1
|
Danafar H, Maleki MN, Moradi AH, Sharafi A, Nedaei K. Preparation and characterization of niosomes containing silver nanoparticles as a radiosensitizer for enhancing radiotherapy of the lung cancer. Sci Rep 2025; 15:14964. [PMID: 40301563 PMCID: PMC12041209 DOI: 10.1038/s41598-025-99696-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Accepted: 04/22/2025] [Indexed: 05/01/2025] Open
Abstract
Lung cancer was associated with a high mortality rate. However, the critical challenges in radiotherapy are enhancing tumor damage and minimize the side effects to the healthy tissues. A strategic approach to overcome this challenge includes using different radiosensitizer to increase the efficiency of radiotherapy while reducing side effects on normal tissues. Significant progress has been achieved in the development of materials based on nanotechnology. Nanomaterial-based radiosensitizers increase the tumor cells sensitivity to ionizing radiation, and accelerating DNA damage through the production of free radicals. Therefore, in the present study, the radio sensitization efficiency of silver nanoparticles-loaded niosomes for the treatment of lung cancer has been investigated. Silver nanoparticles synthesis protocol was based on the chemical reduction method and then they were loaded inside niosomes using the thin layer hydration method. The physical and chemical characteristics of the designed nanosystems were evaluated using different instrumental and laboratory methods, including FT-IR, UV-Vis, DLS, FE-SEM, EDAX techniques. To investigate the cytotoxicity of prepared nanosystems, the MTT assay was used against two cell lines, including normal human lung cells (MRC-5) and lung cancer cells (A549), in the absence and presence of radiotherapy rays. The size and poly dispersity index of the resulting nanoparticles are in the range of Nano scale and are suitable for cancer studies. The morphology of the resulting nanoparticles was found to be spherical and homogeneous. The structural and optical analysis of the nanoparticles showed the successful synthesis of niosomes containing silver nanoparticles. Also, the EDAX technique confirmed the presence of silver nanoparticles inside niosomal formulations. The encapsulation efficiency of silver nanoparticles was 49.9% ± 0.40 for silver nanoparticles. In the following, the biocompatibility of the formulation prepared using the MTT method toward the normal cell line MRC-5 showed that no significant toxicity in the studied concentrations. MTT test toward the A549 lung cancer cell line showed an increase in the toxicity of radiotherapy in lung cancer. Our study showed that silver nanoparticles-loaded niosomal nanosystems possess significant therapeutic efficacy radiotherapy of the lung cancer. On the other hand, loading silver nanoparticles inside niosomal carriers reduced the toxicity of silver nanoparticles and introduced them as a suitable option for cell experiments. Also, we showed that the synthesized formulations in combination with radiotherapy increase the efficiency treatment through its synergistic effect.
Collapse
Affiliation(s)
- Hossein Danafar
- Pharmaceutical Nanotechnology Research Center, Faculty of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran.
- Pharmaceutical Biotechnology Research Center, Faculty of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran.
- Department of Medicinal Chemistry School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, 45139-56184, Iran.
| | - Mahdi Nayyeri Maleki
- Pharmaceutical Nanotechnology Research Center, Faculty of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Amir Hosein Moradi
- Student Research Committee, School of medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Ali Sharafi
- Pharmaceutical Biotechnology Research Center, Faculty of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Kayvan Nedaei
- Pharmaceutical Biotechnology Research Center, Faculty of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
2
|
Jangid H, Joshi HC, Dutta J, Ahmad A, Alshammari MB, Hossain K, Pant G, Kumar G. Advancing food safety with biogenic silver nanoparticles: Addressing antimicrobial resistance, sustainability, and commercial viability. Food Chem X 2025; 26:102298. [PMID: 40109906 PMCID: PMC11919607 DOI: 10.1016/j.fochx.2025.102298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/27/2025] [Accepted: 02/17/2025] [Indexed: 03/22/2025] Open
Abstract
The escalating threat of antimicrobial resistance (AMR), particularly among foodborne pathogens such as Escherichia coli, Salmonella enterica, and Listeria monocytogenes, necessitates innovative solutions beyond conventional antimicrobials. Silver nanoparticles (AgNPs) have garnered significant attention for their broad-spectrum antimicrobial efficacy, ability to target multidrug-resistant strains, and versatile applications across the food sector. This review critically examines AgNPs' integration into food safety strategies, including their roles in antimicrobial food packaging, agricultural productivity enhancement, and livestock disease mitigation. Key advancements in eco-friendly synthesis methods, leveraging algae, agricultural byproducts, and microbial systems, are highlighted as pathways to address scalability, sustainability, and cost constraints. However, the potential risks of silver bioaccumulation, environmental toxicity, and regulatory challenges present significant barriers to their widespread implementation. By reviewing cutting-edge research, this review provides a comprehensive analysis of AgNP efficacy, safety, and commercial viability, proposing a roadmap for overcoming current limitations. It calls for collaborative, interdisciplinary efforts to bridge technological, ecological, and regulatory gaps, positioning AgNPs as a transformative solution for combating AMR and ensuring global food security.
Collapse
Affiliation(s)
- Himanshu Jangid
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, India
| | - Harish Chandra Joshi
- Department of Chemistry, Graphic Era (Deemed to be University), Dehradun 248002, Uttarakhand, India
| | - Joydeep Dutta
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, India
| | - Akil Ahmad
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohammed B Alshammari
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Kaizar Hossain
- Department of Environmental Science, Asutosh College, University of Calcutta, 92, Shyama Prasad Mukherjee Rd, Bhowanipore, Kolkata 700026, West Bengal, India
| | - Gaurav Pant
- Department of Microbiology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, India
| | - Gaurav Kumar
- School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar, Punjab, India
- Amity Institute of Microbial Technology (AIMT), Jaipur, Rajasthan, India
| |
Collapse
|
3
|
Huq MA, Akter S. Bioactive Polymer Materials with Antibacterial Properties: An Editorial. Polymers (Basel) 2025; 17:394. [PMID: 39940596 PMCID: PMC11820381 DOI: 10.3390/polym17030394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 01/25/2025] [Indexed: 02/16/2025] Open
Abstract
Bioactive materials have a wide range of applications, and bioactive materials with antibacterial properties, in particular, have attracted significant medical interest [...].
Collapse
Affiliation(s)
- Md. Amdadul Huq
- Department of Food and Nutrition, College of Biotechnology and Natural Resource, Chung-Ang University, Anseong-si 17546, Republic of Korea
| | - Shahina Akter
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Republic of Korea;
| |
Collapse
|
4
|
Girma A, Alamnie G, Bekele T, Mebratie G, Mekuye B, Abera B, Workineh D, Tabor A, Jufar D. Green-synthesised silver nanoparticles: antibacterial activity and alternative mechanisms of action to combat multidrug-resistant bacterial pathogens: a systematic literature review. GREEN CHEMISTRY LETTERS AND REVIEWS 2024; 17. [DOI: 10.1080/17518253.2024.2412601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 09/30/2024] [Indexed: 01/07/2025]
Affiliation(s)
- Abayeneh Girma
- Department of Biology, College of Natural and Computational Science, Mekdela Amba University, Tulu Awuliya, Ethiopia
| | - Getachew Alamnie
- Department of Biology, College of Natural and Computational Science, Mekdela Amba University, Tulu Awuliya, Ethiopia
| | - Tigabu Bekele
- Department of Chemistry, College of Natural and Computational Science, Mekdela Amba University, Tulu Awuliya, Ethiopia
| | - Gedefaw Mebratie
- Department of Physics, College of Natural and Computational Science, Mekdela Amba University, Tulu Awuliya, Ethiopia
| | - Bawoke Mekuye
- Department of Physics, College of Natural and Computational Science, Mekdela Amba University, Tulu Awuliya, Ethiopia
| | - Birhanu Abera
- Department of Physics, College of Natural and Computational Science, Injibara University, Injibara, Ethiopia
| | - Dereba Workineh
- Department of Forensic Science, College of Crime Investigation and Forensic Science, Ethiopian Police University, Sendafa, Ethiopia
| | - Abay Tabor
- Department of Biology, College of Natural and Computational Science, Mizan-Tepi University, Tepi, Ethiopia
| | - Debela Jufar
- Department of Chemistry, College of Natural and Computational Science, Mizan-Tepi University, Tepi, Ethiopia
| |
Collapse
|
5
|
Zahran E, Elbahnaswy S, Mansour AIA, Risha E, Mustafa A, Alqahtani AS, Sebaei MGE, Ahmed F. Dietary algal-sourced zinc nanoparticles promote growth performance, intestinal integrity, and immune response of Nile tilapia (Oreochromis niloticus). BMC Vet Res 2024; 20:276. [PMID: 38926724 PMCID: PMC11201375 DOI: 10.1186/s12917-024-04077-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/13/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Trace elements play a crucial role in fish nutrition, with zinc (Zn) being one of the most important elements. BIO-sourced zinc nanoparticles were synthesized using the green microalga Pediastrum boryanum (BIO-ZnNPs, 29.35 nm). 30 or 60 mg/ kg dry feed of the BIO-ZnNPs (BIO-ZnNPs30 and BIO-ZnNPs60) were mixed with the Nile tilapia (Oreochromis niloticus) basal diet and fed to the fish for 8 weeks to evaluate their impact on fish growth, digestion, intestinal integrity, antioxidative status, and immunity. RESULTS A significant enhancement was observed in all investigated parameters, except for the serum protein profile. BIO-ZnNPs at 60 mg/kg feed elevated the activities of reduced glutathione (GSH) and catalase (CAT), enzymatic antioxidants, but did not induce oxidative stress as reflected by no change in MDA level. Fish intestinal immunity was improved in a dose-dependent manner, in terms of improved morphometry and a higher count of acid mucin-producing goblet cells. Interleukin-8 (IL-8) was upregulated in BIO-ZnNPs30 compared to BIO-ZnNPs60 and control fish groups, while no significant expressions were noted in tumor necrosis factor-alpha (TNFα), nuclear factor kappa B (NFkB), and Caspase3 genes. CONCLUSION Overall, BIO-ZnNPs inclusion at 60 mg/kg feed showed the most advantage in different scenarios, compared to BIO-ZnNPs at 30 mg/kg feed. The positive effects on growth and intestinal health suggest that BIO-ZnNPs supplementation of aquafeeds has many benefits for farmed fish.
