1
|
Fablet L, Bonin A, Zarzoso‐Lacoste D, Dubut V, Walch L. Exploring Bird Gut Microbiota Through Opportunistic Fecal Sampling: Ecological and Evolutionary Perspectives. Ecol Evol 2025; 15:e71291. [PMID: 40230867 PMCID: PMC11995298 DOI: 10.1002/ece3.71291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 03/26/2025] [Accepted: 04/02/2025] [Indexed: 04/16/2025] Open
Abstract
Wetland ecosystems are facing alarming rates of destruction and degradation, posing significant challenges for avian populations reliant on these habitats. Bird health is closely linked to the composition of their intestinal microbiota, which is primarily influenced by local conditions, primarily through diet. Building on our previous work identifying dietary variations among bird populations in marshes within a Ramsar site along the Somme and Avre rivers (France), this pilot study aimed to assess the relevance of using fecal samples collected from the ground to characterize avian intestinal microbiota via 16S rRNA metabarcoding. We hypothesized that this noninvasive sampling method would capture how bird traits and environmental factors shape fecal microbiota composition. Sampling was conducted during the breeding season at seven locations (six within the Ramsar site and one on its outskirts) spanning rural or peri-urban environments. A total of 52 fecal samples from nine bird species or families, predominantly waterbirds, were analyzed for bacterial composition. At the phylum level, Firmicutes and Proteobacteria were predominant, with the relative abundance of genera such as Clostridium, Rothia, Bacillus, Caldilinea and Pseudomonas varying among bird species. The potential enteropathogen Campylobacter was primarily detected in samples from peri-urban sites. Multivariate analyses revealed significant variations in bacterial composition associated with bird trophic guild, ecology, body length, pond surface and habitat location. Additionally, a weak correlation was observed between host phylogeny and microbiota composition. Although the limited sample size, particularly for some species, constrains the robustness of these findings, the observed trends align with ecological expectations. This study highlights the potential of opportunistically collected fecal samples as a low-impact tool for exploring the relationship between bird gut microbiota and their habitat.
Collapse
Affiliation(s)
- Laura Fablet
- Sorbonne Université, CNRS, IRD, INRAEUniversité Paris Est Créteil, Université Paris Cité, Institute of Ecology and Environmental Sciences (IEES‐Paris)ParisFrance
| | | | - Diane Zarzoso‐Lacoste
- UMR CNRS 7058 Ecologie et Dynamique Des Systèmes Anthropisés (EDYSAN)Université de Picardie Jules VerneAmiensFrance
| | - Vincent Dubut
- Aix Marseille UnivAvignon Université, CNRS, IRD, IMBEMarseilleFrance
- ADENEKOSaint‐GironsFrance
| | - Laurence Walch
- Sorbonne Université, CNRS, IRD, INRAEUniversité Paris Est Créteil, Université Paris Cité, Institute of Ecology and Environmental Sciences (IEES‐Paris)ParisFrance
| |
Collapse
|
2
|
Chen W, Song T, Li D, Chen M, Wang P, Ye J. Effect of dietary Clostridium butyricum supplementation on growth performance, immune function, and intestinal health of hybrid grouper ( Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂). Front Immunol 2025; 16:1557256. [PMID: 40078994 PMCID: PMC11897522 DOI: 10.3389/fimmu.2025.1557256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/10/2025] [Indexed: 03/14/2025] Open
Abstract
Introduction The aim of this study is to investigate the effects of supplementing Clostridium butyricum (C. butyricum) on hybrid grouper (Epinephelus fuscoguttatus ♀ × Epinephelus lanceolatus ♂), with a particular focus on its impact on growth performance, blood composition, intestinal antioxidant capacity, gut microbiota, tight junction protein (ZO-1) expression, and inflammatory gene expression. The study seeks to uncover the potential health benefits of C. butyricum supplementation for hybrid grouper. Methods The experiment included four groups: a control group (CON) and three experimental groups, each supplemented with different strains of C. butyricum (KM, DZN, and CLH), with a concentration of 1 × 10⁷ colony-forming units per gram. These groups were designated as CB1 (KM), CB2 (DZN), and CB3 (CLH). The study evaluated growth performance, blood composition, intestinal antioxidant capacity, gut microbiota, ZO-1 protein expression, and inflammatory gene expression (IL-1β and Ikk-β). Result The results indicated that supplementation with C. butyricum had no significant effect on body weight gain (WG), feed efficiency (FE), or body composition. However, the CB3 group significantly increased the activity of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in the intestine, as well as the expression of ZO-1. In addition, the CB3 group significantly increased serum lysozyme (LZM) activity, complement 4 (C4) levels, and immunoglobulin M (IgM) concentration, while significantly reducing the expression of pro-inflammatory genes (IL-1β and Ikk-β). After supplementation with C. butyricum, the level of malondialdehyde (MDA) in the intestine was significantly lower than that in the control group, indicating a reduction in intestinal oxidative stress. Supplementation with C. butyricum also altered the composition of the gut microbiota, promoting the growth of beneficial bacteria and inhibiting pathogenic bacteria, thereby further enhancing ZO-1 expression and intestinal barrier function. Discussion This study suggests that supplementing C. butyricum has a significant immunomodulatory effect on hybrid grouper, enhancing serum immune parameters, alleviating intestinal inflammation and oxidative stress, and promoting intestinal health. Although no significant impact was observed on growth performance, the role of C. butyricum in improving intestinal barrier function and modulating the gut microbiota highlights its potential for enhancing fish health.
Collapse
Affiliation(s)
| | | | | | | | | | - Jidan Ye
- Fisheries College of Jimei University, Xiamen Key Laboratory for Feed Quality Testing and Safety Evaluation, Xiamen, China
| |
Collapse
|
3
|
Bayat M, Darmani Kuhi H, Mehr MRA, Hossein-Zadeh NG. Dietary prebiotic alleviates experimentally induced coccidiosis in broilers. Res Vet Sci 2024; 180:105440. [PMID: 39471752 DOI: 10.1016/j.rvsc.2024.105440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/06/2024] [Accepted: 10/21/2024] [Indexed: 11/01/2024]
Abstract
An experiment was conducted to determine the effects of prebiotic on growth performance and coccidiosis prevention in challenged broilers with Eimeria. A total of 420 1-d-old male Ross 308 chicks were used in a completely randomized design with 7 treatments and 5 replicates with 12 birds in each replication. Dietary treatments were: 1) negative control (without prebiotic and without challenge), 2) positive control (challenged with sporulated oocysts of Eimeria (SOE) without prebiotic), 3) 0.2 % prebiotic in starter, 0.1 % in grower and 0.05 % in finisher challenged with SOE, 4) 0.2 % prebiotic in starter,0.1 % in grower and 0.05 % in finisher without challenge, 5) 0.2 % prebiotic in the whole rearing period challenged with SOE, 6) 0.2 % prebiotic in the whole rearing period without challenge and 7) and Salinomycin (0.05 % of diet). At 7 d of age, treatments were challenged with 20-fold dose of the EIMERIAVAX 4 m as a trivalent live attenuated coccidiosis vaccine. On d 28, intestinal coccidiosis lesions and dropping were scored in the scale of 0-3 and 0-4, respectively, and oocysts per gram feces (OPG) were measured. Prebiotic at either supplementation rate increased body weight gain and improved feed conversion ratio compared with PC group. Challenged broilers fed fixed level of prebiotic displayed lower OPG, dropping scores and coccidiosis lesions scores in upper and middle regions of intestine than PC group, with the effect being similar to unchallenged birds.
Collapse
Affiliation(s)
- Mahnaz Bayat
- Department of Animal Science, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran
| | - Hassan Darmani Kuhi
- Department of Animal Science, Faculty of Agricultural Sciences, University of Guilan, Rasht, Iran.
| | | | | |
Collapse
|
4
|
Fonseca A, Kenney S, Van Syoc E, Bierly S, Dini-Andreote F, Silverman J, Boney J, Ganda E. Investigating antibiotic free feed additives for growth promotion in poultry: effects on performance and microbiota. Poult Sci 2024; 103:103604. [PMID: 38484563 PMCID: PMC10951610 DOI: 10.1016/j.psj.2024.103604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/24/2024] Open
Abstract
The poultry industry is evolving towards antibiotic-free production to meet market demands and decelerate the increasing spread of the antimicrobial resistance. The growing need for antibiotic free products has challenged producers to decrease or completely stop using antimicrobials as feed supplements in broiler diet to improve feed efficiency, growth rate, and intestinal health. Natural feed additives (e.g., probiotics and phytobiotics) are promising alternatives to substitute antimicrobial growth promoters. The goal of our study was to characterize the effects of a Probiotic and an Essential Oils blend on broilers' performance and perform a time-series analysis to describe their excreta microbiome. A total of 320 Cobb 500 (1-day-old) chicks were raised for 21 d in 32 randomly allocated cages. Treatments consisted of 4 experimental diets: a basal diet, and a basal diet mixed with an Antibiotic (bacitracin methylene disalicylate), an essential oils blend (oregano oil, rosemary, and red pepper), or a Probiotic (Bacillus subtilis). Body weight (on 1, 10, and 21d), and feed intake (10d and 21d) were recorded and feed conversion ratio was calculated. Droppings were collected daily (1-21d) to characterize broilers' excreta microbiota by targeted sequencing of the bacterial 16S rRNA gene. The Probiotic significantly improved feed conversion ratio for starter phase 1 to 10d (P = 0.03), grower phase 10 to 21d (P = 0.05), and total period 1 to 21d (P = 0.01) compared to the Antibiotic. Feed supplements did not affect alpha diversity but did impact microbial beta diversity (P < 0.01). Age also impacted microbiome turnover as differences in alpha and beta diversity were detected. Furthermore, when compared to the basal diet, the probiotic and antibiotic significantly impacted relative abundance of Bifidobacterium (log2 fold change -1.44, P = 0.03), Intestinimonas (log2 fold change 0.560, P < 0.01) and Ligilactobacillus (log2 fold change -1.600, P < 0.01). Overall, Probiotic supplementation but not essential oils supplementation positively impacted broilers' growth performance by directly causing directional shifts in broilers' excreta microbiota structure.
Collapse
Affiliation(s)
- Ana Fonseca
- Department of Animal Science, The Pennsylvania State University, University Park, PA, USA; One Health Microbiome Center, The Pennsylvania State University, University Park, PA, USA
| | - Sophia Kenney
- Department of Animal Science, The Pennsylvania State University, University Park, PA, USA; One Health Microbiome Center, The Pennsylvania State University, University Park, PA, USA
| | - Emily Van Syoc
- Department of Animal Science, The Pennsylvania State University, University Park, PA, USA; One Health Microbiome Center, The Pennsylvania State University, University Park, PA, USA; Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Stephanie Bierly
- Department of Animal Science, The Pennsylvania State University, University Park, PA, USA; One Health Microbiome Center, The Pennsylvania State University, University Park, PA, USA
| | - Francisco Dini-Andreote
- One Health Microbiome Center, The Pennsylvania State University, University Park, PA, USA; Department of Plant Science and Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Justin Silverman
- One Health Microbiome Center, The Pennsylvania State University, University Park, PA, USA; College of Information Sciences and Technology, The Pennsylvania State University, University Park, PA, USA; Department of Statistics, The Pennsylvania State University, University Park, PA, USA; Department of Medicine, The Pennsylvania State University, University Park, PA, USA; Institute for Computational and Data Science, The Pennsylvania State University, University Park, PA, USA
| | - John Boney
- Department of Animal Science, The Pennsylvania State University, University Park, PA, USA
| | - Erika Ganda
- Department of Animal Science, The Pennsylvania State University, University Park, PA, USA; One Health Microbiome Center, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
5
|
Zhang H, Wang Y, Wang Y, Wei B, Wang L, Nguyen MT, Lv X, Huang Y, Chen W. Fermented calcium butyrate supplementation in post-peak laying hens improved ovarian function and tibia quality through the "gut-bone" axis. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 16:350-362. [PMID: 38362518 PMCID: PMC10867563 DOI: 10.1016/j.aninu.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 09/21/2023] [Accepted: 10/15/2023] [Indexed: 02/17/2024]
Abstract
The compromised egg quality and leg abnormality during the end of the laying cycle (after 40 weeks) have been leading to poor animal welfare and substantial economic losses. Therefore, the effects of fermented calcium (Ca) butyrate, produced by fermentation by Clostridium butyricum, on production, eggshell quality, and tibial property of hens were explored. A total of 192 Hy-line brown laying hens at 50-week-old were assigned to a basal diet or the basal diet with 300 mg/kg of the fermented Ca butyrate from 50 to 58 weeks of age. Each treatment had 6 replicates with 16 hens each. The diet supplemented with 300 mg/kg fermented Ca butyrate notably increased egg weight, ovarian follicle number, and eggshell strength (P = 0.072) as compared to the basal diet, which were associated with cytokine secretion, toll-like receptor signaling pathways, and intestinal immunity based on the RNA-seq data from the granulosa. Dietary Ca butyrate inclusion decreased the expression of ileal tumor necrosis factor-alpha and serum pro-inflammatory cytokine concentration, as well as increased the content of serum immunoglobulin A when compared to the basal diet (both P < 0.05). The birds that received fermented Ca butyrate diets exhibited higher villus height (P < 0.05) and upregulated expression of tight junction proteins, whereas it did not alter the composition of cecal microbiota (P > 0.05). In addition, the diet with fermented Ca butyrate reduced the number of osteoclasts in the proximal tibia and the level of C-terminal cross-linked telopeptide of type I collagen, a bone resorption marker (P < 0.05), whereas it tended to increase the concentration of the procollagen type I N-terminal propeptide that reflects bone formation marker in serum. Moreover, the layers fed fermented Ca butyrate diets possessed higher (P < 0.05) bone area and trabecular number of the proximal tibia, yield load, and ultimate load than those that consumed basal diets. Collectively, dietary fermented Ca butyrate supplementation in post-peak layer diets improved the ovarian function and tibia quality, which might be related to enhancing intestinal integrity and consequently decreasing inflammation mediated bone resorption.
Collapse
Affiliation(s)
- Huaiyong Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, 450046, China
- Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Sciences and Aquatic Ecology, Ghent University, Ghent, 9000, Belgium
| | - Yongshuai Wang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yilu Wang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Bin Wei
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Leilei Wang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Minh Tu Nguyen
- Department of Agriculture and Forestry, Hue University, Hue, 49000, Viet Nam
| | - Xiangyun Lv
- Charoen Pokphand Group Co., Ltd. Zhumadian, 463000, China
| | - Yanqun Huang
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Wen Chen
- College of Animal Science and Technology, Key Laboratory of Animal Biochemistry and Nutrition, Ministry of Agriculture, Henan Agricultural University, Zhengzhou, 450046, China
| |
Collapse
|
6
|
Yang C, Wang S, Li Q, Zhang R, Xu Y, Feng J. Effects of Probiotic Lactiplantibacillus plantarum HJLP-1 on Growth Performance, Selected Antioxidant Capacity, Immune Function Indices in the Serum, and Cecal Microbiota in Broiler Chicken. Animals (Basel) 2024; 14:668. [PMID: 38473053 DOI: 10.3390/ani14050668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/12/2024] [Accepted: 01/20/2024] [Indexed: 03/14/2024] Open
Abstract
This research study aimed to investigate the effects of Lactiplantibacillus plantarum (L. plantarum) on growth performance, oxidation resistance, immunity, and cecal microbiota in broilers. This work classed three hundred and sixty 1-day-old male broilers into three groups randomly, including a control group (CON, basal diet) and antibiotic (ANT, 75 mg kg-1 chlortetracycline added into basal diet) and probiotic groups (LP, 5 × 108 CFU kg-1Lactiplantibacillus plantarum HJLP-1 contained within basal diet). Animals were then fed for 42 days, and each group comprised eight replicates with 15 broilers. Compared with CON, L. plantarum supplementation significantly improved the average daily weight gain (AWDG) (p < 0.05) while reducing the feed-gain ratio over the entire supplemental period (p < 0.05). Birds fed L. plantarum had markedly lower serum ammonia and xanthine oxidase levels (p < 0.05) than those in the ANT and CON groups. Significant improvements (p < 0.05) in superoxide dismutase, catalase, and serum IgM and IgY contents in broilers fed L. plantarum were also observed when compared with those in the CON and ANT groups. Both L. plantarum and antibiotics decreased pro-inflammatory factor IL-1β levels significantly (p < 0.05), while only L. plantarum promoted anti-inflammatory factor IL-10 levels in the serum (p < 0.05) compared with CON. L. plantarum (p < 0.05) increased acetic acid and butyric acid concentrations in cecal contents when compared to those in CON and ANT. Among the differences revealed via 16S rRNA analysis, L. plantarum markedly improved the community richness of the cecal microbiota. At the genus level, the butyric acid-producing bacteria Ruminococcus and Lachnospiraceae were found in higher relative abundance in samples of L. plantarum-treated birds. In conclusion, dietary L. plantarum supplementation promoted the growth and health of broilers, likely by inducing a shift in broiler gut microbiota toward short-chain fatty acid (SCFA)-producing bacteria. Therefore, L. plantarum has potential as an alternative to antibiotics in poultry breeding.
