1
|
Xie H, Jiang J, Cao S, Xu X, Zhou J, Zhang R, Huang B, Lu P, Peng L, Liu M. The Role of Gut Microbiota-Derived Trimethylamine N-Oxide in the Pathogenesis and Treatment of Mild Cognitive Impairment. Int J Mol Sci 2025; 26:1373. [PMID: 39941141 PMCID: PMC11818489 DOI: 10.3390/ijms26031373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/16/2025] Open
Abstract
Mild cognitive impairment (MCI) represents a transitional stage between normal aging and dementia, often considered critical for dementia prevention. Despite its significance, no effective clinical treatment for MCI has yet been established. Emerging evidence has demonstrated a strong association between trimethylamine-N-oxide (TMAO), a prominent metabolite derived from the gut microbiota, and MCI, highlighting its potential as a biomarker and therapeutic target. TMAO has been implicated in increasing MCI risk through its influence on factors such as hypertension, cardiovascular disease, depression, diabetes, and stroke. Moreover, it contributes to MCI by promoting oxidative stress, disrupting the blood-brain barrier, impairing synaptic plasticity, inducing inflammation, causing mitochondrial metabolic disturbances, and facilitating abnormal protein aggregation. This review further explores therapeutic strategies targeting TMAO to mitigate MCI progression.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Liang Peng
- School of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Mi Liu
- School of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha 410208, China
| |
Collapse
|
2
|
Jaworska K, Kopacz W, Koper M, Ufnal M. Microbiome-Derived Trimethylamine N-Oxide (TMAO) as a Multifaceted Biomarker in Cardiovascular Disease: Challenges and Opportunities. Int J Mol Sci 2024; 25:12511. [PMID: 39684223 DOI: 10.3390/ijms252312511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/19/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Biomarkers play a crucial role in various stages of disease management, including screening, diagnosis, prediction, prognosis, treatment, and safety monitoring. Although they are powerful tools in disease diagnosis, management, and drug development, identifying and validating reliable biomarkers remains a significant challenge. Among potential microbiome-derived biomarkers, trimethylamine N-oxide (TMAO) has gained notable attention for its link to atherosclerosis and cardiovascular risk. However, despite the growing body of research on TMAO, its practical application in clinical settings for disease management and patient outcome enhancement is still not a reality. This paper presents recent data on the utility of TMAO as a cardiovascular biomarker, categorized by its various roles: diagnostic, prognostic, susceptibility/risk, monitoring, pharmacodynamic/response, predictive, and safety. It also briefly discusses research on TMAO's potential role in cardiovascular disease development. While TMAO shows promise, particularly in prognostic applications, its reliability as a biomarker has been inconsistent across studies. These variances may result from several confounding factors that affect TMAO plasma levels, including diet, kidney function, and demographic variables. The review aims to elucidate the specific contexts in which TMAO can be valuable, potentially leading to more personalized and effective management of cardiovascular disease.
Collapse
Affiliation(s)
- Kinga Jaworska
- Laboratory of Centre for Preclinical Research, Department of Experimental Physiology and Pathophysiology, Medical University of Warsaw, Banacha 1B, 02-091 Warsaw, Poland
| | - Wojciech Kopacz
- Laboratory of Centre for Preclinical Research, Department of Experimental Physiology and Pathophysiology, Medical University of Warsaw, Banacha 1B, 02-091 Warsaw, Poland
| | - Mateusz Koper
- Laboratory of Centre for Preclinical Research, Department of Experimental Physiology and Pathophysiology, Medical University of Warsaw, Banacha 1B, 02-091 Warsaw, Poland
| | - Marcin Ufnal
- Laboratory of Centre for Preclinical Research, Department of Experimental Physiology and Pathophysiology, Medical University of Warsaw, Banacha 1B, 02-091 Warsaw, Poland
| |
Collapse
|
3
|
Yazdani A, Mendez-Giraldez R, Yazdani A, Wang RS, Schaid DJ, Kong SW, Hadi MR, Samiei A, Samiei E, Wittenbecher C, Lasky-Su J, Clish CB, Muehlschlegel JD, Marotta F, Loscalzo J, Mora S, Chasman DI, Larson MG, Elsea SH. Broadcasters, receivers, functional groups of metabolites, and the link to heart failure by revealing metabolomic network connectivity. Metabolomics 2024; 20:71. [PMID: 38972029 PMCID: PMC12060728 DOI: 10.1007/s11306-024-02141-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 06/10/2024] [Indexed: 07/08/2024]
