1
|
Rubio LA. Intestinal microbiota composition in broilers fed protein-free or casein-based diets. Poult Sci 2024; 103:104365. [PMID: 39413701 PMCID: PMC11530906 DOI: 10.1016/j.psj.2024.104365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/18/2024] Open
Abstract
Growing broiler chickens of the Cobb500 strain were used to determine the effects on intestinal microbiota composition of a protein-free (PF) diet as compared to a diet based in casein (CAS) as the only protein source. CAS was formulated to contain the same amount of protein (190 g kg-1) as a commercial Maize-soy diet which was used as a practical reference. The ileal AA flow (g kg-1 dry matter intake) was significantly higher (P < 0.001) than PF in birds fed protein containing diets (CAS or Maize-soy). Taken as a whole (discriminant and ANOSIM analysis), the intestinal (ileal and caecal contents and ileal tissue) microbiota composition of PF and CAS were significantly (P < 0.001) different from Maize-soy and not different from each other in some cases. RT-qPCR and sequencing analysis of the ileal and caecal microbiota revealed significant (P < 0.05) differences in a number of bacterial groups between broilers fed PF, CAS or Maize-soy diets. The main result was that the lack of protein in the intestinal medium of PF birds resulted in a drop of Lactobacillus spp. counts (on average, 43 in PF vs 1,734 in the Maize-soy diet) and increased Enterobacteriaceae (on average, 419 in PF vs 172 in the Maize-soy diet) and other potentially pathogenic bacterial groups (in both intestinal contents and tissue). Thus, the lack of protein in the intestinal medium of PF birds resulted in a microbiota composition compatible with a pro-inflammatory state, and this effect was somewhat less marked in birds fed CAS. The results reported here suggest that the adverse effects on microbiota composition in broilers fed CAS were less marked than in those fed PF, which would be in line with a preferential use of a highly digestible protein containing diet to determine endogenous AA excretion instead of a PF diet.
Collapse
Affiliation(s)
- Luis A Rubio
- Department of Animal Nutrition and Sustainable Production, Estación Experimental del Zaidín, 18008 Granada, Spain.
| |
Collapse
|
2
|
Bundurus IA, Balta I, Pet I, Stef L, Popescu CA, McCleery D, Lemon J, Callaway T, Douglas A, Corcionivoschi N. Mechanistic concepts involved in biofilm associated processes of Campylobacter jejuni: persistence and inhibition in poultry environments. Poult Sci 2024; 103:104328. [PMID: 39366290 PMCID: PMC11483643 DOI: 10.1016/j.psj.2024.104328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 10/06/2024] Open
Abstract
Campylobacter species, predominantly Campylobacter jejuni, remains a significant zoonotic pathogen worldwide, with the poultry sector being the primary vector for human transmission. In recent years. there has been a notable rise in the incidence of human campylobacteriosis, necessitating a deeper understanding of the pathogen's survival mechanisms and transmission dynamics. Biofilm presence significantly contributes to C. jejuni persistence in poultry and subsequent food product contamination, and this review describes the intricate processes involved in biofilm formation. The ability of Campylobacter to form biofilms on various surfaces, including stainless steel, plastic, and glass, is a critical survival strategy. Campylobacter biofilms, with their remarkable resilience, protect the pathogen from environmental stresses such as desiccation, pH extremes, biocides and sanitizing agents. This review explores the molecular and genetic mechanisms of C. jejuni biofilm formation, highlighting regulatory genes involved in motility, chemotaxis, and stress responses. Flagellar proteins, particularly flaA, flaB, flaG, and adhesins like cadF and flpA, are identified as the main molecular components in biofilm development. The role of mixed-species biofilms, where C. jejuni integrates into existing biofilms of other bacteria to enhance pathogen resilience, is also discussed. This review also considers alternative interventions to control C. jejuni in poultry production, in the context of increasing antibiotic resistance. It explores the effectiveness of prebiotics, probiotics, synbiotics, bacteriocins, bacteriophages, vaccines, and organic acids, with a focus on their mechanisms of action in reducing bacterial colonization and biofilm formation. Studies show that mixtures of organic acids and compounds like Carvacrol and Eugenol significantly downregulate genes linked with motility and adhesion, thereby disrupting biofilm integrity. It discusses the impact of environmental factors, such as temperature and oxygen levels on biofilm formation, providing insights into how industrial conditions can be manipulated to reduce contamination. This paper stresses the need for a multifaceted approach to control Campylobacter in poultry, integrating molecular and genetic insights with practical interventions. By advancing our understanding of biofilm dynamics and gene regulation, we aim to inform the development of more effective strategies to enhance food safety and protect public health.
Collapse
Affiliation(s)
- Iulia A Bundurus
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I From Timisoara, Timisoara 300645, Romania
| | - Igori Balta
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I From Timisoara, Timisoara 300645, Romania
| | - Ioan Pet
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I From Timisoara, Timisoara 300645, Romania
| | - Lavinia Stef
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I From Timisoara, Timisoara 300645, Romania
| | - Cosmin Alin Popescu
- Faculty of Agriculture, University of Life Sciences King Mihai I From Timisoara, Timisoara 300645, Romania
| | - David McCleery
- Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, Northern Ireland BT4 3SD, UK
| | - Joanne Lemon
- Chief Scientific Adviser's Office, Department of Agriculture, Environment and Rural Affairs for Northern Ireland, Belfast, Northern Ireland BT3 9ED, UK
| | - Todd Callaway
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
| | - Alastair Douglas
- Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, Northern Ireland BT4 3SD, UK
| | - Nicolae Corcionivoschi
- Faculty of Bioengineering of Animal Resources, University of Life Sciences King Mihai I From Timisoara, Timisoara 300645, Romania; Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, Northern Ireland BT4 3SD, UK; Academy of Romanian Scientists, Bucharest 050044, Romania.
| |
Collapse
|
3
|
Li M, Yuan X, Li L, Geng Y, Hong L, Pu L, Yang H, Li L, Zhang J. Effects of potassium diformate on growth performance, apparent digestibility of nutrients, serum biochemical indices, and intestinal microflora in Cherry Valley ducks. Poult Sci 2024; 103:104099. [PMID: 39096833 PMCID: PMC11342756 DOI: 10.1016/j.psj.2024.104099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 08/05/2024] Open
Abstract
This study was performed to investigate the effects of potassium diformate (KDF) on growth performance, apparent digestibility of nutrients, serum biochemical indices, and intestinal microflora of Cherry Valley ducks. In total, 144 female healthy 1-day-old Cherry Valley ducks were divided into 3 groups with 6 replicates per group and 8 ducks per replicate according to the principle of similar body weight. The control group was fed a basic diet. In the 2 experimental groups, 0.8% and 1.2% KDF was added to the basic diet, respectively. The trial period was 6 wk and the pretrial period was 3 wk. The final weight and ADG were significantly higher in the 0.8% KDF group than in the control group (P < 0.05). The feed-to-gain ratio was significantly lower in both KDF groups than in the control group (P < 0.05). The apparent digestibility of CP was significantly higher in both KDF groups than in the control group (P < 0.05). The apparent digestibility of calcium was also significantly higher in the 0.8% KDF group (P < 0.05). The serum levels of alkaline phosphatase, cholesterol, and total protein were significantly lower in the 0.8% KDF group than in the control group (P < 0.05), the IgM content was significantly higher (P < 0.05), the low-density lipoprotein cholesterol, triglyceride, and urea levels were significantly lower (P < 0.01), and the glucose level was significantly higher (P < 0.01). The serum total protein level was significantly higher in the 1.2% KDF group than in the control group (P < 0.05). The relative abundance of Firmicutes and Patescibacteria in the gut of ducks was significantly higher in the 0.8% KDF group than in the control group (P < 0.05), the relative abundance of unclassified Erysipelotrichaceae and Lactobacillus was significantly higher (P < 0.01), and the relative abundance of Fusobacteriota was significantly lower (P < 0.05). However, the relative abundance of Firmicutes in the gut of ducks was significantly higher in the 1.2% KDF group than in the control group (P < 0.05). The relative abundance of unclassified Erysipelotrichaceae and Clostridium sensu stricto 1 was significantly higher (P < 0.01), as was the relative abundance of Fusobacteriota and Proteobacteria (P < 0.05). These findings indicate that the addition of 0.8% KDF to the diet can improve the growth performance of Cherry Valley ducks, promote the absorption of nutrients, change the structure of the microflora in the cecum, and increase the relative abundance of dominant bacteria. It was also shown that there was a significant difference between the 0.8% and 1.2% KDF levels which suggest that the safety margin for overdosing is quite low.
Collapse
Affiliation(s)
- Mengting Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animals Science and Veterinary Medicine, Tianjin Agricultural University, Xiqing 300380,China
| | - Xuefeng Yuan
- Tianjin key Laboratory of Green Ecological Feed, Tianjin Modern Tianjiao Agricultural Technology Co., Baodi 301800, China
| | - Long Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animals Science and Veterinary Medicine, Tianjin Agricultural University, Xiqing 300380,China
| | - Yanchao Geng
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animals Science and Veterinary Medicine, Tianjin Agricultural University, Xiqing 300380,China
| | - Liang Hong
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animals Science and Veterinary Medicine, Tianjin Agricultural University, Xiqing 300380,China
| | - Lei Pu
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animals Science and Veterinary Medicine, Tianjin Agricultural University, Xiqing 300380,China
| | - Hua Yang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animals Science and Veterinary Medicine, Tianjin Agricultural University, Xiqing 300380,China
| | - Liuan Li
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animals Science and Veterinary Medicine, Tianjin Agricultural University, Xiqing 300380,China
| | - Jianbin Zhang
- Tianjin Key Laboratory of Agricultural Animal Breeding and Healthy Husbandry, College of Animals Science and Veterinary Medicine, Tianjin Agricultural University, Xiqing 300380,China.
| |
Collapse
|
4
|
Li X, Li J, Yuan H, Chen Y, Li S, Jiang S, Zha Xi Y, Zhang G, Lu J. Effect of supplementation with Glycyrrhiza uralensis extract and Lactobacillus acidophilus on growth performance and intestinal health in broiler chickens. Front Vet Sci 2024; 11:1436807. [PMID: 39091388 PMCID: PMC11291472 DOI: 10.3389/fvets.2024.1436807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/08/2024] [Indexed: 08/04/2024] Open
Abstract
Intestinal microbiota community is an important factor affecting the nutritional and health status of poultry, and its balance is crucial for improving the overall health of poultry. The study aimed to investigate the effect of dietary supplementation with Glycyrrhiza uralensis extract (GUE), Lactobacillus acidophilus (Lac) and their combination (GL) on growth performance and intestinal health in broilers in an 84-day feeding experiment. Supplementary 0.1% GUE and 4.5×107 CFU/g Lac significantly increased average daily gain (ADG), and GL (0.1% GUE and 4.5×107 CFU/g Lac) increased ADG and average daily feed intake (ADFI), and decreased feed conversion rate (FCR) in broilers aged 29 to 84 d and 1 to 84 d. Dietary GUE, Lac and GL increased the superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) activity and decreased Malondialdehyde (MDA) content in the jejunum mucosa of broilers, and increased secretory IgA (sIgA) content in broilers at 84 d. Moreover, GUE, Lac and GL increased cecal microbial richness and diversity, and modulated microbial community composition. Both GUE and Lac reduced the harmful bacteria Epsilonbacteraeota, Helicobacter, and H. pullorum at 28 d and Proteobacteria, Escherichia, and E. coli at 84 d, while Lac and GL increased beneficial bacteria Lactobacillus and L. gallinarum at 28 d. Compared with individual supplementation, GL markedly increased the SOD activity and the sIgA content, and reduced Helicobacter and Helicobacter pullorum. In conclusion, GUE and Lactobacillus acidophilus as feed additives benefit growth performance and intestinal health, and their combined use shows an even more positive effect in broilers.
Collapse
Affiliation(s)
- Ximei Li
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Jiawei Li
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Haotian Yuan
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Yan Chen
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Shuaibing Li
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Susu Jiang
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
- Department of Animal Science and Technology, Gansu Agriculture Technology College, Lanzhou, China
| | - Yingpai Zha Xi
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Guohua Zhang
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| | - Jianxiong Lu
- College of Life Science and Engineering, Northwest Minzu University, Lanzhou, China
| |
Collapse
|
5
|
Willer T, Han Z, Pielsticker C, Rautenschlein S. In vitro investigations on interference of selected probiotic candidates with Campylobacter jejuni adhesion and invasion of primary chicken derived cecal and Caco-2 cells. Gut Pathog 2024; 16:30. [PMID: 38907359 PMCID: PMC11191211 DOI: 10.1186/s13099-024-00623-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/09/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND Campylobacter (C.) jejuni is one of the most important bacterial foodborne pathogens worldwide. Probiotics such as Lactobacillus or Bacillus species are considered one option for reducing the colonization rate and magnitude in poultry, the most frequent source of human infections. Due to the lack of suitable avian in vitro models such as chicken intestinal cell lines, especially those derived from the cecum, most in vitro studies on C. jejuni host interaction have been conducted with human intestinal cell lines. In this study, we compared C. jejuni-cell interactions between primary chicken cecal cells and the human intestinal cell line Caco-2, which is derived from colorectal adenocarcinoma, and investigated possible interfering effects of selected probiotic candidates. RESULTS We detected differences in adhesion and invasion between the two tested gut cell types and between different C. jejuni strains. The probiotic inhibition of C. jejuni adhesion and invasion of human and avian gut cells was affected by host cell type, investigated C. jejuni strain and time points of probiotic treatment. Additionally, our results suggest a possible correlation between C. jejuni invasion and the detected increase in IL-6 mRNA expression. CONCLUSIONS Our results indicate distinct differences between avian and human gut cells in their interaction with C. jejuni. Therefore, data obtained in one host species on C. jejuni-host interaction may not easily be transferrable to another one. The factors influencing the variable efficacy of probiotic intervention in chicken and human derived cells should be investigated further.
