1
|
Biersack B, Nitzsche B, Höpfner M. Histone deacetylases in the regulation of cell death and survival mechanisms in resistant BRAF-mutant cancers. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2025; 8:6. [PMID: 39935431 PMCID: PMC11810460 DOI: 10.20517/cdr.2024.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/16/2024] [Accepted: 01/14/2025] [Indexed: 02/13/2025]
Abstract
Small-molecule BRAF inhibitors (e.g., vemurafenib and dabrafenib) and MEK (MAPK/ERK) kinases inhibitors (e.g., trametinib) have distinctly improved the survival of patients suffering from BRAF-mutant cancers such as melanomas. However, the emergence of resistance to BRAF and MEK inhibitor-based melanoma therapy, as well as the reduced sensitivity of other BRAF-mutant cancers such as CRC, poses a considerable clinical problem. For instance, the reactivation of MAPK/ERK signaling hampering cell death induction mechanisms was responsible for BRAF inhibitor resistance, which can be correlated with distinct post-translational and epigenetic processes. Histone deacetylases (HDACs) are prominent epigenetic drug targets and some HDAC inhibitors have already been clinically approved for the therapy of various blood cancers. In addition, several HDACs were identified, which also play a crucial role in the drug resistance of BRAF-mutant cancers. Consequently, inhibition of HDACs was described as a promising approach to overcome resistance. This review summarizes the influence of HDACs (Zn2+-dependent HDACs and NAD+-dependent sirtuins) on BRAF-mutant cancers and BRAF inhibitor resistance based on upregulated survival mechanisms and the prevention of tumor cell death. Moreover, it outlines reasonable HDAC-based strategies to circumvent BRAF-associated resistance mechanisms based on downregulated cell death mechanisms.
Collapse
Affiliation(s)
- Bernhard Biersack
- Organic Chemistry Laboratory, University Bayreuth, Bayreuth 95440, Germany
| | - Bianca Nitzsche
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of the Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin 10117, Germany
| | - Michael Höpfner
- Institute of Physiology, Charité-Universitätsmedizin Berlin, Corporate Member of the Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin 10117, Germany
| |
Collapse
|
2
|
Makalakshmi MK, Banerjee A, Pathak S, Paul S, Sharma NR, Anandan B. A pilot study on the efficacy of a telomerase activator in regulating the proliferation of A375 skin cancer cell line. Mol Biol Rep 2024; 52:69. [PMID: 39704853 DOI: 10.1007/s11033-024-10161-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024]
Abstract
INTRODUCTION The changes in histone modifications are linked to the progression of benign and normal tissue to malignancy. Thus, numerous findings suggest that targeting epigenetic factors might be a focus for anti-cancer treatment. In this study, we tested the hypothesis that telomerase activator might be a potential epigenetic regulator in combatting skin cancer cell proliferation. METHODS Melanoma cell line A375 cells were treated with telomerase activator TA-65. Cell senescence assay was done to evaluate the senescence induction. Morphological changes and differences in expression of HDACs and hTERT genes were studied. Further, hyaluronidase and anti-oxidant assays were also performed. Additionally, telomerase enzyme and 20S proteasome activity was also studied. RESULTS Morphological changes were observed in treated cells and it is evident that telomerase activator induced cellular senescence in high concentrations. From our results, it is evident that HDAC8 and HDAC10 expression was upregulated, whereas hTERT gene expression was downregulated in treated groups. This suggests that the telomerase activator has a regulatory role in skin cancer cells proliferation by targeting the epigenetic factors. CONCLUSION Targeting HDACs and hTERT in the treatment of melanoma is a prominent concern. In our current study, we highlight the most recent research, although in its initial stage, involving various epigenetic factors involved in melanoma cells proliferation.
Collapse
Affiliation(s)
- M K Makalakshmi
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, India
| | - Antara Banerjee
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, India.
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, 603103, India.
| | - Surajit Pathak
- Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, India.
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, 603103, India.
| | - Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Queretaro, Av. Epigmenio Gonzalez, No. 500 Fracc. San Pablo, Querétaro, CP 76130, Mexico
| | - Neeta Raj Sharma
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - B Anandan
- Department of Genetics, Dr. ALM PG Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamilnadu, 600113, India.
| |
Collapse
|
3
|
Jalil A, Donate MM, Mattei J. Exploring resistance to immune checkpoint inhibitors and targeted therapies in melanoma. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:42. [PMID: 39534873 PMCID: PMC11555183 DOI: 10.20517/cdr.2024.54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/30/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024]
Abstract
Melanoma is the most aggressive form of skin cancer, characterized by a poor prognosis, and its incidence has risen rapidly over the past 30 years. Recent therapies, notably immunotherapy and targeted therapy, have significantly improved the outcome of patients with metastatic melanoma. Previously dismal five-year survival rates of below 5% have shifted to over 50% of patients surviving the five-year mark, marking a significant shift in the landscape of melanoma treatment and survival. Unfortunately, about 50% of patients either do not respond to therapy or experience early or late relapses following an initial response. The underlying mechanisms for primary and secondary resistance to targeted therapies or immunotherapy and relapse patterns remain not fully identified. However, several molecular pathways and genetic factors have been associated with melanoma resistance to these treatments. Understanding these mechanisms paves the way for creating novel treatments that can address resistance and ultimately enhance patient outcomes in melanoma. This review explores the mechanisms behind immunotherapy and targeted therapy resistance in melanoma patients. Additionally, it describes the treatment strategies to overcome resistance, which have improved patients' outcomes in clinical trials and practice.
Collapse
Affiliation(s)
- Anum Jalil
- Department of Medicine, UT Health Science Center San Antonio, San Antonio, TA 78229, USA
| | - Melissa M Donate
- Long School of Medicine, UT Health Science Center San Antonio, San Antonio, TA 78229, USA
| | - Jane Mattei
- Department of Hematology Oncology, UT Health Science Center San Antonio, San Antonio, TA 78229, USA
| |
Collapse
|
4
|
Cazzato G, Sgarro N, Casatta N, Lupo C, Ingravallo G, Ribatti D. Epigenetics and Control of Tumor Angiogenesis in Melanoma: An Update with Therapeutic Implications. Cancers (Basel) 2024; 16:2843. [PMID: 39199614 PMCID: PMC11352434 DOI: 10.3390/cancers16162843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/29/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
Angiogenesis, the formation of new blood vessels from pre-existing ones, is a crucial process in the progression and metastasis of melanoma. Recent research has highlighted the significant role of epigenetic modifications in regulating angiogenesis. This review comprehensively examines the current understanding of how epigenetic mechanisms, including DNA methylation, histone modifications, and non-coding RNAs, influence angiogenic pathways in melanoma. DNA methylation, a key epigenetic modification, can silence angiogenesis inhibitors such as thrombospondin-1 and TIMP3 while promoting pro-angiogenic factors like vascular endothelial growth factor (VEGF). Histone modifications, including methylation and acetylation, also play a pivotal role in regulating the expression of angiogenesis-related genes. For instance, the acetylation of histones H3 and H4 is associated with the upregulation of pro-angiogenic genes, whereas histone methylation patterns can either enhance or repress angiogenic signals, depending on the specific histone mark and context. Non-coding RNAs, particularly microRNAs (miRNAs) further modulate angiogenesis. miRNAs, such as miR-210, have been identified as key regulators, with miR-9 promoting angiogenesis by targeting E-cadherin and enhancing the expression of VEGF. This review also discusses the therapeutic potential of targeting epigenetic modifications to inhibit angiogenesis in melanoma. Epigenetic drugs, such as DNA methyltransferase inhibitors (e.g., 5-azacytidine) and histone deacetylase inhibitors (e.g., Vorinostat), have shown promise in preclinical models by reactivating angiogenesis inhibitors and downregulating pro-angiogenic factors. Moreover, the modulation of miRNAs and lncRNAs presents a novel approach for anti-angiogenic therapy.
Collapse
Affiliation(s)
- Gerardo Cazzato
- Section of Molecular Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (N.S.); (G.I.)
| | - Nicoletta Sgarro
- Section of Molecular Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (N.S.); (G.I.)
| | - Nadia Casatta
- Innovation Department, Diapath S.p.A., Via Savoldini n.71, 24057 Martinengo, Italy; (N.C.); (C.L.)
| | - Carmelo Lupo
- Innovation Department, Diapath S.p.A., Via Savoldini n.71, 24057 Martinengo, Italy; (N.C.); (C.L.)
- Engineering and Applied Science Department, University of Bergamo, 24127 Bergamo, Italy
| | - Giuseppe Ingravallo
- Section of Molecular Pathology, Department of Precision and Regenerative Medicine and Ionian Area (DiMePRe-J), University of Bari “Aldo Moro”, 70124 Bari, Italy; (N.S.); (G.I.)
| | - Domenico Ribatti
- Section of Human Anatomy and Histology, Department of Translational Biomedicine and Neuroscience, University of Bari Medical School, 70124 Bari, Italy;
| |
Collapse
|
5
|
Bhattacharyya S, O-Sullivan I, Tobacman JK. N-Acetylgalactosamine-4-sulfatase (Arylsulfatase B) Regulates PD-L1 Expression in Melanoma by an HDAC3-Mediated Epigenetic Mechanism. Int J Mol Sci 2024; 25:5851. [PMID: 38892038 PMCID: PMC11172302 DOI: 10.3390/ijms25115851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/24/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024] Open
Abstract
The effects of the enzyme N-acetylgalactosamine-4-sulfatase (Arylsulfatase B, ARSB), which removes the 4-sulfate group at the non-reducing end of chondroitin 4-sulfate, on the expression of PD-L1 were determined, and the underlying mechanism of PD-L1 expression was elucidated. Initial experiments in human melanoma cells (A375) showed that PD-L1 expression increased from 357 ± 31 to 796 ± 50 pg/mg protein (p < 10-11) when ARSB was silenced in A375 cells. In subcutaneous B16F10 murine melanomas, PD-L1 declined from 1227 ± 189 to 583 ± 110 pg/mg protein (p = 1.67 × 10-7), a decline of 52%, following treatment with exogenous, bioactive recombinant ARSB. This decline occurred in association with reduced tumor growth and prolongation of survival, as previously reported. The mechanism of regulation of PD-L1 expression by ARSB is attributed to ARSB-mediated alteration in chondroitin 4-sulfation, leading to changes in free galectin-3, c-Jun nuclear localization, HDAC3 expression, and effects of acetyl-H3 on the PD-L1 promoter. These findings indicate that changes in ARSB contribute to the expression of PD-L1 in melanoma and can thereby affect the immune checkpoint response. Exogenous ARSB acted on melanoma cells and normal melanocytes through the IGF2 receptor. The decline in PD-L1 expression by exogenous ARSB may contribute to the impact of ARSB on melanoma progression.
