1
|
Cao X, Sun K, Luo J, Chen A, Wan Q, Zhou H, Zhou H, Liu Y, Chen X. Enhancing Osteogenesis and Mechanical Properties through Scaffold Design in 3D Printed Bone Substitutes. ACS Biomater Sci Eng 2025; 11:710-729. [PMID: 39818724 DOI: 10.1021/acsbiomaterials.4c01661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
In the context of regenerative medicine, the design of scaffolds to possess excellent osteogenesis and appropriate mechanical properties has gained significant attention in bone tissue engineering. In this review, we categorized materials into metallic, inorganic, nonmetallic, organic polymer, and composite materials. This review provides a more integrated and multidimensional analysis of scaffold design for bone tissue engineering. Unlike previous works that often focus on single aspects, such as material type or fabrication technique, our review takes a broader approach. It analyzes the interaction between scaffold materials, 3D printing techniques, scaffold structural designs, modification methods, porosities, and pore sizes, and the composition of materials (particularly composite materials). Meanwhile, it focuses on their impacts on scaffolds' osteogenic potential and mechanical performance. This review also provides suggested ranges for porosity and pore size for different materials and outlines recommended surface modification methods. This approach not only consolidates current knowledge but also highlights the interdependencies among various factors affecting scaffold efficacy, offering deeper insights into optimization strategies tailored for specific clinical conditions. Furthermore, we introduce recent advancements in innovative 3D printing techniques and novel composite materials, which are rarely addressed in previous reviews, thereby providing a forward-looking perspective that informs future research directions and clinical applications.
Collapse
Affiliation(s)
- Xinyi Cao
- Xiangya School of Stomatology, Central South University, Changsha 410008, Hunan, China
- Hunan Key Laboratory of Oral Health Research, Central South University, Changsha 410008, China
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai 200001, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai 201199, China
| | - Kexin Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Junyue Luo
- Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Andi Chen
- Xiangya School of Stomatology, Central South University, Changsha 410008, Hunan, China
| | - Qi Wan
- Xiangya School of Stomatology, Central South University, Changsha 410008, Hunan, China
| | - Hongyi Zhou
- Research School of Management, ANU College of Business and Economics, The Australian National University, Canberra, ACT 2601, Australia
| | - Hongbo Zhou
- Xiangya School of Stomatology, Central South University, Changsha 410008, Hunan, China
- Hunan Key Laboratory of Oral Health Research, Central South University, Changsha 410008, China
| | - Yuehua Liu
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai 200001, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai 201199, China
| | - Xiaojing Chen
- Xiangya School of Stomatology, Central South University, Changsha 410008, Hunan, China
- Hunan Key Laboratory of Oral Health Research, Central South University, Changsha 410008, China
| |
Collapse
|
2
|
de Carvalho ABG, Rahimnejad M, Oliveira RLMS, Sikder P, Saavedra GSFA, Bhaduri SB, Gawlitta D, Malda J, Kaigler D, Trichês ES, Bottino MC. Personalized bioceramic grafts for craniomaxillofacial bone regeneration. Int J Oral Sci 2024; 16:62. [PMID: 39482290 PMCID: PMC11528123 DOI: 10.1038/s41368-024-00327-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 11/03/2024] Open
Abstract
The reconstruction of craniomaxillofacial bone defects remains clinically challenging. To date, autogenous grafts are considered the gold standard but present critical drawbacks. These shortcomings have driven recent research on craniomaxillofacial bone reconstruction to focus on synthetic grafts with distinct materials and fabrication techniques. Among the various fabrication methods, additive manufacturing (AM) has shown significant clinical potential. AM technologies build three-dimensional (3D) objects with personalized geometry customizable from a computer-aided design. These layer-by-layer 3D biomaterial structures can support bone formation by guiding cell migration/proliferation, osteogenesis, and angiogenesis. Additionally, these structures can be engineered to degrade concomitantly with the new bone tissue formation, making them ideal as synthetic grafts. This review delves into the key advances of bioceramic grafts/scaffolds obtained by 3D printing for personalized craniomaxillofacial bone reconstruction. In this regard, clinically relevant topics such as ceramic-based biomaterials, graft/scaffold characteristics (macro/micro-features), material extrusion-based 3D printing, and the step-by-step workflow to engineer personalized bioceramic grafts are discussed. Importantly, in vitro models are highlighted in conjunction with a thorough examination of the signaling pathways reported when investigating these bioceramics and their effect on cellular response/behavior. Lastly, we summarize the clinical potential and translation opportunities of personalized bioceramics for craniomaxillofacial bone regeneration.
Collapse
Affiliation(s)
- Ana Beatriz G de Carvalho
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
- Department of Dental Materials and Prosthodontics, São Paulo State University, São José dos Campos, SP, Brazil
| | - Maedeh Rahimnejad
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Rodrigo L M S Oliveira
- Federal University of São Paulo, Institute of Science and Technology, São José dos Campos, SP, Brazil
| | - Prabaha Sikder
- Department of Mechanical Engineering, Cleveland State University, Cleveland, OH, USA
| | - Guilherme S F A Saavedra
- Department of Dental Materials and Prosthodontics, São Paulo State University, São José dos Campos, SP, Brazil
| | - Sarit B Bhaduri
- Department of Mechanical, Industrial and Manufacturing Engineering, University of Toledo, Toledo, OH, USA
| | - Debby Gawlitta
- Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, Utrecht, The Netherlands
| | - Jos Malda
- Department of Oral and Maxillofacial Surgery & Special Dental Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, Utrecht, The Netherlands
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department of Orthopedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Darnell Kaigler
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Eliandra S Trichês
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
- Federal University of São Paulo, Institute of Science and Technology, São José dos Campos, SP, Brazil
| | - Marco C Bottino
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA.
- Department of Biomedical Engineering, College of Engineering, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
3
|
Nicolae CL, Pîrvulescu DC, Niculescu AG, Epistatu D, Mihaiescu DE, Antohi AM, Grumezescu AM, Croitoru GA. An Up-to-Date Review of Materials Science Advances in Bone Grafting for Oral and Maxillofacial Pathology. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4782. [PMID: 39410353 PMCID: PMC11478239 DOI: 10.3390/ma17194782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/15/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024]
Abstract
Bone grafting in oral and maxillofacial surgery has evolved significantly due to developments in materials science, offering innovative alternatives for the repair of bone defects. A few grafts are currently used in clinical settings, including autografts, xenografts, and allografts. However, despite their benefits, they have some challenges, such as limited availability, the possibility of disease transmission, and lack of personalization for the defect. Synthetic bone grafts have gained attention since they have the potential to overcome these limitations. Moreover, new technologies like nanotechnology, 3D printing, and 3D bioprinting have allowed the incorporation of molecules or substances within grafts to aid in bone repair. The addition of different moieties, such as growth factors, stem cells, and nanomaterials, has been reported to help mimic the natural bone healing process more closely, promoting faster and more complete regeneration. In this regard, this review explores the currently available bone grafts, the possibility of incorporating substances and molecules into their composition to accelerate and improve bone regeneration, and advanced graft manufacturing techniques. Furthermore, the presented current clinical applications and success stories for novel bone grafts emphasize the future potential of synthetic grafts and biomaterial innovations in improving patient outcomes in oral and maxillofacial surgery.
Collapse
Affiliation(s)
- Carmen-Larisa Nicolae
- Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.-L.N.); (D.E.); (A.M.A.); (G.-A.C.)
| | - Diana-Cristina Pîrvulescu
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (D.-C.P.); (A.-G.N.); (D.E.M.)
| | - Adelina-Gabriela Niculescu
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (D.-C.P.); (A.-G.N.); (D.E.M.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - Dragoș Epistatu
- Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.-L.N.); (D.E.); (A.M.A.); (G.-A.C.)
| | - Dan Eduard Mihaiescu
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (D.-C.P.); (A.-G.N.); (D.E.M.)
| | - Alexandru Mihai Antohi
- Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.-L.N.); (D.E.); (A.M.A.); (G.-A.C.)
| | - Alexandru Mihai Grumezescu
- Faculty of Chemical Engineering and Biotechnology, National University of Science and Technology Politehnica Bucharest, 011061 Bucharest, Romania; (D.-C.P.); (A.-G.N.); (D.E.M.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
| | - George-Alexandru Croitoru
- Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (C.-L.N.); (D.E.); (A.M.A.); (G.-A.C.)
| |
Collapse
|
4
|
Nicolas T, Ségolène R, Thierry R, Maeva D, Joelle V, Arnaud P, Ludmila B, Pierre W, Pierre C, Baptiste C. Multiparametric influence of 3D-printed organo-mineral scaffolds on bone regeneration. Sci Rep 2024; 14:20848. [PMID: 39242756 PMCID: PMC11379694 DOI: 10.1038/s41598-024-71698-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 08/30/2024] [Indexed: 09/09/2024] Open
Abstract
The development of synthetic bone substitutes that equal or exceed the efficacy of autologous graft remains challenging. In this study, a rat calvarial defect model was used as a reference to investigate the influence of composition and architecture of 3D-printed cement, with or without bioactives, on tissue regeneration. Printable cement pastes were formulated by combining hyaluronic acid and cement precursors. Cementitious scaffolds were printed with 3 different patterns. After 7 weeks of implantation with or without bone marrow, multiparametric qualitative and quantitative assessments were performed using µCT, SEM, and histology. None of the set-up strategies was as efficient as autologous cancellous bone graft to repair calvarial defects. Nonetheless, the presence of scaffold improved the skull vault closure, particularly when the scaffold was soaked in total bone marrow before implantation. No significant effect of scaffold macro-architecture was observed on tissue mineralization. Magnesium phosphate-based scaffolds (MgP) seemed to induce higher bone formation than their calcium-phosphate-based counterparts. They also displayed a quicker biodegradation and sparse remaining material was found after 7 weeks of implantation. Although further improvements are required to reach clinical settings, this study demonstrated the potential of organo-mineral cements for bone regeneration and highlighted the peculiar properties of MgP-based cements.