Collapse
Affiliation(s)
- Thomas Willer
- Clinic for Poultry, University of Veterinary Medicine Hannover, Foundation, Buenteweg 17, 30559, Hanover, Germany
| | - Zifeng Han
- Clinic for Poultry, University of Veterinary Medicine Hannover, Foundation, Buenteweg 17, 30559, Hanover, Germany
| | - Colin Pielsticker
- Clinic for Poultry, University of Veterinary Medicine Hannover, Foundation, Buenteweg 17, 30559, Hanover, Germany
| | - Silke Rautenschlein
- Clinic for Poultry, University of Veterinary Medicine Hannover, Foundation, Buenteweg 17, 30559, Hanover, Germany.
| |
Collapse
|
6
|
Tian S, Jiang Y, Han Q, Meng C, Ji F, Zhou B, Ye M. Putative Probiotic Ligilactobacillus salivarius Strains Isolated from the Intestines of Meat-Type Pigeon Squabs. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10289-1. [PMID: 38805143 DOI: 10.1007/s12602-024-10289-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2024] [Indexed: 05/29/2024]
Abstract
This study aims to screen for potential probiotic lactic acid bacteria from the intestines of meat-type pigeon squabs. Ligilactobacillus salivarius YZU37 was identified as the best comprehensive performed strain. Being acid- and bile salt-tolerant, it displayed growth-inhibition activities against Staphylococcus aureus ATCC25923, Escherichia coli ATCC25922, and Salmonella typhimurium SL1344, exhibited sensitivity to 6 commonly used antibiotics, and endowed with good cell surface hydrophobicity, auto-aggregation property, and anti-oxidant activities. Results of in vitro experiments indicated that the bacteriostatic effects of this strain were related to the production of proteinaceous substances that depend on acidic conditions. Whole-genome sequencing of L. salivarius YZU37 was performed to elucidate the genetic basis underlying its probiotic potential. Pangenome analysis of L. salivarius YZU37 and other 212 L. salivarius strains available on NCBI database revealed a pigeon-unique gene coding choloylglycine hydrolase (CGH), which had higher enzyme-substrate binding affinity than that of the common CGH shared by L. salivarius strains of other sources. Annotation of the functional genes in the genome of L. salivarius YZU37 revealed genes involved in responses to acid, bile salt, heat, cold, heavy metal, and oxidative stresses. The whole genome analysis also revealed the absence of virulence and toxin genes and the presence of 65 genes distributed under 4 CAZymes classes, 2 CRISPR-cas regions, and 3 enterolysin A clusters which may confer the acid-dependent antimicrobial potential of L. salivarius YZU37. Altogether, our results highlighted the probiotic potential of L. salivarius YZU37. Further in vivo investigations are required to elucidate its beneficial effects on pigeons.
Collapse
Affiliation(s)
- Shaoqi Tian
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Yinhong Jiang
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Qiannan Han
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Chuang Meng
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China
| | - Feng Ji
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100089, China
| | - Bin Zhou
- College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, China
| | - Manhong Ye
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
7
|
Taha-Abdelaziz K, Singh M, Sharif S, Sharma S, Kulkarni RR, Alizadeh M, Yitbarek A, Helmy YA. Intervention Strategies to Control Campylobacter at Different Stages of the Food Chain. Microorganisms 2023; 11:113. [PMID: 36677405 PMCID: PMC9866650 DOI: 10.3390/microorganisms11010113] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/16/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
Campylobacter is one of the most common bacterial pathogens of food safety concern. Campylobacter jejuni infects chickens by 2-3 weeks of age and colonized chickens carry a high C. jejuni load in their gut without developing clinical disease. Contamination of meat products by gut contents is difficult to prevent because of the high numbers of C. jejuni in the gut, and the large percentage of birds infected. Therefore, effective intervention strategies to limit human infections of C. jejuni should prioritize the control of pathogen transmission along the food supply chain. To this end, there have been ongoing efforts to develop innovative ways to control foodborne pathogens in poultry to meet the growing customers' demand for poultry meat that is free of foodborne pathogens. In this review, we discuss various approaches that are being undertaken to reduce Campylobacter load in live chickens (pre-harvest) and in carcasses (post-harvest). We also provide some insights into optimization of these approaches, which could potentially help improve the pre- and post-harvest practices for better control of Campylobacter.
Collapse
Affiliation(s)
- Khaled Taha-Abdelaziz
- Department of Animal and Veterinary Science, College of Agriculture, Forestry and Life Sciences, Clemson University, Clemson, SC 29634, USA
| | - Mankerat Singh
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Shreeya Sharma
- Department of Animal and Veterinary Science, College of Agriculture, Forestry and Life Sciences, Clemson University, Clemson, SC 29634, USA
| | - Raveendra R. Kulkarni
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA
| | - Mohammadali Alizadeh
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Alexander Yitbarek
- Department of Animal Science, McGill University, Montreal, QC H9X 3V9, Canada
| | - Yosra A. Helmy
- Department of Veterinary Science, College of Agriculture, Food, and Environment, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
8
|
Zou Q, Fan X, Xu Y, Wang T, Li D. Effects of dietary supplementation probiotic complex on growth performance, blood parameters, fecal harmful gas, and fecal microbiota in AA+ male broilers. Front Microbiol 2022; 13:1088179. [PMID: 36605508 PMCID: PMC9808919 DOI: 10.3389/fmicb.2022.1088179] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
In this study, Bacillus subtilis, Clostridium butyricum and Enterococcus faecalis were made into a probiotic complex (PC). The PC was supplemented in AA+ male broilers' diets to investigate the effects of PC on broiler growth performance, carcass traits, blood indicators, harmful gas emissions in feces and microbiota. Three hundred and sixty 1-day-old AA+ male broilers with an average initial body weight (data) were randomly divided into 3 dietary treatments of 6 replicates each, with 20 birds per replicate. The control group (T0) was fed a basal diet, while the test groups (T1 and T2) were supplemented with 0.025 and 0.05% PC in the basal diet, respectively. The trail was 42 days. The results showed that the supplementation of 0.05% PC significantly (p < 0.05) improved average daily gain (ADG) and average daily feed intake (ADFI) of broilers from 22 to 42 days and 1-42 days. Compared to the control group, the breast rate was significantly higher in T2, and the thymic index was significantly higher than that in T1 treatment (p < 0.05). The addition of PC had no significant effects on antibody potency in broiler serum (p > 0.05), but significantly increased albumin and total protein content in serum (p < 0.05). The addition of PC reduced H2S and NH3 emissions in the feces; the levels of Escherichia coli and Salmonella in the feces were significantly reduced and the levels of Lactobacillus were increased. And the most significant results were achieved when PC was added at 0.05%. Correlation analysis showed a significant positive correlation (p < 0.05) between the levels of E. coli and Salmonella and the emissions of H2S and NH3. Conclusion: Dietary supplementation with a 0.05% probiotic complex could improve the growth performance of broilers and also reduced fecal H2S and NH3 emissions, as well as fecal levels of E. coli and Salmonella, and increased levels of Lactobacillus. Thus, PC made by Bacillus subtilis, Clostridium butyricum and Enterococcus faecalis is expected to be an alternative to antibiotics. And based on the results of this trial, the recommended dose for use in on-farm production was 0.05%.
Collapse
|
9
|
Abd El-Hack ME, Alagawany M, El-Shall NA, Shehata AM, Abdel-Moneim AME, Naiel MAE. Probiotics in Poultry Nutrition as a Natural Alternative for Antibiotics. ANTIBIOTIC ALTERNATIVES IN POULTRY AND FISH FEED 2022:137-159. [DOI: 10.2174/9789815049015122010013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Since the early 1950s, antibiotics have been used in poultry for improving
feed efficiency and growth performance. Nevertheless, various side effects have
appeared, such as antibiotic resistance, antibiotic residues in eggs and meat, and
imbalance of beneficial intestinal bacteria. Consequently, it is essential to find other
alternatives that include probiotics that improve poultry production. Probiotics are live
microorganisms administered in adequate doses and improve host health. Probiotics are
available to be used as feed additives, increasing the availability of the nutrients for
enhanced growth by digesting the feed properly. Immunity and meat and egg quality
can be improved by supplementation of probiotics in poultry feed. Furthermore, the
major reason for using probiotics as feed additives is that they can compete with
various infectious diseases causing pathogens in poultry's gastrointestinal tract. Hence,
this chapter focuses on the types and mechanisms of action of probiotics and their
benefits, by feed supplementation, for poultry health and production.
Collapse
Affiliation(s)
| | | | - Nahed A. El-Shall
- Alexandria University,Department of poultry and fish diseases,Elbehira,Egypt
| | | | | | | |
Collapse
|
10
|
Al Hakeem WG, Fathima S, Shanmugasundaram R, Selvaraj RK. Campylobacter jejuni in Poultry: Pathogenesis and Control Strategies. Microorganisms 2022; 10:2134. [PMID: 36363726 PMCID: PMC9697106 DOI: 10.3390/microorganisms10112134] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/22/2022] [Accepted: 10/25/2022] [Indexed: 07/29/2023] Open
Abstract
C. jejuni is the leading cause of human foodborne illness associated with poultry, beef, and pork consumption. C. jejuni is highly prevalent in commercial poultry farms, where horizontal transmission from the environment is considered to be the primary source of C. jejuni. As an enteric pathogen, C. jejuni expresses virulence factors regulated by a two-component system that mediates C. jejuni's ability to survive in the host. C. jejuni survives and reproduces in the avian intestinal mucus. The avian intestinal mucus is highly sulfated and sialylated compared with the human mucus modulating C. jejuni pathogenicity into a near commensal bacteria in poultry. Birds are usually infected from two to four weeks of age and remain colonized until they reach market age. A small dose of C. jejuni (around 35 CFU/mL) is sufficient for successful bird colonization. In the U.S., where chickens are raised under antibiotic-free environments, additional strategies are required to reduce C. jejuni prevalence on broilers farms. Strict biosecurity measures can decrease C. jejuni prevalence by more than 50% in broilers at market age. Vaccination and probiotics, prebiotics, synbiotics, organic acids, bacteriophages, bacteriocins, and quorum sensing inhibitors supplementation can improve gut health and competitively exclude C. jejuni load in broilers. Most of the mentioned strategies showed promising results; however, they are not fully implemented in poultry production. Current knowledge on C. jejuni's morphology, source of transmission, pathogenesis in poultry, and available preharvest strategies to decrease C. jejuni colonization in broilers are addressed in this review.
Collapse
Affiliation(s)
| | - Shahna Fathima
- Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA
| | - Revathi Shanmugasundaram
- Toxicology and Mycotoxin Research Unit, US National Poultry Research Center, Agricultural Research Service, U.S. Department of Agriculture, Athens, GA 30605, USA
| | - Ramesh K. Selvaraj
- Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
11
|
Effect of Probiotic E. coli Nissle 1917 Supplementation on the Growth Performance, Immune Responses, Intestinal Morphology, and Gut Microbes of Campylobacter jejuni Infected Chickens. Infect Immun 2022; 90:e0033722. [PMID: 36135600 PMCID: PMC9584303 DOI: 10.1128/iai.00337-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Campylobacter jejuni is the most common cause of bacterial foodborne gastroenteritis and holds significant public health importance. The continuing increase of antibiotic-resistant Campylobacter necessitates the development of antibiotic-alternative approaches to control infections in poultry and in humans. Here, we assessed the ability of E. coli Nissle 1917 (EcN; free and chitosan-alginate microencapsulated) to reduce C. jejuni colonization in chickens and measured the effect of EcN on the immune responses, intestinal morphology, and gut microbes of chickens. Our results showed that the supplementation of 3-week-old chickens daily with free EcN in drinking water resulted in a 2.0 log reduction of C. jejuni colonization in the cecum, whereas supplementing EcN orally three times a week, either free or microencapsulated, resulted in 2.0 and 2.5 log reductions of C. jejuni colonization, respectively. Gavaged free and microencapsulated EcN did not have an impact on the evenness or the richness of the cecal microbiota, but it did increase the villous height (VH), crypt depth (CD), and VH:CD ratio in the jejunum and ileum of chickens. Further, the supplementation of EcN (all types) increased C. jejuni-specific and total IgA and IgY antibodies in chicken’s serum. Microencapsulated EcN induced the expression of several cytokines and chemokines (1.6 to 4.3-fold), which activate the Th1, Th2, and Th17 pathways. Overall, microencapsulated EcN displayed promising effects as a potential nonantibiotic strategy to control C. jejuni colonization in chickens. Future studies on testing microencapsulated EcN in the feed and water of chickens raised on built-up floor litter would facilitate the development of EcN for industrial applications to control Campylobacter infections in poultry.