Collapse
Affiliation(s)
| | | | - Joanne K. Tobacman
- Jesse Brown VAMC and Department of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA; (S.B.); (I.O.-S.)
| |
Collapse
|
6
|
Chan AM, Mitchell A, Grogan L, Shapiro P, Fletcher S. Histone deacetylase (HDAC) inhibitor specificity determinants are preserved in a class of dual HDAC/non-covalent proteasome inhibitors. Bioorg Med Chem 2024; 104:117680. [PMID: 38582047 PMCID: PMC11177207 DOI: 10.1016/j.bmc.2024.117680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/18/2024] [Accepted: 03/06/2024] [Indexed: 04/08/2024]
Abstract
Many disease states require multiple drugs to inhibit multiple targets for their effective treatment/management, i.e. a drug cocktail regimen, or "polypharmacy". Polypharmacology, in contrast, is the development of single agents that can inhibit multiple targets. Each strategy is associated with advantages and disadvantages. Motivated by promising clinical trial data for the treatment of multiple myeloma with the combination of the HDAC6 inhibitor ricolinostat and the proteasome inhibitor bortezomib, we herein describe a focused family of dual HDAC/non-covalent proteasome inhibitors, and explore the impact of linker and zinc-binding group identities on HDAC1/6 isozyme selectivity. In general, previously reported specificity determinants of monovalent HDAC1/6 inhibitors were preserved in our dual HDAC/proteasome inhibitors.
Collapse
Affiliation(s)
- Alexandria M Chan
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine St., Baltimore, MD 21202, USA
| | - Ashley Mitchell
- University of Maryland Baltimore County, 1000 Hilltop Cir., Baltimore, MD 21250, USA
| | - Lena Grogan
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine St., Baltimore, MD 21202, USA
| | - Paul Shapiro
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine St., Baltimore, MD 21202, USA
| | - Steven Fletcher
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine St., Baltimore, MD 21202, USA.
| |
Collapse
|
7
|
Andreescu M. Epigenetic Alterations That Are the Backbone of Immune Evasion in T-cell Malignancies. Cureus 2024; 16:e51662. [PMID: 38179322 PMCID: PMC10766007 DOI: 10.7759/cureus.51662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2024] [Indexed: 01/06/2024] Open
Abstract
Epigenetic alterations are heritable and enduring modifications in gene expression that play a pivotal role in immune evasion. These include alterations to noncoding RNA, DNA methylation, and histone modifications. DNA methylation plays a crucial role in normal cell growth and development but alterations in methylation patterns such as hypermethylation or hypomethylation can enable tumor and viral cells to evade host immune responses. Histone modifications can also inhibit immune responses by promoting the expression of genes involved in suppressing normal immune function. In the case of T-cell lymphoma, adult T-cell lymphomas (ATL) also undergo immune evasion through the exceptional function of its accessory and regulatory genes. Epigenetic therapies are emerging as a promising adjunct to traditional immunotherapy and chemotherapy regimens. Clinical trials are currently investigating the use of epigenetic therapies in combination with immunotherapies and chemotherapies for more effective treatment of ATL and other cancers. This review highlights epigenetic alterations that are widely found in T-cell malignancies.
Collapse
|
8
|
Rubatto M, Borriello S, Sciamarrelli N, Pala V, Tonella L, Ribero S, Quaglino P. Exploring the role of epigenetic alterations and non-coding RNAs in melanoma pathogenesis and therapeutic strategies. Melanoma Res 2023; 33:462-474. [PMID: 37788101 DOI: 10.1097/cmr.0000000000000926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Melanoma is a rare but highly lethal type of skin cancer whose incidence is increasing globally. Melanoma is characterized by high resistance to therapy and relapse. Despite significant advances in the treatment of metastatic melanoma, many patients experience progression due to resistance mechanisms. Epigenetic changes, including alterations in chromatin remodeling, DNA methylation, histone modifications, and non-coding RNA rearrangements, contribute to neoplastic transformation, metastasis, and drug resistance in melanoma. This review summarizes current research on epigenetic mechanisms in melanoma and their therapeutic potential. Specifically, we discuss the role of histone acetylation and methylation in gene expression regulation and melanoma pathobiology, as well as the promising results of HDAC inhibitors and DNMT inhibitors in clinical trials. We also examine the dysregulation of non-coding RNA, particularly miRNAs, and their potential as targets for melanoma therapy. Finally, we highlight the challenges of epigenetic therapies, such as the complexity of epigenetic mechanisms combined with immunotherapies and the need for combination therapies to overcome drug resistance. In conclusion, epigenetic changes may be reversible, and the use of combination therapy between traditional therapies and epigenetically targeted drugs could be a viable solution to reverse the increasing number of patients who develop treatment resistance or even prevent it. While several clinical trials are underway, the complexity of these mechanisms presents a significant challenge to the development of effective therapies. Further research is needed to fully understand the role of epigenetic mechanisms in melanoma and to develop more effective and targeted therapies.
Collapse
Affiliation(s)
- Marco Rubatto
- Department of Medical Sciences, Dermatologic Clinic, University of Turin Medical School, Turin, Italy
| | | | | | | | | | | | | |
Collapse
|
9
|
Lee YJ, Choi YS, Kim S, Heo JY, Kim DS, Cho MK. Upregulation of AKR1C3 in Sodium Butyrate Treated G361 Cell. Ann Dermatol 2023; 35:468-471. [PMID: 38086362 PMCID: PMC10733077 DOI: 10.5021/ad.22.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/11/2022] [Accepted: 01/02/2023] [Indexed: 12/22/2023] Open
Affiliation(s)
- Yoon Jin Lee
- Department of Biochemistry, Soonchunhyang University College of Medicine, Cheonan, Korea
- Division of Molecular Cancer Research, Soonchunhyang Medical Research Institute, Soonchunhyang University, Cheonan, Korea
| | - Yu Sung Choi
- Department of Dermatology, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Sooyoung Kim
- Department of Dermatology, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Jae Young Heo
- Department of Dermatology, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Dong Sung Kim
- Department of Dermatology, Soonchunhyang University Seoul Hospital, Seoul, Korea
| | - Moon Kyun Cho
- Department of Dermatology, Soonchunhyang University Seoul Hospital, Seoul, Korea.
| |
Collapse
|
10
|
Qaria MA, Xu C, Hu R, Alsubki RA, Ali MY, Sivasamy S, Attia KA, Zhu D. Ectoine Globally Hypomethylates DNA in Skin Cells and Suppresses Cancer Proliferation. Mar Drugs 2023; 21:621. [PMID: 38132942 PMCID: PMC10744768 DOI: 10.3390/md21120621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/19/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
Epigenetic modifications, mainly aberrant DNA methylation, have been shown to silence the expression of genes involved in epigenetic diseases, including cancer suppression genes. Almost all conventional cancer therapeutic agents, such as the DNA hypomethylation drug 5-aza-2-deoxycytidine, have insurmountable side effects. To investigate the role of the well-known DNA protectant (ectoine) in skin cell DNA methylation and cancer cell proliferation, comprehensive methylome sequence analysis, 5-methyl cytosine (5mC) analysis, proliferation and tumorigenicity assays, and DNA epigenetic modifications-related gene analysis were performed. The results showed that extended ectoine treatment globally hypomethylated DNA in skin cells, especially in the CpG island (CGIs) element, and 5mC percentage was significantly reduced. Moreover, ectoine mildly inhibited skin cell proliferation and did not induce tumorigenicity in HaCaT cells injected into athymic nude mice. HaCaT cells treated with ectoine for 24 weeks modulated the mRNA expression levels of Dnmt1, Dnmt3a, Dnmt3b, Dnmt3l, Hdac1, Hdac2, Kdm3a, Mettl3, Mettl14, Snrpn, and Mest. Overall, ectoine mildly demethylates DNA in skin cells, modulates the expression of epigenetic modification-related genes, and reduces cell proliferation. This evidence suggests that ectoine is a potential anti-aging agent that prevents DNA hypermethylation and subsequently activates cancer-suppressing genes.
Collapse
Affiliation(s)
- Majjid A. Qaria
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (M.A.Q.); (C.X.); (M.Y.A.); (S.S.)
| | - Chunyan Xu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (M.A.Q.); (C.X.); (M.Y.A.); (S.S.)
| | - Ran Hu
- School of Medicine, Jiangsu University, Zhenjiang 212013, China;
| | - Roua A. Alsubki
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Saud University, 2455, Riyadh 11451, Saudi Arabia;
| | - Mohamed Yassin Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (M.A.Q.); (C.X.); (M.Y.A.); (S.S.)
- Department of Biochemistry, Faculty of Agriculture, Fayoum University, Fayoum 63514, Egypt
| | - Sethupathy Sivasamy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (M.A.Q.); (C.X.); (M.Y.A.); (S.S.)
| | - Kotb A. Attia
- Department of Biochemistry, College of Science, King Saud University, 2455, Riyadh 11451, Saudi Arabia
| | - Daochen Zhu
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; (M.A.Q.); (C.X.); (M.Y.A.); (S.S.)
| |
Collapse
|
11
|
Tang H, Liang Y, Yu M, Cai S, Ding K, Wang Y. Discovery of chiral 1,4-diarylazetidin-2-one-based hydroxamic acid derivatives as novel tubulin polymerization inhibitors with histone deacetylase inhibitory activity. Bioorg Med Chem 2023; 92:117437. [PMID: 37563016 DOI: 10.1016/j.bmc.2023.117437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/22/2023] [Accepted: 07/29/2023] [Indexed: 08/12/2023]
Abstract
Tubulin and histone deacetylase have been clinically proven as promising targets for cancer therapy. Herein, we describe the design and synthesis of chiral 1,4-diarylazetidin-2-one-based hydroxamic acids as novel tubulin/HDAC dual inhibitors. Among them, compound 12a was validated to effectively disrupt tubulin polymerization, and exhibited potent HDAC1/8 inhibitory activities. Meanwhile, 12a showed good antiproliferative activities against four tumor cell lines. Further studies showed 12a works through blocking cellular cycle, inducing apoptosis and inhibiting colony formation. In addition, 12a has suitable physicochemical properties and high liver microsomal metabolic stability. Importantly, compound 12a was found to exhibit significant antitumor efficacy in vivo, thus warranting it as a promising tubulin/HDAC dual inhibitor for further development.
Collapse
Affiliation(s)
- Hairong Tang
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yuru Liang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Min Yu
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Shaowen Cai
- School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Kuiling Ding
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China.
| | - Yang Wang
- School of Pharmacy, Fudan University, Shanghai 201203, China; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
12
|
Bozdemir N, Uysal F. Histone acetyltransferases and histone deacetyl transferases play crucial role during oogenesis and early embryo development. Genesis 2023; 61:e23518. [PMID: 37226850 DOI: 10.1002/dvg.23518] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/26/2023]
Abstract
Dynamic epigenetic regulation is critical for proper oogenesis and early embryo development. During oogenesis, fully grown germinal vesicle oocytes develop to mature Metaphase II oocytes which are ready for fertilization. Fertilized oocyte proliferates mitotically until blastocyst formation and the process is called early embryo development. Throughout oogenesis and early embryo development, spatio-temporal gene expression takes place, and this dynamic gene expression is controlled with the aid of epigenetics. Epigenetic means that gene expression can be altered without changing DNA itself. Epigenome is regulated through DNA methylation and histone modifications. While DNA methylation generally ends up with repression of gene expression, histone modifications can result in expression or repression depending on type of modification, type of histone protein and its specific residue. One of the modifications is histone acetylation which generally ends up with gene expression. Histone acetylation occurs through the addition of acetyl group onto amino terminal of the core histone proteins by histone acetyltransferases (HATs). Contrarily, histone deacetylation is associated with repression of gene expression, and it is catalyzed by histone deacetylases (HDACs). This review article focuses on what is known about alterations in the expression of HATs and HDACs and emphasizes importance of HATs and HDACs during oogenesis and early embryo development.