Collapse
Affiliation(s)
- Touya Nicolas
- Regenerative Medicine and Skeleton, RMeS UMR 1229, Nantes Université, Oniris, CHU Nantes, INSERM, 44000, Nantes, France
| | - Reiss Ségolène
- Regenerative Medicine and Skeleton, RMeS UMR 1229, Nantes Université, Oniris, CHU Nantes, INSERM, 44000, Nantes, France
| | - Rouillon Thierry
- Regenerative Medicine and Skeleton, RMeS UMR 1229, Nantes Université, Oniris, CHU Nantes, INSERM, 44000, Nantes, France
| | - Dutilleul Maeva
- Regenerative Medicine and Skeleton, RMeS UMR 1229, Nantes Université, Oniris, CHU Nantes, INSERM, 44000, Nantes, France
| | - Veziers Joelle
- Regenerative Medicine and Skeleton, RMeS UMR 1229, Nantes Université, Oniris, CHU Nantes, INSERM, 44000, Nantes, France
| | - Pare Arnaud
- Regenerative Medicine and Skeleton, RMeS UMR 1229, Nantes Université, Oniris, CHU Nantes, INSERM, 44000, Nantes, France
| | - Brasset Ludmila
- Regenerative Medicine and Skeleton, RMeS UMR 1229, Nantes Université, Oniris, CHU Nantes, INSERM, 44000, Nantes, France
| | - Weiss Pierre
- Regenerative Medicine and Skeleton, RMeS UMR 1229, Nantes Université, Oniris, CHU Nantes, INSERM, 44000, Nantes, France
| | - Corre Pierre
- Regenerative Medicine and Skeleton, RMeS UMR 1229, Nantes Université, Oniris, CHU Nantes, INSERM, 44000, Nantes, France
| | - Charbonnier Baptiste
- Regenerative Medicine and Skeleton, RMeS UMR 1229, Nantes Université, Oniris, CHU Nantes, INSERM, 44000, Nantes, France.
| |
Collapse
|
5
|
Natsir Kalla DS, Alkaabi SA, Hendra FN, Nasrun NE, Ruslin M, Forouzanfar T, Helder MN. Stem Cell-Based Tissue Engineering for Cleft Defects: Systematic Review and Meta-Analysis. Cleft Palate Craniofac J 2024; 61:1439-1460. [PMID: 37203174 PMCID: PMC11323438 DOI: 10.1177/10556656231175278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023] Open
Abstract
This study aimed to analyze the efficacy of stem cell-based tissue engineering for the treatment of alveolar cleft (AC) and cleft palate (CP) defects in animal models. Systematic review and meta-analysis. Preclinical studies on alveolar cleft repair in maxillofacial practice. Electronic search was performed using PubMed, Embase, and Cochrane databases. Pre-clinical studies, where stem cell-based tissue engineering was used in the reconstruction of AC and CP in animal models were included. Quality of the selected articles was evaluated using SYRCLE (SYstematic Review Centre for Laboratory animal Experimentation). Review of alveolar cleft bone augmentation interventions in preclinical models. Outcome parameters registered were new bone formation (NBF) and/or bone mineral density (BMD). Thirteen large and twelve small animal studies on AC (21) and CP (4) reconstructions were included. Studies had an unclear-to-high risk of bias. Bone marrow mesenchymal stem cells were the most widely used cell source. Meta-analyses for AC indicated non-significant benefits in favor of: (1) scaffold + cells over scaffold-only (NBF P = .13); and (2) scaffold + cells over empty control (NBF P = .66; BMD P = .31). Interestingly, dog studies using regenerative grafts showed similar to superior bone formation compared to autografts. Meta analysis for the CP group was not possible. AC and CP reconstructions are enhanced by addition of osteogenic cells to biomaterials. Directions and estimates of treatment effect are useful to predict therapeutic efficacy and guide future clinical trials of bone tissue engineering.
Collapse
Affiliation(s)
- Diandra S. Natsir Kalla
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam University Medical Centers and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
- Department of Biochemistry, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Salem A. Alkaabi
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam University Medical Centers and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
- Department of Oral and Maxillofacial Surgery, Fujairah Hospital, Ministry of Health, Fujairah, UAE
| | - Faqi N. Hendra
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam University Medical Centers and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
- Department of Anatomy, Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | - Nisrina E. Nasrun
- Division of Reconstructive Surgery for Oral and Maxillofacial Region, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan
| | - Muhammad Ruslin
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Hasanuddin University, Makassar, Indonesia
| | - Tymour Forouzanfar
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam University Medical Centers and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
- Department of Oral and Maxillofacial Surgery, Leiden University Medical Centre (LUMC), Leiden, The Netherlands
| | - Marco N. Helder
- Department of Oral and Maxillofacial Surgery/Oral Pathology, Amsterdam University Medical Centers and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Rattanapinyopituk K, Chaweewannakorn C, Tangjit N, Dechkunakorn S, Anuwongnukroh N, Sritanaudomchai H. Osteogenic potency of dental stem cell-composite scaffolds in an animal cleft palate model. Heliyon 2024; 10:e36036. [PMID: 39224373 PMCID: PMC11367540 DOI: 10.1016/j.heliyon.2024.e36036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
Objective To evaluate the osteogenic potency of stem cells isolated from human exfoliated deciduous teeth (SHED) in polycaprolactone with gelatin surface modification (PCL-GE) and poly (lactic-co-glycolic acid)-bioactive glass composite (PLGA-bioactive glass (BG)) scaffolds after implantation in a rat cleft model. Methods Cleft palate-like lesions were induced in Sprague-Dawley rats by extracting the right maxillary first molars and drilling the intact alveolar bone. Rats were then divided into five groups: Control, PCL-GE, PCL-GE-SHED, PLGA-BG, and PLGA-BG-SHED, and received corresponding composite scaffolds with/without SHED at the extraction site. Tissue samples were collected at 2, 3, and 6 months post-implantation (4 rats per group). Gross and histological analyses were conducted to assess osteoid or bone formation. Immunohistochemistry for osteocalcin and human mitochondria was performed to evaluate bone components and human stem cell viability in the tissue. Results Bone tissue formation was observed in the PCL-GE and PLGA-BG groups compared to the control, where no bone formation occurred. PLGA-BG scaffolds demonstrated greater bone regeneration potential than PCL-GE over 2-6 months. Additionally, scaffolds with SHED accelerated bone formation compared to scaffolds alone. Osteocalcin expression was detected in all rats, and positive immunoreactivity for human mitochondria was observed in the regenerated bone tissue with PCL-GE-SHED and PLGA-BG-SHED. Conclusion PCL-GE and PLGA-BG composite scaffolds effectively repaired and regenerated bone tissue in rat cleft palate defects. Moreover, scaffolds supplemented with SHED exhibited enhanced osteogenic potency. Clinical significance PCL-GE and PLGA-BG scaffolds, augmented with SHED, emerge as promising biomaterial candidates for addressing cleft repair and advancing bone tissue engineering endeavors.
Collapse
Affiliation(s)
- Kasem Rattanapinyopituk
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | | | - Nathaphon Tangjit
- Department of Orthodontics, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | - Surachai Dechkunakorn
- Department of Orthodontics, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | - Niwat Anuwongnukroh
- Department of Orthodontics, Faculty of Dentistry, Mahidol University, Bangkok, Thailand
| | | |
Collapse
|
7
|
Li N, Wang J, Feng G, Liu Y, Shi Y, Wang Y, Chen L. Advances in biomaterials for oral-maxillofacial bone regeneration: spotlight on periodontal and alveolar bone strategies. Regen Biomater 2024; 11:rbae078. [PMID: 39055303 PMCID: PMC11272181 DOI: 10.1093/rb/rbae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/05/2024] [Accepted: 06/16/2024] [Indexed: 07/27/2024] Open
Abstract
The intricate nature of oral-maxillofacial structure and function, coupled with the dynamic oral bacterial environment, presents formidable obstacles in addressing the repair and regeneration of oral-maxillofacial bone defects. Numerous characteristics should be noticed in oral-maxillofacial bone repair, such as irregular morphology of bone defects, homeostasis between hosts and microorganisms in the oral cavity and complex periodontal structures that facilitate epithelial ingrowth. Therefore, oral-maxillofacial bone repair necessitates restoration materials that adhere to stringent and specific demands. This review starts with exploring these particular requirements by introducing the particular characteristics of oral-maxillofacial bones and then summarizes the classifications of current bone repair materials in respect of composition and structure. Additionally, we discuss the modifications in current bone repair materials including improving mechanical properties, optimizing surface topography and pore structure and adding bioactive components such as elements, compounds, cells and their derivatives. Ultimately, we organize a range of potential optimization strategies and future perspectives for enhancing oral-maxillofacial bone repair materials, including physical environment manipulation, oral microbial homeostasis modulation, osteo-immune regulation, smart stimuli-responsive strategies and multifaceted approach for poly-pathic treatment, in the hope of providing some insights for researchers in this field. In summary, this review analyzes the complex demands of oral-maxillofacial bone repair, especially for periodontal and alveolar bone, concludes multifaceted strategies for corresponding biomaterials and aims to inspire future research in the pursuit of more effective treatment outcomes.
Collapse
Affiliation(s)
- Nayun Li
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Union Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Oral and Maxillofacial Medical Devices and Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jinyu Wang
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Union Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Oral and Maxillofacial Medical Devices and Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Guangxia Feng
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Union Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Oral and Maxillofacial Medical Devices and Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuqing Liu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Union Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Oral and Maxillofacial Medical Devices and Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yunsong Shi
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Union Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Oral and Maxillofacial Medical Devices and Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yifan Wang
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Union Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Oral and Maxillofacial Medical Devices and Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Union Hospital,Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Engineering Research Center for Oral and Maxillofacial Medical Devices and Equipment, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
8
|
Matschke J, Farahzadi S, Sembdner P, Holtzhausen S, Kroschwald L, Korn P, Schröder TA, Keil C, Paetzold-Byhain K, Lauer G, Franke A. A cross-sectional study of the anatomy of the jaws of a central-European caucasian population using cone beam computer tomography as a prerequisite for designing pre-formed calcium phosphate cement scaffolds. Ann Anat 2024; 254:152270. [PMID: 38679148 DOI: 10.1016/j.aanat.2024.152270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/04/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
PURPOSE This study aims to measure the cortical and cancellous bone thickness in the upper and lower jaws, serving as a data template for developing pre-defined calcium phosphate cement primary implant forms. These measurements are crucial for creating a biphasic scaffold. METHODS Forty complete jaws were assessed for cortical bone shape and thickness using statistical analysis and specific software tools. Sex and age were considered, and four groups were created. RESULTS The cumulative thickness of the cortical layer varied from region to region. In both the upper and lower jaws, the cortical layer in the molar region was significantly thicker than in the frontal region. Within the alveolar process, cortical thickness increases with distance from the alveolar crest on both sides. The oral side of the lower jaw is significantly thicker than the vestibular side. For the upper jaw, no significant differences between the oral and vestibular sides were found in this study. Additionally, it is noteworthy that men have a significantly thicker cortical layer than women. Regarding age, no significant overall differences were found. CONCLUSION Mathematical analysis of anatomical forms using polynomial functions improves understanding of jaw anatomy. This approach facilitates the design of patient-specific scaffold structures, minimizing the need for costly and time-consuming planning and enabling more efficient implementation of optimal therapy.