Collapse
Affiliation(s)
- Eman Zahran
- Faculty of Veterinary Medicine, Department of Aquatic Animal Medicine, Mansoura University, Mansoura, 35516, Egypt.
| | - Samia Elbahnaswy
- Faculty of Veterinary Medicine, Department of Aquatic Animal Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Ahmed I A Mansour
- National Institute of Oceanography and Fisheries (NIOF), Cairo, 11516, Egypt
| | - Engy Risha
- Faculty of Veterinary Medicine, Department of Clinical Pathology, Mansoura University, Mansoura, 35516, Egypt
| | - Ahmed Mustafa
- Department of Biological Sciences, Purdue University, Fort Wayne, Indiana, 46805, USA
| | - Arwa Sultan Alqahtani
- College of Science, Department of Chemistry, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 90950, Riyadh, 11623, Saudi Arabia
| | - Mahmoud G El Sebaei
- College of Veterinary Medicine, Department of Biomedical Sciences, King Faisal University, 31982, Al-Ahsa, Saudi Arabia
- Faculty of Veterinary Medicine, Department of Biochemistry and Molecular Biology, Mansoura University, Mansoura, 35516, Egypt
| | - Fatma Ahmed
- Faculty of Science, Department of Zoology, Sohag University, Sohag, 82524, Egypt
| |
Collapse
|
6
|
Zahran E, Elbahnaswy S, Ahmed F, Risha E, Mansour AT, Alqahtani AS, Awadin W, Sebaei MGE. Dietary microalgal-fabricated selenium nanoparticles improve Nile tilapia biochemical indices, immune-related gene expression, and intestinal immunity. BMC Vet Res 2024; 20:107. [PMID: 38500172 PMCID: PMC10946125 DOI: 10.1186/s12917-024-03966-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/04/2024] [Indexed: 03/20/2024] Open
Abstract
BACKGROUND Feed supplements, including essential trace elements are believed to play an important role in augmenting fish immune response. In this context, selenium nanoparticles (SeNPs) in fish diets via a green biosynthesis strategy have attracted considerable interest. In this investigation, selenium nanoparticles (SeNPs, 79.26 nm) synthesized from the green microalga Pediastrum boryanum were incorporated into Nile tilapia diets to explore its beneficial effects on the immune defense and intestinal integrity, in comparison with control basal diets containing inorganic Se source. Nile tilapia (No. 180, 54-57 g) were fed on three formulated diets at concentrations of 0, 0.75, and 1.5 mg/kg of SeNPs for 8 weeks. After the trial completion, tissue bioaccumulation, biochemical indices, antioxidant and pro-inflammatory cytokine-related genes, and intestinal histological examination were analyzed. RESULTS Our finding revealed that dietary SeNPs significantly decreased (P < 0.05) serum alkaline phosphatase (ALP), lactate dehydrogenase (LDH), and cholesterol, while increasing (P < 0.05) high-density lipoproteins (HDL). The Se concentration in the muscle tissues showed a dose-dependent increase. SeNPs at a dose of 1.5 mg/kg significantly upregulated intestinal interleukin 8 (IL-8) and interleukin 1 beta (IL-1β) gene transcription compared with the control diet. Glutathione reductase (GSR) and glutathione synthetase (GSS) genes were significantly upregulated in both SeNPs-supplemented groups compared with the control. No apoptotic changes or cell damages were observed as indicated by proliferating cell nuclear antigen (PCNA) and caspase-3 gene expression and evidenced histopathologically. SeNPs supplementation positively affects mucin-producing goblet cells (GCs), particularly at dose of 1.5 mg/kg. CONCLUSION Therefore, these results suggest that Green synthesized SeNPs supplementation has promising effects on enhancing Nile tilapia immunity and maintaining their intestinal health.
Collapse
Affiliation(s)
- Eman Zahran
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt.
| | - Samia Elbahnaswy
- Department of Aquatic Animal Medicine, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Fatma Ahmed
- Department of Zoology, Faculty of Science, Sohag University, Sohag, 82524, Egypt
| | - Engy Risha
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Abdallah Tageldein Mansour
- Animal and Fish Production Department, College of Agricultural and Food Sciences, King Faisal University, P.O. Box 420, Al-Ahsa, 31982, Saudi Arabia
- Fish and Animal Production Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria, 21531, Egypt
| | - Arwa Sultan Alqahtani
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box, Riyadh, 9095011623, Saudi Arabia
| | - Walaa Awadin
- Department of Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| | - Mahmoud G El Sebaei
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa, 31982, Saudi Arabia
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
7
|
Kim DY, Patel SKS, Rasool K, Lone N, Bhatia SK, Seth CS, Ghodake GS. Bioinspired silver nanoparticle-based nanocomposites for effective control of plant pathogens: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168318. [PMID: 37956842 DOI: 10.1016/j.scitotenv.2023.168318] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 09/15/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023]
Abstract
Plant pathogens, including bacteria, fungi, and viruses, pose significant challenges to the farming community due to their extensive diversity, the rapidly evolving phenomenon of multi-drug resistance (MDR), and the limited availability of effective control measures. Amid mounting global pressure, particularly from the World Health Organization, to limit the use of antibiotics in agriculture and livestock management, there is increasing consideration of engineered nanomaterials (ENMs) as promising alternatives for antimicrobial applications. Studies focusing on the application of ENMs in the fight against MDR pathogens are receiving increasing attention, driven by significant losses in agriculture and critical knowledge gaps in this crucial field. In this review, we explore the potential contributions of silver nanoparticles (AgNPs) and their nanocomposites in combating plant diseases, within the emerging interdisciplinary arena of nano-phytopathology. AgNPs and their nanocomposites are increasingly acknowledged as promising countermeasures against plant pathogens, owing to their unique physicochemical characteristics and inherent antimicrobial properties. This review explores recent advancements in engineered nanocomposites, highlights their diverse mechanisms for pathogen control, and draws attention to their potential in antibacterial, antifungal, and antiviral applications. In the discussion, we briefly address three crucial dimensions of combating plant pathogens: green synthesis approaches, toxicity-environmental concerns, and factors influencing antimicrobial efficacy. Finally, we outline recent advancements, existing challenges, and prospects in scholarly research to facilitate the integration of nanotechnology across interdisciplinary fields for more effective treatment and prevention of plant diseases.
