporters were highly expressed in duodenum. Low AP diet decreased protein expression abundance of NPt2b in duodenum while upregulated the mRNA expression level of NPt2a in kidney. The result suggests that both the phosphorus absorption in proximal intestine and its reabsorption in kidney are involved in the adaption to low AP diet.
Collapse
Affiliation(s)
- Peng Li
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Rongmei Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China.,College of Sports Medicine and Rehabilitation, Taishan Medical University, Tai'an, China
| | - Hongchao Jiao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Xiaojuan Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Jingpeng Zhao
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| | - Hai Lin
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, China
| |
Collapse
|