Collapse
Affiliation(s)
- Jan Matschke
- Department of Oral and Maxillofacial Surgery, University Hospital "Carl Gustav Carus" Dresden, Technische Universität Dresden, Dresden 01307, Germany.
| | - Samaneh Farahzadi
- Department of Oral and Maxillofacial Surgery, University Hospital "Carl Gustav Carus" Dresden, Technische Universität Dresden, Dresden 01307, Germany
| | - Philipp Sembdner
- Institute of Machine Elements and Machine Design, Chair of Virtual Product Development, Technische Universität Dresden, Dresden 01062, Germany
| | - Stefan Holtzhausen
- Institute of Machine Elements and Machine Design, Chair of Virtual Product Development, Technische Universität Dresden, Dresden 01062, Germany
| | - Lysann Kroschwald
- Department of Oral and Maxillofacial Surgery, University Hospital "Carl Gustav Carus" Dresden, Technische Universität Dresden, Dresden 01307, Germany
| | - Paula Korn
- Department of Oral and Maxillofacial Surgery, University Hospital "Carl Gustav Carus" Dresden, Technische Universität Dresden, Dresden 01307, Germany
| | - Tom Alexander Schröder
- Department of Oral and Maxillofacial Surgery, University Hospital "Carl Gustav Carus" Dresden, Technische Universität Dresden, Dresden 01307, Germany
| | - Christiane Keil
- Department of Oral and Maxillofacial Surgery, University Hospital "Carl Gustav Carus" Dresden, Technische Universität Dresden, Dresden 01307, Germany; Department of Orthodontics, University Hospital "Carl Gustav Carus" Dresden, Technische Universität Dresden, Dresden 01307, Germany
| | - Kristin Paetzold-Byhain
- Institute of Machine Elements and Machine Design, Chair of Virtual Product Development, Technische Universität Dresden, Dresden 01062, Germany
| | - Günter Lauer
- Department of Oral and Maxillofacial Surgery, University Hospital "Carl Gustav Carus" Dresden, Technische Universität Dresden, Dresden 01307, Germany
| | - Adrian Franke
- Department of Oral and Maxillofacial Surgery, University Hospital "Carl Gustav Carus" Dresden, Technische Universität Dresden, Dresden 01307, Germany
| |
Collapse
|
9
|
Verykokou S, Ioannidis C, Soile S, Angelopoulos C, Theodoridis K, Arampatzis AS, Assimopoulou AN, Christofilos D, Kapourani A, Pantazos I, Barmpalexis P, Boutsi AM, Potsiou C. The Role of Cone Beam Computed Tomography in Periodontology: From 3D Models of Periodontal Defects to 3D-Printed Scaffolds. J Pers Med 2024; 14:207. [PMID: 38392640 PMCID: PMC10890394 DOI: 10.3390/jpm14020207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/05/2024] [Accepted: 02/13/2024] [Indexed: 02/24/2024] Open
Abstract
The treatment of osseous defects around teeth is a fundamental concern within the field of periodontology. Over the years, the method of grafting has been employed to treat bone defects, underscoring the necessity for custom-designed scaffolds that precisely match the anatomical intricacies of the bone cavity to be filled, preventing the formation of gaps that could allow the regeneration of soft tissues. In order to create such a patient-specific scaffold (bone graft), it is imperative to have a highly detailed 3D representation of the bone defect, so that the resulting scaffold aligns with the ideal anatomical characteristics of the bone defect. In this context, this article implements a workflow for designing 3D models out of patient-specific tissue defects, fabricated as scaffolds with 3D-printing technology and bioabsorbable materials, for the personalized treatment of periodontitis. The workflow is based on 3D modeling of the hard tissues around the periodontal defect (alveolar bone and teeth), scanned from patients with periodontitis. Specifically, cone beam computed tomography (CBCT) data were acquired from patients and were used for the reconstruction of the 3D model of the periodontal defect. The final step encompasses the 3D printing of these scaffolds, employing Fused Deposition Modeling (FDM) technology and 3D-bioprinting, with the aim of verifying the design accuracy of the developed methodοlogy. Unlike most existing 3D-printed scaffolds reported in the literature, which are either pre-designed or have a standard structure, this method leads to the creation of highly detailed patient-specific grafts. Greater accuracy and resolution in the macroarchitecture of the scaffolds were achieved during FDM printing compared to bioprinting, with the standard FDM printing profile identified as more suitable in terms of both time and precision. It is easy to follow and has been successfully employed to create 3D models of periodontal defects and 3D-printed scaffolds for three cases of patients, proving its applicability and efficiency in designing and fabricating personalized 3D-printed bone grafts using CBCT data.
Collapse
Affiliation(s)
- Styliani Verykokou
- Laboratory of Photogrammetry, School of Rural, Surveying and Geoinformatics Engineering, National Technical University of Athens, 15780 Athens, Greece
| | - Charalabos Ioannidis
- Laboratory of Photogrammetry, School of Rural, Surveying and Geoinformatics Engineering, National Technical University of Athens, 15780 Athens, Greece
| | - Sofia Soile
- Laboratory of Photogrammetry, School of Rural, Surveying and Geoinformatics Engineering, National Technical University of Athens, 15780 Athens, Greece
| | - Christos Angelopoulos
- Department of Oral Diagnosis and Radiology, School of Dentistry, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Konstantinos Theodoridis
- Laboratory of Organic Chemistry, School of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Athanasios S Arampatzis
- Laboratory of Organic Chemistry, School of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Andreana N Assimopoulou
- Laboratory of Organic Chemistry, School of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Dimitrios Christofilos
- School of Chemical Engineering & Physics Laboratory, Faculty of Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Afroditi Kapourani
- Laboratory of Pharmaceutical Technology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioannis Pantazos
- Laboratory of Pharmaceutical Technology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Panagiotis Barmpalexis
- Laboratory of Pharmaceutical Technology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Argyro-Maria Boutsi
- Laboratory of Photogrammetry, School of Rural, Surveying and Geoinformatics Engineering, National Technical University of Athens, 15780 Athens, Greece
| | - Chryssy Potsiou
- Laboratory of Photogrammetry, School of Rural, Surveying and Geoinformatics Engineering, National Technical University of Athens, 15780 Athens, Greece
| |
Collapse
|
10
|
Sedaghat F, Mahamed P, Sultani AS, Bagherian M, Biglari M, Mohammadzadeh A, Ghasemzadeh S, Barati G, Saburi E. Revisiting Recent Tissue Engineering Technologies in Alveolar Cleft Reconstruction. Curr Stem Cell Res Ther 2024; 19:840-851. [PMID: 37461350 DOI: 10.2174/1574888x18666230717152556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/06/2023] [Accepted: 06/05/2023] [Indexed: 05/15/2024]
Abstract
Tissue engineering and regenerative medicine have received significant attention in treating degenerative disorders and presented unique opportunities for researchers. The latest research on tissue engineering and regenerative medicine to reconstruct the alveolar cleft has been reviewed in this study. Three approaches have been used to reconstruct alveolar cleft: Studies that used only stem cells or biomaterials and studies that reconstructed alveolar defects by tissue engineering using a combination of stem cells and biomaterials. Stem cells, biomaterials, and tissue-engineered constructs have shown promising results in the reconstruction of alveolar defects. However, some contrary issues, including stem cell durability and scaffold stability, were also observed. It seems that more prospective and comprehensive studies should be conducted to fully clarify the exact dimensions of the stem cells and tissue engineering reconstruction method in the therapy of alveolar cleft.
Collapse
Affiliation(s)
- Faraz Sedaghat
- School of Dentistry, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Parham Mahamed
- Student Research Committee, Alborz University of Medical Sciences, Karaj, Iran
| | | | - Mobina Bagherian
- School of Dentistry, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Biglari
- Faculty of Dentistry, Iran University of Medical Sciences, Tehran, Iran
| | - Anisa Mohammadzadeh
- Faculty of Dentistry, Babol University of Medical Sciences, Mazandaran, Iran
| | | | | | - Ehsan Saburi
- Medical Genetics Research center, Mashhad University of medical Sciences, Mashhad, Iran
| |
Collapse
|
11
|
Gupta D, Singh AK, Bellare J. Natural bone inspired core-shell triple-layered gel/PCL/gel 3D printed scaffolds for bone tissue engineering. Biomed Mater 2023; 18:065027. [PMID: 37879307 DOI: 10.1088/1748-605x/ad06c2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/25/2023] [Indexed: 10/27/2023]
Abstract
Despite technological advancements in bone tissue engineering, it is still a challenge to fabricate a scaffold with high bioactivity as well as high mechanical strength that can promote osteogenesis as well as bear load. Here we developed a 3D printed gel-polymer multi-layered hybrid scaffold. The innermost layer is porous gel-based framework made of gelatin/carboxymethyl-chitin/nano-hydroxyapatite and is cryogenically 3D printed. Further, the second and middle layer of micro-engineered polycaprolactone (PCL) is infused in the gel with controlled penetration and tuneable coating thickness. The PCL surface is further coated with a third and final thin layer of gel matrix used for the first layer. This triple-layered structure demonstrates compression strength and modulus of 13.07 ± 1.15 MPa and 21.8 ± 0.82 MPa, respectively, post 8 weeks degradation which is >3000% and >700% than gel scaffold. It also shows degradation of 6.84 ± 0.70% (83% reduction than gel scaffold) after 12 weeks and swelling of 69.09 ± 6.83% (81% reduction) as compared to gel scaffolds. Further, nearly 300%, 250%, 50%, and 440% increase in cellular attachment, proliferation, protein generation, and mineralization, respectively are achieved as compared to only PCL scaffolds. Thus, these hybrid scaffolds offer high mechanical strength, slow degradation rate, high bioactivity, and high osteoconductivity. These multifunctional scaffolds have potential for reconstructing non-load-bearing bone defects like sinus lift, jaw cysts, and moderate load-bearing like reconstructing hard palate, orbital palate, and other craniomaxillofacial bone defects.
Collapse
Affiliation(s)
- Deepak Gupta
- Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, United States of America
- The Huck Institutes of the Life Sciences, Penn State University, University Park, PA 16802, United States of America
| | - Atul Kumar Singh
- Central Research Facility (CRF), Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Jayesh Bellare
- Chemical Engineering Department, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
- Centre for Research in Nanotechnology & Science, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
- Tata Centre for Technology and Design, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
- Wadhwani Research Centre for Bioengineering (WRCB), Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
12
|
Richter RF, Vater C, Korn M, Ahlfeld T, Rauner M, Pradel W, Stadlinger B, Gelinsky M, Lode A, Korn P. Treatment of critical bone defects using calcium phosphate cement and mesoporous bioactive glass providing spatiotemporal drug delivery. Bioact Mater 2023; 28:402-419. [PMID: 37361564 PMCID: PMC10285454 DOI: 10.1016/j.bioactmat.2023.06.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 05/22/2023] [Accepted: 06/01/2023] [Indexed: 06/28/2023] Open
Abstract
Calcium phosphate cements (CPC) are currently widely used bone replacement materials with excellent bioactivity, but have considerable disadvantages like slow degradation. For critical-sized defects, however, an improved degradation is essential to match the tissue regeneration, especially in younger patients who are still growing. We demonstrate that a combination of CPC with mesoporous bioactive glass (MBG) particles led to an enhanced degradation in vitro and in a critical alveolar cleft defect in rats. Additionally, to support new bone formation the MBG was functionalized with hypoxia conditioned medium (HCM) derived from rat bone marrow stromal cells. HCM-functionalized scaffolds showed an improved cell proliferation and the highest formation of new bone volume. This highly flexible material system together with the drug delivery capacity is adaptable to patient specific needs and has great potential for clinical translation.
Collapse
Affiliation(s)
- Richard Frank Richter
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Corina Vater
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Margarete Korn
- Department of Oral and Maxillofacial Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Tilman Ahlfeld
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Martina Rauner
- Department of Medicine III and Center for Healthy Aging, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Winnie Pradel
- Department of Oral and Maxillofacial Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Bernd Stadlinger
- Clinic of Cranio-Maxillofacial and Oral Surgery, Center of Dental Medicine, University of Zurich, Switzerland
| | - Michael Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Anja Lode
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Paula Korn
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
- Department of Oral and Maxillofacial Surgery, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| |
Collapse
|
13
|
Hatt LP, Wirth S, Ristaniemi A, Ciric DJ, Thompson K, Eglin D, Stoddart MJ, Armiento AR. Micro-porous PLGA/ β-TCP/TPU scaffolds prepared by solvent-based 3D printing for bone tissue engineering purposes. Regen Biomater 2023; 10:rbad084. [PMID: 37936893 PMCID: PMC10627288 DOI: 10.1093/rb/rbad084] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/14/2023] [Accepted: 08/31/2023] [Indexed: 11/09/2023] Open
Abstract
The 3D printing process of fused deposition modelling is an attractive fabrication approach to create tissue-engineered bone substitutes to regenerate large mandibular bone defects, but often lacks desired surface porosity for enhanced protein adsorption and cell adhesion. Solvent-based printing leads to the spontaneous formation of micropores on the scaffold's surface upon solvent removal, without the need for further post processing. Our aim is to create and characterize porous scaffolds using a new formulation composed of mechanically stable poly(lactic-co-glycol acid) and osteoconductive β-tricalcium phosphate with and without the addition of elastic thermoplastic polyurethane prepared by solvent-based 3D-printing technique. Large-scale regenerative scaffolds can be 3D-printed with adequate fidelity and show porosity at multiple levels analysed via micro-computer tomography, scanning electron microscopy and N2 sorption. Superior mechanical properties compared to a commercially available calcium phosphate ink are demonstrated in compression and screw pull out tests. Biological assessments including cell activity assay and live-dead staining prove the scaffold's cytocompatibility. Osteoconductive properties are demonstrated by performing an osteogenic differentiation assay with primary human bone marrow mesenchymal stromal cells. We propose a versatile fabrication process to create porous 3D-printed scaffolds with adequate mechanical stability and osteoconductivity, both important characteristics for segmental mandibular bone reconstruction.
