1
|
Yan X, Wang J, Wen R, Chen X, Chen GQ. The halo of future bio-industry based on engineering Halomonas. Metab Eng 2025; 90:16-32. [PMID: 40049362 DOI: 10.1016/j.ymben.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/02/2025] [Accepted: 03/03/2025] [Indexed: 03/10/2025]
Abstract
The utilization of microorganisms to transform biomass into biofuels and biochemicals presents a viable and competitive alternative to conventional petroleum refining processes. Halomonas species are salt-tolerant and alkaliphilic, endowed with various beneficial properties rendering them as contamination resistant platforms for industrial biotechnology, facilitating the commercial-scale production of valuable bioproducts. Here we summarized the metabolic and genomic engineering approaches, as well as the biochemical products synthesized by Halomonas. Methods were presented for expanding substrates utilization in Halomonas to enhance its capabilities as a robust workhorse for bioproducts. In addition, we briefly reviewed the Next Generation Industrial Biotechnology (NGIB) based on Halomonas for open and continuous fermentation. In particular, we proposed the industrial attempts from Halomonas chassis and the rising prospects and essential strategies to enable the successful development of Halomonas as microbial NGIB manufacturing platforms.
Collapse
Affiliation(s)
- Xu Yan
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China; School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jiale Wang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Rou Wen
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xinyu Chen
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China; School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Guo-Qiang Chen
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China; School of Life Sciences, Tsinghua University, Beijing, 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China; MOE Key Lab for Industrial Biocatalysis, Dept Chemical Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
2
|
Ciuchcinski K, Kaczorowska AK, Biernacka D, Dorawa S, Kaczorowski T, Park Y, Piekarski K, Stanowski M, Ishikawa T, Stokke R, Steen IH, Dziewit L. Computational pipeline for sustainable enzyme discovery through (re)use of metagenomic data. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 382:125381. [PMID: 40252419 DOI: 10.1016/j.jenvman.2025.125381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 04/03/2025] [Accepted: 04/13/2025] [Indexed: 04/21/2025]
Abstract
Enzymes derived from extremophilic organisms, also known as extremozymes, offer sustainable and efficient solutions for industrial applications. Valued for their resilience and low environmental impact, extremozymes have found use as catalysts in various processes, ranging from dairy production to pharmaceutical manufacturing. However, discovery of novel extremozymes is often hindered by challenges such as culturing difficulties, underrepresentation of extreme environments in reference databases, and limitations of traditional sequence-based screening methods. In this work, we present a computational pipeline designed to discover novel enzymes from metagenomic data derived from extreme environments. This pipeline represents a versatile and sustainable approach that promotes reuse and recycling of existing datasets and minimises the need for additional environmental sampling. In its core, the algorithm integrates both traditional bioinformatic techniques and recent advances in structural prediction, enabling rapid and accurate identification of enzymes. However, due to its design, the algorithm relies heavily on existing databases, which can limit its effectiveness in situations where reference data is scarce or when encountering novel protein families. As a proof-of-concept, we applied the pipeline to metagenomic data from deep-sea hydrothermal vents, with a focus on β-galactosidases. The pipeline identified 11 potential candidate proteins, out of which 10 showed in vitro activity. One of the selected enzymes, βGal_UW07, showed strong potential for industrial applications. The enzyme exhibited optimal activity at 70 °C and was exceptionally resistant to high pH and the presence of metal ions and reducing agents. Overall, our results indicate that the pipeline is highly accurate and can play a key role in sustainable bioprospecting, leveraging existing metagenomic datasets and minimising in situ interventions in pristine regions.
Collapse
Affiliation(s)
- Karol Ciuchcinski
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| | - Anna-Karina Kaczorowska
- Collection of Plasmids and Microorganisms | KPD, Department of Microbiology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| | - Daria Biernacka
- Collection of Plasmids and Microorganisms | KPD, Department of Microbiology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland; Structural Biology Laboratory, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdańsk, Abrahama 58, 80-307, Gdańsk, Poland.
| | - Sebastian Dorawa
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| | - Tadeusz Kaczorowski
- Laboratory of Extremophiles Biology, Department of Microbiology, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308, Gdańsk, Poland.
| | - Younginn Park
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| | - Karol Piekarski
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| | - Michal Stanowski
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| | - Takao Ishikawa
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| | - Runar Stokke
- Department of Biological Sciences, Center for Deep Sea Research, University of Bergen, Postboks 7803, N-5020, Bergen, Norway.
| | - Ida Helene Steen
- Department of Biological Sciences, Center for Deep Sea Research, University of Bergen, Postboks 7803, N-5020, Bergen, Norway.
| | - Lukasz Dziewit
- Department of Environmental Microbiology and Biotechnology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Miecznikowa 1, 02-096, Warsaw, Poland.
| |
Collapse
|
3
|
Marzban G, Tesei D. The Extremophiles: Adaptation Mechanisms and Biotechnological Applications. BIOLOGY 2025; 14:412. [PMID: 40282277 PMCID: PMC12024854 DOI: 10.3390/biology14040412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/06/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025]
Abstract
This review provides an overview of terrestrial extremophiles, highlighting their adaptive strengths and strategies for coping with environmental challenges through the use of specialized proteins. It also explores why their unique lifestyle and ability to adapt to extreme conditions have become a major focus of research, as well as the main benefits and advancements in the study of these organisms in recent decades. This review aims to present an objective summary of the knowledge acquired and its translation into applied science and biotechnological applications.
Collapse
Affiliation(s)
- Gorji Marzban
- Department of Biotechnology and Food Science (DBL), Institute of Bioprocess Science and Engineering (IBSE), BOKU University, Muthgasse 18, 1190 Vienna, Austria
| | - Donatella Tesei
- Department of Biotechnology and Food Science (DBL), Institute of Microbiology and Microbial Biotechnology (IMMB), BOKU University, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
4
|
Boukeroui Y, González-Siso MI, DeCastro ME, Arab M, Aissaoui N, Nas F, Saibi ANE, Klouche Khelil N. Characterization, whole-genome sequence analysis, and protease production of a new thermophilic Bacillus licheniformis strain isolated from Debagh hot spring, Algeria. Int Microbiol 2025; 28:667-689. [PMID: 39129036 DOI: 10.1007/s10123-024-00569-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/26/2024] [Accepted: 07/31/2024] [Indexed: 08/13/2024]
Abstract
A new thermophilic strain, designated as Bacillus sp. LMB3902, was isolated from Hammam Debagh, the hottest spring in Algeria (up to 98 °C). This isolate showed high protease production in skim milk media at 55 °C and exhibited significant specific protease activity by using azocasein as a substrate (157.50 U/mg). Through conventional methods, chemotaxonomic characteristics, 16S rRNA gene sequencing, and comparative genomic analysis with the closely related strain Bacillus licheniformis DSM 13 (ATCC 14580 T), the isolate Bacillus sp. LMB3902 was identified as a potentially new strain of Bacillus licheniformis. In addition, the gene functions of Bacillus sp. LMB3902 strain were predicted using the Gene Ontology, Kyoto Encyclopedia of Genes and Genomes, Clusters of Orthologous Groups, Non-Redundant Protein Sequence Database, Swiss-Prot, and Pfam databases. The results showed that the genome size of Bacillus sp. LMB3902 was 4.279.557 bp, with an average GC content of 46%. The genome contained 4.760 predicted genes, including 8 rRNAs, 78 tRNAs, and 24 sRNAs. A total of 235 protease genes were annotated including 50 proteases with transmembrane helix structures and eight secreted proteases with signal peptides. Additionally, the majority of secondary metabolites found by antiSMASH platform showed low similarity to identified natural products, such as fengicin (53%), lichenysin (57%), and surfactin (34%), suggesting that this strain may encode for novel uncharacterized natural products which can be useful for biotechnological applications. This study is the first report that describes the complete genome sequence, taxono-genomics, and gene annotation as well as protease production of the Bacillus genus in this hydrothermal vent.
Collapse
Affiliation(s)
- Yasmina Boukeroui
- Laboratory of Applied Microbiology in Food, Biomedical and Environment (LAMAABE Laboratory), Department of Biology, Faculty of Nature and Life, Earth and Universe Sciences, University of Tlemcen, 13000, Tlemcen, Algeria
| | - María-Isabel González-Siso
- Grupo EXPRELA, Centro Interdisciplinar de Química E Bioloxía (CICA), Facultade de Ciencias, Universidade da Coruña, 15071 , A Coruña, Spain
| | - María-Eugenia DeCastro
- Grupo EXPRELA, Centro Interdisciplinar de Química E Bioloxía (CICA), Facultade de Ciencias, Universidade da Coruña, 15071 , A Coruña, Spain
| | - Mounia Arab
- Laboratory of Applied Microbiology in Food, Biomedical and Environment (LAMAABE Laboratory), Department of Biology, Faculty of Nature and Life, Earth and Universe Sciences, University of Tlemcen, 13000, Tlemcen, Algeria
- Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene, 16000, Algiers, Algeria
| | - Nadia Aissaoui
- Laboratory of Sustainable Management of Natural Resources in Arid and Semi Arid Areas (GDRN), Institute of Sciences, University Center of Naâma, 45000, Naâma, Algeria
| | - Fatima Nas
- Laboratory of Applied Microbiology in Food, Biomedical and Environment (LAMAABE Laboratory), Department of Biology, Faculty of Nature and Life, Earth and Universe Sciences, University of Tlemcen, 13000, Tlemcen, Algeria
| | - Amina Nour Elhouda Saibi
- Laboratory of Applied Microbiology in Food, Biomedical and Environment (LAMAABE Laboratory), Department of Biology, Faculty of Nature and Life, Earth and Universe Sciences, University of Tlemcen, 13000, Tlemcen, Algeria
| | - Nihel Klouche Khelil
- Laboratory of Applied Microbiology in Food, Biomedical and Environment (LAMAABE Laboratory), Department of Biology, Faculty of Nature and Life, Earth and Universe Sciences, University of Tlemcen, 13000, Tlemcen, Algeria.
- Laboratory of Experimental Surgery, Dental Surgery Department, Medical Faculty, University of Tlemcen, 13000, Tlemcen, Algeria.
| |
Collapse
|
5
|
Rono JK, Zhang Q, He Y, Wang S, Lyu Y, Yang ZM, Feng Z. Biochemical characterization of a bilfunctional endoglucanase/glucomannanase derived from mountain soil. Biotechnol Lett 2025; 47:33. [PMID: 40085274 DOI: 10.1007/s10529-025-03574-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 02/23/2025] [Accepted: 02/25/2025] [Indexed: 03/16/2025]
Abstract
Metagenomics is increasingly recognized as a vital technique for exploring uncultured microorganisms, with one key application being the discovery of novel enzymes for industrial use. This study identified an endoglucanase gene from soil metagenome, termed ZFEG1801, which was expressed in E. coli BL21, purified, and characterized for its biochemical properties. The 72.8 kDa recombinant protein exhibited hydrolytic activity against sodium carboxymethyl cellulose (CMC) and konjac glucomannan (KG), with activities of 12.1 U/mg and 42.1 U/mg, respectively. The enzyme displayed optimal activity at pH 5 for CMC and pH 6 for KG, with broad pH stability ranging from 5 to 9. The optimal temperature was 40 °C, and it remained thermally stable between 20 and 40 °C, retaining over 60% of its activity. The enzyme activity remained stable in the presence of most metal ions; however, CMCase activity was inhibited by Cu2+, while glucomannanase activity was inhibited by Mn2+, Fe3+, and Ca2+. The catalytic efficiency towards both substrates was reduced by addition of SDS, DMSO, ethanol, isopropanol and acetonitrile. The Vmax and Km of the purified recombinant enzyme were 106.4 μmol/L/min and 4.9 mg/mL for CMC, and 833.3 μmol/L/min and 11.1 mg/mL for KG, respectively. The dual catalytic properties of ZFEG1801, broad pH stability and resistance to additives, demonstrate its potential for use in various biomass degradation processes.
Collapse
Affiliation(s)
- Justice Kipkorir Rono
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qingyun Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yong He
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shaochen Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yunbin Lyu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhi Min Yang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhiyang Feng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
6
|
Ali Z, Abdullah M, Yasin MT, Amanat K, Sultan M, Rahim A, Sarwar F. Recent trends in production and potential applications of microbial amylases: A comprehensive review. Protein Expr Purif 2025; 227:106640. [PMID: 39645158 DOI: 10.1016/j.pep.2024.106640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 11/26/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
α-amylases are vital biocatalysts that constitute a billion-dollar industry with a substantial and enduring global demand. Amylases hydrolyze the α-1,4-glycosidic linkages in starch polymers to generate maltose and malto-oligosaccharides subunits. Amylases are key enzymes that have promising applications in various industrial processes ranging from pharmaceutical, pulp and paper, textile food industries to bioremediation and biofuel sectors. Microbial enzymes have been widely used in industrial applications owing to their ease of availability, cost-effectiveness and better stability at extreme temperatures and pH. α-amylases derived from distinct microbial origins exhibit diverse characteristics, which make them suitable for specific applications. The routine application of immobilized enzymes has become a standard practice in the production of numerous industrial products across the pharmaceutical, chemical, and food industries. This review details the structural makeup of microbial α-amylase to understand its thermodynamic characteristics, aiming to identify key areas that could be targeted for improving the thermostability, pH tolerance and catalytic activity of α-amylase through various immobilization techniques or specific enzyme engineering methods. Additionally, the review briefly explores the enzyme production strategies, potential sources of α-amylases, and use of cost-effective and sustainable raw materials for enzyme production to obtain α-amylases with unconventional applications in various industrial sectors. Major hurdles, challenges and future prospects involving microbial α-amylases has been briefly discussed by considering its diverse applications in industrial bioprocessing.
