1
|
Gnatowski P, Ansariaghmiuni M, Piłat E, Poostchi M, Kucińska-Lipka J, Yazdi MK, Ryl J, Ashrafizadeh M, Mottaghitalab F, Farokhi M, Saeb MR, Bączek T, Chen C, Lu Q. Hydrogel membranes in organ-on-a-chip devices: A review. Colloids Surf B Biointerfaces 2025; 251:114591. [PMID: 40054047 DOI: 10.1016/j.colsurfb.2025.114591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 01/31/2025] [Accepted: 02/20/2025] [Indexed: 04/15/2025]
Abstract
Organ-on-a-chip (OoC) devices represent advanced in vitro models enabling to mimic the human tissue architecture function and physiology, providing a promising alternative to the traditional animal testing methods. These devices combine the microfluidics with soft materials, specifically hydrogel membranes (HMs) for mimicking the extracellular matrix (ECM) and biological barriers, such as the blood-brain barrier (BBB). Hydrogels are ideal biomaterials for OoC systems because of their tunable properties, biocompatibility, biodegradability, and microscale self-assembly. The integration of HMs with OoC devices provides an effective way to develop dynamic, biologically relevant environments for supporting living cells targeted at drug discovery, disease modeling, and personalized medicine. Recent advancements in fabrication technologies such as additive manufacturing (3D printing), photolithography, and bioprinting have additionally advanced development of such systems. This review aims to outline the role of HMs in OoC platforms, highlighting their material properties, self-assembly behavior, and also challenges associated with their fabrication. Additionally, we visualize and discuss the latest progress made in utilizing HMs for applications in tissue engineering, drug development, and biosensing, with a focus on their interface dynamics and structural self-organization. The future perspective on OoC technology has also been patterned in order to provide a broader image on integration of OoC and HMs with personalized medicine and advanced drug delivery systems.
Collapse
Affiliation(s)
- Przemysław Gnatowski
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza St. 11/12, Gdańsk 80-233, Poland; Department of Environmental Toxicology, Faculty of Health Sciences with the Institute of Maritime and Tropical Medicine, Medical University of Gdańsk, Dębowa 23A, Gdańsk 80-204, Poland
| | - Maryam Ansariaghmiuni
- Polymer Research Laboratory, Department of Chemistry, Sharif University of Technology, Tehran 11365-9516, Iran
| | - Edyta Piłat
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza St. 11/12, Gdańsk 80-233, Poland
| | - Maryam Poostchi
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza St. 11/12, Gdańsk 80-233, Poland
| | - Justyna Kucińska-Lipka
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza St. 11/12, Gdańsk 80-233, Poland
| | - Mohsen Khodadadi Yazdi
- Division of Electrochemistry and Surface Physical Chemistry, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk 80-233, Poland; Advanced Materials Center, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk 80-233, Poland
| | - Jacek Ryl
- Division of Electrochemistry and Surface Physical Chemistry, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk 80-233, Poland; Advanced Materials Center, Gdańsk University of Technology, Narutowicza 11/12, Gdańsk 80-233, Poland
| | - Milad Ashrafizadeh
- Department of Radiation Oncology, Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, 250000, China
| | - Fatemeh Mottaghitalab
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Farokhi
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad Reza Saeb
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, J. Hallera 107, Gdańsk 80-416, Poland.
| | - Tomasz Bączek
- Department of Pharmaceutical Chemistry, Medical University of Gdańsk, J. Hallera 107, Gdańsk 80-416, Poland.
| | - Chu Chen
- Department of Cardiology, Cardiac Arrhythmia Center, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Qi Lu
- Department of Cardiology, Cardiac Arrhythmia Center, Affiliated Hospital of Nantong University, Nantong, 226001, China.
| |
Collapse
|
2
|
Liu J, Fu Y, Jia W, Gao C, Tang H, Li H, Yang W. Multifunctional alginate-sinapic acid/arginine-strontium hydrogel for promoting diabetic wound healing. Int J Biol Macromol 2025; 308:142460. [PMID: 40154687 DOI: 10.1016/j.ijbiomac.2025.142460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/15/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025]
Abstract
Sodium alginate (Alg), sinapic acid (SA), arginine (Arg), strontium carbonate (SrCO₃), and D-gluconic acid δ-lactone (GDL) were employed to construct an ionically crosslinked sodium alginate-sinapic acid/arginine‑strontium (ASASG) hydrogel. This study aims to evaluate its potential for enhancing diabetic wound repair through combined ionic crosslinking and bioactive component synergy. The hydrogel demonstrates exceptional swelling properties conducive to the absorption of wound exudate. Furthermore, it exhibits remarkable antibacterial and antioxidant activities. The ASASG hydrogel shows good biocompatibility, facilitates hemostasis and promotes the migration of NIH 3 T3 fibroblasts. Animal studies have revealed that ASASG hydrogel significantly enhances wound healing, accelerates re-epithelialization, and fosters collagen deposition in diabetic rats. Furthermore, ASASG hydrogels mitigated inflammatory cell infiltration by down-regulating IL-6 expression and concurrently up-regulating TGF-β expression. Notably, ASASG hydrogels also stimulate angiogenesis by enhancing the expressions of VEGF and bFGF. Therefore, the use of ASASG hydrogel in the treatment of diabetic wounds is a possible therapeutic approach.
Collapse
Affiliation(s)
- Jie Liu
- College of Pharmaceutical Science & Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, China State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, China
| | - Ying Fu
- College of Pharmaceutical Science & Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, China State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, China
| | - Wenlin Jia
- College of Pharmaceutical Science & Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, China State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, China
| | - Chenrong Gao
- College of Pharmaceutical Science & Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, China State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, China
| | - Hongbo Tang
- Department of Pharmacy, Beijing Obstetrics and Gynecology Hospital, Capital Medical University. Beijing Maternal and Child Health Care Hospital, 100026, China.
| | - Haiying Li
- College of Pharmaceutical Science & Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, China State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, China.
| | - Wenzhi Yang
- College of Pharmaceutical Science & Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, China State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Pharmaceutical Quality Control of Hebei Province, Hebei University, Baoding 071002, China.
| |
Collapse
|
3
|
Matic K, Krishnan N, Frank E, Arellano M, Sriram A, Das M, Valentine MT, Rust MJ, Robertson-Anderson RM, Ross JL. Active and passive crosslinking of cytoskeleton scaffolds tune the effects of cell inclusions on composite structure. SOFT MATTER 2025. [PMID: 40289744 DOI: 10.1039/d4sm01527d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Incorporating cells within active biomaterial scaffolds is a promising strategy to develop forefront materials that can autonomously sense, respond, and alter the scaffold in response to environmental cues or internal cell circuitry. Using dynamic biocompatible scaffolds that can self-alter their properties via crosslinking and motor-driven force-generation opens even greater avenues for actuation and control. However, the design principles associated with engineering active scaffolds embedded with cells are not well established. To address this challenge, we design a dynamic scaffold material of bacteria cells embedded within a composite cytoskeletal network of actin and microtubules that can be passively or actively crosslinked by either biotin-streptavidin or multimeric kinesin motors. Using quantitative microscopy, we demonstrate the ability to embed cells of volume fractions 0.4-2% throughout the network without compromising the structural integrity of the network or inhibiting crosslinking or motor-driven dynamics. Our findings suggest that both passive and active crosslinking promote entrainment of cells within the network, while depletion interactions play a more important role in uncrosslinked networks. Moreover, we show that large-scale structures emerge with the addition of cell fractions as low as 0.4%, but these structures do not influence the microscale structural length scale of the materials. Our work highlights the potential of our composite biomaterial in designing autonomous materials controlled by cells, and provides a roadmap for effectively coupling cells to complex composite materials with an eye towards using cells as in situ factories to program material modifications.
Collapse
Affiliation(s)
- Katarina Matic
- Department of Physics and Biophysics, University of San Diego, USA.
| | | | - Eric Frank
- Department of Physics, Syracuse University, USA.
| | - Michael Arellano
- Department of Physics and Biophysics, University of San Diego, USA.
| | - Aditya Sriram
- Department of Physics and Biophysics, University of San Diego, USA.
| | - Moumita Das
- Rochester Institute of Technology, School of Physics and Astronomy, USA
| | - Megan T Valentine
- Department of Mechanical Engineering, University of California, Santa Barbara, USA
| | - Michael J Rust
- Department of Molecular Genetics and Cell Biology, University of Chicago, USA
| | | | | |
Collapse
|
4
|
Yang J, Zhang Z, Jing L, Ge J, Deng D. Thioredoxin-loaded nanocomposite wound dressing for the delivery of adipose derived stem cells for wound healing applications. J Biomater Appl 2025:8853282251336554. [PMID: 40293717 DOI: 10.1177/08853282251336554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
In the current research, Thioredoxin was loaded into chitosan nanoparticles and then loaded into the matrix of collagen hydrogel containing adipose-derived stem cells (ASCs). In vitro studies including Scanning electron microscopy imaging, cell viability assay, cell migration assay, swelling assay, release assay, radical scavenging assay were performed in order to characterize the dressings. Then, the wound healing activity of these scaffolds were studied in a rat model of wound healing. Our findings indicate that the scaffolds markedly accelerated wound closure, enhanced epithelial regeneration, and increased collagen deposition. The wound closure values for the developed dressings were 60.507 ± 2.287% on Day 7 and 95.270 ± 2.600% on Day 14. ELISA results demonstrated an upregulation of VEGF, b-FGF, and TGF-β expression, while TNF-α and IL-6 levels were significantly reduced. For our developed dressings, VEGF levels were 661.307 ± 80.195 pg/mL, while bFGF was detected at 524.410 ± 81.040 pg/mL. The concentration of TGF-β was 315.357 ± 54.783 pg/mL, and TNF-α was measured at 176.093 ± 43.934 pg/mL. Additionally, IL-6 levels were found to be 187.577 ± 40.860 pg/mL. Our results suggest that our developed hydrogel system has improved wound healing via improving angiogenesis and modulating inflammation. These mechanisms can be attributed to the proangiogenic and immunomodulatory activities of ASCs and the antioxidative properties of Thioredoxin.
Collapse
Affiliation(s)
- Jingyi Yang
- Department of Dermatology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Zheng Zhang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Lin Jing
- Department of Dermatology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Junwen Ge
- Department of Dermatology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Dan Deng
- Department of Dermatology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| |
Collapse
|
5
|
Datta D, Bandi SP, Colaco V, Dhas N, Saha SS, Hussain SZ, Singh S. Cellulose-Based Nanofibers Infused with Biotherapeutics for Enhanced Wound-Healing Applications. ACS POLYMERS AU 2025; 5:80-104. [PMID: 40226346 PMCID: PMC11986729 DOI: 10.1021/acspolymersau.4c00092] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/02/2025] [Accepted: 02/03/2025] [Indexed: 04/15/2025]
Abstract
Nanofibers fabricated from various materials such as polymers, carbon, and semiconductors have been widely used for wound healing and tissue engineering applications due to their excellent nontoxic, biocompatible, and biodegradable properties. Nanofibers with a diameter in the nanometer range possess a larger surface area per unit mass permitting easier addition of surface functionalities and release of biotherapeutics incorporated compared with conventional polymeric microfibers. Henceforth, nanofibers are a choice for fabricating scaffolds for the management of wound healing. Nanofibrous scaffolds have emerged as a promising method for fabricating wound dressings since they mimic the fibrous dermal extracellular matrix milieu that offers structural support for wound healing and functional signals for guiding tissue regeneration. Cellulose-based nanofibers have gained significant attention among researchers in the fabrication of on-site biodegradable scaffolds fortified with biotherapeutics in the management of wound healing. Cellulose is a linear, stereoregular insoluble polymer built from repeated units of d-glucopyranose linked with 1,4-β glycoside bonds with a complex and multilevel supramolecular architecture. Cellulose is a choice and has been used by various researchers due to its solubility in many solvents and its capacity for self-assembly into nanofibers, facilitating the mimicry of the natural extracellular matrix fibrous architecture and promoting substantial water retention. It is also abundant and demonstrates low immunogenicity in humans due to its nonanimal origins. To this end, cellulose-based nanofibers have been studied for protein delivery, antibacterial activity, and biosensor applications, among others. Taken together, this review delves into an update on cellulose-based nanofibers fused with bioactive compounds that have not been explored considerably in the past few years.
Collapse
Affiliation(s)
- Deepanjan Datta
- Department
of Pharmaceutics, Manipal College of Pharmaceutical
Sciences, Manipal Academy of Higher Education, Manipal, Karnataka State 576104, India
| | - Sony Priyanka Bandi
- Department
of Pharmacy, Birla Institute of Technology
and Science (BITS) Pilani, Hyderabad Campus, Hyderabad, Telangana State 500078, India
| | - Viola Colaco
- Department
of Pharmaceutics, Manipal College of Pharmaceutical
Sciences, Manipal Academy of Higher Education, Manipal, Karnataka State 576104, India
| | - Namdev Dhas
- Department
of Pharmaceutics, Manipal College of Pharmaceutical
Sciences, Manipal Academy of Higher Education, Manipal, Karnataka State 576104, India
| | - Suprio Shantanu Saha
- Department
of Textile Engineering, Khulna University
of Engineering and Technology, Khulna-9203, Khulna, Bangladesh
| | - Syed Zubair Hussain
- Department
of Textile Engineering, Khulna University
of Engineering and Technology, Khulna-9203, Khulna, Bangladesh
| | - Sudarshan Singh
- Faculty
of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Office
of Research Administrations, Chiang Mai
University, Chiang Mai 50200, Thailand
| |
Collapse
|
6
|
Razavi ZS, Aliniay Sharafshadehi S, Yousefi MH, Javaheri F, Rahimi Barghani MR, Afkhami H, Heidari F. Application of novel strategies in chronic wound management with focusing on pressure ulcers: new perspective. Arch Dermatol Res 2025; 317:320. [PMID: 39888392 DOI: 10.1007/s00403-024-03790-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/27/2024] [Accepted: 12/29/2024] [Indexed: 02/01/2025]
Abstract
Invading blood cells, extracellular tissue, and soluble mediators all play important roles in the wound-healing process. There is a substantial global burden of disease and mortality attributable to skin defects that do not heal. About 1% to 2% of the population in industrialized nations suffers from chronic wounds that don't heal, despite healthcare breakthroughs; this condition is very costly, costing about $25 billion each year in the US alone. Amputation, infection (affecting as many as 25% of chronic wounds), sepsis, and dermal replacements are all consequences of conventional therapeutic approaches like growth factor therapy and diabetic foot ulcers account for 85% of lower limb amputations. Despite these obstacles, scientists are constantly looking for new ways to speed healing and close wounds. The unique immunomodulatory capabilities and multipotency of mesenchymal stem cells (MSCs) have made them a potential therapeutic choice in tissue engineering and regenerative medicine. Animal models of wound healing have shown that MSCs can speed up the process by as much as 40% through enhancing angiogenesis, modulating inflammation, and promoting fibroblast migration. Clinical trials provide more evidence of their effectiveness; for instance, one RCT found that, after 12 weeks, patients treated with MSCs had a 72% smaller wound size than those in the control group. This review offers a thorough examination of MSCs by combining the latest research with preclinical evidence. Highlighting their potential to transform treatment paradigms, it delves into their biological properties, how they work during regeneration and healing, and therapeutic usefulness in controlling chronic wounds.