Collapse
Affiliation(s)
- Nazlican Bozdemir
- Department of Histology and Embryology, Ankara Medipol University School of Medicine, Ankara, Turkey
| | - Fatma Uysal
- Department of Histology and Embryology, Ankara Medipol University School of Medicine, Ankara, Turkey
| |
Collapse
|
13
|
Sukowati C, Cabral LKD, Anfuso B, Dituri F, Negro R, Giannelli G, Tiribelli C. PD-L1 Downregulation and DNA Methylation Inhibition for Molecular Therapy against Cancer Stem Cells in Hepatocellular Carcinoma. Int J Mol Sci 2023; 24:13357. [PMID: 37686163 PMCID: PMC10487900 DOI: 10.3390/ijms241713357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a heterogeneous cancer characterized by various cellular subtypes. This study investigates the potential of a combination strategy using immunotherapy and epigenetic reprogramming against HCC. We used a transgenic HCC mouse C57BL/6J-TG(ALB1HBV)44BRI/J to assess the dynamics of the programmed death receptor and its ligand (PD-1/PD-L1) and DNA methylation markers. In parallel, PD-L1 RNA silencing was performed in various human HCC cell lines, while combination therapy was performed in a co-culture system using long-term exposure of 5-Azacytidine (5-AZA) and an anti-PD-L1. Data from the mouse model showed that the expressions of Pdcd1, Pdcd1l1, and DNA methyltransferase 1 (Dnmt1) were significantly higher in HCC as compared to the wild-type mice (p < 0.01), supported by the high presence of PD-L1 methylated DNA. In HCC cell lines, PD-L1 silencing was accompanied by DNMT1 reduction, mostly noted in aggressive HCC cell lines, followed by the dysregulation of the cancer stem cell marker EpCAM. In combination therapy, the growth of HCC cells and lymphocytes was limited by the PD-L1 antibody, further reduced in the presence of 5-AZA by up to 20% (p < 0.001). The data demonstrated that combination therapy might be an option as a potential treatment for heterogeneous HCC.
Collapse
Affiliation(s)
- Caecilia Sukowati
- Liver Cancer Unit, Italian Liver Foundation NPO, AREA Science Park, Basovizza, 34049 Trieste, Italy (C.T.)
- Eijkman Research Center for Molecular Biology, National Research and Innovation Agency of Indonesia (BRIN), B.J. Habibie Building, Jl. M.H. Thamrin No. 8, Jakarta Pusat 10340, Indonesia
| | - Loraine Kay D. Cabral
- Liver Cancer Unit, Italian Liver Foundation NPO, AREA Science Park, Basovizza, 34049 Trieste, Italy (C.T.)
- Doctoral School in Molecular Biomedicine, University of Trieste, Piazzale Europa, 1, 34127 Trieste, Italy
| | - Beatrice Anfuso
- Department of Life Sciences, University of Trieste, Piazzale Europa, 1, 34127 Trieste, Italy
| | - Francesco Dituri
- National Institute of Gastroenterology, IRCCS Saverio de Bellis Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy
| | - Roberto Negro
- National Institute of Gastroenterology, IRCCS Saverio de Bellis Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy
| | - Gianluigi Giannelli
- National Institute of Gastroenterology, IRCCS Saverio de Bellis Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy
| | - Claudio Tiribelli
- Liver Cancer Unit, Italian Liver Foundation NPO, AREA Science Park, Basovizza, 34049 Trieste, Italy (C.T.)
| |
Collapse
|
14
|
Reijers ILM, Rao D, Versluis JM, Menzies AM, Dimitriadis P, Wouters MW, Spillane AJ, Klop WMC, Broeks A, Bosch LJW, Lopez-Yurda M, van Houdt WJ, Rawson RV, Grijpink-Ongering LG, Gonzalez M, Cornelissen S, Bouwman J, Sanders J, Plasmeijer E, Elshot YS, Scolyer RA, van de Wiel BA, Peeper DS, van Akkooi ACJ, Long GV, Blank CU. IFN-γ signature enables selection of neoadjuvant treatment in patients with stage III melanoma. J Exp Med 2023; 220:213938. [PMID: 36920329 PMCID: PMC10037109 DOI: 10.1084/jem.20221952] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/23/2022] [Accepted: 02/02/2023] [Indexed: 03/16/2023] Open
Abstract
Neoadjuvant ipilimumab + nivolumab has demonstrated high pathologic response rates in stage III melanoma. Patients with low intra-tumoral interferon-γ (IFN-γ) signatures are less likely to benefit. We show that domatinostat (a class I histone deacetylase inhibitor) addition to anti-PD-1 + anti-CTLA-4 increased the IFN-γ response and reduced tumor growth in our murine melanoma model, rationalizing evaluation in patients. To stratify patients into IFN-γ high and low cohorts, we developed a baseline IFN-γ signature expression algorithm, which was prospectively tested in the DONIMI trial. Patients with stage III melanoma and high intra-tumoral IFN-γ scores were randomized to neoadjuvant nivolumab or nivolumab + domatinostat, while patients with low IFN-γ scores received nivolumab + domatinostat or ipilimumab + nivolumab + domatinostat. Domatinostat addition to neoadjuvant nivolumab ± ipilimumab did not delay surgery but induced unexpected severe skin toxicity, hampering domatinostat dose escalation. At studied dose levels, domatinostat addition did not increase treatment efficacy. The baseline IFN-γ score adequately differentiated patients who were likely to benefit from nivolumab alone versus patients who require other therapies.
Collapse
Affiliation(s)
- Irene L M Reijers
- Department of Medical Oncology, Netherlands Cancer Institute , Amsterdam, Netherlands
| | - Disha Rao
- Molecular Oncology and Immunology, Netherlands Cancer Institute , Amsterdam, Netherlands
| | - Judith M Versluis
- Department of Medical Oncology, Netherlands Cancer Institute , Amsterdam, Netherlands
| | - Alexander M Menzies
- Melanoma Institute Australia, The University of Sydney , Sydney, Australia
- Faculty of Medicine and Health, The University of Sydney , Sydney, Australia
- Department of Medical Oncology, Royal North Shore and Mater Hospitals , Sydney, Australia
| | - Petros Dimitriadis
- Molecular Oncology and Immunology, Netherlands Cancer Institute , Amsterdam, Netherlands
| | - Michel W Wouters
- Department of Surgical Oncology, Netherlands Cancer Institute , Amsterdam, Netherlands
- Department of Biomedical Data Sciences, Leiden University Medical Center , Leiden, Netherlands
| | - Andrew J Spillane
- Melanoma Institute Australia, The University of Sydney , Sydney, Australia
- Faculty of Medicine and Health, The University of Sydney , Sydney, Australia
- Department of Breast and Melanoma Surgery, Royal North Shore and Mater Hospitals , Sydney, Australia
| | - Willem M C Klop
- Department of Head and Neck Surgical Oncology, Netherlands Cancer Institute , Amsterdam, Netherlands
| | - Annegien Broeks
- Core Facility and Molecular Pathology & Biobanking department, Netherlands Cancer Institute , Amsterdam, Netherlands
| | - Linda J W Bosch
- Pathology and Molecular Diagnostics Department, Netherlands Cancer Institute , Amsterdam, Netherlands
| | - Marta Lopez-Yurda
- Biometrics Department, Netherlands Cancer Institute , Amsterdam, Netherlands
| | - Winan J van Houdt
- Department of Surgical Oncology, Netherlands Cancer Institute , Amsterdam, Netherlands
| | - Robert V Rawson
- Melanoma Institute Australia, The University of Sydney , Sydney, Australia
- Faculty of Medicine and Health, The University of Sydney , Sydney, Australia
- Departments of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology , Sydney, Australia
| | | | - Maria Gonzalez
- Melanoma Institute Australia, The University of Sydney , Sydney, Australia
| | - Sten Cornelissen
- Core Facility and Molecular Pathology & Biobanking department, Netherlands Cancer Institute , Amsterdam, Netherlands
| | - Jasper Bouwman
- Pathology and Molecular Diagnostics Department, Netherlands Cancer Institute , Amsterdam, Netherlands
| | - Joyce Sanders
- Core Facility and Molecular Pathology & Biobanking department, Netherlands Cancer Institute , Amsterdam, Netherlands
| | - Elsemieke Plasmeijer
- Department of Dermatology, Netherlands Cancer Institute , Amsterdam, Netherlands
- Department of Dermatology, Leiden University Medical Center , Leiden, Netherlands
| | - Yannick S Elshot
- Department of Dermatology, Netherlands Cancer Institute , Amsterdam, Netherlands
- Department of Dermatology, Amsterdam UMC, University of Amsterdam , Amsterdam, Netherlands
| | - Richard A Scolyer
- Melanoma Institute Australia, The University of Sydney , Sydney, Australia
- Faculty of Medicine and Health, The University of Sydney , Sydney, Australia
- Departments of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology , Sydney, Australia
- Charles Perkins Centre, The University of Sydney , Sydney, Australia
| | - Bart A van de Wiel
- Department of Pathology, Netherlands Cancer Institute , Amsterdam, Netherlands
| | - Daniel S Peeper
- Molecular Oncology and Immunology, Netherlands Cancer Institute , Amsterdam, Netherlands
| | - Alexander C J van Akkooi
- Melanoma Institute Australia, The University of Sydney , Sydney, Australia
- Faculty of Medicine and Health, The University of Sydney , Sydney, Australia
- Department of Melanoma Surgical Oncology, Royal Prince Alfred Hospital , Sydney, Australia
| | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney , Sydney, Australia
- Faculty of Medicine and Health, The University of Sydney , Sydney, Australia
- Department of Medical Oncology, Royal North Shore and Mater Hospitals , Sydney, Australia
- Charles Perkins Centre, The University of Sydney , Sydney, Australia
| | - Christian U Blank
- Department of Medical Oncology, Netherlands Cancer Institute , Amsterdam, Netherlands
- Molecular Oncology and Immunology, Netherlands Cancer Institute , Amsterdam, Netherlands
- Department of internal medicine, Leiden University Medical Center , Leiden, Netherlands
| |
Collapse
|
15
|
Photocaged Histone Deacetylase Inhibitors as Prodrugs in Targeted Cancer Therapy. Pharmaceuticals (Basel) 2023; 16:ph16030356. [PMID: 36986455 PMCID: PMC10056348 DOI: 10.3390/ph16030356] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023] Open
Abstract
Histone deacetylases (HDACs) play a key role in the control of transcription, cell proliferation, and migration. FDA-approved histone deacetylase inhibitors (HDACi) demonstrate clinical efficacy in the treatment of different T-cell lymphomas and multiple myeloma. However, due to unselective inhibition, they display a wide range of adverse effects. One approach to avoiding off-target effects is the use of prodrugs enabling a controlled release of the inhibitor in the target tissue. Herein, we describe the synthesis and biological evaluation of HDACi prodrugs with photo-cleavable protecting groups masking the zinc-binding group of the established HDACi DDK137 (I) and VK1 (II). Initial decaging experiments confirmed that the photocaged HDACi pc-I could be deprotected to its parent inhibitor I. In HDAC inhibition assays, pc-I displayed only low inhibitory activity against HDAC1 and HDAC6. After irradiation with light, the inhibitory activity of pc-I strongly increased. Subsequent MTT viability assays, whole-cell HDAC inhibition assays, and immunoblot analysis confirmed the inactivity of pc-I at the cellular level. Upon irradiation, pc-I demonstrated pronounced HDAC inhibitory and antiproliferative activities which were comparable to the parent inhibitor I. Additionally, only phototreated pc-I was able to induce apoptosis in Annexin V/PI and caspase-Glo 3/7 assays, making pc-I a valuable tool for the development of light-activatable HDACi.