Collapse
|
12
|
Temmerman R, Ghanbari M, Antonissen G, Schatzmayr G, Duchateau L, Haesebrouck F, Garmyn A, Devreese M. Dose-dependent impact of enrofloxacin on broiler chicken gut resistome is mitigated by synbiotic application. Front Microbiol 2022; 13:869538. [PMID: 35992659 PMCID: PMC9386515 DOI: 10.3389/fmicb.2022.869538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 07/08/2022] [Indexed: 11/20/2022] Open
Abstract
Fluoroquinolone agents are considered critical for human medicine by the World Health Organization (WHO). However, they are often used for the treatment of avian colibacillosis in poultry production, creating considerable concern regarding the potential spread of fluoroquinolone resistance genes from commensals to pathogens. Therefore, there is a need to understand the impact of fluoroquinolone application on the reservoir of ARGs in poultry gut and devise means to circumvent potential resistome expansion. Building upon a recent dose optimization effort, we used shotgun metagenomics to investigate the time-course change in the cecal microbiome and resistome of broiler chickens receiving an optimized dosage [12.5 mg/kg body weight (bw)/day], with or without synbiotic supplementation (PoultryStar®, BIOMIN GmbH), and a high dosage of enrofloxacin (50 mg/kg bw/day). Compared to the high dose treatment, the low (optimized) dose of enrofloxacin caused the most significant perturbations in the cecal microbiota and resistome of the broiler chickens, demonstrated by a lower cecal microbiota diversity while substantially increasing the antibiotic resistance genes (ARGs) resistome diversity. Withdrawal of antibiotics resulted in a pronounced reduction in ARG diversity. Chickens receiving the synbiotic treatment had the lowest diversity and number of enriched ARGs, suggesting an alleviating impact on the burden of the gut resistome. Some Proteobacteria were significantly increased in the cecal metagenome of chickens receiving enrofloxacin and showed a positive association with increased ARG burden. Differential abundance (DA) analysis revealed a significant increase in the abundance of ARGs encoding resistance to macrolides-lincosamides-streptogramins (MLS), aminoglycosides, and tetracyclines over the period of enrofloxacin application, with the optimized dosage application resulting in a twofold higher number of affected ARG compared to high dosage application. Our results provide novel insights into the dose-dependent effects of clinically important enrofloxacin application in shaping the broiler gut resistome, which was mitigated by a synbiotic application. The contribution to ameliorating the adverse effects of antimicrobial agents, that is, lowering the spread of antimicrobial resistance genes, on the poultry and potentially other livestock gastrointestinal microbiomes and resistomes merits further study.
Collapse
Affiliation(s)
- Robin Temmerman
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | | - Gunther Antonissen
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | | - Luc Duchateau
- Faculty of Veterinary Medicine, Biometrics Research Center, Ghent University, Merelbeke, Belgium
| | - Freddy Haesebrouck
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - An Garmyn
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Mathias Devreese
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
13
|
Al-Mnaser A, Dakheel M, Alkandari F, Woodward M. Polyphenolic phytochemicals as natural feed additives to control bacterial pathogens in the chicken gut. Arch Microbiol 2022; 204:253. [PMID: 35412092 PMCID: PMC9001821 DOI: 10.1007/s00203-022-02862-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 03/17/2022] [Accepted: 03/20/2022] [Indexed: 01/21/2023]
Abstract
Poultry provides an important protein source consumed globally by human population, and simultaneously, acts as a substantial reservoir of antibiotic resistant bacterial species such as Escherichia coli, Salmonella, Campylobacter, Clostridium perfringens. These bacterial species can include commensal strains with beneficial roles on poultry health and productivity, and pathogenic strains not only to poultry but zoonotically to man. This review paper evaluates the role of phytochemicals as possible alternatives to antibiotics and natural anti-bacterial agents to control antibiotic resistance in poultry. The focus of this paper is on the polyphenolic phytochemicals as they constitute the major group; carvacrol oil (the active ingredient of oregano), thymol oil (the main ingredient of oregano), oregano oil, and tannins oil as feed additives and their mechanism of actions that might enhance avian gut health by controlling antibiotic-resistant bacterial strains spread in poultry.
Collapse
Affiliation(s)
- Afnan Al-Mnaser
- Department of Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, Reading, RG6 6DZ, UK.
- Dasman Diabetes Institute, Dasman, Sharq, Kuwait.
| | - Mohammed Dakheel
- Department of Veterinary Public Health, College of Veterinary Medicine, University of Baghdad, Baghdad, Iraq
| | - Fatemah Alkandari
- Department of Plant Protection, Public Authority of Agriculture Affairs and Fish Resources, Al-Rabia, Kuwait
| | - Martin Woodward
- Department of Food and Nutritional Sciences, School of Chemistry, Food and Pharmacy, University of Reading, Reading, RG6 6DZ, UK
- Folium Science, Unit DX, Bristol, BS2 0XJ, UK
| |
Collapse
|
14
|
Abd El-Hack ME, El-Saadony MT, Salem HM, El-Tahan AM, Soliman MM, Youssef GBA, Taha AE, Soliman SM, Ahmed AE, El-Kott AF, Al Syaad KM, Swelum AA. Alternatives to antibiotics for organic poultry production: types, modes of action and impacts on bird's health and production. Poult Sci 2022; 101:101696. [PMID: 35150942 PMCID: PMC8844281 DOI: 10.1016/j.psj.2022.101696] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 12/19/2022] Open
Abstract
The poultry industry contributes significantly to bridging the nutritional gap in many countries because of its meat and eggs products rich in protein and valuable nutrients at a cost less than other animal meat sources. The natural antibiotics alternatives including probiotics, prebiotics, symbiotics, organic acids, essential oils, enzymes, immunostimulants, and phytogenic (phytobiotic) including herbs, botanicals, essential oils, and oleoresins are the most common feed additives that acquire popularity in poultry industry following the ban of antibiotic growth promoters (AGPs). They are commonly used worldwide because of their unique properties and positive impact on poultry production. They can be easily mixed with other feed ingredients, have no tissue residues, improve feed intake, feed gain, feed conversion rate, improve bird immunity, improve digestion, increase nutrients availability as well as absorbability, have antimicrobial effects, do not affect carcass characters, decrease the usage of antibiotics, acts as antioxidants, anti-inflammatory, compete for stress factors and provide healthy organic products for human consumption. Therefore, the current review focuses on a comprehensive description of different natural antibiotic growth promoters' alternatives, the mode of their action, and their impacts on poultry production.
Collapse
Affiliation(s)
- Mohamed E Abd El-Hack
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt.
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Heba M Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Amira M El-Tahan
- Plant Production Department, Arid Lands Cultivation Research Institute, The City of Scientific Research and Technological Applications, SRTA-City. Borg El Arab, Alexandria, Egypt
| | - Mohamed M Soliman
- Clinical Laboratory Sciences Department, Turabah University College, Taif University, 21995, Saudi Arabia
| | - Gehan B A Youssef
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Benha University, Benha 13736, Egypt
| | - Ayman E Taha
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Rasheed 22758, Egypt
| | - Soliman M Soliman
- Department of Internal Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Ahmed E Ahmed
- Biology Department, College of Science, King Khalid University, Abha 61413, Saudi Arabia; Department of Theriogenology, Faculty of Veterinary Medicine, South Valley University, 83523 Qena, Egypt
| | - Attalla F El-Kott
- Biology Department, College of Science, King Khalid University, Abha 61413, Saudi Arabia; Zoology Department, College of Science, Damanhour University, Damanhour, Egypt
| | - Khalid M Al Syaad
- Biology Department, College of Science, King Khalid University, Abha 61413, Saudi Arabia; Director of the Research Center, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Ayman A Swelum
- Department of Animal Production, College of Food and Agriculture Sciences, King Saud University, P. O. Box 2460, Riyadh 11451, Saudi Arabia; Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Sharkia 44519, Egypt
| |
Collapse
|
15
|
El-Saadony MT, Salem HM, El-Tahan AM, Abd El-Mageed TA, Soliman SM, Khafaga AF, Swelum AA, Ahmed AE, Alshammari FA, Abd El-Hack ME. The control of poultry salmonellosis using organic agents: an updated overview. Poult Sci 2022; 101:101716. [PMID: 35176704 PMCID: PMC8857471 DOI: 10.1016/j.psj.2022.101716] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 12/29/2021] [Accepted: 01/05/2022] [Indexed: 02/06/2023] Open
Abstract
Salmonellosis is a severe problem that threatens the poultry sector worldwide right now. Salmonella gallinarium and Salmonella pullorum (Fowl typhoid) are the most pathogenic serovars in avian species leading to systemic infection resulting in severe economic losses in the poultry industry. Nontyphoidal serotypes of Salmonella (Paratyphoid disease) constitute a public health hazard for their involvement in food poisoning problems in addition to their zoonotic importance. Also, Salmonella species distribution is particularly extensive. They resisted environmental conditions that made it difficult to control their spread for a long time. Therefore, the current review aimed to through light on Salmonellosis in poultry with particular references to its pathogenesis, economic importance, immune response to Salmonella, Salmonella antibiotics resistance, possible methods for prevention and control of such problems using promising antibiotics alternatives including probiotics, prebiotics, symbiotics, organic acids, essential oils, cinnamaldehyde, chitosan, nanoparticles, and vaccines.
Collapse
Affiliation(s)
- Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Heba M Salem
- Department of Poultry Diseases, Faculty of Veterinary Medicine, Cairo University 12211, Giza, Egypt
| | - Amira M El-Tahan
- Plant Production Department, Arid Lands Cultivation Research Institute, The City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Taia A Abd El-Mageed
- Soil and Water Department, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Soliman M Soliman
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University 1221, Giza, Egypt
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina 22758, Egypt
| | - Ayman A Swelum
- Department of Animal production, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, Saudi Arabia; Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Sharkia 44519, Egypt
| | - Ahmed E Ahmed
- Biology Department, College of Science, King Khalid University 61413 Abha, Saudi Arabia; Department of Theriogenology, Faculty of Veterinary Medicine, South Valley University 83523 Qena, Egypt
| | - Fahdah A Alshammari
- Department of Biology, College of Sciences and Literature, Northern Border University, Rafha 76312, Saudi Arabia
| | - Mohamed E Abd El-Hack
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt.
| |
Collapse
|
16
|
The Role of Nutraceuticals and Phytonutrients in Chickens’ Gastrointestinal Diseases. Animals (Basel) 2022; 12:ani12070892. [PMID: 35405880 PMCID: PMC8997120 DOI: 10.3390/ani12070892] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/18/2022] [Accepted: 03/30/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The use of nutraceuticals and phytonutrients in poultry nutrition has been extensively explored over the past decade. The interest in these substances is linked to the search for natural compounds that can be effectively used to prevent and treat some of the main diseases of the chicken. The serious problem of antibiotic resistance and the consequent legislative constraints on their use required the search for alternatives. The purpose of this review is to describe the current status of the effects of some substances, such as probiotics and prebiotics, organic acids, vitamins and phytogenic feed additives, focusing specifically on studies concerning the prevention and treatment of four main gastrointestinal diseases in chicken: salmonellosis, necrotic enteritis (caused by Clostridium perfringens), campylobacteriosis, and coccidiosis. A brief description of these diseases and the effects of the main bioactive principles of the nutraceutical or phytonutrient groups will be provided. Although there are conflicting results, some works show very promising effects, with a reduction in the bacterial or protozoan load following treatment. Further studies are needed to verify the real effectiveness of these compounds and make them applicable in the field. Abstract In poultry, severe gastrointestinal diseases are caused by bacteria and coccidia, with important economic losses in the poultry industry and requirement of treatments which, for years, were based on the use of antibiotics and chemotherapies. Furthermore, Salmonella spp., Clostridium perfringens, and Campylobacter jejuni can cause serious foodborne diseases in people, resulting from consumption of poultry meat, eggs, and derived products. With the spread of antibiotic resistance, which affects both animals and humans, the restriction of antibiotic use in livestock production and the identification of a list of “critically important antimicrobials” became necessary. For this reason, researchers focused on natural compounds and effective alternatives to prevent gastrointestinal disease in poultry. This review summarizes the results of several studies published in the last decade, describing the use of different nutraceutical or phytonutrients in poultry industry. The results of the use of these products are not always encouraging. While some of the alternatives have proven to be very promising, further studies will be needed to verify the efficacy and practical applicability of other compounds.