Collapse
Affiliation(s)
- Dae-Young Kim
- Department of Biological and Environmental Science, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Republic of Korea
| | | | - Kashif Rasool
- Qatar Environment and Energy Research Institute (QEERI), Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Nasreena Lone
- School of Allied Healthcare and Sciences, JAIN Deemed University, Whitefield, Bangalore 560066, India
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | | | - Gajanan Sampatrao Ghodake
- Department of Biological and Environmental Science, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si 10326, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
8
|
Kwon YM, Cho ES, Kim KW, Chung D, Bae SS, Yu WJ, Kim JYH, Choi G. Synthesis of Silver Nanoparticles Using Aggregatimonas sangjinii F202Z8 T and Their Biological Characterization. Microorganisms 2023; 11:2975. [PMID: 38138119 PMCID: PMC10745322 DOI: 10.3390/microorganisms11122975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
The aim of this study is to describe the general features and eco-friendly biosynthesis of silver nanoparticles (AgNPs) from the marine bacterium Aggregatimonas sangjinii F202Z8T. To the best of our knowledge, no previous study has reported the biosynthesis of AgNPs using this strain. The formation of AgNPs using F202Z8T was synthesized intracellularly without the addition of any disturbing factors, such as antibiotics, nutrient stress, or electron donors. The AgNPs were examined using UV-vis spectrophotometry, transmission electron microscopy, energy-dispersive X-ray spectroscopy, nanoparticle tracking analysis, and Fourier transform infrared spectrometry. The UV-vis spectrum showed a peak for the synthesized AgNPs at 465 nm. The AgNPs were spherical, with sizes ranging from 27 to 82 nm, as denoted by TEM and NTA. FTIR showed various biomolecules including proteins and enzymes that may be involved in the synthesis and stabilization of AgNPs. Notably, the AgNPs demonstrated broad-spectrum antibacterial effects against various pathogenic Gram-positive and Gram-negative bacteria, including Escherichia coli, Bacillus subtilis, and Staphylococcus aureus. The minimum inhibitory concentrations and minimum bactericidal concentrations of the F202Z8T-formed AgNPs were 80 and 100 µg/mL, 40 and 50 µg/mL, and 30 and 40 µg/mL against E. coli, B. subtilis, and S. aureus, respectively. This study suggests that A. sangjinii F202Z8T is a candidate for the efficient synthesis of AgNPs and may be suitable for the formulation of new types of bactericidal substances.
Collapse
Affiliation(s)
- Yong Min Kwon
- Department of Microbial Resource, National Marine Biodiversity Institute of Korea, Seocheon 33662, Chungcheongnam-do, Republic of Korea; (Y.M.K.); (E.-S.C.); (D.C.); (S.S.B.); (W.-J.Y.); (J.Y.H.K.)
| | - Eun-Seo Cho
- Department of Microbial Resource, National Marine Biodiversity Institute of Korea, Seocheon 33662, Chungcheongnam-do, Republic of Korea; (Y.M.K.); (E.-S.C.); (D.C.); (S.S.B.); (W.-J.Y.); (J.Y.H.K.)
| | - Kyung Woo Kim
- Department of Natural Products, National Marine Biodiversity Institute of Korea, Seocheon 33662, Chungcheongnam-do, Republic of Korea;
| | - Dawoon Chung
- Department of Microbial Resource, National Marine Biodiversity Institute of Korea, Seocheon 33662, Chungcheongnam-do, Republic of Korea; (Y.M.K.); (E.-S.C.); (D.C.); (S.S.B.); (W.-J.Y.); (J.Y.H.K.)
| | - Seung Seob Bae
- Department of Microbial Resource, National Marine Biodiversity Institute of Korea, Seocheon 33662, Chungcheongnam-do, Republic of Korea; (Y.M.K.); (E.-S.C.); (D.C.); (S.S.B.); (W.-J.Y.); (J.Y.H.K.)
| | - Woon-Jong Yu
- Department of Microbial Resource, National Marine Biodiversity Institute of Korea, Seocheon 33662, Chungcheongnam-do, Republic of Korea; (Y.M.K.); (E.-S.C.); (D.C.); (S.S.B.); (W.-J.Y.); (J.Y.H.K.)
| | - Jaoon Young Hwan Kim
- Department of Microbial Resource, National Marine Biodiversity Institute of Korea, Seocheon 33662, Chungcheongnam-do, Republic of Korea; (Y.M.K.); (E.-S.C.); (D.C.); (S.S.B.); (W.-J.Y.); (J.Y.H.K.)
| | - Grace Choi
- Department of Microbial Resource, National Marine Biodiversity Institute of Korea, Seocheon 33662, Chungcheongnam-do, Republic of Korea; (Y.M.K.); (E.-S.C.); (D.C.); (S.S.B.); (W.-J.Y.); (J.Y.H.K.)
| |
Collapse
|
9
|
Huq MA, Apu MAI, Ashrafudoulla M, Rahman MM, Parvez MAK, Balusamy SR, Akter S, Rahman MS. Bioactive ZnO Nanoparticles: Biosynthesis, Characterization and Potential Antimicrobial Applications. Pharmaceutics 2023; 15:2634. [PMID: 38004613 PMCID: PMC10675506 DOI: 10.3390/pharmaceutics15112634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/22/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
In recent years, biosynthesized zinc oxide nanoparticles (ZnONPs) have gained tremendous attention because of their safe and non-toxic nature and distinctive biomedical applications. A diverse range of microbes (bacteria, fungi and yeast) and various parts (leaf, root, fruit, flower, peel, stem, etc.) of plants have been exploited for the facile, rapid, cost-effective and non-toxic synthesis of ZnONPs. Plant extracts, microbial biomass or culture supernatant contain various biomolecules including enzymes, amino acids, proteins, vitamins, alkaloids, flavonoids, etc., which serve as reducing, capping and stabilizing agents during the biosynthesis of ZnONPs. The biosynthesized ZnONPs are generally characterized using UV-VIS spectroscopy, TEM, SEM, EDX, XRD, FTIR, etc. Antibiotic resistance is a serious problem for global public health. Due to mutation, shifting environmental circumstances and excessive drug use, the number of multidrug-resistant pathogenic microbes is continuously rising. To solve this issue, novel, safe and effective antimicrobial agents are needed urgently. Biosynthesized ZnONPs could be novel and effective antimicrobial agents because of their safe and non-toxic nature and powerful antimicrobial characteristics. It is proven that biosynthesized ZnONPs have strong antimicrobial activity against various pathogenic microorganisms including multidrug-resistant bacteria. The possible antimicrobial mechanisms of ZnONPs are the generation of reactive oxygen species, physical interactions, disruption of the cell walls and cell membranes, damage to DNA, enzyme inactivation, protein denaturation, ribosomal destabilization and mitochondrial dysfunction. In this review, the biosynthesis of ZnONPs using microbes and plants and their characterization have been reviewed comprehensively. Also, the antimicrobial applications and mechanisms of biosynthesized ZnONPs against various pathogenic microorganisms have been highlighted.
Collapse
Affiliation(s)
- Md. Amdadul Huq
- Department of Food and Nutrition, College of Biotechnology and Natural Resource, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Md. Aminul Islam Apu
- Department of Nutrition and Hospitality Management, The University of Mississippi, Oxford, MS 38677, USA;
| | - Md. Ashrafudoulla
- Department of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea;
| | - Md. Mizanur Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia 7003, Bangladesh;
| | | | - Sri Renukadevi Balusamy
- Department of Food Science and Technology, Sejong University, Seoul 05006, Republic of Korea;
| | - Shahina Akter
- Department of Food Science and Biotechnology, Gachon University, Seongnam 13120, Republic of Korea;
| | - Md. Shahedur Rahman
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| |
Collapse
|
10
|
Abu Hassan MS, Elias NA, Hassan M, Rahmah S, Wan Ismail WI, Harun NA. Polychaeta-mediated synthesis of gold nanoparticles: A potential antibacterial agent against Acute Hepatopancreatic Necrosis Disease (AHPND)-causing bacteria, Vibrio parahaemolyticus. Heliyon 2023; 9:e21663. [PMID: 37954386 PMCID: PMC10632522 DOI: 10.1016/j.heliyon.2023.e21663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/08/2023] [Accepted: 10/25/2023] [Indexed: 11/14/2023] Open
Abstract
Gold nanoparticles (AuNPs) have emerged as a promising application in aquaculture. Their nano-sized dimensions, comparable to pathogens offer potential solutions for combating antibiotic resistance. In this study, AuNPs were synthesized by using polychaetes, Marphysa moribidii as the bio-reducing agent. Modifications were made to reduce agglomeration in green-synthesized AuNPs through ultrasonication. The antibacterial activities of AuNPs against V. parahaemolyticus were evaluated. The physicochemical characteristics of the green synthesized AuNPs were comprehensively investigated. The successful formation of AuNPs was confirmed by the appearance of a red ruby colour and the presence of surface Plasmon resonance (SPR) absorption peaks at 530 nm as observed from UV-vis spectroscopy. Scanning electron microscopy (SEM) revealed spherical-shaped AuNPs with some agglomerations. Transmission electron microscopy (TEM) showed particle size of AuNPs ranging from 10 nm to 60 nm, meanwhile dynamic light scattering (DLS) analysis indicated an average particle size of 24.36 nm. X-ray diffraction (XRD) analysis confirmed the high crystallinity of AuNPs, and no AuNPs were detected in the polychaetes extracts prior to synthesis. A brief ultrasonication significantly reduced the tendencies for AuNPs to coalesce. The green-synthesized AuNPs demonstrated a remarkable antibacterial efficacy against V. parahaemolyticus. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) tests revealed that a concentration of 0.3 g/ml of AuNPs effectively inhibited V. parahaemolyticus. These findings highlighted the potential of green-synthesized AuNPs as antibacterial agents for the prevention and management of AHPND in aquaculture.