Collapse
Affiliation(s)
- Zain Ali
- Institute of Biological Sciences, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan.
| | - Muhammad Abdullah
- Institute of Biological Sciences, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan; Industrial Biotechnology Devision, National Institute for Biotechnology and Genetics Engineering (NIBGE), 44000, Faisalabad, Pakistan.
| | - Muhammad Talha Yasin
- Institute of Biological Sciences, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan; Department of Biotechnology, Quaid-i-Azam University, 45320, Islamabad, Pakistan.
| | - Kinza Amanat
- Institute of Biological Sciences, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan.
| | - Mohsin Sultan
- Institute of Biological Sciences, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan.
| | - Aqdas Rahim
- Department of Biotechnology, Fatima Jinnah Women University, 46000, Rawalpindi, Pakistan.
| | - Fatima Sarwar
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, 64200, Rahim Yar Khan, Pakistan.
| |
Collapse
|
7
|
Akram F, Fatima T, Shabbir I, Haq IU, Ibrar R, Mukhtar H. Abridgement of Microbial Esterases and Their Eminent Industrial Endeavors. Mol Biotechnol 2025; 67:817-833. [PMID: 38461181 DOI: 10.1007/s12033-024-01108-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/05/2024] [Indexed: 03/11/2024]
Abstract
Esterases are hydrolases that contribute to the hydrolysis of ester bonds into both water-soluble acyl esters and emulsified glycerol-esters containing short-chain acyl groups. They have garnered significant attention from biotechnologists and organic chemists due to their immense commercial value. Esterases, with their diverse and significant properties, have become highly sought after for various industrial applications. Synthesized ubiquitously by a wide range of living organisms, including animals, plants, and microorganisms, these enzymes have found microbial esterases to be the preferred choice in industrial settings. The cost-effective production of microbial esterases ensures higher yields, unaffected by seasonal variations. Their applications span diverse sectors, such as food manufacturing, leather tanneries, paper and pulp production, textiles, detergents, cosmetics, pharmaceuticals, biodiesel synthesis, bioremediation, and waste treatment. As the global trend shifts toward eco-friendly and sustainable practices, industrial processes are evolving with reduced waste generation, lower energy consumption, and the utilization of biocatalysts derived from renewable and unconventional raw materials. This review explores the background, structural characteristics, thermostability, and multifaceted roles of bacterial esterases in crucial industries, aiming to optimize and analyze their properties for continued successful utilization in diverse industrial processes. Additionally, recent advancements in esterase research are overviewed, showcasing novel techniques, innovations, and promising areas for further exploration.
Collapse
Affiliation(s)
- Fatima Akram
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan.
| | - Taseer Fatima
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Ifrah Shabbir
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Ikram Ul Haq
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
- Pakistan Academy of Sciences, Islamabad, Pakistan
| | - Ramesha Ibrar
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| | - Hamid Mukhtar
- Institute of Industrial Biotechnology, Government College University, Lahore, 54000, Pakistan
| |
Collapse
|
8
|
Yang C, Mao L, Chen Y, Zhou Y, Zhang R, Yi Z, Zhang D, Zhang G. Ancestral carbonic anhydrase with significantly enhanced stability and activity for CO 2 capture and utilization. BIORESOURCE TECHNOLOGY 2025; 419:132054. [PMID: 39798812 DOI: 10.1016/j.biortech.2025.132054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/05/2024] [Accepted: 01/09/2025] [Indexed: 01/15/2025]
Abstract
Carbonic anhydrases (CAs) has garnered increasing attention in carbon capture, utilization and storage (CCUS) due to their ecological friendliness. However, most of them suffer susceptibility to deactivation in harsh conditions. Herein, a reliable dataset was adopted for creating ancestral CAs through an optimized ancestral sequence reconstruction (ASR) method. After prescreening, the ancestor AncCA19 was obtained and successfully expressed. The hydration activity of AncCA19 was as high as 58,859 WAU/mg, with the optimum temperature and pH obtained by esterase assay at 100 ℃ and 9, respectively. AncCA19 had the longest half-life (1.7 h) at 95 ℃ compared with existing CAs. After 2 weeks' incubation in artificial seawater at 30 ℃ or 25.0 % N-methyldiethanolamine (MDEA) at 60 ℃, the activities remained above 47,370 WAU/mg and 6,596 WAU/mg, respectively. Thus, AncCA19, as a novel benchmark of CAs, exhibits exceptional stability in a variety CCUS applications, establishing a versatile candidate for effective CO2 capture.
Collapse
Affiliation(s)
- Chun Yang
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Lei Mao
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Yaxin Chen
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Yanhong Zhou
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Ruifang Zhang
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian Province, PR China
| | - Zhiwei Yi
- Technology Innovation Center for Exploitation of Marine Biological Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, Fujian Province, PR China
| | - Dechao Zhang
- Guangzhou Lintop Information Technology Co., Ltd, Guangzhou 510000, Guangdong Province, PR China
| | - Guangya Zhang
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen 361021, Fujian Province, PR China.
| |
Collapse
|
9
|
Wang F, Singh S, Permaul K. Improving the hydrophilic microenvironment surrounding the catalytic site of fructosyltransferase enhances its catalytic ability. Biotechnol Lett 2025; 47:30. [PMID: 40011254 PMCID: PMC11865173 DOI: 10.1007/s10529-025-03566-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/26/2024] [Accepted: 01/10/2025] [Indexed: 02/28/2025]
Abstract
The hydrophilic microenvironment surrounding an enzyme's active site can influence its catalytic activity. This study examines the effect of enhancing this environment in the Aspergillus niger fructosyltransferase, SucC. Bioinformatics analysis identified a cysteine residue (C66) near the catalytic triad (D64, D194, E271) as vital for maintaining the active site's structure and facilitating substrate transport. Simulated mutagenesis suggested that mutating cysteine to serine (C66S) could increase hydrophilicity without altering the structure significantly. This mutation was predicted to enhance substrate affinity, with binding energy changing from -3.65 to -4.14 kcal mol-1. The C66S mutant, expressed in Pichia pastoris GS115, showed a 61.3% increase in specific activity, a 13.5% decrease in Km (82.20/71.14 mM), and a 21.6% increase in kcat (112.23/136.48 min-1), resulting in a 40.1% increase in catalytic efficiency (1.37/1.92 min-1 mM-1). For fructooligosaccharides (FOS) production, C66S demonstrated enhanced transfructosylation, particularly in the initial stages of the reaction, achieving higher overall FOS yields. These findings highlight that modifying the active site hydrophilicity, without causing major structural changes, is a promising strategy for improving an enzyme's catalytic efficiency.
Collapse
Affiliation(s)
- Fanzhi Wang
- Department of Biotechnology and Food Science, Durban University of Technology, Durban, 4001, South Africa
| | - Suren Singh
- Department of Biotechnology and Food Science, Durban University of Technology, Durban, 4001, South Africa
| | - Kugen Permaul
- Department of Biotechnology and Food Science, Durban University of Technology, Durban, 4001, South Africa.
| |
Collapse
|
10
|
Melissa B, Elisa B, Gabriella C, Maurizio A, Ombretta DA, Andrea DC, Eckert EM, Flavia M. Bacterial Diversity of Marine Biofilm Communities in Terra Nova Bay (Antarctica) by Culture-Dependent and -Independent Approaches. Environ Microbiol 2025; 27:e70045. [PMID: 39895061 PMCID: PMC11788576 DOI: 10.1111/1462-2920.70045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/07/2025] [Accepted: 01/15/2025] [Indexed: 02/04/2025]
Abstract
Applying both culture-independent and -dependent approaches, bacterial diversity of marine biofilm communities colonising polyvinyl chloride panels submerged in Terra Nova Bay (Ross Sea, Antarctica) was investigated. Panels were deployed in two sites subjected to a different degree of anthropogenic impact (Road Bay [RB] impacted site and Punta Stocchino [PTS] control site). Biofilm samples were collected after 3 or 12 months to evaluate both short- and long-term microbial colonisation. Taxonomic composition of the microbial community was studied by 16S rRNA gene amplicon sequencing. Proteobacteria was the predominant phylum, followed by Bacteroidetes, Actinobacteria, Verrucomicrobia and Firmicutes. Impacted RB biofilms were found to contain a relevant fraction of potentially pathogenic bacterial genera, accounting for 27.49% of the whole community. A total of 86 psychrotolerant bacterial strains were isolated from the biofilm samples using culture-dependent techniques designed to enrich in Actinobacteria. These strains were assigned to three different phyla: Actinobacteria (54.65%), Firmicutes (32.56%) and Proteobacteria (12.79%). 2.73% of genera identified by metabarcoding were recovered also through cultivation, while 11 additional genera were uniquely yielded by cultivation. Functional screening of the isolates revealed their hydrolytic and oxidative enzyme activity patterns, giving new insights into the metabolic and biotechnological potential of microbial biofilm communities in Terra Nova Bay seawater.
Collapse
Affiliation(s)
- Bisaccia Melissa
- Department of Biotechnology and Life Sciences (DBSV)University of InsubriaVareseItaly
| | - Binda Elisa
- Department of Biotechnology and Life Sciences (DBSV)University of InsubriaVareseItaly
| | - Caruso Gabriella
- National Research CouncilInstitute of Polar Sciences (ISP)MessinaItaly
| | - Azzaro Maurizio
- National Research CouncilInstitute of Polar Sciences (ISP)MessinaItaly
| | - Dell' Acqua Ombretta
- Department of Sciences of the Earth, Environment and Life (DISTAV)University of GenoaGenoaItaly
| | - Di Cesare Andrea
- National Research CouncilWater Research Institute (IRSA)VerbaniaItaly
| | | | - Marinelli Flavia
- Department of Biotechnology and Life Sciences (DBSV)University of InsubriaVareseItaly
| |
Collapse
|
11
|
Jamal GA, Jahangirian E, Hamblin MR, Shirali M, Mirzaei H, Tarrahimofrad H. In-silico characterization of a thermophilic serine protease via homology modeling, docking and molecular dynamics simulations. J Biomol Struct Dyn 2025; 43:1206-1227. [PMID: 38084768 DOI: 10.1080/07391102.2023.2291179] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/18/2023] [Indexed: 01/16/2025]
Abstract
One of the major categories of industrial enzymes, proteases is crucial to the survival of living things. The purpose of this research was to newly thermostable protease from the thermophilum Geobacillus stearothermophilus. With the conserved catalytic tetrad, protease (Protease JJ) is closely related to the serine proteases from the subtilisin S8 peptidase, according to phylogenetic tree analysis. The tertiary structure of Protease JJ was predicted structurally using RoseTTAFold, and it is a sandwich structure overall. Homology modeling validation showed Protease JJ was modeled in X-ray's protein areas, and it has gained a favored Ramachandran graph regarding Phi/Psi angels. Protease JJ showed structure stability through Molecular dynamics simulation in the presence of Tween20 and Methanol in 1% concentration. Also, Protease JJ exhibited thermal stability at 60 to 90 °C so that amino acid exposure of Protease JJ was low and constant throughout the MD simulation. Docking results of Protease JJ with BSA and βcasein were simulated via MD and it was found that Protease JJ could interact with both BSA and βcasein strongly. MM/PBSA analysis showed Protease JJ may be involved via more amino acids with BSA as well as established more interaction hydrogen bonds. Overall, evidence suggests Protease JJ probably has merit for future experimental investigation as a thermostable protease.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ghadir A Jamal
- Faculty of Allied Health Sciences, Kuwait University, Kuwait City, Kuwait
| | - Ehsan Jahangirian
- Department of Molecular, Zist Tashkhis Farda Company (tBioDx), Tehran, Iran
| | - Michael R Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Laser Research Center, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Masoud Shirali
- Senior Quantitative Geneticist and Project leader, Agri-Food and Biosciences Institute, Hillsborough, UK and Assistant professor, School of Biological Sciences, Queen's University Belfast, Belfast, UK
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | | |
Collapse
|
12
|
Fernández M, Barahona S, Gutierrez F, Alcaíno J, Cifuentes V, Baeza M. Bacterial Diversity, Metabolic Profiling, and Application Potential of Antarctic Soil Metagenomes. Curr Issues Mol Biol 2024; 46:13165-13178. [PMID: 39590379 PMCID: PMC11593224 DOI: 10.3390/cimb46110785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 11/28/2024] Open
Abstract
Antarctica has attracted increasing interest in understanding its microbial communities, metabolic potential, and as a source of microbial hydrolytic enzymes with industrial applications, for which advances in next-generation sequencing technologies have greatly facilitated the study of unculturable microorganisms. In this work, soils from seven sub-Antarctic islands and Union Glacier were studied using a whole-genome shotgun metagenomic approach. The main findings were that the microbial community at all sites was predominantly composed of the bacterial phyla Actinobacteria and Cyanobacteria, and the families Streptomycetaceae and Pseudonocardiaceae. Regarding the xenobiotic biodegradation and metabolism pathway, genes associated with benzoate, chloroalkane, chloroalkene, and styrene degradation were predominant. In addition, putative genes encoding industrial enzymes with predicted structural properties associated with improved activity at low temperatures were found, with catalases and malto-oligosyltrehalose trehalohydrolase being the most abundant. Overall, our results show similarities between soils from different Antarctic sites with respect to more abundant bacteria and metabolic pathways, especially at higher classification levels, regardless of their geographic location. Furthermore, our results strengthen the potential of Antarctic soils as a source of industrially relevant enzymes.