Collapse
|
17
|
Zbrun MV, Olivero CR, Soto LP, Lencina F, Frizzo LS, Zimmermann LS, Signorini ML. Impact of farm‐level strategies against thermotolerant
Campylobacter
in broiler chickens, using a quantitative risk assessment model and meta‐analysis. Zoonoses Public Health 2022; 69:408-424. [DOI: 10.1111/zph.12930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 02/01/2022] [Accepted: 02/08/2022] [Indexed: 11/29/2022]
Affiliation(s)
- María Virginia Zbrun
- Department of Public Health. Faculty of Veterinary Science Litoral National University Esperanza Argentina
- Instituto de Investigación de la Cadena Láctea (INTA‐CONICET) Rafaela Argentina
| | - Carolina Raquel Olivero
- Department of Public Health. Faculty of Veterinary Science Litoral National University Esperanza Argentina
- Laboratory of Food Analysis ‘Rodolfo Oscar DALLA SANTINA’ Institute of Veterinary Science (ICiVet Litoral) National University of the Litoral National Council of Scientific and Technical Research (UNL/CONICET) Esperanza Argentina
| | - Lorena Paola Soto
- Department of Public Health. Faculty of Veterinary Science Litoral National University Esperanza Argentina
- Laboratory of Food Analysis ‘Rodolfo Oscar DALLA SANTINA’ Institute of Veterinary Science (ICiVet Litoral) National University of the Litoral National Council of Scientific and Technical Research (UNL/CONICET) Esperanza Argentina
| | - Florencia Lencina
- Department of Public Health. Faculty of Veterinary Science Litoral National University Esperanza Argentina
- Laboratory of Food Analysis ‘Rodolfo Oscar DALLA SANTINA’ Institute of Veterinary Science (ICiVet Litoral) National University of the Litoral National Council of Scientific and Technical Research (UNL/CONICET) Esperanza Argentina
| | - Laureano Sebastián Frizzo
- Department of Public Health. Faculty of Veterinary Science Litoral National University Esperanza Argentina
- Laboratory of Food Analysis ‘Rodolfo Oscar DALLA SANTINA’ Institute of Veterinary Science (ICiVet Litoral) National University of the Litoral National Council of Scientific and Technical Research (UNL/CONICET) Esperanza Argentina
| | - Laureano Sebastián Zimmermann
- Laboratory of Food Analysis ‘Rodolfo Oscar DALLA SANTINA’ Institute of Veterinary Science (ICiVet Litoral) National University of the Litoral National Council of Scientific and Technical Research (UNL/CONICET) Esperanza Argentina
| | - Marcelo Lisandro Signorini
- Department of Public Health. Faculty of Veterinary Science Litoral National University Esperanza Argentina
- Instituto de Investigación de la Cadena Láctea (INTA‐CONICET) Rafaela Argentina
| |
Collapse
|
18
|
Hu J, Mohammed A, Murugesan G, Cheng H. Effect of a synbiotic supplement as an antibiotic alternative on broiler skeletal, physiological, and oxidative parameters under heat stress. Poult Sci 2022; 101:101769. [PMID: 35247651 PMCID: PMC8892129 DOI: 10.1016/j.psj.2022.101769] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/25/2022] [Accepted: 01/28/2022] [Indexed: 11/24/2022] Open
Abstract
The aim of this study was to examine if synbiotics can function as alternatives to antibiotics in broiler production under heat stress (HS). Day-old broiler chicks (528 birds) were randomly placed in floor pens within 2 identical temperature-controlled rooms (11 birds/pen and 24 pens/room). The pens of each room were evenly divided among 3 treatments (n = 8): basal diet (CON), the basal diet mixed with 50 ppm of bacitracin methylene disalicylate (BMD) or a synbiotic (50 ppm of PoultryStar meUS, SYN). From d 15, room 2 was under thermoneutral (TN) conditions (TN-CON, TN-BMD, and TN-SYN), while HS was applied to room 1 at 32oC for 9 hrs/d (0800 to 1700) (HS-CON, HS-BMD, and HS-SYN). Treatment effects on footpad dermatitis and gait score were measured on 5 birds/pen, and latency to lie (LTL) test was measured on 2 birds/pen at d 27 and d 41; and 1 broiler/pen was sampled on d 28 and d 42, respectively. Body, liver, and spleen weight were determined. Plasma levels of interleukins (IL), heat shock protein 70, immunoglobulin (Ig)Y, liver superoxide dismutase (SOD) and glutathione peroxidase (GPx) enzyme activities were examined. Heat stress suppressed BW and IgY concentrations on both d 28 and d 42, while suppressed plasma IL-6 concentrations, SOD activities, and LTL duration on d 28 only (P < 0.05). Among all treatments, SYN birds had the best foot and skeletal health scores on both d 27 and d 41 (P < 0.05). On d 42, SYN increased BW, and TN-SYN birds had higher relative spleen weight than both TN-BMD and TN-CON birds (P < 0.05). Antibiotic BMD increased BW (P < 0.05) but decreased SOD activities (P < 0.05) on d 42. These results indicate that the SYN supplementation decreases HS negative effect on broilers by improving BW, foot, and skeletal health, while BMD improves BW but also increases oxidative stress in broilers. The data suggest that synbiotic supplement may function as an alternative to antibiotics in broiler production during summer seasons, especially in the tropical and subtropical regions.
Collapse
|
19
|
Koyun OY, Callaway TR, Nisbet DJ, Anderson RC. Innovative Treatments Enhancing the Functionality of Gut Microbiota to Improve Quality and Microbiological Safety of Foods of Animal Origin. Annu Rev Food Sci Technol 2022; 13:433-461. [DOI: 10.1146/annurev-food-100121-050244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The gastrointestinal tract, or gut, microbiota is a microbial community containing a variety of microorganisms colonizing throughout the gut that plays a crucial role in animal health, growth performance, and welfare. The gut microbiota is closely associated with the quality and microbiological safety of foods and food products originating from animals. The gut microbiota of the host can be modulated and enhanced in ways that improve the quality and safety of foods of animal origin. Probiotics—also known as direct-fed microbials—competitive exclusion cultures, prebiotics, and synbiotics have been utilized to achieve this goal. Reducing foodborne pathogen colonization in the gut prior to slaughter and enhancing the chemical, nutritional, or sensory characteristics of foods (e.g., meat, milk, and eggs) are two of many positive outcomes derived from the use of these competitive enhancement–based treatments in food-producing animals. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Osman Y. Koyun
- Department of Animal and Dairy Science, University of Georgia, Athens, Georgia, USA
| | - Todd R. Callaway
- Department of Animal and Dairy Science, University of Georgia, Athens, Georgia, USA
| | - David J. Nisbet
- Food and Feed Safety Research Unit, Southern Plains Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, College Station, Texas, USA
| | - Robin C. Anderson
- Food and Feed Safety Research Unit, Southern Plains Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, College Station, Texas, USA
| |
Collapse
|
20
|
Ty M, Taha-Abdelaziz K, Demey V, Castex M, Sharif S, Parkinson J. Performance of distinct microbial based solutions in a Campylobacter infection challenge model in poultry. Anim Microbiome 2022; 4:2. [PMID: 34980288 PMCID: PMC8722297 DOI: 10.1186/s42523-021-00157-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/15/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Antibiotic growth promoters (AGPs) are commonly used within poultry production to improve feed conversion, bird growth, and reduce morbidity and mortality from clinical and subclinical diseases. Due to the association between AGP usage and rising antimicrobial resistance, the industry has explored new strategies including the use of probiotics and other microbial-based interventions to promote the development of a healthy microbiome in birds and mitigate against infections associated with food safety and food security. While previous studies have largely focused on the ability of probiotics to protect against Clostridium perfringens and Salmonella enterica, much less is known concerning their impact on Campylobacter jejuni, a near commensal of the chicken gut microbiome that nevertheless is a major cause of food poisoning in humans. RESULTS Here we compare the efficacy of four microbial interventions (two single strain probiotics, the bacterium-Pediococcus acidilactici, and the yeast-Saccharomyces cerevisiae boulardii; and two complex, competitive exclusion, consortia-Aviguard and CEL) to bacitracin, a commonly used AGP, to modulate chicken gut microbiota and subsequently impact C. jejuni infection in poultry. Cecal samples were harvested at 30- and 39-days post hatch to assess Campylobacter burden and examine their impact on the gut microbiota. While the different treatments did not significantly decrease C. jejuni burden relative to the untreated controls, both complex consortia resulted in significant decreases relative to treatment with bacitracin. Analysis of 16S rDNA profiles revealed a distinct microbial signature associated with each microbial intervention. For example, treatment with Aviguard and CEL increased the relative abundance of Bacteroidaceae and Rikenellaceae respectively. Furthermore, Aviguard promoted a less complex microbial community compared to other treatments. CONCLUSIONS Depending upon the individual needs of the producer, our results illustrate the potential of each microbial interventions to serve flock-specific requirements.
Collapse
Affiliation(s)
- Maxine Ty
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada.,Program in Molecular Medicine, Hospital for Sick Children, Peter Gilgan Center for Research and Learning, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
| | - Khaled Taha-Abdelaziz
- Animal and Veterinary Sciences Department, Clemson University, Clemson, SC, 29634, USA
| | | | | | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W, Canada
| | - John Parkinson
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada. .,Program in Molecular Medicine, Hospital for Sick Children, Peter Gilgan Center for Research and Learning, 686 Bay Street, Toronto, ON, M5G 0A4, Canada. .,Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
21
|
Reuben RC, Sarkar SL, Roy PC, Anwar A, Hossain MA, Jahid IK. Prebiotics, probiotics and postbiotics for sustainable poultry production. WORLD POULTRY SCI J 2021. [DOI: 10.1080/00439339.2021.1960234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Rine Christopher Reuben
- Department of Microbiology, Faculty of Biological Sciences and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
- German Centre for Integrative Biodiversity Research (Idiv), Halle-Jena-Leipzig, Germany
| | - Shovon Lal Sarkar
- Department of Microbiology, Faculty of Biological Sciences and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Pravas Chandra Roy
- Department of Microbiology, Faculty of Biological Sciences and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| | | | - M. Anwar Hossain
- Department of Microbiology, University of Dhaka and Vice Chancellor, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Iqbal Kabir Jahid
- Department of Microbiology, Faculty of Biological Sciences and Technology, Jashore University of Science and Technology, Jashore, Bangladesh
| |
Collapse
|
22
|
Mustafa A, Bai S, Zeng Q, Ding X, Wang J, Xuan Y, Su Z, Zhang K. Effect of organic acids on growth performance, intestinal morphology, and immunity of broiler chickens with and without coccidial challenge. AMB Express 2021; 11:140. [PMID: 34669066 PMCID: PMC8528927 DOI: 10.1186/s13568-021-01299-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/11/2021] [Indexed: 12/16/2022] Open
Abstract
A total of 360-day-old broiler chicks were allocated into six groups in 2 (Coccidial challenge or not) × 3 (dietary treatments) factorial design. Three dietary treatments including: basic diet, basic diet plus organic acids (OAs) in drinking water, and basic diet plus OAs in the feed with and without coccidial challenge. The OAs in water or feed improved (P < 0.01) average body weight (ABW), average body weight gain (ABWG), and feed conversion ratio (FCR) as compared with the control diet during starter, grower, and whole experimental period. Coccidial challenge decreased BW, ABWG, and average feed intake (AFI), as well as resulted in poor FCR during the starter and whole experimental period (P < 0.05). Though there was no interaction between OAs supplementation and coccidial challenge, the OAs supplementation improved the overall performance with and without coccidial challenge birds on 21 d and 35 d. IgG was found higher (P = 0.03) in broilers fed OAs in feed without the coccidial challenge group. On 18 d, OAs supplementation in feed increased TNF-γ (P = 0.006), whereas the coccidial challenge decreases TNF-γ (P = 0.01) and IL-10 (P = < .0001), and increases IgM (P = 0.03), IgG (P = 0.04) and IgA (P = 0.02). On 29 d, the coccidial challenge increases IgM and IgA. On 18 d, jejunal lesion score was found significantly higher in the coccidial challenged group as compared to OAs supplementation with coccidial challenged groups on 18 d (P < 0.0001) and 29 d (P = 0.03). Crypt depth was higher, and Villus-height to Crypt depth ratio was lower in the coccidial challenge group on 18 and 29 d. The Goblet cells were found higher in the non-coccidial challenge on 18 d. After 18 d, 16S rDNA gene sequence analysis of ileal chyme has shown that coccidial challenge decreases Lactobacillus_reuteri species as compared to the non-challenged group (P = 0.02). After 29, Cyanobacteria abundance reduced (P = 0.014) in the challenged group than the non-challenged group at the phylum level. At the genus level, Lactobacillus (P = 0.036) and unidentified Cyanobacteria (P = 0.01) were found higher in the non-challenged group than the coccidial challenge group. The results indicate that the OAs supplementation showed improved responses in a pattern similar to the non-challenged control group by neutralizing the negative effects of the coccidial challenge.
Collapse
|
23
|
Wyszyńska AK, Godlewska R. Lactic Acid Bacteria - A Promising Tool for Controlling Chicken Campylobacter Infection. Front Microbiol 2021; 12:703441. [PMID: 34650524 PMCID: PMC8506037 DOI: 10.3389/fmicb.2021.703441] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/23/2021] [Indexed: 11/19/2022] Open
Abstract
Since 2005, campylobacteriosis has been the most common zoonotic disease in Europe. The main reservoir of pathogenic Campylobacter strains is broilers, which makes raw and undercooked poultry meat two major sources of disease. Infection in chicken flocks is most often asymptomatic, despite a high level of colonization reaching 106-109cfu/g in animal ceca. It is widely believed that controlling the level of colonization of the birds' digestive tract by pathogenic strains is a good way to increase food safety. Many treatments have been proposed to combat or at least reduce the level of colonization in animals reservoirs: probiotics, bacteriophages, vaccines, and anti-Campylobacter bacteriocins. This review focuses on the effects of Campylobacter infection on the chicken microbiome and colonization control strategies using probiotics (mostly lactic acid bacteria, LAB), which are live microorganisms included in the diet of animals as feed additives or supplements. Probiotics are not only an alternative to antibiotics, which were used for years as animal growth promoters, but they also constitute an effective protective barrier against excessive colonization of the digestive system by pathogenic bacteria, including Campylobacter. Moreover, one of the many beneficial functions of probiotics is the ability to manipulate the host's microbiota. Recently, there have also been some promising attempts to use lactic acid bacteria as a delivery system of oral vaccine against Campylobacter. Recombinant LAB strains induce primarily a mucosal immune response against foreign antigens, accompanied by at most a low-level immune response against carrier strains. Since the main barrier against the invasion of pathogens in the gastrointestinal tract is the intestinal mucosal membrane, the development of effective oral vaccines to protect animals against enteric infection is very reasonable.