Collapse
Affiliation(s)
- Caimei Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Shuting Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Qing Li
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Ruiqiang Zhang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Yinglei Xu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology, Zhejiang Agriculture & Forestry University, Hangzhou 311300, China
| | - Jie Feng
- Key Laboratory of Animal Feed and Nutrition of Zhejiang Province, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
7
|
Wang Z, Zhang E, Tang Y, Wu J, Muhammad S, Shang P, Zong C, Rong K, Ma J. Comparative analysis of the intestinal microbiota of black-necked cranes ( Grus nigricollis) in different wintering areas. Front Cell Infect Microbiol 2024; 13:1302785. [PMID: 38317791 PMCID: PMC10840423 DOI: 10.3389/fcimb.2023.1302785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 12/13/2023] [Indexed: 02/07/2024] Open
Abstract
Fecal microbiota is essential for host health because it increases digestive effectiveness. The crane species Grus nigricollis (G. nigricollis) is considered to be near threatened. The fecal microbial composition of crane is less understood, particularly in the Tibet, China. This study was performed to investigate the differences in fecal microbial composition and diversity of crane in different wintering areas using third-generation single-molecule real-time sequencing technology in the Tibet, China. According to the findings, 20 samples were used to generate 936 bacterial amplicon sequence variants (ASVs) and 1,800 fungal ASVs, only 4 bacterial ASVs and 20 fungal ASVs were shared in four distinct locations. Firmicutes were the dominant bacterial phylum in all samples, and Ascomycota and Basidiomycota were the dominant fungal phylum. At the genus level, Lactobacillus was the dominant genus in Linzhi City (LZ), Shannan City (SN), and Lasa City (LS), whereas Megamonas was the dominant genus in Rikaze City (RKZ). Naganishia and Mycosphaerella were the dominant fungal genera in SN and RKZ. Mycosphaerella and Tausonia were the dominant fungal genera in LZ. Naganishia and Fusarium were the dominant fungal genera in LS. And the fecal microbial composition varied between the four groups, as shown by the underweighted pair-group method with arithmetic means and principal coordinates analysis. This study offers a theoretical basis for understanding the fecal microbial composition of crane.
Collapse
Affiliation(s)
- Zhongbin Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
- Department of Resources and Environment, Tibet Agricultural and Animal Husbandry College, Linzhi, Tibet, China
| | - Erhao Zhang
- Department of Resources and Environment, Tibet Agricultural and Animal Husbandry College, Linzhi, Tibet, China
| | - Ying Tang
- Department of Resources and Environment, Tibet Agricultural and Animal Husbandry College, Linzhi, Tibet, China
| | - Jiujiu Wu
- Department of Resources and Environment, Tibet Agricultural and Animal Husbandry College, Linzhi, Tibet, China
| | - Suliman Muhammad
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Peng Shang
- Department of Resources and Environment, Tibet Agricultural and Animal Husbandry College, Linzhi, Tibet, China
| | - Cheng Zong
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Ke Rong
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Jianzhang Ma
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| |
Collapse
|
8
|
Ghazanfari S, Shadbad CA, Meimandipor A, Hosseini SA, Honarbakhsh S. Physiological changes in broiler chickens subjected to dietary ajwain ( trachyspermum ammi l.) essential oil in encapsulated and conventional forms within a wheat-based diet. Vet Anim Sci 2023; 22:100321. [PMID: 38022719 PMCID: PMC10654216 DOI: 10.1016/j.vas.2023.100321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Abstract
The aim of this study was to investigate the effects of different diet types, forms, and contents of ajwain essential oil (AEO) on various physiological characteristics of broiler chickens, including cell-mediated immunity responses, intestinal morphology, and microflora. A total of 1500 one-day-old male broiler chickens were allocated to different treatments based on a 2 × 3 × 2 factorial arrangement, considering diet types (corn and corn-wheat), contents of AEO (0, 150, and 300 mg/kg of diet), and forms of AEO (conventional and encapsulated). The results indicated that the broiler chickens fed the diet containing 150 ppm EO demonstrated reduced skin thickness in response to a 2,4-dinitrochlorobenzene challenge, 24 h after injection, compared to those receiving a diet without EO (P < 0.05). Increasing the EO content led to an increase in the villous height to crypt depth ratio in the jejunum of broiler chickens receiving 300 ppm EO (P < 0.05). Moreover, there was a slight improvement in the villous height to crypt depth ratio in the jejunum of broiler chickens fed the corn-wheat diet (P = 0.07). Broiler chickens fed the 300 ppm EO showed a lower total bacterial population compared to those fed the 150 ppm EO (P < 0.05). Finally, the use of EO at a content of 150 ppm improved cellular immune response, while EO at a content of 300 ppm improved the morphology and overall population of intestinal bacteria. Furthermore, the inclusion of wheat-corn diets exhibited enhanced morphological characteristics of the intestines. However, the forms of AEO did not exert any significant influence on the physiological traits.
Collapse
Affiliation(s)
- Shokoufe Ghazanfari
- Department of Livestock and Poultry Sciences, Faculty of Agricultural Technology (Aburaihan), University of Tehran, Tehran, Pakdasht, Iran
| | - Cyrus Akbari Shadbad
- Department of Livestock and Poultry Sciences, Faculty of Agricultural Technology (Aburaihan), University of Tehran, Tehran, Pakdasht, Iran
| | - Amir Meimandipor
- Department of Animal Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Seyed Abdollah Hosseini
- Department of Animal Nutrition, Animal Science Research Institute of Iran, Alborz, Karaj, Iran
| | - Shirin Honarbakhsh
- Department of Livestock and Poultry Sciences, Faculty of Agricultural Technology (Aburaihan), University of Tehran, Tehran, Pakdasht, Iran
| |
Collapse
|
9
|
Chathuranga K, Shin Y, Uddin MB, Paek J, Chathuranga WAG, Seong Y, Bai L, Kim H, Shin JH, Chang YH, Lee JS. The novel immunobiotic Clostridium butyricum S-45-5 displays broad-spectrum antiviral activity in vitro and in vivo by inducing immune modulation. Front Immunol 2023; 14:1242183. [PMID: 37881429 PMCID: PMC10595006 DOI: 10.3389/fimmu.2023.1242183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 09/20/2023] [Indexed: 10/27/2023] Open
Abstract
Clostridium butyricum is known as a probiotic butyric acid bacterium that can improve the intestinal environment. In this study, we isolated a new strain of C. butyricum from infant feces and evaluated its physiological characteristics and antiviral efficacy by modulating the innate immune responses in vitro and in vivo. The isolated C. butyricum S-45-5 showed typical characteristics of C. butyricum including bile acid resistance, antibacterial ability, and growth promotion of various lactic acid bacteria. As an antiviral effect, C. butyricum S-45-5 markedly reduced the replication of influenza A virus (PR8), Newcastle Disease Virus (NDV), and Herpes Simplex Virus (HSV) in RAW264.7 cells in vitro. This suppression can be explained by the induction of antiviral state in cells by the induction of antiviral, IFN-related genes and secretion of IFNs and pro-inflammatory cytokines. In vivo, oral administration of C. butyricum S-45-5 exhibited prophylactic effects on BALB/c mice against fatal doses of highly pathogenic mouse-adapted influenza A subtypes (H1N1, H3N2, and H9N2). Before challenge with influenza virus, C. butyricum S-45-5-treated BALB/c mice showed increased levels of IFN-β, IFN-γ, IL-6, and IL-12 in serum, the small intestine, and bronchoalveolar lavage fluid (BALF), which correlated with observed prophylactic effects. Interestingly, after challenge with influenza virus, C. butyricum S-45-5-treated BALB/c mice showed reduced levels of pro-inflammatory cytokines and relatively higher levels of anti-inflammatory cytokines at day 7 post-infection. Taken together, these findings suggest that C. butyricum S-45-5 plays an antiviral role in vitro and in vivo by inducing an antiviral state and affects immune modulation to alleviate local and systemic inflammatory responses caused by influenza virus infection. Our study provides the beneficial effects of the new C. butyricum S-45-5 with antiviral effects as a probiotic.
Collapse
Affiliation(s)
- Kiramage Chathuranga
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Yeseul Shin
- Access to Genetic Resources and Benefit-Sharing (ABS) Research Support Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Md Bashir Uddin
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
- Department of Medicine, Sylhet Agricultural University, Sylhet, Bangladesh
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Jayoung Paek
- Access to Genetic Resources and Benefit-Sharing (ABS) Research Support Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | | | - Yebin Seong
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Lu Bai
- Access to Genetic Resources and Benefit-Sharing (ABS) Research Support Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Hongik Kim
- Research and Development Division, Vitabio, Inc., Daejeon, Republic of Korea
| | - Jeong Hwan Shin
- Department of Laboratory Medicine, Inje University College of Medicine, Busan, Republic of Korea
| | - Young-Hyo Chang
- Access to Genetic Resources and Benefit-Sharing (ABS) Research Support Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Jong-Soo Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon, Republic of Korea
| |
Collapse
|
10
|
Shah BR, Hakeem WA, Shanmugasundaram R, Selvaraj RK. Effect of synbiotic supplementation on production performance and severity of necrotic enteritis in broilers during an experimental necrotic enteritis challenge. Poult Sci 2023; 102:102959. [PMID: 37619505 PMCID: PMC10470215 DOI: 10.1016/j.psj.2023.102959] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/26/2023] Open
Abstract
To evaluate the efficacy of synbiotic during a necrotic enteritis (NE) infection, a total of 360 day-old chicks were randomly assigned into 4 experimental groups in a 2 × 2 factorial setup: control, challenge, synbiotic (1 g/kg), and challenge + synbiotic, with 6 replicates. NE was induced by gavaging 1 × 104Eimeria maxima oocysts and 1 × 108 CFU/mL of Clostridium perfringens on d 14 (D14) and D19, 20, and 21, respectively. At D35, the NE challenge decreased the BW gain (P < 0.001) and increased feed conversion ratio (P = 0.03), whereas synbiotic supplementation decreased the feed intake (P = 0.04). At D21, NE challenge increased gut permeability (P < 0.001), decreased regulatory T cells (Tregs) in the cecal tonsil (CT) (P = 0.02), increased Tregs in the spleen (P = 0.02), decreased nitric oxide (NO) production in the spleen (P = 0.04) and decreased IL-10 expression in CT (P = 0.02), whereas synbiotic supplementation increased CD4+:CD8+ T cells in the spleen (P < 0.001) and decreased interferon (IFN)-γ expression in the jejunum (P = 0.07), however, synbiotic supplementation during NE challenge decreased mid-gut lesion score (P < 0.001), increased CD4+:CD8+ T cells in CT and decreased IgA production in bile (P < 0.001), compared to the control group. At D28, synbiotic supplementation decreased CD4+:CD8+ T cells in CT (P < 0.001), whereas synbiotic supplementation during NE challenge decreased Tregs in CT (P < 0.001) and increased NO production in the spleen (P = 0.04), compared to the control group. At D35, the NE challenge decreased CD4+:CD8+ T cells in the spleen (P = 0.03), decreased IgA production in bile (P = 0.02), decreased IL-10 expression in CT (P = 0.04), and decreased IL-10 (P = 0.009), IFN-γ (P = 0.03) and inducible nitric oxide synthase (P = 0.02) expression in the jejunum, whereas synbiotic supplementation increased Tregs in the spleen (P = 0.04), compared to control group. Synbiotic supplementation during the NE challenge decreased both IL-1β (P = 0.02) and IFN-γ (P = 0.001) expression in CT, compared to the control group. It can be concluded that synbiotic supplementation increases production performance by decreasing mid-gut lesions and enhancing protective immunity against NE, and efficiency of synbiotic could be improved by blending additional probiotics and prebiotics.
Collapse
Affiliation(s)
- Bikas R Shah
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - Walid A Hakeem
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - Revathi Shanmugasundaram
- Toxicology and Mycotoxin Research Unit, Agriculture Research Service, United States Department of Agriculture, Athens, GA, USA
| | - Ramesh K Selvaraj
- Department of Poultry Science, University of Georgia, Athens, GA, USA.
| |
Collapse
|
11
|
Akhavan N, Hrynkiewicz K, Thiem D, Randazzo C, Walsh AM, Guinan KJ, O’Sullivan JT, Stadnicka K. Evaluation of probiotic growth stimulation using prebiotic ingredients to optimize compounds for in ovo delivery. Front Microbiol 2023; 14:1242027. [PMID: 37808311 PMCID: PMC10556452 DOI: 10.3389/fmicb.2023.1242027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 09/01/2023] [Indexed: 10/10/2023] Open
Abstract
The use of probiotics, prebiotics and synbiotics in poultry diets beneficially stimulates the gut microbiome thus promoting the health and welfare of the animals. In this study, we analyzed 7 poultry probiotics (Lactobacillus plantarum - B1 and B4, Lactobacillus rhamnosus - B3, Bifidobacterium lactis - B2, Carnobacterium divergens - B5, Propionibacterium thoenii - B6, Clostridium butyricum - B7) and 12 prebiotics, differing in chemical composition and source of origin (fungi, algae, animal, etc.). The main goal of our research was to select the most promising candidates to develop synbiotic combinations. We determined the growth kinetics of all probiotics in the presence of prebiotics in a series of in vitro studies to select optimal combinations. Five out of seven investigated probiotics were significantly stimulated by astragalus polysaccharide, and this prebiotic was characterized in our work as the most effective. Moreover, in the case of three probiotics, B2, B3 and B4, significant growth stimulation has been found when beta-glucan, vegetable protein hydrolysate and liquid seaweed extract were supplied. Strain B1 (L. plantarum) was stimulated by 6 out of 12 prebiotics. The growth of B4 (L. plantarum) and B2 (B. lactis) was enhanced by prebiotics after 2 h of incubation. A high growth rate of 3.13% was observed in the case of L. plantarum (B4) and a 3.37% higher rate for B. lactis (B3), compared to the growth of probiotics in the control medium with glucose but no prebiotics. The best candidates for synbiotic combinations based on this in vitro work are the strains belonging to L. plantarum (B4), L. rhamnosus (B3) and B. lactis (B2), consistent with prebiotics such as astragalus polysaccharides and vegetable protein hydrolysate. These combinations will be subject to future in vivo poultry trials involving the in ovo microbiome modulation.