Collapse
|
16
|
Yang FF, Hu T, Liu JQ, Yu XQ, Ma LY. Histone deacetylases (HDACs) as the promising immunotherapeutic targets for hematologic cancer treatment. Eur J Med Chem 2023; 245:114920. [PMID: 36399875 DOI: 10.1016/j.ejmech.2022.114920] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/25/2022] [Accepted: 11/08/2022] [Indexed: 11/14/2022]
Abstract
Bone marrow transplantation is regarded as the most effective immunotherapy for hematologic cancer, but it generally faces difficulties in matching. Aberrant expression of histone deacetylases (HDACs) is closely related to the occurrence and development of hematological cancer. Recent studies suggested that HDACs might play a critical role in initiating anti-cancer immune response or enhancing anti-cancer immunotherapy. Besides, combining HDAC inhibition and immunotherapy could prevent immunotherapy resistance in some degree and reach an extended treatment window. This review summarized the relationship between HDACs and immune and described the current understanding of HDACs in immunotherapy for hematologic cancer.
Collapse
Affiliation(s)
- Fei-Fei Yang
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Ting Hu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Jian-Quan Liu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Xiao-Qian Yu
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, PR China
| | - Li-Ying Ma
- State Key Laboratory of Esophageal Cancer Prevention and Treatment; Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; School of Pharmaceutical Science and Institute of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, PR China; China Meheco Topfond Pharmaceutical Co., Key Laboratory of Cardio-cerebrovascular Drug, Zhumadian, 463000, PR China.
| |
Collapse
|
17
|
Anestopoulos I, Kyriakou S, Tragkola V, Paraskevaidis I, Tzika E, Mitsiogianni M, Deligiorgi MV, Petrakis G, Trafalis DT, Botaitis S, Giatromanolaki A, Koukourakis MI, Franco R, Pappa A, Panayiotidis MI. Targeting the epigenome in malignant melanoma: Facts, challenges and therapeutic promises. Pharmacol Ther 2022; 240:108301. [PMID: 36283453 DOI: 10.1016/j.pharmthera.2022.108301] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 10/03/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022]
Abstract
Malignant melanoma is the most lethal type of skin cancer with high rates of mortality. Although current treatment options provide a short-clinical benefit, acquired-drug resistance highlights the low 5-year survival rate among patients with advanced stage of the disease. In parallel, the involvement of an aberrant epigenetic landscape, (e.g., alterations in DNA methylation patterns, histone modifications marks and expression of non-coding RNAs), in addition to the genetic background, has been also associated with the onset and progression of melanoma. In this review article, we report on current therapeutic options in melanoma treatment with a focus on distinct epigenetic alterations and how their reversal, by specific drug compounds, can restore a normal phenotype. In particular, we concentrate on how single and/or combinatorial therapeutic approaches have utilized epigenetic drug compounds in being effective against malignant melanoma. Finally, the role of deregulated epigenetic mechanisms in promoting drug resistance to targeted therapies and immune checkpoint inhibitors is presented leading to the development of newly synthesized and/or improved drug compounds capable of targeting the epigenome of malignant melanoma.
Collapse
Affiliation(s)
- I Anestopoulos
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - S Kyriakou
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - V Tragkola
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - I Paraskevaidis
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | - E Tzika
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus
| | | | - M V Deligiorgi
- Laboratory of Pharmacology, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | - G Petrakis
- Saint George Hospital, Chania, Crete, Greece
| | - D T Trafalis
- Laboratory of Pharmacology, Medical School, National & Kapodistrian University of Athens, Athens, Greece
| | - S Botaitis
- Department of Surgery, Alexandroupolis University Hospital, Democritus University of Thrace School of Medicine, Alexandroupolis, Greece
| | - A Giatromanolaki
- Department of Pathology, Democritus University of Thrace, University General Hospital of Alexandroupolis, Alexandroupolis, Greece
| | - M I Koukourakis
- Radiotherapy / Oncology, Radiobiology & Radiopathology Unit, Department of Medicine, School of Health Sciences, Democritus University of Thrace, Alexandroupolis, Greece
| | - R Franco
- Redox Biology Centre, University of Nebraska-Lincoln, Lincoln, NE, USA; School of Veterinary Medicine & Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - A Pappa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | - M I Panayiotidis
- Department of Cancer Genetics, Therapeutics & Ultrastructural Pathology, The Cyprus Institute of Neurology & Genetics, Nicosia, Cyprus.
| |
Collapse
|
18
|
Karami Fath M, Azargoonjahromi A, Soofi A, Almasi F, Hosseinzadeh S, Khalili S, Sheikhi K, Ferdousmakan S, Owrangi S, Fahimi M, Zalpoor H, Nabi Afjadi M, Payandeh Z, Pourzardosht N. Current understanding of epigenetics role in melanoma treatment and resistance. Cancer Cell Int 2022; 22:313. [PMID: 36224606 PMCID: PMC9555085 DOI: 10.1186/s12935-022-02738-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 09/19/2022] [Indexed: 11/30/2022] Open
Abstract
Melanoma is the most aggressive form of skin cancer resulting from genetic mutations in melanocytes. Several factors have been considered to be involved in melanoma progression, including genetic alteration, processes of damaged DNA repair, and changes in mechanisms of cell growth and proliferation. Epigenetics is the other factor with a crucial role in melanoma development. Epigenetic changes have become novel targets for treating patients suffering from melanoma. These changes can alter the expression of microRNAs and their interaction with target genes, which involves cell growth, differentiation, or even death. Given these circumstances, we conducted the present review to discuss the melanoma risk factors and represent the current knowledge about the factors related to its etiopathogenesis. Moreover, various epigenetic pathways, which are involved in melanoma progression, treatment, and chemo-resistance, as well as employed epigenetic factors as a solution to the problems, will be discussed in detail.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | | | - Asma Soofi
- Department of Physical Chemistry, School of Chemistry, College of Sciences, University of Tehran, Tehran, Iran
| | - Faezeh Almasi
- Pharmaceutical Biotechnology Lab, Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Shahnaz Hosseinzadeh
- Department of Microbiology, Parasitology and Immunology, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran
| | - Kamran Sheikhi
- School of Medicine, Kurdistan University of Medical Sciences, Kurdistan, Iran
| | - Saeid Ferdousmakan
- Department of Pharmacy Practice, Nargund College of Pharmacy, Bangalore, 560085 India
| | - Soroor Owrangi
- Student Research Committe, Fasa University of Medical Sciences, Fasa, Iran
| | | | - Hamidreza Zalpoor
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Network of Immunity in Infection, Malignancy & Autoimmunity (NIIMA), Universal Scientific Education & Research Network (USERN), Tehran, Iran
| | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | - Zahra Payandeh
- Department Medical Biochemistry and Biophysics, Division Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden
| | - Navid Pourzardosht
- Biochemistry Department, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
19
|
Targeting the USP7/RRM2 axis drives senescence and sensitizes melanoma cells to HDAC/LSD1 inhibitors. Cell Rep 2022; 40:111396. [PMID: 36130505 DOI: 10.1016/j.celrep.2022.111396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 07/01/2022] [Accepted: 08/31/2022] [Indexed: 11/23/2022] Open
Abstract
Deubiquitinating enzymes are key regulators of the ubiquitin-proteasome system and cell cycle, and their dysfunction leads to tumorigenesis. Our in vivo drop-out screens in patient-derived xenograft models identify USP7 as a regulator of melanoma. We show that USP7 downregulation induces cellular senescence, arresting melanoma growth in vivo and proliferation in vitro in BRAF- and NRAS-mutant melanoma. We provide a comprehensive understanding of targets and networks affected by USP7 depletion by performing a global transcriptomic and proteomics analysis. We show that RRM2 is a USP7 target and is regulated by USP7 during S phase of the cell cycle. Ectopic expression of RRM2 in USP7-depleted cells rescues the senescent phenotype. Pharmacological inhibition of USP7 by P5091 phenocopies the shUSP7-induced senescent phenotype. We show that the bifunctional histone deacetylase (HDAC)/LSD1 inhibitor domatinostat has an additive antitumor effect, eliminating P5091-induced senescent cells, paving the way to a therapeutic combination for individuals with melanoma.
Collapse
|
20
|
Yan A, Zhao Y, Zhang L, Liang X, Zhang X, Liang F, Nian S, Li X, Sun Z, Li K, Zhao YF. β-Hydroxybutyrate upregulates FGF21 expression through inhibition of histone deacetylases in hepatocytes. Open Life Sci 2022; 17:856-864. [PMID: 36045720 PMCID: PMC9372706 DOI: 10.1515/biol-2022-0095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/02/2022] [Accepted: 05/09/2022] [Indexed: 11/15/2022] Open
Abstract
Fibroblast growth factor 21 (FGF21) is secreted by hepatocytes as a peptide hormone to regulate glucose and lipid metabolism. FGF21 promotes hepatic ketogenesis and increases ketone body utilization in starvation. Histones are the target molecules of nutrients in regulating hepatic metabolic homeostasis. However, the effect of ketone bodies on FGF21 expression and the involvement of histones in it is not clear yet. The present study observed the effects of β-hydroxybutyrate (β-OHB), the main physiological ketone body, on FGF21 expression in human hepatoma HepG2 cells in vitro and in mice in vivo, and the role of histone deacetylases (HDACs) in β-OHB-regulated FGF21 expression was investigated. The results showed that β-OHB significantly upregulated FGF21 gene expression and increased FGF21 protein levels while it inhibited HDACs’ activity in HepG2 cells. HDACs’ inhibition by entinostat upregulated FGF21 expression and eliminated β-OHB-stimulated FGF21 expression in HepG2 cells. Intraperitoneal injections of β-OHB in mice resulted in the elevation of serum β-OHB and the inhibition of hepatic HDACs’ activity. Meanwhile, hepatic FGF21 expression and serum FGF21 levels were significantly increased in β-OHB-treated mice compared with the control. It is suggested that β-OHB upregulates FGF21 expression through inhibition of HDACs’ activity in hepatocytes.