Collapse
Affiliation(s)
- Mario Fernández
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago 7800003, Chile (F.G.); (J.A.)
| | - Salvador Barahona
- Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago 7800003, Chile;
| | - Fernando Gutierrez
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago 7800003, Chile (F.G.); (J.A.)
| | - Jennifer Alcaíno
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago 7800003, Chile (F.G.); (J.A.)
| | - Víctor Cifuentes
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago 7800003, Chile (F.G.); (J.A.)
| | - Marcelo Baeza
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Santiago 7800003, Chile (F.G.); (J.A.)
| |
Collapse
|
13
|
Bhatia R, Singh S, Kumar V, Taneja NK, Oberoi HS, Chauhan K. Revolutionizing dairy waste: emerging solutions in conjunction with microbial engineering. Biodegradation 2024; 36:6. [PMID: 39546049 DOI: 10.1007/s10532-024-10104-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024]
Abstract
The dairy industry is grappling with significant challenges in managing effluent due to environmental concerns and stringent regulatory demands, necessitating innovative solutions. The paper investigates how microbial engineering is transforming the treatment of dairy wastewater, offering advanced methods to minimize environmental impact and enhance sustainability. It delves into the current challenges faced by the dairy industry, such as regulatory compliance and the limitations of traditional treatment technologies, and introduces microbial engineering as a promising solution for effluent management. Microbial engineering leverages genetic engineering techniques and microorganisms to enhance the efficiency of treatment processes like bioaugmentation and bioremediation. The environmental and economic benefits of microbial engineering, highlighting its potential to reduce pollution and lower operational costs for the dairy industry. The specific figures can vary based on factors like farm size and location, studies suggest that microbial engineering can reduce wastewater pollution by up to 50% and nutrient runoff by 30%. It also identifies key challenges and there are still areas including strains for specific pollutants (drugs, hormones), enhance degradation pathways, and increase microbes' stability (stress tolerance, long-term viability) that require further innovation to maximize its benefits. Through case studies and success stories, the paper demonstrates practical applications of microbial engineering in managing dairy effluent, illustrating how it can revolutionize industrial practices for a more sustainable future.
Collapse
Affiliation(s)
- Rishi Bhatia
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat, Haryana, India
| | - Shambhavi Singh
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat, Haryana, India
| | - Vikram Kumar
- Department of Interdisciplinary Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat, Haryana, India
- SRM University Delhi NCR, Sonipat, Haryana, India
| | - Neetu K Taneja
- Department of Interdisciplinary Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat, Haryana, India
| | - Harinder Singh Oberoi
- Department of Interdisciplinary Sciences, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat, Haryana, India
| | - Komal Chauhan
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat, Haryana, India.
| |
Collapse
|
14
|
Hasani F, Tarrahimofrad H, Safa ZJ, Farrokhi N, Karkhane AA, Haghbeen K, Aminzadeh S. Expression optimization and characterization of a novel amylopullulanase from the thermophilic Cohnella sp. A01. Int J Biol Macromol 2024; 279:135135. [PMID: 39208893 DOI: 10.1016/j.ijbiomac.2024.135135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/02/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Amylopullulanase (EC. 3.2.1.41/1) is an enzyme that hydrolyzes starch and pullulan, capable of breaking (4 → 1)-α and (6 → 1)-α bonds in starch. Here, the Amy1136 gene (2166 base pairs) from the thermophilic bacterium Cohnella sp. A01 was cloned into the expression vector pET-26b(+) and expressed in Escherichia coli BL21. The enzyme was purified using heat shock at 90 °C for 15 min. The expression optimization of Amy1136 was performed using Plackett-Burman and Box-Behnken design as follows: temperature of 26.7 °C, rotational speed of 180 rpm, and bacterial population of 1.25. The Amy1136 displayed the highest activity at a temperature of 50 °C (on pullulan) and a pH of 8.0 (on starch) and, also exhibited stability at high temperatures (90 °C) and over a range of pH values. Ag+ significantly increased enzyme activity, while Co2+ completely inhibited amylase activity. The enzyme was found to be calcium-independent. The kinetic parameters Km, Vmax, kcat, and kcat/Km for amylase activity were 2.4 mg/mL, 38.650 μmol min-1 mg-1, 38.1129 S-1, and 0.09269 S-1mg mL-1, respectively, and for pullulanase activity were 173.1 mg/mL, 59.337 μmol min-1 mg-1, 1.586 S-1, and 1.78338 S-1mg mL-1, respectively. The thermodynamic parameters Kin, t1/2, Ea#, ΔH#, ΔG# and ΔS# were calculated equal to 0.20 × 10-2 (m-1), 462.09 (min), 16.87 (kJ/mol), 14.18 (kJ/mol), 47.34 (kJ/mol) and 102.60 (Jmol K-1), respectively. The stability of Amy1136 under high temperature, acidic and alkaline pH, surfactants, organic solvents, and calcium independence, suggests its suitability for industrial applications.
Collapse
Affiliation(s)
- Faezeh Hasani
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Hossein Tarrahimofrad
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Zohreh Javaheri Safa
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Naser Farrokhi
- Dept. of Cell & Molecular Biology, Shahid Beheshti University, Tehran, Iran
| | - Ali Asghar Karkhane
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Kamahldin Haghbeen
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Saeed Aminzadeh
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| |
Collapse
|
15
|
Park CM, Cha GS, Jeong HC, Lee YJ, Kim JH, Chung MS, Lee S, Yun CH. Epoxidation of perillyl alcohol by engineered bacterial cytochrome P450 BM3. Enzyme Microb Technol 2024; 180:110487. [PMID: 39079222 DOI: 10.1016/j.enzmictec.2024.110487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/15/2024] [Accepted: 07/27/2024] [Indexed: 09/15/2024]
Abstract
Perillyl alcohol (POH) is a secondary metabolite of plants. POH and its derivatives are known to be effective as an anticancer treatment. In this study, oxidative derivatives of POH, which are difficult to synthesize chemically, were synthesized using the engineered bacterial cytochrome P450 BM3 (CYP102A1) as a biocatalyst. The activity of wild-type (WT) CYP102A1 and 29 engineered enzymes toward POH was screened using a high-performance liquid chromatography. They produced one major product. Among them, the engineered CYP102A1 M601 mutant with seven mutations (R47L/F81I/F87V/E143G/L150F/L188Q/E267V) showed the highest conversion, 6.4-fold higher than the WT. Structure modeling using AlphFold2 and PyMoL suggests that mutations near the water channel may be responsible for the increased catalytic activity of the M601 mutant. The major product was identified as a POH-8,9-epoxide by gas chromatography-mass spectrometry and nuclear magnetic resonance analysis. The optimal temperature and pH for the product formation were 35 °C and pH 7.4, respectively. The kcat and Km of M601 were 540 min-1 and 2.77 mM, respectively. To improve POH-8,9-epoxide production, substrate concentration and reaction time were optimized. The optimal condition for POH-8,9-epoxide production by M601 was 5.0 mM POH, pH 7.4, 35 ℃, and 6 h reaction, which produced the highest concentration of 1.72 mM. Therefore, the biosynthesis of POH-8,9-epoxide using M601 as a biocatalyst is suggested to be an efficient and sustainable synthetic process that can be applied to chemical and pharmaceutical industries.
Collapse
Affiliation(s)
- Chan Mi Park
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, the Republic of Korea
| | - Gun Su Cha
- Namhae Garlic Research Institute, 2465-8 Namhaedaero, Namhae, Gyeongsangnam-do 52430, the Republic of Korea
| | - Hae Chan Jeong
- School of Biological Sciences and Biotechnology, Graduate School, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, the Republic of Korea
| | - Yu-Jin Lee
- School of Biological Sciences and Biotechnology, Graduate School, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, the Republic of Korea
| | - Jeong-Hoon Kim
- School of Biological Sciences and Biotechnology, Graduate School, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, the Republic of Korea
| | - Moon-Soo Chung
- Research Division for Biotechnology, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), Jeongeup, Jeollabuk-do 56212, the Republic of Korea
| | - Sungbeom Lee
- Research Division for Biotechnology, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), Jeongeup, Jeollabuk-do 56212, the Republic of Korea; Department of Radiation Science and Technology, University of Science and Technology, Daejeon 34113, the Republic of Korea.
| | - Chul-Ho Yun
- School of Biological Sciences and Technology, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, the Republic of Korea; School of Biological Sciences and Biotechnology, Graduate School, Chonnam National University, 77 Yongbong-ro, Gwangju 61186, the Republic of Korea; Institute of Synthetic Biology for Carbon Neutralization, Yongbong-ro 77, Gwangju 61186, the Republic of Korea.
| |
Collapse
|
16
|
Susanty M, Mursalim MKN, Hertadi R, Purwarianti A, LE Rajab T. Leveraging protein language model embeddings and logistic regression for efficient and accurate in-silico acidophilic proteins classification. Comput Biol Chem 2024; 112:108163. [PMID: 39098138 DOI: 10.1016/j.compbiolchem.2024.108163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/02/2024] [Accepted: 07/24/2024] [Indexed: 08/06/2024]
Abstract
The increasing demand for eco-friendly technologies in biotechnology necessitates effective and sustainable catalysts. Acidophilic proteins, functioning optimally in highly acidic environments, hold immense promise for various applications, including food production, biofuels, and bioremediation. However, limited knowledge about these proteins hinders their exploration. This study addresses this gap by employing in silico methods utilizing computational tools and machine learning. We propose a novel approach to predict acidophilic proteins using protein language models (PLMs), accelerating discovery without extensive lab work. Our investigation highlights the potential of PLMs in understanding and harnessing acidophilic proteins for scientific and industrial advancements. We introduce the ACE model, which combines a simple Logistic Regression model with embeddings derived from protein sequences processed by the ProtT5 PLM. This model achieves high performance on an independent test set, with accuracy (0.91), F1-score (0.93), and Matthew's correlation coefficient (0.76). To our knowledge, this is the first application of pre-trained PLM embeddings for acidophilic protein classification. The ACE model serves as a powerful tool for exploring protein acidophilicity, paving the way for future advancements in protein design and engineering.
Collapse
Affiliation(s)
- Meredita Susanty
- Institut Teknologi Bandung School of Electrical Engineering and Informatics, Jl. Ganesa 10, Bandung, Jawa Barat, Indonesia; Universitas Pertamina, School of Computer Science, Jl Teuku Nyak Arief Jakarta Selatan DKI, Jakarta, Indonesia
| | - Muhammad Khaerul Naim Mursalim
- Institut Teknologi Bandung School of Electrical Engineering and Informatics, Jl. Ganesa 10, Bandung, Jawa Barat, Indonesia; Universitas UniversalKompleks Maha Vihara Duta Maitreya Bukit Beruntung, Sei Panas Batam, Kepulauan, Riau 29456, Indonesia
| | - Rukman Hertadi
- Institut Teknologi Bandung Faculty of Math and Natural Sciences, Jl. Ganesa 10, Bandung, Jawa Barat, Indonesia
| | - Ayu Purwarianti
- Institut Teknologi Bandung School of Electrical Engineering and Informatics, Jl. Ganesa 10, Bandung, Jawa Barat, Indonesia; Center for Artificial Intelligence (U-CoE AI-VLB), Institut Teknologi Bandung, Bandung, Indonesia
| | - Tati LE Rajab
- Institut Teknologi Bandung School of Electrical Engineering and Informatics, Jl. Ganesa 10, Bandung, Jawa Barat, Indonesia.
| |
Collapse
|
17
|
Son A, Park J, Kim W, Yoon Y, Lee S, Park Y, Kim H. Revolutionizing Molecular Design for Innovative Therapeutic Applications through Artificial Intelligence. Molecules 2024; 29:4626. [PMID: 39407556 PMCID: PMC11477718 DOI: 10.3390/molecules29194626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/19/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
The field of computational protein engineering has been transformed by recent advancements in machine learning, artificial intelligence, and molecular modeling, enabling the design of proteins with unprecedented precision and functionality. Computational methods now play a crucial role in enhancing the stability, activity, and specificity of proteins for diverse applications in biotechnology and medicine. Techniques such as deep learning, reinforcement learning, and transfer learning have dramatically improved protein structure prediction, optimization of binding affinities, and enzyme design. These innovations have streamlined the process of protein engineering by allowing the rapid generation of targeted libraries, reducing experimental sampling, and enabling the rational design of proteins with tailored properties. Furthermore, the integration of computational approaches with high-throughput experimental techniques has facilitated the development of multifunctional proteins and novel therapeutics. However, challenges remain in bridging the gap between computational predictions and experimental validation and in addressing ethical concerns related to AI-driven protein design. This review provides a comprehensive overview of the current state and future directions of computational methods in protein engineering, emphasizing their transformative potential in creating next-generation biologics and advancing synthetic biology.