Collapse
Affiliation(s)
- Mohamad Sofi Abu Hassan
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Nurul Ashikin Elias
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Marina Hassan
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Sharifah Rahmah
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
- Faculty of Fisheries and Aquaculture Sciences, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Wan Iryani Wan Ismail
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
- Cell Signalling and Biotechnology Research Group (CeSBTech), Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Noor Aniza Harun
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
- Advanced Nano Materials (ANOMA) Research Group, Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
11
|
Huq MA, Khan AA, Alshehri JM, Rahman MS, Balusamy SR, Akter S. Bacterial mediated green synthesis of silver nanoparticles and their antibacterial and antifungal activities against drug-resistant pathogens. ROYAL SOCIETY OPEN SCIENCE 2023; 10:230796. [PMID: 37885988 PMCID: PMC10598446 DOI: 10.1098/rsos.230796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/12/2023] [Indexed: 10/28/2023]
Abstract
In the healthcare sector, the production of bioactive silver nanoparticles (AgNPs) with antimicrobial properties is of great importance. In this study, a novel bacterial strain, Paenibacillus sp. MAHUQ-63, was identified as a potential candidate for facile and rapid biosynthesis of AgNPs. The synthesized AgNPs were used to control the growth of human pathogens, Salmonella Enteritidis and Candida albicans. The bacterial culture supernatant was used to synthesize the nanoparticles (NPs). Field emission transmission electron microscope examination showed spherical-shaped NPs with 15-55 nm in size. Fourier transform-infrared analysis identified various functional groups. The synthesized AgNPs demonstrated remarkable activity against S. Enteritidis and C. albicans. The zones of inhibition for 100 µl (0.5 mg ml-1) of AgNPs against S. Enteritidis and C. albicans were 18.0 ± 1.0 and 19.5 ± 1.3 mm, respectively. The minimum inhibitory concentrations were 25.0 and 12.5 µg ml-1 against S. Enteritidis and C. albicans, respectively. Additionally, the minimum bactericidal concentrations were 25.0 µg ml-1 against both pathogenic microbes. The field emission scanning electron microscopy analysis showed that the treatment of AgNPs caused morphological and structural damage to both S. Enteritidis and C. albicans. Therefore, these AgNPs can be used as a new and effective antimicrobial agent.
Collapse
Affiliation(s)
- Md. Amdadul Huq
- Department of Food and Nutrition, College of Biotechnology and Natural Resource, Chung-Ang University, Anseong, Gyeonggi-do 17546, Republic of Korea
| | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Jamilah M. Alshehri
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Md. Shahedur Rahman
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Sri Renukadevi Balusamy
- Department of Food Science and Technology, Sejong University, Seoul 143-747, Republic of Korea
| | - Shahina Akter
- Department of Food Science and Biotechnology, Gachon University, Seongnam 461-701, Republic of Korea
| |
Collapse
|
12
|
Kah Sem NAD, Abd Gani S, Chong CM, Natrah I, Shamsi S. Management and Mitigation of Vibriosis in Aquaculture: Nanoparticles as Promising Alternatives. Int J Mol Sci 2023; 24:12542. [PMID: 37628723 PMCID: PMC10454253 DOI: 10.3390/ijms241612542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 08/27/2023] Open
Abstract
Vibriosis is one of the most common diseases in marine aquaculture, caused by bacteria belonging to the genus Vibrio, that has been affecting many species of economically significant aquatic organisms around the world. The prevention of vibriosis in aquaculture is difficult, and the various treatments for vibriosis have their limitations. Therefore, there is an imperative need to find new alternatives. This review is based on the studies on vibriosis, specifically on the various treatments and their limitations, as well as the application of nanoparticles in aquaculture. One of the promising nanoparticles is graphene oxide (GO), which has been used in various applications, particularly in biological applications such as biosensors, drug delivery, and potential treatment for infectious diseases. GO has been shown to have anti-bacterial properties against both Gram-positive and Gram-negative bacteria, but no research has been published that emphasizes its impact on Vibrio spp. The review aims to explore the potential use of GO for treatment against vibriosis.
Collapse
Affiliation(s)
- Nuan Anong Densaad Kah Sem
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (N.A.D.K.S.); (S.A.G.)
| | - Shafinaz Abd Gani
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (N.A.D.K.S.); (S.A.G.)
| | - Chou Min Chong
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia; (C.M.C.); (I.N.)
| | - Ikhsan Natrah
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Malaysia; (C.M.C.); (I.N.)
| | - Suhaili Shamsi
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Malaysia; (N.A.D.K.S.); (S.A.G.)
| |
Collapse
|
13
|
Khojasteh-Taheri R, Ghasemi A, Meshkat Z, Sabouri Z, Mohtashami M, Darroudi M. Green Synthesis of Silver Nanoparticles Using Salvadora persica and Caccinia macranthera Extracts: Cytotoxicity Analysis and Antimicrobial Activity Against Antibiotic-Resistant Bacteria. Appl Biochem Biotechnol 2023; 195:5120-5135. [PMID: 36847984 DOI: 10.1007/s12010-023-04407-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2023] [Indexed: 03/01/2023]
Abstract
Silver nanoparticles (AgNPs) have gained great interest because of their specific and distinct properties. Chemically synthesized AgNPs (cAgNPs) are often unsuitable for medical applications due to requiring toxic and hazardous solvents. Thus, green synthesis of AgNPs (gAgNPs) using safe and nontoxic substances has attracted particular focus. The current study investigated the potential of Salvadora persica and Caccinia macranthera extracts in the synthesis of CmNPs and SpNPs, respectively. Aqueous extracts of Salvadora persica and Caccinia macranthera were prepared and taken as reducing and stabilizing agents through gAgNPs synthesis. The antimicrobial effects of gAgNPs against susceptible and antibiotic-resistant bacterial strains and their toxicity effects on L929 fibroblast normal cells were evaluated. TEM images and particle size distribution analysis showed that the CmNPs and SpNPs have average sizes of 14.8 nm and 39.4 nm, respectively. The XRD confirms the crystalline nature and purity of both CmNPs and SpNPs. FTIR results demonstrate the involvement of the biologically active substances of both plant extracts in the green synthesis of AgNPs. According to MIC and MBC results, higher antimicrobial effects were seen for CmNPs with a smaller size than SpNPs. In addition, CmNPs and SpNPs were much less cytotoxic when examined against a normal cell relative to cAgNPs. Based on high efficacy in controlling antibiotic-resistant pathogens without detrimental adverse effects, CmNPs may have the capacity to be used in medicine as imaging, drug carrier, and antibacterial and anticancer agents.
Collapse
Affiliation(s)
| | - Ahmad Ghasemi
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Zahra Meshkat
- Antimicrobial Resistance Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Sabouri
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahnaz Mohtashami
- Department of Microbiology, Neyshabur Islamic Azad University of Sciences, Neyshabur, Iran.
| | - Majid Darroudi
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran.