Collapse
Affiliation(s)
- Aili Yan
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, 710021, China
| | - Yanyan Zhao
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, 710021, China
| | - Lijun Zhang
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, 710021, China
| | - Xiangyan Liang
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, 710021, China
| | - Xiaochun Zhang
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, 710021, China
| | - Fenli Liang
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, 710021, China
| | - Shen Nian
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, 710021, China
| | - Xinhua Li
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, 710021, China
| | - Zhuo Sun
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, 710021, China
| | - Ke Li
- Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, 710021, China
| | - Yu-Feng Zhao
- Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, 710021, China
| |
Collapse
|
21
|
Yang C, Yao J, Yi H, Huang X, Zhao W, Yang Z. To unwind the biological knots: The DNA/RNA G-quadruplex resolvase RHAU (DHX36) in development and disease. Animal Model Exp Med 2022; 5:542-549. [PMID: 35789129 PMCID: PMC9773310 DOI: 10.1002/ame2.12251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 04/21/2022] [Indexed: 12/30/2022] Open
Abstract
The G-quadruplex (G4) sequences are short fragments of 4-interval triple guanine (G) with frequent and ubiquitous distribution in the genome and RNA transcripts. The G4 sequences are usually folded into secondary "knot" structure via Hoogsteen hydrogen bond to exert negative regulation on a variety of biological processes, including DNA replication and transcription, mRNA translation, and telomere maintenance. Recent structural biological and mouse genetics studies have demonstrated that RHAU (DHX36) can bind and unwind the G4 "knots" to modulate embryonic development and postnatal organ function. Deficiency of RHAU gives rise to embryonic lethality, impaired organogenesis, and organ dysfunction. These studies uncovered the pivotal G4 resolvase function of RHAU to release the G4 barrier, which plays fundamental roles in development and physiological homeostasis. This review discusses the latest advancements and findings in deciphering RHAU functions using animal models.
Collapse
Affiliation(s)
- Chensi Yang
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular MedicineNanjing University Medical SchoolNanjingChina
| | - Jie Yao
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular MedicineNanjing University Medical SchoolNanjingChina
| | - Huijuan Yi
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular MedicineNanjing University Medical SchoolNanjingChina
| | - Xinyi Huang
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular MedicineNanjing University Medical SchoolNanjingChina
| | - Wukui Zhao
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular MedicineNanjing University Medical SchoolNanjingChina
| | - Zhongzhou Yang
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular MedicineNanjing University Medical SchoolNanjingChina
| |
Collapse
|
22
|
Histone Deacetylase (HDAC) Inhibitors: A Promising Weapon to Tackle Therapy Resistance in Melanoma. Int J Mol Sci 2022; 23:ijms23073660. [PMID: 35409020 PMCID: PMC8998190 DOI: 10.3390/ijms23073660] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 02/04/2023] Open
Abstract
Melanoma is an aggressive malignant tumor, arising more commonly on the skin, while it can also occur on mucosal surfaces and the uveal tract of the eye. In the context of the unresectable and metastatic cases that account for the vast majority of melanoma-related deaths, the currently available therapeutic options are of limited value. The exponentially increasing knowledge in the field of molecular biology has identified epigenetic reprogramming and more specifically histone deacetylation (HDAC), as a crucial regulator of melanoma progression and as a key driver in the emergence of drug resistance. A variety of HDAC inhibitors (HDACi) have been developed and evaluated in multiple solid and hematologic malignancies, showing promising results. In melanoma, various experimental models have elucidated a critical role of histone deacetylases in disease pathogenesis. They could, therefore, represent a promising novel therapeutic approach for advanced disease. A number of clinical trials assessing the efficacy of HDACi have already been completed, while a few more are in progress. Despite some early promising signs, a lot of work is required in the field of clinical studies, and larger patient cohorts are needed in order for more valid conclusions to be extracted, regarding the potential of HDACi as mainstream treatment options for melanoma.
Collapse
|
23
|
Peng X, Li L, Chen J, Ren Y, Liu J, Yu Z, Cao H, Chen J. Discovery of Novel Histone Deacetylase 6 (HDAC6) Inhibitors with Enhanced Antitumor Immunity of Anti-PD-L1 Immunotherapy in Melanoma. J Med Chem 2022; 65:2434-2457. [PMID: 35043615 DOI: 10.1021/acs.jmedchem.1c01863] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A series of 2-phenylthiazole analogues were designed and synthesized as potential histone deacetylase 6 (HDAC6) inhibitors based on compound 12c (an HDAC6/tubulin dual inhibitor discovered by us recently) and CAY10603 (a known HDAC6 inhibitor). Among them, compound XP5 was the most potent HDAC6 inhibitor with an IC50 of 31 nM and excellent HDAC6 selectivity (SI = 338 for HDAC6 over HDAC3). XP5 also displayed high antiproliferative activity against various cancer cell lines including the HDACi-resistant YCC3/7 gastric cancer cells (IC50 = 0.16-2.31 μM), better than CAY10603. Further, XP5 (50 mg/kg) exhibited significant antitumor efficacy in a melanoma tumor model with a tumor growth inhibition (TGI) of 63% without apparent toxicity. Moreover, XP5 efficiently enhanced the in vivo antitumor immune response when combined with a small-molecule PD-L1 inhibitor, as demonstrated by the increased tumor-infiltrating lymphocytes and reduced PD-L1 expression levels. Taken together, the above results suggest that XP5 is a promising HDAC6 inhibitor deserving further investigation.
Collapse
Affiliation(s)
- Xiaopeng Peng
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 516000, China
- College of Pharmacy, Gannan Medical University, Ganzhou 341000, China
| | - Ling Li
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 516000, China
| | - Jingxuan Chen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 516000, China
| | - Yichang Ren
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 516000, China
| | - Jin Liu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 516000, China
| | - Ziwen Yu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 516000, China
| | - Hao Cao
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 516000, China
| | - Jianjun Chen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 516000, China
| |
Collapse
|
24
|
Choi J, Neupane T, Baral R, Jee JG. Hydroxamic Acid as a Potent Metal-Binding Group for Inhibiting Tyrosinase. Antioxidants (Basel) 2022; 11:antiox11020280. [PMID: 35204163 PMCID: PMC8868331 DOI: 10.3390/antiox11020280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 12/10/2022] Open
Abstract
Tyrosinase, a metalloenzyme containing a dicopper cofactor, plays a central role in synthesizing melanin from tyrosine. Many studies have aimed to identify small-molecule inhibitors of tyrosinase for pharmaceutical, cosmetic, and agricultural purposes. In this study, we report that hydroxamic acid is a potent metal-binding group for interacting with dicopper atoms, thereby inhibiting tyrosinase. Hydroxamate-containing molecules, including anticancer drugs targeting histone deacetylase, vorinostat and panobinostat, significantly inhibited mushroom tyrosinase, with inhibitory constants in the submicromolar range. Of the tested molecules, benzohydroxamic acid was the most potent. Its inhibitory constant of 7 nM indicates that benzohydroxamic acid is one of the most potent tyrosinase inhibitors. Results from differential scanning fluorimetry revealed that direct binding mediates inhibition. The enzyme kinetics were studied to assess the inhibitory mechanism of the hydroxamate-containing molecules. Experiments with B16F10 cell lysates confirmed that the new inhibitors are inhibitory against mammalian tyrosinase. Docking simulation data revealed intermolecular contacts between hydroxamate-containing molecules and tyrosinase.
Collapse
|
25
|
Adeshakin AO, Adeshakin FO, Yan D, Wan X. Regulating Histone Deacetylase Signaling Pathways of Myeloid-Derived Suppressor Cells Enhanced T Cell-Based Immunotherapy. Front Immunol 2022; 13:781660. [PMID: 35140716 PMCID: PMC8818783 DOI: 10.3389/fimmu.2022.781660] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/03/2022] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy has emerged as a promising approach to combat immunosuppressive tumor microenvironment (TME) for improved cancer treatment. FDA approval for the clinical use of programmed death receptor 1/programmed death-ligand 1 (PD-1/PD-L1) inhibitors revolutionized T cell-based immunotherapy. Although only a few cancer patients respond to this treatment due to several factors including the accumulation of immunosuppressive cells in the TME. Several immunosuppressive cells within the TME such as regulatory T cells, myeloid cells, and cancer-associated fibroblast inhibit the activation and function of T cells to promote tumor progression. The roles of epigenetic modifiers such as histone deacetylase (HDAC) in cancer have long been investigated but little is known about their impact on immune cells. Recent studies showed inhibiting HDAC expression on myeloid-derived suppressor cells (MDSCs) promoted their differentiation to less suppressive cells and reduced their immunosuppressive effect in the TME. HDAC inhibitors upregulated PD-1 or PD-L1 expression level on tumor or immune cells sensitizing tumor-bearing mice to anti-PD-1/PD-L1 antibodies. Herein we discuss how inhibiting HDAC expression on MDSCs could circumvent drawbacks to immune checkpoint inhibitors and improve cancer immunotherapy. Furthermore, we highlighted current challenges and future perspectives of HDAC inhibitors in regulating MDSCs function for effective cancer immunotherapy.
Collapse
Affiliation(s)
- Adeleye O. Adeshakin
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing , China
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Funmilayo O. Adeshakin
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing , China
| | - Dehong Yan
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing , China
- *Correspondence: Dehong Yan, ; Xiaochun Wan,
| | - Xiaochun Wan
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing , China
- *Correspondence: Dehong Yan, ; Xiaochun Wan,
| |
Collapse
|
26
|
Zheng H, Dai Q, Yuan Z, Fan T, Zhang C, Liu Z, Chu B, Sun Q, Chen Y, Jiang Y. Quinazoline-based hydroxamic acid derivatives as dual histone methylation and deacetylation inhibitors for potential anticancer agents. Bioorg Med Chem 2022; 53:116524. [PMID: 34847495 DOI: 10.1016/j.bmc.2021.116524] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/03/2021] [Accepted: 11/11/2021] [Indexed: 12/31/2022]
Abstract
Cancer is a common malignant disease with complex signaling networks, which means it is unmanageable to cancer therapy by using single classical targeted drug. Recently, dual- or multitarget drugs have emerged as a promising option for cancer therapies. Although many multifunctional compounds targeting HDAC have been validated, as far as we know, there is no molecule targeting GLP and HDAC synchronously. In the present work, we designed and synthesized a series of quinazoline-based hydroxamic acid derivatives as dual GLP and HDAC inhibitors. These hybrid compounds showed potent enzymatic inhibitory activities against GLP and HDAC1/6 with IC50 values in the nanomolar range of less than 190 nM. Furthermore, most of our compounds displayed significant broad spectrum cytotoxic activities apart from D3 and D8 against all the tested cancer cells with IC50 values less than 50 μM. D1, D6 and D7 showed more potent cytotoxic activities than D2, D4 and D5 in those cancer cells. Especially, compound D7 showed potent inhibitory potency activity against both GLP and HDAC1/6 with IC50 values of 1.3, 89, 13 nM. Besides, D7 exhibited the most potent antiproliferative activity against all the tested cancer cells. Further evaluations indicated that D7 could inhibit the methylation and deacetylation of H3K9 on protein level. Moreover, D7 could induce cancer cell apoptosis, G0/G1 cell cycle arrest, and partly block migration and invasion. All these thorough evaluations warranted D7 as a promising lead compound worth further optimization and development for cancer therapy.