Collapse
Affiliation(s)
- Ahrum Son
- Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA;
| | - Jongham Park
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (J.P.); (W.K.); (Y.Y.); (S.L.); (Y.P.)
| | - Woojin Kim
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (J.P.); (W.K.); (Y.Y.); (S.L.); (Y.P.)
| | - Yoonki Yoon
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (J.P.); (W.K.); (Y.Y.); (S.L.); (Y.P.)
| | - Sangwoon Lee
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (J.P.); (W.K.); (Y.Y.); (S.L.); (Y.P.)
| | - Yongho Park
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (J.P.); (W.K.); (Y.Y.); (S.L.); (Y.P.)
| | - Hyunsoo Kim
- Department of Bio-AI Convergence, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea; (J.P.); (W.K.); (Y.Y.); (S.L.); (Y.P.)
- Department of Convergent Bioscience and Informatics, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
- Protein AI Design Institute, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
- SCICS, Prove beyond AI, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| |
Collapse
|
18
|
Dresler J, Herzig V, Vilcinskas A, Lüddecke T. Enlightening the toxinological dark matter of spider venom enzymes. NPJ BIODIVERSITY 2024; 3:25. [PMID: 39271930 PMCID: PMC11399385 DOI: 10.1038/s44185-024-00058-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/15/2024] [Indexed: 09/15/2024]
Abstract
Spiders produce highly adapted venoms featuring a complex mixture of biomolecules used mainly for hunting and defense. The most prominent components are peptidic neurotoxins, a major focus of research and drug development, whereas venom enzymes have been largely neglected. Nevertheless, investigation of venom enzymes not only reveals insights into their biological functions, but also provides templates for future industrial applications. Here we compared spider venom enzymes validated at protein level contained in the VenomZone database and from all publicly available proteo-transcriptomic spider venom datasets. We assigned reported enzymes to cellular processes and known venom functions, including toxicity, prey pre-digestion, venom preservation, venom component activation, and spreading factors. Our study unveiled extensive discrepancy between public databases and publications with regard to enzyme coverage, which impedes the development of novel spider venom enzyme-based applications. Uncovering the previously unrecognized abundance and diversity of venom enzymes will open new avenues for spider venom biodiscovery.
Collapse
Affiliation(s)
- Josephine Dresler
- Animal Venomics Lab, Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Gießen, Germany.
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt a. M., Germany.
| | - Volker Herzig
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Andreas Vilcinskas
- Animal Venomics Lab, Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Gießen, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt a. M., Germany
- Institute for Insect Biotechnology, Justus-Liebig-University of Giessen, Gießen, Germany
| | - Tim Lüddecke
- Animal Venomics Lab, Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology, Gießen, Germany.
- LOEWE Centre for Translational Biodiversity Genomics, Frankfurt a. M., Germany.
| |
Collapse
|
19
|
Zhang Q, Chen Y, Duan L, Dong L, Wang S. Design Glutamate Dehydrogenase for Nonaqueous System by Motifs Reassembly and Interaction Network Analysis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19931-19939. [PMID: 39222309 DOI: 10.1021/acs.jafc.4c02995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Glutamate dehydrogenases (GDH) serve as the key regulated enzyme that links protein and carbohydrate metabolism. Combined with motif reassembly and mutation, novel GDHs were designed. Motif reassembly of thermophilic GDH and malate dehydrogenase aims to overcome stability and activity tradeoff in nonaqueous systems. Structural compatibility and dynamic cooperation of the designed AaDHs were studied by molecular dynamics simulation. Furthermore, multipoint mutations improved its catalytic activity for unnatural substrates. Amino acid interaction network analysis indicated that the high density of hydrogen-bonded salt bridges is beneficial to the stability. Finally, the experimental verification determines the kinetics of AaDHs in a nonaqueous system. The activity of Aa05 was increased by 1.78-fold with ionic liquid [EMIM]BF4. This study presents the strategy of a combination of rigid motif assembly and mutations of active sites for robust dehydrogenases with high activity in the nonaqueous system, which overcomes the activity-stability tradeoff effect.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yuxin Chen
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lingxuan Duan
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Lingling Dong
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shizhen Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Xiamen Key Laboratory of Synthetic Biotechnology, Xiamen University, Xiamen, Fujian 361005, P. R. China
| |
Collapse
|
20
|
Marciano CL, de Almeida AP, Bezerra FC, Giannesi GC, Cabral H, Teixeira de Moraes Polizeli MDL, Ruller R, Masui DC. Enhanced saccharification levels of corn starch using as a strategy a novel amylolytic complex (AmyHb) from the thermophilic fungus Humicola brevis var. thermoidea in association with commercial enzyme. 3 Biotech 2024; 14:198. [PMID: 39131173 PMCID: PMC11310185 DOI: 10.1007/s13205-024-04038-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/30/2024] [Indexed: 08/13/2024] Open
Abstract
Amylases represent a versatile group of catalysts that are used for the saccharification of starch because they can hydrolyze the glycosidic bonds of starch molecules to release glucose, maltose, and short-chain oligosaccharides. The amylolytic complex of the thermophilic filamentous fungus Humicola brevis var. thermoidea (AmyHb) was produced, biochemically characterized, and compared with the commercial amylase Termamyl. In addition, the biotechnological application of AmyHb in starch saccharification was investigated. The highest production was achieved using a wheat bran medium at 50 °C for 5-6 days in solid-state fermentation (849.6 ± 18.2 U·g-1) without the addition of inducers. Optimum amylolytic activity occurred at pH 5.0 at 60 °C, and stability was maintained between pH 5.0 and 6.0, with thermal stability at 50-60 °C, especially in the presence of Ca2+. These results were superior to those found with Termamyl. Both enzymes were strongly inhibited by Hg2+, Cu2+, and Ag+; however, AmyHb displayed increased activity in the presence of Mn2+ and Na+. In addition, AmyHb showed greater tolerance to a wide range of ethanol concentrations. AmyHb appears to be a complex consisting of glucoamylase and α-amylase, based on its substrate specificity and TLC. The hydrolysis tests on cornstarch flour showed that the cocktail of AmyHb50% + Termamyl50% significantly increased the release of glucose and total reducing sugars (36.6%) when compared to the enzymes alone. AmyHb exhibited promising physicochemical properties and good performance with commercial amylase; therefore, this complex is a biotechnological alternative candidate for the bioprocessing of starch sources.
Collapse
Affiliation(s)
- Camila Langer Marciano
- Laboratório de Bioquímica Geral E de Microrganismos-LBQ, Instituto de Biociências-INBIO, Universidade Federal de Mato Grosso Do Sul-UFMS, Campo Grande, MS CEP: 79070-900 Brazil
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, FCFRP – Universidade de São Paulo, Ribeirão Preto, SP CEP: 14040-903 Brazil
| | - Aline Pereira de Almeida
- Faculdade de Medicina de Ribeirão Preto, FMRP – Universidade de São Paulo, Ribeirão Preto, SP CEP: 14049-900 Brazil
- Departamento de Biologia, Faculdade de Filosofia, Ciências E Letras de Ribeirão Preto - FFCLRP, Universidade de São Paulo-USP, Ribeirão Preto, SP CEP: 14040-901 Brazil
| | - Fabiane Cruz Bezerra
- Laboratório de Bioquímica Geral E de Microrganismos-LBQ, Instituto de Biociências-INBIO, Universidade Federal de Mato Grosso Do Sul-UFMS, Campo Grande, MS CEP: 79070-900 Brazil
| | - Giovana Cristina Giannesi
- Laboratório de Bioquímica Geral E de Microrganismos-LBQ, Instituto de Biociências-INBIO, Universidade Federal de Mato Grosso Do Sul-UFMS, Campo Grande, MS CEP: 79070-900 Brazil
| | - Hamilton Cabral
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, FCFRP – Universidade de São Paulo, Ribeirão Preto, SP CEP: 14040-903 Brazil
| | | | - Roberto Ruller
- Departamento de Biologia, Faculdade de Filosofia, Ciências E Letras de Ribeirão Preto - FFCLRP, Universidade de São Paulo-USP, Ribeirão Preto, SP CEP: 14040-901 Brazil
- Universidade Estadual Paulista - UNESP, Instituto de Biociências, Letras e Ciências Exatas - IBILCE, São José do Rio Preto, SP CEP: 15054-000 Brazil
- Centro de Ciências Naturais e Humanas - CCNH, Universidade Federal do ABC - UFABC, Santo André, SP CEP: 09210-170 Brazil
| | - Douglas Chodi Masui
- Laboratório de Bioquímica Geral E de Microrganismos-LBQ, Instituto de Biociências-INBIO, Universidade Federal de Mato Grosso Do Sul-UFMS, Campo Grande, MS CEP: 79070-900 Brazil
| |
Collapse
|
21
|
Shrestha S, Goswami S, Banerjee D, Garcia V, Zhou E, Olmsted CN, Majumder ELW, Kumar D, Awasthi D, Mukhopadhyay A, Singer SW, Gladden JM, Simmons BA, Choudhary H. Perspective on Lignin Conversion Strategies That Enable Next Generation Biorefineries. CHEMSUSCHEM 2024; 17:e202301460. [PMID: 38669480 DOI: 10.1002/cssc.202301460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/14/2024] [Indexed: 04/28/2024]
Abstract
The valorization of lignin, a currently underutilized component of lignocellulosic biomass, has attracted attention to promote a stable and circular bioeconomy. Successful approaches including thermochemical, biological, and catalytic lignin depolymerization have been demonstrated, enabling opportunities for lignino-refineries and lignocellulosic biorefineries. Although significant progress in lignin valorization has been made, this review describes unexplored opportunities in chemical and biological routes for lignin depolymerization and thereby contributes to economically and environmentally sustainable lignin-utilizing biorefineries. This review also highlights the integration of chemical and biological lignin depolymerization and identifies research gaps while also recommending future directions for scaling processes to establish a lignino-chemical industry.
Collapse
Affiliation(s)
- Shilva Shrestha
- Joint BioEnergy Institute, Emeryville, CA 94608, United States
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
- Department of Environmental Health and Engineering, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Shubhasish Goswami
- Joint BioEnergy Institute, Emeryville, CA 94608, United States
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Deepanwita Banerjee
- Joint BioEnergy Institute, Emeryville, CA 94608, United States
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Valentina Garcia
- Joint BioEnergy Institute, Emeryville, CA 94608, United States
- Department of Biomanufacturing and Biomaterials, Sandia National Laboratories, Livermore, CA 94550, United States
| | - Elizabeth Zhou
- Joint BioEnergy Institute, Emeryville, CA 94608, United States
| | - Charles N Olmsted
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Erica L-W Majumder
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Deepak Kumar
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY 13210, United States
| | - Deepika Awasthi
- Joint BioEnergy Institute, Emeryville, CA 94608, United States
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Aindrila Mukhopadhyay
- Joint BioEnergy Institute, Emeryville, CA 94608, United States
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Steven W Singer
- Joint BioEnergy Institute, Emeryville, CA 94608, United States
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - John M Gladden
- Joint BioEnergy Institute, Emeryville, CA 94608, United States
- Department of Biomanufacturing and Biomaterials, Sandia National Laboratories, Livermore, CA 94550, United States
| | - Blake A Simmons
- Joint BioEnergy Institute, Emeryville, CA 94608, United States
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United States
| | - Hemant Choudhary
- Joint BioEnergy Institute, Emeryville, CA 94608, United States
- Department of Bioresource and Environmental Security, Sandia National Laboratories, Livermore, CA 94550, United States
| |
Collapse
|
22
|
Duan Z, Wang Q, Wang T, Kong X, Zhu G, Qiu G, Yu H. Application of microbial agents in organic solid waste composting: a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5647-5659. [PMID: 38318758 DOI: 10.1002/jsfa.13323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
The rapid growth of organic solid waste has recently exacerbated environmental pollution problems, and its improper treatment has led to the loss of a large number of biomass resources. Here, we expound the advantages of microbial agents composting compared with conventional organic solid waste treatment technology, and review the important role of microbial agents composting in organic solid waste composting from the aspects of screening and identification, optimization of conditions, mechanism of action, combination with other technologies and ultra-high-temperature and ultra-low-temperature microbial composting. We discuss the value of microorganisms with different growth conditions in organic solid waste composting, and put forward a seasonal multi-temperature composite microbial composting technology. Provide new ideas for the all-round treatment of microbial agents in organic solid waste in the future. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhongxu Duan
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Quanying Wang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Tianye Wang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Xiangfen Kong
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Guopeng Zhu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Guankai Qiu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hongwen Yu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
23
|
Barone GD, Rodríguez-Seijo A, Parati M, Johnston B, Erdem E, Cernava T, Zhu Z, Liu X, Axmann IM, Lindblad P, Radecka I. Harnessing photosynthetic microorganisms for enhanced bioremediation of microplastics: A comprehensive review. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 20:100407. [PMID: 38544950 PMCID: PMC10965471 DOI: 10.1016/j.ese.2024.100407] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 11/11/2024]
Abstract
Mismanaged plastics, upon entering the environment, undergo degradation through physicochemical and/or biological processes. This process often results in the formation of microplastics (MPs), the most prevalent form of plastic debris (<1 mm). MPs pose severe threats to aquatic and terrestrial ecosystems, necessitating innovative strategies for effective remediation. Some photosynthetic microorganisms can degrade MPs but there lacks a comprehensive review. Here we examine the specific role of photoautotrophic microorganisms in water and soil environments for the biodegradation of plastics, focussing on their unique ability to grow persistently on diverse polymers under sunlight. Notably, these cells utilise light and CO2 to produce valuable compounds such as carbohydrates, lipids, and proteins, showcasing their multifaceted environmental benefits. We address key scientific questions surrounding the utilisation of photosynthetic microorganisms for MPs and nanoplastics (NPs) bioremediation, discussing potential engineering strategies for enhanced efficacy. Our review highlights the significance of alternative biomaterials and the exploration of strains expressing enzymes, such as polyethylene terephthalate (PET) hydrolases, in conjunction with microalgal and/or cyanobacterial metabolisms. Furthermore, we delve into the promising potential of photo-biocatalytic approaches, emphasising the coupling of plastic debris degradation with sunlight exposure. The integration of microalgal-bacterial consortia is explored for biotechnological applications against MPs and NPs pollution, showcasing the synergistic effects in wastewater treatment through the absorption of nitrogen, heavy metals, phosphorous, and carbon. In conclusion, this review provides a comprehensive overview of the current state of research on the use of photoautotrophic cells for plastic bioremediation. It underscores the need for continued investigation into the engineering of these microorganisms and the development of innovative approaches to tackle the global issue of plastic pollution in aquatic and terrestrial ecosystems.