Collapse
Affiliation(s)
- Zahra Sadat Razavi
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Shahrzad Aliniay Sharafshadehi
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Hasan Yousefi
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Fatemeh Javaheri
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | | | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran.
| | - Fatemeh Heidari
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
- Department of Anatomy, Faculty of Medicine, Qom University of Medical Sciences, Qom, Iran.
| |
Collapse
|
7
|
Min K, Jung M, Tae G. Enhanced secretion of growth factors from ADSCs using an enzymatic antioxidant hydrogel in inflammatory environments and its therapeutic effect. J Control Release 2025; 377:301-314. [PMID: 39571654 DOI: 10.1016/j.jconrel.2024.11.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/20/2024] [Accepted: 11/16/2024] [Indexed: 11/25/2024]
Abstract
A catalytic ROS-scavenging hydrogel (HGel) was developed to enhance the growth factor secretion and the therapeutic efficacy of human adipose-derived stem cells (hADSCs) in inflammatory environments. The HGel is composed of heparin and hyaluronic acid, further functionalized with hemin to endow superoxide dismutase and catalase activities. The functionalization of hemin enables the HGel to effectively scavenge ROS (superoxide and H2O2), thereby protecting encapsulated hADSCs from oxidative stress and maintaining their metabolic activities. As a result, the HGel enhanced growth factor secretion of hADSCs in inflammatory conditions compared to non-functionalized, bare heparin/hyaluronic acid hydrogel (Gel). The therapeutic efficacy of the hADSC-encapsulated HGel (C/HGel) was evaluated in a diabetic wound model. The C/HGel significantly accelerated wound closure, reduced ROS levels, mitigated inflammation, and promoted angiogenesis compared to the hADSC-encapsulated Gel (C/Gel) as well as the HGel itself. The HGel has the potential to be utilized as an excellent cell carrier for stem cell therapy in various inflammatory diseases. Overall, this study demonstrated a strategy of enhancing growth factor secretion from stem cells using catalytic antioxidant hydrogels for superior regenerative effects in cell therapy.
Collapse
Affiliation(s)
- Kiyoon Min
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Myeongseok Jung
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Giyoong Tae
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea.
| |
Collapse
|
8
|
Nosrati H, Heydari M. Titanium dioxide nanoparticles: a promising candidate for wound healing applications. BURNS & TRAUMA 2025; 13:tkae069. [PMID: 39759542 PMCID: PMC11697110 DOI: 10.1093/burnst/tkae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/16/2024] [Indexed: 01/07/2025]
Abstract
Effective wound management and treatment are crucial in clinical practice, yet existing strategies often fall short in fully addressing the complexities of skin wound healing. Recent advancements in tissue engineering have introduced innovative approaches, particularly through the use of nanobiomaterials, to enhance the healing process. In this context, titanium dioxide nanoparticles (TiO2 NPs) have garnered attention due to their excellent biological properties, including antioxidant, anti-inflammatory, and antimicrobial properties. Furthermore, these nanoparticles can be modified to enhance their therapeutic benefits. Scaffolds and dressings containing TiO2 NPs have demonstrated promising outcomes in accelerating wound healing and enhancing tissue regeneration. This review paper covers the wound healing process, the biological properties of TiO2 NPs that make them suitable for promoting wound healing, methods for synthesizing TiO2 NPs, the use of scaffolds and dressings containing TiO2 NPs in wound healing, the application of modified TiO2 NPs in wound healing, and the potential toxicity of TiO2 NPs.
Collapse
Affiliation(s)
- Hamed Nosrati
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Morteza Heydari
- Research Group of Immune Cell Communication, Department of Immune Medicine, Universitätsklinikum Regensburg | UKR, Franz-Josef-Strauss-Allee 11, 93053, Regensburg, Germany
| |
Collapse
|
9
|
Niu H, Liu Z, Guan Y, Wen J, Dang Y, Guan J. Harnessing synergistic effects of MMP-2 Inhibition and bFGF to simultaneously preserve and vascularize cardiac extracellular matrix after myocardial infarction. Acta Biomater 2025; 191:189-204. [PMID: 39532649 DOI: 10.1016/j.actbio.2024.10.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/15/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Myocardial infarction (MI) leads to cardiac extracellular matrix (ECM) degradation and fibrosis, reducing heart function. Consequently, simultaneously addressing ECM degradation and inhibiting cardiac fibrosis is essential for preserving heart function and mitigating adverse remodeling. However, the preserved ECM becomes unstable if not vascularized, as its structure and composition undergo changes over time. ECM vascularization is crucial to improve cardiac function. Presently, there is no clinically approved therapy that can simultaneously preserve and vascularize the ECM, and inhibit cardiac fibrosis. Our study develops a drug delivery system aiming to achieve these goals. It includes the peptide CTTHWGFTLC (CTT), a specific MMP-2 inhibitor, and basic fibroblast growth factor (bFGF), a potent factor with pro-angiogenic and anti-fibrotic properties. An injectable hydrogel serves as the carrier, featuring a rapid gelation that allows for the substantial retention of drugs. Additionally, the hydrogel has the capability to scavenge upregulated reactive oxygen species (ROS), thereby reducing tissue inflammation. Our findings indicate that CTT and bFGF synergistically enhance endothelial cell migration and tube formation while inhibiting the differentiation of fibroblasts into myofibroblasts. Upon delivery into hearts, the system significantly decreases MMP-2 level, promotes angiogenesis, attenuates cardiac fibrosis, and alleviates inflammation, resulting in a noteworthy cardiac function improvement. STATEMENT OF SIGNIFICANCE: 1) This work addresses key challenges in cardiac repair after myocardial infarction (MI), including extracellular matrix (ECM) degradation, vascularization, and fibrosis. 2) We combined an MMP-2/9 inhibitor (CTT) with bFGF to prevent ECM degradation, enhance vascularization, and inhibit fibrosis, providing a comprehensive strategy to improve cardiac function. 3) An injectable hydrogel was developed with rapid gelation and mechanical properties similar to heart tissue, ensuring efficient drug retention and reducing tissue stress. 4) The hydrogel enabled controlled, spatiotemporal release of CTT to dynamically reduce MMP-2/9 activity, and gradually released bFGF to promote angiogenesis and inhibit fibrosis.
Collapse
Affiliation(s)
- Hong Niu
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130, USA; Center of Regenerative Medicine, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Zhongting Liu
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130, USA; Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Ya Guan
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130, USA; Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Jiaxing Wen
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130, USA; Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Yu Dang
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130, USA; Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Jianjun Guan
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, MO 63130, USA; Center of Regenerative Medicine, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA; Institute of Materials Science and Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
10
|
Teymouri S, Yousefi MH, Heidari S, Farokhi S, Afkhami H, Kashfi M. Beyond antibiotics: mesenchymal stem cells and bacteriophages-new approaches to combat bacterial resistance in wound infections. Mol Biol Rep 2024; 52:64. [PMID: 39699690 DOI: 10.1007/s11033-024-10163-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024]
Abstract
Wound management is a major global health problem. With the rising incidence of diabetic wounds, accidents, and other injuries, the demand for prompt wound treatment has become increasingly critical. Millions of people suffer from serious, large wounds resulting from major accidents, surgeries, and wars. These wounds require considerable time to heal and are susceptible to infection. Furthermore, chronic wounds, particularly in elderly and diabetic patients, often require frequent medical interventions to prevent complications. Consequently, wound management imposes a significant economic burden worldwide. The complications arising from wound infections can vary from localized issues to systemic effects. The most severe local complication of wound infection is the non-healing, which results from the disruption of the wound-healing process. This often leads to significant pain, discomfort, and psychological trauma for the patient. Systemic complications may include cellulitis, osteomyelitis, and septicemia. Mesenchymal stem cells are characterized by their high capacity for division, making them suitable candidates for the treatment of tissue damage. Additionally, they produce antimicrobial peptides and various cytokines, which enhance their antimicrobial activity. Evidence shows that phages are effective in treating wound-related infections, and phage therapy has proven to be highly effective for patients when administered correctly. The purpose of this article is to explore the use of bacteriophages and mesenchymal stem cells in wound healing and infection management.
Collapse
Affiliation(s)
- Samane Teymouri
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hasan Yousefi
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | | | - Simin Farokhi
- Student Research Committee, USERN Office, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran.
| | - Mojtaba Kashfi
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Fellowship in Clinical Laboratory Sciences, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
11
|
Heidari R, Assadollahi V, Shakib Manesh MH, Mirzaei SA, Elahian F. Recent advances in mesoporous silica nanoparticles formulations and drug delivery for wound healing. Int J Pharm 2024; 665:124654. [PMID: 39244073 DOI: 10.1016/j.ijpharm.2024.124654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/15/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
Wound healing is a natural process that can be disrupted by disease. Nanotechnology is a promising platform for the development of new therapeutic agents to accelerate acute and chronic wound healing. Drug delivery by means of nanoparticles as well as wound dressings have emerged as suitable options to improving the healing process. The characteristics of mesoporous silica nanoparticles (MSNs) make them efficient carriers of pharmaceutical agents alone or in combination with dressings. In order to maximize the effect of a drug and minimize its adverse consequences, it may be possible to include targeted and intelligent release of the drug into the design of MSNs. Its use to facilitate closure of adjacent sides of a cut as a tissue adhesive, local wound healing, controlled drug release and induction of blood coagulation are possible applications of MSNs. This review summarizes research on MSN applications for wound healing. It includes a general overview, wound healing phases, MSN formulation, therapeutic possibilities of MSNs and MSN-based drug delivery systems for wound healing.
Collapse
Affiliation(s)
- Razieh Heidari
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran; Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Vahideh Assadollahi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mohammad Hossein Shakib Manesh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Seyed Abbas Mirzaei
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran; Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Elahian
- Advanced Technology Cores, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
12
|
Zahra D, Shokat Z, Sufyan M, Chaudhary Z, Ashfaq UA. Exploring the potential of chitosan polyherbal hydrogel loaded with AgNPs to enhance wound healing A triangular study. Int J Biol Macromol 2024; 281:135896. [PMID: 39374716 DOI: 10.1016/j.ijbiomac.2024.135896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/09/2024]
Abstract
Hydrogel wound dressings provide a moist environment, which promotes the formation of granulation tissue and epithelium in the wound area, accelerating the wound healing process. There have been numerous approaches to skin wound management and treatment, but the limitations of current methods highlight the need for more effective alternatives. A Chitosan polyherbal hydrogel integrated with AgNPs was synthesized to assess its wound-healing potential both in vitro and in vivo. The AgNPs were synthesized using Calotropis procera leaf extract and characterized via X-ray diffraction analysis (XRD), Scanning electron microscopy (SEM), and Fourier Transform Infrared Spectroscopy (FT-IR). In swelling kinetic analysis, the hydrogel's weight reached its maximum at 8 h of incubation and began to decrease from 12 h up to 72 h (49 % ± 6.04). The hydrogel formulation demonstrated strong antimicrobial potential against E. coli and S. aureus with an inhibition zone of 18 mm and 25 mm, respectively. Furthermore, in mice studies, the formulation exhibited significant wound size reduction within 12 days, supported by histopathology analysis revealing higher angiogenic potential compared to commercial hydrogels. The concentrations of IL-6 and TNF-α in CS-polyherbal/AgNPs hydrogel were 500 pg/ml and 125 pg/ml, respectively. Additionally, a network pharmacology approach identified 11 chemical constituents in Aloe vera, Azadirachta indica, and Alternanthera brasiliana extracts, along with 326 potential targets, suggesting the superior wound healing properties of this formulation compared to commercially available hydrogels.
Collapse
Affiliation(s)
- Duaa Zahra
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan
| | - Zeeshan Shokat
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Sufyan
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan
| | - Zunera Chaudhary
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad 38000, Pakistan.
| |
Collapse
|
13
|
Fu H, Chen Y, Fu Q, Lv Q, Zhang J, Yang Y, Tan P, Wang X, Yang Y, Wu Z. From conventional to cutting-edge: Exosomes revolutionizing nano-drug delivery systems. CHEMICAL ENGINEERING JOURNAL 2024; 500:156685. [DOI: 10.1016/j.cej.2024.156685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
14
|
Mansur AAP, Carvalho SM, Brito RMDM, Capanema NSV, Duval IDB, Cardozo ME, Rihs JBR, Lemos GGM, Lima LCD, dos Reys MP, Rodrigues APH, Oliveira LCA, de Sá MA, Cassali GD, Bueno LL, Fujiwara RT, Lobato ZIP, Mansur HS. Arginine-Biofunctionalized Ternary Hydrogel Scaffolds of Carboxymethyl Cellulose-Chitosan-Polyvinyl Alcohol to Deliver Cell Therapy for Wound Healing. Gels 2024; 10:679. [PMID: 39590035 PMCID: PMC11594054 DOI: 10.3390/gels10110679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024] Open
Abstract
Wound healing is important for skin after deep injuries or burns, which can lead to hospitalization, long-term morbidity, and mortality. In this field, tissue-engineered skin substitutes have therapy potential to assist in the treatment of acute and chronic skin wounds, where many requirements are still unmet. Hence, in this study, a novel type of biocompatible ternary polymer hybrid hydrogel scaffold was designed and produced through an entirely eco-friendly aqueous process composed of carboxymethyl cellulose, chitosan, and polyvinyl alcohol and chemically cross-linked by citric acid, forming three-dimensional (3D) matrices, which were biofunctionalized with L-arginine (L-Arg) to enhance cellular adhesion. They were applied as bilayer skin biomimetic substitutes based on human-derived cell cultures of fibroblasts and keratinocytes were seeded and grown into their 3D porous structures, producing cell-based bio-responsive hybrid hydrogel scaffolds to assist the wound healing process. The results demonstrated that hydrophilic hybrid cross-linked networks were formed via esterification reactions with the 3D porous microarchitecture promoted by foam templating and freeze-drying. These hybrids presented chemical stability, physicochemical properties, high moisture adsorption capacity, surface properties, and a highly interconnected 3D porous structure well suited for use as a skin substitute in wound healing. Additionally, the surface biofunctionalization of these 3D hydrogel scaffolds with L-arginine through amide bonds had significantly enhanced cellular attachment and proliferation of fibroblast and keratinocyte cultures. Hence, the in vivo results using Hairless mouse models (an immunocompromised strain) confirmed that these responsive bio-hybrid hydrogel scaffolds possess hemocompatibility, bioadhesion, biocompatibility, adhesiveness, biodegradability, and non-inflammatory behavior and are capable of assisting the skin wound healing process.