Collapse
Affiliation(s)
- Luan P Hatt
- AO Research Institute Davos, 7270 Davos Platz, Switzerland
- Institute for Biomechanics, ETH Zürich, 8093 Zürich, Switzerland
| | - Sylvie Wirth
- AO Research Institute Davos, 7270 Davos Platz, Switzerland
- Institute for Biomechanics, ETH Zürich, 8093 Zürich, Switzerland
| | | | - Daniel J Ciric
- AO Research Institute Davos, 7270 Davos Platz, Switzerland
| | - Keith Thompson
- AO Research Institute Davos, 7270 Davos Platz, Switzerland
- UCB Pharma, SL1 3WE Slough, UK
| | - David Eglin
- AO Research Institute Davos, 7270 Davos Platz, Switzerland
- Mines Saint-Étienne, Université de Lyon, Université Jean Monnet, INSERM, U1059, 42023 Sainbiose, Saint-Étienne, France
| | - Martin J Stoddart
- AO Research Institute Davos, 7270 Davos Platz, Switzerland
- Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79106 Freiburg, Germany
| | - Angela R Armiento
- AO Research Institute Davos, 7270 Davos Platz, Switzerland
- UCB Pharma, SL1 3WE Slough, UK
| |
Collapse
|
14
|
Verykokou S, Ioannidis C, Angelopoulos C. CBCT-Based Design of Patient-Specific 3D Bone Grafts for Periodontal Regeneration. J Clin Med 2023; 12:5023. [PMID: 37568425 PMCID: PMC10419991 DOI: 10.3390/jcm12155023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/13/2023] Open
Abstract
The purpose of this article is to define and implement a methodology for the 3D design of customized patient-specific scaffolds (bone grafts) for the regeneration of periodontal tissues. The prerequisite of the proposed workflow is the three-dimensional (3D) structure of the periodontal defect, i.e., the 3D model of the hard tissues (alveolar bone and teeth) around the periodontal damage, which is proposed to be generated via a segmentation and 3D editing methodology using cone beam computed tomography (CBCT) data. Two types of methodologies for 3D periodontal scaffold (graft) design are described: (i) The methodology of designing periodontal defect customized block grafts and (ii) the methodology of designing extraction socket preservation customized grafts. The application of the proposed methodology for the generation of a 3D model of the hard tissues around periodontal defects of a patient using a CBCT scan and the 3D design of the two aforementioned types of scaffolds for personalized periodontal regenerative treatment shows promising results. The outputs of this work will be used as the basis for the 3D printing of bioabsorbable scaffolds of personalized treatment against periodontitis, which will simultaneously be used as sustained-release drug carriers.
Collapse
Affiliation(s)
- Styliani Verykokou
- Laboratory of Photogrammetry, School of Rural, Surveying and Geoinformatics Engineering, National Technical University of Athens, 15780 Athens, Greece;
| | - Charalabos Ioannidis
- Laboratory of Photogrammetry, School of Rural, Surveying and Geoinformatics Engineering, National Technical University of Athens, 15780 Athens, Greece;
| | - Christos Angelopoulos
- Department of Oral Diagnosis and Radiology, School of Dentistry, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
15
|
Khdairi N, Halilah T, Khandakji M, Bartzela T. Rapid Maxillary Expansion Treatment in Patients with Cleft Lip and Palate: A Survey on Clinical Experience in the European Cleft Centers. J Clin Med 2023; 12:jcm12093159. [PMID: 37176600 PMCID: PMC10179601 DOI: 10.3390/jcm12093159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Cleft lip and palate patients require complex interdisciplinary treatment, including maxillary expansion and secondary alveolar bone grafting. However, the evidence on these treatment procedures and outcomes is lacking. Therefore, this study aimed to survey the subjective observations of European maxillofacial surgeons and orthodontists on the maxillary expansion and bone grafting treatment protocols and the associated complications. An online questionnaire was sent to 131 centers. The questions assessed the participants' demographic data, maxillary expansion and alveolar bone grafting protocols, and the associated complications. Descriptive statistics and a t-test were used to analyze the data. The response rate was 40.5%. The average age for maxillary expansion was 9-10 years. The secondary alveolar bone grafting was planned 5-10 months after the expansion. The most common complications were asymmetric expansion, relapse, and fistula formation. The protocols and materials used vary widely among centers. Anatomical alterations and developmental processes, like tooth eruption adjacent to the cleft, should be seriously considered for treatment planning. This survey showed that there is still a lack of consensus on these treatment procedures. Further clinical trials should focus on long-term outcome evaluation to identify treatment components for optimal alveolar bone substitution and transversal maxillary expansion treatment in patients with clefts.
Collapse
Affiliation(s)
| | | | - Mohannad Khandakji
- Dental Department, Hamad Dental Center, Hamad Medical Cooperation, Doha P.O. Box 3050, Qatar
| | - Theodosia Bartzela
- Department of Orthodontics and Dentofacial Orthopedics, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 14197 Berlin, Germany
- Department of Orthodontics, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, 01307 Dresden, Germany
| |
Collapse
|
16
|
Koushik TM, Miller CM, Antunes E. Bone Tissue Engineering Scaffolds: Function of Multi-Material Hierarchically Structured Scaffolds. Adv Healthc Mater 2023; 12:e2202766. [PMID: 36512599 PMCID: PMC11468595 DOI: 10.1002/adhm.202202766] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/29/2022] [Indexed: 12/15/2022]
Abstract
Bone tissue engineering (BTE) is a topic of interest for the last decade, and advances in materials, processing techniques, and the understanding of bone healing pathways have opened new avenues of research. The dual responsibility of BTE scaffolds in providing load-bearing capability and interaction with the local extracellular matrix to promote bone healing is a challenge in synthetic scaffolds. This article describes the usage and processing of multi-materials and hierarchical structures to mimic the structure of natural bone tissues to function as bioactive and load-bearing synthetic scaffolds. The first part of this literature review describes the physiology of bone healing responses and the interactions at different stages of bone repair. The following section reviews the available literature on biomaterials used for BTE scaffolds followed by some multi-material approaches. The next section discusses the impact of the scaffold's structural features on bone healing and the necessity of a hierarchical distribution in the scaffold structure. Finally, the last section of this review highlights the emerging trends in BTE scaffold developments that can inspire new tissue engineering strategies and truly develop the next generation of synthetic scaffolds.
Collapse
Affiliation(s)
- Tejas M. Koushik
- College of Science and EngineeringJames Cook UniversityTownsvilleQueensland4811Australia
| | - Catherine M. Miller
- College of Medicine and DentistryJames Cook UniversitySmithfieldQueensland4878Australia
| | - Elsa Antunes
- College of Science and EngineeringJames Cook UniversityTownsvilleQueensland4811Australia
| |
Collapse
|
17
|
Kilian D, Holtzhausen S, Groh W, Sembdner P, Czichy C, Lode A, Stelzer R, Gelinsky M. 3D extrusion printing of density gradients by variation of sinusoidal printing paths for tissue engineering and beyond. Acta Biomater 2023; 158:308-323. [PMID: 36563775 DOI: 10.1016/j.actbio.2022.12.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/25/2022]
Abstract
During extrusion printing of pasty biomaterials, internal geometries are mainly adjusted by positioning of straightly deposited strands which does not allow realization of spatially adaptable density gradients in x-, y- and z-direction for anisotropic scaffolds or anatomically shaped constructs. Herein, an alternative concept for printing patterns based on sinusoidal curves was evaluated using a clinically approved calcium phosphate cement (CPC). Infill density in scaffolds was adjusted by varying wavelength and amplitude of a sinus curve. Both wavelength and amplitude factors were defined by multitudes of the applied nozzle diameter. For CPC as a biomaterial ink in bone application, porosity, mechanical stiffness and biological response by seeded immortalized human mesenchymal stem cells - adhesion and pore bridging behavior - were investigated. The internal structure of a xyz-gradient scaffold was proven via X-ray based micro computed tomography (µCT). Silicone was used as a model material to investigate the impact of printing velocity and strand distance on the shape fidelity of the sinus pattern for soft matter printing. The impact of different sinus patterns on mechanical properties was assessed. Density and mechanical properties of CPC scaffolds were successfully adjusted without an adverse effect on adhesion and cell number development. In a proof-of-concept experiment, a sinus-adjusted density gradient in an anatomically shaped construct (human vertebral body) defined via clinical computed tomography (CT) data was demonstrated. This fills a technological gap for extrusion-based printing of freely adjustable, continuously guidable infill density gradients in all spatial directions. STATEMENT OF SIGNIFICANCE: 3D extrusion printing of biomaterials allows the generation of anatomically shaped, patient-specific implants or tissue engineering scaffolds. The density of such a structure is typically adjusted by the strand-to-strand distance of parallel, straight-meandered strands in each deposited layer. By printing in a sinusoidal pattern, design of density gradients is possible with a free, spatial resolution in x-, y- and z-direction. We demonstrated that porosity and mechanical properties can be freely adapted in this way without an adverse effect on cell adhesion. With the example of a CT dataset of a human spine, the anisotropic pattern of a vertebral body was resembled by this printing technique that can be translated to various patterns, materials and application.
