1
|
Jeon S, Baek H, Kim S, Kim Y, Kim J, Kim JW. Microalgae-Derived Microparticles Improve Immunomodulation via Combined Glycolysis and MAPK Activation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:8619-8626. [PMID: 40145572 DOI: 10.1021/acs.langmuir.4c05088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Natural polysaccharides possess potent immunostimulatory properties, but their poor solubility impedes efficiency of cellular delivery. This study focuses on extraction of microparticles (MPs) fromEuglena gracilis, a microalgae species characterized by abundant intracellular β-1,3-glucan and flexible cell membrane. We introduce anE. gracilis-derived MP (MPEG) system as a natural carrier for solubilized β-glucan. The MPEG system enhances β-glucan's solubility and loading efficiency through sequential sonication and cell extrusion. In vitro studies reveal that MPEG utilizes multiple endocytosis pathways, including phagocytosis, clathrin-mediated, and lipid raft-mediated routes, for effective β-glucan delivery into cells. Upon cellular internalization, MPEG components trigger dual activation of the MAPK signaling pathway and glycolysis in macrophages, leading to enhanced production of pro-inflammatory cytokines and lactic acid, ultimately strengthening innate immune responses. This MPEG system offers a promising approach to harnessing the immunostimulatory properties of natural polysaccharides while overcoming their solubility limitations, opening new avenues for targeted cellular delivery in immunomodulation therapies.
Collapse
Affiliation(s)
- Saetbyeol Jeon
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hwira Baek
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seulgi Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Youngseok Kim
- Technology Innovation Center, Shinsegae International Inc., Seoul 06015, Republic of Korea
| | - Junoh Kim
- Technology Innovation Center, Shinsegae International Inc., Seoul 06015, Republic of Korea
| | - Jin Woong Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
2
|
Li C, Du M, Han Y, Sun W, Chen Z, Liu Q, Zhu H, Zhao L, Li S, Wang J. Microalgae in health care and functional foods: β-glucan applications, innovations in drug delivery and synthetic biology. Front Pharmacol 2025; 16:1557298. [PMID: 40103595 PMCID: PMC11913682 DOI: 10.3389/fphar.2025.1557298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/11/2025] [Indexed: 03/20/2025] Open
Abstract
Microalgae are emerging as a key player in healthcare, functional foods, and sustainable biotech due to their capacity to produce bioactive compounds like β-glucans, omega-3 fatty acids, and antioxidants in an eco-friendly manner. This review comprehensively discusses the role of microalgae in healthcare and functional foods, focusing particularly on β-glucan therapeutics, drug delivery innovations, and synthetic biology applications. In healthcare, microalgae-derived compounds show immense promise for treating diseases, boosting immunity, and tackling oxidative stress. Euglena-derived paramylon, a type of β-glucan, has shown potential in various medical applications, including immunomodulation and anticancer therapy. Synthetic biology and bioprocess engineering are enhancing microalgae's therapeutic and nutritional value, with applications in drug delivery and personalized medicine. To maximize the potential of microalgae, further research and development are needed to address scalability, regulatory alignment, and consumer acceptance, with a focus on interdisciplinary collaboration and sustainable practices to align healthcare innovation with environmental conservation.
Collapse
Affiliation(s)
- Chao Li
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
- School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, Guangdong, China
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Ming Du
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Yujie Han
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Wentao Sun
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Zixi Chen
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Hui Zhu
- School of Life Sciences and Food Engineering, Hanshan Normal University, Chaozhou, Guangdong, China
| | - Liqing Zhao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | - Shuangfei Li
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Jiangxin Wang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| |
Collapse
|
3
|
Fields O, Hammond MJ, Xu X, O'Neill EC. Advances in euglenoid genomics: unravelling the fascinating biology of a complex clade. Trends Genet 2025; 41:251-260. [PMID: 39147613 DOI: 10.1016/j.tig.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 08/17/2024]
Abstract
Euglenids have long been studied due to their unique physiology and versatile metabolism, providing underpinnings for much of our understanding of photosynthesis and biochemistry, and a growing opportunity in biotechnology. Until recently there has been a lack of genetic studies due to their large and complex genomes, but recently new technologies have begun to unveil their genetic capabilities. Whilst much research has focused on the model organism Euglena gracilis, other members of the euglenids have now started to receive due attention. Currently only poor nuclear genome assemblies of E. gracilis and Rhabdomonas costata are available, but there are many more plastid genome sequences and an increasing number of transcriptomes. As more assemblies become available, there are great opportunities to understand the fundamental biology of these organisms and to exploit them for biotechnology.
Collapse
Affiliation(s)
- Oskar Fields
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK; Biodiscovery Institute, University of Nottingham, University Park, Nottingham, NG7 2RD, UK; These authors contributed equally
| | - Michael J Hammond
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic; Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic; These authors contributed equally
| | - Xiao Xu
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK; Biodiscovery Institute, University of Nottingham, University Park, Nottingham, NG7 2RD, UK; These authors contributed equally
| | - Ellis C O'Neill
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK; Biodiscovery Institute, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| |
Collapse
|
4
|
You YL, Byun HJ, Chang YB, Kim H, Lee H, Suh HJ, Jeon JY, Kim BR, Hwang JE, Lee JH, Choi HS. Euglena gracilis-derived β-glucan ameliorates particulate matter (PM 2.5)-induced airway inflammation by modulating nuclear factor kappa B, mitogen-activated protein kinase, and nuclear factor erythroid 2-related factor 2 signaling pathways in A549 cells and BALB/c mice. Int J Biol Macromol 2025; 296:139671. [PMID: 39798741 DOI: 10.1016/j.ijbiomac.2025.139671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 12/19/2024] [Accepted: 01/07/2025] [Indexed: 01/15/2025]
Abstract
This study aimed to investigate the effects of β-glucan derived from Euglena gracilis (EGB), an edible microalga, on particulate matter (PM2.5)-induced airway inflammation in A549 cells and BALB/c mice. EGB effectively suppressed the mRNA and protein levels of inflammatory cytokines (IL-6, IL-1β, TNF-α, IL-8) and mediators (iNOS, COX-2), while inhibiting the NF-κB and MAPK signaling pathways triggered by PM2.5 exposure and reducing nuclear NF-κB levels. Additionally, EGB decreased PM2.5-induced ROS production and increased the protein levels of NRF2 and HO-1, along with genes encoding antioxidant enzymes (catalase, GPx, SOD1), associated with elevated nuclear NRF2 levels. EGB reduced immune cell infiltration and inflammatory cytokine levels in BALF and serum, both of which increased by PM2.5 exposure. EGB also significantly increased alveolar numbers while decreasing the gene expression of MMP1/9/13. Furthermore, EGB suppressed PM2.5-induced bronchial thickening and collagen-1 deposition by downregulating TGF-β1 expression, and alleviated goblet cell hyperplasia and mucin production in lung tissues. These results suggest that EGB effectively reduces PM2.5-induced airway inflammation by suppressing NF-κB and MAPK signaling pathways, lowering pro-inflammatory cytokines, and activating the NRF2-HO-1 signaling pathway to enhance antioxidant enzyme expression. This study highlights the potential of EGB as an edible functional agent for controlling PM-related airway inflammation.
Collapse
Affiliation(s)
- Ye-Lim You
- Department of Food Nutrition, Sangmyung University, Seoul 03016, Republic of Korea
| | - Ha-Jun Byun
- Department of Food Nutrition, Sangmyung University, Seoul 03016, Republic of Korea
| | - Yeok Boo Chang
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Hyeongyeong Kim
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Hyowon Lee
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Hyung Joo Suh
- Department of Integrated Biomedical and Life Science, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Jin-Young Jeon
- BlueBIO CIC, Daesang Corp., Seoul 07789, Republic of Korea
| | - Bo-Ra Kim
- BlueBIO CIC, Daesang Corp., Seoul 07789, Republic of Korea
| | - Ji Eun Hwang
- BlueBIO CIC, Daesang Corp., Seoul 07789, Republic of Korea
| | - Jun Hee Lee
- Health R&D Institute, Daesang Corp., Seoul 07789, Republic of Korea
| | - Hyeon-Son Choi
- Department of Food Nutrition, Sangmyung University, Seoul 03016, Republic of Korea.
| |
Collapse
|
5
|
Kang JY, Ban Y, Shin EC, Kwon JH. Characterization of Euglena gracilis Mutants Generated by Long-Term Serial Treatment with a Low Concentration of Ethyl Methanesulfonate. Microorganisms 2025; 13:370. [PMID: 40005737 PMCID: PMC11858117 DOI: 10.3390/microorganisms13020370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 01/26/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Euglena gracilis is a microalga that has great promise for the production of biofuels, functional foods, and bioactive compounds, and mutagenesis and effective screening methods are required to develop Euglena strains that have industrial use. Ethyl methanesulfonate (EMS) is a widely used mutagen, but is highly lethal to Euglena at typical concentrations. In the present study, low-concentration, long-time EMS exposure combined with serial treatment was introduced for generating Euglena mutants. We then used screening protocols to select cells with altered motility or pigmentation, and isolated two distinct strains of Euglena: Mutant 333 and Mutant 335. Mutant 333 showed increased motility but exhibited a decreased differentiation rate and reduced paramylon content (13.5%), making it unsuitable for industrial applications. However, Mutant 335, which had a deficiency of chlorophyll, had a high paramylon content (31.62%) and a mild and pleasant odor profile due to decreased concentrations of certain volatile compounds, with confirmation by GC-MS analysis. The Mutant 335 strain is suitable for the production of functional food products and renewable jet fuel.
Collapse
Affiliation(s)
- Ji-Yeon Kang
- Division of Applied Life Sciences (BK21), Gyeongsang National University, Jinju 52828, Republic of Korea;
- Department of Food Science & Technology and Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Younglan Ban
- Department of GreenBio Science/Food Science and Technology, Gyeongsang National University, Jinju 52828, Republic of Korea; (Y.B.); (E.-C.S.)
| | - Eui-Cheol Shin
- Department of GreenBio Science/Food Science and Technology, Gyeongsang National University, Jinju 52828, Republic of Korea; (Y.B.); (E.-C.S.)
| | - Jong-Hee Kwon
- Division of Applied Life Sciences (BK21), Gyeongsang National University, Jinju 52828, Republic of Korea;
- Department of Food Science & Technology and Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828, Republic of Korea
| |
Collapse
|
6
|
Ishiguro S, Devader S, Blake C, Glover L, Upreti D, Nakashima A, Suzuki K, Comer J, Tamura M. A combination treatment with a water extract from Euglena gracilis and anti-PD-1 antibody strongly inhibits growth of lung cancer in mice through stimulating tumor-infiltrating lymphocytes. Int Immunopharmacol 2025; 147:113953. [PMID: 39809104 DOI: 10.1016/j.intimp.2024.113953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 01/16/2025]
Abstract
Here, we investigated the relationship between the attenuation of lung cancer growth due to oral administration of Euglena gracilis water extract (EWE) and T cell stimulation. Orally administered EWE was revealed to increase PD-1 and PD-L1 mRNA and proteins primarily in tumor-infiltrating lymphocytes (TILs), which was correlated with a significant decrease in the tumor weights in mice. A combination treatment with EWE and anti-PD-1 antibody significantly decreased the growth of murine lung tumors more than treatment with either alone by increasing the number of TILs and attenuating T cell exhaustion. Short-chain fatty acids, which were previously shown to be increased in intestines of mice treated with oral EWE, increased both PD-1 and PD-L1 expression in splenocytes, but not in lung cancer cells in cell culture. These results suggest there is a close relationship between the EWE-induced increase of short-chain fatty acids, the increase of PD-1 expression in TILs, and the attenuation of lung tumor growth. Furthermore, EWE enhances the efficacy of anti-PD-1 antibody-based immune checkpoint blockade therapy against non-small cell lung cancer.
Collapse
Affiliation(s)
- Susumu Ishiguro
- Department of Anatomy & Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506, USA
| | - Sarah Devader
- Department of Anatomy & Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506, USA
| | - Caden Blake
- Department of Anatomy & Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506, USA
| | - Logan Glover
- Department of Anatomy & Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506, USA
| | - Deepa Upreti
- Department of Anatomy & Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506, USA
| | | | - Kengo Suzuki
- Euglena Co. Ltd., Minato-ku, Tokyo 108-0014, Japan
| | - Jeffrey Comer
- Department of Anatomy & Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506, USA
| | - Masaaki Tamura
- Department of Anatomy & Physiology, Kansas State University College of Veterinary Medicine, Manhattan, KS 66506, USA.
| |
Collapse
|
7
|
Kumar V, Bhoyar MS, Mohanty CS, Chauhan PS, Toppo K, Ratha SK. Untapping the potential of algae for β-glucan production: A review of biological properties, strategies for enhanced production and future perspectives. Carbohydr Polym 2025; 348:122895. [PMID: 39567131 DOI: 10.1016/j.carbpol.2024.122895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/25/2024] [Accepted: 10/17/2024] [Indexed: 11/22/2024]
Abstract
β-Glucan, a naturally occurring polymer of glucose, is found in bacteria, algae, fungi, and higher plants (barley, oats, cereal seeds). Recently, β-glucan has gained attention due to its multiple biological roles, like anticancer, anti-inflammatory, and immunomodulatory effects. Globally, bacteria, mushrooms, yeast and cereals are used as conventional sources of β-glucan. However, obtaining it from these sources is challenging due to low quantity, complex branched structure, and costly extraction process. Algae have emerged as a potential sustainable alternative source of β-glucan to conventional sources due to several advantages including unique structural and functional advantages, higher yields, faster growth rates, and large-scale production in a controlled environment. Additionally, extracting β-glucan from microalgal sources is relatively easy and can be done without altering the structure of β-glucan. Some algal species, such as Euglena spp., are reported to contain higher β-glucan content than conventional β-glucan sources. This review highlights the current research and opportunities associated with algae-derived β-glucan and their biological roles. The challenges, research gaps and strategies to enhance algae-based β-glucan production and the need for further research in this promising area are also discussed. Future research can be extended to comprehend the cellular and molecular mechanisms via which β-glucan functions.