Collapse
Affiliation(s)
- Alexandra A. P. Mansur
- Center of Nanoscience, Nanotechnology, and Innovation—CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Av. Presidente Antônio Carlos, 6627—Escola de Engenharia, Bloco 2—Sala 2233, Belo Horizonte 31270-901, MG, Brazil; (A.A.P.M.); (S.M.C.); (N.S.V.C.); (G.G.M.L.)
| | - Sandhra M. Carvalho
- Center of Nanoscience, Nanotechnology, and Innovation—CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Av. Presidente Antônio Carlos, 6627—Escola de Engenharia, Bloco 2—Sala 2233, Belo Horizonte 31270-901, MG, Brazil; (A.A.P.M.); (S.M.C.); (N.S.V.C.); (G.G.M.L.)
| | - Ramayana M. de M. Brito
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, MG, Brazil; (R.M.d.M.B.); (I.d.B.D.); (M.E.C.); (J.B.R.R.); (L.L.B.); (R.T.F.)
| | - Nádia S. V. Capanema
- Center of Nanoscience, Nanotechnology, and Innovation—CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Av. Presidente Antônio Carlos, 6627—Escola de Engenharia, Bloco 2—Sala 2233, Belo Horizonte 31270-901, MG, Brazil; (A.A.P.M.); (S.M.C.); (N.S.V.C.); (G.G.M.L.)
| | - Isabela de B. Duval
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, MG, Brazil; (R.M.d.M.B.); (I.d.B.D.); (M.E.C.); (J.B.R.R.); (L.L.B.); (R.T.F.)
| | - Marcelo E. Cardozo
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, MG, Brazil; (R.M.d.M.B.); (I.d.B.D.); (M.E.C.); (J.B.R.R.); (L.L.B.); (R.T.F.)
| | - José B. R. Rihs
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, MG, Brazil; (R.M.d.M.B.); (I.d.B.D.); (M.E.C.); (J.B.R.R.); (L.L.B.); (R.T.F.)
| | - Gabriela G. M. Lemos
- Center of Nanoscience, Nanotechnology, and Innovation—CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Av. Presidente Antônio Carlos, 6627—Escola de Engenharia, Bloco 2—Sala 2233, Belo Horizonte 31270-901, MG, Brazil; (A.A.P.M.); (S.M.C.); (N.S.V.C.); (G.G.M.L.)
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, MG, Brazil; (R.M.d.M.B.); (I.d.B.D.); (M.E.C.); (J.B.R.R.); (L.L.B.); (R.T.F.)
| | - Letícia C. D. Lima
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, MG, Brazil; (L.C.D.L.); (M.A.d.S.)
| | - Marina P. dos Reys
- Laboratory of Compared Pathology, Department of Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, MG, Brazil; (M.P.d.R.); (G.D.C.)
| | - Ana P. H. Rodrigues
- Chemistry Department, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, MG, Brazil; (A.P.H.R.); (L.C.A.O.)
| | - Luiz C. A. Oliveira
- Chemistry Department, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, MG, Brazil; (A.P.H.R.); (L.C.A.O.)
| | - Marcos Augusto de Sá
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, MG, Brazil; (L.C.D.L.); (M.A.d.S.)
| | - Geovanni D. Cassali
- Laboratory of Compared Pathology, Department of Pathology, Institute of Biological Sciences, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, MG, Brazil; (M.P.d.R.); (G.D.C.)
| | - Lilian L. Bueno
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, MG, Brazil; (R.M.d.M.B.); (I.d.B.D.); (M.E.C.); (J.B.R.R.); (L.L.B.); (R.T.F.)
| | - Ricardo T. Fujiwara
- Laboratory of Immunobiology and Control of Parasites, Department of Parasitology, Institute of Biological Sciences, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, MG, Brazil; (R.M.d.M.B.); (I.d.B.D.); (M.E.C.); (J.B.R.R.); (L.L.B.); (R.T.F.)
| | - Zelia I. P. Lobato
- Departamento de Medicina Veterinária Preventiva, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, MG, Brazil;
| | - Herman S. Mansur
- Center of Nanoscience, Nanotechnology, and Innovation—CeNano2I, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Av. Presidente Antônio Carlos, 6627—Escola de Engenharia, Bloco 2—Sala 2233, Belo Horizonte 31270-901, MG, Brazil; (A.A.P.M.); (S.M.C.); (N.S.V.C.); (G.G.M.L.)
| |
Collapse
|
15
|
Nam M, Lee JW, Cha GD. Biomedical Application of Enzymatically Crosslinked Injectable Hydrogels. Gels 2024; 10:640. [PMID: 39451293 PMCID: PMC11507637 DOI: 10.3390/gels10100640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/28/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024] Open
Abstract
Hydrogels have garnered significant interest in the biomedical field owing to their tissue-like properties and capability to incorporate various fillers. Among these, injectable hydrogels have been highlighted for their unique advantages, especially their minimally invasive administration mode for implantable use. These injectable hydrogels can be utilized in their pristine forms or as composites by integrating them with therapeutic filler materials. Given their primary application in implantable platforms, enzymatically crosslinked injectable hydrogels have been actively explored due to their excellent biocompatibility and easily controllable mechanical properties for the desired use. This review introduces the crosslinking mechanisms of such hydrogels, focusing on those mediated by horseradish peroxidase (HRP), transglutaminase (TG), and tyrosinase. Furthermore, several parameters and their relationships with the intrinsic properties of hydrogels are investigated. Subsequently, the representative biomedical applications of enzymatically crosslinked-injectable hydrogels are presented, including those for wound healing, preventing post-operative adhesion (POA), and hemostasis. Furthermore, hydrogel composites containing filler materials, such as therapeutic cells, proteins, and drugs, are analyzed. In conclusion, we examine the scientific challenges and directions for future developments in the field of enzymatically crosslinked-injectable hydrogels, focusing on material selection, intrinsic properties, and filler integration.
Collapse
Affiliation(s)
| | | | - Gi Doo Cha
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea; (M.N.); (J.W.L.)
| |
Collapse
|
16
|
Lu X, Dai S, Huang B, Li S, Wang P, Zhao Z, Li X, Li N, Wen J, Sun Y, Man Z, Liu B, Li W. Exosomes loaded a smart bilayer-hydrogel scaffold with ROS-scavenging and macrophage-reprogramming properties for repairing cartilage defect. Bioact Mater 2024; 38:137-153. [PMID: 38699244 PMCID: PMC11063794 DOI: 10.1016/j.bioactmat.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/01/2024] [Accepted: 04/16/2024] [Indexed: 05/05/2024] Open
Abstract
Enhancing the regeneration of cartilage defects remains challenging owing to limited innate self-healing as well as acute inflammation arising from the overexpression of reactive oxygen species (ROS) in post-traumatic microenvironments. Recently, stem cell-derived exosomes (Exos) have been developed as potential cell-free therapy for cartilage regeneration. Although this approach promotes chondrogenesis, it neglects the emerging inflammatory microenvironment. In this study, a smart bilayer-hydrogel dual-loaded with sodium diclofenac (DC), an anti-inflammatory drug, and Exos from bone marrow-derived mesenchymal stem cells was developed to mitigate initial-stage inflammation and promote late-stage stem-cell recruitment and chondrogenic differentiation. First, the upper-hydrogel composed of phenylboronic-acid-crosslinked polyvinyl alcohol degrades in response to elevated levels of ROS to release DC, which mitigates oxidative stress, thus reprogramming macrophages to the pro-healing state. Subsequently, Exos are slowly released from the lower-hydrogel composed of hyaluronic acid into an optimal microenvironment for the stimulation of chondrogenesis. Both in vitro and in vivo assays confirmed that the dual-loaded bilayer-hydrogel reduced post-traumatic inflammation and enhanced cartilage regeneration by effectively scavenging ROS and reprogramming macrophages. The proposed platform provides multi-staged therapy, which allows for the optimal harnessing of Exos as a therapeutic for cartilage regeneration.
Collapse
Affiliation(s)
- Xiaoqing Lu
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, PR China
- College of Sports Medicine and Rehabilitation, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271016, PR China
| | - Shimin Dai
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, PR China
| | - Benzhao Huang
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, PR China
| | - Shishuo Li
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, PR China
| | - Peng Wang
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, PR China
| | - Zhibo Zhao
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, PR China
| | - Xiao Li
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, PR China
| | - Ningbo Li
- School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, PR China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, PR China
| | - Jie Wen
- School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, PR China
| | - Yunhan Sun
- School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, PR China
| | - Zhentao Man
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, PR China
- College of Sports Medicine and Rehabilitation, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271016, PR China
- Endocrine and Metabolic Diseases Hospital of Shandong First Medical University, Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, 250062, PR China
| | - Bing Liu
- School of Stomatology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, PR China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, PR China
| | - Wei Li
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, PR China
- College of Sports Medicine and Rehabilitation, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271016, PR China
| |
Collapse
|
17
|
Farasati
Far B, Safaei M, Nahavandi R, Gholami A, Naimi-Jamal MR, Tamang S, Ahn JE, Ramezani Farani M, Huh YS. Hydrogel Encapsulation Techniques and Its Clinical Applications in Drug Delivery and Regenerative Medicine: A Systematic Review. ACS OMEGA 2024; 9:29139-29158. [PMID: 39005800 PMCID: PMC11238230 DOI: 10.1021/acsomega.3c10102] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 07/16/2024]
Abstract
Hydrogel encapsulation is a promising carrier for cell and drug delivery due to its ability to protect the encapsulated entities from harsh physiological conditions and enhance their therapeutic efficacy and bioavailability. However, there is not yet consensus on the optimal hydrogel type, encapsulation method, and clinical application. Therefore, a systematic review of hydrogel encapsulation techniques and their potential for clinical application is needed to provide a comprehensive and up-to-date overview. In this systematic review, we searched electronic databases for articles published between 2008 and 2023 that described the encapsulation of cells or drug molecules within hydrogels. Herein, we identified 9 relevant studies that met the inclusion and exclusion criteria of our study. Our analysis revealed that the physicochemical properties of the hydrogel, such as its porosity, swelling behavior, and degradation rate, play a critical role in the encapsulation of cells or drug molecules. Furthermore, the encapsulation method, including physical, chemical, or biological methods, can affect the encapsulated entities' stability, bioavailability, and therapeutic efficacy. Challenges of hydrogel encapsulation include poor control over the release of encapsulated entities, limited shelf life, and potential immune responses. Future directions of hydrogel encapsulation include the development of novel hydrogel and encapsulation methods and the integration of hydrogel encapsulation with other technologies, such as 3D printing and gene editing. In conclusion, this review is useful for researchers, clinicians, and policymakers who are interested in this field of drug delivery and regenerative medicine that can serve as a guide for the future development of novel technologies that can be applied into clinical practice.
Collapse
Affiliation(s)
- Bahareh Farasati
Far
- Department
of Chemistry, Iran University of Science
and Technology, Tehran 13114-16846, Iran
| | - Maryam Safaei
- Department
of Pharmacology, Faculty of Pharmacy, Eastern
Mediterranean University, via Mersin 10, Famagusta, TR. North Cyprus 99628, Turkey
| | - Reza Nahavandi
- School
of Chemical Engineering, College of Engineering, University of Tehran, Tehran 1417935840, Iran
| | - Amir Gholami
- Faculty
of Medicine, Kurdistan University of Medical
Science, Sanandaj 6618634683, Iran
| | | | - Sujina Tamang
- NanoBio
High-Tech Materials Research Center, Department of Biological Sciences
and Bioengineering, Inha University, Incheon, 402-751, Republic of Korea
| | - Jung Eun Ahn
- NanoBio
High-Tech Materials Research Center, Department of Biological Sciences
and Bioengineering, Inha University, Incheon, 402-751, Republic of Korea
| | - Marzieh Ramezani Farani
- NanoBio
High-Tech Materials Research Center, Department of Biological Sciences
and Bioengineering, Inha University, Incheon, 402-751, Republic of Korea
| | - Yun Suk Huh
- NanoBio
High-Tech Materials Research Center, Department of Biological Sciences
and Bioengineering, Inha University, Incheon, 402-751, Republic of Korea
| |
Collapse
|
18
|
Lu P, Ruan D, Huang M, Tian M, Zhu K, Gan Z, Xiao Z. Harnessing the potential of hydrogels for advanced therapeutic applications: current achievements and future directions. Signal Transduct Target Ther 2024; 9:166. [PMID: 38945949 PMCID: PMC11214942 DOI: 10.1038/s41392-024-01852-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/02/2024] [Accepted: 04/28/2024] [Indexed: 07/02/2024] Open
Abstract
The applications of hydrogels have expanded significantly due to their versatile, highly tunable properties and breakthroughs in biomaterial technologies. In this review, we cover the major achievements and the potential of hydrogels in therapeutic applications, focusing primarily on two areas: emerging cell-based therapies and promising non-cell therapeutic modalities. Within the context of cell therapy, we discuss the capacity of hydrogels to overcome the existing translational challenges faced by mainstream cell therapy paradigms, provide a detailed discussion on the advantages and principal design considerations of hydrogels for boosting the efficacy of cell therapy, as well as list specific examples of their applications in different disease scenarios. We then explore the potential of hydrogels in drug delivery, physical intervention therapies, and other non-cell therapeutic areas (e.g., bioadhesives, artificial tissues, and biosensors), emphasizing their utility beyond mere delivery vehicles. Additionally, we complement our discussion on the latest progress and challenges in the clinical application of hydrogels and outline future research directions, particularly in terms of integration with advanced biomanufacturing technologies. This review aims to present a comprehensive view and critical insights into the design and selection of hydrogels for both cell therapy and non-cell therapies, tailored to meet the therapeutic requirements of diverse diseases and situations.
Collapse
Affiliation(s)
- Peilin Lu
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, PR China
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Dongxue Ruan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Department of Respiratory and Critical Care Medicine, Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, PR China
| | - Meiqi Huang
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China
| | - Mi Tian
- Department of Stomatology, Chengdu Second People's Hospital, Chengdu, 610021, PR China
| | - Kangshun Zhu
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, PR China.
| | - Ziqi Gan
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, PR China.
| | - Zecong Xiao
- Nanomedicine Research Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, PR China.
| |
Collapse
|
19
|
Karimzadeh F, Soltani Fard E, Nadi A, Malekzadeh R, Elahian F, Mirzaei SA. Advances in skin gene therapy: utilizing innovative dressing scaffolds for wound healing, a comprehensive review. J Mater Chem B 2024; 12:6033-6062. [PMID: 38887828 DOI: 10.1039/d4tb00966e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
The skin, serving as the body's outermost layer, boasts a vast area and intricate structure, functioning as the primary barrier against external threats. Disruptions in the composition and functionality of the skin can lead to a diverse array of skin conditions, such as wounds, burns, and diabetic ulcers, along with inflammatory disorders, infections, and various types of skin cancer. These disorders not only exacerbate concerns regarding skin health and beauty but also have a significant impact on mental well-being. Due to the complexity of these disorders, conventional treatments often prove insufficient, necessitating the exploration of new therapeutic approaches. Researchers develop new therapies by deciphering these intricacies and gaining a thorough understanding of the protein networks and molecular processes in skin. A new window of opportunity has opened up for improving wound healing processes because of recent advancements in skin gene therapy. To enhance skin regeneration and healing, this extensive review investigates the use of novel dressing scaffolds in conjunction with gene therapy approaches. Scaffolds that do double duty as wound protectors and vectors for therapeutic gene delivery are being developed using innovative biomaterials. To improve cellular responses and speed healing, these state-of-the-art scaffolds allow for the targeted delivery and sustained release of genetic material. The most recent developments in gene therapy techniques include RNA interference, CRISPR-based gene editing, and the utilization of viral and non-viral vectors in conjunction with scaffolds, which were reviewed here to overcome skin disorders and wound complications. In the future, there will be rare chances to develop custom methods for skin health care thanks to the combination of modern technology and collaboration among disciplines.