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
14
|
Nie X, Zhu Z, Lu H, Xue M, Tan Z, Zhou J, Xin Y, Mao Y, Shi H, Zhang D. Assembly of selenium nanoparticles by protein coronas composed of yeast protease A. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.03.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
15
|
Al-Otibi F, Alshammry NA, Alharbi RI, Bin-Jumah MN, AlSubaie MM. Silver Nanoparticles of Artemisia sieberi Extracts: Chemical Composition and Antimicrobial Activities. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112093. [PMID: 37299074 DOI: 10.3390/plants12112093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND Artemisia sieberi (mugwort) is a member of the daisy family Asteraceae and is widely propagated in Saudi Arabia. A. sieberi has historical medical importance in traditional societies. The current study aimed to assess the antibacterial and antifungal characteristics of the aqueous and ethanolic extracts of A. sieberi. In addition, the study investigated the effect of silver nanoparticles (AgNPs) synthesized from the A. sieberi extract. METHODS The ethanolic and aqueous extracts and AgNPs were prepared from the shoots of A. sieberi. The characteristics of AgNPs were assessed by UV-visible spectroscopy, transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and dynamic light scattering (DLS). The antibacterial experiments were performed against Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Pseudomonas aeruginosa. The fungal species used were Candida parapsilosis, Candida krusei, Candida famata, Candida rhodotorula, and Candida albicans. The antibacterial and antifungal characteristics were evaluated by measuring the diameter of growing organisms in Petri dishes treated with different concentrations of either extracts or AgNPs compared to the untreated controls. Furthermore, TEM imaging was used to investigate any ultrastructure changes in the microbes treated with crude extracts and AgNO3. RESULTS The ethanolic and aqueous extracts significantly decreased the growth of E. coli, S. aureus, and B. subtilis (p < 0.001), while P. aeruginosa was not affected. Unlike crude extracts, AgNPs had more substantial antibacterial effects against all species. In addition, the mycelial growth of C. famata was reduced by the treatment of both extracts. C. krusei mycelial growth was decreased by the aqueous extract, while the growth of C. parapsilosis was affected by the ethanolic extract and AgNPs (p < 0.001). None of the treatments affected the growth of C. albicans or C. rhodotorula. TEM analysis showed cellular ultrastructure changes in the treated S. aureus and C. famata compared to the control. CONCLUSION The biosynthesized AgNPs and extracts of A. sieberi have a potential antimicrobial characteristic against pathogenic bacterial and fungal strains and nullified resistance behavior.
Collapse
Affiliation(s)
- Fatimah Al-Otibi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - Nourah A Alshammry
- Department of Biology, College of Science, Health Science Research Center, Princess Nourah Bint Abdulrahman University, Riyadh 11474, Saudi Arabia
| | - Raedah I Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| | - May N Bin-Jumah
- Department of Biology, College of Science, Health Science Research Center, Princess Nourah Bint Abdulrahman University, Riyadh 11474, Saudi Arabia
- Environment and Biomaterial Unit, Health Sciences Research Center, Princess Nourah Bint Abdulrahman University, Riyadh 11474, Saudi Arabia
- Saudi Society for Applied Science, Princess Nourah Bint Abdulrahman University, Riyadh 11474, Saudi Arabia
| | - Maha M AlSubaie
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 22452, Riyadh 11495, Saudi Arabia
| |
Collapse
|
16
|
Carrapiço A, Martins MR, Caldeira AT, Mirão J, Dias L. Biosynthesis of Metal and Metal Oxide Nanoparticles Using Microbial Cultures: Mechanisms, Antimicrobial Activity and Applications to Cultural Heritage. Microorganisms 2023; 11:microorganisms11020378. [PMID: 36838343 PMCID: PMC9960935 DOI: 10.3390/microorganisms11020378] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/21/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Nanoparticles (1 to 100 nm) have unique physical and chemical properties, which makes them suitable for application in a vast range of scientific and technological fields. In particular, metal nanoparticle (MNPs) research has been showing promising antimicrobial activities, paving the way for new applications. However, despite some research into their antimicrobial potential, the antimicrobial mechanisms are still not well determined. Nanoparticles' biosynthesis, using plant extracts or microorganisms, has shown promising results as green alternatives to chemical synthesis; however, the knowledge regarding the mechanisms behind it is neither abundant nor consensual. In this review, findings from studies on the antimicrobial and biosynthesis mechanisms of MNPs were compiled and evidence-based mechanisms proposed. The first revealed the importance of enzymatic disturbance by internalized metal ions, while the second illustrated the role of reducing and negatively charged molecules. Additionally, the main results from recent studies (2018-2022) on the biosynthesis of MNPs using microorganisms were summarized and analyzed, evidencing a prevalence of research on silver nanoparticles synthesized using bacteria aiming toward testing their antimicrobial potential. Finally, a synopsis of studies on MNPs applied to cultural heritage materials showed potential for their future use in preservation.
Collapse
Affiliation(s)
- António Carrapiço
- HERCULES Laboratory, Cultural Heritage, Studies and Safeguard, University of Évora, 7000-809 Évora, Portugal
- Institute for Research and Advanced Training (IIFA), University of Évora, 7000-809 Évora, Portugal
| | - Maria Rosário Martins
- HERCULES Laboratory, Cultural Heritage, Studies and Safeguard, University of Évora, 7000-809 Évora, Portugal
- Department of Medicinal Sciences and Health, School of Health and Human Development, University of Évora, 7000-671 Évora, Portugal
| | - Ana Teresa Caldeira
- HERCULES Laboratory, Cultural Heritage, Studies and Safeguard, University of Évora, 7000-809 Évora, Portugal
- Department of Chemistry and Biochemistry, School of Sciences and Technology, University of Évora, 7000-671 Évora, Portugal
| | - José Mirão
- HERCULES Laboratory, Cultural Heritage, Studies and Safeguard, University of Évora, 7000-809 Évora, Portugal
- Department of Geosciences, School of Sciences and Technology, University of Évora, 7000-671 Évora, Portugal
| | - Luís Dias
- HERCULES Laboratory, Cultural Heritage, Studies and Safeguard, University of Évora, 7000-809 Évora, Portugal
- Department of Geosciences, School of Sciences and Technology, University of Évora, 7000-671 Évora, Portugal
- Correspondence:
| |
Collapse
|
17
|
Huq MA, Rahman MM, Singh P, Akter S. Editorial: Eco-friendly synthesis & antibacterial applications of metal nanoparticles. Front Bioeng Biotechnol 2023; 11:1157374. [PMID: 36911191 PMCID: PMC9992989 DOI: 10.3389/fbioe.2023.1157374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Affiliation(s)
- Md Amdadul Huq
- Department of Food and Nutrition, College of Biotechnology and Natural Resource, Chung-Ang University, Anseong, Republic of Korea
| | - M Mizanur Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Science, Islamic University, Kushtia, Bangladesh
| | - Priyanka Singh
- The Novo Nordisk Foundation, Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Shahina Akter
- Department of Food Science and Biotechnology, Gachon University, Seongnam, Republic of Korea
| |
Collapse
|
18
|
Perumal S, Atchudan R, Ramalingam S, Aldawood S, Devarajan N, Lee W, Lee YR. Silver nanoparticles loaded graphene-poly-vinylpyrrolidone composites as an effective recyclable antimicrobial agent. ENVIRONMENTAL RESEARCH 2023; 216:114706. [PMID: 36336094 DOI: 10.1016/j.envres.2022.114706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/19/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Silver nanoparticles (AgNPs) are often used as antibacterial agents. Here, graphene-silver nanoparticles (G-Ag) and graphene-silver nanoparticles poly-vinylpyrrolidone (G-AgPVPy) were prepared by chemical reduction and in-situ polymerization of vinylpyrrolidone (VPy). The prepared G-Ag and G-AgPVPy composites were characterized using various techniques. The size of the AgNPs on the graphene surface in the prepared G-Ag and G-AgPVPy composites was measured as ∼20 nm. The graphene sheets size in the G-Ag and G-AgPVPy composites were measured as 6.0-2.0 μm and 4.0-0.10 μm, respectively, which are much smaller than graphene sheets in graphite powder (GP) (10.0-3.0 μm). The physicochemical analysis confirmed the formation of G-Ag and G-AgPVPy composites and even the distribution of AgNPs and PVPy on the graphene sheets. The synthesized composites (G-AgPVPy, G-Ag) exhibited a broad-spectrum antibacterial potential against both Gram-negative and Gram-positive bacteria. The lowest minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values were calculated as >40 μg/mL using G-Ag and GP, while G-AgPVPy showed as 10 μg/mL against Staphylococcus aureus. Among GP, G-Ag, and G-AgPVPy, G-AgPVPy disturbs the cell permeability, damages the cell walls, and causes cell death efficiently. Also, G-AgPVPy was delivered as a significant reusable antibacterial potential candidate. The MIC value (10 μg/mL) did not change up to six subsequent MIC analysis cycles.