Collapse
Affiliation(s)
| | - Andrés Rodríguez-Seijo
- Área de Edafoloxía, Departamento de Bioloxía Vexetal e Ciencia Do Solo, Facultade de Ciencias, Universidade de Vigo, 32004, Ourense, Spain
- Agroecology and Food Institute (IAA), University of Vigo – Campus Auga, 32004, Ourense, Spain
| | - Mattia Parati
- School of Life Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, WV1 1LY, United Kingdom
- FlexSea Ltd., London, EC2A4NE, United Kingdom
| | - Brian Johnston
- School of Life Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, WV1 1LY, United Kingdom
| | - Elif Erdem
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, 8010, Graz, Austria
| | - Zhi Zhu
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, School of Life Sciences, Jiangsu Normal University, 221116, Xuzhou, China
- Department of Chemistry—Ångström Laboratory, Uppsala University, SE-751 20, Uppsala, Sweden
| | - Xufeng Liu
- Department of Chemistry—Ångström Laboratory, Uppsala University, SE-751 20, Uppsala, Sweden
| | - Ilka M. Axmann
- Synthetic Microbiology, Department of Biology, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine, University Düsseldorf, D-40001, Düsseldorf, Germany
| | - Peter Lindblad
- Department of Chemistry—Ångström Laboratory, Uppsala University, SE-751 20, Uppsala, Sweden
| | - Iza Radecka
- School of Life Sciences, Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, WV1 1LY, United Kingdom
| |
Collapse
|
24
|
Bhatt HB, Sani RK, Amoozegar MA, Singh SP. Editorial: Extremozymes: characteristics, structure, protein engineering and applications. Front Microbiol 2024; 15:1423463. [PMID: 38779500 PMCID: PMC11109424 DOI: 10.3389/fmicb.2024.1423463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024] Open
Affiliation(s)
- Hitarth B. Bhatt
- Department of Microbiology, Faculty of Science, Atmiya University, Rajkot, Gujarat, India
| | - Rajesh K. Sani
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD, United States
| | - Mohammad Ali Amoozegar
- Extremophiles Laboratory, Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Satya P. Singh
- Department of Biosciences, Saurashtra University, Rajkot, Gujarat, India
| |
Collapse
|
25
|
Ali M, Greenig M, Oeller M, Atkinson M, Xu X, Sormanni P. Automated optimization of the solubility of a hyper-stable α-amylase. Open Biol 2024; 14:240014. [PMID: 38745462 PMCID: PMC11293438 DOI: 10.1098/rsob.240014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/26/2024] [Accepted: 03/27/2024] [Indexed: 05/16/2024] Open
Abstract
Most successes in computational protein engineering to date have focused on enhancing one biophysical trait, while multi-trait optimization remains a challenge. Different biophysical properties are often conflicting, as mutations that improve one tend to worsen the others. In this study, we explored the potential of an automated computational design strategy, called CamSol Combination, to optimize solubility and stability of enzymes without affecting their activity. Specifically, we focus on Bacillus licheniformis α-amylase (BLA), a hyper-stable enzyme that finds diverse application in industry and biotechnology. We validate the computational predictions by producing 10 BLA variants, including the wild-type (WT) and three designed models harbouring between 6 and 8 mutations each. Our results show that all three models have substantially improved relative solubility over the WT, unaffected catalytic rate and retained hyper-stability, supporting the algorithm's capacity to optimize enzymes. High stability and solubility embody enzymes with superior resilience to chemical and physical stresses, enhance manufacturability and allow for high-concentration formulations characterized by extended shelf lives. This ability to readily optimize solubility and stability of enzymes will enable the rapid and reliable generation of highly robust and versatile reagents, poised to contribute to advancements in diverse scientific and industrial domains.
Collapse
Affiliation(s)
- Montader Ali
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, UK
| | - Matthew Greenig
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, UK
| | - Marc Oeller
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, UK
- Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried82152, Germany
| | - Misha Atkinson
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, UK
| | - Xing Xu
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, UK
| | - Pietro Sormanni
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, UK
| |
Collapse
|
26
|
Ivanov YD, Shumov ID, Kozlov AF, Valueva AA, Ershova MO, Ivanova IA, Ableev AN, Tatur VY, Lukyanitsa AA, Ivanova ND, Ziborov VS. Atomic Force Microscopy Study of the Long-Term Effect of the Glycerol Flow, Stopped in a Coiled Heat Exchanger, on Horseradish Peroxidase. MICROMACHINES 2024; 15:499. [PMID: 38675310 PMCID: PMC11052087 DOI: 10.3390/mi15040499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024]
Abstract
Glycerol is employed as a functional component of heat-transfer fluids, which are of use in both bioreactors and various biosensor devices. At the same time, flowing glycerol was reported to cause considerable triboelectric effects. Herein, by using atomic force microscopy (AFM), we have revealed the long-term effect of glycerol flow, stopped in a ground-shielded coiled heat exchanger, on horseradish peroxidase (HRP) adsorption on mica. Namely, the solution of HRP was incubated in the vicinity of the side of the cylindrical coil with stopped glycerol flow, and then HRP was adsorbed from this solution onto a mica substrate. This incubation has been found to markedly increase the content of aggregated enzyme on mica-as compared with the control enzyme sample. We explain the phenomenon observed by the influence of triboelectrically induced electromagnetic fields of non-trivial topology. The results reported should be further considered in the development of flow-based heat exchangers of biosensors and bioreactors intended for operation with enzymes.
Collapse
Affiliation(s)
- Yuri D. Ivanov
- Institute of Biomedical Chemistry, Pogodinskaya Str., 10 Build. 8, 119121 Moscow, Russia; (I.D.S.); (A.F.K.); (A.A.V.); (M.O.E.); (I.A.I.); (A.N.A.); (V.S.Z.)
- Joint Institute for High Temperatures of the Russian Academy of Sciences, 125412 Moscow, Russia
| | - Ivan D. Shumov
- Institute of Biomedical Chemistry, Pogodinskaya Str., 10 Build. 8, 119121 Moscow, Russia; (I.D.S.); (A.F.K.); (A.A.V.); (M.O.E.); (I.A.I.); (A.N.A.); (V.S.Z.)
| | - Andrey F. Kozlov
- Institute of Biomedical Chemistry, Pogodinskaya Str., 10 Build. 8, 119121 Moscow, Russia; (I.D.S.); (A.F.K.); (A.A.V.); (M.O.E.); (I.A.I.); (A.N.A.); (V.S.Z.)
| | - Anastasia A. Valueva
- Institute of Biomedical Chemistry, Pogodinskaya Str., 10 Build. 8, 119121 Moscow, Russia; (I.D.S.); (A.F.K.); (A.A.V.); (M.O.E.); (I.A.I.); (A.N.A.); (V.S.Z.)
| | - Maria O. Ershova
- Institute of Biomedical Chemistry, Pogodinskaya Str., 10 Build. 8, 119121 Moscow, Russia; (I.D.S.); (A.F.K.); (A.A.V.); (M.O.E.); (I.A.I.); (A.N.A.); (V.S.Z.)
| | - Irina A. Ivanova
- Institute of Biomedical Chemistry, Pogodinskaya Str., 10 Build. 8, 119121 Moscow, Russia; (I.D.S.); (A.F.K.); (A.A.V.); (M.O.E.); (I.A.I.); (A.N.A.); (V.S.Z.)
| | - Alexander N. Ableev
- Institute of Biomedical Chemistry, Pogodinskaya Str., 10 Build. 8, 119121 Moscow, Russia; (I.D.S.); (A.F.K.); (A.A.V.); (M.O.E.); (I.A.I.); (A.N.A.); (V.S.Z.)
| | - Vadim Y. Tatur
- Foundation of Perspective Technologies and Novations, 115682 Moscow, Russia; (V.Y.T.); (A.A.L.); (N.D.I.)
| | - Andrei A. Lukyanitsa
- Foundation of Perspective Technologies and Novations, 115682 Moscow, Russia; (V.Y.T.); (A.A.L.); (N.D.I.)
- Faculty of Computational Mathematics and Cybernetics, Moscow State University, 119991 Moscow, Russia
| | - Nina D. Ivanova
- Foundation of Perspective Technologies and Novations, 115682 Moscow, Russia; (V.Y.T.); (A.A.L.); (N.D.I.)
- Moscow State Academy of Veterinary Medicine and Biotechnology Named after Skryabin, 109472 Moscow, Russia
| | - Vadim S. Ziborov
- Institute of Biomedical Chemistry, Pogodinskaya Str., 10 Build. 8, 119121 Moscow, Russia; (I.D.S.); (A.F.K.); (A.A.V.); (M.O.E.); (I.A.I.); (A.N.A.); (V.S.Z.)
- Joint Institute for High Temperatures of the Russian Academy of Sciences, 125412 Moscow, Russia
| |
Collapse
|
27
|
Kuddus M, Roohi, Bano N, Sheik GB, Joseph B, Hamid B, Sindhu R, Madhavan A. Cold-active microbial enzymes and their biotechnological applications. Microb Biotechnol 2024; 17:e14467. [PMID: 38656876 PMCID: PMC11042537 DOI: 10.1111/1751-7915.14467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 03/14/2024] [Accepted: 03/21/2024] [Indexed: 04/26/2024] Open
Abstract
Microorganisms known as psychrophiles/psychrotrophs, which survive in cold climates, constitute majority of the biosphere on Earth. Their capability to produce cold-active enzymes along with other distinguishing characteristics allows them to survive in the cold environments. Due to the relative ease of large-scale production compared to enzymes from plants and animals, commercial uses of microbial enzyme are alluring. The ocean depths, polar, and alpine regions, which make up over 85% of the planet, are inhabited to cold ecosystems. Microbes living in these regions are important for their metabolic contribution to the ecosphere as well as for their enzymes, which may have potential industrial applications. Cold-adapted microorganisms are a possible source of cold-active enzymes that have high catalytic efficacy at low and moderate temperatures at which homologous mesophilic enzymes are not active. Cold-active enzymes can be used in a variety of biotechnological processes, including food processing, additives in the detergent and food industries, textile industry, waste-water treatment, biopulping, environmental bioremediation in cold climates, biotransformation, and molecular biology applications with great potential for energy savings. Genetically manipulated strains that are suitable for producing a particular cold-active enzyme would be crucial in a variety of industrial and biotechnological applications. The potential advantage of cold-adapted enzymes will probably lead to a greater annual market than for thermo-stable enzymes in the near future. This review includes latest updates on various microbial source of cold-active enzymes and their biotechnological applications.