Collapse
Affiliation(s)
- Vijay Kumar
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow - 226001, Uttar Pradesh, India
| | - Manish S Bhoyar
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow - 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad - 201002, India
| | - Chandra S Mohanty
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow - 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad - 201002, India
| | - Puneet S Chauhan
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow - 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad - 201002, India
| | - Kiran Toppo
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow - 226001, Uttar Pradesh, India
| | - Sachitra K Ratha
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow - 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research, Ghaziabad - 201002, India.
| |
Collapse
|
8
|
Zhang WH, Gao JW, Lau CC, Jiang ZF, Yeong YS, Mok WJ, Zhou W. Effects of different trophic conditions on total fatty acids, amino acids, pigment and gene expression profiles in Euglena gracilis. World J Microbiol Biotechnol 2024; 40:325. [PMID: 39294488 DOI: 10.1007/s11274-024-04130-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/03/2024] [Indexed: 09/20/2024]
Abstract
Euglena gracilis is a unique microalga that lacks a cell wall and is able to grow under different trophic culture conditions. In this study, cell growth, biomass production, and changes in the ultrastructure of E. gracilis cells cultivated photoautotrophically, mixotrophically, and under sequential-heterotrophy-photoinduction (SHP) were assessed. Mixotrophy induced the highest cell growth and biomass productivity (6.27 ± 0.59 mg/L/d) in E. gracilis, while the highest content of fatty acids, 2.69 ± 0.04% of dry cell weight (DCW) and amino acids, 38.16 ± 0.08% of DCW was obtained under SHP condition. E. gracilis also accumulated significantly higher saturated fatty acids and lower unsaturated fatty acids when cultivated under SHP condition. Transcriptomic analysis showed that the expression of photosynthetic genes (PsbA, PsbC, F-type ATPase alpha and beta) was lower, carbohydrate and protein synthetic genes (glnA, alg14 and fba) were expressed higher in SHP-culture cells when compared to other groups. Different trophic conditions also induced changes in the cell ultrastructure, where paramylon and starch granules were more abundant in SHP-cultured cells. The findings generated in this study illustrated that aerobic SHP cultivation of E. gracilis possesses great potential in human and animal feed applications.
Collapse
Affiliation(s)
- Wen Hui Zhang
- Tianjin Key Laboratory of Aqua-Ecology & Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin, 300384, China
- Institute of Climate Adaptation and Marine Biotechnology (ICAMB), Universiti Malaysia Terengganu, Mengabang Telipot, Kuala Nerus, 21030, Malaysia
| | - Jin Wei Gao
- Tianjin Key Laboratory of Aqua-Ecology & Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin, 300384, China
| | - Cher Chien Lau
- Institute of Climate Adaptation and Marine Biotechnology (ICAMB), Universiti Malaysia Terengganu, Mengabang Telipot, Kuala Nerus, 21030, Malaysia
| | - Zhi Fei Jiang
- Tianjin Agricultural Ecological Environment Monitoring and Agricultural Product Quality Testing Center, Tianjin, 300193, China
| | - Yik Sung Yeong
- Institute of Climate Adaptation and Marine Biotechnology (ICAMB), Universiti Malaysia Terengganu, Mengabang Telipot, Kuala Nerus, 21030, Malaysia
| | - Wen Jye Mok
- Institute of Climate Adaptation and Marine Biotechnology (ICAMB), Universiti Malaysia Terengganu, Mengabang Telipot, Kuala Nerus, 21030, Malaysia
| | - Wenli Zhou
- Tianjin Key Laboratory of Aqua-Ecology & Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin, 300384, China.
| |
Collapse
|
9
|
Lee HH, Seong JY, Kang H, Cho H. Euglena gracilis Enhances Innate and Adaptive Immunity through Specific Expression of Dectin-1 in CP-Induced Immunosuppressed Mice. Nutrients 2024; 16:3158. [PMID: 39339758 PMCID: PMC11434765 DOI: 10.3390/nu16183158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/13/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Euglena gracilis (E. gracilis), a species of unicellular algae, can accumulate large amounts of β-1,3-glucan paramylon, a polysaccharide, in its cytoplasm and has recently attracted interest as a bioproduct due to its various health benefits. In this study, the immune-enhancing effect of E. gracilis powder (EP) was investigated in vitro and in vivo. METHODS In vitro, the production of NO and cytokines and the mechanism of the signaling pathway of β-1,3-glucan were identified in RAW264.7 cells. In vivo, cyclophosphamide-induced (CP-induced) immunosuppressed C57BL/6 female mice were orally administered with three different concentrations (100, 300, and 600 mg/kg) of EP daily. After 14 days, the organs and whole blood were collected from each animal for further study. RESULTS The weight loss of CP-treated mice was reversed by treatment with EP to levels comparable to those of control mice. In addition, the frequencies of NK1.1+, CD3+, CD4+, CD8+, and B220+ in immune cells isolated from the spleen were increased by EP treatment compared with water or RG. The secretion of TNF-α, IFN-γ, and IL-12 from splenocytes was also increased by EP treatment, as was the level of IgM in the serum of the mice. Finally, EP treatment specifically upregulated the expression of dectin-1 in the liver of CP-treated mice. CONCLUSIONS E. gracilis could be a good candidate for a natural immune stimulator in the innate and adaptive response by secreting TNF-α, IFN-γ, and IL-12 through stimulating dectin-1 expression on the surface of immune cells.
Collapse
Affiliation(s)
- Hwan Hee Lee
- College of Pharmacy, Duksung Women's University, Seoul 01369, Republic of Korea
- Duksung Innovative Drug Center, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Ji-Yeon Seong
- Duksung Innovative Drug Center, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Hyojeung Kang
- Vessel-Organ Interaction Research Center, VOICE (MRC), Cancer Research Institute, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hyosun Cho
- College of Pharmacy, Duksung Women's University, Seoul 01369, Republic of Korea
- Duksung Innovative Drug Center, Duksung Women's University, Seoul 01369, Republic of Korea
| |
Collapse
|
10
|
Cagney MH, O'Neill EC. Strategies for producing high value small molecules in microalgae. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108942. [PMID: 39024780 DOI: 10.1016/j.plaphy.2024.108942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/11/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Eukaryotic microalgae are a diverse group of organisms that can be used for the sustainable production of a wide range of high value compounds, including lipids, flavours and dyes, bioplastics, and cosmetics. Optimising total biomass production often does not lead to optimal product yield and more sophisticated biphasic growth strategies are needed, introducing specific stresses to induce product synthesis. Genetic tools have been used to increase yields of natural products or to introduce new pathways to algae, and wider deployment of these tools offers promising routes for commercial production of high value compounds utilising minimal inputs.
Collapse
Affiliation(s)
- Michael H Cagney
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK; Biodiscovery Institute, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Ellis C O'Neill
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK; Biodiscovery Institute, University of Nottingham, University Park, Nottingham, NG7 2RD, UK.
| |
Collapse
|
11
|
Bedard S, Roxborough E, O'Neill E, Mangal V. The biomolecules of Euglena gracilis: Harnessing biology for natural solutions to future problems. Protist 2024; 175:126044. [PMID: 38823247 DOI: 10.1016/j.protis.2024.126044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 02/05/2024] [Accepted: 05/16/2024] [Indexed: 06/03/2024]
Abstract
Over the past decade, the autotrophic and heterotrophic protist Euglena gracilis (E. gracilis) has gained popularity across the studies of environmental science, biosynthesis experiments, and nutritional substitutes. The unique physiology and versatile metabolism of E. gracilis have been a recent topic of interest to many researchers who continue to understand the complexity and possibilities of using E. gracilis biomolecule production. In this review, we present a comprehensive representation of recent literature outlining the various uses of biomolecules derived from E. gracilis across the fields of natural product biosynthesis, as a nutritional substitute, and as bioremediation tools. In addition, we highlight effective strategies for altering metabolite production using abiotic stressors and growth conditions. To better understand metabolite biosynthesis and its role in E. gracilis, integrated studies involving genomics, metabolomics, and proteomics should be considered. Together, we show how the ongoing advancements in E. gracilis related research continue to broaden applications in the biosynthetic sector and highlight future works that would strengthen our understanding of overall Euglena metabolism.
Collapse
Affiliation(s)
- S Bedard
- Department of Chemistry, Brock University. 1812 Sir Isaac Brock Way, St. Catherines, Ontario L2S 3A1, Canada
| | - E Roxborough
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - E O'Neill
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - V Mangal
- Department of Chemistry, Brock University. 1812 Sir Isaac Brock Way, St. Catherines, Ontario L2S 3A1, Canada.
| |
Collapse
|
12
|
Chen Z, Dong Y, Duan S, He J, Qin H, Bian C, Chen Z, Liu C, Zheng C, Du M, Yao R, Li C, Jiang P, Wang Y, Li S, Xie N, Xu Y, Shi Q, Hu Z, Lei A, Zhao L, Wang J. A chromosome-level genome assembly for the paramylon-producing microalga Euglena gracilis. Sci Data 2024; 11:780. [PMID: 39013888 PMCID: PMC11252322 DOI: 10.1038/s41597-024-03404-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/22/2024] [Indexed: 07/18/2024] Open
Abstract
Euglena gracilis (E. gracilis), pivotal in the study of photosynthesis, endosymbiosis, and chloroplast development, is also an industrial microalga for paramylon production. Despite its importance, E. gracilis genome exploration faces challenges due to its intricate nature. In this study, we achieved a chromosome-level de novo assembly (2.37 Gb) using Illumina, PacBio, Bionano, and Hi-C data. The assembly exhibited a contig N50 of 619 Kb and scaffold N50 of 1.12 Mb, indicating superior continuity. Approximately 99.83% of the genome was anchored to 46 chromosomes, revealing structural insights. Repetitive elements constituted 58.84% of the sequences. Functional annotations were assigned to 39,362 proteins, enhancing interpretative power. BUSCO analysis confirmed assembly completeness at 80.39%. This first high-quality E. gracilis genome offers insights for genetics and genomics studies, overcoming previous limitations. The impact extends to academic and industrial research, providing a foundational resource.
Collapse
Affiliation(s)
- Zixi Chen
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Yang Dong
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming, 650201, China
| | - Shengchang Duan
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China
- Yunnan Research Institute for Local Plateau Agriculture and Industry, Kunming, 650201, China
| | - Jiayi He
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Huan Qin
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Chao Bian
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Zhenfan Chen
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Chenchen Liu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Chao Zheng
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Ming Du
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Rao Yao
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Chao Li
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Panpan Jiang
- Shenzhen Rare Disease Engineering Research Center of Metabolomics in Precision Medicine, Shenzhen Aone Medical Laboratory Co, Ltd, Shenzhen, 518000, China
| | - Yun Wang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Shuangfei Li
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Ning Xie
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Ying Xu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Qiong Shi
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Zhangli Hu
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Anping Lei
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Liqing Zhao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Jiangxin Wang
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
13
|
Zhu L, Liu M, Wang Y, Zhu Z, Zhao X. Euglena gracilis Protein: Effects of Different Acidic and Alkaline Environments on Structural Characteristics and Functional Properties. Foods 2024; 13:2050. [PMID: 38998555 PMCID: PMC11240951 DOI: 10.3390/foods13132050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/19/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
Due to the growing demand for human-edible protein sources, microalgae are recognized as an economically viable alternative source of proteins. The investigation into the structural characteristics and functional properties of microalgin is highly significant for its potential application in the food industry as an alternative source of protein. In this research, we extracted protein from Euglena gracilis by using alkaline extraction and acid precipitation and investigated its structural characteristics and functional properties in different acidic and alkaline environments. The molecular weight distribution of Euglena gracilis protein (EGP), as revealed by the size exclusion chromatography results, ranges from 152 to 5.7 kDa. EGP was found to be rich in hydrophobic amino acids and essential amino acids. Fourier infrared analysis revealed that EGP exhibited higher α-helix structure content and lower β-sheet structure content in alkaline environments compared with acidic ones. EGP exhibited higher foaming properties, emulsifying activity index, solubility, free sulfhydryl, and total sulfhydryl in pH environments far from its isoelectric point, and lower fluorescence intensity (2325 A.U.), lower surface hydrophobicity, larger average particle size (25.13 µm), higher emulsifying stability index, and water-holding capacity in pH environments near its isoelectric point. In addition, X-ray diffraction (XRD) patterns indicated that different acidic and alkaline environments lead to reductions in the crystal size and crystallinity of EGP. EGP exhibited high denaturation temperature (Td; 99.32 °C) and high enthalpy (ΔH; 146.33 J/g) at pH 11.0, as shown by the differential scanning calorimetry (DSC) results. The findings from our studies on EGP in different acidic and alkaline environments provide a data basis for its potential commercial utilization as a food ingredient in products such as emulsions, gels, and foams.