Collapse
Affiliation(s)
- David Kilian
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Stefan Holtzhausen
- Institute of Machine Elements and Machine Design, Faculty of Mechanical Engineering, Technische Universität Dresden, Dresden, Germany
| | - Wolfram Groh
- Institute of Machine Elements and Machine Design, Faculty of Mechanical Engineering, Technische Universität Dresden, Dresden, Germany
| | - Philipp Sembdner
- Institute of Machine Elements and Machine Design, Faculty of Mechanical Engineering, Technische Universität Dresden, Dresden, Germany
| | - Charis Czichy
- Chair of Magnetofluiddynamics, Measuring and Automation Technology, Technische Universität Dresden, Dresden, Germany
| | - Anja Lode
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Ralph Stelzer
- Institute of Machine Elements and Machine Design, Faculty of Mechanical Engineering, Technische Universität Dresden, Dresden, Germany
| | - Michael Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
18
|
Richter RF, Ahlfeld T, Gelinsky M, Lode A. Composites consisting of calcium phosphate cements and mesoporous bioactive glasses as a 3D plottable drug delivery system. Acta Biomater 2023; 156:146-157. [PMID: 35063708 DOI: 10.1016/j.actbio.2022.01.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/18/2021] [Accepted: 01/14/2022] [Indexed: 01/18/2023]
Abstract
Calcium phosphate cements (CPC) and mesoporous bioactive glasses (MBG) are two well studied biomaterial groups widely under investigation on their applicability to treat bone defects in orthopaedics and maxillofacial surgery. Recently the extrusion properties of CPC-MBG composites using a pasty CPC based on a hydrophobic carrier-liquid were studied in our group demonstrating that such composites are suitable for low temperature 3D plotting. Based on this work, we show in this study that by variation of the MBG content in the composite the degradation of the final scaffolds can be influenced. Furthermore, by modifying the cement phase and/or the MBG with therapeutically active ions like strontium, the released ion concentration can be varied over a wide range. In a second step the MBG was functionalized exploiting the high specific surface area of the glass as a carrier system for proteins like lysozyme or grow factors. We developed a protocol that allows the incorporation of protein-laden MBG in CPC pastes without impairing the extrudability of the CPC-MBG composites. Additionally, we found that released proteins from pure MBG or 3D plotted composite-scaffolds maintained their biological activity. Therefore, the combination of CPC and MBG allows the creation of a highly flexible composite system making it a promising candidate for bone tissue engineering. STATEMENT OF SIGNIFICANCE: Calcium phosphate cements and mesoporous bioactive glasses are two promising degradable biomaterials for the regenerative treatment of bone defects. The combination of both materials to a 3D printable composite enables the creation of implants with patient specific geometry. By varying the composition of the composite, the degradation behaviour can be influenced and especially the release of therapeutically active ions is tailorable over a wide range. We demonstrated this for strontium, as it has been shown to stimulate bone formation. Moreover, the bioactive glass can be used as a carrier system for drugs or growth factors and we show the successful combination of such functionalised glass particles and a cement paste without affecting the printability.
Collapse
Affiliation(s)
- Richard Frank Richter
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Tilman Ahlfeld
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Michael Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.
| | - Anja Lode
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
19
|
Charbe NB, Tambuwala M, Palakurthi SS, Warokar A, Hromić‐Jahjefendić A, Bakshi H, Zacconi F, Mishra V, Khadse S, Aljabali AA, El‐Tanani M, Serrano‐Aroca Ã, Palakurthi S. Biomedical applications of three-dimensional bioprinted craniofacial tissue engineering. Bioeng Transl Med 2023; 8:e10333. [PMID: 36684092 PMCID: PMC9842068 DOI: 10.1002/btm2.10333] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/12/2022] [Accepted: 04/15/2022] [Indexed: 02/06/2023] Open
Abstract
Anatomical complications of the craniofacial regions often present considerable challenges to the surgical repair or replacement of the damaged tissues. Surgical repair has its own set of limitations, including scarcity of the donor tissues, immune rejection, use of immune suppressors followed by the surgery, and restriction in restoring the natural aesthetic appeal. Rapid advancement in the field of biomaterials, cell biology, and engineering has helped scientists to create cellularized skeletal muscle-like structures. However, the existing method still has limitations in building large, highly vascular tissue with clinical application. With the advance in the three-dimensional (3D) bioprinting technique, scientists and clinicians now can produce the functional implants of skeletal muscles and bones that are more patient-specific with the perfect match to the architecture of their craniofacial defects. Craniofacial tissue regeneration using 3D bioprinting can manage and eliminate the restrictions of the surgical transplant from the donor site. The concept of creating the new functional tissue, exactly mimicking the anatomical and physiological function of the damaged tissue, looks highly attractive. This is crucial to reduce the donor site morbidity and retain the esthetics. 3D bioprinting can integrate all three essential components of tissue engineering, that is, rehabilitation, reconstruction, and regeneration of the lost craniofacial tissues. Such integration essentially helps to develop the patient-specific treatment plans and damage site-driven creation of the functional implants for the craniofacial defects. This article is the bird's eye view on the latest development and application of 3D bioprinting in the regeneration of the skeletal muscle tissues and their application in restoring the functional abilities of the damaged craniofacial tissue. We also discussed current challenges in craniofacial bone vascularization and gave our view on the future direction, including establishing the interactions between tissue-engineered skeletal muscle and the peripheral nervous system.
Collapse
Affiliation(s)
- Nitin Bharat Charbe
- Irma Lerma Rangel College of PharmacyTexas A&M Health Science CenterKingsvilleTexasUSA
| | - Murtaza Tambuwala
- School of Pharmacy and Pharmaceutical ScienceUlster UniversityColeraineUK
| | | | - Amol Warokar
- Department of PharmacyDadasaheb Balpande College of PharmacyNagpurIndia
| | - Altijana Hromić‐Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural SciencesInternational University of SarajevoSarajevoBosnia and Herzegovina
| | - Hamid Bakshi
- School of Pharmacy and Pharmaceutical ScienceUlster UniversityColeraineUK
| | - Flavia Zacconi
- Departamento de Quimica Orgánica, Facultad de Química y de FarmaciaPontificia Universidad Católica de ChileSantiagoChile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological SciencesPontificia Universidad Católica de ChileSantiagoChile
| | - Vijay Mishra
- School of Pharmaceutical SciencesLovely Professional UniversityPhagwaraIndia
| | - Saurabh Khadse
- Department of Pharmaceutical ChemistryR.C. Patel Institute of Pharmaceutical Education and ResearchDhuleIndia
| | - Alaa A. Aljabali
- Faculty of Pharmacy, Department of Pharmaceutical SciencesYarmouk UniversityIrbidJordan
| | - Mohamed El‐Tanani
- Pharmacological and Diagnostic Research Centre, Faculty of PharmacyAl‐Ahliyya Amman UniversityAmmanJordan
| | - Ãngel Serrano‐Aroca
- Biomaterials and Bioengineering Lab Translational Research Centre San Alberto MagnoCatholic University of Valencia San Vicente MártirValenciaSpain
| | - Srinath Palakurthi
- Irma Lerma Rangel College of PharmacyTexas A&M Health Science CenterKingsvilleTexasUSA
| |
Collapse
|
20
|
Bai L, Han Q, Meng Z, Chen B, Qu X, Xu M, Su Y, Qiu Z, Xue Y, He J, Zhang J, Yin Z. Bioprinted living tissue constructs with layer-specific, growth factor-loaded microspheres for improved enthesis healing of a rotator cuff. Acta Biomater 2022; 154:275-289. [PMID: 36328126 DOI: 10.1016/j.actbio.2022.10.058] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/13/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022]
Abstract
Substantial challenges remain in constructing the native tendon-to-bone interface for rotator cuff healing owing to the enthesis tissues' highly organized structural and compositional gradients. Herein, we propose to bioprint living tissue constructs with layer-specific growth factors (GFs) to promote enthesis regeneration by guiding the zonal differentiation of the loaded stem cells in situ. The sustained release of tenogenic, chondrogenic, and osteogenic GFs was achieved via microsphere-based delivery carriers embedded in the bioprinted constructs. Compared to the basal construct without GFs, the layer-specific tissue analogs realized region-specific differentiation of stem cells in vitro. More importantly, bioprinted living tissue constructs with layer-specific GFs rapidly enhanced the enthesis regeneration in a rabbit rotator cuff tear model in terms of biomechanical restoration, collagen deposition, and alignment, showing gradient interface of fibrocartilage structures with aligned collagen fibrils and an ultimate load failure of 154.3 ± 9.5 N resembling those of native enthesis tissues in 12 weeks. This exploration provides a feasible strategy to engineer living tissue constructions with region-specific differentiation potentials for the functional repair of gradient enthesis tissues. STATEMENT OF SIGNIFICANCE: Previous studies that employed acellular layer-specific scaffolds or stem cells for the reconstruction of the rotator cuff faced challenges due to their insufficient capability to rebuild the anisotropic compositional and structural gradients of native enthesis tissues. This manuscript proposed a living tissue construct with layer-specific, GFs-loaded µS, which can direct in situ and region-specific differentiation of the embedded stem cells to tenogenic, chondrogenic, and osteogenic lineages for functional regeneration of the enthesis tissues. This bioprinted living tissue construct with the unique capability to reduce fibrovascular scar tissue formation and simultaneously facilitate enthesis tissue remodeling might provide a promising strategy to repair complex and gradient tissues in the future.
Collapse
Affiliation(s)
- Lang Bai
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Qian Han
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zijie Meng
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Baojun Chen
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, 450003, China
| | - Xiaoli Qu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Meiguang Xu
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yanwen Su
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zhennan Qiu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yuan Xue
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jiankang He
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Jing Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, 229 Taibai North Road, Xi'an 710069, China.
| | - Zhanhai Yin
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| |
Collapse
|
21
|
Moghanian A, Cecen B, Nafisi N, Miri Z, Rosenzweig DH, Miri AK. Review of Current Literature for Vascularized Biomaterials in Dental Repair. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
22
|
Miao Y, Chang YC, Tanna N, Almer N, Chung CH, Zou M, Zheng Z, Li C. Impact of Frontier Development of Alveolar Bone Grafting on Orthodontic Tooth Movement. Front Bioeng Biotechnol 2022; 10:869191. [PMID: 35845390 PMCID: PMC9280714 DOI: 10.3389/fbioe.2022.869191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
Sufficient alveolar bone is a safeguard for achieving desired outcomes in orthodontic treatment. Moving a tooth into an alveolar bony defect may result in a periodontal defect or worse-tooth loss. Therefore, when facing a pathologic situation such as periodontal bone loss, alveolar clefts, long-term tooth loss, trauma, and thin phenotype, bone grafting is often necessary to augment bone for orthodontic treatment purposes. Currently, diverse bone grafts are used in clinical practice, but no single grafting material shows absolutely superior results over the others. All available materials demonstrate pros and cons, most notably donor morbidity and adverse effects on orthodontic treatment. Here, we review newly developed graft materials that are still in the pre-clinical stage, as well as new combinations of existing materials, by highlighting their effects on alveolar bone regeneration and orthodontic tooth movement. In addition, novel manufacturing techniques, such as bioprinting, will be discussed. This mini-review article will provide state-of-the-art information to assist clinicians in selecting grafting material(s) that enhance alveolar bone augmentation while avoiding unfavorable side effects during orthodontic treatment.
Collapse
Affiliation(s)
- Yilan Miao
- School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Yu-Cheng Chang
- Department of Periodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Nipul Tanna
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Nicolette Almer
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Chun-Hsi Chung
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Min Zou
- Key Laboratory of Shannxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- Clinical Research Center of Shannxi Province for Dental and Maxillofacial Diseases, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- Department of Orthodontics, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
| | - Zhong Zheng
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Chenshuang Li
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
23
|
Sangkert S, Juncheed K, Meesane J. Osteoconductive Silk Fibroin Binders for Bone Repair in Alveolar Cleft Palate: Fabrication, Structure, Properties, and In Vitro Testing. J Funct Biomater 2022; 13:jfb13020080. [PMID: 35735935 PMCID: PMC9224859 DOI: 10.3390/jfb13020080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/25/2022] [Accepted: 06/08/2022] [Indexed: 11/16/2022] Open
Abstract
Osteoconductive silk fibroin (SF) binders were fabricated for the bone repair of an alveolar cleft defect. Binders were prefigureared by mixing different ratios of a mixture of random coils and SF aggregation with SF fibrils: 100:0 (SFB100), 75:25 (SFB75), 50:50 (SFB50), 25:75 (SFB25), and 0:100 (SFB0). The gelation, molecular organization, structures, topography, and morphology of the binders were characterized and observed. Their physical, mechanical, and biological properties were tested. The SF binders showed gelation via self-assembly of SF aggregation and fibrillation. SFB75, SFB50, and SFB25 had molecular formation via the amide groups and showed more structural stability than SFB100. The morphology of SFB0 demonstrated the largest pore size. SFB0 showed a lowest hydrophilicity. SFB100 showed the highest SF release. SFB25 had the highest maximum load. SFB50 exhibited the lowest elongation at break. Binders with SF fibrils showed more cell viability and higher cell proliferation, ALP activity, calcium deposition, and protein synthesis than without SF fibrils. Finally, the results were deduced: SFB25 demonstrated suitable performance that is promising for the bone repair of an alveolar cleft defect.