Collapse
Affiliation(s)
- Haoting Zheng
- Department of Chemistry, Tsinghua University, Beijing 100084, PR China; National & Local United Engineering Lab for Personalized Anti-tumor Drugs, The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, PR China
| | - Qiuzi Dai
- Department of Chemistry, Tsinghua University, Beijing 100084, PR China; National & Local United Engineering Lab for Personalized Anti-tumor Drugs, The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, PR China
| | - Zigao Yuan
- National & Local United Engineering Lab for Personalized Anti-tumor Drugs, The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, PR China; National & Local United Engineering Lab for Personalized Anti-tumor Drugs, Shenzhen Kivita Innovative Drug Discovery Institute, The Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China
| | - Tingting Fan
- National & Local United Engineering Lab for Personalized Anti-tumor Drugs, The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, PR China
| | - Cunlong Zhang
- National & Local United Engineering Lab for Personalized Anti-tumor Drugs, Shenzhen Kivita Innovative Drug Discovery Institute, The Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China
| | - Zijian Liu
- National & Local United Engineering Lab for Personalized Anti-tumor Drugs, Shenzhen Kivita Innovative Drug Discovery Institute, The Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China
| | - Bizhu Chu
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, PR China
| | - Qinsheng Sun
- National & Local United Engineering Lab for Personalized Anti-tumor Drugs, The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, PR China; National & Local United Engineering Lab for Personalized Anti-tumor Drugs, Shenzhen Kivita Innovative Drug Discovery Institute, The Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China; School of Life Sciences, Tsinghua University, 100084 Beijing, PR China
| | - Yan Chen
- National & Local United Engineering Lab for Personalized Anti-tumor Drugs, The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, PR China; National & Local United Engineering Lab for Personalized Anti-tumor Drugs, Shenzhen Kivita Innovative Drug Discovery Institute, The Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, PR China; School of Life Sciences, Tsinghua University, 100084 Beijing, PR China.
| | - Yuyang Jiang
- National & Local United Engineering Lab for Personalized Anti-tumor Drugs, The State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong 518055, PR China; Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen, Guangdong 518055, PR China; School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, PR China.
| |
Collapse
|
27
|
Ketkar M, Dutt S. Epigenetic Regulation Towards Acquired Drug Resistance in Cancer. Subcell Biochem 2022; 100:473-502. [PMID: 36301503 DOI: 10.1007/978-3-031-07634-3_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Therapy resistance remains the most challenging obstacle in cancer treatment. Substantial efforts and evidences have accumulated over decades suggesting not only genetic but non-genomic mechanisms underlying this adaptation of tumor cells. Alterations in epigenome can have a fundamental effect on cellular functions and response to stresses like anticancer therapy. This chapter discusses the principal mechanisms by which epigenetic modifications in the genome and transcriptome aid tumor cells toward acquisition of resistance to chemotherapy.
Collapse
Affiliation(s)
- Madhura Ketkar
- Shilpee Dutt Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Shilpee Dutt
- Shilpee Dutt Laboratory, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai, India.
- Homi Bhabha National Institute, Mumbai, India.
- ACTREC, Tata Memorial Centre, Kharghar, Navi Mumbai, Maharashtra, India.
| |
Collapse
|
28
|
Zheng L, Zhang A, Liu J, Liu M, Zhang Y. HDAC1 promotes the migration of human myeloma cells via regulation of the lncRNA/Slug axis. Int J Mol Med 2022; 49:3. [PMID: 34738621 PMCID: PMC8589458 DOI: 10.3892/ijmm.2021.5058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 09/21/2021] [Indexed: 12/13/2022] Open
Abstract
Understanding the mechanisms underlying malignancy in myeloma cells is important for targeted treatment and drug development. Histone deacetylases (HDACs) can regulate the progression of various cancer types; however, their roles in myeloma are not well known. In the present study, the expression of class I HDACs in myeloma cells and tissues was evaluated. Furthermore, the effects of HDAC1 on the migration of myeloma cells and the associated mechanisms were investigated. Among the class I HDACs evaluated, HDAC1 was upregulated in both myeloma cells and tissues. Targeted inhibition of HDAC1 suppressed the migration of myeloma cells. Of the assessed transcription factors, small interfering (si)‑HDAC1 decreased the expression of Slug. Overexpression of Slug reversed the si‑HDAC1‑mediated suppressed migration of myeloma cells. Mechanistically, the results revealed that HDAC1 regulated the mRNA stability of Slug, while it had no effect on its transcription or nuclear export. Furthermore, HDAC1 negatively regulated the expression of long non‑coding RNA (lncRNA) NONHSAT113026, which could bind with the 3'‑untranslated region of Slug mRNA to facilitate its degradation. The present study demonstrated that HDAC1 promoted the migration of human myeloma cells via regulation of lncRNA/Slug signaling.
Collapse
Affiliation(s)
- Lisha Zheng
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, P.R. China
| | - Ang Zhang
- Department of Hematology, PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, P.R. China
| | - Jishan Liu
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, P.R. China
| | - Min Liu
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, P.R. China
| | - Yikun Zhang
- Department of Hematology, PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, P.R. China
| |
Collapse
|
29
|
Jansen P, Lodde GC, Griewank KG, Hadaschik E, Roesch A, Ugurel S, Zimmer L, Livingstone E, Schadendorf D. Management of partial and non-responding cutaneous squamous cell carcinoma. J Eur Acad Dermatol Venereol 2021; 36 Suppl 1:29-34. [PMID: 34855242 DOI: 10.1111/jdv.17404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 05/18/2021] [Indexed: 01/20/2023]
Abstract
Cutaneous squamous cell carcinoma (cSCC) and basal cell carcinoma are the most common types of skin cancer. For patients with locally advanced and metastatic cSCC, the programmed cell death 1 (PD-1) inhibitor cemiplimab is approved for systemic treatment. Despite this revolutionary immunomodulatory therapeutic approach, tumours may fail to respond either completely or partially. In addition to the previously established local treatment with radiotherapy or systemic treatment with chemotherapy and epidermal growth factor receptor inhibitors, ongoing trials are currently focussed on re-stimulating the antitumour immune response in patients with advanced cSCC refractory to PD-1 inhibitors. In this review, ongoing and recently finished trials with different therapeutic approaches will be discussed.
Collapse
Affiliation(s)
- P Jansen
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, Essen, Germany.,German Cancer Consortium, Partner Site Essen, Essen, Germany
| | - G C Lodde
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, Essen, Germany.,German Cancer Consortium, Partner Site Essen, Essen, Germany
| | - K G Griewank
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, Essen, Germany.,German Cancer Consortium, Partner Site Essen, Essen, Germany.,Dermatopathologie bei Mainz, Nieder-Olm, Germany
| | - E Hadaschik
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, Essen, Germany.,German Cancer Consortium, Partner Site Essen, Essen, Germany
| | - A Roesch
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, Essen, Germany.,German Cancer Consortium, Partner Site Essen, Essen, Germany
| | - S Ugurel
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, Essen, Germany.,German Cancer Consortium, Partner Site Essen, Essen, Germany
| | - L Zimmer
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, Essen, Germany.,German Cancer Consortium, Partner Site Essen, Essen, Germany
| | - E Livingstone
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, Essen, Germany.,German Cancer Consortium, Partner Site Essen, Essen, Germany
| | - D Schadendorf
- Department of Dermatology, University Hospital Essen, University Duisburg-Essen, Essen, Germany.,German Cancer Consortium, Partner Site Essen, Essen, Germany
| |
Collapse
|
30
|
Dabrafenib inhibits ABCG2 and cytochrome P450 isoenzymes; potential implications for combination anticancer therapy. Toxicol Appl Pharmacol 2021; 434:115797. [PMID: 34780725 DOI: 10.1016/j.taap.2021.115797] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 11/21/2022]
Abstract
Dabrafenib is a BRAF inhibitor used in combination treatment of malignant melanoma and non-small cell lung carcinoma. In this study, we aimed to characterize its interactions with cytochrome P450 (CYP) isoenzymes and ATP-binding cassette (ABC) efflux transporters that have critical impact on the pharmacokinetics of drugs and play a role in drug resistance development. Using accumulation assays, we showed that dabrafenib inhibited ABCG2 and, less potently, ABCB1 transporter. We also confirmed dabrafenib as a CYP2C8, CYP2C9, CYP3A4, and CYP3A5 inhibitor. Importantly, inhibition of ABCG2 and CYP3A4 by dabrafenib led to the potentiation of cytotoxic effects of mitoxantrone and docetaxel toward respective resistant cell lines in drug combination studies. On the contrary, the synergistic effect was not consistently observed in ABCB1-expressing models. We further demonstrated that mRNA levels of ABCB1, ABCG2, ABCC1, and CYP3A4 were increased after 24 h and 48 h exposure to dabrafenib. Overall, our data confirm dabrafenib as a drug frequently and potently interacting with ABC transporters and CYP isoenzymes. This feature should be addressed with caution when administering dabrafenib to patients with polypharmacy but also could be utilized advantageously when designing new dabrafenib-containing drug combinations to improve the therapeutic outcome in drug-resistant cancer.
Collapse
|
31
|
Jung T, Haist M, Kuske M, Grabbe S, Bros M. Immunomodulatory Properties of BRAF and MEK Inhibitors Used for Melanoma Therapy-Paradoxical ERK Activation and Beyond. Int J Mol Sci 2021; 22:ijms22189890. [PMID: 34576054 PMCID: PMC8469254 DOI: 10.3390/ijms22189890] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 12/21/2022] Open
Abstract
The advent of mitogen-activated protein kinase (MAPK) inhibitors that directly inhibit tumor growth and of immune checkpoint inhibitors (ICI) that boost effector T cell responses have strongly improved the treatment of metastatic melanoma. In about half of all melanoma patients, tumor growth is driven by gain-of-function mutations of BRAF (v-rat fibrosarcoma (Raf) murine sarcoma viral oncogene homolog B), which results in constitutive ERK activation. Patients with a BRAF mutation are regularly treated with a combination of BRAF and MEK (MAPK/ERK kinase) inhibitors. Next to the antiproliferative effects of BRAF/MEKi, accumulating preclinical evidence suggests that BRAF/MEKi exert immunomodulatory functions such as paradoxical ERK activation as well as additional effects in non-tumor cells. In this review, we present the current knowledge on the immunomodulatory functions of BRAF/MEKi as well as the non-intended effects of ICI and discuss the potential synergistic effects of ICI and MAPK inhibitors in melanoma treatment.