Collapse
Affiliation(s)
- Laijing Zhu
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Meng Liu
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Yanli Wang
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Zhunyao Zhu
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xiangzhong Zhao
- School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
14
|
Gumińska N, Hałakuc P, Zakryś B, Milanowski R. Circular extrachromosomal DNA in Euglena gracilis under normal and stress conditions. Protist 2024; 175:126033. [PMID: 38574508 DOI: 10.1016/j.protis.2024.126033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/10/2024] [Accepted: 03/27/2024] [Indexed: 04/06/2024]
Abstract
Extrachromosomal circular DNA (eccDNA) enhances genomic plasticity, augmenting its coding and regulatory potential. Advances in high-throughput sequencing have enabled the investigation of these structural variants. Although eccDNAs have been investigated in numerous taxa, they remained understudied in euglenids. Therefore, we examined eccDNAs predicted from Illumina sequencing data of Euglena gracilis Z SAG 1224-5/25, grown under optimal photoperiod and exposed to UV irradiation. We identified approximately 1000 unique eccDNA candidates, about 20% of which were shared across conditions. We also observed a significant enrichment of mitochondrially encoded eccDNA in the UV-irradiated sample. Furthermore, we found that the heterogeneity of eccDNA was reduced in UV-exposed samples compared to cells that were grown in optimal conditions. Hence, eccDNA appears to play a role in the response to oxidative stress in Euglena, as it does in other studied organisms. In addition to contributing to the understanding of Euglena genomes, our results contribute to the validation of bioinformatics pipelines on a large, non-model genome.
Collapse
Affiliation(s)
- Natalia Gumińska
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, 101 Żwirki i Wigury Street, 02-089 Warsaw, Poland; Laboratory of RNA Biology, International Institute of Molecular and Cell Biology in Warsaw, 4 Ks. Trojdena Street, 02-109 Warsaw, Poland.
| | - Paweł Hałakuc
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, 101 Żwirki i Wigury Street, 02-089 Warsaw, Poland
| | - Bożena Zakryś
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, 101 Żwirki i Wigury Street, 02-089 Warsaw, Poland
| | - Rafał Milanowski
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, 101 Żwirki i Wigury Street, 02-089 Warsaw, Poland.
| |
Collapse
|
15
|
Farjallah A, Fillion M, Guéguen C. Metabolic responses of Euglena gracilis under photoheterotrophic and heterotrophic conditions. Protist 2024; 175:126035. [PMID: 38688055 DOI: 10.1016/j.protis.2024.126035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 03/19/2024] [Accepted: 04/15/2024] [Indexed: 05/02/2024]
Abstract
The protist Euglena gracilis has various trophic modes including heterotrophy and photoheterotrophy. To investigate how cultivation mode influences metabolic regulation, the chemical composition of cellular metabolites of Euglena gracilis grown under heterotrophic and photoheterotrophic conditions was monitored from the early exponential phase to the mid-stationary phase using two different techniques, i.e, nuclear magnetic resonance (NMR) spectroscopy and high-resolution mass spectrometry (HRMS). The combined metabolomics approach allowed an in-depth understanding of the mechanism of photoheterotrophic and heterotrophic growth for biomolecule production. Heterotrophic conditions promoted the production of polar amino and oxygenated compounds such as proteins and polyphenol compounds, especially at the end of the exponential phase while photoheterotrophic cells enhanced the production of organoheterocyclic compounds, carbohydrates, and alkaloids.
Collapse
Affiliation(s)
- Asma Farjallah
- Département de Chimie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Matthieu Fillion
- Département de Chimie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Céline Guéguen
- Département de Chimie, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
16
|
Kennedy V, Kaszecki E, Donaldson ME, Saville BJ. The impact of elevated sulfur and nitrogen levels on cadmium tolerance in Euglena species. Sci Rep 2024; 14:11734. [PMID: 38777815 PMCID: PMC11111685 DOI: 10.1038/s41598-024-61964-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
Heavy metal (HM) pollution threatens human and ecosystem health. Current methods for remediating water contaminated with HMs are expensive and have limited effect. Therefore, bioremediation is being investigated as an environmentally and economically viable alternative. Freshwater protists Euglena gracilis and Euglena mutabilis were investigated for their tolerance to cadmium (Cd). A greater increase in cell numbers under Cd stress was noted for E. mutabilis but only E. gracilis showed an increase in Cd tolerance following pre-treatment with elevated concentrations of S or N. To gain insight regarding the nature of the increased tolerance RNA-sequencing was carried out on E. gracilis. This revealed transcript level changes among pretreated cells, and additional differences among cells exposed to CdCl2. Gene ontology (GO) enrichment analysis reflected changes in S and N metabolism, transmembrane transport, stress response, and physiological processes related to metal binding. Identifying these changes enhances our understanding of how these organisms adapt to HM polluted environments and allows us to target development of future pre-treatments to enhance the use of E. gracilis in bioremediation relating to heavy metals.
Collapse
Affiliation(s)
- Victoria Kennedy
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada
| | - Emma Kaszecki
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada
| | - Michael E Donaldson
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada
- Forensic Science Department, Trent University, Peterborough, ON, Canada
| | - Barry J Saville
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada.
- Forensic Science Department, Trent University, Peterborough, ON, Canada.
| |
Collapse
|
17
|
Chen X, Liu S, Shen M, Shi J, Wu C, Song Z, Zhao Y. Dielectrophoretic characterization and selection of non-spherical flagellate algae in parallel channels with right-angle bipolar electrodes. LAB ON A CHIP 2024; 24:2506-2517. [PMID: 38619815 DOI: 10.1039/d4lc00165f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Non-spherical flagellate algae play an increasingly significant role in handling problematic issues as versatile biological micro/nanorobots and resources of valuable bioproducts. However, the commensalism of flagellate algae with distinct structures and constituents causes considerable difficulties in their further biological utilization. Therefore, it is imperative to develop a novel method to realize high-efficiency selection of non-spherical flagellate algae in a non-invasive manner. Enthused by these, we proposed a novel method to accomplish the selection of flagellate algae based on the numerical and experimental investigation of dielectrophoretic characterizations of flagellate algae. Firstly, an arbitrary Lagrangian-Eulerian method was utilized to study the electro-orientation and dielectrophoretic assembly process of spindle-shaped and ellipsoid-shaped cells in a uniform electric field. Secondly, we studied the equilibrium state of spherical, ellipsoid-shaped, and spindle-shaped cells under positive DEP forces actuated by right-angle bipolar electrodes. Thirdly, we investigated the dielectrophoretic assembly and escape processes of the non-spherical flagellate algae in continuous flow to explore their influences on the selection. Fourthly, freshwater flagellate algae (Euglena, H. pluvialis, and C. reinhardtii) and marine ones (Euglena, Dunaliella salina, and Platymonas) were separated to validate the feasibility and adaptability of this method. Finally, this approach was engineered in the selection of Euglena cells with high viability and motility. This method presents immense prospects in the selection of pure non-spherical flagellate algae with high motility for chronic wound healing, bio-micromotor construction, and decontamination with advantages of no sheath, strong reliability, and shape-insensitivity.
Collapse
Affiliation(s)
- Xiaoming Chen
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China.
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, 066004, PR China.
| | - Shun Liu
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China.
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, 066004, PR China.
| | - Mo Shen
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China.
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, 066004, PR China.
| | - Jishun Shi
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China.
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, 066004, PR China.
| | - Chungang Wu
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China.
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, 066004, PR China.
| | - Zhipeng Song
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China.
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, 066004, PR China.
| | - Yong Zhao
- School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, PR China.
- Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, 066004, PR China.
| |
Collapse
|
18
|
Jo SH, Jo KA, Park SY, Kim JY. Unveiling Immunomodulatory Effects of Euglena gracilis in Immunosuppressed Mice: Transcriptome and Pathway Analysis. J Microbiol Biotechnol 2024; 34:880-890. [PMID: 38379288 DOI: 10.4014/jmb.2401.01006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/31/2024] [Accepted: 02/03/2024] [Indexed: 02/22/2024]
Abstract
The immunomodulatory effects of Euglena gracilis (Euglena) and its bioactive component, β-1,3-glucan (paramylon), have been clarified through various studies. However, the detailed mechanisms of the immune regulation remain to be elucidated. This study was designed not only to investigate the immunomodulatory effects but also to determine the genetic mechanisms of Euglena and β-glucan in cyclophosphamide (CCP)-induced immunosuppressed mice. The animals were orally administered saline, Euglena (800 mg/kg B.W.) or β-glucan (400 mg/kg B.W.) for 19 days, and CCP (80 mg/kg B.W.) was subsequently administered to induce immunosuppression in the mice. The mice exhibited significant decreases in body weight, organ weight, and the spleen index. However, there were significant improvements in the spleen weight and the spleen index in CCP-induced mice after the oral administration of Euglena and β-glucan. Transcriptome analysis of the splenocytes revealed immune-related differentially expressed genes (DEGs) regulated in the Euglena- and β-glucantreated groups. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses indicated that pathways related with interleukin (IL)-17 and cAMP play significant roles in regulating T cells, B cells, and inflammatory cytokines. Additionally, Ptgs2, a major inflammatory factor, was exclusively expressed in the Euglena-treated group, suggesting that Euglena's beneficial components, such as carotenoids, could regulate these genes by influencing immune lymphocytes and inflammatory cytokines in CCP-induced mice. This study validated the immunomodulatory effects of Euglena and highlighted its underlying mechanisms, suggesting a positive contribution to the determination of phenotypes associated with immune-related diseases and the research and development of immunotherapies.
Collapse
Affiliation(s)
- Seon Ha Jo
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Kyeong Ah Jo
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Soo-Yeon Park
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Ji Yeon Kim
- Department of Food Science and Biotechnology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
- Department of Nano Bio Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| |
Collapse
|
19
|
Yu J, Fang L, Kim S, Kim K, Kim M, Lee T. Valorization of fruit and vegetable byproducts for the beta-glucan production from Euglena gracilis. BIORESOURCE TECHNOLOGY 2024; 394:130213. [PMID: 38113951 DOI: 10.1016/j.biortech.2023.130213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/06/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
Five fruit and vegetable byproducts were evaluated as carbon sources and media for beta-glucan production from Euglena gracilis. Orange peel showed the highest beta-glucan concentration (6.5 g/L) and productivity (1.9 g/L/day) when used as a medium. However, when employed as carbon sources, apple pomace showed the highest beta-glucan concentration (10.6 g/L) and productivity (3.5 g/L/day). The appropriate chemical oxygen demand/nitrogen ratio (71.1) and favorable carbon sources of apple contributed to beta-glucan production. Increasing sugar concentrations in apple pomace and orange peel from 10 to 30 g/L raised the beta-glucan concentration to 11.6 g/L. Using apple pomace and orange peel individually proved more effective than mixing them for beta-glucan production. Therefore, apple as a carbon source is the most effective fruit and vegetables byproduct for beta-glucan production. This is expected to reduce the cost of E. gracilis cultivation on a large-scale and contribute to the circular economy.
Collapse
Affiliation(s)
- Jaecheul Yu
- Department of Energy and Environment, Korea Polytechnic, Changwon 51518, Republic of Korea
| | - Liu Fang
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Sunah Kim
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea; Daesang Co., Seoul 07789, Republic of Korea
| | - Keunho Kim
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Minjeong Kim
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Taeho Lee
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
20
|
Chiba H, Manabe N, Naito J, Nishida N, Ohno N, Yamaguchi Y. A convenient assay for soluble Dectin-1 lectin domain binding to insoluble β-glucans. Carbohydr Res 2024; 536:109041. [PMID: 38262208 DOI: 10.1016/j.carres.2024.109041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/22/2023] [Accepted: 01/15/2024] [Indexed: 01/25/2024]
Abstract
β-Glucan is a homopolymer with a backbone of β-1,3-linked glucose residues. The solubility and biological activity of β-glucan can be influenced by the length of the backbone and the length/interval of the β-1,6 branches. Dectin-1 is crucial in innate immunity through its binding to exogenous β-glucans. However, there are few quantitative binding affinities available and there is no comprehensive comparative analysis of the binding of Dectin-1 to insoluble β-glucans. Here, we have developed a simple binding assay for the interaction between Dectin-1 lectin domain (Dectin-1 CTLD) and insoluble β-glucans. We utilized the paramylon particle as a model of insoluble β-glucans. Dectin-1 CTLD bound to paramylon (particle size 3.1 μm) was separated from unbound Dectin-1 CTLD by centrifugation using a membrane filter (pore size 0.2 μm). The protein in the filtrate was quantified by SDS-PAGE and densitometry. The amount decreased in proportion to the amount of paramylon in the mixture. A control experiment using the Dectin-1 CTLD inactive mutant W221A showed that the mutant passes through the filter without binding paramylon. These results are evidence of site-specific binding of Dectin-1 CTLD to paramylon and demonstrate that the separation of paramylon-bound/unbound Dectin-1 CTLD is achievable through centrifugation using a filter. The assay was extended to other insoluble β-glucans including curdlan. Additionally, it can be utilized in competitive inhibition experiments with soluble short-chain β-glucans such as laminarin. The assay system allows for quantitative comparison of the affinities between insoluble and soluble β-glucans and Dectin-1 CTLD, and should be useful because of its low-tech convenience.