Collapse
|
24
|
Danofloxacin Treatment Alters the Diversity and Resistome Profile of Gut Microbiota in Calves. Microorganisms 2021; 9:microorganisms9102023. [PMID: 34683343 PMCID: PMC8538188 DOI: 10.3390/microorganisms9102023] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/18/2021] [Accepted: 09/23/2021] [Indexed: 12/25/2022] Open
Abstract
Fluoroquinolones, such as danofloxacin, are used to control bovine respiratory disease complex in beef cattle; however, little is known about their effects on gut microbiota and resistome. The objectives were to evaluate the effect of subcutaneously administered danofloxacin on gut microbiota and resistome, and the composition of Campylobacter in calves. Twenty calves were injected with a single dose of danofloxacin, and ten calves were kept as a control. The effects of danofloxacin on microbiota and the resistome were assessed using 16S rRNA sequencing, quantitative real-time PCR, and metagenomic Hi-C ProxiMeta. Alpha and beta diversities were significantly different (p < 0.05) between pre-and post-treatment samples, and the compositions of several bacterial taxa shifted. The patterns of association between the compositions of Campylobacter and other genera were affected by danofloxacin. Antimicrobial resistance genes (ARGs) conferring resistance to five antibiotics were identified with their respective reservoirs. Following the treatment, some ARGs (e.g., ant9, tet40, tetW) increased in frequencies and host ranges, suggesting initiation of horizontal gene transfer, and new ARGs (aac6, ermF, tetL, tetX) were detected in the post-treatment samples. In conclusion, danofloxacin induced alterations of gut microbiota and selection and enrichment of resistance genes even against antibiotics that are unrelated to danofloxacin.
Collapse
|
25
|
Zommiti M, Chikindas ML, Ferchichi M. Probiotics-Live Biotherapeutics: a Story of Success, Limitations, and Future Prospects-Not Only for Humans. Probiotics Antimicrob Proteins 2021; 12:1266-1289. [PMID: 31376026 DOI: 10.1007/s12602-019-09570-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In livestock production, lactic acid bacteria (LAB) represent the most widespread microorganisms used as probiotics. For such critical use, these bacteria must be correctly identified and characterized to ensure their safety and efficiency. Recently, probiotics have become highly recognized as supplements for humans and in particular for animals because of their beneficial outcome on health improvement and well-being maintenance. Various factors, encompassing dietary and management constraints, have been demonstrated to tremendously influence the structure, composition, and activities of gut microbial communities in farm animals. Previous investigations reported the potential of probiotics in animal diets and nutrition. But a high rate of inconsistency in the efficiency of probiotics has been reported. This may be due, in a major part, to the dynamics of the gastrointestinal microbial communities. Under stressing surroundings, the direct-fed microbials may play a key role as the salient limiting factor of the severity of the dysbiosis caused by disruption of the normal intestinal balance. Probiotics are live microorganisms, which confer health benefits on the host by positively modifying the intestinal microflora. Thus, the aim of this review is to summarize and to highlight the positive influence of probiotics and potential probiotic microbe supplementation in animal feed with mention of several limitations.
Collapse
Affiliation(s)
- Mohamed Zommiti
- Unité de Protéomique Fonctionnelle et Potentiel Nutraceutique de la Biodiversité de Tunisie, Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El-Manar, 1006, Tunis, Tunisia
| | - Michael L Chikindas
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, New Brunswick, NJ, USA.,Center for Digestive Health, New Jersey Institute for Food, Nutrition, and Health, New Brunswick, NJ, USA
| | - Mounir Ferchichi
- Unité de Protéomique Fonctionnelle et Potentiel Nutraceutique de la Biodiversité de Tunisie, Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El-Manar, 1006, Tunis, Tunisia.
| |
Collapse
|
26
|
Ruhnau D, Hess C, Doupovec B, Grenier B, Schatzmayr D, Hess M, Awad W. Deepoxy-deoxynivalenol (DOM-1), a derivate of deoxynivalenol (DON), exhibits less toxicity on intestinal barrier function, Campylobacter jejuni colonization and translocation in broiler chickens. Gut Pathog 2021; 13:44. [PMID: 34217373 PMCID: PMC8254355 DOI: 10.1186/s13099-021-00440-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/24/2021] [Indexed: 12/30/2022] Open
Abstract
Background Intestinal epithelial cells are challenged by mycotoxins and many bacterial pathogens. It was previously shown that the mycotoxin deoxynivalenol (DON) as well as Campylobacter (C.) jejuni have a negative impact on gut integrity. Recently, it was demonstrated that DON increased the load of C. jejuni in the gut and inner organs. Based on this finding, it was hypothesized the DON metabolite (deepoxy-deoxynivalenol, DOM-1) should be able to reduce the negative effects of DON on colonization and translocation of C. jejuni in broilers, since it lacks the epoxide ring, which is responsible for the toxicity of DON. Methods A total of 180 broiler chickens were housed in floor pens on wood shavings with feed and water provided ad libitum. Birds were divided into six groups (n = 30 with 5 replicates/group): 1. Control, 2. DOM-1, 3. DON, 4. DOM-1 + C. jejuni, 5. DON + C. jejuni, 6. C. jejuni. At day 14, birds of groups 4, 5 and 6 were orally inoculated via feeding tube (gavage) with 1-ml of a PBS suspension containing 1 × 108 CFU of C. jejuni NCTC 12744. The performance parameters: body weight (BW), body weight gain (BWG), and feed intake of the birds were determined. At 7, 14, and 21 days post infection, samples from liver, spleen, duodenum, jejunum and cecum were aseptically collected and processed for bacteriological investigations. Finally, at each killing time point, segments of duodenum, jejunum and cecum were harvested and prepared for Ussing chamber studies to measure the paracellular mannitol fluxes. Results A significant decrease in body weight was observed for chickens receiving the DON diet with or without C. jejuni compared to the other groups. Furthermore, it was found that the co-exposure of birds to DON and C. jejuni resulted in a higher C. jejuni load not only in the gut but also in liver and spleen due to increased paracellular permeability of the duodenum, jejunum and cecum. On the contrary, DOM-1 supplementation in the feed improved the birds’ performance and led to a better feed conversion ratio throughout the trial. Furthermore, DOM-1 did not negatively affect gut permeability and decreased the C. jejuni counts in the intestine and internal organs. Conclusion Altogether, the presence of DOM-1 in the feed as a result of the enzymatic biotransformation of DON leads to a lower C. jejuni count in the intestine and better feed conversion ratio. Moreover, this study demonstrates that the detoxification product of DON, DOM-1, does not have negative effects on the gastrointestinal tract and reduces the Campylobacter burden in chickens and also the risk for human infection.
Collapse
Affiliation(s)
- Daniel Ruhnau
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| | - Claudia Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| | | | | | | | - Michael Hess
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria
| | - Wageha Awad
- Clinic for Poultry and Fish Medicine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinärplatz 1, 1210, Vienna, Austria.
| |
Collapse
|
27
|
Neveling DP, Dicks LMT. Probiotics: an Antibiotic Replacement Strategy for Healthy Broilers and Productive Rearing. Probiotics Antimicrob Proteins 2021; 13:1-11. [PMID: 32556932 DOI: 10.1007/s12602-020-09640-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pathogens develop resistance to antibiotics at a rate much faster than the discovery of new antimicrobial compounds. Reports of multidrug-resistant bacteria isolated from broilers, and the possibility that these strains may spread diseases amongst humans, prompted many European countries to ban the inclusion of antibiotics in feed. Probiotics added to broiler feed controlled a number of bacterial infections. A combination of Enterococcus faecium, Pediococcus acidilactici, Bacillus animalis, Lactobacillus salivarius and Lactobacillus reuteri decreased the colonisation of Campylobacter jejuni and Salmonella Enteritidis in the gastro-intestinal tract (GIT) of broilers, whereas Bacillus subtilis improved feed conversion, intestinal morphology, stimulated the immune system and inhibited the colonisation of Campylobacter jejuni, Escherichia coli and Salmonella Minnesota. Lactobacillus salivarius and Pediococcus parvulus improved weight gain, bone characteristics, intestinal morphology and immune response, and decreased the colonisation of S. Enteritidis. Lactobacillus crispatus, L. salivarius, Lactobacillus gallinarum, Lactobacillus johnsonii, Enterococcus faecalis and Bacillus amyloliquefaciens decreased the Salmonella count and led to an increase in lysozyme and T lymphocytes. Probiotics may also improve feed digestion through production of phytases, lipases, amylases and proteases or stimulate the GIT to secrete digestive enzymes. Some strains increase the nutritional value of feed by production of vitamins, exopolysaccharides and antioxidants. Bacteriocins, if produced, regulate pathogen numbers in the GIT and keep pro-inflammatory and anti-inflammatory reactions in balance.
Collapse
Affiliation(s)
- Deon P Neveling
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa
| | - Leon M T Dicks
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa.
| |
Collapse
|
28
|
Śmiałek M, Kowalczyk J, Koncicki A. The Use of Probiotics in the Reduction of Campylobacter spp. Prevalence in Poultry. Animals (Basel) 2021; 11:1355. [PMID: 34068764 PMCID: PMC8150830 DOI: 10.3390/ani11051355] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/21/2021] [Accepted: 05/06/2021] [Indexed: 12/23/2022] Open
Abstract
Campylobacter spp. are widely distributed microorganisms, many of which are commensals of gastrointestinal tract in multiple animal species, including poultry. Most commonly detected are C. jejuni and C. coli. Although infections are usually asymptomatic in poultry, poultry meat and products represent main sources of infection with these bacteria to humans. According to recent EFSA report, campylobacteriosis is the most commonly reported zoonotic disease. In 2018, EFSA Panel on Biological Hazards indicated that use of feed and water additives is the second most likely strategy that can be successful in minimizing Campylobacter spp. colonization rate in broiler chickens. One of those feed and water additives are probiotics. From numerous research papers it can be concluded that probiotics exhibit plenty of mechanisms of anti-Campylobacter activity, which were evaluated under in vitro conditions. These results, to some extent, can explain the efficacy of probiotics in in vivo studies, although different outcome can be observed under these two laboratory conditions. Probiotics are capable of reducing Campylobacter spp. population count in poultry gastrointestinal tract and they can reduce carcass contamination. Potential modes of anti-Campylobacter activity of probiotics, results of in vivo studies and studies performed at a farm level are widely discussed in the paper.
Collapse
Affiliation(s)
- Marcin Śmiałek
- Department of Poultry Diseases, Faculty of Veterinary Medicine, University of Warmia and Mazury, Oczapowskiego 13, 10-719 Olsztyn, Poland; (J.K.); (A.K.)
| | | | | |
Collapse
|
29
|
Jeni RE, Dittoe DK, Olson EG, Lourenco J, Corcionivoschi N, Ricke SC, Callaway TR. Probiotics and potential applications for alternative poultry production systems. Poult Sci 2021; 100:101156. [PMID: 34077849 PMCID: PMC8181177 DOI: 10.1016/j.psj.2021.101156] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 12/24/2022] Open
Abstract
Concerns over animal welfare continue to be a critical component of law and policies associated with commercial food animal production. Social and market pressures are the driving forces behind the legislation and result in the change of poultry production management systems. As a result, the movement toward cage-free and aviary-based egg production systems has become standard practices. Cage-based systems being replaced by alternative methods that offer a suitable housing environment to meet or exceed poultry welfare needs and require different management, including the ban of antibiotics in poultry diets. For broiler production, pasture- raised and free-range management systems have become more popular. However, challenges remain from exposure to disease-causing organisms and foodborne pathogens in these environments. Consequently, probiotics can be supplemented in poultry diets as commercial feed additives. The present review discusses the impacts of these probiotics on the performance of alternative poultry production systems for improving food safety and poultry health by mitigating pathogenic organisms and improving egg and meat quality and production.
Collapse
Affiliation(s)
- Rim El Jeni
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, USA
| | - Dana K Dittoe
- Department of Animal and Dairy Sciences, Meat Science and Animal Biologics Discovery Program, University of Wisconsin, Madison, WI, USA
| | - Elena G Olson
- Department of Animal and Dairy Sciences, Meat Science and Animal Biologics Discovery Program, University of Wisconsin, Madison, WI, USA
| | - Jeferson Lourenco
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, Northern Ireland, United Kingdom
| | - Nicolae Corcionivoschi
- Bacteriology Branch, Veterinary Sciences Division, Agri-Food and Biosciences Institute, Belfast, Northern Ireland, United Kingdom; Faculty of Bioengineering of Animal Resources, Banat University of Animal Sciences and Veterinary Medicine - King Michael I of Romania, Timisoara, Romania
| | - Steven C Ricke
- Department of Animal and Dairy Sciences, Meat Science and Animal Biologics Discovery Program, University of Wisconsin, Madison, WI, USA
| | - Todd R Callaway
- Faculty of Bioengineering of Animal Resources, Banat University of Animal Sciences and Veterinary Medicine - King Michael I of Romania, Timisoara, Romania.
| |
Collapse
|
30
|
Borda-Molina D, Iffland H, Schmid M, Müller R, Schad S, Seifert J, Tetens J, Bessei W, Bennewitz J, Camarinha-Silva A. Gut Microbial Composition and Predicted Functions Are Not Associated with Feather Pecking and Antagonistic Behavior in Laying Hens. Life (Basel) 2021; 11:235. [PMID: 33809351 PMCID: PMC8001194 DOI: 10.3390/life11030235] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/11/2021] [Accepted: 03/11/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Feather pecking is a well-known problem in layer flocks that causes animal welfare restrictions and contributes to economic losses. Birds' gut microbiota has been linked to feather pecking. This study aims to characterize the microbial communities of two laying hen lines divergently selected for high (HFP) and low (LFP) feather pecking and investigates if the microbiota is associated with feather pecking or agonistic behavior. METHODS Besides phenotyping for the behavioral traits, microbial communities from the digesta and mucosa of the ileum and caeca were investigated using target amplicon sequencing and functional predictions. Microbiability was estimated with a microbial mixed linear model. RESULTS Ileum digesta showed an increase in the abundance of the genus Lactobacillus in LFP, while Escherichia was abundant in HFP hens. In the caeca digesta and mucosa of the LFP line were more abundant Faecalibacterium and Blautia. Tryptophan metabolism and lysine degradation were higher in both digesta and mucosa of the HFP hens. Linear models revealed that the two lines differ significantly in all behavior traits. Microbiabilities were close to zero and not significant in both lines and for all traits. CONCLUSIONS Trait variation was not affected by the gut microbial composition in both selection lines.