Collapse
Affiliation(s)
- Fatemeh Karimzadeh
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Elahe Soltani Fard
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Akram Nadi
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Rahim Malekzadeh
- Student Research Committee, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| | - Fatemeh Elahian
- Advanced Technology Cores, Baylor College of Medicine, Houston, Texas, USA
| | - Seyed Abbas Mirzaei
- Department of Medical Biotechnology, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran.
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
20
|
Ye X, Zhang E, Huang Y, Tian F, Xue J. 3D-printed electrospun fibres for wound healing. Wound Repair Regen 2024; 32:195-207. [PMID: 37753874 DOI: 10.1111/wrr.13119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/09/2023] [Accepted: 09/06/2023] [Indexed: 09/28/2023]
Abstract
Wound management for acute and chronic wounds has become a serious clinical problem worldwide, placing considerable pressure on public health systems. Owing to the high-precision, adjustable pore structure, and repeatable manufacturing process, 3D-printed electrospun fibre (3DP-ESF) has attracted widespread attention for fabricating wound dressing. In addition, in comparison with 2D electrospun fibre membranes fabricated by traditional electrospinning, the 3D structures provide additional guidance on cell behaviour. In this perspective article, we first summarise the basic manufacturing principles and methods to fabricate 3DP-ESF. Then, we discuss the function of 3DP-ESF in manipulating the different stages of wound healing, including anti-bacteria, anti-inflammation, and promotion of cell migration and proliferation, as well as the construction of tissue-engineered scaffolds. In the end, we provide the current challenge faced by 3DP-ESF in the application of skin wound regeneration and its promising future directions.
Collapse
Affiliation(s)
- Xilin Ye
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, People's Republic of China
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, People's Republic of China
| | - Enshuo Zhang
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, People's Republic of China
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, People's Republic of China
| | - Yaqin Huang
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, People's Republic of China
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, People's Republic of China
| | - Feng Tian
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, People's Republic of China
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, People's Republic of China
| | - Jiajia Xue
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, People's Republic of China
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, People's Republic of China
| |
Collapse
|
21
|
Mulero-Russe A, García AJ. Engineered Synthetic Matrices for Human Intestinal Organoid Culture and Therapeutic Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307678. [PMID: 37987171 PMCID: PMC10922691 DOI: 10.1002/adma.202307678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/02/2023] [Indexed: 11/22/2023]
Abstract
Human intestinal organoids (HIOs) derived from pluripotent stem cells or adult stem cell biopsies represent a powerful platform to study human development, drug testing, and disease modeling in vitro, and serve as a cell source for tissue regeneration and therapeutic advances in vivo. Synthetic hydrogels can be engineered to serve as analogs of the extracellular matrix to support HIO growth and differentiation. These hydrogels allow for tuning the mechanical and biochemical properties of the matrix, offering an advantage over biologically derived hydrogels such as Matrigel. Human intestinal organoids have been used for repopulating transplantable intestinal grafts and for in vivo delivery to an injured intestinal site. The use of synthetic hydrogels for in vitro culture and for in vivo delivery is expected to significantly increase the relevance of human intestinal organoids for drug screening, disease modeling, and therapeutic applications.
Collapse
Affiliation(s)
- Adriana Mulero-Russe
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Andrés J García
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
22
|
Palmese LL, LeValley PJ, Pradhan L, Parsons AL, Oakey JS, Abraham M, D'Addio SM, Kloxin AM, Liang Y, Kiick KL. Injectable liposome-containing click hydrogel microparticles for release of macromolecular cargos. SOFT MATTER 2024; 20:1736-1745. [PMID: 38288734 PMCID: PMC10880143 DOI: 10.1039/d3sm01009k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 12/16/2023] [Indexed: 02/22/2024]
Abstract
Hydrogel microparticles ranging from 0.1-100 μm, referred to as microgels, are attractive for biological applications afforded by their injectability and modularity, which allows facile delivery of mixed populations for tailored combinations of therapeutics. Significant efforts have been made to broaden methods for microgel production including via the materials and chemistries by which they are made. Via droplet-based-microfluidics we have established a method for producing click poly-(ethylene)-glycol (PEG)-based microgels with or without chemically crosslinked liposomes (lipo-microgels) through the Michael-type addition reaction between thiol and either vinyl-sulfone or maleimide groups. Unifom spherical microgels and lipo-microgels were generated with sizes of 74 ± 16 μm and 82 ± 25 μm, respectively, suggesting injectability that was further supported by rheological analyses. Super-resolution confocal microscopy was used to further verify the presence of liposomes within the lipo-microgels and determine their distribution. Atomic force microscopy (AFM) was conducted to compare the mechanical properties and network architecture of bulk hydrogels, microgels, and lipo-microgels. Further, encapsulation and release of model cargo (FITC-Dextran 5 kDa) and protein (equine myoglobin) showed sustained release for up to 3 weeks and retention of protein composition and secondary structure, indicating their ability to both protect and release cargos of interest.
Collapse
Affiliation(s)
- Luisa L Palmese
- Materials Science and Engineering, University of Delaware, Newark, DE, USA.
| | - Paige J LeValley
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA
| | - Lina Pradhan
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA
| | - Amanda L Parsons
- Chemical and Biomedical Engineering, University of Wyoming, Laramie, WY, USA
| | - John S Oakey
- Chemical and Biomedical Engineering, University of Wyoming, Laramie, WY, USA
| | - Mathew Abraham
- Translational Imaging, Merck & Co., Inc., West Point, PA, USA
| | - Suzanne M D'Addio
- Discovery Pharmaceutical Sciences, Merck & Co., Inc., West Point, PA, USA.
| | - April M Kloxin
- Materials Science and Engineering, University of Delaware, Newark, DE, USA.
- Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA
| | - Yingkai Liang
- Discovery Pharmaceutical Sciences, Merck & Co., Inc., West Point, PA, USA.
| | - Kristi L Kiick
- Materials Science and Engineering, University of Delaware, Newark, DE, USA.
- Biomedical Engineering, University of Delaware, Newark, DE, USA
| |
Collapse
|
23
|
Barman M, Rahman S, Joshi N, Sarma N, Bharadwaj P, Thakur D, Devi R, Chowdhury D, Hurren C, Rajkhowa R. Banana fibre-chitosan-guar gum composite as an alternative wound healing material. Int J Biol Macromol 2024; 259:129653. [PMID: 38280292 DOI: 10.1016/j.ijbiomac.2024.129653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 12/22/2023] [Accepted: 01/19/2024] [Indexed: 01/29/2024]
Abstract
Bio-composites, which can be obtained from the renewable natural resources, are fascinating material for use as sustainable biomaterials with essential properties like biodegradable, bio-compatibility as well cyto-compatibility etc. These properties are useful for bio-medical including wound healing applications. In this study, fibre obtained banana pseudo stem of banana plant, which is otherwise wasted, was used as a material along with chitosan and guar gum to fabricate a banana fibre-biopolymer composite patch. The physiochemical properties of the patches were examined using Fourier Transformed Infra-red spectrophotometer (FT-IR), tensile tester, Scanning Electron Microscope (SEM), contact angle tester, swelling and degradation studies. We further demonstrated that a herbal drug, Nirgundi could be loaded to the patch showed controlled its release at different pHs. The patch had good antibacterial property and supported proliferation of mouse fibroblast cells. The study thus indicates that banana fibre-chitosan-guar gum composite can be developed into an alternative wound healing material.
Collapse
Affiliation(s)
- Mridusmita Barman
- Institute of Frontier Materials, Deakin University, Geelong, Victoria, Australia; Material Nanochemistry Laboratory, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, India; Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, India
| | - Sazzadur Rahman
- Material Nanochemistry Laboratory, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, India
| | - Naresh Joshi
- Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, India
| | - Neeraj Sarma
- Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, India
| | - Pranami Bharadwaj
- Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, India
| | - Debajit Thakur
- Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, India
| | - Rajlakshmi Devi
- Life Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, India
| | - Devasish Chowdhury
- Material Nanochemistry Laboratory, Institute of Advanced Study in Science and Technology (IASST), Guwahati, Assam, India.
| | - Christopher Hurren
- Institute of Frontier Materials, Deakin University, Geelong, Victoria, Australia
| | - Rangam Rajkhowa
- Institute of Frontier Materials, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
24
|
Cheng HY, Anggelia MR, Liu SC, Lin CF, Lin CH. Enhancing Immunomodulatory Function of Mesenchymal Stromal Cells by Hydrogel Encapsulation. Cells 2024; 13:210. [PMID: 38334602 PMCID: PMC10854565 DOI: 10.3390/cells13030210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/10/2024] [Accepted: 01/18/2024] [Indexed: 02/10/2024] Open
Abstract
Mesenchymal stromal cells (MSCs) showcase remarkable immunoregulatory capabilities in vitro, positioning them as promising candidates for cellular therapeutics. However, the process of administering MSCs and the dynamic in vivo environment may impact the cell-cell and cell-matrix interactions of MSCs, consequently influencing their survival, engraftment, and their immunomodulatory efficacy. Addressing these concerns, hydrogel encapsulation emerges as a promising solution to enhance the therapeutic effectiveness of MSCs in vivo. Hydrogel, a highly flexible crosslinked hydrophilic polymer with a substantial water content, serves as a versatile platform for MSC encapsulation. Demonstrating improved engraftment and heightened immunomodulatory functions in vivo, MSCs encapsulated by hydrogel are at the forefront of advancing therapeutic outcomes. This review delves into current advancements in the field, with a focus on tuning various hydrogel parameters to elucidate mechanistic insights and elevate functional outcomes. Explored parameters encompass hydrogel composition, involving monomer type, functional modification, and co-encapsulation, along with biomechanical and physical properties like stiffness, viscoelasticity, topology, and porosity. The impact of these parameters on MSC behaviors and immunomodulatory functions is examined. Additionally, we discuss potential future research directions, aiming to kindle sustained interest in the exploration of hydrogel-encapsulated MSCs in the realm of immunomodulation.
Collapse
Affiliation(s)
- Hui-Yun Cheng
- Center for Vascularized Composite Allotransplantation, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (M.R.A.)
| | - Madonna Rica Anggelia
- Center for Vascularized Composite Allotransplantation, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (M.R.A.)
- Department of Plastic and Reconstructive Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Shiao-Chin Liu
- Center for Vascularized Composite Allotransplantation, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (M.R.A.)
- Department of Plastic and Reconstructive Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
| | - Chih-Fan Lin
- Center for Vascularized Composite Allotransplantation, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (M.R.A.)
| | - Cheng-Hung Lin
- Center for Vascularized Composite Allotransplantation, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan; (M.R.A.)
- Department of Plastic and Reconstructive Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- School of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| |
Collapse
|
25
|
Gounden V, Singh M. Hydrogels and Wound Healing: Current and Future Prospects. Gels 2024; 10:43. [PMID: 38247766 PMCID: PMC10815795 DOI: 10.3390/gels10010043] [Citation(s) in RCA: 60] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/11/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024] Open
Abstract
The care and rehabilitation of acute and chronic wounds have a significant social and economic impact on patients and global health. This burden is primarily due to the adverse effects of infections, prolonged recovery, and the associated treatment costs. Chronic wounds can be treated with a variety of approaches, which include surgery, negative pressure wound therapy, wound dressings, and hyperbaric oxygen therapy. However, each of these strategies has an array of limitations. The existing dry wound dressings lack functionality in promoting wound healing and exacerbating pain by adhering to the wound. Hydrogels, which are commonly polymer-based and swell in water, have been proposed as potential remedies due to their ability to provide a moist environment that facilitates wound healing. Their unique composition enables them to absorb wound exudates, exhibit shape adaptability, and be modified to incorporate active compounds such as growth factors and antibacterial compounds. This review provides an updated discussion of the leading natural and synthetic hydrogels utilized in wound healing, details the latest advancements in hydrogel technology, and explores alternate approaches in this field. Search engines Scopus, PubMed, Science Direct, and Web of Science were utilized to review the advances in hydrogel applications over the last fifteen years.
Collapse
Affiliation(s)
| | - Moganavelli Singh
- Nano-Gene and Drug Delivery Laboratory, Discipline of Biochemistry, University of KwaZulu-Natal, Private Bag X54001, Durban 4000, South Africa;
| |
Collapse
|
26
|
Hernandez-Sanchez D, Spasojevic A, Suuronen EJ, Alarcon EI. Electrospun Fibers for Use in Implantable Materials to Support Cell Therapy. Methods Mol Biol 2024; 2835:289-300. [PMID: 39105924 DOI: 10.1007/978-1-0716-3995-5_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Hydrogels are a class of biomaterials that can provide a three-dimensional (3D) environment capable of mimicking the extracellular matrix of native tissues. In this chapter, we present a method to generate electrospun nanofibers for the purpose of reinforcing hydrogels. The addition of electrospun fibers can be used to improve the mechanical properties of hydrogels and broaden their range of applications. First, the polymer for making the electrospun fibers is formulated using chloroform/ethanol, polycaprolactone (PCL), polyethylene glycol (PEG), and polyethylene glycol diacrylate (PEGDA). Second, the polymer is used to generate thin electrospun nanofibers by an electrospinning technique using aluminum foil as a collector, which acts as the conductive substrate that collects the charged fibers. Third, the resulting electrospun fibers undergo a filtration process using nylon membrane filters, followed by lyophilization, ensuring complete removal of water from the sample.
Collapse
Affiliation(s)
- Deyanira Hernandez-Sanchez
- BioEngineering and Therapeutic Solutions (BEaTS), Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Ana Spasojevic
- BioEngineering and Therapeutic Solutions (BEaTS), Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Erik J Suuronen
- BioEngineering and Therapeutic Solutions (BEaTS), Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, Canada.
- Department of Cellular & Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.
| | - Emilio I Alarcon
- BioEngineering and Therapeutic Solutions (BEaTS), Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, Canada.