Collapse
Affiliation(s)
- Hanako Chiba
- Division of Structural Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Noriyoshi Manabe
- Division of Structural Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan
| | - Junko Naito
- Kobelco Eco-Solutions Co., Ltd., 1-1-4 Murotani, Nishi-ku, Kobe, Hyogo, 651-2241, Japan
| | - Norihisa Nishida
- Kobelco Eco-Solutions Co., Ltd., 1-1-4 Murotani, Nishi-ku, Kobe, Hyogo, 651-2241, Japan
| | - Naohito Ohno
- Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Yoshiki Yamaguchi
- Division of Structural Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi, 981-8558, Japan.
| |
Collapse
|
21
|
Isegawa Y. Activation of Immune and Antiviral Effects by Euglena Extracts: A Review. Foods 2023; 12:4438. [PMID: 38137241 PMCID: PMC10743201 DOI: 10.3390/foods12244438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/20/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Influenza is an acute respiratory illness caused by influenza virus infection, which is managed using vaccines and antiviral drugs. Recently, the antiviral effects of plants and foods have gained attention. Euglena is a motile unicellular alga and eukaryotic photosynthetic microorganism. It has secondary chloroplasts and is a mixotroph able to feed by photosynthesis or phagocytosis. This review summarizes the influenza treatment effects of Euglena from the perspective of a functional food that is attracting attention. While it has been reported that Euglena contributes to suppressing blood sugar levels and ameliorates symptoms caused by stress by acting on the autonomic nervous system, the immunostimulatory and antiviral activities of Euglena have also been reported. In this review, I focused on the immunostimulation of antiviral activity via the intestinal environment and the suppression of viral replication in infected cells. The functions of specific components of Euglena, which also serves as the source of a wide range of nutrients such as vitamins, minerals, amino acids, unsaturated fatty acids, and β-1,3-glucan (paramylon), are also reviewed. Euglena has animal and plant properties and natural compounds with a wide range of functions, providing crucial information for improved antiviral strategies.
Collapse
Affiliation(s)
- Yuji Isegawa
- Department of Applied Biological Chemistry, Graduate School of Agriculture, Osaka Metropolitan University, Sakai, Osaka 599-8531, Japan
| |
Collapse
|
22
|
Palol VV, Saravanan SK, Vuree S, Chinnadurai RK, Subramanyam V. Nanophytosome formulation of β-1,3-glucan and Euglena gracilis extract for drug delivery applications. MethodsX 2023; 11:102480. [PMID: 38098771 PMCID: PMC10719576 DOI: 10.1016/j.mex.2023.102480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 11/08/2023] [Indexed: 12/17/2023] Open
Abstract
Euglena gracilis (EG) is a unicellular freshwater alga known for its high β-1,3-glucan (BG) content with well-known biological properties and immune response. The high molecular weight structure of BG traditionally poses a challenge in terms of its size and absorption. Therefore, the aim of this study was to develop a novel drug delivery mechanism of BG and EG to nanophytosomes (NPs) by converting the heavy molecular weight of BG and EG into lipid phosphatidylcholine (PC), which plays an important role in improving their bioavailability and entrapment in captivity. The BG and EG NPs were developed by the solvent evaporation method while varying time and temperature to optimize their drug delivery ability. The size of BG-PC and EG-PC obtained by the Dynamic Light Scattering (DLS) method was 134.62 and 158.38 nm, respectively. Chemical (Fourier Transform Infra-Red) and structural (X-Ray Diffraction) characterization of NPs improved the binding capacity and the amorphous nature of both NPs. The shape of the NPs by Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM) revealed their spherical, vesicular nature. The encapsulation efficiency of BG-PC and EG-PC was 82 ± 1.62 % and 87 ± 3.22 %, respectively, which improves the bioavailability. The developed methodology has thus proven effective in synthesizing BG-PC and EG-PC, which may be useful as NP drug delivery carriers. Future research could demonstrate the safety and effectiveness of long-term storage conditions for medical and pharmaceutical applications.•Nanophytosomes are tailored in size, shape and composition to optimize the delivery of phytochemicals/phytocompounds through nanoscale size and surface modification for better physiological absorption.•Nanophytosomes increase the stability of phytochemicals/phytocompounds and protect them from degradation due to heat or chemical reactions, leading to longer shelf life and improved therapeutic efficacy.•In this method, optimal conditions were created for the formation of β-1,3-glucan and Euglena gracilis extract nanophytosomes for successful development of drug delivery system that can effectively deliver bioactive compounds.
Collapse
Affiliation(s)
- Varsha Virendra Palol
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to-be University), Pillayarkuppam, Puducherry 607402, India
| | - Suresh Kumar Saravanan
- Mahatma Gandhi Medical Preclinical Research Centre (MGMPRC), Sri Balaji Vidyapeeth (Deemed to-be University), Pillayarkuppam, Puducherry 607402, India
| | - Sugunakar Vuree
- MNR Foundation for Research and Innovation, MNR Medical College and Hospital, MNR Nagar, Fasalwadi, Narsapur Road, Sangareddy 502294, India
| | - Raj Kumar Chinnadurai
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to-be University), Pillayarkuppam, Puducherry 607402, India
| | - Veni Subramanyam
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to-be University), Pillayarkuppam, Puducherry 607402, India
| |
Collapse
|
23
|
Rawindran H, Lim JW, Lam MK, Supramaniam U, Tong WY, Ng HS, Shahid MK, Lin C, Usman A, Samdani MS. Assessing Microalgal Protein's Impact on Environment and Energy Footprint via Life Cycle Analysis. Mol Biotechnol 2023:10.1007/s12033-023-00955-0. [PMID: 37964101 DOI: 10.1007/s12033-023-00955-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023]
Abstract
Conventionally, increasing the yield of microalgal biomass has been the primary focus of research, while the significant protein reserve within this biomass has remained largely unexplored. This protein reserve possesses substantial value and versatility, offering a wide range of prospective applications and presenting an enticing chance for innovation and value enhancement for various sectors. Current study employed an innovative research approach that focused solely on the LCA of protein production potential from microalgal biomass, a lesser-explored aspects within this domain. Most environmental impact categories were shown to be significantly affected by cultivation phase because of the electrical obligation, followed by the harvesting and protein extraction phase. Still, the environmental aspect was seen to yield a minimal impact on global warming potential, i.e., 4 × 10-3 kg CO2, underscoring the ecologically favorable nature of the process. Conversely, the overall energy impact was seen to intensify with NEB of - 39.33 MJ and NER of 0.49, drawing attention to the importance of addressing the energy aspect to harness the full potential of microalgal protein production.
Collapse
Affiliation(s)
- Hemamalini Rawindran
- Department of Chemistry, Faculty of Science, Centre for Sustainable Nanomaterials, Ibnu Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia.
| | - Jun Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia.
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, India.
| | - Man Kee Lam
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Uganeeswary Supramaniam
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Woei-Yenn Tong
- Universiti Kuala Lumpur, Institute of Medical Science Technology, A1-1, Jalan TKS 1, Taman Kajang Sentral, 43000, Kajang, Selangor, Malaysia.
| | - Hui-Suan Ng
- Centre for Research and Graduate Studies, University of Cyberjaya, Persiaran Bestari, 63000, Cyberjaya, Selangor, Malaysia
| | - Muhammad Kashif Shahid
- Research Institute of Environment & Biosystem, Chungnam National University, Yuseonggu, Daejeon, 34134, Republic of Korea
| | - Chuxia Lin
- Centre for Regional and Rural Futures, Faculty of Science, Engineering and Built Environment, Deakin University, Burwood, VIC, 3125, Australia
| | - Anwar Usman
- Department of Chemistry, Faculty of Science, Universiti Brunei Darussalam, Gadong, BE1410, Brunei
| | | |
Collapse
|
24
|
Park SY, Kim KJ, Jo SM, Jeon JY, Kim BR, Hwang JE, Kim JY. Euglena gracilis (Euglena) powder supplementation enhanced immune function through natural killer cell activity in apparently healthy participants: A randomized, double-blind, placebo-controlled trial. Nutr Res 2023; 119:90-97. [PMID: 37769481 DOI: 10.1016/j.nutres.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 10/03/2023]
Abstract
Euglena gracilis (Euglena) is a microalgae found in most freshwater environments that produces paramylon, an insoluble β-1,3-glucan linked to human immunity. We hypothesized that Euglena powder has effects on immune function in apparently healthy adults. The study included male or female volunteers between the ages of 20 and 70 years who had white blood cell counts ranging from 4 × 103/µL to 10 × 103/µL, a "severe" rating on the stress questionnaire from the Korea National Health and Nutrition Examination Survey, and at least 2 upper respiratory infections with cold-like symptoms in the previous year. Participants received either a placebo or 700 mg of Euglena powder daily for 8 weeks. The study measured natural killer cell activity, cytokine concentrations, and blood lipid profiles to confirm the immune effect of Euglena consumption. In conclusion, Euglena improved immunological function through natural killer cell activity. Safety assessment showed no significant changes in vital signs or clinical chemistry indicators, and there were no adverse events associated with Euglena consumption. Euglena supplementation may help boost the immune systems of healthy individuals.
Collapse
Affiliation(s)
- Soo-Yeon Park
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
| | - Kyeong Jin Kim
- Department of Nano Bio Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
| | - So Min Jo
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea
| | - Jin-Young Jeon
- BIO R&D Center, Daesang Corp., Seoul, 07789, Republic of Korea
| | - Bo-Ra Kim
- BIO R&D Center, Daesang Corp., Seoul, 07789, Republic of Korea
| | - Ji Eun Hwang
- BIO R&D Center, Daesang Corp., Seoul, 07789, Republic of Korea
| | - Ji Yeon Kim
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea; Department of Nano Bio Engineering, Seoul National University of Science and Technology, Seoul, 01811, Republic of Korea.
| |
Collapse
|
25
|
Wu JY, Tso R, Teo HS, Haldar S. The utility of algae as sources of high value nutritional ingredients, particularly for alternative/complementary proteins to improve human health. Front Nutr 2023; 10:1277343. [PMID: 37904788 PMCID: PMC10613476 DOI: 10.3389/fnut.2023.1277343] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 09/15/2023] [Indexed: 11/01/2023] Open
Abstract
As the global population continues to grow, the demand for dietary protein is rapidly increasing, necessitating the exploration of sustainable and nutritious protein sources. Algae has emerged as a promising food source due to their high value ingredients such as proteins, as well as for their environmental sustainability and abundance. However, knowledge gaps surrounding dietary recommendations and food applications restrict algae's utilization as a viable protein source. This review aims to address these gaps by assessing the suitability of both microalgae and macroalgae as alternative/complementary protein sources and exploring their potential applications in food products. The first section examines the potential suitability of algae as a major food source by analyzing the composition and bioavailability of key components in algal biomass, including proteins, lipids, dietary fiber, and micronutrients. Secondly, the biological effects of algae, particularly their impact on metabolic health are investigated with an emphasis on available clinical evidence. While evidence reveals protective effects of algae on glucose and lipid homeostasis as well as anti-inflammatory properties, further research is required to understand the longer-term impact of consuming algal protein, protein isolates, and concentrates on metabolic health, including protein metabolism. The review then explores the potential of algal proteins in food applications, including ways to overcome their sensory limitations, such as their dark pigmentation, taste, and odor, in order to improve consumer acceptance. To maximize algae's potential as a valuable protein source in the food sector, future research should prioritize the production of more acceptable algal biomass and explore new advances in food sciences and technology for improved consumer acceptance. Overall, this paper supports the potential utility of algae as a sustainable and healthy ingredient source for widespread use in future food production.