Collapse
Affiliation(s)
- Mohammed Kuddus
- Department of Biochemistry, College of MedicineUniversity of HailHailSaudi Arabia
| | - Roohi
- Protein Research Laboratory, Department of BioengineeringIntegral UniversityLucknowIndia
| | - Naushin Bano
- Protein Research Laboratory, Department of BioengineeringIntegral UniversityLucknowIndia
| | | | - Babu Joseph
- Department of Clinical Laboratory Sciences, College of Applied Medical SciencesShaqra UniversityShaqraSaudi Arabia
| | - Burhan Hamid
- Center of Research for DevelopmentUniversity of KashmirSrinagarIndia
| | - Raveendran Sindhu
- Department of Food TechnologyTKM Institute of TechnologyKollamKeralaIndia
| | - Aravind Madhavan
- School of BiotechnologyAmrita Vishwa Vidyapeetham, AmritapuriKollamKeralaIndia
| |
Collapse
|
28
|
Wang X, Zong Y, Zhou X, Xu L, He W, Quan S. Artificial Intelligence-Powered Construction of a Microbial Optimal Growth Temperature Database and Its Impact on Enzyme Optimal Temperature Prediction. J Phys Chem B 2024; 128:2281-2292. [PMID: 38437173 DOI: 10.1021/acs.jpcb.3c06526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Accurate prediction of enzyme optimal temperature (Topt) is crucial for identifying enzymes suitable for catalytic functions under extreme bioprocessing conditions. The optimal growth temperature (OGT) of microorganisms serves as a key indicator for estimating enzyme Topt, reflecting an evolutionary temperature balance between enzyme-catalyzed reactions and the organism's growth environments. Existing OGT databases, collected from culture collection centers, often fall short as culture temperature does not precisely represent the OGT. Models trained on such databases yield inadequate accuracy in enzyme Topt prediction, underscoring the need for a high-quality OGT database. Herein, we developed AI-based models to extract the OGT information from the scientific literature, constructing a comprehensive OGT database with 1155 unique organisms and 2142 OGT values. The top-performing model, BioLinkBERT, demonstrated exceptional information extraction ability with an EM score of 91.00 and an F1 score of 91.91 for OGT. Notably, applying this OGT database in enzyme Topt prediction achieved an R2 value of 0.698, outperforming the R2 value of 0.686 obtained using culture temperature. This emphasizes the superiority of the OGT database in predicting the enzyme Topt and underscores its pivotal role in identifying enzymes with optimal catalytic temperatures.
Collapse
Affiliation(s)
- Xiaotao Wang
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB), East China University of Science and Technology, Shanghai 200237, China
- School of Information Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuwei Zong
- School of Information Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xuanjie Zhou
- School of Information Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Li Xu
- School of Information Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei He
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB), East China University of Science and Technology, Shanghai 200237, China
| | - Shu Quan
- State Key Laboratory of Bioreactor Engineering, Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB), East China University of Science and Technology, Shanghai 200237, China
- Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 201203, China
| |
Collapse
|
29
|
Salmanizadeh H, Beheshti-Maal K, Nayeri H, Torabi LR. Optimization of xylanase production by Pichia kudriavzevii and Candida tropicalis isolated from the wood product workshop. Braz J Microbiol 2024; 55:155-168. [PMID: 37957443 PMCID: PMC11387571 DOI: 10.1007/s42770-023-01171-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Enzymatic compounds can be found abundantly and provide numerous advantages in microbial organisms. Xylanases are used in various pharmaceutical, food, livestock, poultry, and paper industries. This study aimed to investigate xylanase-producing yeasts, xylose concentration curve and their enzymatic activity under various factors including carbon and nitrogen sources, temperature, and pH. Enzyme activity was evaluated under different conditions before, during, and after purification. The yeast strains were obtained from the wood product workshop and were subsequently cultivated on YPD (yeast extract peptone dextrose) medium. Additionally, the growth curve of the yeast and its molecular identification were conducted. The optimization and design process of xylan isolated from corn wood involved the use of Taguchi software to test different parameters like carbon and nitrogen sources, temperature, and pH, with the goal of determining the most optimal conditions for enzyme production. In addition, the Taguchi method was utilized to conduct a multifactorial optimization of xylanase enzyme activity. The isolated species were partially purified using ammonium sulfate precipitation and dialysis bag techniques. The results indicated that 3 species (8S, 18S, and 16W) after molecular identification based on 18S rRNA gene sequencing were identified as Candida tropicalis SBN-IAUF-1, Candida tropicalis SBN-IAUF-3, and Pichia kudriavzevii SBN-IAUF-2, respectively. The optimal parameters for wheat carbon source and peptone nitrogen source were found at 50 °C and pH 9.0 through single-factor optimization. By using the Taguchi approach, the best combination for highest activity was rice-derived carbon source and peptone nitrogen source at 50 °C and pH 6.0. The best conditions for xylanase enzyme production in single-factor optimization of wheat bran were 2135.6 U/mL, peptone 4475.25 U/mL, temperature 50 °C 1868 U/mL, and pH 9.0 2002.4 U/mL. Among the tested yeast, Candida tropicalis strain SBN-IAUF-1 to the access number MZ816946.1 in NCBI was found to be the best xylanase product. The highest ratio of enzyme production at the end of the delayed phase and the beginning of the logarithmic phase was concluded by comparing the growth ratio of 8S, 16W, and 18S yeasts with the level of enzymatic activity. This is the first report on the production of xylan polymer with a relative purity of 80% in Iran. The extracellular xylanases purified from the yeast species of C. tropicalis were introduced as a desirable biocatalyst due to their high enzymatic activity for the degradation of xylan polymers.
Collapse
Affiliation(s)
- Hoda Salmanizadeh
- Department of Microbiology, Falavarjan Branch, Islamic Azad University, Falavarjan, Isfahan, Iran
| | - Keivan Beheshti-Maal
- Department of Microbiology, Falavarjan Branch, Islamic Azad University, Falavarjan, Isfahan, Iran.
| | - Hashem Nayeri
- Department of Biochemistry, Falavarjan Branch, Islamic Azad University, Falavarjan, Isfahan, Iran
| | - Ladan Rahimzadeh Torabi
- Department of Microbiology, Falavarjan Branch, Islamic Azad University, Falavarjan, Isfahan, Iran
| |
Collapse
|
30
|
Li L, Liu X, Bai Y, Yao B, Luo H, Tu T. High-Throughput Screening Techniques for the Selection of Thermostable Enzymes. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3833-3845. [PMID: 38285533 DOI: 10.1021/acs.jafc.3c07554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
The acquisition of a thermostable enzyme is an indispensable prerequisite for its successful implementation in industrial applications and the development of novel functionalities. Various protein engineering approaches, including rational design, semirational design, and directed evolution, have been employed to enhance thermostability. However, all of these approaches require sensitive and reliable high-throughput screening (HTS) technologies to efficiently and rapidly identify variants with improved properties. While numerous reviews focus on modification strategies for enhancing enzyme thermostability, there is a dearth of literature reviewing HTS methods specifically aimed at this objective. Herein, we present a comprehensive overview of various HTS methods utilized for modifying enzyme thermostability across different screening platforms. Additionally, we highlight significant recent examples that demonstrate the successful application of these methods. Furthermore, we address the technical challenges associated with HTS technologies used for screening thermostable enzyme variants and discuss valuable perspectives to promote further advancements in this field. This review serves as an authoritative reference source offering theoretical support for selecting appropriate screening strategies tailored to specific enzymes with the aim of improving their thermostability.
Collapse
Affiliation(s)
- Lanxue Li
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaoqing Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yingguo Bai
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bin Yao
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huiying Luo
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tao Tu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
31
|
Fujikawa T, Sasamoto T, Zhao F, Yamagishi A, Akanuma S. Comparative analysis of reconstructed ancestral proteins with their extant counterparts suggests primitive life had an alkaline habitat. Sci Rep 2024; 14:398. [PMID: 38172176 PMCID: PMC10764835 DOI: 10.1038/s41598-023-50828-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024] Open
Abstract
To understand the origin and early evolution of life it is crucial to establish characteristics of the primordial environment that facilitated the emergence and evolution of life. One important environmental factor is the pH of the primordial environment. Here, we assessed the pH-dependent thermal stabilities of previously reconstructed ancestral nucleoside diphosphate kinases and ribosomal protein uS8s. The selected proteins were likely to be present in ancient organisms such as the last common ancestor of bacteria and that of archaea. We also assessed the thermal stability of homologous proteins from extant acidophilic, neutralophilic, and alkaliphilic microorganisms as a function of pH. Our results indicate that the reconstructed ancestral proteins are more akin to those of extant alkaliphilic bacteria, which display greater stability under alkaline conditions. These findings suggest that the common ancestors of bacterial and archaeal species thrived in an alkaline environment. Moreover, we demonstrate the reconstruction method employed in this study is a valuable technique for generating alkali-tolerant proteins that can be used in a variety of biotechnological and environmental applications.
Collapse
Affiliation(s)
- Takayuki Fujikawa
- Faculty of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama, 359-1192, Japan
| | - Takahiro Sasamoto
- Department of Applied Life Science, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Fangzheng Zhao
- Faculty of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama, 359-1192, Japan
| | - Akihiko Yamagishi
- Department of Applied Life Science, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Satoshi Akanuma
- Faculty of Human Sciences, Waseda University, 2-579-15 Mikajima, Tokorozawa, Saitama, 359-1192, Japan.
| |
Collapse
|
32
|
Coker JA. 'All About' Extremophiles. Fac Rev 2023; 12:27. [PMID: 38027090 PMCID: PMC10630985 DOI: 10.12703/r/12-27] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Abstract
Despite common perception, most of Earth is what is often referred to as an 'extreme environment.' Yet to the organisms that call these places home, it is simply that (home). They have adapted to thrive in these environments and, in the process, have evolved many unique adaptations at the molecular- and 'omic-level. Scientists' interest in these organisms has typically been in how they and their products can be harnessed for biotechnological applications and the environments where they are found, while the general public's veers more toward a fascination with their deviation from the 'norm'. However, these organisms have so much more to tell us about Life and the myriad ways there are to perform 'simple' biological processes.
Collapse
Affiliation(s)
- James A Coker
- Center for Biotechnology Education, Advanced Academic Programs, Krieger School of Arts and Sciences, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| |
Collapse
|
33
|
Kaličanin N, Balaž AM, Prodanović O, Prodanović R. Heterologous Expression and Partial Characterization of a Putative Opine Dehydrogenase from a Metagenomic Sequence of Desulfohalobium retbaense. Chembiochem 2023; 24:e202300414. [PMID: 37531452 DOI: 10.1002/cbic.202300414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/13/2023] [Accepted: 08/01/2023] [Indexed: 08/04/2023]
Abstract
The aim of this research was to prove the function of the putative opine dehydrogenase from Desulfohalobium retbaense and to characterize the enzyme in terms of functional and kinetic parameters. A putative opine dehydrogenase was identified from a metagenomic library by a sequence-based technique search of the metagenomic library, and afterward was successfully heterologously produced in Escherichia coli. In order to examine its potential for applications in the synthesis of secondary amines, first the substrate specificity of the enzyme towards different amino donors and amino acceptors was determined. The highest affinity was observed towards small amino acids, preferentially L-alanine, and when it comes to α-keto acids, pyruvate proved to be a preferential amino acceptor. The highest activity was observed at pH 6.5 in the absence of salts. The enzyme showed remarkable stability in a wide range of experimental conditions, such as broad pH stability (from 6.0-11.0 after 30 min incubation in buffers at a certain pH), stability in the presence of NaCl up to 3.0 M for 24 h, it retained 80 % of the initial activity after 1 h incubation at 45 °C, and 65 % of the initial activity after 24 h incubation in 30 % dimethyl sulfoxide.
Collapse
Affiliation(s)
- Nevena Kaličanin
- University of Belgrade-Institute of Chemistry Technology and Metallurgy National Institute of the Republic of Serbia, Njegoševa 12, 11000, Belgrade, Serbia
| | - Ana Marija Balaž
- University of Belgrade-Institute of Chemistry Technology and Metallurgy National Institute of the Republic of Serbia, Njegoševa 12, 11000, Belgrade, Serbia
- Department of Otorhinolaryngology Head and Neck Surgery, Grosshadern Medical Center, Ludwig-Maximilians-University, Marchioninistr. 15, 81377, Munich, Germany
| | - Olivera Prodanović
- University of Belgrade-Institute for Multidisciplinary Research, Kneza Višeslava 1, 11030, Belgrade, Serbia
| | - Radivoje Prodanović
- Department of Biochemistry, University of Belgrade-Faculty of Chemistry, Studentski trg 12-16, 11000, Belgrade, Serbia
| |
Collapse
|
34
|
Slavić MŠ, Kojić M, Margetić A, Stanisavljević N, Gardijan L, Božić N, Vujčić Z. Highly stable and versatile α-amylase from Anoxybacillus vranjensis ST4 suitable for various applications. Int J Biol Macromol 2023; 249:126055. [PMID: 37524287 DOI: 10.1016/j.ijbiomac.2023.126055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/02/2023]
Abstract
α-Amylase from the thermophilic bacterial strain Anoxybacillus vranjensis ST4 (AVA) was cloned into the pMALc5HisEk expression vector and successfully expressed and purified from the Escherichia coli ER2523 host strain. AVA belongs to the GH13_5 subfamily of glycoside hydrolases and has 7 conserved sequence regions (CSRs) distributed in three distinct domains (A, B, C). In addition, there is a starch binding domain (SBD) from the CBM20 family of carbohydrate binding modules (CBMs). AVA is a monomer of 66 kDa that achieves maximum activity at 60-80 °C and is active and stable over a wide pH range (4.0-9.0). AVA retained 50 % of its activity after 31 h of incubation at 60 °C and was resistant to a large number of denaturing agents. It hydrolyzed starch granules very efficiently, releasing maltose, maltotriose and maltopentaose as the main products. The hydrolysis rates of raw corn, wheat, horseradish, and potato starch, at a concentration of 10 %, were 87.8, 85.9, 93.0, and 58 %, respectively, at pH 8.5 over a 3 h period. This study showed that the high level of expression as well as the properties of this highly stable and versatile enzyme show all the prerequisites for successful application in industry.