Collapse
|
24
|
3D Plotting of Calcium Phosphate Cement and Melt Electrowriting of Polycaprolactone Microfibers in One Scaffold: A Hybrid Additive Manufacturing Process. J Funct Biomater 2022; 13:jfb13020075. [PMID: 35735931 PMCID: PMC9225379 DOI: 10.3390/jfb13020075] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/31/2022] [Accepted: 06/05/2022] [Indexed: 11/17/2022] Open
Abstract
The fabrication of patient-specific scaffolds for bone substitutes is possible through extrusion-based 3D printing of calcium phosphate cements (CPC) which allows the generation of structures with a high degree of customization and interconnected porosity. Given the brittleness of this clinically approved material, the stability of open-porous scaffolds cannot always be secured. Herein, a multi-technological approach allowed the simultaneous combination of CPC printing with melt electrowriting (MEW) of polycaprolactone (PCL) microfibers in an alternating, tunable design in one automated fabrication process. The hybrid CPC+PCL scaffolds with varying CPC strand distance (800-2000 µm) and integrated PCL fibers featured a strong CPC to PCL interface. While no adverse effect on mechanical stiffness was detected by the PCL-supported scaffold design; the microfiber integration led to an improved integrity. The pore distance between CPC strands was gradually increased to identify at which critical CPC porosity the microfibers would have a significant impact on pore bridging behavior and growth of seeded cells. At a CPC strand distance of 1600 µm, after 2 weeks of cultivation, the incorporation of PCL fibers led to pore coverage by a human mesenchymal stem cell line and an elevated proliferation level of murine pre-osteoblasts. The integrated fabrication approach allows versatile design adjustments on different levels.
Collapse
|
25
|
Grivet-Brancot A, Boffito M, Ciardelli G. Use of Polyesters in Fused Deposition Modeling for Biomedical Applications. Macromol Biosci 2022; 22:e2200039. [PMID: 35488769 DOI: 10.1002/mabi.202200039] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/11/2022] [Indexed: 11/09/2022]
Abstract
In recent years, 3D printing techniques experienced a growing interest in several sectors, including the biomedical one. Their main advantage resides in the possibility to obtain complex and personalized structures in a cost-effective way impossible to achieve with traditional production methods. This is especially true for Fused Deposition Modeling (FDM), one of the most diffused 3D printing methods. The easy customization of the final products' geometry, composition and physico-chemical properties is particularly interesting for the increasingly personalized approach adopted in modern medicine. Thermoplastic polymers are the preferred choice for FDM applications, and a wide selection of biocompatible and biodegradable materials is available to this aim. Moreover, these polymers can also be easily modified before and after printing to better suit the body environment and the mechanical properties of biological tissues. This review focuses on the use of thermoplastic aliphatic polyesters for FDM applications in the biomedical field. In detail, the use of poly(ε-caprolactone), poly(lactic acid), poly(lactic-co-glycolic acid), poly(hydroxyalkanoate)s, thermo-plastic poly(ester urethane)s and their blends has been thoroughly surveyed, with particular attention to their main features, applicability and workability. The state-of-the-art is presented and current challenges in integrating the additive manufacturing technology in the medical practice are discussed. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Arianna Grivet-Brancot
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, 10129, Italy.,Department of Surgical Sciences, Università di Torino, Corso Dogliotti 14, Torino, 10126, Italy
| | - Monica Boffito
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, 10129, Italy
| | - Gianluca Ciardelli
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi, 24, Torino, 10129, Italy
| |
Collapse
|
26
|
Zoabi A, Redenski I, Oren D, Kasem A, Zigron A, Daoud S, Moskovich L, Kablan F, Srouji S. 3D Printing and Virtual Surgical Planning in Oral and Maxillofacial Surgery. J Clin Med 2022; 11:jcm11092385. [PMID: 35566511 PMCID: PMC9104292 DOI: 10.3390/jcm11092385] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 04/15/2022] [Accepted: 04/18/2022] [Indexed: 02/01/2023] Open
Abstract
Compared to traditional manufacturing methods, additive manufacturing and 3D printing stand out in their ability to rapidly fabricate complex structures and precise geometries. The growing need for products with different designs, purposes and materials led to the development of 3D printing, serving as a driving force for the 4th industrial revolution and digitization of manufacturing. 3D printing has had a global impact on healthcare, with patient-customized implants now replacing generic implantable medical devices. This revolution has had a particularly significant impact on oral and maxillofacial surgery, where surgeons rely on precision medicine in everyday practice. Trauma, orthognathic surgery and total joint replacement therapy represent several examples of treatments improved by 3D technologies. The widespread and rapid implementation of 3D technologies in clinical settings has led to the development of point-of-care treatment facilities with in-house infrastructure, enabling surgical teams to participate in the 3D design and manufacturing of devices. 3D technologies have had a tremendous impact on clinical outcomes and on the way clinicians approach treatment planning. The current review offers our perspective on the implementation of 3D-based technologies in the field of oral and maxillofacial surgery, while indicating major clinical applications. Moreover, the current report outlines the 3D printing point-of-care concept in the field of oral and maxillofacial surgery.
Collapse
Affiliation(s)
- Adeeb Zoabi
- Department of Oral and Maxillofacial Surgery, Galilee College of Dental Sciences, Galilee Medical Center, Nahariya 2210001, Israel; (A.Z.); (I.R.); (D.O.); (A.K.); (A.Z.); (S.D.); (L.M.); (F.K.)
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Idan Redenski
- Department of Oral and Maxillofacial Surgery, Galilee College of Dental Sciences, Galilee Medical Center, Nahariya 2210001, Israel; (A.Z.); (I.R.); (D.O.); (A.K.); (A.Z.); (S.D.); (L.M.); (F.K.)
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Daniel Oren
- Department of Oral and Maxillofacial Surgery, Galilee College of Dental Sciences, Galilee Medical Center, Nahariya 2210001, Israel; (A.Z.); (I.R.); (D.O.); (A.K.); (A.Z.); (S.D.); (L.M.); (F.K.)
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Adi Kasem
- Department of Oral and Maxillofacial Surgery, Galilee College of Dental Sciences, Galilee Medical Center, Nahariya 2210001, Israel; (A.Z.); (I.R.); (D.O.); (A.K.); (A.Z.); (S.D.); (L.M.); (F.K.)
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Asaf Zigron
- Department of Oral and Maxillofacial Surgery, Galilee College of Dental Sciences, Galilee Medical Center, Nahariya 2210001, Israel; (A.Z.); (I.R.); (D.O.); (A.K.); (A.Z.); (S.D.); (L.M.); (F.K.)
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Shadi Daoud
- Department of Oral and Maxillofacial Surgery, Galilee College of Dental Sciences, Galilee Medical Center, Nahariya 2210001, Israel; (A.Z.); (I.R.); (D.O.); (A.K.); (A.Z.); (S.D.); (L.M.); (F.K.)
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Liad Moskovich
- Department of Oral and Maxillofacial Surgery, Galilee College of Dental Sciences, Galilee Medical Center, Nahariya 2210001, Israel; (A.Z.); (I.R.); (D.O.); (A.K.); (A.Z.); (S.D.); (L.M.); (F.K.)
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Fares Kablan
- Department of Oral and Maxillofacial Surgery, Galilee College of Dental Sciences, Galilee Medical Center, Nahariya 2210001, Israel; (A.Z.); (I.R.); (D.O.); (A.K.); (A.Z.); (S.D.); (L.M.); (F.K.)
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
| | - Samer Srouji
- Department of Oral and Maxillofacial Surgery, Galilee College of Dental Sciences, Galilee Medical Center, Nahariya 2210001, Israel; (A.Z.); (I.R.); (D.O.); (A.K.); (A.Z.); (S.D.); (L.M.); (F.K.)
- The Azrieli Faculty of Medicine, Bar-Ilan University, Safed 1311502, Israel
- Correspondence:
| |
Collapse
|
27
|
Treatment of Critical Size Femoral Bone Defects with Biomimetic Hybrid Scaffolds of 3D Plotted Calcium Phosphate Cement and Mineralized Collagen Matrix. Int J Mol Sci 2022; 23:ijms23063400. [PMID: 35328820 PMCID: PMC8949113 DOI: 10.3390/ijms23063400] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/11/2022] [Accepted: 03/16/2022] [Indexed: 12/04/2022] Open
Abstract
To treat critical-size bone defects, composite materials and tissue-engineered bone grafts play important roles in bone repair materials. The purpose of this study was to investigate the bone regenerative potential of hybrid scaffolds consisting of macroporous calcium phosphate cement (CPC) and microporous mineralized collagen matrix (MCM). Hybrid scaffolds were synthetized by 3D plotting CPC and then filling with MCM (MCM-CPC group) and implanted into a 5 mm critical size femoral defect in rats. Defects left empty (control group) as well as defects treated with scaffolds made of CPC only (CPC group) and MCM only (MCM group) served as controls. Eight weeks after surgery, micro-computed tomography scans and histological analysis were performed to analyze the newly formed bone, the degree of defect healing and the activity of osteoclasts. Mechanical stability was tested by 3-point-bending of the explanted femora. Compared with the other groups, more newly formed bone was found within MCM-CPC scaffolds. The new bone tissue had a clamp-like structure which was fully connected to the hybrid scaffolds and thereby enhanced the biomechanical strength. Together, the biomimetic hybrid MCM-CPC scaffolds enhanced bone defect healing by improved osseointegration and their differentiated degradation provides spatial effects in the process of critical-bone defect healing.
Collapse
|
28
|
Wickramasinghe ML, Dias GJ, Premadasa KMGP. A novel classification of bone graft materials. J Biomed Mater Res B Appl Biomater 2022; 110:1724-1749. [PMID: 35156317 DOI: 10.1002/jbm.b.35029] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/19/2022]
Affiliation(s)
- Maduni L. Wickramasinghe
- Department of Biomedical Engineering General Sir John Kotelawala Defense University Ratmalana Sri Lanka
| | - George J. Dias
- Department of Anatomy, School of Medical Sciences University of Otago Dunedin New Zealand
| | | |
Collapse
|
29
|
Reyna-Urrutia VA, González-González AM, Rosales-Ibáñez R. Compositions and Structural Geometries of Scaffolds Used in the Regeneration of Cleft Palates: A Review of the Literature. Polymers (Basel) 2022; 14:polym14030547. [PMID: 35160534 PMCID: PMC8840587 DOI: 10.3390/polym14030547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/21/2022] [Accepted: 01/25/2022] [Indexed: 02/04/2023] Open
Abstract
Cleft palate (CP) is one of the most common birth defects, presenting a multitude of negative impacts on the health of the patient. It also leads to increased mortality at all stages of life, economic costs and psychosocial effects. The embryological development of CP has been outlined thanks to the advances made in recent years due to biomolecular successions. The etiology is broad and combines certain environmental and genetic factors. Currently, all surgical interventions work off the principle of restoring the area of the fissure and aesthetics of the patient, making use of bone substitutes. These can involve biological products, such as a demineralized bone matrix, as well as natural–synthetic polymers, and can be supplemented with nutrients or growth factors. For this reason, the following review analyzes different biomaterials in which nutrients or biomolecules have been added to improve the bioactive properties of the tissue construct to regenerate new bone, taking into account the greatest limitations of this approach, which are its use for bone substitutes for large areas exclusively and the lack of vascularity. Bone tissue engineering is a promising field, since it favors the development of porous synthetic substitutes with the ability to promote rapid and extensive vascularization within their structures for the regeneration of the CP area.