Collapse
Affiliation(s)
- Jia Yee Wu
- Clinical Nutrition Research Centre, Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Rachel Tso
- Clinical Nutrition Research Centre, Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Hwee Sze Teo
- Clinical Nutrition Research Centre, Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Sumanto Haldar
- Clinical Nutrition Research Centre, Singapore Institute of Food and Biotechnology Innovation, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Faculty of Health and Social Sciences, Bournemouth University, Bournemouth, United Kingdom
| |
Collapse
|
26
|
Xie W, Li X, Xu H, Chen F, Cheng KW, Liu H, Liu B. Optimization of Heterotrophic Culture Conditions for the Microalgae Euglena gracilis to Produce Proteins. Mar Drugs 2023; 21:519. [PMID: 37888454 PMCID: PMC10608195 DOI: 10.3390/md21100519] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023] Open
Abstract
Euglena gracilis is one of the few permitted edible microalgae. Considering consumer acceptance, E. gracilis grown heterotrophically with yellow appearances have wider food industrial applications such as producing meat analogs than green cells. However, there is much room to improve the protein content of heterotrophic culture cells. In this study, the effects of nitrogen sources, temperature, initial pH, and C/N ratios on the protein production of E. gracilis were evaluated under heterotrophic cultivation. These results indicated that ammonium sulfate was the optimal nitrogen source for protein production. The protein content of E. gracilis cultured by ammonium sulfate increased by 113% and 44.7% compared with that cultured by yeast extract and monosodium glutamate, respectively. The manipulation of the low C/N ratio further improved E. gracilis protein content to 66.10% (w/w), which was 1.6-fold of that in the C/N = 25 group. Additionally, amino acid analysis revealed that the nitrogen-to-protein conversion factor (NTP) could be affected by nitrogen sources. A superior essential amino acid index (EAAI) of 1.62 and a balanced amino acid profile further confirmed the high nutritional value of E. gracilis protein fed by ammonium sulfate. This study highlighted the vast potency of heterotrophic cultured E. gracilis as an alternative dietary protein source.
Collapse
Affiliation(s)
- Weiying Xie
- SZU-HKUST Joint Ph.D. Program in Marine Environmental Science, Shenzhen University, Shenzhen 518060, China (H.X.)
- Shenzhen Key Laboratory of Food Nutrition and Health, Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen518060, China
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Xiaojie Li
- Shenzhen Key Laboratory of Food Nutrition and Health, Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen518060, China
| | - Huo Xu
- SZU-HKUST Joint Ph.D. Program in Marine Environmental Science, Shenzhen University, Shenzhen 518060, China (H.X.)
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Feng Chen
- Shenzhen Key Laboratory of Food Nutrition and Health, Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen518060, China
| | - Ka-Wing Cheng
- Shenzhen Key Laboratory of Food Nutrition and Health, Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen518060, China
| | - Hongbin Liu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
- Hong Kong Branch of Southern Marine Science & Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Bin Liu
- Shenzhen Key Laboratory of Food Nutrition and Health, Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
- Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen518060, China
| |
Collapse
|
27
|
Huang Y, Wan X, Zhao Z, Liu H, Wen Y, Wu W, Ge X, Zhao C. Metabolomic analysis and pathway profiling of paramylon production in Euglena gracilis grown on different carbon sources. Int J Biol Macromol 2023; 246:125661. [PMID: 37399871 DOI: 10.1016/j.ijbiomac.2023.125661] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/18/2023] [Accepted: 06/30/2023] [Indexed: 07/05/2023]
Abstract
Paramylon (β-1,3-glucan) produced by Euglena gracilis displays antioxidant, antitumor, and hypolipidaemic functions. The biological properties of paramylon production by E. gracilis can be understood by elucidating the metabolic changes within the algae. In this study, the carbon sources in AF-6 medium were replaced with glucose, sodium acetate, glycerol, or ethanol, and the paramylon yield was measured. Adding 0.1260 g/L glucose to the culture medium resulted in the highest paramylon yield of 70.48 %. The changes in metabolic pathways in E. gracilis grown on glucose were assessed via non-targeted metabolomics analysis using ultra-high-performance liquid chromatography coupled to high-resolution quadrupole-Orbitrap mass spectrometry. We found that glucose, as a carbon source, regulated some differentially expressed metabolites, including l-glutamic acid, γ-aminobutyric acid (GABA), and l-aspartic acid. Pathway analysis using the Kyoto Encyclopedia of Genes and Genomes further showed that glucose regulated the carbon and nitrogen balance through the GABA shunt, which enhanced photosynthesis, regulated the flux of carbon and nitrogen into the tricarboxylic acid cycle, promoted glucose uptake, and increased the accumulation of paramylon. This study provides new insights into E. gracilis metabolism during paramylon synthesis.
Collapse
Affiliation(s)
- Yajun Huang
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xuzhi Wan
- Department of Food Science and Nutrition, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Zexu Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hanqi Liu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuxi Wen
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, 32004 Ourense, Spain
| | - Weihao Wu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaodong Ge
- College of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, China
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
28
|
Lukáčová A, Lihanová D, Beck T, Alberty R, Vešelényiová D, Krajčovič J, Vesteg M. The Influence of Phenol on the Growth, Morphology and Cell Division of Euglena gracilis. Life (Basel) 2023; 13:1734. [PMID: 37629591 PMCID: PMC10455851 DOI: 10.3390/life13081734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/28/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Phenol, a monocyclic aromatic hydrocarbon with various commercial uses, is a major pollutant in industrial wastewater. Euglena gracilis is a unicellular freshwater flagellate possessing secondary chloroplasts of green algal origin. This protist has been widely used for monitoring the biological effect of various inorganic and organic environmental pollutants, including aromatic hydrocarbons. In this study, we evaluate the influence of different phenol concentrations (3.39 mM, 3.81 mM, 4.23 mM, 4.65 mM, 5.07 mM, 5.49 mM and 5.91 mM) on the growth, morphology and cell division of E. gracilis. The cell count continually decreases (p < 0.05-0.001) over time with increasing phenol concentration. While phenol treatment does not induce bleaching (permanent loss of photosynthesis), the morphological changes caused by phenol include the formation of spherical (p < 0.01-0.001), hypertrophied (p < 0.05) and monster cells (p < 0.01) and lipofuscin bodies. Phenol also induces an atypical form of cell division of E. gracilis, simultaneously producing more than 2 (3-12) viable cells from a single cell. Such atypically dividing cells have a symmetric "star"-like shape. The percentage of atypically dividing cells increases (p < 0.05) with increasing phenol concentration. Our findings suggest that E. gracilis can be used as bioindicator of phenol contamination in freshwater habitats and wastewater.
Collapse
Affiliation(s)
- Alexandra Lukáčová
- Department of Biology, Ecology and Environment, Faculty of Natural Sciences, Matej Bel University, 974 01 Banská Bystrica, Slovakia (T.B.)
| | - Diana Lihanová
- Department of Biology, Ecology and Environment, Faculty of Natural Sciences, Matej Bel University, 974 01 Banská Bystrica, Slovakia (T.B.)
| | - Terézia Beck
- Department of Biology, Ecology and Environment, Faculty of Natural Sciences, Matej Bel University, 974 01 Banská Bystrica, Slovakia (T.B.)
| | - Roman Alberty
- Department of Biology, Ecology and Environment, Faculty of Natural Sciences, Matej Bel University, 974 01 Banská Bystrica, Slovakia (T.B.)
| | - Dominika Vešelényiová
- Institute of Biology and Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, 917 01 Trnava, Slovakia
| | - Juraj Krajčovič
- Institute of Biology and Biotechnology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, 917 01 Trnava, Slovakia
| | - Matej Vesteg
- Department of Biology, Ecology and Environment, Faculty of Natural Sciences, Matej Bel University, 974 01 Banská Bystrica, Slovakia (T.B.)
| |
Collapse
|
29
|
Murphy EJ, Rezoagli E, Collins C, Saha SK, Major I, Murray P. Sustainable production and pharmaceutical applications of β-glucan from microbial sources. Microbiol Res 2023; 274:127424. [PMID: 37301079 DOI: 10.1016/j.micres.2023.127424] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/14/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023]
Abstract
β-glucans are a large class of complex polysaccharides found in abundant sources. Our dietary sources of β-glucans are cereals that include oats and barley, and non-cereal sources can consist of mushrooms, microalgae, bacteria, and seaweeds. There is substantial clinical interest in β-glucans; as they can be used for a variety of diseases including cancer and cardiovascular conditions. Suitable sources of β-glucans for biopharmaceutical applications include bacteria, microalgae, mycelium, and yeast. Environmental factors including culture medium can influence the biomass and ultimately β-glucan content. Therefore, cultivation conditions for the above organisms can be controlled for sustainable enhanced production of β-glucans. This review discusses the various sources of β-glucans and their cultivation conditions that may be optimised to exploit sustainable production. Finally, this article discusses the immune-modulatory potential of β-glucans from these sources.
Collapse
Affiliation(s)
- Emma J Murphy
- LIFE - Health and Biosciences Research Institute, Midwest Campus, Technological University of the Shannon, Limerick V94EC5T, Ireland; PRISM Research Institute, Midlands Campus, Technological University of the Shannon, Athlone N37 HD68, Ireland.
| | - Emanuele Rezoagli
- Department of Emergency and Intensive Care, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy; School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Catherine Collins
- LIFE - Health and Biosciences Research Institute, Midwest Campus, Technological University of the Shannon, Limerick V94EC5T, Ireland
| | - Sushanta Kumar Saha
- LIFE - Health and Biosciences Research Institute, Midwest Campus, Technological University of the Shannon, Limerick V94EC5T, Ireland
| | - Ian Major
- PRISM Research Institute, Midlands Campus, Technological University of the Shannon, Athlone N37 HD68, Ireland
| | - Patrick Murray
- LIFE - Health and Biosciences Research Institute, Midwest Campus, Technological University of the Shannon, Limerick V94EC5T, Ireland
| |
Collapse
|
30
|
Bakku RK, Yamamoto Y, Inaba Y, Hiranuma T, Gianino E, Amarianto L, Mahrous W, Suzuki H, Suzuki K. New insights into raceway cultivation of Euglena gracilis under long-term semi-continuous nitrogen starvation. Sci Rep 2023; 13:7123. [PMID: 37130945 PMCID: PMC10154353 DOI: 10.1038/s41598-023-34164-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/25/2023] [Indexed: 05/04/2023] Open
Abstract
This study aimed to investigate the physiological responses of Euglena gracilis (E. gracilis) when subjected to semicontinuous N-starvation (N-) for an extended period in open ponds. The results indicated that the growth rates of E. gracilis under the N- condition (11 ± 3.3 g m-2 d-1) were higher by 23% compared to the N-sufficient (N+, 8.9 ± 2.8 g m-2 d-1) condition. Furthermore, the paramylon content of E.gracilis was above 40% (w/w) of dry biomass in N- condition compared to N+ (7%) condition. Interestingly, E. gracilis exhibited similar cell numbers regardless of nitrogen concentrations after a certain time point. Additionally, it demonstrated relatively smaller cell size over time, and unaffected photosynthetic apparatus under N- condition. These findings suggest that there is a tradeoff between cell growth and photosynthesis in E. gracilis, as it adapts to semi-continuous N- conditions without a decrease in its growth rate and paramylon productivity. Notably, to the author's knowledge, this is the only study reporting high biomass and product accumulation by a wild-type E. gracilis strain under N- conditions. This newly identified long-term adaptation ability of E. gracilis may offer a promising direction for the algal industry to achieve high productivity without relying on genetically modified organisms.
Collapse
Affiliation(s)
- Ranjith Kumar Bakku
- Algae Energy Technology Research Institute, 649-17 Nishiyama, Taki-cho, Taki-gun, Mie, 519-2171, Japan.
- Euglena Co., Ltd., G-BASE Tamachi 2nd and 3rd Floor, 5-29-11, Shiba, Minato-ku, Tokyo, 108-0014, Japan.
| | - Yoshimasa Yamamoto
- Algae Energy Technology Research Institute, 649-17 Nishiyama, Taki-cho, Taki-gun, Mie, 519-2171, Japan
- Euglena Co., Ltd., G-BASE Tamachi 2nd and 3rd Floor, 5-29-11, Shiba, Minato-ku, Tokyo, 108-0014, Japan
| | - Yu Inaba
- Algae Energy Technology Research Institute, 649-17 Nishiyama, Taki-cho, Taki-gun, Mie, 519-2171, Japan
- Euglena Co., Ltd., G-BASE Tamachi 2nd and 3rd Floor, 5-29-11, Shiba, Minato-ku, Tokyo, 108-0014, Japan
| | - Taro Hiranuma
- Algae Energy Technology Research Institute, 649-17 Nishiyama, Taki-cho, Taki-gun, Mie, 519-2171, Japan
- Euglena Co., Ltd., G-BASE Tamachi 2nd and 3rd Floor, 5-29-11, Shiba, Minato-ku, Tokyo, 108-0014, Japan
| | - Enrico Gianino
- Algae Energy Technology Research Institute, 649-17 Nishiyama, Taki-cho, Taki-gun, Mie, 519-2171, Japan
- Euglena Co., Ltd., G-BASE Tamachi 2nd and 3rd Floor, 5-29-11, Shiba, Minato-ku, Tokyo, 108-0014, Japan
| | - Lawi Amarianto
- Algae Energy Technology Research Institute, 649-17 Nishiyama, Taki-cho, Taki-gun, Mie, 519-2171, Japan
- Euglena Co., Ltd., G-BASE Tamachi 2nd and 3rd Floor, 5-29-11, Shiba, Minato-ku, Tokyo, 108-0014, Japan
| | - Waleed Mahrous
- Algae Energy Technology Research Institute, 649-17 Nishiyama, Taki-cho, Taki-gun, Mie, 519-2171, Japan
- Euglena Co., Ltd., G-BASE Tamachi 2nd and 3rd Floor, 5-29-11, Shiba, Minato-ku, Tokyo, 108-0014, Japan
| | - Hideyuki Suzuki
- Algae Energy Technology Research Institute, 649-17 Nishiyama, Taki-cho, Taki-gun, Mie, 519-2171, Japan.