Collapse
Affiliation(s)
- Niloofar Akhavan
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Torun, Poland
- Faculty of Health Sciences, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum, Bydgoszcz, Poland
| | - Katarzyna Hrynkiewicz
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Torun, Poland
| | - Dominika Thiem
- Department of Microbiology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Torun, Poland
| | - Cinzia Randazzo
- Department of Agriculture, Food and Environment, University of Catania, Via Santa Sofia, Catania, Italy
| | | | | | | | - Katarzyna Stadnicka
- Faculty of Health Sciences, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum, Bydgoszcz, Poland
| |
Collapse
|
12
|
Li P, Chen X, Hou D, Chen B, Peng K, Huang W, Cao J, Zhao H. Positive effects of dietary Clostridium butyricum supplementation on growth performance, antioxidant capacity, immunity and viability against hypoxic stress in largemouth bass. Front Immunol 2023; 14:1190592. [PMID: 37711631 PMCID: PMC10498469 DOI: 10.3389/fimmu.2023.1190592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/16/2023] [Indexed: 09/16/2023] Open
Abstract
The effects of dietary supplementation of Clostridium butyricum (CB) on growth performance, serum biochemistry, antioxidant activity, mRNA levels of immune-related genes and resistance to hypoxia stress were studied in largemouth bass. Feed with CB0 (control, 0 CFU/kg), CB1 (4.3×108 CFU/kg), CB2 (7.5×108 CFU/kg), CB3 (1.5×109 CFU/kg) and CB4 (3.2×109 CFU/kg) CB for 56 days, and then a 3 h hypoxic stress experiment was performed. The results showed that dietary CB significantly increased the WGR (weight gain rate), SGR (specific growth rate), PDR (protein deposition rate) and ISI (Intestosomatic index) of largemouth bass (P<0.05). Hepatic GH (growth hormone)/IGF-1 (insulin-like growth factor-1) gene expression was significantly upregulated in the CB3 and CB4 groups compared with the CB0 group (P<0.05), while the FC (feed conversion) was significantly decreased (P<0.05). Serum TP (total protein) and GLU (glucose) levels were significantly higher in the CB4 group than in the CB0 group (P<0.05), while the contents of serum AST (aspartate transaminase), ALT (alanine transaminase), AKP (alkline phosphatase) and UN (urea nitrogen) in CB4 were significantly lower than those in CB0 (P<0.05). T-AOC (total antioxidant capacity), SOD (superoxide dismutase), CAT (catalase), POD (peroxidase) and GSH-Px (glutathione peroxidase) activities were significantly higher in CB3 and CB4 groups than in CB0 group (P<0. 05). The liver MDA (malondialdehyde) content of CB1, CB2, CB3 and CB4 groups was significantly higher than that of CB0 group (P<0. 05). The relative expressions of IL-1β (interleukin 1β), TNF-α (tumor necrosis factor α) and TLR22 (toll-like receptor-22) genes in CB2, CB3 and CB4 groups were significantly lower than those in CB0 group (P<0.05). The relative expression of IL-8 (malondialdehyde) and MyD88 (Myeloid differentiation factor 88) genes in the CB4 group was significantly lower than that in the CB0 group (P<0.05). The liver LZM (lysozyme) content of CB2, CB3 and CB4 groups was significantly higher than that of CB0 group (P<0. 05). The relative expression of IL-10 (interleukin 10) and TGF-β (transforming growth factor β) genes in the CB4 group was significantly higher than that in the CB0 group (P<0.05). Under hypoxic stress for 3 h, the CMR of CB0 group was significantly higher than that of CB1, CB2, CB3 and CB4 groups (P<0.05). Dietary CB can improve the growth performance and resistance to hypoxic stress of largemouth bass by regulating the expression of GH/IGF-1 gene and inflammatory factors and inhibiting TLR22/MyD88 signaling pathway.
Collapse
Affiliation(s)
- Peijia Li
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Collaborative Innovation Center of Aquatic Sciences, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Xiaoying Chen
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Collaborative Innovation Center of Aquatic Sciences, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Dongqiang Hou
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Collaborative Innovation Center of Aquatic Sciences, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- College of Fisheries, Guangdong Ocean University, Zhanjiang, China
| | - Bing Chen
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Collaborative Innovation Center of Aquatic Sciences, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Kai Peng
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Collaborative Innovation Center of Aquatic Sciences, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Wen Huang
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Collaborative Innovation Center of Aquatic Sciences, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Junming Cao
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Collaborative Innovation Center of Aquatic Sciences, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Hongxia Zhao
- Guangdong Key Laboratory of Animal Breeding and Nutrition, Collaborative Innovation Center of Aquatic Sciences, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
13
|
Payen C, Kerouanton A, Novoa J, Pazos F, Benito C, Denis M, Guyard M, Moreno FJ, Chemaly M. Effects of Major Families of Modulators on Performances and Gastrointestinal Microbiota of Poultry, Pigs and Ruminants: A Systematic Approach. Microorganisms 2023; 11:1464. [PMID: 37374967 DOI: 10.3390/microorganisms11061464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Considering the ban on the use of antibiotics as growth stimulators in the livestock industry, the use of microbiota modulators appears to be an alternative solution to improve animal performance. This review aims to describe the effect of different families of modulators on the gastrointestinal microbiota of poultry, pigs and ruminants and their consequences on host physiology. To this end, 65, 32 and 4 controlled trials or systematic reviews were selected from PubMed for poultry, pigs and ruminants, respectively. Microorganisms and their derivatives were the most studied modulator family in poultry, while in pigs, the micronutrient family was the most investigated. With only four controlled trials selected for ruminants, it was difficult to conclude on the modulators of interest for this species. For some modulators, most studies showed a beneficial effect on both the phenotype and the microbiota. This was the case for probiotics and plants in poultry and minerals and probiotics in pigs. These modulators seem to be a good way for improving animal performance.
Collapse
Affiliation(s)
- Cyrielle Payen
- French Agency for Food, Environmental and Occupational Health and Safety, ANSES, Hygiene and Quality of Poultry, Pig Products Unit, 22440 Ploufragan, France
| | - Annaëlle Kerouanton
- French Agency for Food, Environmental and Occupational Health and Safety, ANSES, Hygiene and Quality of Poultry, Pig Products Unit, 22440 Ploufragan, France
| | - Jorge Novoa
- Computational Systems Biology Group, National Centre for Biotechnology (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| | - Florencio Pazos
- Computational Systems Biology Group, National Centre for Biotechnology (CNB-CSIC), Darwin 3, 28049 Madrid, Spain
| | - Carlos Benito
- Instituto de Gestión de la Innovación y del Conocimiento, INGENIO (CSIC and U. Politécnica de Valencia), Edificio 8E, Cam. de Vera, 46022 Valencia, Spain
| | - Martine Denis
- French Agency for Food, Environmental and Occupational Health and Safety, ANSES, Hygiene and Quality of Poultry, Pig Products Unit, 22440 Ploufragan, France
| | - Muriel Guyard
- French Agency for Food, Environmental and Occupational Health and Safety, ANSES, Hygiene and Quality of Poultry, Pig Products Unit, 22440 Ploufragan, France
| | - F Javier Moreno
- Instituto de Investigación en Ciencias de la Alimentación (CIAL), CSIC-UAM, CEI (UAM + CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain
| | - Marianne Chemaly
- French Agency for Food, Environmental and Occupational Health and Safety, ANSES, Hygiene and Quality of Poultry, Pig Products Unit, 22440 Ploufragan, France
| |
Collapse
|
14
|
Liu M, Uyanga VA, Cao X, Liu X, Lin H. Regulatory Effects of the Probiotic Clostridium butyricum on Gut Microbes, Intestinal Health, and Growth Performance of Chickens. J Poult Sci 2023; 60:2023011. [PMID: 37143616 PMCID: PMC10150032 DOI: 10.2141/jpsa.2023011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/23/2023] [Indexed: 05/06/2023] Open
Abstract
Clostridium butyricum is an important probiotic for chickens and exerts various biological activities, including altering the composition of the intestinal microbiota, competing with other microorganisms for nutrients, improving the integrity of the intestinal mucosal system, changing the intestinal barrier, and improving overall host health. Intestinal microbes also play vital roles in maintaining the intestinal barrier, regulating intestinal health, and promoting chicken growth. During chicken production, chickens are vulnerable to various stressors that have detrimental effects on the intestinal barrier with significant economic consequences. C. butyricum is a known probiotic that promotes intestinal health and produces the short-chain fatty acid butyric acid, which is beneficial for the growth performance of chickens. This review elucidates the development and utilization of C. butyricum to improve intestinal barrier function and growth performance in chickens through its probiotic properties and interactions with intestinal microbes.
Collapse
Affiliation(s)
- Min Liu
- College of Animal Science and Technology, Shandong Agricultural University,
Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by
Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key
Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai’an City,
Shandong Province 271018, China
| | - Victoria Anthony Uyanga
- College of Animal Science and Technology, Shandong Agricultural University,
Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by
Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key
Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai’an City,
Shandong Province 271018, China
| | - Xikang Cao
- College of Animal Science and Technology, Shandong Agricultural University,
Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by
Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key
Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai’an City,
Shandong Province 271018, China
| | - Xinyu Liu
- College of Animal Science and Technology, Shandong Agricultural University,
Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by
Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key
Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai’an City,
Shandong Province 271018, China
| | - Hai Lin
- College of Animal Science and Technology, Shandong Agricultural University,
Key Laboratory of Efficient Utilization of Non-grain Feed Resources (Co-construction by
Ministry and Province), Ministry of Agriculture and Rural Affairs, Shandong Provincial Key
Laboratory of Animal Biotechnology and Disease Control and Prevention, Tai’an City,
Shandong Province 271018, China
| |
Collapse
|
15
|
Obianwuna UE, Qiu K, Wang J, Zhang HJ, Qi GH, Huang LL, Wu SG. Effects of dietary Clostridium butyricum and fructooligosaccharides, alone or in combination, on performance, egg quality, amino acid digestibility, jejunal morphology, immune function, and antioxidant capacity of laying hens. Front Microbiol 2023; 14:1125897. [PMID: 36910205 PMCID: PMC9992415 DOI: 10.3389/fmicb.2023.1125897] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 01/31/2023] [Indexed: 02/24/2023] Open
Abstract
The present study was conducted to evaluate the effects of Clostridium butyricum (CB) and fructooligosaccharide (FOS) singly or combined, on performance, egg quality, amino acid digestibility, jejunal morphology, immune function and antioxidant capacity in peak-phase laying hens. A total of 288 Hy-Line Brown laying hens (30 weeks of age) were randomly assigned to 4 dietary groups that included basal diet, basal diet +0.02% of CB (zlc-17: 1 × 109 CFU/g) (PRO), basal diet +0.6% FOS (PRE), and basal diet +0.02% CB + 0.6% FOS (SYN) for 12 weeks. Each treatment had 6 replicates with 12 birds each. The results demonstrated that probiotics (PRO), prebiotics (PRE) and synbiotics (SYN) (p ≤ 0.05), respectively, exerted a positive effect on the performance and physiological response of the birds. There were significant increases in egg production rate, egg weight, egg mass, daily feed intake and reduced number of damaged eggs. and zero mortality rate due to dietary PRO, PRE and SYN (p ≤ 0.05) respectively. Also, feed conversion was improved by PRO (p ≤ 0.05). In addition, egg quality assessment showed that; eggshell quality was increased by PRO (p ≤ 0.05) and albumen indices (Haugh unit, thick albumen content, and albumen height) were enhanced by PRO, PRE and SYN (p ≤ 0.05). Further analysis showed that PRO, PRE and SYN (p ≤ 0.05), reduced heterophil to lymphocyte ratio, increased antioxidant enzymes and immunoglobulin concentration. Although spleen index was higher for PRO (p ≤ 0.05) group. The significant increase in villi height, villi width, villi height to crypt depth ratio and reduced crypt depth were obvious for PRO, PRE, and SYN (p ≤ 0.05). Furthermore, improved nutrient absorption and retention evidenced by increased digestibility of crude protein and amino acids, were notable for PRO, PRE, and SYN (p ≤ 0.05) group. Collectively, our findings revealed that dietary CB and FOS alone, or combined, enhanced productive performance, egg quality, amino acid digestibility, jejunal morphology, and physiological response in peak-phase laying hens. Our results would provide direction on nutritional strategies for gut enhancers and better physiological response of peak laying hens.
Collapse
Affiliation(s)
- Uchechukwu Edna Obianwuna
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kai Qiu
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Wang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hai-jun Zhang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guang-hai Qi
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ling-ling Huang
- Wilmar (Shanghai) Biotechnology Research & Development Center Co., Ltd, Shanghai, China
| | - Shu-geng Wu
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Laboratory of Quality and Safety Risk Assessment for Animal Products on Feed Hazards (Beijing) of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
16
|
Li Z, Long L, Jin X, Li Y, Wu Q, Chen X, Geng Z, Zhang C. Effects of Clostridium butyricum on growth performance, meat quality, and intestinal health of broilers. Front Vet Sci 2023; 10:1107798. [PMID: 36761883 PMCID: PMC9902377 DOI: 10.3389/fvets.2023.1107798] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/09/2023] [Indexed: 01/26/2023] Open
Abstract
This study investigated the effects of Clostridium butyricum on the growth performance, meat quality and intestinal health of broilers. A total of 800 one-day-old male Arbor Acres broilers were randomly assigned to two groups with 16 replicates of 25 broilers per group and fed with a basal diet (CON) or a basal diet supplemented with 1.5 × 109 cfu/kg C. butyricum and 5 × 108 cfu/kg C. butyricum at 1-21 d and 22-42 d, respectively (CB). The results indicated that C. butyricum significantly increased the final body weight, average daily gain at 1-42 d in the growth performance of broilers (P < 0.05). Moreover, C. butyricum significantly increased a 24 h * value and pH24h value of breast meat but reduced the drip loss and shear force (P < 0.05). Regarding serum antioxidant indices, C. butyricum significantly increased the total superoxide dismutase (T-SOD) and total antioxidative capacity activities and reduced the malondialdehyde content (P < 0.05). Furthermore, the broilers in the CB demonstrated an increase in jejunal lipase and trypsin activities, villus height (VH) and VH-to-crypt depth ratio at 42 d compared with those in the CON (P < 0.05). C. butyricum also upregulated the intestinal mRNA levels of zonula occludens-1, nuclear factor erythroid 2-related factor 2 (Nrf2), SOD1 and interleukin-10 in the jejunal mucosa (P < 0.05), but it downregulated the mRNA levels of nuclear factor kappa B (NF-κB) and tumor necrosis factor-α (P < 0.05). These results indicate that C. butyricum can improve the growth performance and meat quality of broilers. In particular, C. butyricum can improve the intestinal health of broilers, which is likely to be related to the activation of the Nrf2 signaling pathway and inhibition of the NF-κB signaling pathway.
Collapse
|
17
|
Song M, Zhang X, Hao G, Lin H, Sun S. Clostridium butyricum Can Promote Bone Development by Regulating Lymphocyte Function in Layer Pullets. Int J Mol Sci 2023; 24:ijms24021457. [PMID: 36674973 PMCID: PMC9867449 DOI: 10.3390/ijms24021457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Bone health problems are a serious threat to laying hens; microbiome-based therapies, which are harmless and inexpensive, may be an effective solution for bone health problems. Here, we examined the impacts of supplementation with Clostridium butyricum (CB) on bone and immune homeostasis in pullets. The results of in vivo experiments showed that feeding the pullets CB was beneficial to the development of the tibia and upregulated the levels of the bone formation marker alkaline phosphatase and the marker gene runt-related transcription factor 2 (RUNX2). For the immune system, CB treatment significantly upregulated IL-10 expression and significantly increased the proportion of T regulatory (Treg) cells in the spleen and peripheral blood lymphocytes. In the in vitro test, adding CB culture supernatant or butyrate to the osteoblast culture system showed no significant effects on osteoblast bone formation, while adding lymphocyte culture supernatant significantly promoted bone formation. In addition, culture supernatants supplemented with treated lymphocytes (pretreated with CB culture supernatants) stimulated higher levels of bone formation. In sum, the addition of CB improved bone health by modulating cytokine expression and the ratio of Treg cells in the immune systems of layer pullets. Additionally, in vitro CB could promote the bone formation of laying hen osteoblasts through the mediation of lymphocytes.