Collapse
Affiliation(s)
- Suguna Perumal
- Department of Chemistry, Sejong University, Seoul, 143-747, Republic of Korea; School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea.
| | - Raji Atchudan
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea; Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, 602105, Tamil Nadu, India
| | - Srinivasan Ramalingam
- Department of Food Science and Technology, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea
| | - S Aldawood
- Department of Physics and Astronomy, College of Science, P.O. BOX 2455, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Natarajan Devarajan
- Natural Drug Research Laboratory, Department of Biotechnology, School of Biosciences, Periyar University, Salem, 636011, Tamil Nadu, India
| | - Wonmok Lee
- Department of Chemistry, Sejong University, Seoul, 143-747, Republic of Korea
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, Gyeongsangbuk-do, 38541, Republic of Korea.
| |
Collapse
|
19
|
Chitosan-Coated Polymeric Silver and Gold Nanoparticles: Biosynthesis, Characterization and Potential Antibacterial Applications: A Review. Polymers (Basel) 2022; 14:polym14235302. [PMID: 36501695 PMCID: PMC9738229 DOI: 10.3390/polym14235302] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Biosynthesized metal nanoparticles, especially silver and gold nanoparticles, and their conjugates with biopolymers have immense potential in various fields of science due to their enormous applications, including biomedical applications. Polymeric nanoparticles are particles of small sizes from 1 nm to 1000 nm. Among different polymeric nanoparticles, chitosan-coated silver and gold nanoparticles have gained significant interest from researchers due to their various biomedical applications, such as anti-cancer, antibacterial, antiviral, antifungal, anti-inflammatory technologies, as well as targeted drug delivery, etc. Multidrug-resistant pathogenic bacteria have become a serious threat to public health day by day. Novel, effective, and safe antibacterial agents are required to control these multidrug-resistant pathogenic microorganisms. Chitosan-coated silver and gold nanoparticles could be effective and safe agents for controlling these pathogens. It is proven that both chitosan and silver or gold nanoparticles have strong antibacterial activity. By the conjugation of biopolymer chitosan with silver or gold nanoparticles, the stability and antibacterial efficacy against multidrug-resistant pathogenic bacteria will be increased significantly, as well as their toxicity in humans being decreased. In recent years, chitosan-coated silver and gold nanoparticles have been increasingly investigated due to their potential applications in nanomedicine. This review discusses the biologically facile, rapid, and ecofriendly synthesis of chitosan-coated silver and gold nanoparticles; their characterization; and potential antibacterial applications against multidrug-resistant pathogenic bacteria.
Collapse
|
20
|
Cui X, Zhong Z, Xia R, Liu X, Qin L. Biosynthesis optimization of silver nanoparticles (AgNPs) using Trichoderma longibranchiatum and biosafety assessment with silkworm (Bombyx mori). ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
21
|
Use of Nanoparticles to Prevent Resistance to Antibiotics-Synthesis and Characterization of Gold Nanosystems Based on Tetracycline. Pharmaceutics 2022; 14:pharmaceutics14091941. [PMID: 36145689 PMCID: PMC9500715 DOI: 10.3390/pharmaceutics14091941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/03/2022] [Accepted: 09/07/2022] [Indexed: 11/30/2022] Open
Abstract
Antimicrobial resistance (AMR) is a serious public health problem worldwide which, according to the World Health Organization (WHO), requires research into new and more effective drugs. In this work, both gold nanoparticles covered with 16-3-16 cationic gemini surfactant (Au@16-3-16) and DNA/tetracycline (DNA/TC) intercalated complexes were prepared to effectively transport tetracycline (TC). Synthesis of the Au@16-3-16 precursor was carried out by using trihydrated gold, adding sodium borohydride as a reducing agent and the gemini surfactant 16-3-16 as stabilizing agent. Circular dichroism and atomic force microscopy techniques were then used to ascertain the optimal R range of the relationship between the concentrations of Au@16-3-16 and the DNA/TC complex (R = CAu@16-3-16/CDNA) that allow the obtainment of stable and compact nanosystems, these characteristics being fundamental for their use as antibiotic transporters. Stability studies over time were carried out for distinct selected Au@16-3-16 and Au@16-3-16/DNA-TC nanoformulations using the ultraviolet−visible spectrophotometry technique, checking their stability for at least one month. In addition, in order to know the charge and size distribution of the nanocomplexes, DLS and zeta potential measurements were performed in the solution. The results showed that the characterized nanosystems were highly charged, stable and of a reduced size (<100 nm) that allows them to cross bacterial membranes effectively (>1 μm). Once the different physicochemical characteristics of the gold nanosystems were measured, Au@16-3-16 and Au@16-3-16/DNA-TC were tested on Escherichia coli and Staphylococcus aureus to study their antibacterial properties and internalization capacity in microbes. Differences in the interaction of the precursors and the compacted nanosystems generated were observed in Gram-positive and Gram-negative bacteria, possibly due to membrane damage or electrostatic interaction with internalization by endocytosis. In the internalization experiments, depending on the treatment application time, the greatest bacterial destruction was observed for all nanoformulations explored at 18 h of incubation. Importantly, the results obtained demonstrate that both new nanosystems based on TC and Au@16-3-16 precursors have optimal antimicrobial properties and would be beneficial for use in patients, avoiding possible side effects.
Collapse
|
22
|
Yan X, Nie X, Tan Z, Liu P, Li X, Wang P, Shi H. A methanogenic protein facilitates the biosynthesis of the silver nanoparticles. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
23
|
Wang X, Lee SY, Akter S, Huq MA. Probiotic-Mediated Biosynthesis of Silver Nanoparticles and Their Antibacterial Applications against Pathogenic Strains of Escherichia coli O157:H7. Polymers (Basel) 2022; 14:1834. [PMID: 35567001 PMCID: PMC9103322 DOI: 10.3390/polym14091834] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 11/23/2022] Open
Abstract
The present study aimed to suggest a simple and environmentally friendly biosynthesis method of silver nanoparticles (AgNPs) using the strain Bacillus sonorensis MAHUQ-74 isolated from kimchi. Antibacterial activity and mechanisms of AgNPs against antibiotic-resistant pathogenic strains of Escherichia coli O157:H7 were investigated. The strain MAHUQ-74 had 99.93% relatedness to the B. sonorensis NBRC 101234T strain. The biosynthesized AgNPs had a strong surface plasmon resonance (SPR) peak at 430 nm. The transmission electron microscope (TEM) image shows the spherical shape and size of the synthesized AgNPs is 13 to 50 nm. XRD analysis and SAED pattern revealed the crystal structure of biosynthesized AgNPs. Fourier transform infrared spectroscopy (FTIR) data showed various functional groups associated with the reduction of silver ions to AgNPs. The resultant AgNPs showed strong antibacterial activity against nine E. coli O157:H7 pathogens. Minimum inhibitory concentration (MIC) values of the AgNPs synthesized by strain MAHUQ-74 were 3.12 μg/mL for eight E. coli O157:H7 strains and 12.5 μg/mL for strain E. coli ATCC 25922. Minimum bactericidal concentrations (MBCs) were 25 μg/mL for E. coli O157:H7 ATCC 35150, E. coli O157:H7 ATCC 43895, E. coli O157:H7 ATCC 43890, E. coli O157:H7 ATCC 43889, and E. coli ATCC 25922; and 50 μg/mL for E. coli O157:H7 2257, E. coli O157: NM 3204-92, E. coli O157:H7 8624 and E. coli O157:H7 ATCC 43894. FE-SEM analysis demonstrated that the probiotic-mediated synthesized AgNPs produced structural and morphological changes and destroyed the membrane integrity of pathogenic E. coli O157:H7. Therefore, AgNPs synthesized by strain MAHUQ-74 may be potential antibacterial agents for the control of antibiotic-resistant pathogenic strains of E. coli O157:H7.
Collapse
Affiliation(s)
- Xiaoqing Wang
- Department of Food and Nutrition, College of Biotechnology and Natural Resource, Chung-Ang University, Anseong 17546, Gyeonggi-do, Korea; (X.W.); (S.-Y.L.)
| | - Sun-Young Lee
- Department of Food and Nutrition, College of Biotechnology and Natural Resource, Chung-Ang University, Anseong 17546, Gyeonggi-do, Korea; (X.W.); (S.-Y.L.)
| | - Shahina Akter
- Department of Food Science and Biotechnology, Gachon University, Seongnam 461701, Gyeonggi-do, Korea;
| | - Md. Amdadul Huq
- Department of Food and Nutrition, College of Biotechnology and Natural Resource, Chung-Ang University, Anseong 17546, Gyeonggi-do, Korea; (X.W.); (S.-Y.L.)
| |
Collapse
|
24
|
Chopra H, Bibi S, Singh I, Hasan MM, Khan MS, Yousafi Q, Baig AA, Rahman MM, Islam F, Emran TB, Cavalu S. Green Metallic Nanoparticles: Biosynthesis to Applications. Front Bioeng Biotechnol 2022; 10:874742. [PMID: 35464722 PMCID: PMC9019488 DOI: 10.3389/fbioe.2022.874742] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/22/2022] [Indexed: 12/14/2022] Open
Abstract
Current advancements in nanotechnology and nanoscience have resulted in new nanomaterials, which may pose health and environmental risks. Furthermore, several researchers are working to optimize ecologically friendly procedures for creating metal and metal oxide nanoparticles. The primary goal is to decrease the adverse effects of synthetic processes, their accompanying chemicals, and the resulting complexes. Utilizing various biomaterials for nanoparticle preparation is a beneficial approach in green nanotechnology. Furthermore, using the biological qualities of nature through a variety of activities is an excellent way to achieve this goal. Algae, plants, bacteria, and fungus have been employed to make energy-efficient, low-cost, and nontoxic metallic nanoparticles in the last few decades. Despite the environmental advantages of using green chemistry-based biological synthesis over traditional methods as discussed in this article, there are some unresolved issues such as particle size and shape consistency, reproducibility of the synthesis process, and understanding of the mechanisms involved in producing metallic nanoparticles via biological entities. Consequently, there is a need for further research to analyze and comprehend the real biological synthesis-dependent processes. This is currently an untapped hot research topic that required more investment to properly leverage the green manufacturing of metallic nanoparticles through living entities. The review covers such green methods of synthesizing nanoparticles and their utilization in the scientific world.