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
27
|
Nalband DM, Sarker P, Khan SA, Freytes DO. Characterization and biological evaluation of a novel flavonoid-collagen antioxidant hydrogel with cytoprotective properties. J Biomed Mater Res B Appl Biomater 2024; 112:e35321. [PMID: 37715569 DOI: 10.1002/jbm.b.35321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/28/2023] [Accepted: 08/16/2023] [Indexed: 09/17/2023]
Abstract
Reactive oxygen species (ROS) play a critical and important role during wound healing but excess ROS at the wound site can lead to cellular damage and sub-optimal healing. Minimizing oxidative damage to the wound site and any supplemental therapeutic cells can be achieved by delivering exogenous antioxidants. Collagen hydrogels are ideal wound care materials due to their biocompatibility, high water content, and porous, three-dimensional architecture. Yet, they lack the inherent antioxidant activity that could help mitigate excess ROS at a wound site. This work formulates and evaluates the in vitro biocompatibility and antioxidant capabilities of collagen-fibroblast hydrogels combined with the polyphenolic antioxidant luteolin. Collagen solutions mixed with luteolin readily assembled into robust hydrogels with increasing gel strength due to increasing concentrations of luteolin. SEM images confirmed a mean pore size of 2.2 μm and a drastically different macromolecular ultrastructure with extensive fine crosslinking relative to collagen. Adequate cell viability and metabolic activity of dermal fibroblasts cultured within the gels were measured across all formulations, resulting in higher antioxidant activity and more than double the protection to cells from oxidative damage than traditional collagen hydrogels. Given these results, luteolin-collagen hydrogels demonstrate the potential for superior wound-healing properties when compared to collagen alone.
Collapse
Affiliation(s)
- Danielle M Nalband
- Joint Department of Biomedical Engineering, North Carolina State University/University of North Carolina-Chapel Hill, Raleigh, North Carolina, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| | - Prottasha Sarker
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Saad A Khan
- Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Donald O Freytes
- Joint Department of Biomedical Engineering, North Carolina State University/University of North Carolina-Chapel Hill, Raleigh, North Carolina, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
28
|
Li J, Su J, Liang J, Zhang K, Xie M, Cai B, Li J. A hyaluronic acid / chitosan composite functionalized hydrogel based on enzyme-catalyzed and Schiff base reaction for promoting wound healing. Int J Biol Macromol 2024; 255:128284. [PMID: 37992934 DOI: 10.1016/j.ijbiomac.2023.128284] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 11/17/2023] [Accepted: 11/18/2023] [Indexed: 11/24/2023]
Abstract
The healing of full-thickness skin defect has been a clinical challenge. Hydrogels with multiple functions inspired by extracellular matrix are expected to be used as wound dressing. In this paper, dopamine-grafted oxidized hyaluronic acid was blended with quaternary ammonium chitosan to form a composite functionalized hydrogel by enzyme-catalyzed cross-linking and Schiff base reaction. The hydrogel has convenient preparation, good biocompatibility, antibacterial and antioxidant, high adhesion and self-healing properties. The results in vivo show that the hydrogel can effectively close the wound and accelerate the speed of wound healing by up-regulating the expression of angiogenic protein and promoting the distribution of collagen deposition more uniform and regular. It is expected that this composite functionalized hydrogel dressing has great potential in wound regeneration.
Collapse
Affiliation(s)
- Jiankang Li
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Jingjing Su
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Jiaheng Liang
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Kun Zhang
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China.
| | - Mengbo Xie
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China
| | - Bingjie Cai
- Department of Dermatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Jingan Li
- School of Materials Science and Engineering, Zhengzhou University, 100 Science Road, Zhengzhou 450001, PR China.
| |
Collapse
|
29
|
Nashchekina Y, Guryanov E, Lihachev A, Vaganov G, Popova E, Mikhailova N, Nashchekin A. Effect of Phytic Acid Addition on the Structure of Collagen-Hyaluronic Acid Composite Gel. Gels 2023; 9:963. [PMID: 38131949 PMCID: PMC10743047 DOI: 10.3390/gels9120963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Composite collagen gels with hyaluronic acid are developed tissue-engineered structures for filling and regeneration of defects in various organs and tissues. For the first time, phytic acid was used to increase the stability and improve the mechanical properties of collagen gels with hyaluronic acid. Phytic acid is a promising cross-linker for collagen hydrogels and is a plant-derived antioxidant found in rich sources of beans, grains, and oilseeds. Phytic acid has several benefits due to its antioxidant, anticancer, and antitumor properties. In this work, studies were carried out on the kinetics of the self-assembly of collagen molecules in the presence of phytic and hyaluronic acids. It was shown that both of these acids do not lead to collagen self-assembly. Scanning electron microscopy showed that in the presence of phytic and hyaluronic acids, the collagen fibrils had a native structure, and the FTIR method confirmed the chemical cross-links between the collagen fibrils. DSC and rheological studies demonstrated that adding the phytic acid improved the stability and modulus of elasticity of the collagen gel. The presence of hyaluronic acid in the collagen gel slightly reduced the effect of phytic acid. The presence of phytic acid in the collagen gel improved the stability of the scaffold, but, after 1 week of cultivation, slightly reduced the viability of mesenchymal stromal cells cultured in the gel. The collagen type I gel with hyaluronic and phytic acids can be used to replace tissue defects, especially after the removal of cancerous tumors.
Collapse
Affiliation(s)
- Yuliya Nashchekina
- Center of Cell Technologies, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Pr. 4, 194064 St. Petersburg, Russia; (E.G.); (N.M.)
| | - Evgeny Guryanov
- Center of Cell Technologies, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Pr. 4, 194064 St. Petersburg, Russia; (E.G.); (N.M.)
| | - Alexey Lihachev
- Laboratory «Characterization of Materials and Structures of Solid State Electronics», Ioffe Institute, Polytekhnicheskaya St. 26, 194021 St. Petersburg, Russia; (A.L.); (A.N.)
| | - Gleb Vaganov
- Institute of Macromolecular Compounds of Russian Academy of Sciences, V.O., Bol’shoy Pr. 31, 199004 St. Petersburg, Russia; (G.V.); (E.P.)
| | - Elena Popova
- Institute of Macromolecular Compounds of Russian Academy of Sciences, V.O., Bol’shoy Pr. 31, 199004 St. Petersburg, Russia; (G.V.); (E.P.)
| | - Natalya Mikhailova
- Center of Cell Technologies, Institute of Cytology of the Russian Academy of Sciences, Tikhoretsky Pr. 4, 194064 St. Petersburg, Russia; (E.G.); (N.M.)
| | - Alexey Nashchekin
- Laboratory «Characterization of Materials and Structures of Solid State Electronics», Ioffe Institute, Polytekhnicheskaya St. 26, 194021 St. Petersburg, Russia; (A.L.); (A.N.)
| |
Collapse
|
30
|
Kaur K, Sannoufi R, Butler JS, Murphy CM. Biomimetic Inspired Hydrogels for Regenerative Vertebral Body Stenting. Curr Osteoporos Rep 2023; 21:806-814. [PMID: 38001387 DOI: 10.1007/s11914-023-00839-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 11/26/2023]
Abstract
PURPOSE OF REVIEW This review aims to explore the potential of biomimetic hydrogels as an alternative to bone cement in vertebral body stenting (VBS), a minimally invasive treatment for vertebral compression fractures. RECENT FINDINGS The use of bone cement in VBS procedures can lead to complications such as incomplete fracture reduction and cement leakage. Biomimetic hydrogels have gained significant attention as potential biomaterial alternatives for VBS due to their unique properties, including tuneable therapeutic and mechanical properties. Over the past decade, there has been significant advancements in the development of biomimetic hydrogels for bone regeneration, employing a wide range of approaches to enhance the structural and functional properties of hydrogels. Biomimetic hydrogels hold significant promise as safer and reparative alternatives to bone cement for VBS procedures. However, further research and development in this field are necessary to explore the full potential of hydrogel-based systems for vertebral bone repair.
Collapse
Affiliation(s)
- Kulwinder Kaur
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons (RCSI), Dublin, Ireland
- School of Pharmacy and Biomolecular Science, RCSI, Dublin, Ireland
| | - Ruby Sannoufi
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons (RCSI), Dublin, Ireland
| | - Joseph S Butler
- National Spinal Injuries Unit, Mater Misericordiae University Hospital, Dublin, Ireland
- School of Medicine, University of College Dublin, Belfield, Dublin, Ireland
| | - Ciara M Murphy
- Tissue Engineering Research Group, Department of Anatomy & Regenerative Medicine, Royal College of Surgeons (RCSI), Dublin, Ireland.
- Trinity Centre for Biomedical Engineering, Trinity College Dublin (TCD), Dublin, Ireland.
- Advanced Materials and Bioengineering Research Centre (AMBER), RCSI and TCD, Dublin, Ireland.
| |
Collapse
|
31
|
Nasra S, Patel M, Shukla H, Bhatt M, Kumar A. Functional hydrogel-based wound dressings: A review on biocompatibility and therapeutic efficacy. Life Sci 2023; 334:122232. [PMID: 37918626 DOI: 10.1016/j.lfs.2023.122232] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/29/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
Chronic wounds, burns, and surgical incisions represent critical healthcare challenges that significantly impact patient quality of life and strain healthcare resources. In response to these pressing needs, the field of wound healing has witnessed a radical advancement with the emergence of functional hydrogel-based dressings. This review article underscores the severity and importance of this transformative study in the domain of wound healing. The hydrogel matrix offers a moist and supportive environment that facilitates cellular migration, proliferation, and tissue regeneration, vital for efficient wound closure. Their conformable nature ensures patient comfort, reducing pain and uneasiness during dressing changes, particularly in chronic wounds where frequent interventions are required. Beyond their structural merits, functional hydrogel dressings possess the capability of incorporating bioactive molecules such as growth factors and antimicrobial agents. This facilitates targeted and sustained delivery of therapeutics directly to the wound site, addressing the multifactorial nature of chronic wounds and enhancing the healing trajectory. The integration of advanced nanotechnology has propelled the design of hydrogel dressings with enhanced mechanical strength and controlled drug release profiles, amplifying their therapeutic potential. In conclusion, the significance of this study lies in its ability to revolutionize wound healing practices and positively impact the lives of countless individuals suffering from chronic wounds and burns. As this transformative technology gains momentum, it holds the promise of addressing a major healthcare burden worldwide, thus heralding a new era in wound care management.
Collapse
Affiliation(s)
- Simran Nasra
- Biological and Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India
| | - Milonee Patel
- Biological and Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India
| | - Haly Shukla
- Biological and Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India
| | - Mahek Bhatt
- Biological and Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India
| | - Ashutosh Kumar
- Biological and Life Sciences, School of Arts & Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad 380009, Gujarat, India.
| |
Collapse
|
32
|
Nosrati H, Heydari M, Khodaei M. Cerium oxide nanoparticles: Synthesis methods and applications in wound healing. Mater Today Bio 2023; 23:100823. [PMID: 37928254 PMCID: PMC10622885 DOI: 10.1016/j.mtbio.2023.100823] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/04/2023] [Accepted: 09/26/2023] [Indexed: 11/07/2023] Open
Abstract
Wound care and treatment can be critical from a clinical standpoint. While different strategies for the management and treatment of skin wounds have been developed, the limitations inherent in the current approaches necessitate the development of more effective alternative strategies. Advances in tissue engineering have resulted in the development of novel promising approaches for accelerating wound healing. The use of various biomaterials capable of accelerating the regeneration of damaged tissue is critical in tissue engineering. In this regard, cerium oxide nanoparticles (CeO2 NPs) have recently received much attention because of their excellent biological properties, such as antibacterial, anti-inflammatory, antioxidant, and angiogenic features. The incorporation of CeO2 NPs into various polymer-based scaffolds developed for wound healing applications has led to accelerated wound healing due to the presence of CeO2 NPs. This paper discusses the structure and functions of the skin, the wound healing process, different methods for the synthesis of CeO2 NPs, the biological properties of CeO2 NPs, the role of CeO2 NPs in wound healing, the use of scaffolds containing CeO2 NPs for wound healing applications, and the potential toxicity of CeO2 NPs.
Collapse
Affiliation(s)
- Hamed Nosrati
- Biosensor Research Center (BRC), Isfahan University of Medical Sciences (IUMS), Isfahan, Iran
| | - Morteza Heydari
- Department of Immune Medicine, University of Regensburg, Regensburg, Germany
| | - Mohammad Khodaei
- Materials Engineering Group, Golpayegan College of Engineering, Isfahan University of Technology, Golpayegan, Iran
| |
Collapse
|
33
|
Capanema NSV, Mansur AAP, Carvalho SM, Martins T, Gonçalves MS, Andrade RS, Dorneles EMS, Lima LCD, de Alvarenga ÉLFC, da Fonseca EVB, de Sá MA, Lage AP, Lobato ZIP, Mansur HS. Nanosilver-Functionalized Hybrid Hydrogels of Carboxymethyl Cellulose/Poly(Vinyl Alcohol) with Antibacterial Activity for Prevention and Therapy of Infections of Diabetic Chronic Wounds. Polymers (Basel) 2023; 15:4542. [PMID: 38231902 PMCID: PMC10708083 DOI: 10.3390/polym15234542] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/09/2023] [Accepted: 11/22/2023] [Indexed: 01/19/2024] Open
Abstract
Diabetic foot ulcers (DFUs) are considered one of the most severe chronic complications of diabetes and can lead to amputation in severe cases. In addition, bacterial infections in diabetic chronic wounds aggravate this scenario by threatening human health. Wound dressings made of polymer matrices with embedded metal nanoparticles can inhibit microorganism growth and promote wound healing, although the current clinical treatments for diabetic chronic wounds remain unsatisfactory. In this view, this research reports the synthesis and characterization of innovative hybrid hydrogels made of carboxymethyl cellulose (CMC) and poly(vinyl alcohol) (PVA) chemically crosslinked by citric acid (CA) functionalized with silver nanoparticles (AgNPs) generated in situ using an eco-friendly aqueous process. The results assessed through comprehensive in vitro and in vivo assays demonstrated that these hybrid polymer hydrogels functionalized with AgNPs possess physicochemical properties, cytocompatibility, hemocompatibility, bioadhesion, antibacterial activity, and biocompatibility suitable for wound dressings to support chronic wound healing process as well as preventing and treating bacterial infections. Hence, it can be envisioned that, with further research and development, these polymer-based hybrid nanoplatforms hold great potential as an important tool for creating a new generation of smart dressings for treating chronic diabetic wounds and opportunistic bacterial infections.