Collapse
Affiliation(s)
- Mengze Song
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an 271018, China
| | - Xuesong Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an 271018, China
| | - Guijuan Hao
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an 271018, China
| | - Hai Lin
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an 271018, China
- Correspondence: (H.L.); (S.S.)
| | - Shuhong Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Tai’an 271018, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Tai’an 271018, China
- Correspondence: (H.L.); (S.S.)
| |
Collapse
|
18
|
Cai L, Li M, Zhou S, Xu Q. The Mixture of Saccharomyces cerevisiae and Clostridium butyricum Could Promote Rumen Fermentation and Improve the Growth Performance of Goats in Hot Summer. Metabolites 2023; 13:metabo13010104. [PMID: 36677029 PMCID: PMC9866772 DOI: 10.3390/metabo13010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/23/2022] [Accepted: 12/27/2022] [Indexed: 01/11/2023] Open
Abstract
This study aimed to investigate the effects of multiple mixing ratio pairs of Saccharomyces cerevisiae (SC) and Clostridium butyricum (CB) on rumen fermentation and growth performance of goats in hot summer. Thirty goats were divided into five groups: 0.00% probiotics (control), 0.30% SC and 0.05% CB (P1), 0.30% SC and 0.10% CB (P2), 0.60% SC and 0.05% CB (P3), and 0.60% SC and 0.10% CB (P4) of the dry matter (DM) weight of the basal diet and were assigned to a 5 × 5 Latin square experimental design. The results showed the pH values, the activities of ruminal cellulolytic enzymes, and the concentrations of ammonia nitrogen, acetic acid, propionic acid, total volatile fatty acids, vitamins B1 and B2, and niacin were significantly increased (p < 0.05) by probiotics. Moreover, the DM intake, average daily gain, the digestibilities of DM, neutral detergent fiber, and acid detergent fiber were significantly increased (p < 0.05) in probiotic-supplemented groups. Additionally, among all probiotic supplementation groups, the P3 group had the most beneficial effect on rumen fermentation parameters and the growth performance of goats. These results suggested that the mixture of 0.60% Saccharomyces cerevisiae and 0.05% Clostridium butyricum of the DM concentration was beneficial to improve rumen fermentation and promote the growth of goats in hot summer.
Collapse
Affiliation(s)
- Liyuan Cai
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Min Li
- Institute of Dairy Science, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Shuyi Zhou
- Hainan Provincial Animal Husbandry Technology Promotion Station, Haikou 570100, China
| | - Qingbiao Xu
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence:
| |
Collapse
|
19
|
Zou Q, Fan X, Xu Y, Wang T, Li D. Effects of dietary supplementation probiotic complex on growth performance, blood parameters, fecal harmful gas, and fecal microbiota in AA+ male broilers. Front Microbiol 2022; 13:1088179. [PMID: 36605508 PMCID: PMC9808919 DOI: 10.3389/fmicb.2022.1088179] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
In this study, Bacillus subtilis, Clostridium butyricum and Enterococcus faecalis were made into a probiotic complex (PC). The PC was supplemented in AA+ male broilers' diets to investigate the effects of PC on broiler growth performance, carcass traits, blood indicators, harmful gas emissions in feces and microbiota. Three hundred and sixty 1-day-old AA+ male broilers with an average initial body weight (data) were randomly divided into 3 dietary treatments of 6 replicates each, with 20 birds per replicate. The control group (T0) was fed a basal diet, while the test groups (T1 and T2) were supplemented with 0.025 and 0.05% PC in the basal diet, respectively. The trail was 42 days. The results showed that the supplementation of 0.05% PC significantly (p < 0.05) improved average daily gain (ADG) and average daily feed intake (ADFI) of broilers from 22 to 42 days and 1-42 days. Compared to the control group, the breast rate was significantly higher in T2, and the thymic index was significantly higher than that in T1 treatment (p < 0.05). The addition of PC had no significant effects on antibody potency in broiler serum (p > 0.05), but significantly increased albumin and total protein content in serum (p < 0.05). The addition of PC reduced H2S and NH3 emissions in the feces; the levels of Escherichia coli and Salmonella in the feces were significantly reduced and the levels of Lactobacillus were increased. And the most significant results were achieved when PC was added at 0.05%. Correlation analysis showed a significant positive correlation (p < 0.05) between the levels of E. coli and Salmonella and the emissions of H2S and NH3. Conclusion: Dietary supplementation with a 0.05% probiotic complex could improve the growth performance of broilers and also reduced fecal H2S and NH3 emissions, as well as fecal levels of E. coli and Salmonella, and increased levels of Lactobacillus. Thus, PC made by Bacillus subtilis, Clostridium butyricum and Enterococcus faecalis is expected to be an alternative to antibiotics. And based on the results of this trial, the recommended dose for use in on-farm production was 0.05%.
Collapse
|
20
|
Cao Y, Xun M, Ren S, Wang J. Effects of dietary organic acids and probiotics on laying performance, egg quality, serum antioxidants and expressions of reproductive genes of laying ducks in the late phase of production. Poult Sci 2022; 101:102189. [PMID: 36240638 PMCID: PMC9576561 DOI: 10.1016/j.psj.2022.102189] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/20/2022] [Accepted: 09/12/2022] [Indexed: 11/15/2022] Open
Abstract
Five hundred and forty Cheery Valley ducks were used to investigate the effects of dietary supplementation of acidifier and compound probiotics, individually or in combination, on production performance, egg quality, immune and oxidative status, expression of reproductive, and calcium binding related genes from 42 wk to 48 wk of age. Ducks were randomly allocated to 9 treatment groups with 6 replicates and 10 ducks per replicate for each group. A 3 × 3 factorial arrangement, with 3 dietary inclusion levels of acidifier and probiotics (0, 2, and 3 g/kg acidifier; 0, 1, and 2 g/kg probiotics) were used. The acidifier used was mainly consisted of Benzoic acid, Fumaric acid, phosphoric acid, and formic acid. The main components of the probiotics were Bacillus subtilis and Clostridium butyricum. Dietary supplementation of probiotics improved the daily feed intake, egg production rate, and body weight of ducks (P < 0.05), and diet acidifier also increased the daily feed intake compared to the control (P < 0.01). Egg quality was improved by diet inclusion of probiotics, including Haugh unit, albumen height, egg shape index (P < 0.01), and eggshell hardness (P = 0.05). A significant increase in Haught unit and yolk weight was observed in ducks fed diet added with acidifier (P < 0.05). Acidifier supplementation reduced the total antioxidant capacity (T-AOC), immunoglobulin A (IgA), and IgG content and the catalase (CAT) activity in the serum (P < 0.05), in accompanied with an increased malondialdehyde (MDA) concentration (P < 0.05). Serum total superoxide dismutase (T-SOD) activities were improved by dietary inclusion of probiotics (P < 0.05). There was an interaction effects on serum IgA and IgG contents between acidifier and probiotics (P < 0.05). Diet supplementation of probiotics improved the ovary follicle-stimulating hormone receptor (FSHR) and estrogen receptor (ER) gene expressions (P < 0.01), while dietary acidifier reduced the transcription levels of FSHR and luteinizing hormone receptor (LHR) (P < 0.01) in ovary. In the uterus of the oviduct, expressions of FSHR, and carbonic anhydrase 2 (CA2) were also increased by diet probiotics (P < 0.01), and diet acidifier reduced the gene expressions of calbindin-D28k (CaBP-D28k) and CA2 (P < 0.05). Significant interaction effects between diet acidifier and probiotics were obtained on gene expressions of FSHR, LHR, and ovalbumin (OVAL) in the ovary (P < 0.05), and LHR, CaBP-D28k, and CA2 (P < 0.05) in the uterus. It can be concluded that production performance and egg quality of laying ducks can be improved in the late phase of reproduction by dietary inclusion of probiotics, while the organic acid mixture caused a decline in serum antioxidant and immune capacity of the ducks.
Collapse
Affiliation(s)
- Yun Cao
- College of Animal Science and Technology, Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, China
| | - Mingyi Xun
- College of Animal Science and Technology, Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, China
| | - Shanmao Ren
- College of Animal Science and Technology, Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, China
| | - Jian Wang
- College of Animal Science and Technology, Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, China.
| |
Collapse
|
21
|
Abd El-Hack ME, Alagawany M, El-Shall NA, Shehata AM, Abdel-Moneim AME, Naiel MAE. Probiotics in Poultry Nutrition as a Natural Alternative for Antibiotics. ANTIBIOTIC ALTERNATIVES IN POULTRY AND FISH FEED 2022:137-159. [DOI: 10.2174/9789815049015122010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Since the early 1950s, antibiotics have been used in poultry for improving
feed efficiency and growth performance. Nevertheless, various side effects have
appeared, such as antibiotic resistance, antibiotic residues in eggs and meat, and
imbalance of beneficial intestinal bacteria. Consequently, it is essential to find other
alternatives that include probiotics that improve poultry production. Probiotics are live
microorganisms administered in adequate doses and improve host health. Probiotics are
available to be used as feed additives, increasing the availability of the nutrients for
enhanced growth by digesting the feed properly. Immunity and meat and egg quality
can be improved by supplementation of probiotics in poultry feed. Furthermore, the
major reason for using probiotics as feed additives is that they can compete with
various infectious diseases causing pathogens in poultry's gastrointestinal tract. Hence,
this chapter focuses on the types and mechanisms of action of probiotics and their
benefits, by feed supplementation, for poultry health and production.
Collapse
Affiliation(s)
| | | | - Nahed A. El-Shall
- Alexandria University,Department of poultry and fish diseases,Elbehira,Egypt
| | | | | | | |
Collapse
|
22
|
Orlova EG, Maslennikova IL, Pospelova JS, Starčič Erjavec M, Loginova NP, Troinich YN, Kuznetsova MV. The effect of Escherichia coli ŽP strain with a conjugation-based colicin E7 delivery on growth performance, hematological, biochemical, and histological parameters, gut microbiota, and nonspecific immunity of broilers. Can J Microbiol 2022; 68:687-702. [PMID: 36121064 DOI: 10.1139/cjm-2022-0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Escherichia coli ŽP strain (ŽP) was constructed based on the known probiotic E. coli strain Nissle 1917. It was genetically modified to carry the colicin E7 synthesis gene encoding DNase on a conjugative plasmid and the colicin E7 immunity gene in the chromosome. The aim of this study was to evaluate the effects of the daily ŽP per oral administration (5 × 108 or 5 × 1010 CFU per bird) on the growth performance, hematological, biochemical, histological parameters, gut microbiota, and nonspecific immunity of the 4-24 days old broilers. The ŽP administration increased the abundance of genera Bacillus, Butyrivibrio, and Clostridium and did not influence the weight gain of 4-16 days old broilers. The biochemical parameters were within normal ranges for poultry in experimental and control groups. The ŽP administration had no effect on the erythrocyte numbers, hemoglobin and immunoglobulin Y concentrations, but significantly increased the serum lysozyme concentration, leukocyte numbers, and reactive oxygen species production by phagocytes compared with the control group. It did not cause inflammatory changes in intestinal mucosa, Peyer's patches, and spleen. Thus, the ŽP had no detrimental effects on broiler health and could be an efficient probiotic for the broiler colibacillosis prophylaxis.
Collapse
Affiliation(s)
- E G Orlova
- Institute of Ecology and Genetics of Microorganisms, Ural Branch, Russian Academy of Science, Perm, Russia
| | - I L Maslennikova
- Institute of Ecology and Genetics of Microorganisms, Ural Branch, Russian Academy of Science, Perm, Russia
| | - J S Pospelova
- Institute of Ecology and Genetics of Microorganisms, Ural Branch, Russian Academy of Science, Perm, Russia
| | | | | | | | - M V Kuznetsova
- Institute of Ecology and Genetics of Microorganisms, Ural Branch, Russian Academy of Science, Perm, Russia.,Perm State Medical University, Perm, Russia
| |
Collapse
|
23
|
Prophylactic Feeding of Clostridium butyricum and Saccharomyces cerevisiae Were Advantageous in Resisting the Adverse Effects of Heat Stress on Rumen Fermentation and Growth Performance in Goats. Animals (Basel) 2022; 12:ani12182455. [PMID: 36139314 PMCID: PMC9494967 DOI: 10.3390/ani12182455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
This study aimed to investigate the effect of the prophylactic feeding of Clostridium butyricum (CB), Saccharomyces cerevisiae (SC), and their mixture before the onset of heat stress on the rumen fermentation and growth performance of goats, and subsequently, on heat stress status. Forty-eight male Macheng Black × Boer crossed goats (22.25 ± 4.26 kg) were divided into four groups—the control group (fed the basal diet), and the CB (0.05% CB added to the basal diet), SC (0.60% SC added to the basal diet), and Mix (0.05% CB and 0.60% SC added to the basal diet) groups—and fed for fourteen days. Then, these goats were kept in a heat stress environment (with a temperature−humidity index of 87.04) for fourteen days. Then, the parameters of rumen fermentation and growth performance were measured. The results showed that the pH values, the activities of cellulolytic enzymes (avicelase, CMCaes, cellobiase, and xylanase), and the concentrations of ammonia-N, total volatile fatty acid, acetic acid, propionic acid, and butyric acid were significantly increased (p < 0.05) in the rumens of the CB, SC, and Mix groups compared to those of the control group. Moreover, the average daily gain and the digestibility of dry matter, neutral detergent fiber, and acid detergent fiber were significantly increased (p < 0.05) in the CB, SC, and Mix groups compared to those of the control group. These results suggest that these two probiotics and their mixture effectively alleviate the adverse effects of heat stress on rumen fermentation and growth performance via prophylactic feeding.
Collapse
|
24
|
Zou A, Nadeau K, Xiong X, Wang PW, Copeland JK, Lee JY, Pierre JS, Ty M, Taj B, Brumell JH, Guttman DS, Sharif S, Korver D, Parkinson J. Systematic profiling of the chicken gut microbiome reveals dietary supplementation with antibiotics alters expression of multiple microbial pathways with minimal impact on community structure. MICROBIOME 2022; 10:127. [PMID: 35965349 PMCID: PMC9377095 DOI: 10.1186/s40168-022-01319-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The emergence of antimicrobial resistance is a major threat to global health and has placed pressure on the livestock industry to eliminate the use of antibiotic growth promotants (AGPs) as feed additives. To mitigate their removal, efficacious alternatives are required. AGPs are thought to operate through modulating the gut microbiome to limit opportunities for colonization by pathogens, increase nutrient utilization, and reduce inflammation. However, little is known concerning the underlying mechanisms. Previous studies investigating the effects of AGPs on the poultry gut microbiome have largely focused on 16S rDNA surveys based on a single gastrointestinal (GI) site, diet, and/or timepoint, resulting in an inconsistent view of their impact on community composition. METHODS In this study, we perform a systematic investigation of both the composition and function of the chicken gut microbiome, in response to AGPs. Birds were raised under two different diets and AGP treatments, and 16S rDNA surveys applied to six GI sites sampled at three key timepoints of the poultry life cycle. Functional investigations were performed through metatranscriptomics analyses and metabolomics. RESULTS Our study reveals a more nuanced view of the impact of AGPs, dependent on age of bird, diet, and intestinal site sampled. Although AGPs have a limited impact on taxonomic abundances, they do appear to redefine influential taxa that may promote the exclusion of other taxa. Microbiome expression profiles further reveal a complex landscape in both the expression and taxonomic representation of multiple pathways including cell wall biogenesis, antimicrobial resistance, and several involved in energy, amino acid, and nucleotide metabolism. Many AGP-induced changes in metabolic enzyme expression likely serve to redirect metabolic flux with the potential to regulate bacterial growth or produce metabolites that impact the host. CONCLUSIONS As alternative feed additives are developed to mimic the action of AGPs, our study highlights the need to ensure such alternatives result in functional changes that are consistent with site-, age-, and diet-associated taxa. The genes and pathways identified in this study are therefore expected to drive future studies, applying tools such as community-based metabolic modeling, focusing on the mechanistic impact of different dietary regimes on the microbiome. Consequently, the data generated in this study will be crucial for the development of next-generation feed additives targeting gut health and poultry production. Video Abstract.