Collapse
Affiliation(s)
- Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Rajpura, India
| | - Shabana Bibi
- Yunnan Herbal Laboratory, College of Ecology and Environmental Sciences, Yunnan University, Kunming, China
- The International Joint Research Center for Sustainable Utilization of Cordyceps Bioresources in China and Southeast Asia, Yunnan University, Kunming, China
| | - Inderbir Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, India
| | - Mohammad Mehedi Hasan
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Tangail, Bangladesh
| | - Muhammad Saad Khan
- Department of Biosciences, COMSATS University Islamabad, Sahiwal, Pakistan
| | - Qudsia Yousafi
- Department of Biosciences, COMSATS University Islamabad, Sahiwal, Pakistan
| | - Atif Amin Baig
- Unit of Biochemistry, Faculty of Medicine, University Sultan Zainal Abidin, Kuala Terengganu, Malaysia
| | - Md. Mominur Rahman
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| |
Collapse
|
25
|
Green Synthesis and Potential Antibacterial Applications of Bioactive Silver Nanoparticles: A Review. Polymers (Basel) 2022; 14:polym14040742. [PMID: 35215655 PMCID: PMC8879957 DOI: 10.3390/polym14040742] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/08/2022] [Accepted: 02/12/2022] [Indexed: 12/25/2022] Open
Abstract
Green synthesis of silver nanoparticles (AgNPs) using biological resources is the most facile, economical, rapid, and environmentally friendly method that mitigates the drawbacks of chemical and physical methods. Various biological resources such as plants and their different parts, bacteria, fungi, algae, etc. could be utilized for the green synthesis of bioactive AgNPs. In recent years, several green approaches for non-toxic, rapid, and facile synthesis of AgNPs using biological resources have been reported. Plant extract contains various biomolecules, including flavonoids, terpenoids, alkaloids, phenolic compounds, and vitamins that act as reducing and capping agents during the biosynthesis process. Similarly, microorganisms produce different primary and secondary metabolites that play a crucial role as reducing and capping agents during synthesis. Biosynthesized AgNPs have gained significant attention from the researchers because of their potential applications in different fields of biomedical science. The widest application of AgNPs is their bactericidal activity. Due to the emergence of multidrug-resistant microorganisms, researchers are exploring the therapeutic abilities of AgNPs as potential antibacterial agents. Already, various reports have suggested that biosynthesized AgNPs have exhibited significant antibacterial action against numerous human pathogens. Because of their small size and large surface area, AgNPs have the ability to easily penetrate bacterial cell walls, damage cell membranes, produce reactive oxygen species, and interfere with DNA replication as well as protein synthesis, and result in cell death. This paper provides an overview of the green, facile, and rapid synthesis of AgNPs using biological resources and antibacterial use of biosynthesized AgNPs, highlighting their antibacterial mechanisms.
Collapse
|
26
|
Ogbonna C, Kavaz D. Development of novel silver-apple pectin nanocomposite beads for antioxidant, antimicrobial and anticancer studies. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-021-00993-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
27
|
Naganthran A, Verasoundarapandian G, Khalid FE, Masarudin MJ, Zulkharnain A, Nawawi NM, Karim M, Che Abdullah CA, Ahmad SA. Synthesis, Characterization and Biomedical Application of Silver Nanoparticles. MATERIALS (BASEL, SWITZERLAND) 2022; 15:427. [PMID: 35057145 PMCID: PMC8779869 DOI: 10.3390/ma15020427] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/01/2021] [Accepted: 12/15/2021] [Indexed: 12/11/2022]
Abstract
Silver nanoparticles (AgNPs) have been employed in various fields of biotechnology due to their proven properties as an antibacterial, antiviral and antifungal agent. AgNPs are generally synthesized through chemical, physical and biological approaches involving a myriad of methods. As each approach confers unique advantages and challenges, a trends analysis of literature for the AgNPs synthesis using different types of synthesis were also reviewed through a bibliometric approach. A sum of 10,278 publications were analyzed on the annual numbers of publication relating to AgNPs and biological, chemical or physical synthesis from 2010 to 2020 using Microsoft Excel applied to the Scopus publication database. Furthermore, another bibliometric clustering and mapping software were used to study the occurrences of author keywords on the biomedical applications of biosynthesized AgNPs and a total collection of 224 documents were found, sourced from articles, reviews, book chapters, conference papers and reviews. AgNPs provides an excellent, dependable, and effective solution for seven major concerns: as antibacterial, antiviral, anticancer, bone healing, bone cement, dental applications and wound healing. In recent years, AgNPs have been employed in biomedical sector due to their antibacterial, antiviral and anticancer properties. This review discussed on the types of synthesis, how AgNPs are characterized and their applications in biomedical field.
Collapse
Affiliation(s)
- Ashwini Naganthran
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (A.N.); (G.V.); (F.E.K.)
| | - Gayathiri Verasoundarapandian
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (A.N.); (G.V.); (F.E.K.)
| | - Farah Eryssa Khalid
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (A.N.); (G.V.); (F.E.K.)
| | - Mas Jaffri Masarudin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Azham Zulkharnain
- Department of Bioscience and Engineering, Shibaura Institute of Technology, College of Systems Engineering and Science, 307 Fukasaku, Saitama 337-8570, Japan;
| | - Norazah Mohammad Nawawi
- Institute of Bio-IT Selangor, Universiti Selangor, Jalan Zirkon A7/A, Seksyen 7, Shah Alam 40000, Selangor, Malaysia;
- Centre for Foundation and General Studies, Universiti Selangor, Jalan Timur Tambahan, Bestari Jaya 45600, Selangor, Malaysia
| | - Murni Karim
- Department of Aquaculture, Faculty of Agriculture, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Laboratory of Sustainable Aquaculture, International Institute of Aquaculture and Aquatic Sciences, Universiti Putra Malaysia, Port Dickson 71050, Negeri Sembilan, Malaysia
| | - Che Azurahanim Che Abdullah
- Department of Physics, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- Material Synthesis and Characterization Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Siti Aqlima Ahmad
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (A.N.); (G.V.); (F.E.K.)
- Laboratory of Bioresource Management, Institute of Tropical Forestry and Forest Products (INTROP), Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| |
Collapse
|
28
|
Chauhan A, Sillu D, Dhiman NK, Agnihotri S. Silver-Based Nano-formulations for Treating Antibiotic-Resistant Microbial Strains. NANOTECHNOLOGY IN THE LIFE SCIENCES 2022:279-309. [DOI: 10.1007/978-3-031-10220-2_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
29
|
Huq MA, Akter S. Biosynthesis, Characterization and Antibacterial Application of Novel Silver Nanoparticles against Drug Resistant Pathogenic Klebsiella pneumoniae and Salmonella Enteritidis. Molecules 2021; 26:5996. [PMID: 34641540 PMCID: PMC8512087 DOI: 10.3390/molecules26195996] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 11/16/2022] Open
Abstract
The present study highlights the biosynthesis of silver nanoparticles (AgNPs) using culture supernatant of Massilia sp. MAHUQ-52 as well as the antimicrobial application of synthesized AgNPs against multi-drug resistant pathogenic Klebsiella pneumoniae and Salmonella Enteritidis. Well-defined AgNPs formation occurred from the reaction mixture of cell-free supernatant and silver nitrate (AgNO3) solution within 48 h of incubation. UV-visible spectroscopy analysis showed a strong peak at 435 nm, which corresponds to the surface plasmon resonance of AgNPs. The synthesized AgNPs were characterized by FE-TEM, EDX, XRD, DLS and FT-IR. From FE-TEM analysis, it was found that most of the particles were spherical shape, and the size of synthesized nanoparticles (NPs) was 15-55 nm. EDX spectrum revealed a strong silver signal at 3 keV. XRD analysis determined the crystalline, pure, face-centered cubic AgNPs. FT-IR analysis identified various functional molecules that may be involved with the synthesis and stabilization of AgNPs. The antimicrobial activity of Massilia sp. MAHUQ-52 mediated synthesized AgNPs was determined using the disk diffusion method against K. pneumoniae and S. Enteritidis. Biosynthesized AgNPs showed strong antimicrobial activity against both K. pneumoniae and S. Enteritidis. The MICs of synthesized AgNPs against K. pneumoniae and S. Enteritidis were 12.5 and 25.0 μg/mL, respectively. The MBC of biosynthesized AgNPs against both pathogens was 50.0 μg/mL. From FE-SEM analysis, it was found that the AgNPs-treated cells showed morphological changes with irregular and damaged cell walls that culminated in cell death.