Collapse
Affiliation(s)
- Daniel Borda-Molina
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany; (D.B.-M.); (H.I.); (M.S.); (R.M.); (S.S.); (J.S.); (W.B.); (J.B.)
| | - Hanna Iffland
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany; (D.B.-M.); (H.I.); (M.S.); (R.M.); (S.S.); (J.S.); (W.B.); (J.B.)
| | - Markus Schmid
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany; (D.B.-M.); (H.I.); (M.S.); (R.M.); (S.S.); (J.S.); (W.B.); (J.B.)
| | - Regina Müller
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany; (D.B.-M.); (H.I.); (M.S.); (R.M.); (S.S.); (J.S.); (W.B.); (J.B.)
| | - Svenja Schad
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany; (D.B.-M.); (H.I.); (M.S.); (R.M.); (S.S.); (J.S.); (W.B.); (J.B.)
| | - Jana Seifert
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany; (D.B.-M.); (H.I.); (M.S.); (R.M.); (S.S.); (J.S.); (W.B.); (J.B.)
| | - Jens Tetens
- Department of Animal Sciences, University of Göttingen, 37073 Göttingen, Germany;
- Center for Integrated Breeding Research, University of Göttingen, 37075 Göttingen, Germany
| | - Werner Bessei
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany; (D.B.-M.); (H.I.); (M.S.); (R.M.); (S.S.); (J.S.); (W.B.); (J.B.)
| | - Jörn Bennewitz
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany; (D.B.-M.); (H.I.); (M.S.); (R.M.); (S.S.); (J.S.); (W.B.); (J.B.)
| | - Amélia Camarinha-Silva
- Institute of Animal Science, University of Hohenheim, 70599 Stuttgart, Germany; (D.B.-M.); (H.I.); (M.S.); (R.M.); (S.S.); (J.S.); (W.B.); (J.B.)
| |
Collapse
|
31
|
Zeinhom MMA, Abdel-Latef GK, Corke H. Prevalence, Characterization, and Control of Campylobacter jejuni Isolated from Raw Milk, Cheese, and Human Stool Samples in Beni-Suef Governorate, Egypt. Foodborne Pathog Dis 2021; 18:322-330. [PMID: 33656913 DOI: 10.1089/fpd.2020.2895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Our study aimed to determine the prevalence of Campylobacter jejuni isolated from raw milk, cheese, and human stool samples in Beni-Suef Governorate, Egypt, and to characterize the antibiotic resistance profile and virulence genes of the isolates. An additional objective was to evaluate the effectiveness of cinnamon oil and Lactobacillus acidophilus La5 for controlling C. jejuni in cheese. A total of 200 samples of raw milk and dairy products, including 50 samples of raw milk and 150 samples of three different types of cheese were used. Fifty-three human stool samples were also collected. The samples were tested for the presence of C. jejuni using culture and molecular methods. Campylobacter spp. were isolated from 9.5% (19/200) of the raw milk and cheese samples. The highest prevalence was observed in milk samples (18%), followed by Kareish cheese (14%) and Talaga cheese (6%). In contrast, C. jejuni was not found in any of the Feta cheese samples. Of the human stool samples, 21 (39.6%) were positive for C. jejuni. Of the isolates, 60-90% were highly resistant to the antimicrobial agents tested, that is, nalidixic acid, ciprofloxacin, and tetracycline. Virulent cadF and cdtA genes were detected in all isolates. As milk and dairy products are important sources of contamination, reducing the level of C. jejuni in them will lower the risk to consumers. We showed that L. acidophilus La5 was able to control C. jejuni in Kareish cheese, but cinnamon oil was less effective.
Collapse
Affiliation(s)
- Mohamed M A Zeinhom
- Food Hygiene and Control Department and Zoonoses and Epidemiology Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Gihan K Abdel-Latef
- Hygiene, Zoonoses and Epidemiology Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Harold Corke
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
32
|
Noohi N, Papizadeh M, Rohani M, Talebi M, Pourshafie MR. Screening for probiotic characters in lactobacilli isolated from chickens revealed the intra-species diversity of Lactobacillus brevis. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2021; 7:119-126. [PMID: 33997339 PMCID: PMC8110883 DOI: 10.1016/j.aninu.2020.07.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 06/21/2020] [Accepted: 07/12/2020] [Indexed: 11/24/2022]
Abstract
Considering the importance of the poultry industry and the increasing interest in alternative growth promoters, probiotics are considered as a potential candidate for use in the poultry industry. In this study, Lactobacillus species were isolated from 21 rectal swabs of 11 healthy 6-day-old and 10 healthy 21-day-old chickens and their fecal and feed samples. The isolates were characterized and their probiotic characteristics, including resistance to gastric acid and bile salts, biofilm formation and adherence to epithelium or mucus, amylase and protease activity and production of inhibitory compounds, were assessed. From 31 acid and bile resistant lactobacilli, only 2 Lactobacillus brevis and 1 Lactobacillus reuteri strains showed significant probiotic properties. These isolates indicated detectable attachment to Caco-2 cells and significant antibacterial activities against Gram-positive and Gram-negative pathogens. Additionally, phenotypic and genotypic diversity of lactobacilli isolates were studied by Phene Plate (PhP) system (PhP-LB) and random amplified polymorphic DNA (RAPD)-PCR, respectively. PhP-LB results of 24 L. brevis isolates showed a high phenotypic variation among the isolates. In comparison, results of RAPD-PCR highlighted a low diversity. Therefore, it seems that combination of the 2 techniques (PhP and RAPD-PCR) could result in a significant discriminatory power than each of them used alone.
Collapse
Affiliation(s)
- Nasrin Noohi
- Research Center for Conservation of Cultural Relics, Research Center of Iranian Cultural Heritage and Tourism Organization, Tehran, Iran
| | - Moslem Papizadeh
- Department of Microbiology, Pasteur Institute of Iran, Tehran, Iran
| | - Mahdi Rohani
- Department of Microbiology, Pasteur Institute of Iran, Tehran, Iran
| | - Malihe Talebi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
33
|
Pumtang-on P, Mahony TJ, Hill RA, Vanniasinkam T. A Systematic Review of Campylobacter jejuni Vaccine Candidates for Chickens. Microorganisms 2021; 9:397. [PMID: 33671947 PMCID: PMC7919041 DOI: 10.3390/microorganisms9020397] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/11/2021] [Accepted: 02/11/2021] [Indexed: 01/21/2023] Open
Abstract
Campylobacter jejuni infection linked to the consumption of contaminated poultry products is one of the leading causes of human enteric illness worldwide. Vaccination of chickens is one of the potential strategies that could be used to control C. jejuni colonization. To date, various C. jejuni vaccines using potential antigens have been evaluated, but a challenge in identifying the most effective formulation is the wide variability in vaccine efficacies reported. A systematic review was undertaken to compare C. jejuni vaccine studies. Based upon specific selection criteria eligible papers were identified and included in the analysis. Vaccine efficacy reported from different C. jejuni antigens, vaccine types, and vaccination regimens reported in these papers were reviewed. Our analysis shows that total outer membrane proteins and cysteine ABC transporter substrate-binding protein were among the most efficacious vaccine antigen candidates reported. This review also highlights the importance of the need for increased consistency in the way C. jejuni vaccine studies in poultry are designed and reported in order to be able to undertake a robust comparison of C. jejuni vaccine candidates.
Collapse
Affiliation(s)
- Pongthorn Pumtang-on
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW 2650, Australia; (P.P.-o.); (R.A.H.)
| | - Timothy J. Mahony
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD 4072, Australia;
| | - Rodney A. Hill
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW 2650, Australia; (P.P.-o.); (R.A.H.)
| | - Thiru Vanniasinkam
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW 2650, Australia; (P.P.-o.); (R.A.H.)
| |
Collapse
|
34
|
Abd El-Hack ME, El-Saadony MT, Shehata AM, Arif M, Paswan VK, Batiha GES, Khafaga AF, Elbestawy AR. Approaches to prevent and control Campylobacter spp. colonization in broiler chickens: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:4989-5004. [PMID: 33242194 DOI: 10.1007/s11356-020-11747-3] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 11/18/2020] [Indexed: 06/11/2023]
Abstract
Campylobacter, Gram-negative bacteria, is the most common cause of acute bacterial enteritis in human beings, both in developing and developed countries. It is believed that poultry, in particular broiler chickens, is the main host of human infection with Campylobacter. Handling and consumption of contaminated chicken meat are the usual modes of transmission. Prevention and reduction of Campylobacter colonization in poultry farms will cut off the road of infection transmission to humans throughout the food chain. With the incidence of antibiotic resistance and with growing concern about superbugs, the search for natural and safe alternatives will considerably increase in the coming years. In this review, we will discuss the prevalence and risk factors of Campylobacter colonization in broiler chickens and sources of infection. This review also provides extensive and recent approaches to prevent and control Campylobacter colonization in broiler chickens, including biosecurity measures, natural feed/drinking water additives with antimicrobial properties, bacteriocins, bacteriophages, antimicrobial peptides, and vaccination strategies to prevent and control the incidence of human campylobacteriosis.
Collapse
Affiliation(s)
- Mohamed E Abd El-Hack
- Department of Poultry, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| | - Mohamed T El-Saadony
- Department of Agricultural Microbiology, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| | - Abdelrazeq M Shehata
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Cairo, 11651, Egypt
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Muhammad Arif
- Department of Animal Sciences, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Vinod K Paswan
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Al-Beheira, Damanhour, 22511, Egypt
| | - Asmaa F Khafaga
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Edfina, 22758, Egypt
| | - Ahmed R Elbestawy
- Poultry and Fish Diseases Department, Faculty of Veterinary Medicine, El-Behera University, Damanhour, 22511, Egypt
| |
Collapse
|
35
|
Ben Romdhane R, Merle R. The Data Behind Risk Analysis of Campylobacter Jejuni and Campylobacter Coli Infections. Curr Top Microbiol Immunol 2021; 431:25-58. [PMID: 33620647 DOI: 10.1007/978-3-030-65481-8_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Campylobacter jejuni and Campylobacter coli are major causes of food-borne enteritis in humans. Poultry meat is known to be responsible for a large proportion of cases of human campylobacteriosis. However, other food-borne, environmental and animal sources are frequently associated with the disease in humans as well. Human campylobacteriosis causes gastroenteritis that in most cases is self-limiting. Nevertheless, the burden of the disease is relatively large compared with other food-borne diseases, which is mostly due to rare but long-lasting symptoms related to immunological sequelae. In order to pave the way to improved surveillance and control of human campylobacteriosis, we review here the data that is typically used for risk analysis to quantify the risk and disease burden, identify specific surveillance strategies and assist in choosing the most effective control strategies. Such data are mostly collected from the literature, and their nature is discussed here, for each of the three processes that are essential for a complete risk analysis procedure: risk assessment, risk management and risk communication. Of these, the first, risk assessment, is most dependent on data, and this process is subdivided into the steps of hazard identification, hazard characterization, exposure assessment and risk characterization. For each of these steps of risk assessment, information from published material that is typically collected will be summarized here. In addition, surveillance data are highly valuable for risk assessments. Different surveillance systems are employed in different countries, which can make international comparison of data challenging. Risk analysis typically results in targeted control strategies, and these again differ between countries. The applied control strategies are as yet not sufficient to eradicate human campylobacteriosis. The surveillance tools of Campylobacter in humans and exposure sources in place in different countries are briefly reviewed to better understand the Campylobacter dynamics and guide control strategies. Finally, the available control measures on different risk factors and exposure sources are presented.