Collapse
Affiliation(s)
- Angela Zou
- Department of Biochemistry, University of Toronto, Toronto, ON Canada
- Program in Molecular Medicine, Hospital for Sick Children, Peter Gilgan Center for Research and Learning, 686 Bay Street, Toronto, ON M5G 0A4 Canada
| | - Kerry Nadeau
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB Canada
| | - Xuejian Xiong
- Program in Molecular Medicine, Hospital for Sick Children, Peter Gilgan Center for Research and Learning, 686 Bay Street, Toronto, ON M5G 0A4 Canada
| | - Pauline W. Wang
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, 25 Willcocks St, Toronto, Ontario Canada
| | - Julia K. Copeland
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, 25 Willcocks St, Toronto, Ontario Canada
| | - Jee Yeon Lee
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, 25 Willcocks St, Toronto, Ontario Canada
| | - James St. Pierre
- Program in Molecular Medicine, Hospital for Sick Children, Peter Gilgan Center for Research and Learning, 686 Bay Street, Toronto, ON M5G 0A4 Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON Canada
| | - Maxine Ty
- Department of Biochemistry, University of Toronto, Toronto, ON Canada
- Program in Molecular Medicine, Hospital for Sick Children, Peter Gilgan Center for Research and Learning, 686 Bay Street, Toronto, ON M5G 0A4 Canada
| | - Billy Taj
- Program in Molecular Medicine, Hospital for Sick Children, Peter Gilgan Center for Research and Learning, 686 Bay Street, Toronto, ON M5G 0A4 Canada
| | - John H. Brumell
- Department of Molecular Genetics, University of Toronto, Toronto, ON Canada
- Program in Cell Biology, Hospital for Sick Children, Peter Gilgan Center for Research and Learning, 686 Bay Street, Toronto, ON Canada
- Institute of Medical Science, University of Toronto, Toronto, ON Canada
- SickKids IBD Centre, Hospital for Sick Children, Peter Gilgan Center for Research and Learning, 686 Bay Street, Toronto, ON Canada
| | - David S. Guttman
- Centre for the Analysis of Genome Evolution & Function, University of Toronto, 25 Willcocks St, Toronto, Ontario Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON Canada
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON Canada
| | - Doug Korver
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB Canada
| | - John Parkinson
- Department of Biochemistry, University of Toronto, Toronto, ON Canada
- Program in Molecular Medicine, Hospital for Sick Children, Peter Gilgan Center for Research and Learning, 686 Bay Street, Toronto, ON M5G 0A4 Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON Canada
| |
Collapse
|
25
|
Poudel B, Shterzer N, Sbehat Y, Ben-Porat N, Rakover M, Tovy-Sharon R, Wolicki D, Rahamim S, Bar-Shira E, Mills E. Characterizing the chicken gut colonization ability of a diverse group of bacteria. Poult Sci 2022; 101:102136. [PMID: 36152437 PMCID: PMC9508342 DOI: 10.1016/j.psj.2022.102136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/13/2022] [Accepted: 08/10/2022] [Indexed: 11/21/2022] Open
Abstract
The development of probiotics for chickens is a rapidly expanding field. The main approach to probiotics is to administer the probiotic strain throughout the bird's life, usually through incorporation in the feed. However, probiotics which would utilize bacterial strains capable of permanently colonizing the gut after a single exposure are likely to have a greater impact on the developing gut community as well as on the host, would simplify probiotic use and also reduce costs in an industrial setting. Finally, very limited and conflicting information about the colonization ability of different bacterial strains has been reported. Here we report 2 colonization experiments using 14 different bacterial strains from diverse phylogenetic groups. In both experiments, groups of chicks were orally inoculated on the day of hatch with different bacterial strains that had been previously isolated from adult heavy breeders. In the first experiment, colonization of the bacterial strains in broiler chicks was determined 7 d after treatment. In the second experiment, colonization was followed in layer chicks until d 17. Ten of the bacterial strains, including Lactobacillales and Bacteroidales strains, were able to colonize chicks after a single exposure for the duration of the experiment. For a few of these strains, exposure had little effect compared to non-treated chicks due to natural background colonization. Only 4 strains failed to colonize the chicks. Moreover, it is shown that fecal samples are useful to identify and provide a dynamic view of colonization. We further analyzed the effects of artificial colonization on microbiota composition. Some of the strains used in this research were found to reduce Enterobacteriaceae family abundance, implying that they might be useful in reducing relevant pathogen levels. To conclude, our results show that the development of single exposure based probiotics is possible.
Collapse
Affiliation(s)
- Binita Poudel
- Department of Animal Science, Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Naama Shterzer
- Department of Animal Science, Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Yara Sbehat
- Department of Animal Science, Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Nir Ben-Porat
- Department of Animal Science, Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Michal Rakover
- Department of Animal Science, Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Ron Tovy-Sharon
- Department of Animal Science, Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Dvora Wolicki
- Department of Animal Science, Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Stav Rahamim
- Department of Animal Science, Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Enav Bar-Shira
- Department of Animal Science, Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel
| | - Erez Mills
- Department of Animal Science, Robert H. Smith Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot 7610001, Israel.
| |
Collapse
|
26
|
Zhang X, Song M, Lv P, Hao G, Sun S. Effects of Clostridium butyricum on intestinal environment and gut microbiome under Salmonella infection. Poult Sci 2022; 101:102077. [PMID: 36067578 PMCID: PMC9468503 DOI: 10.1016/j.psj.2022.102077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/12/2022] [Accepted: 07/19/2022] [Indexed: 11/10/2022] Open
Abstract
Salmonellosis causes massive economic losses globally every year. Especially in poultry, numerous drug-resistant bacteria have emerged; thus, it is imperative to find alternatives to antibiotics. As a probiotic, Clostridium butyricum (C. butyricum) provides the latest strategy for inhibiting the proliferation of Salmonella. This study aimed to evaluate the effects of C. butyricum on intestinal environment and gut microbiome under Salmonella infection. In this study, we modeled the infection of Salmonella using specific pathogen-free (SPF) chicks and found that the use of C. butyricum directly reduced the number of Salmonella colonizations in the spleen and liver. It also alleviated the histopathological changes of the liver, spleen, and cecum caused by Salmonella Enteritidis (S. Enteritidis). In addition, S. Enteritidis increased the expression of pro-inflammatory IL-6 in the cecum on day 6 postinfection. Interestingly, we found that C. butyricum changed PPAR-γ transcript levels in the cecum on day 6 postinfection. Analysis of the chick gastrointestinal microbiome showed that Salmonella infection increased the relative abundance of Subdoligranulum variabile. Further analysis found that Salmonella challenge significantly reduced the relative abundance of Faecalibacterium prausnitzii and C. butyricum increased the relative abundance of anaerobic bacteria in the gut on day 6 postinfection. Moreover, early supplementation of C. butyricum restored the epithelial hypoxia in S. Enteritidis infection in chicks. The results suggest that C. butyricum restores epithelial hypoxia caused by S. Enteritidis, improves the stability of intestinal flora, and inhibits the proliferation of Salmonella.
Collapse
|
27
|
Du X, Li F, Kong F, Cui Z, Li D, Wang Y, Zhu Q, Shu G, Tian Y, Zhang Y, Zhao X. Altitude-adaption of gut microbiota in Tibetan chicken. Poult Sci 2022; 101:101998. [PMID: 35841636 PMCID: PMC9293635 DOI: 10.1016/j.psj.2022.101998] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 05/29/2022] [Accepted: 06/06/2022] [Indexed: 12/27/2022] Open
Abstract
Low oxygen levels and extremely cold weather in high-altitude environments requires more energy intake to maintain body temperature in animals. However, little is known about the characteristics of cecal and ileac microbiota in Tibetan chicken and how the high and low altitude environments affect the gut microbiota communities in Tibetan chicken. In the present study, In the present study, Tibetan chickens (Group HA, 3572 m, 578.5 Pa) and their introduced flatland counterparts (Group LA, 580 m, 894.6 Pa) in the cecum and ileum to identify the possible bacterial species that are helpful for their host in environmental adaption. High-throughput sequencing was used to sequence the V3 to V4 hypervariable regions of the bacterial 16S rRNA gene. By comparing the gut microbial diversity of HA chicken with that of LA, the results indicated that the microbial diversity of the cecum and ileum in group HA was significantly lower (P < 0.05) than those in group LA. The cecum microbiome maintained higher population diversity and richness than the ileum (P < 0.05). Four phyla Firmicutes, Bacterioidetes, Actinobacteria, and Proteobacteria were dominant in two groups. Interestingly, there were significant differences in abundance ratio among the four groups (P < 0.05). The predominant bacteria in HA and LA ileum belong to Proteobacteria and Firmicutes, whereas in cecum, Bacterioidetes and Actinobacteria were predominant in both groups (P < 0.05). Correlation analysis showed that Sporosarcina, Enterococcus, and Lactococcus were strongly related to air pressure, and Peptoclostridium and Ruminococcaceae_UCG-014 are related to altitude and gut microbiota of LA group was influenced by altitude, while HA group affected by air pressure. Meanwhile, the Ruminococcus-torques-group was negatively correlated with the relative abundance of Paenibacillus, and positive correlated with those of other microorganisms. Furthermore, HA has higher abundance of microbiota involved in energy and glycan biosynthesis metabolism pathway, while LA has higher abundance of microbiota involved in membrane transport, signal transduction, and xenobiotics biodegradation and metabolism. Generally, our results suggested that the composition and diversity of gut microbes changed after Tibetan chickens were introduced to the plain. Tibetan chicken may adapt to new environment via reshaping the gut microbiota. Gut microbes may contribute to the host adaption to high altitude environments by increasing host energy and glycan biosynthesis.
Collapse
Affiliation(s)
- Xiaxia Du
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Fugui Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Fanli Kong
- College of Life Science, Sichuan Agricultural University, Ya'an, Sichuan, China
| | - Zhifu Cui
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Diyan Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qing Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Gang Shu
- Department of Basic Veterinary Medicine, College of Veterinary medicine, Chengdu, Sichuan, China
| | - Yaofu Tian
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yao Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaoling Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China.
| |
Collapse
|
28
|
Zhang Y, Meng J, Zhang L, Bao J, Shi W, Li Q, Wang X. Shudi Erzi San relieves ovary aging in laying hens. Poult Sci 2022; 101:102033. [PMID: 35926353 PMCID: PMC9356177 DOI: 10.1016/j.psj.2022.102033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 11/30/2022] Open
Abstract
Poultry meat and eggs are a primary source of animal protein. To meet the market needs, high yield laying hens are reared continuously, resulting in quick ovary aging. Thus, we investigated the anti-aging effects of Shudi Erzi San (SES) on laying hens. Sixty 300-day-old laying hens were divided into 2 experimental groups and a control group. The control group was fed on a basic diet, which was supplemented with 1% and 2% SES for experimental groups I and II, respectively. Egg quality and changes in serum hormones and blood-biochemical indicators of laying hens were determined. The rate of egg production was significantly higher in group Ⅱ than in both the control and group Ⅰ by 9.29 and 8.22 percentage points, respectively (P < 0.05). Eggshell strength of groups Ⅰ and Ⅱ were significantly higher than that of the control group (P < 0.01). Albumen height and Haugh Units of group Ⅱ were significantly higher than those of the control (P < 0.05). Serum levels of follicle stimulating hormone and estradiol in group Ⅱ were significantly higher than those of both the control and group Ⅰ (P < 0.05), whereas groups Ⅰ and Ⅱ had significantly higher serum levels of luteinizing hormone than the control (P < 0.05). Levels of superoxide dismutase (SOD) did not significantly differ between the control and group Ⅰ (P > 0.05), but SOD and malondialdehyde (MDA) levels in group Ⅱ were significantly higher and lower, respectively (P < 0.05) when compared to the control. Compared with the control, uric acid levels in groups Ⅰ and Ⅱ were significantly lower (P < 0.05), as was urea nitrogen in group Ⅱ (P < 0.05). Transcriptome and KEGG pathway analysis of ovarian tissues of laying hens showed a significant immune related signal pathway as the possible main regulator of a lysosome related signal pathway. Thus, supplementing chicken feed with SES improves egg production and quality and alleviates ovarian decline in laying hens.
Collapse
Affiliation(s)
- Yan Zhang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Jiacheng Meng
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Linchao Zhang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Jialu Bao
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Wanyu Shi
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China
| | - Qian Li
- Institute of Animal Husbandry and Veterinary Medicine of Hebei Province, Baoding, 071001, China
| | - Xiaodan Wang
- College of Traditional Chinese Veterinary Medicine, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
29
|
Zhang C, Yu Q, Wang J, Yu Y, Zhang Y, Sun Y. Effects of Dietary Supplementation With Clostridium butyricum on Growth Performance, Apparent Digestibility, Blood Metabolites, Ruminal Fermentation and Bacterial Communities of Fattening Goats. Front Nutr 2022; 9:888191. [PMID: 35685891 PMCID: PMC9173004 DOI: 10.3389/fnut.2022.888191] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/07/2022] [Indexed: 01/18/2023] Open
Abstract
Clostridium butyricum (C. butyricum) is currently widely used to improve the body health and productive performance of monogastric animals. However, there have been few reports on the effects and specific mechanism of action of Clostridium butyricum in ruminants. This study aimed to investigate the effects of Clostridium butyricum supplementation on the growth performance and digestive microbiota of fattening goats. Twenty-four healthy male Albas goats (body weight = 22 ± 2.03 kg) were randomly divided into 3 treatment groups with eight goats in each group. The treatments were as follows: control group (CON) (basal diet, concentrate to forage ratio = 65:35); low-dose Clostridium butyricum (LCB) (basal diet plus 2.0 × 108 CFU/kg Clostridium butyricum); and high-dose Clostridium butyricum (HCB) (basal diet plus 1.0 × 109 CFU/kg Clostridium butyricum). The experiment lasted for 8 weeks after a 2-week adaptation period. Therefore, growth performance and rumen and rectum microbiota were evaluated in goats supplemented with Clostridium butyricum and its metabolites. The results showed that dietary supplementation with Clostridium butyricum significantly increased the pH (P < 0.05), but had no significant effect on growth performance (P > 0.05). Compared with the control group, dietary Clostridium butyricum supplementation significantly increased the relative abundance of Prevotella_1, Christensenellaceae AE_R-7_Group and Prevotellaceae AE_UCG-003 (P < 0.05), and significantly decreased Succiniclasticum and Muribaculaceae_unclassified (P < 0.05). The relative abundance of Clostridium in the rumen was <1.0%. Moreover, 16S rDNA analysis showed that the fecal Clostridium or Clostridium butyricum count was significantly decreased (P < 0.05), and the relative abundance of Alistipes and Akkermansia was increased (P < 0.10) in the low-dose group compared with the control group. Supplementing Clostridium butyricum in a high-concentrate diet did not significantly affect the performance of goats, while regulation of the gastrointestinal microbiota and related metabolites was associated with rumen fermentation.