Collapse
|
32
|
Dobre EG, Constantin C, Costache M, Neagu M. Interrogating Epigenome toward Personalized Approach in Cutaneous Melanoma. J Pers Med 2021; 11:901. [PMID: 34575678 PMCID: PMC8467841 DOI: 10.3390/jpm11090901] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/06/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022] Open
Abstract
Epigenetic alterations have emerged as essential contributors in the pathogenesis of various human diseases, including cutaneous melanoma (CM). Unlike genetic changes, epigenetic modifications are highly dynamic and reversible and thus easy to regulate. Here, we present a comprehensive review of the latest research findings on the role of genetic and epigenetic alterations in CM initiation and development. We believe that a better understanding of how aberrant DNA methylation and histone modifications, along with other molecular processes, affect the genesis and clinical behavior of CM can provide the clinical management of this disease a wide range of diagnostic and prognostic biomarkers, as well as potential therapeutic targets that can be used to prevent or abrogate drug resistance. We will also approach the modalities by which these epigenetic alterations can be used to customize the therapeutic algorithms in CM, the current status of epi-therapies, and the preliminary results of epigenetic and traditional combinatorial pharmacological approaches in this fatal disease.
Collapse
Affiliation(s)
- Elena-Georgiana Dobre
- Faculty of Biology, University of Bucharest, Splaiul Independentei 91–95, 050095 Bucharest, Romania; (M.C.); (M.N.)
| | - Carolina Constantin
- Immunology Department, “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania;
- Pathology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
| | - Marieta Costache
- Faculty of Biology, University of Bucharest, Splaiul Independentei 91–95, 050095 Bucharest, Romania; (M.C.); (M.N.)
| | - Monica Neagu
- Faculty of Biology, University of Bucharest, Splaiul Independentei 91–95, 050095 Bucharest, Romania; (M.C.); (M.N.)
- Immunology Department, “Victor Babes” National Institute of Pathology, 050096 Bucharest, Romania;
- Pathology Department, Colentina Clinical Hospital, 020125 Bucharest, Romania
| |
Collapse
|
33
|
Maxwell MJ, Arnold A, Sweeney H, Chen L, Lih TSM, Schnaubelt M, Eberhart CG, Rubens JA, Zhang H, Clark DJ, Raabe EH. Unbiased Proteomic and Phosphoproteomic Analysis Identifies Response Signatures and Novel Susceptibilities After Combined MEK and mTOR Inhibition in BRAF V600E Mutant Glioma. Mol Cell Proteomics 2021; 20:100123. [PMID: 34298159 PMCID: PMC8363840 DOI: 10.1016/j.mcpro.2021.100123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/01/2021] [Accepted: 07/16/2021] [Indexed: 11/24/2022] Open
Abstract
The mitogen-activated protein kinase pathway is one of the most frequently altered pathways in cancer. It is involved in the control of cell proliferation, invasion, and metabolism, and can cause resistance to therapy. A number of aggressive malignancies, including melanoma, colon cancer, and glioma, are driven by a constitutively activating missense mutation (V600E) in the v-Raf murine sarcoma viral oncogene homolog B (BRAF) component of the pathway. Mitogen-activated protein kinase kinase (MEK) inhibition is initially effective in targeting these cancers, but reflexive activation of mammalian target of rapamycin (mTOR) signaling contributes to frequent therapy resistance. We have previously demonstrated that combination treatment with the MEK inhibitor trametinib and the dual mammalian target of rapamycin complex 1/2 inhibitor TAK228 improves survival and decreases vascularization in a BRAFV600E mutant glioma model. To elucidate the mechanism of action of this combination therapy and understand the ensuing tumor response, we performed comprehensive unbiased proteomic and phosphoproteomic characterization of BRAFV600E mutant glioma xenografts after short-course treatment with trametinib and TAK228. We identified 13,313 proteins and 30,928 localized phosphosites, of which 12,526 proteins and 17,444 phosphosites were quantified across all samples (data available via ProteomeXchange; identifier PXD022329). We identified distinct response signatures for each monotherapy and combination therapy and validated that combination treatment inhibited activation of the mitogen-activated protein kinase and mTOR pathways. Combination therapy also increased apoptotic signaling, suppressed angiogenesis signaling, and broadly suppressed the activity of the cyclin-dependent kinases. In response to combination therapy, both epidermal growth factor receptor and class 1 histone deacetylase proteins were activated. This study reports a detailed (phospho)proteomic analysis of the response of BRAFV600E mutant glioma to combined MEK and mTOR pathway inhibition and identifies new targets for the development of rational combination therapies for BRAF-driven tumors.
Collapse
Affiliation(s)
- Micah J Maxwell
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | - Antje Arnold
- Division of Neuropathology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Heather Sweeney
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Lijun Chen
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tung-Shing M Lih
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Michael Schnaubelt
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Charles G Eberhart
- Division of Neuropathology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jeffrey A Rubens
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hui Zhang
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - David J Clark
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Eric H Raabe
- Division of Pediatric Oncology, Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Division of Neuropathology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
34
|
Vukadin S, Khaznadar F, Kizivat T, Vcev A, Smolic M. Molecular Mechanisms of Resistance to Immune Checkpoint Inhibitors in Melanoma Treatment: An Update. Biomedicines 2021; 9:835. [PMID: 34356899 PMCID: PMC8301472 DOI: 10.3390/biomedicines9070835] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/22/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
Over the past decade, immune checkpoint inhibitors (ICI) have revolutionized the treatment of advanced melanoma and ensured significant improvement in overall survival versus chemotherapy. ICI or targeted therapy are now the first line treatment in advanced melanoma, depending on the tumor v-raf murine sarcoma viral oncogene homolog B1 (BRAF) mutational status. While these new approaches have changed the outcomes for many patients, a significant proportion of them still experience lack of response, known as primary resistance. Mechanisms of primary drug resistance are not fully elucidated. However, many alterations have been found in ICI-resistant melanomas and possibly contribute to that outcome. Furthermore, some tumors which initially responded to ICI treatment ultimately developed mechanisms of acquired resistance and subsequent tumor progression. In this review, we give an overview of tumor primary and acquired resistance mechanisms to ICI and discuss future perspectives with regards to new molecular targets and combinatorial therapies.
Collapse
Affiliation(s)
- Sonja Vukadin
- Department of Pharmacology and Biochemistry, Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (S.V.); (F.K.)
- Department of Pharmacology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Farah Khaznadar
- Department of Pharmacology and Biochemistry, Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (S.V.); (F.K.)
| | - Tomislav Kizivat
- Clinical Institute of Nuclear Medicine and Radiation Protection, University Hospital Osijek, 31000 Osijek, Croatia;
- Department of Nuclear Medicine and Oncology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Aleksandar Vcev
- Department of Pathophysiology, Physiology and Immunology, Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia;
- Department of Pathophysiology, Faculty of Medicine Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Department of Internal Medicine, University Hospital Osijek, 31000 Osijek, Croatia
| | - Martina Smolic
- Department of Pharmacology and Biochemistry, Faculty of Dental Medicine and Health Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia; (S.V.); (F.K.)
- Department of Pharmacology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| |
Collapse
|
35
|
Epigenetic Regulation of Cancer Immune Cells. Semin Cancer Biol 2021; 83:377-383. [PMID: 34182142 DOI: 10.1016/j.semcancer.2021.06.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 05/06/2021] [Accepted: 06/23/2021] [Indexed: 12/17/2022]
Abstract
The epigenetic regulation of immune response involves reversible and heritable changes that do not alter the DNA sequence. Though there have been extensive studies accomplished relating to epigenetic changes in cancer cells, recent focus has been shifted on epigenetic-mediated changes in the immune cells including T cells, Macrophages, Natural Killer cells and anti-tumor immune responses. This review compiles the most relevant and recent literature related to the role of epigenetic mechanisms including DNA methylation and histone modifications in immune cells of wide range of cancers. We also include recent research with respect to role of the most relevant transcription factors that epigenetically control the anti-tumor immune response. Finally, a statement of future direction that promises to look forward for strategies to improve immunotherapy in cancer.
Collapse
|
36
|
Peng X, Chen J, Li L, Sun Z, Liu J, Ren Y, Huang J, Chen J. Efficient Synthesis and Bioevaluation of Novel Dual Tubulin/Histone Deacetylase 3 Inhibitors as Potential Anticancer Agents. J Med Chem 2021; 64:8447-8473. [PMID: 34097389 DOI: 10.1021/acs.jmedchem.1c00413] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Novel dual HDAC3/tubulin inhibitors were designed and efficiently synthesized by combining the pharmacophores of SMART (tubulin inhibitor) and MS-275 (HDAC inhibitor), among which compound 15c was found to be the most potent and balanced HDAC3/tubulin dual inhibitor with high HDAC3 activity (IC50 = 30 nM) and selectivity (SI > 1000) as well as excellent antiproliferative potency against various cancer cell lines, including an HDAC-resistant gastric cancer cell line (YCC3/7) with IC50 values in the range of 30-144 nM. Compound 15c inhibited B16-F10 cancer cell migration and colony formation. In addition, 15c demonstrated significant in vivo antitumor efficacy in a B16-F10 melanoma tumor model with a better TGI (70.00%, 10 mg/kg) than that of the combination of MS-275 and SMART. Finally, 15c presented a safe cardiotoxicity profile and did not cause nephro-/hepatotoxicity. Collectively, this work shows that compound 15c represents a novel tubulin/HDAC3 dual-targeting agent deserving further investigation as a potential anticancer agent.
Collapse
Affiliation(s)
- Xiaopeng Peng
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jingxuan Chen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ling Li
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhiqiang Sun
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jin Liu
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yichang Ren
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Junli Huang
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jianjun Chen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
37
|
Wu P, Cai J, Fan S, Liu Q, Huyan T, He Y, Li X, Zhang L, Su J, Tie L. A novel risk score predicts prognosis in melanoma: The combination of three tumor-infiltrating immune cells and four immune-related genes. Clin Immunol 2021; 228:108751. [PMID: 33974996 DOI: 10.1016/j.clim.2021.108751] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 01/09/2023]
Abstract
Tumor-infiltrating immune cells (TIICs) and immune-related genes (IRGs) of melanoma are associated with prognosis. However, whether the combination of TIICs and IRGs can be used as prognostic clinical biomarkers are still unknown. Here, we downloaded transcription profile of melanoma from TCGA. Then, three TIICs and four IRGs that associated with the overall survival were used to constructed the Immune Cell Score (ICS) and Immune Gene Score (IGS) respectively. Next, to improve the accuracy of ICS and IGS for melanoma prognostic, we combined the ICS and IGS constructed the Immune Cell and Gene Score (ICGS) model. ICGS had higher accuracy and predictive ability than ICS or IGS. Meanwhile, ICGS model reliability was validated by two independent datasets of melanoma. Functional enrichment and protein-protein interaction network analysis based on ICGS were performed to identify T cell mediated immune and inflammatory response are highly associated with melanoma.