Collapse
|
30
|
Ulbrich LM, Balbinot GDS, Brotto GL, Leitune VCB, Soares RMD, Collares FM, Ponzoni D. 3D printing of poly(butylene adipate-co-terephthalate) (PBAT)/niobium containing bioactive glasses (BAGNb) scaffolds: Characterization of composites, in vitro bioactivity, and in vivo bone repair. J Tissue Eng Regen Med 2021; 16:267-278. [PMID: 34923758 DOI: 10.1002/term.3276] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/11/2021] [Accepted: 12/01/2021] [Indexed: 12/19/2022]
Abstract
This study aimed to produce poly(butylene adipate-co-terephthalate) (PBAT)/niobium containing bioactive glasses (BAGNb) composites scaffolds produced by fused deposition modeling (FDM) printing and evaluate their physicochemical and biological properties in vitro and in vivo. The composite filaments were produced by melt-extrusion with the addition of 10 wt% of BAGNb (PBAT/BAGNb). Filaments without BAGNb were produced as the control group (PBAT). The filaments were characterized and were used to produce 3D-printed scaffolds using FDM. The scaffolds' structure and surface properties were assessed. In vitro cell, proliferation, and cell mineralization analysis were performed. In vivo data was obtained in the rat femur model (n = 10), and the bone repair was assessed after 15, 30, and 60 postoperative days. The printed structures presented 69.81% porosity for the PBAT/BAGNb group and 74.54% for the PBAT group. Higher cell mineralization was observed for the PBAT/BAGNb group. The in vivo data showed that the PBAT/BAGNb presented new bone formation comparable to positive controls. The combination of PBAT and BAGNb in 3D-printed scaffolds may be an alternative to produce bioactive materials with controllable shapes and properties for bone regeneration treatments.
Collapse
Affiliation(s)
- Lucienne Miranda Ulbrich
- Oral and Maxillofacial Surgery Unit, School of Dentistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Gabriela de Souza Balbinot
- Dental Materials Laboratory, School of Dentistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | | | - Rosane Michele Duarte Soares
- Polymeric Biomaterials Laboratory (Poli-BIO), Institute of Chemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Fabricio Mezzomo Collares
- Dental Materials Laboratory, School of Dentistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Deise Ponzoni
- Oral and Maxillofacial Surgery Unit, School of Dentistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
31
|
Quality control methods in musculoskeletal tissue engineering: from imaging to biosensors. Bone Res 2021; 9:46. [PMID: 34707086 PMCID: PMC8551153 DOI: 10.1038/s41413-021-00167-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 04/23/2021] [Accepted: 06/27/2021] [Indexed: 02/06/2023] Open
Abstract
Tissue engineering is rapidly progressing toward clinical application. In the musculoskeletal field, there has been an increasing necessity for bone and cartilage replacement. Despite the promising translational potential of tissue engineering approaches, careful attention should be given to the quality of developed constructs to increase the real applicability to patients. After a general introduction to musculoskeletal tissue engineering, this narrative review aims to offer an overview of methods, starting from classical techniques, such as gene expression analysis and histology, to less common methods, such as Raman spectroscopy, microcomputed tomography, and biosensors, that can be employed to assess the quality of constructs in terms of viability, morphology, or matrix deposition. A particular emphasis is given to standards and good practices (GXP), which can be applicable in different sectors. Moreover, a classification of the methods into destructive, noninvasive, or conservative based on the possible further development of a preimplant quality monitoring system is proposed. Biosensors in musculoskeletal tissue engineering have not yet been used but have been proposed as a novel technology that can be exploited with numerous advantages, including minimal invasiveness, making them suitable for the development of preimplant quality control systems.
Collapse
|
32
|
Kilian D, Sembdner P, Bretschneider H, Ahlfeld T, Mika L, Lützner J, Holtzhausen S, Lode A, Stelzer R, Gelinsky M. 3D printing of patient-specific implants for osteochondral defects: workflow for an MRI-guided zonal design. Biodes Manuf 2021. [DOI: 10.1007/s42242-021-00153-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Abstract
Magnetic resonance imaging (MRI) is a common clinical practice to visualize defects and to distinguish different tissue types and pathologies in the human body. So far, MRI data have not been used to model and generate a patient-specific design of multilayered tissue substitutes in the case of interfacial defects. For orthopedic cases that require highly individual surgical treatment, implant fabrication by additive manufacturing holds great potential. Extrusion-based techniques like 3D plotting allow the spatially defined application of several materials, as well as implementation of bioprinting strategies. With the example of a typical multi-zonal osteochondral defect in an osteochondritis dissecans (OCD) patient, this study aimed to close the technological gap between MRI analysis and the additive manufacturing process of an implant based on different biomaterial inks. A workflow was developed which covers the processing steps of MRI-based defect identification, segmentation, modeling, implant design adjustment, and implant generation. A model implant was fabricated based on two biomaterial inks with clinically relevant properties that would allow for bioprinting, the direct embedding of a patient’s own cells in the printing process. As demonstrated by the geometric compatibility of the designed and fabricated model implant in a stereolithography (SLA) model of lesioned femoral condyles, a novel versatile CAD/CAM workflow was successfully established that opens up new perspectives for the treatment of multi-zonal (osteochondral) defects.
Graphic abstract
Collapse
|
33
|
Fairag R, Li L, Ramirez-GarciaLuna JL, Taylor MS, Gaerke B, Weber MH, Rosenzweig DH, Haglund L. A Composite Lactide-Mineral 3D-Printed Scaffold for Bone Repair and Regeneration. Front Cell Dev Biol 2021; 9:654518. [PMID: 34307346 PMCID: PMC8299729 DOI: 10.3389/fcell.2021.654518] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 06/21/2021] [Indexed: 01/08/2023] Open
Abstract
Orthopedic tumor resection, trauma, or degenerative disease surgeries can result in large bone defects and often require bone grafting. However, standard autologous bone grafting has been associated with donor site morbidity and/or limited quantity. As an alternate, allografts with or without metallic or polyether-etherketone have been used as grafting substitutes. However, these may have drawbacks as well, including stress shielding, pseudarthrosis, disease-transmission, and infection. There is therefore a need for alternative bone substitutes, such as the use of mechanically compliant three-dimensional (3D)-printed scaffolds. Several off-the-shelf materials are available for low-cost fused deposition 3D printing such as polylactic acid (PLA) and polycaprolactone (PCL). We have previously described the feasibility of 3D-printed PLA scaffolds to support cell activity and extracellular matrix deposition. In this study, we investigate two medical-grade filaments consistent with specifications found in American Society for Testing and Materials (ASTM) standard for semi-crystalline polylactide polymers for surgical implants, a pure polymer (100M) and a copolymeric material (7415) for their cytocompatibility and suitability in bone tissue engineering. Moreover, we assessed the impact on osteo-inductive properties with the addition of beta-tricalcium phosphate (β-TCP) minerals and assessed their mechanical properties. 100M and 7415 scaffolds with the additive β-TCP demonstrated superior mesenchymal stem cells (MSCs) differentiation detected via increased alkaline phosphatase activity (6-fold and 1.5-fold, respectively) and mineralized matrix deposition (14-fold and 5-fold, respectively) in vitro. Furthermore, we evaluated in vivo compatibility, biosafety and bone repair potential in a rat femur window defect model. 100M+β -TCP implants displayed a positive biosafety profile and showed significantly enhanced new bone formation compared to 100M implants evidenced by μCT (39 versus 25% bone volume/tissue volume ratio) and histological analysis 6 weeks post-implantation. These scaffolds are encouraging composite biomaterials for repairing bone applications with a great potential for clinical translation. Further analyses are required with appropriate evaluation in a larger critical-sized defect animal model with long-term follow-up.
Collapse
Affiliation(s)
- Rayan Fairag
- Department of Surgery, Division of Orthopaedic Surgery, McGill University, Montreal, QC, Canada
- Research Institute of McGill University Health Center, Montreal General Hospital, Montreal, QC, Canada
- Department of Orthopedic Surgery, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Li Li
- Department of Surgery, Division of Orthopaedic Surgery, McGill University, Montreal, QC, Canada
- Research Institute of McGill University Health Center, Montreal General Hospital, Montreal, QC, Canada
| | | | | | | | - Michael H. Weber
- Department of Surgery, Division of Orthopaedic Surgery, McGill University, Montreal, QC, Canada
- Research Institute of McGill University Health Center, Montreal General Hospital, Montreal, QC, Canada
| | - Derek H. Rosenzweig
- Department of Surgery, Division of Orthopaedic Surgery, McGill University, Montreal, QC, Canada
- Research Institute of McGill University Health Center, Montreal General Hospital, Montreal, QC, Canada
| | - Lisbet Haglund
- Department of Surgery, Division of Orthopaedic Surgery, McGill University, Montreal, QC, Canada
- Research Institute of McGill University Health Center, Montreal General Hospital, Montreal, QC, Canada
- Shriners Hospital for Children, Montreal, QC, Canada
| |
Collapse
|
34
|
Muallah D, Sembdner P, Holtzhausen S, Meissner H, Hutsky A, Ellmann D, Assmann A, Schulz MC, Lauer G, Kroschwald LM. Adapting the Pore Size of Individual, 3D-Printed CPC Scaffolds in Maxillofacial Surgery. J Clin Med 2021; 10:jcm10122654. [PMID: 34208695 PMCID: PMC8233728 DOI: 10.3390/jcm10122654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 12/26/2022] Open
Abstract
Three dimensional (3D) printing allows additive manufacturing of patient specific scaffolds with varying pore size and geometry. Such porous scaffolds, made of 3D-printable bone-like calcium phosphate cement (CPC), are suitable for bone augmentation due to their benefit for osteogenesis. Their pores allow blood-, bone- and stem cells to migrate, colonize and finally integrate into the adjacent tissue. Furthermore, the pore size affects the scaffold’s stability. Since scaffolds in maxillofacial surgery have to withstand high forces within the jaw, adequate mechanical properties are of high clinical importance. Although many studies have investigated CPC for bone augmentation, the ideal porosity for specific indications has not been defined yet. We investigated 3D printed CPC cubes with increasing pore sizes and different printing orientations regarding cell migration and mechanical properties in comparison to commercially available bone substitutes. Furthermore, by investigating clinical cases, the scaffolds’ designs were adapted to resemble the in vivo conditions as accurately as possible. Our findings suggest that the pore size of CPC scaffolds for bone augmentation in maxillofacial surgery necessarily needs to be adapted to the surgical site. Scaffolds for sites that are not exposed to high forces, such as the sinus floor, should be printed with a pore size of 750 µm to benefit from enhanced cell infiltration. In contrast, for areas exposed to high pressures, such as the lateral mandible, scaffolds should be manufactured with a pore size of 490 µm to guarantee adequate cell migration and in order to withstand the high forces during the chewing process.