Collapse
Affiliation(s)
- Chengrui Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Qingyuan Yu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Jihong Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
| | - Yidong Yu
- Ordos Academy of Agriculture and Animal Husbandry, Ordos, China
| | - Yonggen Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
- *Correspondence: Yonggen Zhang
| | - Yukun Sun
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, China
- Yukun Sun
| |
Collapse
|
30
|
Cai H, Liao S, Li J, Liu Q, Luo S, Lv M, Lin X, Hu J, Zhang J, Qi N, Sun M. Single and Combined Effects of Clostridium butyricum and Coccidiosis Vaccine on Growth Performance and the Intestinal Microbiome of Broiler Chickens. Front Microbiol 2022; 13:811428. [PMID: 35547128 PMCID: PMC9083122 DOI: 10.3389/fmicb.2022.811428] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/28/2022] [Indexed: 01/01/2023] Open
Abstract
Avian coccidiosis is an important intestinal protozoan disease that has caused major economic losses to the poultry industry. Clostridium butyricum can not only maintain the stability of the intestinal barrier, but can also improve the production performance of broiler chickens. We studied the effects of feeding C. butyricum alone, administration of coccidiosis vaccine alone, and the combined administration of C. butyricum and coccidiosis vaccine on body weight gain, feed consumption, and feed conversion ratio of broilers. Meanwhile, intestinal contents of 8- and 15-day-old broilers were collected, and their intestinal microbiome was characterized by high-throughput sequencing of the V3–V4 region of 16S rDNA. We analyzed the oocysts per gram values and lesion scores in the C. butyricum alone group, in a group challenged with the coccidiosis-causing parasite, Eimeria, and in groups simultaneously challenged Eimeria and pretreated with C. butyricum, the coccidiosis vaccine, or combined C. butyricum and coccidiosis vaccine. Intestinal tissue samples were collected from 32-day-old broilers for microbiome analysis. Our results showed that combination of C. butyricum with coccidiosis vaccine significantly improved the performance of broiler chickens and also significantly reduced the oocysts per gram value and intestinal lesions caused by Eimeria sp. infection. Furthermore, C. butyricum and coccidiosis vaccine administered alone or in combination significantly increased the relative abundance of the immune biomarker genus Barnesiella. The significant increase in the abundance of the Clostridia_UCG.014, Eubacterium coprostanoligenes group and Bacteroides was a key factor in controlling Eimeria sp. infection.
Collapse
Affiliation(s)
- Haiming Cai
- Zhaoqing/Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shenquan Liao
- Zhaoqing/Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Juan Li
- Zhaoqing/Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Qihong Liu
- Jiangsu HFQ Biotechnology Co., Ltd., Haimen, China
| | - Shengjun Luo
- Zhaoqing/Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China.,Guangdong Qianyan Animal Health Care Co., Ltd, Guangzhou, China
| | - Minna Lv
- Zhaoqing/Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Xuhui Lin
- Zhaoqing/Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Junjing Hu
- Zhaoqing/Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jianfei Zhang
- Zhaoqing/Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Nanshan Qi
- Zhaoqing/Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Mingfei Sun
- Zhaoqing/Maoming Branch Center of Guangdong Laboratory for Lingnan Modern Agricultural Science and Technology, Key Laboratory of Livestock Disease Prevention of Guangdong Province, Key Laboratory of Avian Influenza and Other Major Poultry Diseases Prevention and Control, Ministry of Agriculture and Rural Affairs, Institute of Animal Health, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
31
|
Jankowski J, Tykałowski B, Stępniowska A, Konieczka P, Koncicki A, Matusevičius P, Ognik K. Immune Parameters in Chickens Treated with Antibiotics and Probiotics during Early Life. Animals (Basel) 2022; 12:ani12091133. [PMID: 35565558 PMCID: PMC9101873 DOI: 10.3390/ani12091133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of the study was to compare the effect of the administration of antibiotics or probiotics on chickens in their first week of life, on selected parameters of humoral and cellular immunity, and on the bursa of Fabricius and spleen indices. The experiment was carried out on 90 one-day-old male broilers. The control group received no additive in the drinking water; the group GP received a probiotic providing Enterococcus faecium and Bacillus amyloliquefaciens; and the group GA received 10% enrofloxacin in the drinking water on the first five days of life. Administration of the antibiotic enrofloxacin or a probiotic containing E. faecium and B. amyloliquefaciens strains to chickens in their first week of life exerts pronounced immunomodulatory effects on humoral and cellular defense mechanisms in these birds. The changes in the subpopulations of B and T cells immediately following early administration of enrofloxacin or the probiotic were not observed at the age of 35 days. Early administration of enrofloxacin can pose a risk of suppression of humoral immunity, as indicated by the significant decrease in the total IgY concentration in the plasma of the chickens.
Collapse
Affiliation(s)
- Jan Jankowski
- Department of Poultry Science and Apiculture, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland; (J.J.); (P.K.)
| | - Bartłomiej Tykałowski
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego 13, 10-719 Olsztyn, Poland; (B.T.); (A.K.)
| | - Anna Stępniowska
- Department of Biochemistry and Toxicology, Faculty of Animal Science and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland;
| | - Paweł Konieczka
- Department of Poultry Science and Apiculture, Faculty of Animal Bioengineering, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, 10-719 Olsztyn, Poland; (J.J.); (P.K.)
| | - Andrzej Koncicki
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego 13, 10-719 Olsztyn, Poland; (B.T.); (A.K.)
| | - Paulius Matusevičius
- Department of Animal Nutrition, Lithuanian University of Health Sciences, Kaunas, Tilzes 18, LT-47181 Kaunas, Lithuania;
| | - Katarzyna Ognik
- Department of Biochemistry and Toxicology, Faculty of Animal Science and Bioeconomy, University of Life Sciences in Lublin, Akademicka 13, 20-950 Lublin, Poland;
- Correspondence: ; Tel.: +48-814456916
| |
Collapse
|
32
|
Khalil MA, Sonbol FI, Al-Madboly LA, Aboshady TA, Alqurashi AS, Ali SS. Exploring the Therapeutic Potentials of Exopolysaccharides Derived From Lactic Acid Bacteria and Bifidobacteria: Antioxidant, Antitumor, and Periodontal Regeneration. Front Microbiol 2022; 13:803688. [PMID: 35547125 PMCID: PMC9082500 DOI: 10.3389/fmicb.2022.803688] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/16/2022] [Indexed: 12/24/2022] Open
Abstract
The metabolites of lactic acid bacteria (LAB) and bifidobacteria (Bb) have recently received a lot of attention due to their ability to protect interactions in blood and tissues, as well as their biodegradability and biocompatibility in human tissue. Exopolysaccharides (EPS) derived from bacteria have a long history of use in therapeutic and other industrial applications with no adverse effects. In this regard, EPSs were isolated and characterized from LAB and Bb culture supernatants to determine their antioxidant, antitumor, and periodontal regeneration properties. The antioxidant capacity of the EPSs varied with concentration (0.625-20 mg/ml). The highest antioxidant activity was found in LAB: Streptococcus thermophiles DSM 24731-EPS1, Lactobacillus delbrueckii ssp. bulgaricus DSM 20081T-EPS5, Limosilactobacillus fermentum DSM 20049-EPS6, and Bb; Bifidobacterium longum ssp. longum DSM 200707-EPS10. Human breast cancer cells (MCF7), human colon cancer cells (CaCo2), human liver cancer cells (HepG2), and human embryonic kidney 293 (HEK 293) cells were used as controls to assess the antitumor properties of the selected EPSs. According to the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium-bromide (MTT) assay, EPS5 had the highest cytotoxicity against MCF7, CaCo2, and HepG2, with IC50 values of 7.91, 10.69, and 9.12 mg/ml, respectively. Lactate dehydrogenase (LDH) activity was significantly higher in cell lines treated with EPS5-IC50 values compared to other EPSs-IC50 values (p < 0.05). Real time (RT)-PCR results showed that EPS5 treatment increased Bax, Caspase 8, Caspase 3, and p53 gene expression. The expression of the BCL2, MCL1, and Vimentin genes, on the other hand, was reduced. The MTT test was used to examine the effect of EPS5 on the viability of human periodontal ligament fibroblast cells (hPDLFCs), and it was discovered that EPS5 increased hPDLFC viability. According to high-performance liquid chromatography (HPLC) analysis, galactose made up 12.5% of EPS5. The findings of this study pave the way for the use of EPS, which hold great promise for a variety of therapeutic purposes such as antioxidant, antitumor, and periodontal regeneration.
Collapse
Affiliation(s)
- Maha A. Khalil
- Biology Department, College of Science, Taif University, Taif, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Fatma I. Sonbol
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Lamiaa A. Al-Madboly
- Pharmaceutical Microbiology Department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Tamer A. Aboshady
- Periodontology, Oral Medicine, Diagnosis and Radiology Department, Faculty of Dentistry, Tanta University, Tanta, Egypt
- Oral and Maxillofacial Surgery and Diagnostic Sciences, Faculty of Dentistry, Taif University, Taif, Saudi Arabia
| | - Abeer S. Alqurashi
- Biology Department, College of Science, Taif University, Taif, Saudi Arabia
| | - Sameh S. Ali
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta, Egypt
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
33
|
El-Saadony MT, Salem HM, El-Tahan AM, Abd El-Mageed TA, Soliman SM, Khafaga AF, Swelum AA, Ahmed AE, Alshammari FA, Abd El-Hack ME. The control of poultry salmonellosis using organic agents: an updated overview. Poult Sci 2022; 101:101716. [PMID: 35176704 PMCID: PMC8857471 DOI: 10.1016/j.psj.2022.101716] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/29/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023] Open
Abstract
Salmonellosis is a severe problem that threatens the poultry sector worldwide right now. Salmonella gallinarium and Salmonella pullorum (Fowl typhoid) are the most pathogenic serovars in avian species leading to systemic infection resulting in severe economic losses in the poultry industry. Nontyphoidal serotypes of Salmonella (Paratyphoid disease) constitute a public health hazard for their involvement in food poisoning problems in addition to their zoonotic importance. Also, Salmonella species distribution is particularly extensive. They resisted environmental conditions that made it difficult to control their spread for a long time. Therefore, the current review aimed to through light on Salmonellosis in poultry with particular references to its pathogenesis, economic importance, immune response to Salmonella, Salmonella antibiotics resistance, possible methods for prevention and control of such problems using promising antibiotics alternatives including probiotics, prebiotics, symbiotics, organic acids, essential oils, cinnamaldehyde, chitosan, nanoparticles, and vaccines.
Collapse
Affiliation(s)
- Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Heba M Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University 12211, Giza, Egypt
| | - Amira M El-Tahan
- Plant Production Department, Arid Lands Cultivation Research Institute, The City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Taia A Abd El-Mageed
- Soil and Water Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Soliman M Soliman
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University 1221, Giza, Egypt
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt
| | - Ayman A Swelum
- Department of Animal production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia; Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Sharkia 44519, Egypt
| | - Ahmed E Ahmed
- Biology Department, College of Science, King Khalid University 61413 Abha, Saudi Arabia; Department of Theriogenology, Faculty of Veterinary Medicine, South Valley University 83523 Qena, Egypt
| | - Fahdah A Alshammari
- Department of Biology, College of Sciences and Literature, Northern Border University, Rafha 76312, Saudi Arabia
| | - Mohamed E Abd El-Hack
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt.
| |
Collapse
|
34
|
Reuben RC, Sarkar SL, Ibnat H, Roy PC, Jahid IK. Novel mono- and multi-strain probiotics supplementation modulates growth, intestinal microflora composition and haemato-biochemical parameters in broiler chickens. Vet Med Sci 2022; 8:668-680. [PMID: 35014219 PMCID: PMC8959300 DOI: 10.1002/vms3.709] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Background The reduction of antimicrobial usage in food‐producing animals necessitates the intense search for novel alternatives, including new probiotic strains with more effective properties in improving growth performance and curtailing diseases in animals. Objective This study evaluated the effects of novel mono‐ and multi‐strain probiotics on the growth performance, intestinal microbiota and haemato‐biochemical parameters of broilers. Methods A total of 160 one‐day‐old Cobb 500 broilers were divided into eight treatment groups with two replicates consisting of (1) basal diet (negative control), (2) basal diet with antibiotic, colistin sulphate, (3) basal diet with commercial probiotic, PROMAX® (positive control), (4) basal diet with Pediococcus acidilactici I5, (5) basal diet with P. pentosaceus I13, (6) basal diet with Enterococcus faecium C14, (7) basal diet with Lactobacillus plantarum C16 and (8) basal diet with the combination of all the four probiotic strains. Birds were kept for 35 days and through oral gavage, 1 ml of 108 study probiotic strains administered on days 3–6, 14 and 18. Results Supplementation with P. pentosaceus I13, L. plantarum C16 or multi‐strain probiotics significantly (p < 0.05) improved the body weight gain and feed conversion ratio with decrease in feed intake and intestinal Enterobacteria counts. There was a significant (p < 0.05) increase in haemoglobin, mean corpuscular volume, total white blood cells, platelets counts and a lowered (p < 0.05) total cholesterol and glucose levels in multi‐strains probiotic supplemented birds. Conclusion The supplementation with novel multi‐strain probiotics improved growth, intestinal health and haemato‐biochemical parameters in broilers and could be used as suitable antibiotic alternatives.
Collapse
Affiliation(s)
- Rine Christopher Reuben
- Department of Microbiology, Faculty of Biological Sciences and Technology, Jashore University of Science and Technology, Jashore, Bangladesh.,German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Leipzig University, Leipzig, Germany
| | - Shovon Lal Sarkar
- Department of Microbiology, Faculty of Biological Sciences and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Habiba Ibnat
- Department of Microbiology, Faculty of Biological Sciences and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Pravas Chandra Roy
- Department of Microbiology, Faculty of Biological Sciences and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Iqbal Kabir Jahid
- Department of Microbiology, Faculty of Biological Sciences and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| |
Collapse
|
35
|
Native and Engineered Probiotics: Promising Agents against Related Systemic and Intestinal Diseases. Int J Mol Sci 2022; 23:ijms23020594. [PMID: 35054790 PMCID: PMC8775704 DOI: 10.3390/ijms23020594] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/29/2021] [Accepted: 01/03/2022] [Indexed: 12/12/2022] Open
Abstract
Intestinal homeostasis is a dynamic balance involving the interaction between the host intestinal mucosa, immune barrier, intestinal microecology, nutrients, and metabolites. Once homeostasis is out of balance, it will increase the risk of intestinal diseases and is also closely associated with some systemic diseases. Probiotics (Escherichia coli Nissle 1917, Akkermansia muciniphila, Clostridium butyricum, lactic acid bacteria and Bifidobacterium spp.), maintaining the gut homeostasis through direct interaction with the intestine, can also exist as a specific agent to prevent, alleviate, or cure intestinal-related diseases. With genetic engineering technology advancing, probiotics can also show targeted therapeutic properties. The aims of this review are to summarize the roles of potential native and engineered probiotics in oncology, inflammatory bowel disease, and obesity, discussing the therapeutic applications of these probiotics.
Collapse
|
36
|
Shawky M, Khaled NF, El-Moghazy G, Abdelgayed SS, Soliman R. Positive effects of dietary probiotics on immune response and gut morphometry in broiler chickens. BULGARIAN JOURNAL OF VETERINARY MEDICINE 2022. [DOI: 10.15547/bjvm.2317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
n experiment was performed with a total of 280 one-day old SPF broiler chicks to evaluate the effects of probiotics, alone or in combination, on growth performance, gut morphometry and immune response to fowl cholera vaccination. The birds were randomly divided into seven groups each of 40 chicks and the experiment lasted for 42 days. The probiotic microorganisms that were offered via water included Lactobacillus acidophilus, Bifidobacterium bifidum, Enterococcus faecium, Bacillus subtilis and Saccharomyces cervisiae. Significant increase in the food conversion rate was recorded in group 4 that received probiotic mixture composed of Lactobacillus acidophilus and Bacillus subtilis. Also, significantly high geometric mean titre (GMT) of P. multocida specific-antibodies and lowest morbidity and mortality rates post P. multocida challenge were recorded in this group. The effect of different probiotics on the morphometric changes in the gut tissues was determined, where significant increase in the duodenal and ileum villus height and average crypt depth were recorded in probiotic treated chicks compared to the negative control. The increase in the gut villi height is proved to be associated with increased absorption capability of nutients from the intestine.