Collapse
Affiliation(s)
- Nádia S. V. Capanema
- Center of Nanoscience, Nanotechnology, and Innovation—CeNanoI, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, Brazil; (N.S.V.C.); (A.A.P.M.); (S.M.C.); (T.M.)
| | - Alexandra A. P. Mansur
- Center of Nanoscience, Nanotechnology, and Innovation—CeNanoI, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, Brazil; (N.S.V.C.); (A.A.P.M.); (S.M.C.); (T.M.)
| | - Sandhra M. Carvalho
- Center of Nanoscience, Nanotechnology, and Innovation—CeNanoI, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, Brazil; (N.S.V.C.); (A.A.P.M.); (S.M.C.); (T.M.)
| | - Talita Martins
- Center of Nanoscience, Nanotechnology, and Innovation—CeNanoI, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, Brazil; (N.S.V.C.); (A.A.P.M.); (S.M.C.); (T.M.)
| | - Maysa S. Gonçalves
- Departamento de Medicina Veterinária, Universidade Federal de Lavras, UFLA, Lavras 37200-000, Brazil; (M.S.G.); (R.S.A.); (E.M.S.D.)
| | - Rafaella S. Andrade
- Departamento de Medicina Veterinária, Universidade Federal de Lavras, UFLA, Lavras 37200-000, Brazil; (M.S.G.); (R.S.A.); (E.M.S.D.)
| | - Elaine M. S. Dorneles
- Departamento de Medicina Veterinária, Universidade Federal de Lavras, UFLA, Lavras 37200-000, Brazil; (M.S.G.); (R.S.A.); (E.M.S.D.)
| | - Letícia C. D. Lima
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, Brazil; (L.C.D.L.); (M.A.d.S.)
| | - Érika L. F. C. de Alvarenga
- Department of Natural Sciences, Universidade Federal de São João Del-Rei, UFSJ, São João Del-Rei 36301-160, Brazil; (É.L.F.C.d.A.); (E.V.B.d.F.)
| | - Emanuel V. B. da Fonseca
- Department of Natural Sciences, Universidade Federal de São João Del-Rei, UFSJ, São João Del-Rei 36301-160, Brazil; (É.L.F.C.d.A.); (E.V.B.d.F.)
| | - Marcos Augusto de Sá
- Department of Morphology, Institute of Biological Sciences, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, Brazil; (L.C.D.L.); (M.A.d.S.)
| | - Andrey P. Lage
- Departamento de Medicina Veterinária Preventiva, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, Brazil; (A.P.L.); (Z.I.P.L.)
| | - Zelia I. P. Lobato
- Departamento de Medicina Veterinária Preventiva, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, Brazil; (A.P.L.); (Z.I.P.L.)
| | - Herman S. Mansur
- Center of Nanoscience, Nanotechnology, and Innovation—CeNanoI, Department of Metallurgical and Materials Engineering, Federal University of Minas Gerais, UFMG, Belo Horizonte 31270-901, Brazil; (N.S.V.C.); (A.A.P.M.); (S.M.C.); (T.M.)
| |
Collapse
|
34
|
Galocha-León C, Antich C, Voltes-Martínez A, Marchal JA, Mallandrich M, Halbaut L, Rodríguez-Lagunas MJ, Souto EB, Clares-Naveros B, Gálvez-Martín P. Development and characterization of a poloxamer hydrogel composed of human mesenchymal stromal cells (hMSCs) for reepithelization of skin injuries. Int J Pharm 2023; 647:123535. [PMID: 37865132 DOI: 10.1016/j.ijpharm.2023.123535] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/14/2023] [Accepted: 10/17/2023] [Indexed: 10/23/2023]
Abstract
Wound healing is a natural physiological reaction to tissue injury. Hydrogels show attractive advantages in wound healing not only due to their biodegradability, biocompatibility and permeability but also because provide an excellent environment for cell migration and proliferation. The main objective of the present study was the design and characterization of a hydrogel loaded with human mesenchymal stromal cells (hMSCs) for use in would healing of superficial skin injures. Poloxamer 407® was used as biocompatible biomaterial to embed hMSCs. The developed hydrogel containing 20 % (w/w) of polymer resulted in the best formulation with respect to physical, mechanical, morphological and biological properties. Its high swelling capacity confirmed the hydrogel's capacity to absorb wounds' exudate. LIVE/DEAD® assay confirm that hMSCs remained viable for at least 48 h when loaded into the hydrogels. Adding increasing concentrations of hMSCs-loaded hydrogel to the epithelium did not affect keratinocytes' viability and healing capacity and all wound area was closed in less than one day. Our study opens opportunities to exploit poloxamer hydrogels as cell carriers for the treatment of skin superficial wound.
Collapse
Affiliation(s)
- Cristina Galocha-León
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain
| | - Cristina Antich
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18100 Granada, Spain; Biosanitary Institute of Granada (ibs.GRANADA), University Hospital of Granada-University of Granada, 18100 Granada, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18012 Granada, Spain; Excellence Research Unit "Modeling Nature" (MNat), University of Granada, 18016 Granada, Spain
| | - Ana Voltes-Martínez
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18100 Granada, Spain; Biosanitary Institute of Granada (ibs.GRANADA), University Hospital of Granada-University of Granada, 18100 Granada, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18012 Granada, Spain; Excellence Research Unit "Modeling Nature" (MNat), University of Granada, 18016 Granada, Spain; BioFab i3D Lab - Biofabrication and 3D (Bio)printing Singular Laboratory, University of Granada, 18100 Granada, Spain
| | - Juan A Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, 18100 Granada, Spain; Biosanitary Institute of Granada (ibs.GRANADA), University Hospital of Granada-University of Granada, 18100 Granada, Spain; Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18012 Granada, Spain; Excellence Research Unit "Modeling Nature" (MNat), University of Granada, 18016 Granada, Spain; BioFab i3D Lab - Biofabrication and 3D (Bio)printing Singular Laboratory, University of Granada, 18100 Granada, Spain
| | - Mireia Mallandrich
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; Institut de Nanociència i Nanotecnologia IN2UB, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Lyda Halbaut
- Department of Pharmacy and Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain; Institut de Nanociència i Nanotecnologia IN2UB, Universitat de Barcelona, 08028 Barcelona, Spain
| | - María J Rodríguez-Lagunas
- Department of Biochemistry & Physiology, Faculty of Pharmacy & Food Sciences, University of Barcelona, 08028 Barcelona, Spain; Institute of Biomedicine, University of Barcelona, 08028 Barcelona, Spain
| | - Eliana B Souto
- UCIBIO - Applied Molecular Biosciences Unit, MEDTECH, Laboratory of Pharmaceutical Technology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Beatriz Clares-Naveros
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; Biosanitary Institute of Granada (ibs.GRANADA), University Hospital of Granada-University of Granada, 18100 Granada, Spain; Institut de Nanociència i Nanotecnologia IN2UB, Universitat de Barcelona, 08028 Barcelona, Spain.
| | - Patricia Gálvez-Martín
- Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Granada, 18071 Granada, Spain; R&D Human and Animal Health, Bioibérica S.A.U., 08029 Barcelona, Spain
| |
Collapse
|
35
|
Zhang HM, Yang ML, Xi JZ, Yang GY, Wu QN. Mesenchymal stem cells-based drug delivery systems for diabetic foot ulcer: A review. World J Diabetes 2023; 14:1585-1602. [DOI: 10.4239/wjd.v14.i11.1585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/16/2023] [Accepted: 09/11/2023] [Indexed: 11/14/2023] Open
Abstract
The complication of diabetes, which is known as diabetic foot ulcer (DFU), is a significant concern due to its association with high rates of disability and mortality. It not only severely affects patients’ quality of life, but also imposes a substantial burden on the healthcare system. In spite of efforts made in clinical practice, treating DFU remains a challenging task. While mesenchymal stem cell (MSC) therapy has been extensively studied in treating DFU, the current efficacy of DFU healing using this method is still inadequate. However, in recent years, several MSCs-based drug delivery systems have emerged, which have shown to increase the efficacy of MSC therapy, especially in treating DFU. This review summarized the application of diverse MSCs-based drug delivery systems in treating DFU and suggested potential prospects for the future research.
Collapse
Affiliation(s)
- Hong-Min Zhang
- Department of Endocrinology, People’s Hospital of Chongqing Liangjiang New Area, Chongqing 400030, China
| | - Meng-Liu Yang
- Department of Endocrinology, The Second Affiliated Hospital of The Chongqing Medical University, Chongqing 400030, China
| | - Jia-Zhuang Xi
- Department of Endocrinology, Dazu Hospital of Chongqing Medical University, The People’s Hospital of Dazu, Chongqing 406230, China
| | - Gang-Yi Yang
- Department of Endocrinology, The Second Affiliated Hospital of The Chongqing Medical University, Chongqing 400030, China
| | - Qi-Nan Wu
- Department of Endocrinology, Dazu Hospital of Chongqing Medical University, The People’s Hospital of Dazu, Chongqing 406230, China
| |
Collapse
|
36
|
Vaporidou N, Peroni F, Restelli A, Jalil MN, Dye JF. Artificial Skin Therapies; Strategy for Product Development. Adv Wound Care (New Rochelle) 2023; 12:574-600. [PMID: 36680749 DOI: 10.1089/wound.2022.0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Significance: Tissue-engineered artificial skin for clinical reconstruction can be regarded as an established practice. Bi-layered skin equivalents are available as established allogenic or autologous therapy, and various acellular skin replacements can support tissue repair. Moreover, there is considerable commonality between the skin and other soft tissue reconstruction products. This article presents an attempt to create a comprehensive global landscape review of advanced replacement materials and associated strategies for skin and soft tissue reconstruction. Recent Advances: There has been rapid growth in the number of commercial and pre-commercial products over the past decade. In this survey, 263 base products for advanced skin therapy have been identified, across 8 therapeutic categories, giving over 350 products in total. The largest market is in the United States, followed by the E.U. zone. However, despite these advances, and the investment of resources in each product development, there are key issues concerning the clinical efficacy, cost-benefit of products, and clinical impact. Each therapeutic strategy has relative merits and limitations. Critical Issues: A critical consideration in developing and evaluating products is the therapeutic modality, associated regulatory processes, and the potential for clinical adoption geographically, determined by regulatory territory, intellectual property, and commercial distribution factors. The survey identifies an opportunity for developments that improve basic efficacy or cost-benefit. Future Directions: The economic pressures on health care systems, compounded by the demands of our increasingly ageing population, and the imperative to distribute effective health care, create an urgent global need for effective and affordable products.
Collapse
Affiliation(s)
- Nephelie Vaporidou
- Division of Surgery and Interdisciplinary Sciences, University College London, London, United Kingdom
- Oxartis Ltd., Oxford, United Kingdom
| | | | | | - M Nauman Jalil
- Oxartis Ltd., Oxford, United Kingdom
- MADE Cymru, University of Wales Trinity Saint David, Swansea, Wales, United Kingdom
| | - Julian F Dye
- Oxartis Ltd., Oxford, United Kingdom
- Research Strategy and Development, University College London, London, United Kingdom
| |
Collapse
|
37
|
Mi B, Xiong Y, Zha K, Cao F, Zhou W, Abbaszadeh S, Ouyang L, Liao Y, Hu W, Dai G, Zhao Z, Feng Q, Shahbazi MA, Liu G. Immune homeostasis modulation by hydrogel-guided delivery systems: a tool for accelerated bone regeneration. Biomater Sci 2023; 11:6035-6059. [PMID: 37522328 DOI: 10.1039/d3bm00544e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Immune homeostasis is delicately mediated by the dynamic balance between effector immune cells and regulatory immune cells. Local deviations from immune homeostasis in the microenvironment of bone fractures, caused by an increased ratio of effector to regulatory cues, can lead to excessive inflammatory conditions and hinder bone regeneration. Therefore, achieving effective and localized immunomodulation of bone fractures is crucial for successful bone regeneration. Recent research has focused on developing localized and specific immunomodulatory strategies using local hydrogel-based delivery systems. In this review, we aim to emphasize the significant role of immune homeostasis in bone regeneration, explore local hydrogel-based delivery systems, discuss emerging trends in immunomodulation for enhancing bone regeneration, and address the limitations of current delivery strategies along with the challenges of clinical translation.
Collapse
Affiliation(s)
- Bobin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Yuan Xiong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Kangkang Zha
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Faqi Cao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Wu Zhou
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Samin Abbaszadeh
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Lizhi Ouyang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Yuheng Liao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Weixian Hu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| | - Guandong Dai
- Department of Orthopedic Surgery, Pingshan District People's Hospital of Shenzhen, Pingshan General Hospital of Southern Medical University, Shenzhen 518118, China
| | - Zhiming Zhao
- Department of Orthopedics, Suizhou Hospital, Hubei University of Medicine, Suizhou 441300, China
| | - Qian Feng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | - Guohui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| |
Collapse
|
38
|
Xie J, Wang J, Wang X, Chen M, Yao B, Dong Y, Li X, Yang Q, Tredget EE, Xu RH, Wu Y. An Engineered Dermal Substitute with Mesenchymal Stem Cells Enhances Cutaneous Wound Healing. Tissue Eng Part A 2023; 29:491-505. [PMID: 37212289 DOI: 10.1089/ten.tea.2023.0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023] Open
Abstract
The treatment of refractory cutaneous wounds remains to be a clinical challenge. There is growing evidence to show that mesenchymal stem cells (MSCs) have great potential in promoting wound healing. However, the therapeutic effects of MSCs are greatly dampened by their poor survival and engraftment in the wounds. To address this limitation, in this study, MSCs were grown into a collagen-glycosaminoglycan (C-GAG) matrix to form a dermis-like tissue sheet, named engineered dermal substitute (EDS). When seeded on C-GAG matrix, MSCs adhered rapidly, migrated into the pores, and proliferated readily. When applied onto excisional wounds in healthy and diabetic mice, the EDS survived well, and accelerated wound closure, compared with C-GAG matrix alone or MSCs in collagen hydrogel. Histological analysis revealed that EDS prolonged the retention of MSCs in the wounds, associated with increased macrophage infiltration and enhanced angiogenesis. RNA-Seq analysis of EDS-treated wounds uncovered the expression of abundant human chemokines and proangiogenic factors and their corresponding murine receptors, suggesting a mechanism of ligand/receptor-mediated signals in wound healing. Thus, our results indicate that EDS prolongs the survival and retention of MSCs in the wounds and enhances wound healing.