Collapse
Affiliation(s)
- David Muallah
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine “Carl Gustav Carus”, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (D.M.); (G.L.)
| | - Philipp Sembdner
- Department of Mechanical Engineering, Institute of Machine Elements and Machine Design, Technische Universität Dresden, 01062 Dresden, Germany; (P.S.); (S.H.)
| | - Stefan Holtzhausen
- Department of Mechanical Engineering, Institute of Machine Elements and Machine Design, Technische Universität Dresden, 01062 Dresden, Germany; (P.S.); (S.H.)
| | - Heike Meissner
- Department of Prosthetic Dentistry, University Hospital “Carl Gustav Carus”, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany;
| | - André Hutsky
- Organical CAD/CAM, Ruwersteig 43, 12681 Berlin, Germany; (A.H.); (D.E.)
| | - Daniel Ellmann
- Organical CAD/CAM, Ruwersteig 43, 12681 Berlin, Germany; (A.H.); (D.E.)
| | - Antje Assmann
- Zahntechnik Schönberg, Altseidnitz 19, 01277 Dresden, Germany;
| | - Matthias C. Schulz
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, Eberhard Karls Universität Tübingen, Osianderstraße 2-8, 72076 Tübingen, Germany;
| | - Günter Lauer
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine “Carl Gustav Carus”, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (D.M.); (G.L.)
| | - Lysann M. Kroschwald
- Department of Oral and Maxillofacial Surgery, Faculty of Medicine “Carl Gustav Carus”, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany; (D.M.); (G.L.)
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital “Carl Gustav Carus”, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
- Correspondence:
| |
Collapse
|
35
|
Dai J, Fu Y, Chen D, Sun Z. A novel and injectable strontium-containing hydroxyapatite bone cement for bone substitution: A systematic evaluation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 124:112052. [PMID: 33947546 DOI: 10.1016/j.msec.2021.112052] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/03/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022]
Abstract
Reconstruction of bone defects is still a challenge. In this study, we developed and systematically evaluated a novel injectable strontium-containing hydroxyapatite (Sr-HA) bone cement in which Sr-HA powder included 5% Sr and was mixed with a setting liquid that included 5% potassium citrate. This Sr-HA cement was mainly composed of HA and α-tricalcium phosphate (TCP) and exhibited favorable injectability (100%), setting times (the initial setting time was 240 s and the final setting time was 420 s), compressive strength (73.4 MPa), maximal load and maximum bending stress, and excellent radiopacity. In addition, the Sr-HA cement also had excellent biocompatibility that exhibited low cytotoxicity for cell proliferation and no obvious disturbing effect on the osteogenic differentiation of periodontal ligament stem cells (DLSCs) and dental pulp stem cells (DPSCs). However, the Sr-HA cement could slightly promote the osteogenic differentiation of MC3T3 cells, which also implied that it would promote osseointegration between the cement and surrounding bone but would not obviously disturb the biological behavior of DLSCs and DPSCs. An in vivo study further confirmed that Sr-HA cement exhibited favorable osseointegration with the maxilla and tibia. All these findings implied that the novel Sr-HA cement was a suitable bone substitution for bone defects.
Collapse
Affiliation(s)
- Jiewen Dai
- Department of Oral & Cranio-Maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China.
| | - Yuanfei Fu
- Department of Prosthodontics, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China.
| | - Demin Chen
- Biomaterials Research and Test Center, Shanghai Ninth People's Hospital, Shanghai JiaoTong University, School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China.
| | - Zhaoyao Sun
- Biomaterials Research and Test Center, Shanghai Ninth People's Hospital, Shanghai JiaoTong University, School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China.
| |
Collapse
|
36
|
Doonquah L, Holmes PJ, Ranganathan LK, Robertson H. Bone Grafting for Implant Surgery. Oral Maxillofac Surg Clin North Am 2021; 33:211-229. [PMID: 33750652 DOI: 10.1016/j.coms.2021.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Osseous grafting serves to restore form and function to craniofacial defects. These grafts have been used with the aim of enhancing osteoinductive, osteoconductive, and osteogenic properties to address vertical and horizontal defects so as to render the edentulous ridge more amenable to implant placement. As the biology of bone grafts continues to be unearthed, the use of adjuvants to augment grafts has proved effective. Three-dimensional printing, tissue engineering with the use of stem cells, immunotyping and hormonal therapy all hold promise for the future in the thrust to discover the ideal graft.
Collapse
Affiliation(s)
- Ladi Doonquah
- Department of Surgery, University Hospital of the West Indies, 7 Golding Ave, Kingston 7, Jamaica; Faculty of Medicine, University of the West Indies, Kingston 7, Jamaica.
| | - Pierre-John Holmes
- Department of Faciomaxillary Surgery, Kingston Public Hospital, North Street, Kingston, Jamaica
| | - Laxman Kumar Ranganathan
- Department of Faciomaxillary Surgery, Kingston Public Hospital, North Street, Kingston, Jamaica; School of Dentistry, University of the West Indies, Kingston, Jamaica
| | - Hughette Robertson
- Otorhinolaryngology, Department of Surgery, Faculty of Medical Sciences, University of the West Indies, Kingston 7, Jamaica
| |
Collapse
|
37
|
Ahlfeld T, Lode A, Richter RF, Pradel W, Franke A, Rauner M, Stadlinger B, Lauer G, Gelinsky M, Korn P. Toward Biofabrication of Resorbable Implants Consisting of a Calcium Phosphate Cement and Fibrin-A Characterization In Vitro and In Vivo. Int J Mol Sci 2021; 22:ijms22031218. [PMID: 33530649 PMCID: PMC7865817 DOI: 10.3390/ijms22031218] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/14/2021] [Accepted: 01/21/2021] [Indexed: 12/13/2022] Open
Abstract
Cleft alveolar bone defects can be treated potentially with tissue engineered bone grafts. Herein, we developed novel biphasic bone constructs consisting of two clinically certified materials, a calcium phosphate cement (CPC) and a fibrin gel that were biofabricated using 3D plotting. The fibrin gel was loaded with mesenchymal stromal cells (MSC) derived from bone marrow. Firstly, the degradation of fibrin as well as the behavior of cells in the biphasic system were evaluated in vitro. Fibrin degraded quickly in presence of MSC. Our results showed that the plotted CPC structure acted slightly stabilizing for the fibrin gel. However, with passing time and fibrin degradation, MSC migrated to the CPC surface. Thus, the fibrin gel could be identified as cell delivery system. A pilot study in vivo was conducted in artificial craniofacial defects in Lewis rats. Ongoing bone formation could be evidenced over 12 weeks but the biphasic constructs were not completely osseous integrated. Nevertheless, our results show that the combination of 3D plotted CPC constructs and fibrin as suitable cell delivery system enables the fabrication of novel regenerative implants for the treatment of alveolar bone defects.
Collapse
Affiliation(s)
- Tilman Ahlfeld
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus, Faculty of Medicine of Technische Universität Dresden, Fetscherstr 74, 01307 Dresden, Germany; (T.A.); (A.L.); (R.F.R.); (M.G.)
| | - Anja Lode
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus, Faculty of Medicine of Technische Universität Dresden, Fetscherstr 74, 01307 Dresden, Germany; (T.A.); (A.L.); (R.F.R.); (M.G.)
| | - Richard Frank Richter
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus, Faculty of Medicine of Technische Universität Dresden, Fetscherstr 74, 01307 Dresden, Germany; (T.A.); (A.L.); (R.F.R.); (M.G.)
| | - Winnie Pradel
- Department of Oral and Maxillofacial Surgery, University Hospital Carl Gustav Carus, Faculty of Medicine of Technische Universität Dresden, Fetscherstr 74, 01307 Dresden, Germany; (W.P.); (A.F.); (G.L.)
| | - Adrian Franke
- Department of Oral and Maxillofacial Surgery, University Hospital Carl Gustav Carus, Faculty of Medicine of Technische Universität Dresden, Fetscherstr 74, 01307 Dresden, Germany; (W.P.); (A.F.); (G.L.)
| | - Martina Rauner
- Division of Endocrinology, Diabetes and Bone Diseases, Department of Medicine III and Center for Healthy Aging, University Hospital Carl Gustav Carus, Faculty of Medicine of Technische Universität Dresden, Fetscherstr 74, 01307 Dresden, Germany;
| | - Bernd Stadlinger
- Clinic of Cranio-Maxillofacial and Oral Surgery, Center of Dental Medicine, University of Zurich, Plattenstr 11, 8032 Zurich, Switzerland;
| | - Günter Lauer
- Department of Oral and Maxillofacial Surgery, University Hospital Carl Gustav Carus, Faculty of Medicine of Technische Universität Dresden, Fetscherstr 74, 01307 Dresden, Germany; (W.P.); (A.F.); (G.L.)
| | - Michael Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus, Faculty of Medicine of Technische Universität Dresden, Fetscherstr 74, 01307 Dresden, Germany; (T.A.); (A.L.); (R.F.R.); (M.G.)
| | - Paula Korn
- Department of Oral and Maxillofacial Surgery Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Augustenburger Platz 1, 13353 Berlin, Germany
- Correspondence:
| |
Collapse
|
38
|
Kilian D, Ahlfeld T, Akkineni AR, Bernhardt A, Gelinsky M, Lode A. 3D Bioprinting of osteochondral tissue substitutes - in vitro-chondrogenesis in multi-layered mineralized constructs. Sci Rep 2020; 10:8277. [PMID: 32427838 PMCID: PMC7237416 DOI: 10.1038/s41598-020-65050-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/22/2020] [Indexed: 12/13/2022] Open
Abstract
For the generation of multi-layered full thickness osteochondral tissue substitutes with an individual geometry based on clinical imaging data, combined extrusion-based 3D printing (3D plotting) of a bioink laden with primary chondrocytes and a mineralized biomaterial phase was introduced. A pasty calcium phosphate cement (CPC) and a bioink based on alginate-methylcellulose (algMC) - both are biocompatible and allow 3D plotting with high shape fidelity - were applied in monophasic and combinatory design to recreate osteochondral tissue layers. The capability of cells reacting to chondrogenic biochemical stimuli inside the algMC-based 3D hydrogel matrix was assessed. Towards combined osteochondral constructs, the chondrogenic fate in the presence of CPC in co-fabricated and biphasic mineralized pattern was evaluated. Majority of expanded and algMC-encapsulated cells survived the plotting process and the cultivation period, and were able to undergo redifferentiation in the provided environment to produce their respective extracellular matrix (ECM) components (i.e. sulphated glycosaminoglycans, collagen type II), examined after 3 weeks. The presence of a mineralized zone as located in the physiological calcified cartilage region suspected to interfere with chondrogenesis, was found to support chondrogenic ECM production by altering the ionic concentrations of calcium and phosphorus in in vitro culture conditions.
Collapse
Affiliation(s)
- David Kilian
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Tilman Ahlfeld
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Ashwini Rahul Akkineni
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Anne Bernhardt
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Michael Gelinsky
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany
| | - Anja Lode
- Centre for Translational Bone, Joint and Soft Tissue Research, Faculty of Medicine and University Hospital Carl Gustav Carus, TU Dresden, Dresden, Germany.
| |
Collapse
|