- Euglena Co., Ltd., G-BASE Tamachi 2nd and 3rd Floor, 5-29-11, Shiba, Minato-ku, Tokyo, 108-0014, Japan.
| | - Kengo Suzuki
- Euglena Co., Ltd., G-BASE Tamachi 2nd and 3rd Floor, 5-29-11, Shiba, Minato-ku, Tokyo, 108-0014, Japan
- Microalgae Production Control Technology Laboratory, RIKEN 1-7-22, Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| |
Collapse
|
31
|
Jo KA, Kim KJ, Park SY, Jeon JY, Hwang JE, Kim JY. Evaluation of the Effects of Euglena gracilis on Enhancing Immune Responses in RAW264.7 Cells and a Cyclophosphamide-Induced Mouse Model. J Microbiol Biotechnol 2023; 33:493-499. [PMID: 36788460 PMCID: PMC10164725 DOI: 10.4014/jmb.2212.12041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/12/2023] [Accepted: 01/06/2023] [Indexed: 02/16/2023]
Abstract
In this study we evaluated the immune-enhancing effects of β-glucan, the main component of Euglena gracilis (Euglena), and Euglena on inflammatory factor expression in RAW264.7 macrophages and ICR mice with cyclophosphamide-induced immunosuppression. Macrophages were treated with β-glucan or Euglena for 48 h. The β-glucan and Euglena groups exhibited higher levels of inducible nitric oxide synthase, nitric oxide, and tumor necrosis factor (TNF)-α than the control (vehicle alone) group. Animals were fed saline and β-glucan (400 mg/kg body weight (B.W.)) or Euglena (400 or 800 mg/kg B.W.) for 19 days, and on days 17-19, cyclophosphamide (CCP, 80 mg/kg B.W.) was administered to induce immunosuppression in the ICR mouse model. CCP reduced the body weight, spleen index, and cytokine expression of the mice. To measure cytokine and receptor expression, splenocytes were treated with concanavalin A (ConA) or lipopolysaccharide (LPS) as a mitogen for 24 h. In vivo, ConA stimulation significantly upregulated the expression of interferon (IFN)-γ, interleukin (IL)-10, IL-12 receptor β1, IL-1β, and IL-2 in splenocytes from the β-glucan- or Euglena-treated groups compared with those in the splenocytes from the CCP-treated group; LPS stimulation increased the levels of the cytokines TNF-α, IL-1β, and IL-6 in splenocytes from the β-glucan- or Euglena-treated groups compared with those from the CCP-treated group, but most of these differences were not significant. These results demonstrate the effect of Euglena in ameliorating macrophages and immunosuppression in CCP-treated mice. Thus, Euglena has the potential to enhance macrophage- and splenocyte-mediated immune-stimulating responses.
Collapse
Affiliation(s)
- Kyeong Ah Jo
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Kyeong Jin Kim
- Department of Nano Bio Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Soo-yeon Park
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Jin-Young Jeon
- BIO R&D Center, Daesang Corp., Seoul 07789, Republic of Korea
| | - Ji Eun Hwang
- BIO R&D Center, Daesang Corp., Seoul 07789, Republic of Korea
| | - Ji Yeon Kim
- Department of Food Science and Technology, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
- Department of Nano Bio Engineering, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| |
Collapse
|
32
|
Lihanová D, Lukáčová A, Beck T, Jedlička A, Vešelényiová D, Krajčovič J, Vesteg M. Versatile biotechnological applications of Euglena gracilis. World J Microbiol Biotechnol 2023; 39:133. [PMID: 36959517 DOI: 10.1007/s11274-023-03585-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 03/16/2023] [Indexed: 03/25/2023]
Abstract
Euglena gracilis is a freshwater protist possessing secondary chloroplasts of green algal origin. Various physical factors (e.g. UV) and chemical compounds (e.g. antibiotics) cause the bleaching of E. gracilis cells-the loss of plastid genes leading to the permanent inability to photosynthesize. Bleaching can be prevented by antimutagens (i.e. lignin, vitamin C and selenium). Besides screening the mutagenic and antimutagenic activity of chemicals, E. gracilis is also a suitable model for studying the biological effects of many organic pollutants. Due to its capability of heavy metal sequestration, it can be used for bioremediation. E. gracilis has been successfully transformed, offering the possibility of genetic modifications for synthesizing compounds of biotechnological interest. The novel design of the "next generation" transgenic expression cassettes with respect to the specificities of euglenid gene expression is proposed. Moreover, E. gracilis is a natural source of commercially relevant bioproducts such as (pro)vitamins, wax esters, polyunsaturated fatty acids and paramylon (β-1,3-glucan). One of the highest limitations of large-scale cultivation of E. gracilis is its disability to synthesize essential vitamins B1 and B12. This disadvantage can be overcome by co-cultivation of E. gracilis with other microorganisms, which can synthesize sufficient amounts of these vitamins. Such co-cultures can be used for the effective accumulation and harvesting of Euglena biomass by bioflocculation.
Collapse
Grants
- VEGA 1/0694/2021 Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic, and the Academy of Sciences
- VEGA 1/0694/2021 Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic, and the Academy of Sciences
- VEGA 1/0694/2021 Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic, and the Academy of Sciences
- VEGA 1/0694/2021 Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic, and the Academy of Sciences
- VEGA 1/0694/2021 Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic, and the Academy of Sciences
- VEGA 1/0694/2021 Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic, and the Academy of Sciences
- VEGA 1/0694/2021 Scientific Grant Agency of the Ministry of Education, Science, Research and Sport of the Slovak Republic, and the Academy of Sciences
- ITMS 26210120024 European Regional Development Fund
- ITMS 26210120024 European Regional Development Fund
- ITMS 26210120024 European Regional Development Fund
- ITMS 26210120024 European Regional Development Fund
Collapse
Affiliation(s)
- Diana Lihanová
- Department of Biology and Ecology, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 974 01, Banská Bystrica, Slovakia
| | - Alexandra Lukáčová
- Department of Biology and Ecology, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 974 01, Banská Bystrica, Slovakia
| | - Terézia Beck
- Department of Biology and Ecology, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 974 01, Banská Bystrica, Slovakia
| | - Andrej Jedlička
- Department of Biology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, 917 01, Trnava, Slovakia
| | - Dominika Vešelényiová
- Department of Biology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, 917 01, Trnava, Slovakia
| | - Juraj Krajčovič
- Department of Biology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, 917 01, Trnava, Slovakia
| | - Matej Vesteg
- Department of Biology and Ecology, Faculty of Natural Sciences, Matej Bel University, Tajovského 40, 974 01, Banská Bystrica, Slovakia.
| |
Collapse
|
33
|
Inwongwan S, Pekkoh J, Pumas C, Sattayawat P. Metabolic network reconstruction of Euglena gracilis: Current state, challenges, and applications. Front Microbiol 2023; 14:1143770. [PMID: 36937274 PMCID: PMC10018167 DOI: 10.3389/fmicb.2023.1143770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/06/2023] [Indexed: 03/06/2023] Open
Abstract
A metabolic model, representing all biochemical reactions in a cell, is a prerequisite for several approaches in systems biology used to explore the metabolic phenotype of an organism. Despite the use of Euglena in diverse industrial applications and as a biological model, there is limited understanding of its metabolic network capacity. The unavailability of the completed genome data and the highly complex evolution of Euglena are significant obstacles to the reconstruction and analysis of its genome-scale metabolic model. In this mini-review, we discuss the current state and challenges of metabolic network reconstruction in Euglena gracilis. We have collated and present the available relevant data for the metabolic network reconstruction of E. gracilis, which could be used to improve the quality of the metabolic model of E. gracilis. Furthermore, we deliver the potential applications of the model in metabolic engineering. Altogether, it is supposed that this mini-review would facilitate the investigation of metabolic networks in Euglena and further lay out a direction for model-assisted metabolic engineering.
Collapse
Affiliation(s)
- Sahutchai Inwongwan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center of Microbial Diversity and Sustainable Utilizations, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Jeeraporn Pekkoh
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center of Microbial Diversity and Sustainable Utilizations, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Chayakorn Pumas
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center in Bioresources for Agriculture, Industry and Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Pachara Sattayawat
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center of Microbial Diversity and Sustainable Utilizations, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Research Center in Bioresources for Agriculture, Industry and Medicine, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
34
|
Kim S, Im H, Yu J, Kim K, Kim M, Lee T. Biofuel production from Euglena: Current status and techno-economic perspectives. BIORESOURCE TECHNOLOGY 2023; 371:128582. [PMID: 36610485 DOI: 10.1016/j.biortech.2023.128582] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Sustainable aviation fuels (SAFs) can contribute reduce greenhouse gas emissions compared to conventional fuel. With the increasing SAFs demand, various generations of resources have been shifted from the 1st generation (oil crops), the 2nd generation (agricultural waste), to the 3rd generation (microalgae). Microalgae are the most suitable feedstock for jet biofuel production than other resources because of their productivity and capability to capture carbon dioxide. However, microalgae-based biofuel has a limitation of high freezing point. Recently, a jet biofuel derived from Euglena wax ester has been paying attention due to its low freezing point. Challenges still remain to enhance production yields in both upstream and downstream processes. Studies on downstream processes as well as techno-economic analysis on biofuel production using Euglena are highly limited to date. Economic aspects for the biofuel production will be ensured via valorization of industrial byproducts such as food wastes.
Collapse
Affiliation(s)
- Sunah Kim
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Hyungjoon Im
- Institute for Environment and Energy, Pusan National University, Busan 46241, Republic of Korea
| | - Jaecheul Yu
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea; Institute for Environment and Energy, Pusan National University, Busan 46241, Republic of Korea
| | - Keunho Kim
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Minjeong Kim
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Taeho Lee
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
35
|
Diaz CJ, Douglas KJ, Kang K, Kolarik AL, Malinovski R, Torres-Tiji Y, Molino JV, Badary A, Mayfield SP. Developing algae as a sustainable food source. Front Nutr 2023; 9:1029841. [PMID: 36742010 PMCID: PMC9892066 DOI: 10.3389/fnut.2022.1029841] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 12/05/2022] [Indexed: 01/20/2023] Open
Abstract
Current agricultural and food production practices are facing extreme stress, posed by climate change and an ever-increasing human population. The pressure to feed nearly 8 billion people while maintaining a minimal impact on the environment has prompted a movement toward new, more sustainable food sources. For thousands of years, both the macro (seaweed and kelp) and micro (unicellular) forms of algae have been cultivated as a food source. Algae have evolved to be highly efficient at resource utilization and have proven to be a viable source of nutritious biomass that could address many of the current food production issues. Particularly for microalgae, studies of their large-scale growth and cultivation come from the biofuel industry; however, this knowledge can be reasonably translated into the production of algae-based food products. The ability of algae to sequester CO2 lends to its sustainability by helping to reduce the carbon footprint of its production. Additionally, algae can be produced on non-arable land using non-potable water (including brackish or seawater), which allows them to complement rather than compete with traditional agriculture. Algae inherently have the desired qualities of a sustainable food source because they produce highly digestible proteins, lipids, and carbohydrates, and are rich in essential fatty acids, vitamins, and minerals. Although algae have yet to be fully domesticated as food sources, a variety of cultivation and breeding tools exist that can be built upon to allow for the increased productivity and enhanced nutritional and organoleptic qualities that will be required to bring algae to mainstream utilization. Here we will focus on microalgae and cyanobacteria to highlight the current advancements that will expand the variety of algae-based nutritional sources, as well as outline various challenges between current biomass production and large-scale economic algae production for the food market.