Collapse
Affiliation(s)
- M. Shawky
- Regional Center for Food and Feed, Agriculture Research Center, Giza, Egypt
| | - N. F. Khaled
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medi-cine, Cairo University, Egypt
| | - G. El-Moghazy
- Regional Center for Food and Feed, Agriculture Research Center, Giza, Egypt
| | - S. S. Abdelgayed
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - R. Soliman
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo Universi-ty, Giza, Egypt
| |
Collapse
|
37
|
Mousapour A, Salarmoini M, Afsharmanesh M, Ebrahimnejad H, Meimandipour A, Amiri N. Encapsulation of essential oils of rosemary (Rosmarinus officinalis): evaluation of in vitro antioxidant and antimicrobial properties, and effects on broiler performance. ANIMAL PRODUCTION SCIENCE 2022. [DOI: 10.1071/an20608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Li W, Xu B, Wang L, Sun Q, Deng W, Wei F, Ma H, Fu C, Wang G, Li S. Effects of Clostridium butyricum on Growth Performance, Gut Microbiota and Intestinal Barrier Function of Broilers. Front Microbiol 2021; 12:777456. [PMID: 34956140 PMCID: PMC8692979 DOI: 10.3389/fmicb.2021.777456] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/15/2021] [Indexed: 01/10/2023] Open
Abstract
This study was conducted to evaluate the effects of Clostridium butyricum dietary supplementation on the growth, antioxidant, immune response, gut microbiota, and intestinal barrier function of broilers under high stocking density (HSD) stress. A total of 324 1-day-old Arbor Acres male broilers were randomly assigned to three treatments with six replicates, each replicate including 18 chickens (18 birds/m2). The experiment lasted 6 weeks. The three treatments were basal diet (control, CON), basal diet supplemented with 1 × 109 colony forming units (cfu)/kg C. butyricum (CB), and basal diet supplemented with 10 mg/kg virginiamycin (antibiotic, ANT). The results showed that the body weight (BW) and average daily gain (ADG) of broilers in the CB group were significantly higher than those in the CON group in three periods (p < 0.05). The total antioxidant capacity (T-AOC) and the superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activity in serum of the CB group were significantly increased compared with those in the CON and ANT groups at 42 days (p < 0.05). At 42 days, the serum immunoglobulin M (IgM) and immunoglobulin G (IgG) levels of the CB group were significantly higher than those of the CON group. Compared with the CON group, interleukin-1β (IL-1β) in the CB group was significantly decreased in the starter and grower stages (p < 0.05), but there was no significant difference between the two treatment groups (p > 0.05). C. butyricum significantly decreased the high stocking density-induced expression levels of IL-1β and tumor necrosis factor-α (TNF-α) in the ileum of broilers at different stages. Additionally, C. butyricum could increase the expressions of claudin-1 and zonula occludens-1 (ZO-1) in intestinal tissue. Moreover, C. butyricum significantly increased the Sobs and Shannon indices in the CB group compared with the ANT group (p < 0.05), while the Ace index in the CB group was significantly higher than that of the CON group (p < 0.05). Furthermore, by using 16S rRNA gene sequencing, the proportion of Bacteroides in the CB group was increased compared to those in the CON and ANT groups at the genus level. In conclusion, C. butyricum supplemented into feed could improve the growth performance and feed utilization of broilers by promoting immune and intestinal barrier function and benefiting the cecal microflora.
Collapse
Affiliation(s)
- Wenjia Li
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Bin Xu
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Linyi Wang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Quanyou Sun
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Wen Deng
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Fengxian Wei
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Huihui Ma
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Chen Fu
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Gaili Wang
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Shaoyu Li
- Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, Zhengzhou, China
| |
Collapse
|
39
|
Li Y, Wang Y, Lv J, Dou X, Zhang Y. Effects of Dietary Supplementation With Clostridium butyricum on the Amelioration of Growth Performance, Rumen Fermentation, and Rumen Microbiota of Holstein Heifers. Front Nutr 2021; 8:763700. [PMID: 34859032 PMCID: PMC8631910 DOI: 10.3389/fnut.2021.763700] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/19/2021] [Indexed: 12/25/2022] Open
Abstract
In China, the use of antibiotics growth promoters as feed additives has been banned. The goal of raising dairy heifers is to gain a relatively high body weight on a high-fiber diet at first mating or calving, thus increasing economic benefits. The objective of this experiment was to explore the effects of supplemental Clostridium butyricum (C. butyricum) on growth performance, rumen fermentation and microbiota, and blood parameters in Holstein heifers. Twenty Holstein heifers [mean ± standard deviation (SD); age = 182 ± 4.20 d, body weight = 197.53 ± 5.94 kg, dry matter intake (DMI) = 6.10 ± 0.38 kg] were randomly assigned to one of two diets group for a 42-day feeding period: (1) basal diet (an untreated control group, i.e., the CON group) or (2) basal diet plus daily 2 × 108 (colony-forming unit, CFU) of C. butyricum per kg of DMI per heifer (the CB group). The results demonstrated that C. butyricum supplementation increased the average daily gain from d 21 to 42 and DMI compared to the control group. Supplementation with C. butyricum significantly decreased the molar proportion of acetate and the acetate to propionate ratio but increased the molar proportion of butyrate and propionate. Compared with the control group, the relative abundance of Butyrivibrio fibrisolvens, Ruminococcus albus, Ruminobacter amylophilus, Ruminococcus flavefaciens, and Streptococcus bovis increased during the trial period in the CB group. However, C. butyricum had no significant effect on the blood parameters in Holstein heifers. In conclusion, these results show that feeding C. butyricum can improve growth performance and rumen fermentation without any negative impact on blood parameters in Holstein heifers.
Collapse
Affiliation(s)
- Yang Li
- College of Animal Sciences and Technology, Northeast Agriculture University, Harbin, China
| | - Yiqiang Wang
- College of Animal Sciences and Technology, Northeast Agriculture University, Harbin, China
| | - Jingyi Lv
- College of Animal Sciences and Technology, Northeast Agriculture University, Harbin, China
| | - Xiujing Dou
- College of Animal Sciences and Technology, Northeast Agriculture University, Harbin, China
| | - Yonggen Zhang
- College of Animal Sciences and Technology, Northeast Agriculture University, Harbin, China
| |
Collapse
|
40
|
Cai L, Hartanto R, Zhang J, Qi D. Clostridium butyricum Improves Rumen Fermentation and Growth Performance of Heat-Stressed Goats In Vitro and In Vivo. Animals (Basel) 2021; 11:3261. [PMID: 34827993 PMCID: PMC8614545 DOI: 10.3390/ani11113261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 02/05/2023] Open
Abstract
This study aimed to evaluate the effects of Clostridium butyricum on rumen fermentation and the growth performance of heat-stressed goats. The in vitro fermentation was carried out using Clostridium butyricum supplement at 0% (CG), 0.025% (CB1), 0.05% (CB2), 0.10% (CB3), and 0.20% (CB4) of the dry matter (DM) weight of basal diet. Results showed that ruminal pH and the concentrations of ammonia nitrogen, total volatile fatty acids, acetic acid, propionic acid, as well as the acetic acid to propionic acid ratio were significantly increased (p < 0.05) in CB2 and CB3 compared with the CG group. Additionally, significant increases (p < 0.05) in the degradability of DM, neutral detergent fiber, and acid detergent fiber were observed in CB2 and CB3 compared with the CG group. For the in vivo study, 12 heat-stressed goats were divided equally into three groups: the control (HS1) was fed the basal diet, and groups HS2 and HS3 were fed with 0.05% and 0.10% Clostridium butyricum added to the basal diet, respectively. The experiment was designed as a 3 × 3 Latin square. Similar effects on rumen fermentation and digestibility parameters were obtained with 0.05% of Clostridium butyricum supplement compared to the in vitro study. Moreover, the dry matter intake and average daily gain were significantly increased (p < 0.05) in HS2 compared with other groups. These results indicated that an effective dose of Clostridium butyricum supplement (0.05%) could improve the rumen fermentation and growth performance of heat-stressed goats.
Collapse
Affiliation(s)
- Liyuan Cai
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.C.); (R.H.); (J.Z.)
| | - Rudy Hartanto
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.C.); (R.H.); (J.Z.)
- Department of Animal Science, Faculty of Animal and Agricultural Sciences, Diponegoro University, Semarang 50275, Indonesia
| | - Ji Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.C.); (R.H.); (J.Z.)
| | - Desheng Qi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.C.); (R.H.); (J.Z.)
| |
Collapse
|
41
|
Reuben RC, Sarkar SL, Roy PC, Anwar A, Hossain MA, Jahid IK. Prebiotics, probiotics and postbiotics for sustainable poultry production. WORLD POULTRY SCI J 2021. [DOI: 10.1080/00439339.2021.1960234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Rine Christopher Reuben
- Department of Microbiology, Faculty of Biological Sciences and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
- German Centre for Integrative Biodiversity Research (Idiv), Halle-Jena-Leipzig, Germany
| | - Shovon Lal Sarkar
- Department of Microbiology, Faculty of Biological Sciences and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Pravas Chandra Roy
- Department of Microbiology, Faculty of Biological Sciences and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | | | - M. Anwar Hossain
- Department of Microbiology, University of Dhaka and Vice Chancellor, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Iqbal Kabir Jahid
- Department of Microbiology, Faculty of Biological Sciences and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| |
Collapse
|
42
|
Xu L, Sun X, Wan X, Li K, Jian F, Li W, Jiang R, Han R, Li H, Kang X, Wang Y. Dietary supplementation with Clostridium butyricum improves growth performance of broilers by regulating intestinal microbiota and mucosal epithelial cells. ACTA ACUST UNITED AC 2021; 7:1105-1114. [PMID: 34738041 PMCID: PMC8551407 DOI: 10.1016/j.aninu.2021.01.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/11/2021] [Accepted: 01/17/2021] [Indexed: 12/14/2022]
Abstract
Clostridium butyricum has been widely considered an antibiotic substitute in recent years. It can promote growth performance, improve the immune response and enhance the intestinal barrier function of the host. In the present study, 1-d-old Arbor Acres (AA) broilers were fed C. butyricum (1 × 109 cfu/kg) for 28 d. The transcriptomic characteristics of epithelial cells of the cecal mucosa were determined by RNA-sequence, and the cecal microbiota composition was explored by 16S ribosomal RNA gene sequencing. The changes in the intestinal mucosa of broilers were then analyzed by tissue staining. Gene Ontology (GO) annotations identified substance transport and processes and pathways that might participate in intestinal development and cell viability. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that the differentially expressed genes are involved in numerous pathways related to amino acid and vitamin metabolism and antioxidant and defensive functions, among others. The relative expression of some genes associated with intestinal barrier function (claudins 2, 15, 19, and 23, tight junction proteins 1, 2, and 3 and mucin 1) was significantly increased in the treatment group (P < 0.05 or P < 0.01). Moreover, the proportion of Firmicutes was higher in the C. butyricum-treated group, whereas the proportion of Proteobacteria was higher in the control group. At the genus level, the relative abundances of Butyricicoccus and Lactobacillus, among other bacteria, were increased after C. butyricum supplementation. The tissue staining analysis showed that the cecal mucosa of broilers was significantly ameliorated after the addition of C. butyricum (P < 0.05 or P < 0.01). These results showed that dietary supplementation with C. butyricum can enhance the antioxidant capacity, mucosal barrier function, and stabilize the cecal microbiota, resulting in improving the growth performance.
Collapse
Affiliation(s)
- Laipeng Xu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xiangli Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xianhua Wan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Keke Li
- Henan Jinbaihe Biotechnology Co., Ltd, Anyang, 455000, China
| | - Fuchun Jian
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China
| | - Wenting Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China.,Henan Research Center of Germplasm Resources for Poultry, Zhengzhou, 450046, China
| | - Ruirui Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China.,Henan Research Center of Germplasm Resources for Poultry, Zhengzhou, 450046, China
| | - Ruili Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China.,Henan Research Center of Germplasm Resources for Poultry, Zhengzhou, 450046, China
| | - Hong Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China.,Henan Research Center of Germplasm Resources for Poultry, Zhengzhou, 450046, China
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China.,Henan Research Center of Germplasm Resources for Poultry, Zhengzhou, 450046, China
| | - Yanbin Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, China.,Henan Research Center of Germplasm Resources for Poultry, Zhengzhou, 450046, China
| |
Collapse
|
43
|
Huang P, Cui X, Wang Z, Xiao C, Ji Q, Wei Q, Huang Y, Bao G, Liu Y. Effects of Clostridium butyricum and a Bacteriophage Cocktail on Growth Performance, Serum Biochemistry, Digestive Enzyme Activities, Intestinal Morphology, Immune Responses, and the Intestinal Microbiota in Rabbits. Antibiotics (Basel) 2021; 10:1347. [PMID: 34827285 PMCID: PMC8614885 DOI: 10.3390/antibiotics10111347] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 12/15/2022] Open
Abstract
The objective of this study was to assess the effects of dietary supplementation with Clostridium butyricum (CB) and a bacteriophage cocktail (BP) on growth performance, serum biochemical parameters, intestinal digestive and oxidase enzymes, intestinal morphology, immune responses, and the cecum microbiota in rabbits. In total, 108 New Zealand rabbits (5 weeks old) were randomly and equally allotted into three dietary treatment groups (four replicates per treatment, n = 36/treatment): (1) the control (CN) group-rabbits fed the basal diet; (2) CB group-rabbits fed the basal diet supplemented with 100 mg/kg diet Clostridium butyricum; and (3) BP group-rabbits fed the basal diet supplemented with 200 mg/kg diet BP cocktail, respectively, for 6 weeks. Compared with the CN diet, dietary CB and BP inclusion increased the average daily gain (ADG) and average daily feed intake (ADFI) and decreased the feed/gain (F/G) ratio of rabbits. Furthermore, CB increased the digestive enzyme activity (α-amylase and trypsin in the ileum); the chymotrypsin activity was also significantly increased in the duodenum and jejunum. Supplementation with CB significantly enhanced antioxidant capacity (SOD and GSH-Px) in the jejunum and ileum and reduced MDA levels. Additionally, rabbits fed CB had significantly elevated villus height (V) and (V/C) ratios but reduced crypt depth (C). Moreover, dietary CB supplementation markedly increased the ileal expression of tight junction proteins (occludin, ZO-1, and claudin-1) and increased secretory immunoglobulin A (sIgA) production. High-throughput sequencing indicated that the microbiota in the rabbit intestine was altered by CB and BP. Venn diagrams and heatmap plots revealed that the gut microbial community composition varied obviously among rabbits fed different diets. Specifically, CB increased the relative abundance of beneficial bacteria to maintain intestinal barrier homeostasis, whereas BP decreased the relative abundance of Gammaproteobacteria, which included a plenty of pathogenic bacteria.
Collapse
Affiliation(s)
- Pan Huang
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (P.H.); (X.C.); (Z.W.); (C.X.); (Q.J.); (Q.W.); (Y.H.)