Collapse
Affiliation(s)
- Marinela Šokarda Slavić
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, Department of Chemistry, Belgrade, Republic of Serbia.
| | - Milan Kojić
- Institute of Virology, Vaccines and Sera "Torlak", Belgrade, Republic of Serbia; University of Belgrade, Institute of Molecular Genetics and Genetic Engineering (IMGGE), Belgrade, Republic of Serbia
| | - Aleksandra Margetić
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, Department of Chemistry, Belgrade, Republic of Serbia
| | - Nemanja Stanisavljević
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering (IMGGE), Belgrade, Republic of Serbia
| | - Lazar Gardijan
- University of Belgrade, Institute of Molecular Genetics and Genetic Engineering (IMGGE), Belgrade, Republic of Serbia
| | - Nataša Božić
- University of Belgrade, Institute of Chemistry, Technology and Metallurgy, National Institute of the Republic of Serbia, Department of Chemistry, Belgrade, Republic of Serbia
| | - Zoran Vujčić
- University of Belgrade, Faculty of Chemistry, Department of Biochemistry, Belgrade, Republic of Serbia
| |
Collapse
|
35
|
Mendonça APS, Dos Reis KL, Barbosa-Tessmann IP. Aspergillus clavatus UEM 04: An efficient producer of glucoamylase and α-amylase able to hydrolyze gelatinized and raw starch. Int J Biol Macromol 2023; 249:125890. [PMID: 37479205 DOI: 10.1016/j.ijbiomac.2023.125890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/04/2023] [Accepted: 07/17/2023] [Indexed: 07/23/2023]
Abstract
The best amylolytic activity production by Aspergillus clavatus UEM 04 occurred in submersed culture, with starch, for 72 h, at 25 °C, and 100 rpm. Exclusion chromatography partially purified two enzymes, which ran as unique bands in SDS-PAGE with approximately 84 kDa. LC-MS/MS identified a glucoamylase (GH15) and an α-amylase (GH13_1) as the predominant proteins and other co-purified proteins. Zn2+, Cu2+, and Mn2+ activated the glucoamylase, and SDS, Zn2+, Fe3+, and Cu2+ inhibited the α-amylase. The α-amylase optimum pH was 6.5. The optimal temperatures for the glucoamylase and α-amylase were 50 °C and 40 °C, and the Tm was 53.1 °C and 56.3 °C, respectively. Both enzymes remained almost fully active for 28-32 h at 40 °C, but the α-amylase thermal stability was calcium-dependent. Furthermore, the glucoamylase and α-amylase KM for starch were 2.95 and 1.0 mg/mL, respectively. Still, the Vmax was 0.28 μmol/min of released glucose for glucoamylase and 0.1 mg/min of consumed starch for α-amylase. Moreover, the glucoamylase showed greater affinity for amylopectin and α-amylase for maltodextrin. Additionally, both enzymes efficiently degraded raw starch. At last, glucose was the main product of glucoamylase, and α-amylase produced mainly maltose from gelatinized soluble starch hydrolysis.
Collapse
Affiliation(s)
- Ana Paula Silva Mendonça
- Biological Sciences Center, Department of Biochemistry, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Karina Lima Dos Reis
- Biological Sciences Center, Department of Biochemistry, Universidade Estadual de Maringá, Maringá, PR, Brazil
| | - Ione Parra Barbosa-Tessmann
- Biological Sciences Center, Department of Biochemistry, Universidade Estadual de Maringá, Maringá, PR, Brazil.
| |
Collapse
|
36
|
Senba H, Saito D, Kimura Y, Tanaka S, Doi M, Takenaka S. Heterologous expression and characterization of salt-tolerant β-glucosidase from xerophilic Aspergillus chevalieri for hydrolysis of marine biomass. Arch Microbiol 2023; 205:310. [PMID: 37596383 DOI: 10.1007/s00203-023-03648-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/03/2023] [Accepted: 08/04/2023] [Indexed: 08/20/2023]
Abstract
A salt-tolerant exo-β-1,3-glucosidase (BGL_MK86) was cloned from the xerophilic mold Aspergillus chevalieri MK86 and heterologously expressed in A. oryzae. Phylogenetic analysis suggests that BGL_MK86 belongs to glycoside hydrolase family 5 (aryl-phospho-β-D-glucosidase, BglC), and exhibits D-glucose tolerance. Recombinant BGL_MK86 (rBGL_MK86) exhibited 100-fold higher expression than native BGL_MK86. rBGL_MK86 was active over a wide range of NaCl concentrations [0%-18% (w/v)] and showed increased substrate affinity for p-nitrophenyl-β-D-glucopyranoside (pNPBG) and turnover number (kcat) in the presence of NaCl. The enzyme was stable over a broad pH range (5.5-9.5). The optimum reaction pH and temperature for hydrolysis of pNPBG were 5.5 and 45 °C, respectively. rBGL_MK86 acted on the β-1,3-linked glucose dimer laminaribiose, but not β-1,4-linked or β-1,6-linked glucose dimers (cellobiose or gentiobiose). It showed tenfold higher activity toward laminarin (a linear polymer of β-1,3 glucan) from Laminaria digitata than laminarin (β-1,3/β-1,6 glucan) from Eisenia bicyclis, likely due to its inability to act on β-1,6-linked glucose residues. The β-glucosidase retained hydrolytic activity toward crude laminarin preparations from marine biomass in moderately high salt concentrations. These properties indicate wide potential applications of this enzyme in saccharification of salt-bearing marine biomass.
Collapse
Affiliation(s)
- Hironori Senba
- Division of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-Ku, Kobe, 657-8501, Japan
- General Research Laboratory, Ozeki Corporation, 4-9 Imazu, Nishinomiya, Hyogo, 663-8227, Japan
| | - Daisuke Saito
- Division of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-Ku, Kobe, 657-8501, Japan
| | - Yukihiro Kimura
- Division of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-Ku, Kobe, 657-8501, Japan
| | - Shinichi Tanaka
- Marutomo Co., Ltd., 1696 Kominato, Iyo, Ehime, 799-3192, Japan
| | - Mikiharu Doi
- Marutomo Co., Ltd., 1696 Kominato, Iyo, Ehime, 799-3192, Japan
| | - Shinji Takenaka
- Division of Agrobioscience, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-Ku, Kobe, 657-8501, Japan.
| |
Collapse
|
37
|
Boukid F, Ganeshan S, Wang Y, Tülbek MÇ, Nickerson MT. Bioengineered Enzymes and Precision Fermentation in the Food Industry. Int J Mol Sci 2023; 24:10156. [PMID: 37373305 DOI: 10.3390/ijms241210156] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/06/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Enzymes have been used in the food processing industry for many years. However, the use of native enzymes is not conducive to high activity, efficiency, range of substrates, and adaptability to harsh food processing conditions. The advent of enzyme engineering approaches such as rational design, directed evolution, and semi-rational design provided much-needed impetus for tailor-made enzymes with improved or novel catalytic properties. Production of designer enzymes became further refined with the emergence of synthetic biology and gene editing techniques and a plethora of other tools such as artificial intelligence, and computational and bioinformatics analyses which have paved the way for what is referred to as precision fermentation for the production of these designer enzymes more efficiently. With all the technologies available, the bottleneck is now in the scale-up production of these enzymes. There is generally a lack of accessibility thereof of large-scale capabilities and know-how. This review is aimed at highlighting these various enzyme-engineering strategies and the associated scale-up challenges, including safety concerns surrounding genetically modified microorganisms and the use of cell-free systems to circumvent this issue. The use of solid-state fermentation (SSF) is also addressed as a potentially low-cost production system, amenable to customization and employing inexpensive feedstocks as substrate.
Collapse
Affiliation(s)
- Fatma Boukid
- ClonBio Group Ltd., 6 Fitzwilliam Pl, D02 XE61 Dublin, Ireland
| | | | - Yingxin Wang
- Saskatchewan Food Industry Development Centre, Saskatoon, SK S7M 5V1, Canada
| | | | - Michael T Nickerson
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada
| |
Collapse
|
38
|
Tincu (Iurciuc) CE, Bouhadiba B, Atanase LI, Stan CS, Popa M, Ochiuz L. An Accessible Method to Improve the Stability and Reusability of Porcine Pancreatic α-Amylase via Immobilization in Gellan-Based Hydrogel Particles Obtained by Ionic Cross-Linking with Mg 2+ Ions. Molecules 2023; 28:4695. [PMID: 37375250 PMCID: PMC10302431 DOI: 10.3390/molecules28124695] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
Amylase is an enzyme used to hydrolyze starch in order to obtain different products that are mainly used in the food industry. The results reported in this article refer to the immobilization of α-amylase in gellan hydrogel particles ionically cross-linked with Mg2+ ions. The obtained hydrogel particles were characterized physicochemically and morphologically. Their enzymatic activity was tested using starch as a substrate in several hydrolytic cycles. The results showed that the properties of the particles are influenced by the degree of cross-linking and the amount of immobilized α-amylase enzyme. The temperature and pH at which the immobilized enzyme activity is maximum were T = 60 °C and pH = 5.6. The enzymatic activity and affinity of the enzyme to the substrate depend on the particle type, and this decreases for particles with a higher cross-linking degree owing to the slow diffusion of the enzyme molecules inside the polymer's network. By immobilization, α-amylase is protected from environmental factors, and the obtained particles can be quickly recovered from the hydrolysis medium, thus being able to be reused in repeated hydrolytic cycles (at least 11 cycles) without a substantial decrease in enzymatic activity. Moreover, α-amylase immobilized in gellan particles can be reactivated via treatment with a more acidic medium.
Collapse
Affiliation(s)
- Camelia Elena Tincu (Iurciuc)
- Department of Natural and Synthetic Polymers, “Cristofor Simionescu” Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University, 73, Prof. Dr. Docent Dimitrie Mangeron Street, 700050 Iași, Romania; (C.E.T.)
- Department of Pharmaceutical Technology, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16, University Street, 700115 Iaşi, Romania
| | - Brahim Bouhadiba
- Laboratory of Engineering of Industrial Safety and Sustainable Development LISIDD, Institute of Maintenance and Industrial Safety, University of Oran 2, Mohammed Benahmed, Oran 31000, Algeria
| | - Leonard Ionut Atanase
- Faculty of Dental Medicine, “Apollonia” University of Iasi, 11, Pacurari Street, 700511 Iași, Romania
- Academy of Romanian Scientists, 050045 Bucharest, Romania
| | - Corneliu Sergiu Stan
- Department of Natural and Synthetic Polymers, “Cristofor Simionescu” Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University, 73, Prof. Dr. Docent Dimitrie Mangeron Street, 700050 Iași, Romania; (C.E.T.)
| | - Marcel Popa
- Department of Natural and Synthetic Polymers, “Cristofor Simionescu” Faculty of Chemical Engineering and Protection of the Environment, “Gheorghe Asachi” Technical University, 73, Prof. Dr. Docent Dimitrie Mangeron Street, 700050 Iași, Romania; (C.E.T.)
- Academy of Romanian Scientists, 050045 Bucharest, Romania
| | - Lăcrămioara Ochiuz
- Department of Pharmaceutical Technology, Faculty of Pharmacy, “Grigore T. Popa” University of Medicine and Pharmacy, 16, University Street, 700115 Iaşi, Romania
| |
Collapse
|
39
|
Schultz J, Modolon F, Peixoto RS, Rosado AS. Shedding light on the composition of extreme microbial dark matter: alternative approaches for culturing extremophiles. Front Microbiol 2023; 14:1167718. [PMID: 37333658 PMCID: PMC10272570 DOI: 10.3389/fmicb.2023.1167718] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/09/2023] [Indexed: 06/20/2023] Open
Abstract
More than 20,000 species of prokaryotes (less than 1% of the estimated number of Earth's microbial species) have been described thus far. However, the vast majority of microbes that inhabit extreme environments remain uncultured and this group is termed "microbial dark matter." Little is known regarding the ecological functions and biotechnological potential of these underexplored extremophiles, thus representing a vast untapped and uncharacterized biological resource. Advances in microbial cultivation approaches are key for a detailed and comprehensive characterization of the roles of these microbes in shaping the environment and, ultimately, for their biotechnological exploitation, such as for extremophile-derived bioproducts (extremozymes, secondary metabolites, CRISPR Cas systems, and pigments, among others), astrobiology, and space exploration. Additional efforts to enhance culturable diversity are required due to the challenges imposed by extreme culturing and plating conditions. In this review, we summarize methods and technologies used to recover the microbial diversity of extreme environments, while discussing the advantages and disadvantages associated with each of these approaches. Additionally, this review describes alternative culturing strategies to retrieve novel taxa with their unknown genes, metabolisms, and ecological roles, with the ultimate goal of increasing the yields of more efficient bio-based products. This review thus summarizes the strategies used to unveil the hidden diversity of the microbiome of extreme environments and discusses the directions for future studies of microbial dark matter and its potential applications in biotechnology and astrobiology.