Collapse
Affiliation(s)
- Crisandra J. Diaz
- Mayfield Lab, Division of Biological Sciences, Department of Molecular Biology, University of California, San Diego, San Diego, CA, United States
| | - Kai J. Douglas
- Mayfield Lab, Division of Biological Sciences, Department of Molecular Biology, University of California, San Diego, San Diego, CA, United States
| | - Kalisa Kang
- Mayfield Lab, Division of Biological Sciences, Department of Molecular Biology, University of California, San Diego, San Diego, CA, United States
| | - Ashlynn L. Kolarik
- Mayfield Lab, Division of Biological Sciences, Department of Molecular Biology, University of California, San Diego, San Diego, CA, United States
| | - Rodeon Malinovski
- Mayfield Lab, Division of Biological Sciences, Department of Molecular Biology, University of California, San Diego, San Diego, CA, United States
| | - Yasin Torres-Tiji
- Mayfield Lab, Division of Biological Sciences, Department of Molecular Biology, University of California, San Diego, San Diego, CA, United States
| | - João V. Molino
- Mayfield Lab, Division of Biological Sciences, Department of Molecular Biology, University of California, San Diego, San Diego, CA, United States
| | - Amr Badary
- Mayfield Lab, Division of Biological Sciences, Department of Molecular Biology, University of California, San Diego, San Diego, CA, United States
| | - Stephen P. Mayfield
- Mayfield Lab, Division of Biological Sciences, Department of Molecular Biology, University of California, San Diego, San Diego, CA, United States,California Center for Algae Biotechnology, University of California, San Diego, La Jolla, CA, United States,*Correspondence: Stephen P. Mayfield,
| |
Collapse
|
36
|
Calloni RD, Muchut RJ, Garay AS, Arias DG, Iglesias AA, Guerrero SA. Functional and structural characterization of an endo-β-1,3-glucanase from Euglena gracilis. Biochimie 2022; 208:117-128. [PMID: 36586565 DOI: 10.1016/j.biochi.2022.12.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/20/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022]
Abstract
Endo-β-1,3-glucanases from several organisms have attracted much attention in recent years because of their capability for in vitro degrading β-1,3-glucan as a critical step for both biofuels production and short-chain oligosaccharides synthesis. In this study, we biochemically characterized a putative endo-β-1,3-glucanase (EgrGH64) belonging to the family GH64 from the single-cell protist Euglena gracilis. The gene coding for the enzyme was heterologously expressed in a prokaryotic expression system supplemented with 3% (v/v) ethanol to optimize the recombinant protein right folding. Thus, the produced enzyme was highly purified by immobilized-metal affinity and gel filtration chromatography. The enzymatic study demonstrated that EgrGH64 could hydrolyze laminarin (KM 23.5 mg ml-1,kcat 1.20 s-1) and also, but with less enzymatic efficiency, paramylon (KM 20.2 mg ml-1,kcat 0.23 ml mg-1 s-1). The major product of the hydrolysis of both substrates was laminaripentaose. The enzyme could also use ramified β-glucan from the baker's yeast cell wall as a substrate (KM 2.10 mg ml-1, kcat 0.88 ml mg-1 s-1). This latter result, combined with interfacial kinetic analysis evidenced a protein's greater efficiency for the yeast polysaccharide, and a higher number of hydrolysis sites in the β-1,3/β-1,6-glucan. Concurrently, the enzyme efficiently inhibited the fungal growth when used at 1.0 mg/mL (15.4 μM). This study contributes to assigning a correct function and determining the enzymatic specificity of EgrGH64, which emerges as a relevant biotechnological tool for processing β-glucans.
Collapse
Affiliation(s)
- Rodrigo D Calloni
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Santa Fe, Argentina; Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Robertino J Muchut
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Santa Fe, Argentina
| | - Alberto S Garay
- Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Diego G Arias
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Santa Fe, Argentina; Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Alberto A Iglesias
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Santa Fe, Argentina; Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Sergio A Guerrero
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Santa Fe, Argentina; Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina.
| |
Collapse
|
37
|
Application of Euglena gracilis in wastewater treatment processes. BIOTECHNOLOGIA 2022; 103:323-330. [PMID: 36685703 PMCID: PMC9837553 DOI: 10.5114/bta.2022.120702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 04/21/2022] [Accepted: 07/05/2022] [Indexed: 12/28/2022] Open
Abstract
Microalgae strains can rapidly remove biogenic elements, which contribute to the eutrophication of water bodies, from wastewater. In recent years, interest in microalgae strains has increased significantly. This research aimed to assess the ability of Euglena gracilis G.A. Klebs (Euglenozoa) to reduce the concentrations of phosphorus and nitrogen in domestic wastewater to the level recommended by the EU legislation in a short time (4 days). In this study, wastewater with different nitrogen and phosphorus concentrations was used. E. gracilis reduced the concentration of phosphorus in the analyzed wastewater by 96-100% and that of nitrogen up to 63%. In addition, this study found that E. gracilis is resistant to high concentrations of these nutrients in water and accumulates biomass and photosynthetic pigments (chlorophyll a and carotenoids) with increasing concentrations of phosphates (from 4 to 14 mg/l) and ammonium nitrogen (from 30 to 90 mg/l). These results suggest that E. gracilis is a promising alga for biological treatment of wastewater to reduce phosphorus and nitrogen concentrations.
Collapse
|
38
|
Benti NE, Aneseyee AB, Geffe CA, Woldegiyorgis TA, Gurmesa GS, Bibiso M, Asfaw AA, Milki AW, Mekonnen YS. Biodiesel Production in Ethiopia: Current Status and Future Prospects. SCIENTIFIC AFRICAN 2022. [DOI: 10.1016/j.sciaf.2022.e01531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
39
|
Ebenezer TE, Low RS, O'Neill EC, Huang I, DeSimone A, Farrow SC, Field RA, Ginger ML, Guerrero SA, Hammond M, Hampl V, Horst G, Ishikawa T, Karnkowska A, Linton EW, Myler P, Nakazawa M, Cardol P, Sánchez-Thomas R, Saville BJ, Shah MR, Simpson AGB, Sur A, Suzuki K, Tyler KM, Zimba PV, Hall N, Field MC. Euglena International Network (EIN): Driving euglenoid biotechnology for the benefit of a challenged world. Biol Open 2022; 11:bio059561. [PMID: 36412269 PMCID: PMC9836076 DOI: 10.1242/bio.059561] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Euglenoids (Euglenida) are unicellular flagellates possessing exceptionally wide geographical and ecological distribution. Euglenoids combine a biotechnological potential with a unique position in the eukaryotic tree of life. In large part these microbes owe this success to diverse genetics including secondary endosymbiosis and likely additional sources of genes. Multiple euglenoid species have translational applications and show great promise in production of biofuels, nutraceuticals, bioremediation, cancer treatments and more exotically as robotics design simulators. An absence of reference genomes currently limits these applications, including development of efficient tools for identification of critical factors in regulation, growth or optimization of metabolic pathways. The Euglena International Network (EIN) seeks to provide a forum to overcome these challenges. EIN has agreed specific goals, mobilized scientists, established a clear roadmap (Grand Challenges), connected academic and industry stakeholders and is currently formulating policy and partnership principles to propel these efforts in a coordinated and efficient manner.
Collapse
Affiliation(s)
- ThankGod Echezona Ebenezer
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Ross S. Low
- Organisms and Ecosystems, Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK
| | | | - Ishuo Huang
- Office of Regulatory Science, United States Food and Drug Administration, Center for Food Safety and Applied Nutrition, College Park, MD 20740, USA
| | - Antonio DeSimone
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Pisa 56127, Italy
| | - Scott C. Farrow
- Discovery Biology, Noblegen Inc., Peterborough, Ontario K9L 1Z8, Canada
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario K9L 0G2, Canada
| | - Robert A. Field
- Department of Chemistry and Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK
| | - Michael L. Ginger
- School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK
| | - Sergio Adrián Guerrero
- Laboratorio de Enzimología Molecular, Instituto de Agrobiotecnología del Litoral. CCT CONICET Santa Fe, Santa Fe 3000, Argentina
| | - Michael Hammond
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice 370 05, Czech Republic
| | - Vladimír Hampl
- Charles University, Faculty of Science, Department of Parasitology, BIOCEV, Vestec 25250, Czech Republic
| | - Geoff Horst
- Kemin Industries, Research and Development, Plymouth, MI 48170, USA
| | - Takahiro Ishikawa
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue 690-8504, Japan
| | - Anna Karnkowska
- Institute of Evolutionary Biology, Faculty of Biology, University of Warsaw, Warsaw 02-089, Poland
| | - Eric W. Linton
- Department of Biology, Central Michigan University, Mt. Pleasant, MI 48859, USA
| | - Peter Myler
- Center for Global Infectious Disease Research, Seattle Children's Research Institute and Department of Biomedical Informatics & Medical Education, University of Washington, WA 98109, USA
| | - Masami Nakazawa
- Department of Applied Biochemistry, Faculty of Agriculture, Osaka Metropolitan University, Sakai, Osaka, 599-8531, Japan
| | - Pierre Cardol
- Department of Life Sciences, Institut de Botanique, Université de Liège, Liège 4000, Belgium
| | | | - Barry J. Saville
- Forensic Science, Environmental and Life Sciences Graduate Program, Trent University, Peterborough K9L 0G2, Canada
| | - Mahfuzur R. Shah
- Discovery Biology, Noblegen Inc., Peterborough, Ontario K9L 1Z8, Canada
| | - Alastair G. B. Simpson
- Department of Biology and Institute for Comparative Genomics, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
| | - Aakash Sur
- Center for Global Infectious Disease Research, Seattle Children's Research Institute and Department of Biomedical Informatics & Medical Education, University of Washington, WA 98109, USA
| | - Kengo Suzuki
- R&D Company, Euglena Co., Ltd., 2F Yokohama Bio Industry Center (YBIC), 1-6 Suehiro, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Kevin M. Tyler
- Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
- Center of Excellence for Bionanoscience Research, King Abdul Aziz University, Jeddah, Saudi Arabia
| | - Paul V. Zimba
- PVZimba, LLC, 12241 Percival St, Chester, VA 23831, USA
- Rice Rivers Center, VA Commonwealth University, Richmond, VA 23284, USA
| | - Neil Hall
- Organisms and Ecosystems, Earlham Institute, Norwich Research Park, Norwich NR4 7UZ, UK
- School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, Norfolk, UK
| | - Mark C. Field
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice 370 05, Czech Republic
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| |
Collapse
|
40
|
Wu M, Wu G, Lu F, Wang H, Lei A, Wang J. Microalgal photoautotrophic growth induces pH decrease in the aquatic environment by acidic metabolites secretion. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:115. [PMID: 36289523 PMCID: PMC9608927 DOI: 10.1186/s13068-022-02212-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 10/08/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Microalgae can absorb CO2 during photosynthesis, which causes the aquatic environmental pH to rise. However, the pH is reduced when microalga Euglena gracilis (EG) is cultivated under photoautotrophic conditions. The mechanism behind this unique phenomenon is not yet elucidated. RESULTS The present study evaluated the growth of EG, compared to Chlorella vulgaris (CV), as the control group; analyzed the dissolved organic matter (DOM) in the aquatic environment; finally revealed the mechanism of the decrease in the aquatic environmental pH via comparative metabolomics analysis. Although the CV cell density was 28.3-fold that of EG, the secreted-DOM content from EG cell was 49.8-fold that of CV (p-value < 0.001). The main component of EG's DOM was rich in humic acids, which contained more DOM composed of chemical bonds such as N-H, O-H, C-H, C=O, C-O-C, and C-OH than that of CV. Essentially, the 24 candidate biomarkers metabolites secreted by EG into the aquatic environment were acidic substances, mainly lipids and lipid-like molecules, organoheterocyclic compounds, organic acids, and derivatives. Moreover, six potential critical secreted-metabolic pathways were identified. CONCLUSIONS This study demonstrated that EG secreted acidic metabolites, resulting in decreased aquatic environmental pH. This study provides novel insights into a new understanding of the ecological niche of EG and the rule of pH change in the microalgae aquatic environment.
Collapse
Affiliation(s)
- Mingcan Wu
- grid.263488.30000 0001 0472 9649Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 China ,grid.428986.90000 0001 0373 6302State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou, 570228 China
| | - Guimei Wu
- grid.428986.90000 0001 0373 6302State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou, 570228 China
| | - Feimiao Lu
- grid.428986.90000 0001 0373 6302State Key Laboratory of Marine Resource Utilization in South China Sea, College of Oceanology, Hainan University, Haikou, 570228 China
| | - Hongxia Wang
- grid.9227.e0000000119573309Center for Microalgal Biotechnology and Biofuels, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 China
| | - Anping Lei
- grid.263488.30000 0001 0472 9649Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 China
| | - Jiangxin Wang
- grid.263488.30000 0001 0472 9649Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 China
| |
Collapse
|
41
|
Mandal S, Nagi GK, Corcoran AA, Agrawal R, Dubey M, Hunt RW. Algal polysaccharides for 3D printing: A review. Carbohydr Polym 2022; 300:120267. [DOI: 10.1016/j.carbpol.2022.120267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/11/2022] [Accepted: 10/23/2022] [Indexed: 11/02/2022]
|
42
|
Häder DP, Hemmersbach R. Euglena, a Gravitactic Flagellate of Multiple Usages. Life (Basel) 2022; 12:1522. [PMID: 36294957 PMCID: PMC9605500 DOI: 10.3390/life12101522] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/19/2022] [Accepted: 09/21/2022] [Indexed: 11/29/2022] Open
Abstract
Human exploration of space and other celestial bodies bears a multitude of challenges. The Earth-bound supply of material and food is restricted, and in situ resource utilisation (ISRU) is a prerequisite. Excellent candidates for delivering several services are unicellular algae, such as the space-approved flagellate Euglena gracilis. This review summarizes the main characteristics of this unicellular organism. Euglena has been exposed on various platforms that alter the impact of gravity to analyse its corresponding gravity-dependent physiological and molecular genetic responses. The sensory transduction chain of gravitaxis in E. gracilis has been identified. The molecular gravi-(mechano-)receptors are mechanosensory calcium channels (TRP channels). The inward gated calcium binds specifically to one of several calmodulins (CaM.2), which, in turn, activates an adenylyl cyclase. This enzyme uses ATP to produce cAMP, which induces protein kinase A, followed by the phosphorylation of a motor protein in the flagellum, initiating a course correction, and, finally, resulting in gravitaxis. During long space missions, a considerable amount of food, oxygen, and water has to be carried, and the exhaled carbon dioxide has to be removed. In this context, E. gracilis is an excellent candidate for biological life support systems, since it produces oxygen by photosynthesis, takes up carbon dioxide, and is even edible. Various species and mutants of Euglena are utilized as a producer of commercial food items, as well as a source of medicines, as it produces a number of vitamins, contains numerous trace elements, and synthesizes dietary proteins, lipids, and the reserve molecule paramylon. Euglena has anti-inflammatory, -oxidant, and -obesity properties.