Collapse
Affiliation(s)
- Racem Ben Romdhane
- Faculty of Veterinary Medicine, Institute for Veterinary Epidemiology and Biostatistics, Freie Universität Berlin, Berlin, Germany
| | - Roswitha Merle
- Faculty of Veterinary Medicine, Institute for Veterinary Epidemiology and Biostatistics, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
36
|
Deng W, Dittoe DK, Pavilidis HO, Chaney WE, Yang Y, Ricke SC. Current Perspectives and Potential of Probiotics to Limit Foodborne Campylobacter in Poultry. Front Microbiol 2020; 11:583429. [PMID: 33414767 PMCID: PMC7782433 DOI: 10.3389/fmicb.2020.583429] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/03/2020] [Indexed: 01/07/2023] Open
Abstract
Poultry has been one of the major contributors of Campylobacter related human foodborne illness. Numerous interventions have been applied to limit Campylobacter colonization in poultry at the farm level, but other strategies are under investigation to achieve more efficient control. Probiotics are viable microbial cultures that can establish in the gastrointestinal tract (GIT) of the host animal and elicit health and nutrition benefits. In addition, the early establishment of probiotics in the GIT can serve as a barrier to foodborne pathogen colonization. Thus, probiotics are a potential feed additive for reducing and eliminating the colonization of Campylobacter in the GIT of poultry. Screening probiotic candidates is laborious and time-consuming, requiring several tests and validations both in vitro and in vivo. The selected probiotic candidate should possess the desired physiological characteristics and anti-Campylobacter effects. Probiotics that limit Campylobacter colonization in the GIT rely on different mechanistic strategies such as competitive exclusion, antagonism, and immunomodulation. Although numerous research efforts have been made, the application of Campylobacter limiting probiotics used in poultry remains somewhat elusive. This review summarizes current research progress on identifying and developing probiotics against Campylobacter and presenting possible directions for future research efforts.
Collapse
Affiliation(s)
- Wenjun Deng
- Center of Food Safety, Department of Food Science, University of Arkansas, Fayetteville, AR, United States
| | - Dana K. Dittoe
- Center of Food Safety, Department of Food Science, University of Arkansas, Fayetteville, AR, United States
| | | | | | - Yichao Yang
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Steven C. Ricke
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
37
|
|
38
|
Rawson T, Paton RS, Colles FM, Maiden MCJ, Dawkins MS, Bonsall MB. A Mathematical Modeling Approach to Uncover Factors Influencing the Spread of Campylobacter in a Flock of Broiler-Breeder Chickens. Front Microbiol 2020; 11:576646. [PMID: 33193192 PMCID: PMC7655537 DOI: 10.3389/fmicb.2020.576646] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/15/2020] [Indexed: 01/05/2023] Open
Abstract
Despite continued efforts to improve biosecurity protocols, Campylobacter continues to be detected in the majority of commercial chicken flocks across Europe. Using an extensive data set of Campylobacter prevalence within a chicken breeder flock for over a year, multiple Bayesian models are presented to explore the dynamics of the spread of Campylobacter in response to seasonal variation, species-specificity, bird health, and total colonization prevalence. These models indicated that birds within the flock varied greatly in their response to bacterial challenge, and that this phenomenon had a large impact on the overall prevalence of different species of Campylobacter. Campylobacter jejuni appeared more frequently in the summer, while Campylobacter coli persisted for a longer duration, amplified by the most susceptible birds in the flock. Our study suggests that strains of Campylobacter that appear most frequently likely possess no demographic advantage, but are instead amplified due to the health of the birds that ingest it.
Collapse
Affiliation(s)
- Thomas Rawson
- Mathematical Ecology Research Group, Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Robert Stephen Paton
- Mathematical Ecology Research Group, Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Frances M. Colles
- Peter Medawar Building for Pathogen Research, Department of Zoology, University of Oxford, Oxford, United Kingdom
- National Institute for Health Research, Health Protection Research Unit in Gastrointestinal Infections, University of Oxford, Oxford, United Kingdom
| | - Martin C. J. Maiden
- Peter Medawar Building for Pathogen Research, Department of Zoology, University of Oxford, Oxford, United Kingdom
- National Institute for Health Research, Health Protection Research Unit in Gastrointestinal Infections, University of Oxford, Oxford, United Kingdom
| | - Marian Stamp Dawkins
- Department of Zoology, John Krebs Field Station, University of Oxford, Oxford, United Kingdom
| | - Michael B. Bonsall
- Mathematical Ecology Research Group, Department of Zoology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
39
|
la Mora ZVD, Macías-Rodríguez ME, Arratia-Quijada J, Gonzalez-Torres YS, Nuño K, Villarruel-López A. Clostridium perfringens as Foodborne Pathogen in Broiler Production: Pathophysiology and Potential Strategies for Controlling Necrotic Enteritis. Animals (Basel) 2020; 10:E1718. [PMID: 32972009 PMCID: PMC7552638 DOI: 10.3390/ani10091718] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/29/2022] Open
Abstract
Clostridium perfringens (Cp.) is the cause of human foodborne desease. Meat and poultry products are identified as the main source of infection for humans. Cp. can be found in poultry litter, feces, soil, dust, and healthy birds' intestinal contents. Cp. strains are known to secrete over 20 identified toxins and enzymes that could potentially be the principal virulence factors, capable of degrading mucin, affecting enterocytes, and the small intestine epithelium, involved in necrotic enteritis (NE) pathophysiology, also leading to immunological responses, microbiota modification and anatomical changes. Different environmental and dietary factors can determine the colonization of this microorganism. It has been observed that the incidence of Cp-associated to NE in broilers has increased in countries that have stopped using antibiotic growth promoters. Since the banning of such antibiotic growth promoters, several strategies for Cp. control have been proposed, including dietary modifications, probiotics, prebiotics, synbiotics, phytogenics, organic acids, and vaccines. However, there are aspects of the pathology that still need to be clarified to establish better actions to control and prevention. This paper reviews the current knowledge about Cp. as foodborne pathogen, the pathophysiology of NE, and recent findings on potential strategies for its control.
Collapse
Affiliation(s)
- Zuamí Villagrán-de la Mora
- Departamento de Ciencias de la Salud, Centro Universitario de Los Altos, Universidad de Guadalajara, Av. Rafael Casillas Aceves 1200, Tepatitlán de Morelos 47620, Mexico; (Z.V.-d.l.M.); (Y.S.G.-T.)
| | - María Esther Macías-Rodríguez
- Departamento de Farmacobiología, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. Gral. Marcelino García Barragán 1421, Olímpica 44430, Guadalajara, Mexico;
| | - Jenny Arratia-Quijada
- Departamento de Ciencias Biomédicas, Centro Universitario de Tonalá, Universidad de Guadalajara, Nuevo Perif. Ote. 555, Ejido San José, Tateposco 45425, Tonalá, Mexico;
| | - Yesica Sughey Gonzalez-Torres
- Departamento de Ciencias de la Salud, Centro Universitario de Los Altos, Universidad de Guadalajara, Av. Rafael Casillas Aceves 1200, Tepatitlán de Morelos 47620, Mexico; (Z.V.-d.l.M.); (Y.S.G.-T.)
| | - Karla Nuño
- Departamento de Ciencias Biomédicas, Centro Universitario de Tonalá, Universidad de Guadalajara, Nuevo Perif. Ote. 555, Ejido San José, Tateposco 45425, Tonalá, Mexico;
| | - Angélica Villarruel-López
- Departamento de Farmacobiología, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Blvd. Gral. Marcelino García Barragán 1421, Olímpica 44430, Guadalajara, Mexico;
| |
Collapse
|
40
|
Szott V, Reichelt B, Alter T, Friese A, Roesler U. In vivo efficacy of carvacrol on Campylobacter jejuni prevalence in broiler chickens during an entire fattening period. Eur J Microbiol Immunol (Bp) 2020; 10:131-138. [PMID: 32750025 PMCID: PMC7592510 DOI: 10.1556/1886.2020.00011] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 06/16/2020] [Indexed: 12/18/2022] Open
Abstract
Carvacrol, a primary constituent of plant essential oils (EOs), and its antimicrobial activity have been the subject of many in vitro studies. Due to an increasing demand for alternative antimicrobials and an emerging number of antibiotic resistant bacteria, the use of essential oils has played a major role in many recent approaches to reduce Campylobacter colonization in poultry before slaughter age. For that purpose, the reducing effect of carvacrol on Campylobacter jejuni prevalence in broilers was determined in vivo in an experimental broiler chicken model during an entire fattening period. Carvacrol was added to the feed in a concentration of 120 mg/kg feed four days post hatch until the end of the trial. In this study, we demonstrated a statistically significant decrease of C. jejuni counts by 1.17 decadic logarithm (log10) most probable number (MPN)/g in cloacal swabs during starter and grower periods (corresponding to a broilers age between 1 and 28 days). Similar results were observed for colon enumeration at the end of the trial where C. jejuni counts were significantly reduced by 1.25 log10 MPN/g. However, carvacrol did not successfully reduce Campylobacter cecal colonization in 33-day-old broilers.
Collapse
Affiliation(s)
- V Szott
- 1Institute for Animal Hygiene and Environmental Health, Freie Universität Berlin, Berlin, Germany
| | - B Reichelt
- 1Institute for Animal Hygiene and Environmental Health, Freie Universität Berlin, Berlin, Germany
| | - T Alter
- 2Institute of Food Safety and Food Hygiene, Freie Universität Berlin, Berlin, Germany
| | - A Friese
- 1Institute for Animal Hygiene and Environmental Health, Freie Universität Berlin, Berlin, Germany
| | - U Roesler
- 1Institute for Animal Hygiene and Environmental Health, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
41
|
Nastasijevic I, Proscia F, Boskovic M, Glisic M, Blagojevic B, Sorgentone S, Kirbis A, Ferri M. The European Union control strategy for
Campylobacter
spp. in the broiler meat chain. J Food Saf 2020. [DOI: 10.1111/jfs.12819] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | | | - Marija Boskovic
- Faculty of Veterinary Medicine University of Belgrade Belgrade Serbia
| | - Milica Glisic
- Faculty of Veterinary Medicine University of Belgrade Belgrade Serbia
| | - Bojan Blagojevic
- Faculty of Agriculture, Department for Veterinary Medicine University of Novi Sad Novi Sad Serbia
| | | | - Andrej Kirbis
- Faculty of Veterinary Medicine University of Ljubljana Ljubljana Slovenia
| | - Maurizio Ferri
- Italian Society of Preventive Veterinary Medicine Rome Italy
| |
Collapse
|
42
|
Mortada M, Cosby D, Shanmugasundaram R, Selvaraj R. In vivo and in vitro assessment of commercial probiotic and organic acid feed additives in broilers challenged with Campylobacter coli. J APPL POULTRY RES 2020. [DOI: 10.1016/j.japr.2020.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
43
|
Soro AB, Whyte P, Bolton DJ, Tiwari BK. Strategies and novel technologies to control Campylobacter in the poultry chain: A review. Compr Rev Food Sci Food Saf 2020; 19:1353-1377. [PMID: 33337085 DOI: 10.1111/1541-4337.12544] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 01/06/2020] [Accepted: 01/15/2020] [Indexed: 12/15/2022]
Abstract
Campylobacteriosis is one of the most common bacterial infections worldwide causing economic costs. The high prevalence of Campylobacter spp. in poultry meat is a result of several contamination and cross-contamination sources through the production chain. Moreover, survival mechanisms, such as biofilm formation, viable but nonculturable state, and antimicrobial resistance, enable its persistence during food processing. Therefore, mitigation strategies are necessary in order to avoid and/or inactivate Campylobacter at farm, abattoir, industry, and retail level. In this review, a number of potential strategies and novel technologies that could reduce the prevalence of Campylobacter in poultry meat have been identified and evaluated to provide a useful overview. At farm level for instance, biosecurity, bacteriocins, probiotics, feed and water additives, bacteriophages, and vaccination could potentially reduce colonization in chicken flocks. However, current technologies used in the chicken slaughter and processing industry may be less effective against this foodborne pathogen. Novel technologies and strategies such as cold plasma, ultraviolet light, high-intensity light pulses, pulsed electric fields, antimicrobials, and modified atmosphere packaging are discussed in this review for reducing Campylobacter contamination. Although these measures have achieved promising results, most have not been integrated within processing operations due to a lack of knowledge or an unwillingness to implement these into existing processing systems. Furthermore, a combination of existing and novel strategies might be required to decrease the prevalence of this pathogen in poultry meat and enhance food safety. Therefore, further research will be essential to assess the effectiveness of all these strategies.
Collapse
Affiliation(s)
- Arturo B Soro
- Department of Food Chemistry and Technology, Teagasc Food Research Centre, Ashtown, Ireland.,UCD School of Veterinary Medicine, University College Dublin, Belfield, Ireland
| | - Paul Whyte
- UCD School of Veterinary Medicine, University College Dublin, Belfield, Ireland
| | - Declan J Bolton
- Department of Food Safety, Teagasc Food Research Centre, Ashtown, Ireland
| | - Brijesh K Tiwari
- Department of Food Chemistry and Technology, Teagasc Food Research Centre, Ashtown, Ireland
| |
Collapse
|
44
|
Morales-Partera Á, Cardoso Toset F, Luque I, Maldonado A, Tarradas C, Gómez-Laguna J. Supplementing feed with Pediococcus acidilactici reduces Campylobacter load in finishing pigs. Vet Rec 2020; 187:e45. [PMID: 32327553 DOI: 10.1136/vr.105591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 03/14/2020] [Accepted: 03/29/2020] [Indexed: 11/04/2022]
Abstract
BACKGROUND Pigs are asymptomatic carriers of foodborne bacteria, such as Salmonella enterica and Campylobacter species, which can pose a risk to human health. New strategies to control bacteria burden before reaching the slaughterhouse are necessary. This study evaluated the effect of Pediococcus acidilactici on performance parameters and on the burden of foodborne pathogens, that have subsequent implications on food quality and safety, in free-range finishing pigs at the slaughterhouse. METHODS Pigs were randomly allocated and blocked by weight into control group (control diet) and treated group (control diet supplemented with P acidilactici) 31 days before slaughter. Weight and average daily gain were recorded and changes in faecal microbiota were determined at the beginning and at the end of the study. RESULTS No changes were observed in performance parameters. No statistically significant differences were observed when comparing between treated and control animals at the beginning or at the end of the study. However, a significant decrease was detected in the counts of Campylobacter species in treated animals between day 0 and day 31 (4.86-3.40 log colony-forming units/g; P=0.002). CONCLUSION This study indicates that supplementation with P acidilactici represents a useful approach to control Campylobacter species load in free-range finishing pigs before slaughter.