Collapse
Affiliation(s)
- Júnia Schultz
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Flúvio Modolon
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Laboratory of Molecular Microbial Ecology, Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raquel Silva Peixoto
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Alexandre Soares Rosado
- Red Sea Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| |
Collapse
|
40
|
Lukhele T, Msagati TAM. Evaluating the microcystin-LR-degrading potential of bacteria growing in extreme and polluted environments. Arch Microbiol 2023; 205:213. [PMID: 37129688 PMCID: PMC10154260 DOI: 10.1007/s00203-023-03554-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/12/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023]
Abstract
Inhabitants of extreme and polluted environments are attractive as candidates for environmental bioremediation. Bacteria growing in oil refinery effluents, tannery dumpsite soils, car wash effluents, salt pans and hot springs were screened for microcystin-LR biodegradation potentials. Using a colorimetric BIOLOG MT2 assay; Arthrobacter sp. B105, Arthrobacter junii, Plantibacter sp. PDD-56b-14, Acinetobacter sp. DUT-2, Salinivibrio sp. YH4, Bacillus sp., Bacillus thuringiensis and Lysinibacillus boronitolerans could grow in the presence of microcystin-LR at 1, 10 and 100 µg L-1. Most bacteria grew optimally at 10 µg L-1 microcystin-LR under alkaline pH (8 and 9). The ability of these bacteria to use MC-LR as a growth substrate depicts their ability to metabolize the toxin, which is equivalent to its degradation. Through PCR screening, these bacteria were shown to lack the mlr genes implying possible use of a unique microcystin-LR degradation pathway. The study highlights the wide environmental and taxonomic distribution of microcystin-LR degraders.
Collapse
Affiliation(s)
- Thabile Lukhele
- Institute for Nanotechnology and Water Sustainability, College of Science Engineering and Technology, University of South Africa, Florida Science Campus, Johannesburg, South Africa.
| | - Titus Alfred Makudali Msagati
- Institute for Nanotechnology and Water Sustainability, College of Science Engineering and Technology, University of South Africa, Florida Science Campus, Johannesburg, South Africa
| |
Collapse
|
41
|
Benítez-Mateos AI, Paradisi F. Halomonas elongata: a microbial source of highly stable enzymes for applied biotechnology. Appl Microbiol Biotechnol 2023; 107:3183-3190. [PMID: 37052635 PMCID: PMC10160191 DOI: 10.1007/s00253-023-12510-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/14/2023]
Abstract
Extremophilic microorganisms, which are resistant to extreme levels of temperature, salinity, pH, etc., have become popular tools for biotechnological applications. Due to their availability and cost-efficacy, enzymes from extremophiles are getting the attention of researchers and industries in the field of biocatalysis to catalyze diverse chemical reactions in a selective and sustainable manner. In this mini-review, we discuss the advantages of Halomonas elongata as moderate halophilic bacteria to provide suitable enzymes for biotechnology. While enzymes from H. elongata are more resistant to the presence of salt compared to their mesophilic counterparts, they are also easier to produce in heterologous hosts compared with more extremophilic microorganisms. Herein, a set of different enzymes (hydrolases, transferases, and oxidoreductases) from H. elongata are showcased, highlighting their interesting properties as more efficient and sustainable biocatalysts. With this, we aim to improve the visibility of halotolerant enzymes and their uncommon properties to integrate biocatalysis in industrial set-ups. KEYPOINTS: • Production and use of halotolerant enzymes can be easier than strong halophilic ones. • Enzymes from halotolerant organisms are robust catalysts under harsh conditions. • Halomonas elongata has shown a broad enzyme toolbox with biotechnology applications.
Collapse
Affiliation(s)
- Ana I Benítez-Mateos
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland.
| | - Francesca Paradisi
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland.
| |
Collapse
|
42
|
García-Calvo L, Rane DV, Everson N, Humlebrekk ST, Mathiassen LF, Mæhlum AHM, Malmo J, Bruheim P. Central carbon metabolite profiling reveals vector-associated differences in the recombinant protein production host Escherichia coli BL21. FRONTIERS IN CHEMICAL ENGINEERING 2023. [DOI: 10.3389/fceng.2023.1142226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
The Gram-negative bacterium Escherichia coli is the most widely used host for recombinant protein production, both as an industrial expression platform and as a model system at laboratory scale. The recombinant protein production industry generates proteins with direct applications as biopharmaceuticals and in technological processes central to a plethora of fields. Despite the increasing economic significance of recombinant protein production, and the importance of E. coli as an expression platform and model organism, only few studies have focused on the central carbon metabolic landscape of E. coli during high-level recombinant protein production. In the present work, we applied four targeted CapIC- and LC-MS/MS methods, covering over 60 metabolites, to perform an in-depth metabolite profiling of the effects of high-level recombinant protein production in strains derived from E. coli BL21, carrying XylS/Pm vectors with different characteristics. The mass-spectrometric central carbon metabolite profiling was complemented with the study of growth kinetics and protein production in batch bioreactors. Our work shows the robustness in E. coli central carbon metabolism when introducing increased plasmid copy number, as well as the greater importance of induction of recombinant protein production as a metabolic challenge, especially when strong promoters are used.
Collapse
|
43
|
Bulka NR, Barbosa-Tessmann IP. Characterization of an Amylolytic Enzyme from Massilia timonae of the GH13_19 Subfamily with Mixed Maltogenic and CGTase Activity. Appl Biochem Biotechnol 2023; 195:2028-2056. [PMID: 36401066 DOI: 10.1007/s12010-022-04226-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2022] [Indexed: 11/20/2022]
Abstract
This work reports the characterization of an amylolytic enzyme from the bacteria Massilia timonae CTI-57. A gene encoding this protein was expressed from the pTrcHis2B plasmid in Escherichia coli BL21 Star™ (DE3). The purified protein had 64 kDa, and its modeled structure showed a monomer with the conserved α-amylases structure composed of the domain A with the characteristic (β/α)8-barrel, the small domain B, and the domain C with an antiparallel beta-sheet. Phylogenetic analysis demonstrated that the expressed protein belongs to the GH13_19 subfamily of glycoside hydrolases. The ions Ca2+, Mn2+, Na+, Mg2+, Mo6+, and K+ did activate the purified enzyme, while EDTA and the ions Fe2+, Hg2+, Zn2+, and Cu2+ were strong inhibitors. SDS was also a strong inhibitor. The enzyme's optimal pH and temperature were 7.0 and 45 °C, respectively, and its Tm was 62.2 °C. The KM of the purified enzyme for starch was 13 mg/mL, and the Vmax was 0.24 μmol of reducing sugars released per min. The characterized enzyme presented higher specificity for maltodextrin and starch and produced maltose as the main starch hydrolysis product. This is the first characterized maltose-forming amylolytic enzyme from the GH13_19 subfamily. The purified enzyme produced β-cyclodextrin from starch and maltodextrin and could be considered a cyclodextrin glucanotransferase (CGTase). This is the first report of a GH13_19 subfamily enzyme with CGTase activity.
Collapse
Affiliation(s)
- Nathalia Rodrigues Bulka
- Department of Biochemistry, State University of Maringá, Av. Colombo, 5790, Maringá, PR, 87020-900, Brazil
| | | |
Collapse
|
44
|
Suyal DC, Yadav AN, El Enshasy HA, Soni R. Editorial: Exploration of cold-adapted microorganisms for sustainable development. Front Microbiol 2023; 14:1191673. [PMID: 37125203 PMCID: PMC10133685 DOI: 10.3389/fmicb.2023.1191673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 03/31/2023] [Indexed: 05/02/2023] Open
Affiliation(s)
- Deep Chandra Suyal
- Vidyadayini Institute of Science, Management, and Technology, Bhopal, Madhya Pradesh, India
| | - Ajar Nath Yadav
- Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Sirmour, Himachal Pradesh, India
- Ajar Nath Yadav
| | - Hesham Ali El Enshasy
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), Johor Bahru, Johor, Malaysia
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru, Johor, Malaysia
- City of Scientific Research and Technology Applications (SRTA), New Borg El-Arab, Alexandria, Egypt
| | - Ravindra Soni
- Department of Agricultural Microbiology, College of Agriculture, Indira Gandhi Krishi Vishwavidyalya, Raipur, Chhattisgarh, India
- *Correspondence: Ravindra Soni
| |
Collapse
|
45
|
Leonardo IC, Barreto Crespo MT, Gaspar FB. Unveiling the complete genome sequence of Alicyclobacillus acidoterrestris DSM 3922T, a taint-producing strain. G3 (BETHESDA, MD.) 2022; 12:jkac225. [PMID: 36240455 PMCID: PMC9713406 DOI: 10.1093/g3journal/jkac225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/26/2022] [Indexed: 09/10/2024]
Abstract
Several species from the Alicyclobacillus genus have received much attention from the food and beverages industries. Their presence has been co-related with spoilage events of acidic food matrices, namely fruit juices and other fruit-based products, the majority attributed to Alicyclobacillus acidoterrestris. In this work, a combination of short and long reads enabled the assembly of the complete genome of A. acidoterrestris DSM 3922T, perfecting the draft genome already available (AURB00000000), and revealing the presence of one chromosome (4,222,202 bp; GC content 52.3%) as well as one plasmid (124,737 bp; GC content 46.6%). From the 4,288 genes identified, 4,004 sequences were attributed to coding sequences with proteins, with more than 80% being functionally annotated. This allowed the identification of metabolic pathways and networks and the interpretation of high-level functions with significant reliability. Furthermore, the additional genes of interest related to spore germination, off-flavor production, namely the vdc cluster, and CRISPR arrays, were identified. More importantly, this is the first complete and closed genome sequence for a taint-producing Alicyclobacillus species and thus represents a valuable reference for further comparative and functional genomic studies.
Collapse
Affiliation(s)
- Inês Carvalho Leonardo
- Food & Health Division, iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | - Maria Teresa Barreto Crespo
- Food & Health Division, iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| | - Frédéric Bustos Gaspar
- Food & Health Division, iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Avenida da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
46
|
Wen Y, Qiang J, Zhou G, Zhang X, Wang L, Shi Y. Characterization of redox and salinity-tolerant alkaline protease from Bacillus halotolerans strain DS5. Front Microbiol 2022; 13:935072. [PMID: 36060753 PMCID: PMC9434114 DOI: 10.3389/fmicb.2022.935072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Bacillus halotolerans DS5 was isolated and identified as a halophilic microbe according to 16S rRNA analysis and the physical and chemical indices of the strain. A new alkaline protease (designated as prot DS5) from Bacillus halotolerans DS5 was produced, purified, and characterized. After 12 h incubation in the medium with 1% dextrin, 0.5% NaCl, 2% soluble starch, and 1% yeast extract (pH 7.0), it could reach the maximum enzyme activity (279.74 U/ml). The prot DS5 was stable in the pH range of 6.0–12.0 and the temperature range of 40–60°C, with maximal hydrolytic activities at pH 9 and at 50°C. In the presence of Ca2+, Mn2+, Ba2+, Mg2+, and Fe3+, protease activity was enhanced. The prot DS5 was maintained highly stable in NaCl (up to 2.5 mol/L), reducing and oxidizing agents. The prot DS5 also exhibited compatibility in other detergent ingredients, such as non-ionic and anionic surfactants. These properties of prot DS5 make this enzyme suitable for various industrial applications (e.g., detergents and leather).
Collapse
|
47
|
Some Clues about Enzymes from Psychrophilic Microorganisms. Microorganisms 2022; 10:microorganisms10061161. [PMID: 35744679 PMCID: PMC9227589 DOI: 10.3390/microorganisms10061161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/29/2022] [Accepted: 06/03/2022] [Indexed: 02/04/2023] Open
Abstract
Enzymes purified from psychrophilic microorganisms prove to be efficient catalysts at low temperatures and possess a great potential for biotechnological applications. The low-temperature catalytic activity has to come from specific structural fluctuations involving the active site region, however, the relationship between protein conformational stability and enzymatic activity is subtle. We provide a survey of the thermodynamic stability of globular proteins and their rationalization grounded in a theoretical approach devised by one of us. Furthermore, we provide a link between marginal conformational stability and protein flexibility grounded in the harmonic approximation of the vibrational degrees of freedom, emphasizing the occurrence of long-wavelength and excited vibrations in all globular proteins. Finally, we offer a close view of three enzymes: chloride-dependent α-amylase, citrate synthase, and β-galactosidase.
Collapse
|