Collapse
Affiliation(s)
- Donat-P. Häder
- Department of Botany, Emeritus from Friedrich-Alexander University, 91096 Erlangen, Germany
| | - Ruth Hemmersbach
- German Aerospace Center, Institute of Aerospace Medicine, Gravitational Biology, Linder Hoehe, 51147 Cologne, Germany
| |
Collapse
|
43
|
Ivušić F, Rezić T, Šantek B. Heterotrophic Cultivation of Euglena gracilis in Stirred Tank Bioreactor: A Promising Bioprocess for Sustainable Paramylon Production. Molecules 2022; 27:molecules27185866. [PMID: 36144601 PMCID: PMC9502384 DOI: 10.3390/molecules27185866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/30/2022] [Accepted: 09/04/2022] [Indexed: 11/16/2022] Open
Abstract
Paramylon is a valuable intracellular product of the microalgae Euglena gracilis, and it can accumulate in Euglena cells according to the cultivation conditions. For the sustainable production of paramylon and appropriate cell growth, different bioreactor processes and industrial byproducts can be considered as substrates. In this study, a complex medium with corn steep solid (CSS) was used, and various bioreactor processes (batch, fed batch, semicontinuous and continuous) were performed in order to maximize paramylon production in the microalgae Euglena gracilis. Compared to the batch, fed batch and repeated batch bioprocesses, during the continuous bioprocess in a stirred tank bioreactor (STR) with a complex medium containing 20 g/L of glucose and 25 g/L of CSS, E. gracilis accumulated a competitive paramylon content (67.0%), and the highest paramylon productivity of 0.189 g/Lh was observed. This demonstrated that the application of a continuous bioprocess, with corn steep solid as an industrial byproduct, can be a successful strategy for efficient and economical paramylon production.
Collapse
Affiliation(s)
- Franjo Ivušić
- Croatian Academy of Sciences and Arts, Vlaha Bukovca 14, 20000 Dubrovnik, Croatia
| | - Tonči Rezić
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
- Correspondence:
| | - Božidar Šantek
- Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia
| |
Collapse
|
44
|
|
45
|
Tanaka Y, Goto K, Jun L, Nishino K, Ogawa T, Maruta T, Ishikawa T. Identification of glucanases and phosphorylases involved in hypoxic paramylon degradation in Euglena gracilis. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
46
|
Mixotrophic Cultivation Optimization of Microalga Euglena pisciformis AEW501 for Paramylon Production. Mar Drugs 2022; 20:md20080518. [PMID: 36005522 PMCID: PMC9410504 DOI: 10.3390/md20080518] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/09/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
Euglena, a flagellated unicellular protist, has recently received widespread attention for various high-value metabolites, especially paramylon, which was only found in Euglenophyta. The limited species and low biomass of Euglena has impeded paramylon exploitation and utilization. This study established an optimal cultivation method of Euglena pisciformis AEW501 for paramylon production under mixotrophic cultivation. The results showed that the optimum mixotrophic conditions were 20 °C, pH 7.0, and 63 μmol photons m-2∙s-1, and the concentrations of sodium acetate and diammonium hydrogen phosphate were 0.98 g L-1 and 0.79 g L-1, respectively. The maximal biomass and paramylon content were 0.72 g L-1 and 71.39% of dry weight. The algal powder contained more than 16 amino acids, 6 vitamins, and 10 unsaturated fatty acids under the optimal cultivation. E. pisciformis paramylon was pure β-1,3-glucan-type polysaccharide (the purity was up to 99.13 ± 0.61%) composed of linear glucose chains linked together by β-1,3-glycosidic bonds. These findings present a valuable basis for the industrial exploitation of paramylon with E. pisciformis AEW501.
Collapse
|
47
|
Lewis A, Guéguen C. Using chemometric models to predict the biosorption of low levels of dysprosium by Euglena gracilis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:58936-58949. [PMID: 35377126 DOI: 10.1007/s11356-022-19918-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
The critical rare earth element dysprosium (Dy) is integral for sustainable technologies. What is concerning is that Dy is in imminent short supply and no current replacements yet exist, coupled with increasing environmental Dy levels influenced by anthropogenic activities. This study applies chemometric methods such as response surface methodology and artificial neural networks to predict low Dy removal levels using the biosorbent Euglena gracilis. A three-factor Box-Behnken experimental design was conducted with initial concentration (1 to 100 µg L-1), contact time (30 to 180 min), and pH (3 to 8) as the three independent variables, and percentage removal and sorption capacity (q) as dependent variables. Using Dy percentage removal as response, for the worst and best conditions ranged from 0 to 92% respectively, with an average removal of 66 ± 4%. Using sorption capacity (q) as a different response variable, q varied from 0 to 93 µg/g with 27 ± 4 µg/g capacity as average. Maximum removal was 92% (q = 93 µg/g) was at pH 3, a contact time of 105 min and at a concentration of 100 µg/L. Using sorption capacity as the response variable for ANOVA, pH and metal concentrations were statistically significant factors, with lower pH and higher metal concentration having improved Dy removal, with a desirability near 1. Statistical tests such as analysis of variance, lack-of-fit, and coefficient of determination (R2) confirmed model validity. A 3-10-1 ANN network array was used to model experimental responses (q). RSM and ANN effectively modeled Dy biosorption. E. gracilis proved to be a cheap and effective biosorbent for Dy biosorption and has the potential to remediate acid mine drainage areas exhibiting low Dy concentrations.
Collapse
Affiliation(s)
- Ainsely Lewis
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada
| | - Céline Guéguen
- Département de Chimie, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
48
|
McCarthy B, O’Neill G, Abu-Ghannam N. Potential Psychoactive Effects of Microalgal Bioactive Compounds for the Case of Sleep and Mood Regulation: Opportunities and Challenges. Mar Drugs 2022; 20:493. [PMID: 36005495 PMCID: PMC9410000 DOI: 10.3390/md20080493] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 01/25/2023] Open
Abstract
Sleep deficiency is now considered an emerging global epidemic associated with many serious health problems, and a major cause of financial and social burdens. Sleep and mental health are closely connected, further exacerbating the negative impact of sleep deficiency on overall health and well-being. A major drawback of conventional treatments is the wide range of undesirable side-effects typically associated with benzodiazepines and antidepressants, which can be more debilitating than the initial disorder. It is therefore valuable to explore the efficiency of other remedies for complementarity and synergism with existing conventional treatments, leading to possible reduction in undesirable side-effects. This review explores the relevance of microalgae bioactives as a sustainable source of valuable phytochemicals that can contribute positively to mood and sleep disorders. Microalgae species producing these compounds are also catalogued, thus creating a useful reference of the state of the art for further exploration of this proposed approach. While we highlight possibilities awaiting investigation, we also identify the associated issues, including minimum dose for therapeutic effect, bioavailability, possible interactions with conventional treatments and the ability to cross the blood brain barrier. We conclude that physical and biological functionalization of microalgae bioactives can have potential in overcoming some of these challenges.
Collapse
Affiliation(s)
- Bozena McCarthy
- Environmental Sustainability & Health Institute (ESHI), Technological University Dublin, Grangegorman, D07 H6K8 Dublin 7, Ireland; (B.M.); (G.O.)
| | - Graham O’Neill
- Environmental Sustainability & Health Institute (ESHI), Technological University Dublin, Grangegorman, D07 H6K8 Dublin 7, Ireland; (B.M.); (G.O.)
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin, Grangegorman, D07 H6K8 Dublin 7, Ireland
| | - Nissreen Abu-Ghannam
- Environmental Sustainability & Health Institute (ESHI), Technological University Dublin, Grangegorman, D07 H6K8 Dublin 7, Ireland; (B.M.); (G.O.)
- School of Food Science and Environmental Health, College of Sciences and Health, Technological University Dublin, Grangegorman, D07 H6K8 Dublin 7, Ireland
| |
Collapse
|
49
|
Feuzing F, Mbakidi JP, Marchal L, Bouquillon S, Leroy E. A review of paramylon processing routes from microalga biomass to non-derivatized and chemically modified products. Carbohydr Polym 2022; 288:119181. [PMID: 35450615 DOI: 10.1016/j.carbpol.2022.119181] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/04/2022] [Accepted: 01/21/2022] [Indexed: 11/02/2022]
Abstract
Paramylon is a linear β-1,3-glucan, similar to curdlan, produced as intracellular granules by the microalga Euglena gracilis, a highly versatile and robust strain, able to grow under various trophic conditions, with valorization of CO2, wastewaters, or food byproducts as nutrients. This review focuses in particular on the various processing routes leading to new potential paramylon based products. Due to its crystalline structure, involving triple helices stabilized by internal intermolecular hydrogen bonds, paramylon is neither water-soluble nor thermoplastic. The few solvents able to disrupt the triple helices, and to fully solubilize the polymer as random coils, allow non derivatizing shaping into films, fibers, and even nanofibers by a specific self-assembly mechanism. Chemical modification in homogeneous or heterogeneous conditions is also possible. The non-selective or regioselective substitution of the hydroxyl groups of glucosidic units leads to water-soluble ionic derivatives and thermoplastic paramylon esters with foreseen applications ranging from health to bioplastics.
Collapse
Affiliation(s)
- Frédérica Feuzing
- Université de Nantes, Oniris, CNRS, GEPEA, UMR 6144, F- 44470 Carquefou, France; Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne, BP 1039, 51687 Reims Cedex, France
| | - Jean Pierre Mbakidi
- Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne, BP 1039, 51687 Reims Cedex, France
| | - Luc Marchal
- Université de Nantes, Oniris, CNRS, GEPEA, UMR 6144, F- 44470 Carquefou, France
| | - Sandrine Bouquillon
- Institut de Chimie Moléculaire de Reims, CNRS UMR 7312, Université de Reims Champagne-Ardenne, BP 1039, 51687 Reims Cedex, France
| | - Eric Leroy
- Université de Nantes, Oniris, CNRS, GEPEA, UMR 6144, F- 44470 Carquefou, France.
| |
Collapse
|
50
|
Gu G, Ou D, Chen Z, Gao S, Sun S, Zhao Y, Hu C, Liang X. Metabolomics revealed the photosynthetic performance and metabolomic characteristics of Euglena gracilis under autotrophic and mixotrophic conditions. World J Microbiol Biotechnol 2022; 38:160. [PMID: 35834059 DOI: 10.1007/s11274-022-03346-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 06/22/2022] [Indexed: 11/28/2022]
Abstract
Photosynthetic and metabolomic performance of Euglena gracilis was examined and compared under autotrophic and mixotrophic conditions. Autotrophic protozoa (AP) obtained greater biomass (about 33% higher) than the mixotrophic protozoa (MP) after 12 days of growth. AP maintained steady photosynthesis, while MP showed a remarkable decrease in photosynthetic efficiency and dropped to an extremely low level at day 12. In MP, low light absorption and photosynthetic electron transport efficiency, and high energy dissipation were reflected by the chlorophyll (chl a) fluorescence (OJIP) of the protozoa. The values of ΨO, ΦEo, and ETO/RC of MP decreased to extremely low levels, to 1/15, 1/46, and 1/9 those of AP, respectively, while DIO/RC increased to approximately 16 times that of AP. A total of 137 metabolites were showed significant differences between AP and MP. AP accumulated more monosaccharide, lipids, and alkaloids, while MP produced more amino acids, peptides, and long-chain fatty acids including poly-unsaturated fatty acids. The top nine most important enriched pathways obtained from KEGG mapping were related to ABC transporters, biosynthesis of amino acids, purine metabolism, and carbohydrate metabolism. There were significant differences between AP and MP in photosynthetic activity, metabolites, and metabolic pathways. This work presented useful information for the production of high value bioproducts in E. gracilis cultured under different nutritional conditions.
Collapse
Affiliation(s)
- Gan Gu
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, 310014, China.,College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China
| | - Dong Ou
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China
| | - Zhehua Chen
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, 310014, China.,College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China
| | - Shumei Gao
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China
| | - Shiqing Sun
- College of Advanced Materials Engineering, Jiaxing Nanhu University, Jiaxing, 314001, People's Republic of China
| | - Yongjun Zhao
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China
| | - Changwei Hu
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing, 314001, People's Republic of China.
| | - Xianrui Liang
- College of Pharmacy, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|