Collapse
Affiliation(s)
- Jundong Xie
- State Key Laboratory of Chemical Oncogenomics, and Institute of Biopharmaceutical and Health Engineering (iBHE), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Jinmei Wang
- State Key Laboratory of Chemical Oncogenomics, and Institute of Biopharmaceutical and Health Engineering (iBHE), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Department of Pharmacology and Toxicology, Shenzhen Institute for Drug Control, Shenzhen, China
| | - Xiaoxiao Wang
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
- College of Pharmacy, Shenzhen Technology University, Shenzhen, China
| | - Min Chen
- State Key Laboratory of Chemical Oncogenomics, and Institute of Biopharmaceutical and Health Engineering (iBHE), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Bin Yao
- State Key Laboratory of Chemical Oncogenomics, and Institute of Biopharmaceutical and Health Engineering (iBHE), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Yankai Dong
- State Key Laboratory of Chemical Oncogenomics, and Institute of Biopharmaceutical and Health Engineering (iBHE), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaosong Li
- State Key Laboratory of Chemical Oncogenomics, and Institute of Biopharmaceutical and Health Engineering (iBHE), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Qingyang Yang
- State Key Laboratory of Chemical Oncogenomics, and Institute of Biopharmaceutical and Health Engineering (iBHE), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| | - Edward E Tredget
- Wound Healing Research Group, Department of Surgery, University of Alberta, Edmonton, Alberta, Canada
| | - Ren-He Xu
- Faculty of Health Sciences, University of Macau, Macau, China
| | - Yaojiong Wu
- State Key Laboratory of Chemical Oncogenomics, and Institute of Biopharmaceutical and Health Engineering (iBHE), Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
- Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, China
| |
Collapse
|
39
|
Henn D, Zhao D, Sivaraj D, Trotsyuk A, Bonham CA, Fischer KS, Kehl T, Fehlmann T, Greco AH, Kussie HC, Moortgat Illouz SE, Padmanabhan J, Barrera JA, Kneser U, Lenhof HP, Januszyk M, Levi B, Keller A, Longaker MT, Chen K, Qi LS, Gurtner GC. Cas9-mediated knockout of Ndrg2 enhances the regenerative potential of dendritic cells for wound healing. Nat Commun 2023; 14:4729. [PMID: 37550295 PMCID: PMC10406832 DOI: 10.1038/s41467-023-40519-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/26/2023] [Indexed: 08/09/2023] Open
Abstract
Chronic wounds impose a significant healthcare burden to a broad patient population. Cell-based therapies, while having shown benefits for the treatment of chronic wounds, have not yet achieved widespread adoption into clinical practice. We developed a CRISPR/Cas9 approach to precisely edit murine dendritic cells to enhance their therapeutic potential for healing chronic wounds. Using single-cell RNA sequencing of tolerogenic dendritic cells, we identified N-myc downregulated gene 2 (Ndrg2), which marks a specific population of dendritic cell progenitors, as a promising target for CRISPR knockout. Ndrg2-knockout alters the transcriptomic profile of dendritic cells and preserves an immature cell state with a strong pro-angiogenic and regenerative capacity. We then incorporated our CRISPR-based cell engineering within a therapeutic hydrogel for in vivo cell delivery and developed an effective translational approach for dendritic cell-based immunotherapy that accelerated healing of full-thickness wounds in both non-diabetic and diabetic mouse models. These findings could open the door to future clinical trials using safe gene editing in dendritic cells for treating various types of chronic wounds.
Collapse
Affiliation(s)
- Dominic Henn
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University, Stanford, CA, USA
- Department of Plastic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Surgery, University of Arizona, Tucson, AZ, USA
| | - Dehua Zhao
- Department of Bioengineering, Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Dharshan Sivaraj
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University, Stanford, CA, USA
- Department of Surgery, University of Arizona, Tucson, AZ, USA
| | - Artem Trotsyuk
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University, Stanford, CA, USA
- Department of Surgery, University of Arizona, Tucson, AZ, USA
| | - Clark Andrew Bonham
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University, Stanford, CA, USA
| | - Katharina S Fischer
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University, Stanford, CA, USA
- Department of Surgery, University of Arizona, Tucson, AZ, USA
| | - Tim Kehl
- Center for Bioinformatics, Saarland Informatics Campus, Saarland University, Saarbrücken, Germany
| | - Tobias Fehlmann
- Chair for Clinical Bioinformatics, Saarland University, Saarbruecken, Germany
| | - Autumn H Greco
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University, Stanford, CA, USA
| | - Hudson C Kussie
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University, Stanford, CA, USA
- Department of Burn, Trauma, Acute and Critical Care Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sylvia E Moortgat Illouz
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University, Stanford, CA, USA
| | - Jagannath Padmanabhan
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University, Stanford, CA, USA
| | - Janos A Barrera
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University, Stanford, CA, USA
| | - Ulrich Kneser
- Department of Hand, Plastic, and Reconstructive Surgery, BG Trauma Center Ludwigshafen, Ruprecht-Karls-University of Heidelberg, Heidelberg, Germany
| | - Hans-Peter Lenhof
- Center for Bioinformatics, Saarland Informatics Campus, Saarland University, Saarbrücken, Germany
| | - Michael Januszyk
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University, Stanford, CA, USA
| | - Benjamin Levi
- Department of Burn, Trauma, Acute and Critical Care Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Andreas Keller
- Center for Bioinformatics, Saarland Informatics Campus, Saarland University, Saarbrücken, Germany
| | - Michael T Longaker
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University, Stanford, CA, USA
| | - Kellen Chen
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University, Stanford, CA, USA
- Department of Surgery, University of Arizona, Tucson, AZ, USA
| | - Lei S Qi
- Department of Bioengineering, Sarafan ChEM-H, Stanford University, Stanford, CA, USA.
- Chan Zuckerberg Biohub - San Francisco, San Francisco, CA, USA.
| | - Geoffrey C Gurtner
- Hagey Laboratory for Pediatric Regenerative Medicine, Division of Plastic and Reconstructive Surgery, Stanford University, Stanford, CA, USA.
- Department of Surgery, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
40
|
Belgodere JA, Lassiter HR, Robinson JT, Hamel KM, Rogers EL, Mohiuddin OA, Zhang L, Wu X, Gimble JM, Frazier TP, Monroe WT, Sanchez CG. Biomechanical and Biological Characterization of XGel, a Human-Derived Hydrogel for Stem Cell Expansion and Tissue Engineering. Adv Biol (Weinh) 2023; 7:e2200332. [PMID: 37236203 DOI: 10.1002/adbi.202200332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/23/2023] [Indexed: 05/28/2023]
Abstract
Hydrogels are 3D scaffolds used as alternatives to in vivo models for disease modeling and delivery of cells and drugs. Existing hydrogel classifications include synthetic, recombinant, chemically defined, plant- or animal-based, and tissue-derived matrices. There is a need for materials that can support both human tissue modeling and clinically relevant applications requiring stiffness tunability. Human-derived hydrogels are not only clinically relevant, but they also minimize the use of animal models for pre-clinical studies. This study aims to characterize XGel, a new human-derived hydrogel as an alternative to current murine-derived and synthetic recombinant hydrogels that features unique physiochemical, biochemical, and biological properties that support adipocyte and bone differentiation. Rheology studies determine the viscosity, stiffness, and gelation features of XGel. Quantitative studies for quality control support consistency in the protein content between lots. Proteomics studies reveal that XGel is predominantly composed of extracellular matrix proteins, including fibrillin, collagens I-VI, and fibronectin. Electron microscopy of the hydrogel provides phenotypic characteristics in terms of porosity and fiber size. The hydrogel demonstrates biocompatibility as a coating material and as a 3D scaffold for the growth of multiple cell types. The results provide insight into the biological compatibility of this human-derived hydrogel for tissue engineering.
Collapse
Affiliation(s)
- Jorge A Belgodere
- Department of Biological and Agricultural Engineering, Louisiana State University and Agricultural Center, Baton Rouge, LA, 70803, USA
| | | | | | | | | | - Omair A Mohiuddin
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Liwen Zhang
- Campus Chemical Instrument Center Proteomics Shared Resources, The Ohio State University, Columbus, OH, 43210, USA
| | - Xiying Wu
- Obatala Sciences Inc., New Orleans, LA, 70148, USA
| | | | | | - William T Monroe
- Department of Biological and Agricultural Engineering, Louisiana State University and Agricultural Center, Baton Rouge, LA, 70803, USA
| | | |
Collapse
|
41
|
Hasturk O, Sahoo JK, Kaplan DL. Synthesis and characterization of silk-poly(guluronate) hybrid polymers for the fabrication of dual crosslinked, mechanically dynamic hydrogels. POLYMER 2023; 281:126129. [PMID: 37483847 PMCID: PMC10357961 DOI: 10.1016/j.polymer.2023.126129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
The rapid ionic crosslinking of alginate has been actively studied for biomedical applications including hydrogel scaffolds for tissue engineering, injectable gels, and 3D bioprinting. However, the poor structural stability of ionic crosslinks under physiological conditions limits the widespread applications of these hydrogels. Moreover, the lack of cell adhesion to the material combined with the inability of proteases to degrade alginate further restrict utility as hydrogel scaffolds. Blends of alginate with silk fibroin have been proposed for improved structural and mechanical properties, but potential phase separation between the hydrophobic protein and the hydrophilic polysaccharide remains an issue. In this study, we demonstrated the synthesis of a hybrid biopolymer composed of a silk backbone with side chains of poly(guluronate) isolated from alginate to introduce rapid ionic crosslinking on enzymatically crosslinked silk-based hydrogels for on-demand and reversible stiffening and softening properties. Dual crosslinked macro- and microgels of silk fibroin-poly(guluronate) (SF-PG) hybrid polymers displayed dynamic morphology with reversible shrinking and swelling behavior. SF-PG hydrogel discs demonstrated dynamic mechanics with compressive moduli ranging from less than 5 kPa to over 80 kPa and underwent proteolytic degradation unlike covalently crosslinked alginate controls. SF-PG gels supplemented with gelatin substituted with tyramine or both tyramine and PG also supported the attachment and survival of murine fibroblasts, suggesting potential uses of these new hydrogels in mammalian cell culture to investigate cellular responses to dynamic mechanics or modeling of diseases defined by matrix mechanics, such as fibrosis and cancer.
Collapse
Affiliation(s)
- Onur Hasturk
- Tufts University, Department of Biomedical Engineering, Medford MA, USA
| | | | - David L Kaplan
- Tufts University, Department of Biomedical Engineering, Medford MA, USA
| |
Collapse
|
42
|
Shou Y, Teo XY, Wu KZ, Bai B, Kumar ARK, Low J, Le Z, Tay A. Dynamic Stimulations with Bioengineered Extracellular Matrix-Mimicking Hydrogels for Mechano Cell Reprogramming and Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300670. [PMID: 37119518 PMCID: PMC10375194 DOI: 10.1002/advs.202300670] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/10/2023] [Indexed: 06/19/2023]
Abstract
Cells interact with their surrounding environment through a combination of static and dynamic mechanical signals that vary over stimulus types, intensity, space, and time. Compared to static mechanical signals such as stiffness, porosity, and topography, the current understanding on the effects of dynamic mechanical stimulations on cells remains limited, attributing to a lack of access to devices, the complexity of experimental set-up, and data interpretation. Yet, in the pursuit of emerging translational applications (e.g., cell manufacturing for clinical treatment), it is crucial to understand how cells respond to a variety of dynamic forces that are omnipresent in vivo so that they can be exploited to enhance manufacturing and therapeutic outcomes. With a rising appreciation of the extracellular matrix (ECM) as a key regulator of biofunctions, researchers have bioengineered a suite of ECM-mimicking hydrogels, which can be fine-tuned with spatiotemporal mechanical cues to model complex static and dynamic mechanical profiles. This review first discusses how mechanical stimuli may impact different cellular components and the various mechanobiology pathways involved. Then, how hydrogels can be designed to incorporate static and dynamic mechanical parameters to influence cell behaviors are described. The Scopus database is also used to analyze the relative strength in evidence, ranging from strong to weak, based on number of published literatures, associated citations, and treatment significance. Additionally, the impacts of static and dynamic mechanical stimulations on clinically relevant cell types including mesenchymal stem cells, fibroblasts, and immune cells, are evaluated. The aim is to draw attention to the paucity of studies on the effects of dynamic mechanical stimuli on cells, as well as to highlight the potential of using a cocktail of various types and intensities of mechanical stimulations to influence cell fates (similar to the concept of biochemical cocktail to direct cell fate). It is envisioned that this progress report will inspire more exciting translational development of mechanoresponsive hydrogels for biomedical applications.
Collapse
Affiliation(s)
- Yufeng Shou
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore117599Singapore
| | - Xin Yong Teo
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
| | - Kenny Zhuoran Wu
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
| | - Bingyu Bai
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
| | - Arun R. K. Kumar
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore117599Singapore
- Yong Loo Lin School of MedicineNational University of SingaporeSingapore117597Singapore
| | - Jessalyn Low
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
| | - Zhicheng Le
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore117599Singapore
| | - Andy Tay
- Department of Biomedical EngineeringNational University of SingaporeSingapore117583Singapore
- Institute for Health Innovation and TechnologyNational University of SingaporeSingapore117599Singapore
- NUS Tissue Engineering ProgramNational University of SingaporeSingapore117510Singapore
| |
Collapse
|
43
|
Wang Y, Wang S, Hu W, Kong S, Su F, Liu F, Li S. In situ Hydrogels Prepared by Photo-initiated Crosslinking of Acrylated Polymers for Local Delivery of Antitumor Drugs. J Pharm Sci 2023; 112:1863-1871. [PMID: 37201750 DOI: 10.1016/j.xphs.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 05/20/2023]
Abstract
A triblock copolymer was synthesized by ring opening polymerization of ε-caprolactone in the presence of poly(ethylene glycol) (PEG). The resulted PCL-PEG-PCL triblock copolymer, PEG and monomethoxy (MPEG) were functionalized by end group acrylation. NMR and FT-IR analyses evidenced the successful synthesis and functionalization of polymers. A series of photo-crosslinked hydrogels composed of acrylated PEG-PCL-Acr and MPEG-Acr or PEG-Acr were prepared by exposure to visible light using lithium phenyl-2,4,6-trimethylbenzoylphosphinate as initiator. The hydrogels present a porous and interconnected structure as shown by SEM. The swelling performance of hydrogels is closely related to the crosslinking density and hydrophilic content. Addition of MPEG or PEG results in increase in water absorption capacity of hydrogels. In vitro degradation of hydrogels was realized in the presence of a lipase from porcine pancreas. Various degradation rates were obtained which mainly depend on the hydrogel composition. MTT assay confirmed the good biocompatibility of hydrogels. Importantly, in situ gelation was achieved by irradiation of a precursor solution injected in the abdomen of mice. Doxorubicin (DOX) was selected as a model antitumor drug to evaluate the potential of hydrogels in cancer therapy. Drug-loaded hydrogels were prepared by in situ encapsulation. In vitro drug release studies showed a sustained release during 28 days with small burst release. DOX-loaded hydrogels exhibit antitumor activity against A529 lung cancer cells comparable to free drug, suggesting that injectable in situ hydrogel with tunable properties could be most promising for local drug delivery in cancer therapy.