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China
| | - Xuemei Cui
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (P.H.); (X.C.); (Z.W.); (C.X.); (Q.J.); (Q.W.); (Y.H.)
| | - Zhipeng Wang
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (P.H.); (X.C.); (Z.W.); (C.X.); (Q.J.); (Q.W.); (Y.H.)
| | - Chenwen Xiao
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (P.H.); (X.C.); (Z.W.); (C.X.); (Q.J.); (Q.W.); (Y.H.)
| | - Quanan Ji
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (P.H.); (X.C.); (Z.W.); (C.X.); (Q.J.); (Q.W.); (Y.H.)
| | - Qiang Wei
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (P.H.); (X.C.); (Z.W.); (C.X.); (Q.J.); (Q.W.); (Y.H.)
| | - Yee Huang
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (P.H.); (X.C.); (Z.W.); (C.X.); (Q.J.); (Q.W.); (Y.H.)
| | - Guolian Bao
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (P.H.); (X.C.); (Z.W.); (C.X.); (Q.J.); (Q.W.); (Y.H.)
- College of Chemistry and Life Science, Zhejiang Normal University, Jinhua 321004, China
| | - Yan Liu
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (P.H.); (X.C.); (Z.W.); (C.X.); (Q.J.); (Q.W.); (Y.H.)
| |
Collapse
|
44
|
Khomayezi R, Adewole D. Probiotics, prebiotics, and synbiotics: an overview of their delivery routes and effects on growth and health of broiler chickens. WORLD POULTRY SCI J 2021. [DOI: 10.1080/00439339.2022.1988804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Rojman Khomayezi
- Department of Animal Science and Aquaculture, Dalhousie University Faculty of Agriculture, Bible Hill, Canada
| | - Deborah Adewole
- Department of Animal Science and Aquaculture, Dalhousie University Faculty of Agriculture, Bible Hill, Canada
| |
Collapse
|
45
|
Xu X, Yang S, Olajide JS, Qu Z, Gong Z, Wang J, Zhang Y, Wang H, Xiong L, Zhang K, Zhou E, Cai J. Clostridium butyricum Supplement Can Ameliorate the Intestinal Barrier Roles in Broiler Chickens Experimentally Infected With Clostridium perfringens. Front Physiol 2021; 12:737481. [PMID: 34630156 PMCID: PMC8499529 DOI: 10.3389/fphys.2021.737481] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/26/2021] [Indexed: 11/22/2022] Open
Abstract
Necrotic enteritis (NE), caused by Clostridium perfringens, is an economically important disease in the broiler. Among normal flora in the broiler intestinal region, Clostridium butyricum has been identified as a probiotic agent that reduces the susceptibility of broilers to C. perfringens. However, the effects of C. butyricum supplement on broiler intestinal integrity during NE are largely unknown. In this study, we investigated the effects of C. butyricum on the growth performance, intestinal morphology and barrier function, and the functions of immune-related cytokines under NE in broilers. Chickens were divided into five groups: control group (NC), supplement C. butyricum only group (CB), NE-infected group (PC), supplement C. butyricum from Day 14 (NECB1) to Day 22 NE-infected group, and supplement C. butyricum from Day 1 (NECB2) to Day 22 NE-infected group. The results showed that there were significantly decreased average daily weight gain and increased feed conversion rate in the infected group (PC) compared with the C. butyricum-supplemented groups (NECB1 and NECB2) through the diet. Histopathological observation on the Hematoxylin–Eosin staining avian small intestine sections revealed that supplementation of C. butyricum (NECB1 and NECB2) could increase the intestinal villus height/crypt depth and lessen the intestinal damage under NE. ELISA and Limulus test showed that broilers infected with NE (PC) had higher serum IgA and lipopolysaccharide content; however, after C. butyricum supplementation (NECB1 and NECB2), they returned to a normal level. Furthermore, real-time PCR and Western blot results indicated that compared with PC, supplementing C. butyricum (NECB1 and NECB2) could initialize the expressions of genes related to the intestinal barrier-associated molecules (such as CLDN-1, CLDN-3, OCLN, MUC2, ZO-1, and CLDN5), cytokines (such as IL-10, IL-6, and TGFB1), and C. perfringens plc gene expression. Moreover, the results detected by the Ussing chamber suggested that C. butyricum (NECB1 and NECB2) could amend the decrease in conductivity value and short-circuit current value caused by NE. In addition, NECB2 significantly reduced the upregulation of fluorescein isothiocyanate–dextran flux caused by the NE disease. In conclusion, these findings suggest that dietary supplementation of C. butyricum in broilers with NE improved chicken growth performance, intestinal integrity and barrier function, and immunological status. Notably, no statistical difference was observed with the addition of C. butyricum on day 1 or day 14.
Collapse
Affiliation(s)
- Xiao Xu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
| | - Shunli Yang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
| | - Joshua Seun Olajide
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
| | - Zigang Qu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
| | - Zhenxing Gong
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
| | - Jing Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
| | - Yanbing Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
| | - Heng Wang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
| | - Ling Xiong
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
| | - Kun Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
| | - Enmin Zhou
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Jianping Cai
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, China
| |
Collapse
|
46
|
Wang Y, Wang Y, Lin X, Gou Z, Fan Q, Jiang S. Effects of Clostridium butyricum, Sodium Butyrate, and Butyric Acid Glycerides on the Reproductive Performance, Egg Quality, Intestinal Health, and Offspring Performance of Yellow-Feathered Breeder Hens. Front Microbiol 2021; 12:657542. [PMID: 34603221 PMCID: PMC8481923 DOI: 10.3389/fmicb.2021.657542] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 08/12/2021] [Indexed: 01/24/2023] Open
Abstract
Butyrate has been reported to promote the performance and growth of chickens. The specific roles and efficacy of different sources of butyrate remained unclear. Thus, the present study aimed to investigate and compare the effects of Clostridium butyricum (CB), sodium butyrate (SB), and butyric acid glycerides (tributyrin, BAG) on the reproductive performance, egg quality, intestinal health, and offspring performance of yellow-feathered breeder hens. A total of 300 Lingnan yellow-feathered breeder hens were assigned to five treatment groups: control (CL), 1×108CFU/kg CB (CBL), 1×109CFU/kg CB (CBH), 500mg/kg SB, and 300mg/kg BAG. Results showed that the laying performance and egg quality were increased by CBL, CBH, and BAG. Both CB treatments increased the hatchability of fertilized eggs. Maternal supplementation with both levels of CB significantly elevated the growth performance of offspring. Treatment with CBL, CBH, SB, and BAG all improved the oviduct-related variables and reduced the plasmal antioxidant variables. The CBH, CBL, and BAG treatments also improved the intestinal morphology to different degrees. Jejunal contents of IL-6 were decreased by CBH and BAG, while those of IL-4, IL-6, IL-1β, and IgY were decreased by SB. Transcripts of nutrient transporters in jejunal mucosa were also upregulated by CBH, CBL, and SB treatments and expression of Bcl-2-associated X protein was decreased by CBL, CBH, and BAG. In cecal contents, CBL increased the abundance of Firmicutes and Bacillus, while CBH decreased the abundance of Proteobacteria. Also, the co-occurrence networks of intestinal microbes were regulated by CBH and BAG. In conclusion, dietary inclusion of CB and BAG improved the reproductive parameters, egg quality, and intestinal morphology of breeders. CB also influenced the hatching performance of breeders and growth performance of the offspring, while SB improved the oviduct-related variables. These beneficial effects may result from the regulation of cytokines, nutrient transporters, apoptosis, and gut microbiota; high-level CB had more obvious impact. Further study is needed to explore and understand the correlation between the altered gut microbiota induced by butyrate and the performance, egg quality, intestinal health, and also offspring performance.
Collapse
Affiliation(s)
- Yibing Wang
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Yang Wang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - Xiajing Lin
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Zhongyong Gou
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Qiuli Fan
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Shouqun Jiang
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agricultural and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
47
|
Effect of functional oils or probiotics on performance and microbiota profile of newly weaned piglets. Sci Rep 2021; 11:19457. [PMID: 34593866 PMCID: PMC8484476 DOI: 10.1038/s41598-021-98549-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 09/06/2021] [Indexed: 11/16/2022] Open
Abstract
The study aimed to evaluate a commercial blend of functional oils based on liquid from the cashew nutshell and castor oil as a growth promoter in newly weaned piglets. A total of 225 piglets, castrated males and females with 28 days of age were randomly distributed in pens with 15 animals composing three treatments and five repetitions. The treatments were: control (without the inclusion of additives), probiotics, or functional oils. The performance was evaluated. At 50 days of age, a pool of fresh feces from 3 animals/repetition was collected to perform the sequencing of microbiota using the Illumina MiSeq platform. Supplementation with functional oils improved the piglets' daily weight gain and feed conversion ratio (P < 0.05) in the first weeks of the experiment, which resulted in higher final live weight (P < 0.05) in the phase when compared to the control treatment (24.34 kg and 21.55 kg, respectively). The animals that received probiotics showed an intermediate performance (23.66 kg final live weight) at the end of the 38 experimental days. Both additives were effective in increasing groups essential for intestinal health, such as Ruminococcaceae and Lachnospiraceae. The functional oils were more effective in reducing pathogenic bacteria, such as Campylobacter and Escherichia coli. In conclusion, the use of functional oils optimized performance and effectively modulated the microbiota of newly weaned piglets.
Collapse
|
48
|
Lambo MT, Chang X, Liu D. The Recent Trend in the Use of Multistrain Probiotics in Livestock Production: An Overview. Animals (Basel) 2021; 11:2805. [PMID: 34679827 PMCID: PMC8532664 DOI: 10.3390/ani11102805] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/09/2021] [Accepted: 09/23/2021] [Indexed: 01/16/2023] Open
Abstract
It has been established that introducing feed additives to livestock, either nutritional or non-nutritional, is beneficial in manipulating the microbial ecosystem to maintain a balance in the gut microbes and thereby improving nutrient utilization, productivity, and health status of animals. Probiotic use has gained popularity in the livestock industry, especially since antimicrobial growth promoter's use has been restricted due to the challenge of antibiotic resistance in both animals and consumers of animal products. Their usage has been linked to intestinal microbial balance and improved performance in administered animals. Even though monostrain probiotics could be beneficial, multistrain probiotics containing two or more species or strains have gained considerable attention. Combining different strains has presumably achieved several health benefits over single strains due to individual isolates' addition and positive synergistic adhesion effects on animal health and performance. However, there has been inconsistency in the effects of the probiotic complexes in literature. This review discusses multistrain probiotics, summarizes selected literature on their effects on ruminants, poultry, and swine productivity and the various modes by which they function.
Collapse
Affiliation(s)
- Modinat Tolani Lambo
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (M.T.L.); (X.C.)
| | - Xiaofeng Chang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (M.T.L.); (X.C.)
| | - Dasen Liu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (M.T.L.); (X.C.)
- College of Science, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
49
|
Cai L, Yu J, Hartanto R, Qi D. Dietary Supplementation with Saccharomyces cerevisiae, Clostridium butyricum and Their Combination Ameliorate Rumen Fermentation and Growth Performance of Heat-Stressed Goats. Animals (Basel) 2021; 11:ani11072116. [PMID: 34359244 PMCID: PMC8300089 DOI: 10.3390/ani11072116] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/03/2021] [Accepted: 07/14/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Heat stress commonly happens to goats raised in the Jianghuai region of China during the summer and inevitably contributes to a loss of animal production. Dietary supplementation with probiotics is one of the practical approaches to improve animal production. By dietary supplementation with Saccharomyces cerevisiae, Clostridium butyricum, and their combination to the heat-stressed goats, the present study showed these probiotics effectively alleviate heat stress by improving the rumen fermentation function and growth performance. Therefore, this study provides a reference for the application of these two probiotics in ruminant production during heat stress. Abstract This study aimed to evaluate the effects of Saccharomyces cerevisiae, and their combination on rumen fermentation and growth performance of heat-stressed goats. Twelve heat-stressed goats (20.21 ± 2.30 kg) were divided equally into four groups: control group (CG, fed the basal diet, Saccharomyces cerevisiae supplemented group (SC, 0.60% Saccharomyces cerevisiae added to the basal diet), Clostridium butyricum supplemented group (CB, 0.05% Clostridium butyricum added to the basal diet), and their combination supplemented group (COM 0.60% Saccharomyces cerevisiae and 0.05% Clostridium butyricum added to the basal diet) and were assigned to a 4 × 3 incomplete Latin square design. The rumen fluid and feces were collected for fermentation parameters and feed digestibility analysis, and animal growth performance was also assessed during all the experiment periods. The results showed that rumen pH, rumen cellulolytic enzymes (avicelase, CMCaes, cellobiase, and xylanase) activities, and the concentrations of rumen total volatile fatty acid (TVFA), acetic acid, and propionic acid were significantly increased with Saccharomyces cerevisiae, Clostridium butyricum, and their combination supplementation (p < 0.05). Besides, the dry matter intake (DMI), average daily gain (ADG), and the digestibility of dry matter (DM), neutral detergent fiber (NDF), and acidic detergent fiber (ADF) were significantly increased (p < 0.05) with supplemented these probiotics. However, the ammonia nitrogen (NH3-N) concentration only significantly increased in CB and A/P ratio (acetic acid to propionic acid ratio) only significantly increased in SC and CB. These results indicated that the supplementation with these probiotics could ameliorate rumen fermentation and growth performance of heat-stressed goats.
Collapse
Affiliation(s)
- Liyuan Cai
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.C.); (J.Y.); (R.H.)
| | - Jiangkun Yu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.C.); (J.Y.); (R.H.)
| | - Rudy Hartanto
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.C.); (J.Y.); (R.H.)
- Department of Animal Science, Faculty of Animal and Agricultural Sciences, Diponegoro University, Semarang 50275, Indonesia
| | - Desheng Qi
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.C.); (J.Y.); (R.H.)
- Correspondence: ; Tel.: +86-27-87281793; Fax: +86-27-87281033
| |
Collapse
|
50
|
Zommiti M, Chikindas ML, Ferchichi M. Probiotics-Live Biotherapeutics: a Story of Success, Limitations, and Future Prospects-Not Only for Humans. Probiotics Antimicrob Proteins 2021; 12:1266-1289. [PMID: 31376026 DOI: 10.1007/s12602-019-09570-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In livestock production, lactic acid bacteria (LAB) represent the most widespread microorganisms used as probiotics. For such critical use, these bacteria must be correctly identified and characterized to ensure their safety and efficiency. Recently, probiotics have become highly recognized as supplements for humans and in particular for animals because of their beneficial outcome on health improvement and well-being maintenance. Various factors, encompassing dietary and management constraints, have been demonstrated to tremendously influence the structure, composition, and activities of gut microbial communities in farm animals. Previous investigations reported the potential of probiotics in animal diets and nutrition. But a high rate of inconsistency in the efficiency of probiotics has been reported. This may be due, in a major part, to the dynamics of the gastrointestinal microbial communities. Under stressing surroundings, the direct-fed microbials may play a key role as the salient limiting factor of the severity of the dysbiosis caused by disruption of the normal intestinal balance. Probiotics are live microorganisms, which confer health benefits on the host by positively modifying the intestinal microflora. Thus, the aim of this review is to summarize and to highlight the positive influence of probiotics and potential probiotic microbe supplementation in animal feed with mention of several limitations.
Collapse
Affiliation(s)
- Mohamed Zommiti
- Unité de Protéomique Fonctionnelle et Potentiel Nutraceutique de la Biodiversité de Tunisie, Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El-Manar, 1006, Tunis, Tunisia
| | - Michael L Chikindas
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, New Brunswick, NJ, USA.,Center for Digestive Health, New Jersey Institute for Food, Nutrition, and Health, New Brunswick, NJ, USA
| | - Mounir Ferchichi
- Unité de Protéomique Fonctionnelle et Potentiel Nutraceutique de la Biodiversité de Tunisie, Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El-Manar, 1006, Tunis, Tunisia.
| |
Collapse
|