Collapse
Affiliation(s)
- Md. Amdadul Huq
- Department of Food and Nutrition, College of Biotechnology and Natural Resource, Chung-Ang University, Anseong 17546, Korea
| | - Shahina Akter
- Department of Food Science and Biotechnology, Gachon University, Seongnam 461-701, Korea
| |
Collapse
|
30
|
Mukherjee A, Sarkar D, Sasmal S. A Review of Green Synthesis of Metal Nanoparticles Using Algae. Front Microbiol 2021; 12:693899. [PMID: 34512571 PMCID: PMC8427820 DOI: 10.3389/fmicb.2021.693899] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/07/2021] [Indexed: 11/13/2022] Open
Abstract
The ability of algae to accumulate metals and reduce metal ions make them a superior contender for the biosynthesis of nanoparticles and hence they are called bio-nano factories as both the live and dead dried biomass are used for the synthesis of metallic nanoparticles. Microalgae, forming a substantial part of the planet's biodiversity, are usually single-celled colony-forming or filamentous photosynthetic microorganisms, including several legal divisions like Chlorophyta, Charophyta, and Bacillariophyta. Whole cells of Plectonema boryanum (filamentous cyanobacteria) proved efficient in promoting the production of Au, Ag, and Pt nanoparticles. The cyanobacterial strains of Anabaena flos-aquae and Calothrix pulvinate were used to implement the biosynthesis of Au, Ag, and Pt nanoparticles. Once synthesized within the cells, the nanoparticles were released into the culture media where they formed stable colloids easing their recovery. Lyngbya majuscule and Chlorella vulgaris have been reported to be used as a cost-effective method for Ag nanoparticle synthesis. Dried edible algae (Spirulina platensis) was reported to be used for the extracellular synthesis of Au, Ag, and Au/Ag bimetallic nanoparticles. Synthesis of extracellular metal bio-nanoparticles using Sargassum wightii and Kappaphycus alvarezi has also been reported. Bioreduction of Au (III)-Au (0) using the biomass of brown alga, Fucus vesiculosus, and biosynthesis of Au nanoparticles using red algal (Chondrus crispus) and green algal (Spyrogira insignis) biomass have also been reported. Algae are relatively convenient to handle, less toxic, and less harmful to the environment; synthesis can be carried out at ambient temperature and pressure and in simple aqueous media at a normal pH value. Therefore, the study of algae-mediated biosynthesis of metallic nanoparticles can be taken toward a new branch, termed phyco-nanotechnology.
Collapse
Affiliation(s)
- Abhishek Mukherjee
- Department of Biotechnology, Heritage Institute of Technology, Kolkata, India
| | - Dhruba Sarkar
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, TN, United States
| | - Soumya Sasmal
- Department of Biological Sciences and Engineering, Netaji Subhas University of Technology, New Delhi, India
| |
Collapse
|
31
|
Bamal D, Singh A, Chaudhary G, Kumar M, Singh M, Rani N, Mundlia P, Sehrawat AR. Silver Nanoparticles Biosynthesis, Characterization, Antimicrobial Activities, Applications, Cytotoxicity and Safety Issues: An Updated Review. NANOMATERIALS 2021; 11:nano11082086. [PMID: 34443916 PMCID: PMC8402060 DOI: 10.3390/nano11082086] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 02/06/2023]
Abstract
Rapid advances in nanotechnology have led to its emergence as a tool for the development of green synthesized noble metal nanoparticles, especially silver nanoparticles (AgNPs), for applications in diverse fields such as human health, the environment and industry. The importance of AgNPs is because of their unique physicochemical and antimicrobial properties, with a myriad of activities that are applicable in various fields, including the pharmaceutical industry. Countries with high biodiversity require the collection and transformation of information about biological assets into processes, associations, methods and tools that must be combined with the sustainable utilization of biological diversity. Therefore, this review paper discusses the applicable studies of the biosynthesis of AgNPs and their antimicrobial activities towards microorganisms in different areas viz. medicine and agriculture. The confirmed antiviral properties of AgNPs promote their applicability for SARS-CoV-2 treatment, based on assimilating the virus’ activities with those of similar viruses via in vivo studies. In this review, an insight into the cytotoxicity and safety issues of AgNPs, along with their future prospects, is also provided.
Collapse
Affiliation(s)
- Deepak Bamal
- Department of Botany, Maharshi Dayanand University, Rohtak 124001, India; (D.B.); (A.S.); (G.C.); (M.K.)
| | - Anoop Singh
- Department of Botany, Maharshi Dayanand University, Rohtak 124001, India; (D.B.); (A.S.); (G.C.); (M.K.)
| | - Gaurav Chaudhary
- Department of Botany, Maharshi Dayanand University, Rohtak 124001, India; (D.B.); (A.S.); (G.C.); (M.K.)
| | - Monu Kumar
- Department of Botany, Maharshi Dayanand University, Rohtak 124001, India; (D.B.); (A.S.); (G.C.); (M.K.)
| | - Manjeet Singh
- Department of Genetics and Plant Breeding, Oilseeds Section, CCS Haryana Agricultural University, Hisar 125004, India;
| | - Neelam Rani
- Department of Botany and Plant Physiology, CCS Haryana Agricultural University, Hisar 125004, India;
| | - Poonam Mundlia
- Department of Biochemistry, Punjab University, Chandigarh 160014, India;
| | - Anita R. Sehrawat
- Department of Botany, Maharshi Dayanand University, Rohtak 124001, India; (D.B.); (A.S.); (G.C.); (M.K.)
- Correspondence:
| |
Collapse
|
32
|
Huq MA, Akter S. Bacterial Mediated Rapid and Facile Synthesis of Silver Nanoparticles and Their Antimicrobial Efficacy against Pathogenic Microorganisms. MATERIALS 2021; 14:ma14102615. [PMID: 34069757 PMCID: PMC8155946 DOI: 10.3390/ma14102615] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 02/07/2023]
Abstract
In the present study, silver nanoparticles (AgNPs), biosynthesized using culture supernatant of bacterial strain Paenarthrobacter nicotinovorans MAHUQ-43, were characterized and their antimicrobial activity was investigated against both Gram-positive Bacillus cereus and Gram-negative bacteria Pseudomonas aeruginosa. Bacterial-mediated synthesized AgNPs were characterized by UV-Visible (UV-Vis) spectrophotometer, field emission-transmission electron microscopy (FE-TEM), energy dispersive X-ray (EDX), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and dynamic light scattering (DLS) analysis. The UV-Vis spectral analysis showed the absorption maxima at 466 nm which assured the synthesis of AgNPs. The FE-TEM analysis revealed the spherical shape of nanoparticles with the size range from 13 to 27 nm. The EDX and XRD analysis ensured the crystalline nature of biosynthesized AgNPs. The FTIR analysis revealed the involvement of different biomolecules for the synthesis of AgNPs as reducing and capping agents. The bacterial-mediated synthesized AgNPs inhibited the growth of pathogenic strains B. cereus and P. aeruginosa and developed a clear zone of inhibition (ZOI). The MIC and MBC for both pathogens were 12.5 µg/mL and 25 µg/mL, respectively. Moreover, field emission scanning electron microscopy analysis revealed that the synthesized AgNPs can destroy the outer membrane and alter the cell morphology of treated pathogens, leading to the death of cells. This study concludes the eco-friendly, facile and rapid synthesis of AgNPs using P. nicotinovorans MAHUQ-43 and synthesized AgNPs showed excellent antimicrobial activity against both Gram-positive and Gram-negative pathogens.
Collapse
Affiliation(s)
- Md. Amdadul Huq
- Department of Food and Nutrition, College of Biotechnology and Natural Resource, Chung-Ang University, Anseong 17546, Korea
- Correspondence: or (M.A.H.); (S.A.); Tel.: +82-031-670-4568 (M.A.H.)
| | - Shahina Akter
- Department of Food Science and Biotechnology, Gachon University, Seongnam 461-701, Korea
- Correspondence: or (M.A.H.); (S.A.); Tel.: +82-031-670-4568 (M.A.H.)
| |
Collapse
|