Collapse
Affiliation(s)
- Yuandou Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Institute of High Performance Polymers, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shuxin Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Institute of High Performance Polymers, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Wenju Hu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Institute of High Performance Polymers, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shaowen Kong
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Institute of High Performance Polymers, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Feng Su
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China; Institute of High Performance Polymers, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Fusheng Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Suming Li
- Institut Européen des Membranes, IEM UMR 5635, Univ Montpellier, CNRS, ENSCM, Montpellier, France.
| |
Collapse
|
44
|
Luo J, Liu W, Xie Q, He J, Jiang L. Synthesis and characterisation of a novel poly(2-hydroxyethylmethacrylate)-chitosan hydrogels loaded cerium oxide nanocomposites dressing on cutaneous wound healing on nursing care of chronic wound. IET Nanobiotechnol 2023. [PMID: 37312282 DOI: 10.1049/nbt2.12118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/14/2023] [Accepted: 02/06/2023] [Indexed: 06/15/2023] Open
Abstract
This study was designed to establish the composition of wound dressing based on poly(2-hydroxyethylmethacrylate)-chitosan (PHEM-CS) hydrogels-loaded cerium oxide nanoparticle (CeONPs) composites for cutaneous wound healing on nursing care of the chronic wound. The as-synthesised PHEM-CS/CeONPs hydrogels nanocomposites were characterised by using UV-visible spectroscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, and thermo gravimetric analysis. The influence of PHEM-CS/CeONPs hydrogels nanocomposites on the gelation time, swelling ratio, in vitro degradation, and mechanical properties was investigated. The as-prepared PHEM-CS/CeONPs hydrogels nanocomposites dressing shows high antimicrobial activity against Staphylococcus aureus and Escherichia coli. Similar trends were observed for the treatment of biofilms where PHEM-CS/CeONPs hydrogels nanocomposites displayed better efficiency. Furthermore, the biological properties of PHEM-CS/CeONPs hydrogels nanocomposites had non-toxic in cell viability and excellent cell adhesion behaviour. After 2 weeks, the wounds treated with the PHEM-CS/CeONPs hydrogels nanocomposite wound dressing achieved a significant closure to 98.5 ± 4.95% compared with the PHEM-CS hydrogels with nearly 71 ± 3.55% of wound closure. Hence, this study strongly supports the possibility of using this novel PHEM-CS/CeONPs hydrogels nanocomposites wound dressing for efficient cutaneous wound healing on chronic wound infection and nursing care.
Collapse
Affiliation(s)
- Jingna Luo
- Department of Nursing, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Weijun Liu
- Department of Consumable Reagent, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Qiaoling Xie
- Department of Nephrology, The First People's Hospital of Wenling, Wenling, Zhejiang, China
| | - Jianshu He
- Department of Nephrology, The First People's Hospital of Wenling, Wenling, Zhejiang, China
| | - Liyan Jiang
- Department of Orthopedic Surgery, ChengDu Fifth People's Hospital, Chengdu, Sichuan, China
| |
Collapse
|
45
|
Zhang K, Liu Y, Shi X, Zhang R, He Y, Zhang H, Wang W. Application of polyvinyl alcohol/chitosan copolymer hydrogels in biomedicine: A review. Int J Biol Macromol 2023:125192. [PMID: 37276897 DOI: 10.1016/j.ijbiomac.2023.125192] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/20/2023] [Accepted: 05/31/2023] [Indexed: 06/07/2023]
Abstract
Hydrogels is a hydrophilic, cross-linked polymer of three-dimensional network structures. The application of hydrogels prepared from a single polymer in the biomedical field has many drawbacks. The functional blend of polyvinyl alcohol and chitosan allows hydrogels to have better and more desirable properties than those produced from a single polymer, which is a good biomaterial for development and design. In this paper, we have reviewed the progress in the application of polyvinyl alcohol/chitosan composite hydrogels in various medical fields, the different cross-linking agents and cross-linking methods, and the research progress in the optimization of composite hydrogels for their subsequent wide range of biomedical applications.
Collapse
Affiliation(s)
- Kui Zhang
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China.
| | - Yan Liu
- Department of Gynecology, First Affiliated Hospital of Xi 'an Medical College, Xi'an 710000, China
| | - Xuewen Shi
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| | - Ruihao Zhang
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| | - Yixiang He
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| | - Huaibin Zhang
- The First Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| | - Wenji Wang
- Department of Orthopedics, The First Hospital of Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
46
|
Yang X, Li Q, Liu W, Zong C, Wei L, Shi Y, Han Z. Mesenchymal stromal cells in hepatic fibrosis/cirrhosis: from pathogenesis to treatment. Cell Mol Immunol 2023; 20:583-599. [PMID: 36823236 PMCID: PMC10229624 DOI: 10.1038/s41423-023-00983-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 01/29/2023] [Indexed: 02/25/2023] Open
Abstract
Hepatic fibrosis/cirrhosis is a significant health burden worldwide, resulting in liver failure or hepatocellular carcinoma (HCC) and accounting for many deaths each year. The pathogenesis of hepatic fibrosis/cirrhosis is very complex, which makes treatment challenging. Endogenous mesenchymal stromal cells (MSCs) have been shown to play pivotal roles in the pathogenesis of hepatic fibrosis. Paradoxically, exogenous MSCs have also been used in clinical trials for liver cirrhosis, and their effectiveness has been observed in most completed clinical trials. There are still many issues to be resolved to promote the use of MSCs in the clinic in the future. In this review, we will examine the controversial role of MSCs in the pathogenesis and treatment of hepatic fibrosis/cirrhosis. We also investigated the clinical trials involving MSCs in liver cirrhosis, summarized the parameters that need to be standardized, and discussed how to promote the use of MSCs from a clinical perspective.
Collapse
Affiliation(s)
- Xue Yang
- Department of Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, China
- Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Eastern Hepatobiliary Surgery Hospital/National Center for Liver Cancer, Naval Medical University, Shanghai, 200438, China
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Soochow University, Suzhou, 215000, China
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Qing Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Wenting Liu
- Department of Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, China
- Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Eastern Hepatobiliary Surgery Hospital/National Center for Liver Cancer, Naval Medical University, Shanghai, 200438, China
| | - Chen Zong
- Department of Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, China
- Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Eastern Hepatobiliary Surgery Hospital/National Center for Liver Cancer, Naval Medical University, Shanghai, 200438, China
| | - Lixin Wei
- Department of Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, China
- Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Eastern Hepatobiliary Surgery Hospital/National Center for Liver Cancer, Naval Medical University, Shanghai, 200438, China
| | - Yufang Shi
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, State Key Laboratory of Radiation Medicine and Protection, Key Laboratory of Stem Cells and Medical Biomaterials of Jiangsu Province, Medical College of Soochow University, Soochow University, Suzhou, 215000, China.
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
| | - Zhipeng Han
- Department of Tumor Immunology and Gene Therapy Center, Third Affiliated Hospital of Naval Medical University, Shanghai, 200438, China.
- Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Ministry of Education, Eastern Hepatobiliary Surgery Hospital/National Center for Liver Cancer, Naval Medical University, Shanghai, 200438, China.
| |
Collapse
|
47
|
Behara M, Goudy S. FTY720 in immuno-regenerative and wound healing technologies for muscle, epithelial and bone regeneration. Front Physiol 2023; 14:1148932. [PMID: 37250137 PMCID: PMC10213316 DOI: 10.3389/fphys.2023.1148932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
In 2010, the FDA approved the administration of FTY720, S1P lipid mediator, as a therapy to treat relapsing forms of multiple sclerosis. FTY720 was found to sequester pro-inflammatory lymphocytes within the lymph node, preventing them from causing injury to the central nervous system due to inflammation. Studies harnessing the anti-inflammatory properties of FTY720 as a pro-regenerative strategy in wound healing of muscle, bone and mucosal injuries are currently being performed. This in-depth review discusses the current regenerative impact of FTY720 due to its anti-inflammatory effect stratified into an assessment of wound regeneration in the muscular, skeletal, and epithelial systems. The regenerative effect of FTY720 in vivo was characterized in three animal models, with differing delivery mechanisms emerging in the last 20 years. In these studies, local delivery of FTY720 was found to increase pro-regenerative immune cell phenotypes (neutrophils, macrophages, monocytes), vascularization, cell proliferation and collagen deposition. Delivery of FTY720 to a localized wound environment demonstrated increased bone, muscle, and mucosal regeneration through changes in gene and cytokine production primarily by controlling the local immune cell phenotypes. These changes in gene and cytokine production reduced the inflammatory component of wound healing and increased the migration of pro-regenerative cells (neutrophils and macrophages) to the wound site. The application of FTY720 delivery using a biomaterial has demonstrated the ability of local delivery of FTY720 to promote local wound healing leveraging an immunomodulatory mechanism.
Collapse
Affiliation(s)
- Monica Behara
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
| | - Steven Goudy
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, United States
- Department of Otolaryngology, Emory University, Atlanta, GA, United States
| |
Collapse
|
48
|
Zhang L, Hajebrahimi S, Tong S, Gao X, Cheng H, Zhang Q, Hinojosa DT, Jiang K, Hong L, Huard J, Bao G. Force-Mediated Endocytosis of Iron Oxide Nanoparticles for Magnetic Targeting of Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37145890 DOI: 10.1021/acsami.2c20265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Stem cell therapy represents one of the most promising approaches for tissue repair and regeneration. However, the full potential of stem cell therapy remains to be realized. One major challenge is the insufficient homing and retention of stem cells at the desired sites after in vivo delivery. Here, we provide a proof-of-principle demonstration of magnetic targeting and retention of human muscle-derived stem cells (hMDSCs) in vitro through magnetic force-mediated internalization of magnetic iron oxide nanoparticles (MIONs) and the use of a micropatterned magnet. We found that the magnetic force-mediated cellular uptake of MIONs occurs through an endocytic pathway, and the MIONs were exclusively localized in the lysosomes. The intracellular MIONs had no detrimental effect on the proliferation of hMDSCs or their multilineage differentiation, and no MIONs were translocated to other cells in a coculture system. Using hMDSCs and three other cell types including human umbilical vein endothelial cells (HUVECs), human dermal fibroblasts (HDFs), and HeLa cells, we further discovered that the magnetic force-mediated MION uptake increased with MION size and decreased with cell membrane tension. We found that the cellular uptake rate was initially increased with MION concentration in solution and approached saturation. These findings provide important insight and guidance for magnetic targeting of stem cells in therapeutic applications.
Collapse
Affiliation(s)
- Linlin Zhang
- Department of Bioengineering, Rice University, Houston, Texas 77030, United States
| | - Samira Hajebrahimi
- Department of Bioengineering, Rice University, Houston, Texas 77030, United States
| | - Sheng Tong
- Department of Bioengineering, Rice University, Houston, Texas 77030, United States
| | - Xueqin Gao
- Department of Orthopedic Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, United States
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, Colorado 81657, United States
| | - Haizi Cheng
- Department of Orthopedic Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, United States
| | - Qingbo Zhang
- Department of Bioengineering, Rice University, Houston, Texas 77030, United States
| | - Daniel T Hinojosa
- Department of Bioengineering, Rice University, Houston, Texas 77030, United States
| | - Kaiyi Jiang
- Department of Bioengineering, Rice University, Houston, Texas 77030, United States
| | - Lin Hong
- Department of Bioengineering, Rice University, Houston, Texas 77030, United States
| | - Johnny Huard
- Department of Orthopedic Surgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas 77030, United States
- Linda and Mitch Hart Center for Regenerative and Personalized Medicine, Steadman Philippon Research Institute, Vail, Colorado 81657, United States
| | - Gang Bao
- Department of Bioengineering, Rice University, Houston, Texas 77030, United States
| |
Collapse
|
49
|
Sharma AD, Jarman EH, Fox PM. Scoping Review of Hydrogel Therapies in the Treatment of Diabetic Chronic Wounds. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2023; 11:e4984. [PMID: 37250833 PMCID: PMC10219739 DOI: 10.1097/gox.0000000000004984] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/09/2023] [Indexed: 05/31/2023]
Abstract
Chronic diabetic wounds are a significant issue that can be treated with topical hydrogel therapies. The aim of this study was to review the different compositions of hydrogel that have been developed and analyze their clinical relevance in the treatment of chronic diabetic wounds. Methods We conducted a scoping review in which twelve articles were selected for review after applying relevant inclusion and exclusion criteria using a two-reviewer strategy. Data extracted from these studies was used to answer the following research question: What is the composition of hydrogels used to treat chronic diabetic wounds and how effective are they? Results We analyzed five randomized controlled trials, two retrospective studies, three reviews, and two case reports. Hydrogel compositions discussed included mesenchymal stem cell sheets, carbomer, collagen, and alginate hydrogels, as well as hydrogels embedded with platelet-derived growth factor. Synthetic hydrogels, largely composed of carbomers, were found to have high levels of evidence supporting their wound healing properties, though few articles described their routine use in a clinical setting. Collagen hydrogels dominate the present-day hydrogel market in the clinical treatment of chronic diabetic wounds. The augmentation of hydrogels with therapeutic biomaterials is a new field of hydrogel research, with studies demonstrating promising early in vitro and in vivo animal studies demonstrating promising early results for in vitro and in vivo animal investigations. Conclusions Current research supports hydrogels as a promising topical therapy in the treatment of chronic diabetic wounds. Augmenting Food & Drug Administration-approved hydrogels with therapeutic substances remains an interesting early area of investigation.
Collapse
Affiliation(s)
- Ayushi D. Sharma
- From the Division of Plastic & Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, Calif
- Division of Plastic & Reconstructive Surgery, Veterans Affairs Palo Alto Health Care System, Palo Alto, Calif
- Creighton University School of Medicine, Phoenix, Ariz
| | - Evan H. Jarman
- From the Division of Plastic & Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, Calif
- Division of Plastic & Reconstructive Surgery, Veterans Affairs Palo Alto Health Care System, Palo Alto, Calif
| | - Paige M. Fox
- From the Division of Plastic & Reconstructive Surgery, Department of Surgery, Stanford University School of Medicine, Stanford, Calif
- Division of Plastic & Reconstructive Surgery, Veterans Affairs Palo Alto Health Care System, Palo Alto, Calif
| |
Collapse
|
50
|
Joorabloo A, Liu T. Engineering exosome-based biomimetic nanovehicles for wound healing. J Control Release 2023; 356:463-480. [PMID: 36907562 DOI: 10.1016/j.jconrel.2023.03.013] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023]
Abstract
Complexity and difficulties in wound management are pressing concerns that affect patients' quality of life and may result in tissue infection, necrosis, and loss of local and systemic functions. Hence, novel approaches to accelerate wound healing are being actively explored over the last decade. Exosomes as important mediators of intercellular communications are promising natural nanocarriers due to their biocompatibility, low immunogenicity, drug loading and targeting capacities, and innate stability. More importantly, exosomes are developed as a versatile pharmaceutical engineering platform for wound repair. This review provides an overview of the biological and physiological functions of exosomes derived from a variety of biological origins during wound healing phases, strategies for exosomal engineering, and therapeutic applications in skin regeneration.
Collapse
Affiliation(s)
- Alireza Joorabloo
- NICM Health Research Institute, Western Sydney University, Westmead, Australia
| | - Tianqing Liu
- NICM Health Research Institute, Western Sydney University, Westmead, Australia.
| |
Collapse
|