Collapse
Affiliation(s)
- Ángela Morales-Partera
- Department of Animal Health, Faculty of Veterinary Medicine, University of Córdoba, International Excellence Agrifood Campus 'CeiA3', Cordoba, Spain.,Department of R&D, CICAP - Food Research Centre, Pozoblanco, Córdoba, Spain
| | | | - Inmaculada Luque
- Department of Animal Health, Faculty of Veterinary Medicine, University of Córdoba, International Excellence Agrifood Campus 'CeiA3', Cordoba, Spain
| | - Alfonso Maldonado
- Department of Animal Health, Faculty of Veterinary Medicine, University of Córdoba, International Excellence Agrifood Campus 'CeiA3', Cordoba, Spain
| | - Carmen Tarradas
- Department of Animal Health, Faculty of Veterinary Medicine, University of Córdoba, International Excellence Agrifood Campus 'CeiA3', Cordoba, Spain
| | - Jaime Gómez-Laguna
- Department of R&D, CICAP - Food Research Centre, Pozoblanco, Córdoba, Spain .,Department of Anatomy and Comparative Pathology, Faculty of Veterinary Medicine, University of Córdoba, International Excellence Agrifood Campus 'CeiA3', Cordoba, Spain
| |
Collapse
|
45
|
Ushanov L, Lasareishvili B, Janashia I, Zautner AE. Application of Campylobacter jejuni Phages: Challenges and Perspectives. Animals (Basel) 2020; 10:E279. [PMID: 32054081 PMCID: PMC7070343 DOI: 10.3390/ani10020279] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/03/2020] [Accepted: 02/07/2020] [Indexed: 12/24/2022] Open
Abstract
Bacteriophages (phages) are the most abundant and diverse biological entities in the biosphere. Due to the rise of multi-drug resistant bacterial strains during the past decade, phages are currently experiencing a renewed interest. Bacteriophages and their derivatives are being actively researched for their potential in the medical and biotechnology fields. Phage applications targeting pathogenic food-borne bacteria are currently being utilized for decontamination and therapy of live farm animals and as a biocontrol measure at the post-harvest level. For this indication, the United States Food and Drug Administration (FDA) has approved several phage products targeting Listeria sp., Salmonella sp. and Escherichia coli. Phage-based applications against Campylobacter jejuni could potentially be used in ways similar to those against Salmonella sp. and Listeria sp.; however, only very few Campylobacter phage products have been approved anywhere to date. The research on Campylobacter phages conducted thus far indicates that highly diverse subpopulations of C. jejuni as well as phage isolation and enrichment procedures influence the specificity and efficacy of Campylobacter phages. This review paper emphasizes conclusions from previous findings instrumental in facilitating isolation of Campylobacter phages and improving specificity and efficacy of the isolates.
Collapse
Affiliation(s)
- Leonid Ushanov
- Institute of Veterinary Medicine, Agricultural University of Georgia, 0159 Tbilisi, Georgia; (L.U.); (B.L.)
| | - Besarion Lasareishvili
- Institute of Veterinary Medicine, Agricultural University of Georgia, 0159 Tbilisi, Georgia; (L.U.); (B.L.)
| | - Irakli Janashia
- Institute of Entomology, Agricultural University of Georgia, 0159 Tbilisi, Georgia;
| | - Andreas E. Zautner
- Institute of Medical Microbiology, University Medical Center Göttingen, 37075 Göttingen, Germany
| |
Collapse
|
46
|
Šikić Pogačar M, Langerholc T, Mičetić-Turk D, Možina SS, Klančnik A. Effect of Lactobacillus spp. on adhesion, invasion, and translocation of Campylobacter jejuni in chicken and pig small-intestinal epithelial cell lines. BMC Vet Res 2020; 16:34. [PMID: 32013961 PMCID: PMC6998324 DOI: 10.1186/s12917-020-2238-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/09/2020] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Campylobacter spp. are a major cause of bacterial food-borne diarrhoeal disease. This mainly arises through contamination of meat products during processing. For infection, Campylobacter spp. must adhere to epithelial cells of the mucus layer, survive conditions of the gastrointestinal tract, and colonise the intestine of the host. Addition of probiotic bacteria might promote competitive adhesion to epithelial cells, consequently reducing Campylobacter jejuni colonisation. Effect of Lactobacillus spp. (PCS20, PCS22, PCS25, LGG, PCK9) on C. jejuni adhesion, invasion and translocation in pig (PSI cl.1) and chicken (B1OXI) small-intestine cell lines, as well as pig enterocytes (CLAB) was investigated. RESULTS Overall, in competitive adhesion assays with PSI cl.1 and CLAB cell monolayers, the addition of Lactobacillus spp. reduced C. jejuni adherence to the cell surface, and negatively affected the C. jejuni invasion. Interestingly, Lactobacillus spp. significantly impaired C. jejuni adhesion in three-dimensional functional PSI cl.1 and B1OXI cell models. Also, C. jejuni did not translocate across PSI cl.1 and B1OXI cell monolayers when co-incubated with probiotics. Among selected probiotics, Lactobacillus rhamnosus LGG was the strain that reduced adhesion efficacy of C. jejuni most significantly under co-culture conditions. CONCLUSION The addition of Lactobacillus spp. to feed additives in livestock nutrition might be an effective novel strategy that targets Campylobacter adhesion to epithelial cells, and thus prevents colonisation, reduces the transmission, and finally lowers the incidence of human campylobacteriosis.
Collapse
Affiliation(s)
| | - Tomaž Langerholc
- Department of Microbiology, Biochemistry, Molecular Biology and Biotechnology, Faculty of Agriculture and Life Science, University of Maribor, 2311, Hoče, Slovenia
| | | | - Sonja Smole Možina
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Anja Klančnik
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia
| |
Collapse
|
47
|
Neveling DP, Ahire JJ, Laubscher W, Rautenbach M, Dicks LMT. Genetic and Phenotypic Characteristics of a Multi-strain Probiotic for Broilers. Curr Microbiol 2019; 77:369-387. [PMID: 31832841 DOI: 10.1007/s00284-019-01797-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/22/2019] [Indexed: 12/11/2022]
Abstract
Bacteria isolated from different segments of the gastro-intestinal tract (GIT) of healthy free-range broilers were screened for probiotic properties. Six strains were selected and identified as Lactobacillus gallinarum, Lactobacillus johnsonii, Lactobacillus salivarius, Lactobacillus crispatus, Enterococcus faecalis and Bacillus amyloliquefaciens based on 16S rRNA, gyrB and recA gene sequence analyses. All six strains produced exopolysaccharides (EPS) and formed biofilms under conditions simulating the broiler GIT. Lactobacillus johnsonii DPN184 and L. salivarius DPN181 produced hydrogen peroxide, and L. crispatus DPN167 and E. faecalis DPN94 produced bile salt hydrolase (BSH) and phytase. Bacillus amyloliquefaciens DPN123 produced phytase, amylase, surfactin and iturin A1. No abnormalities were observed when broilers were fed the multi-strain combination, suggesting that it could be used as a probiotic.
Collapse
Affiliation(s)
- Deon P Neveling
- Department of Microbiology, University of Stellenbosch, Matieland, Stellenbosch, 7602, South Africa
| | - Jayesh J Ahire
- Department of Microbiology, University of Stellenbosch, Matieland, Stellenbosch, 7602, South Africa
| | - Wikus Laubscher
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Marina Rautenbach
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Leon M T Dicks
- Department of Microbiology, University of Stellenbosch, Matieland, Stellenbosch, 7602, South Africa.
| |
Collapse
|
48
|
Whelan RA, Doranalli K, Rinttilä T, Vienola K, Jurgens G, Apajalahti J. The impact of Bacillus subtilis DSM 32315 on the pathology, performance, and intestinal microbiome of broiler chickens in a necrotic enteritis challenge. Poult Sci 2019; 98:3450-3463. [PMID: 30452717 PMCID: PMC6698186 DOI: 10.3382/ps/pey500] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/24/2018] [Indexed: 12/19/2022] Open
Abstract
It was hypothesized that dietary inclusion of Bacillus subtilis DSM 32315 could inhibit Clostridium perfringens induced necrotic enteritis (NE), thereby improving broiler performance. Male, d 0 chicks were randomly assigned 14 birds/pen, 11 pens/treatment in 3 treatments: a basal diet (control), a coccidiostat fed control (Narasin), and a direct fed microbial (DFM) B. subtilis DSM 32315 treatment. Necrotic enteritis was induced in all birds by oral inoculation of Eimeria maxima oocysts on d 12 and a virulent C. perfringens on d 16. Mortality was reduced (P < 0.001) in DFM and Narasin compared to control. DFM reduced (P < 0.001) feed conversion ratio (FCR) compared to control. Furthermore, DFM and Narasin reduced (P < 0.001) footpad lesions. The DFM was shown to increase (P < 0.05) Bacillus spp. and decrease (P < 0.05) C. perfringens in the ileum and cecum at several time points. To investigate microbiome changes in the cecum, digesta samples were analyzed with % guanine and cytosine (%G+C) microbial profiling which fractionates bacterial chromosomes based on the %G+C in DNA. The method revealed treatment profile peaks in low (27.0 to 34.5%), mid (40.5 to 54.0%), and high (59.0 to 68.0%) G+C fractions. 16S rRNA gene amplification and high throughput sequencing was conducted on each of these fractions in order to elucidate specific bacterial population differences. In the low and mid %G+C fractions, DFM had greater abundance of Lactobacillaceae family members (P = 0.03 and P = 0.01, respectively) and Lactobacillus salivarius (P = 0.04 and P = 0.01, respectively) than control or Narasin. Lactobacillus johnsonii was also greater in the low %G+C fraction compared to control and Narasin (P = 0.01). Lachnospiraceae (P = 0.04) and Ruminococcaceae (P < 0.01) in the mid %G+C fraction were reduced in the DFM compared to control. Positive alterations to the microbial populations in the gut of broilers may at least be a partial mechanism by which B. subtilis DSM 32315 reduced pathology and improved performance of broilers in the NE challenge.
Collapse
Affiliation(s)
- Rose A Whelan
- Evonik Nutrition & Care GmbH, Hanau, 63067, Hessen, Germany
| | | | | | | | | | | |
Collapse
|
49
|
Taha-Abdelaziz K, Astill J, Kulkarni RR, Read LR, Najarian A, Farber JM, Sharif S. In vitro assessment of immunomodulatory and anti-Campylobacter activities of probiotic lactobacilli. Sci Rep 2019; 9:17903. [PMID: 31784645 PMCID: PMC6884649 DOI: 10.1038/s41598-019-54494-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 11/10/2019] [Indexed: 12/17/2022] Open
Abstract
The present study was undertaken to assess the antimicrobial activity of Lactobacillus spp. (L. salivarius, L. johnsonii, L. reuteri, L. crispatus, and L. gasseri) against Campylobacter jejuni as well as their immunomodulatory capabilities. The results demonstrated that lactobacilli exhibit differential antagonistic effects against C. jejuni and vary in their ability to elicit innate responses in chicken macrophages. All lactobacilli exerted inhibitory effects on C. jejuni growth, abrogated the production of the quorum sensing molecule autoinducer-2 (AI-2) by C. jejuni and inhibited the invasion of C. jejuni in human intestinal epithelial cells. Additionally, all lactobacilli, except L. reuteri, significantly reduced the expression of virulence-related genes in C. jejuni, including genes responsible for motility (flaA, flaB, and flhA), invasion (ciaB), and AI-2 production (luxS). All lactobacilli enhanced C. jejuni phagocytosis by macrophages and increased the expression of interferon (IFN)-γ, interleukin (IL)-1β, IL-12p40, IL-10, and chemokine (CXCLi2) in macrophages. Furthermore, L. salivarius, L. reuteri, L. crispatus, and a mixture of all lactobacilli significantly increased expression of the co-stimulatory molecules CD40, CD80, and CD86 in macrophages. In conclusion, these findings demonstrate that lactobacilli possess anti-Campylobacter and immunomodulatory activities. Further studies are needed to assess their protective efficacy against intestinal colonization by C. jejuni in broiler chickens.
Collapse
Affiliation(s)
- Khaled Taha-Abdelaziz
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada.,Pathology Department, Faculty of Veterinary Medicine, Beni-Suef University, Al Shamlah, 62511, Beni-Suef, Egypt
| | - Jake Astill
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Raveendra R Kulkarni
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, 27519, US
| | - Leah R Read
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Afsaneh Najarian
- Canadian Research Institute for Food Safety (CRIFS), Guelph, ON, N1G 2W1, ON, N1G 2W1, Canada
| | - Jeffrey M Farber
- Canadian Research Institute for Food Safety (CRIFS), Guelph, ON, N1G 2W1, ON, N1G 2W1, Canada
| | - Shayan Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
50
|
Effect of a Multi-Species Probiotic on the Colonisation of Salmonella in Broilers. Probiotics Antimicrob Proteins 2019; 12:896-905. [DOI: 10.1007/s12602-019-09593-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|