Collapse
Affiliation(s)
- Pin Wu
- Department of Pharmacology and Department of Pathology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing 100191, China
| | - Jiaying Cai
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Shengjun Fan
- Department of Pharmacology and Department of Pathology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing 100191, China
| | - Qian Liu
- Department of Pharmacology and Department of Pathology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing 100191, China
| | - Tianru Huyan
- Department of Pharmacology and Department of Pathology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing 100191, China
| | - Yao He
- Department of Pharmacology and Department of Pathology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing 100191, China
| | - Xuejun Li
- Department of Pharmacology and Department of Pathology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing 100191, China
| | - Long Zhang
- Department of Pathology and Department of Interventional Radiology and Vascular Surgery and Wound Healing Center, Peking University Third Hospital, Beijing 100191, China
| | - Jing Su
- Department of Pharmacology and Department of Pathology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Department of Pathology and Department of Interventional Radiology and Vascular Surgery and Wound Healing Center, Peking University Third Hospital, Beijing 100191, China.
| | - Lu Tie
- Department of Pharmacology and Department of Pathology, School of Basic Medical Sciences, Peking University, Beijing 100191, China; Beijing Key Laboratory of Tumor Systems Biology, Peking University, Beijing 100191, China.
| |
Collapse
|
38
|
Thinking Small: Small Molecules as Potential Synergistic Adjuncts to Checkpoint Inhibition in Melanoma. Int J Mol Sci 2021; 22:ijms22063228. [PMID: 33810078 PMCID: PMC8005112 DOI: 10.3390/ijms22063228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/17/2021] [Accepted: 03/17/2021] [Indexed: 12/11/2022] Open
Abstract
Metastatic melanoma remains the deadliest form of skin cancer. Immune checkpoint inhibition (ICI) immunotherapy has defined a new age in melanoma treatment, but responses remain inconsistent and some patients develop treatment resistance. The myriad of newly developed small molecular (SM) inhibitors of specific effector targets now affords a plethora of opportunities to increase therapeutic responses, even in resistant melanoma. In this review, we will discuss the multitude of SM classes currently under investigation, current and prospective clinical combinations of ICI and SM therapies, and their potential for synergism in melanoma eradication based on established mechanisms of immunotherapy resistance.
Collapse
|
39
|
Binder H, Schmidt M, Loeffler-Wirth H, Mortensen LS, Kunz M. Melanoma Single-Cell Biology in Experimental and Clinical Settings. J Clin Med 2021; 10:506. [PMID: 33535416 PMCID: PMC7867095 DOI: 10.3390/jcm10030506] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/20/2021] [Accepted: 01/25/2021] [Indexed: 01/05/2023] Open
Abstract
Cellular heterogeneity is regarded as a major factor for treatment response and resistance in a variety of malignant tumors, including malignant melanoma. More recent developments of single-cell sequencing technology provided deeper insights into this phenomenon. Single-cell data were used to identify prognostic subtypes of melanoma tumors, with a special emphasis on immune cells and fibroblasts in the tumor microenvironment. Moreover, treatment resistance to checkpoint inhibitor therapy has been shown to be associated with a set of differentially expressed immune cell signatures unraveling new targetable intracellular signaling pathways. Characterization of T cell states under checkpoint inhibitor treatment showed that exhausted CD8+ T cell types in melanoma lesions still have a high proliferative index. Other studies identified treatment resistance mechanisms to targeted treatment against the mutated BRAF serine/threonine protein kinase including repression of the melanoma differentiation gene microphthalmia-associated transcription factor (MITF) and induction of AXL receptor tyrosine kinase. Interestingly, treatment resistance mechanisms not only included selection processes of pre-existing subclones but also transition between different states of gene expression. Taken together, single-cell technology has provided deeper insights into melanoma biology and has put forward our understanding of the role of tumor heterogeneity and transcriptional plasticity, which may impact on innovative clinical trial designs and experimental approaches.
Collapse
Affiliation(s)
- Hans Binder
- Interdisciplinary Center for Bioinformatics, University of Leipzig, 04107 Leipzig, Germany; (H.B.); (M.S.); (H.L.-W.); (L.S.M.)
| | - Maria Schmidt
- Interdisciplinary Center for Bioinformatics, University of Leipzig, 04107 Leipzig, Germany; (H.B.); (M.S.); (H.L.-W.); (L.S.M.)
| | - Henry Loeffler-Wirth
- Interdisciplinary Center for Bioinformatics, University of Leipzig, 04107 Leipzig, Germany; (H.B.); (M.S.); (H.L.-W.); (L.S.M.)
| | - Lena Suenke Mortensen
- Interdisciplinary Center for Bioinformatics, University of Leipzig, 04107 Leipzig, Germany; (H.B.); (M.S.); (H.L.-W.); (L.S.M.)
| | - Manfred Kunz
- Department of Dermatology, Venereology and Allergology, University of Leipzig Medical Center, Philipp-Rosenthal-Str. 23-25, 04103 Leipzig, Germany
| |
Collapse
|
40
|
Yan Z, Yao S, Liu Y, Zhang J, Li P, Wang H, Chu J, Zhao S, Yao Z. Durable Response to Sintilimab and Chidamide in a Patient With Pegaspargase- and Immunotherapy-Resistant NK/T-Cell Lymphoma: Case Report and Literature Review. Front Oncol 2020; 10:608304. [PMID: 33363038 PMCID: PMC7759664 DOI: 10.3389/fonc.2020.608304] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 11/09/2020] [Indexed: 12/17/2022] Open
Abstract
The prognosis of patients with relapsed/refractory NK/T-cell lymphoma (NKTCL) is dismal. Immunotherapy has showed encouraging anti-tumor activity in patients with asparaginase-resistant NKTCL; however, only a portion of patients benefit and the median response duration is rather short. Treatment strategies have not been identified for immunotherapy-resistant NKTCL. We describe a patient with primary cutaneous NKTCL experienced disease progression after pegaspargase-based chemotherapy and PD-1 inhibitor (sintilimab)-based immunotherapy. Following a combined treatment of sintilimab and the HDAC inhibitor chidamide, the patient achieved a durable complete molecular response with mild toxicity. This case indicates that the combination of PD-1 inhibitor and HDAC inhibitor might be a treatment choice for immunotherapy-resistant NKTCL.
Collapse
Affiliation(s)
- Zheng Yan
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Shuna Yao
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Yanyan Liu
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Jianbo Zhang
- Department of Pathology, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Peng Li
- The PET-CT Center of Henan Province, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Haiying Wang
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Junfeng Chu
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Shuang Zhao
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Zhihua Yao
- Department of Internal Medicine, Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| |
Collapse
|
41
|
Peters GJ, van Gemert FPA, Kathmann I, Reddy G, Cillessen SAGM, Jansen G. Schedule-Dependent Synergy Between the Histone Deacetylase Inhibitor Belinostat and the Dihydrofolate Reductase Inhibitor Pralatrexate in T-and B-cell Lymphoma Cells in vitro. Front Cell Dev Biol 2020; 8:577215. [PMID: 33163492 PMCID: PMC7581941 DOI: 10.3389/fcell.2020.577215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 09/09/2020] [Indexed: 11/21/2022] Open
Abstract
Pralatrexate (Folotyn; PLX) and belinostat (Beleodaq; BLS) are registered for the treatment of patients with peripheral T-cell lymphoma (PTCL) and are being considered for other lymphomas. In this study we investigated whether BLS had the ability to potentiate the cytotoxicity of PLX. A panel of lymphoma cell lines was used for the combination studies: the B-cell SUDHL-4, SUDHL-5, HT, Jeko-1 and T-cell Karpas-299 and Hut-78. Uptake of PLX was mediated by the reduced folate carrier (RFC). PLX showed a 6-fold better RFC substrate affinity compared to methotrexate, and 2-fold better than levoleucovorin (l-LV). Sensitivity expressed as the concentration that resulted in 50% growth inhibition (IC50) after 72 hr exposure to PLX varied from 2.8 to 20 nM and for BLS from 72 to 233 nM, independent of the background of the cell lines. The interaction between BLS and PLX was studied using the median-drug effect analysis. At a fixed molar ratio between the drugs based on the IC50 concentration the average combination index (CI) for all cell lines showed additivity (CI: around 1.0). In three selected cell lines (SUDHL-4, SUDHL-5, and HT) sequential exposure (24 h pretreatment with BLS, followed by 48 h to PLX + BLS), did not improve interaction (CI: 0.9-1.4). As an alternative approach a non-fixed ratio was used by exposing SUDHL-4, SUDHL-5, and HT cells to IC25 concentrations of either BLS or PLX in combination with the other drug. Exposure to IC25 of PLX did not decrease the IC50 for BLS (CI from 0.6-1.2), but exposure to IC25 of BLS markedly increased PLX sensitivity (low CIs from 0.40 to 0.66). Mechanistic studies focused on induction of apoptosis, and showed cleavage of predominantly caspase-9 in HT and SUDHL-4 cells for both drugs at their IC50s, being similar in the combination setting. Moreover, at these concentrations, the drugs were shown to confer an S-phase arrest. In conclusion, the combination of PLX and BLS showed additivity in various lymphoma cell lines, with a schedule-dependent synergism in B-cell lymphoma. Based on these data, proficient inhibition of HDAC activity by BLS holds promise in sensitization of tumor cells to PLX.
Collapse
Affiliation(s)
- Godefridus J. Peters
- Department of Medical Oncology, Amsterdam UMC, VU University Medical Center Amsterdam, Amsterdam, Netherlands
- Department of Biochemistry, Medical University of Gdańsk, Gdańsk, Poland
| | - Frank P. A. van Gemert
- Department of Medical Oncology, Amsterdam UMC, VU University Medical Center Amsterdam, Amsterdam, Netherlands
| | - Ietje Kathmann
- Department of Medical Oncology, Amsterdam UMC, VU University Medical Center Amsterdam, Amsterdam, Netherlands
| | - Guru Reddy
- Spectrum Pharmaceuticals, Irvine, CA, United States
| | - Saskia A. G. M. Cillessen
- Department of Pathology, Amsterdam UMC, VU University Medical Center Amsterdam, Amsterdam, Netherlands
| | - Gerrit Jansen
- Amsterdam Rheumatology and Immunology Center, Amsterdam UMC, VU University Medical Center Amsterdam, Amsterdam, Netherlands
| |
Collapse
|