Abstract
BACKGROUND AND OBJECTIVE Blood-based small molecule metabolites offer easy accessibility and hold significant potential for insights into health processes, the impact of lifestyle, and genetic variation on disease, enabling precise risk prevention. In a prospective study with records of heart failure (HF) incidence, we present metabolite profiling data from individuals without HF at baseline. METHODS We uncovered the interconnectivity of metabolites using data-driven and causal networks augmented with polygenic factors. Exploring the networks, we identified metabolite broadcasters, receivers, mediators, and subnetworks corresponding to functional classes of metabolites, and provided insights into the link between metabolomic architecture and regulation in health. We incorporated the network structure into the identification of metabolites associated with HF to control the effect of confounding metabolites. RESULTS We identified metabolites associated with higher and lower risk of HF incidence, such as glycine, ureidopropionic and glycocholic acids, and LPC 18:2. These associations were not confounded by the other metabolites due to uncovering the connectivity among metabolites and adjusting each association for the confounding metabolites. Examples of our findings include the direct influence of asparagine on glycine, both of which were inversely associated with HF. These two metabolites were influenced by polygenic factors and only essential amino acids, which are not synthesized in the human body and are obtained directly from the diet. CONCLUSION Metabolites may play a critical role in linking genetic background and lifestyle factors to HF incidence. Revealing the underlying connectivity of metabolites associated with HF strengthens the findings and facilitates studying complex conditions like HF.
Collapse
Affiliation(s)
- Azam Yazdani
- Division of Preventive Medicine, Department of Medicine, Brigham Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Harvard Data Science Initiative, The Broad Institute, Harvard Medical School, Boston, USA
| | | | - Akram Yazdani
- Division of Clinical and Translational Sciences, Department of Internal Medicine, The University of Texas Health Science Center at Houston, McGovern Medical School, Houston, USA
| | - Rui-Sheng Wang
- Department of Medicine, Brigham Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniel J. Schaid
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55902, USA
| | - Sek Won Kong
- Computational Health Informatics Program, Boston Children’s Hospital, Boston, MA, USA
| | - M. Reza Hadi
- School of Mathematics, University of Science and Technology of Iran, Tehran, Iran
| | - Ahmad Samiei
- Division of Pulmonary Medicine, Boston Children’s Hospital, Boston, USA
| | | | - Clemens Wittenbecher
- Division of Food and Nutrition Science, Department of Life Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Jessica Lasky-Su
- Department of Medicine, Brigham Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | - Francesco Marotta
- ReGenera R&D International for Aging Intervention and Vitality & Longevity Medical Science Commission, Femtec, Milano, Italy
| | - Joseph Loscalzo
- The Division of Cardiovascular Medicine, Department of Medicine, Brigham Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Samia Mora
- Department of Medicine, Brigham Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniel I. Chasman
- Department of Medicine, Brigham Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Martin G. Larson
- Department of Biostatistics, Boston University, Boston, MA 02118, USA
| | | |
Collapse
|
4
|
Li X, Tan JS, Xu J, Zhao Z, Zhao Q, Zhang Y, Duan A, Huang Z, Zhang S, Gao L, Yang YJ, Yang T, Jin Q, Luo Q, Yang Y, Liu Z. Causal impact of gut microbiota and associated metabolites on pulmonary arterial hypertension: a bidirectional Mendelian randomization study. BMC Pulm Med 2024; 24:185. [PMID: 38632547 PMCID: PMC11025270 DOI: 10.1186/s12890-024-03008-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 04/10/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Patients with pulmonary arterial hypertension (PAH) exhibit a distinct gut microbiota profile; however, the causal association between gut microbiota, associated metabolites, and PAH remains elusive. We aimed to investigate this causal association and to explore whether dietary patterns play a role in its regulation. METHODS Summary statistics of gut microbiota, associated metabolites, diet, and PAH were obtained from genome-wide association studies. The inverse variance weighted method was primarily used to measure the causal effect, with sensitivity analyses using the weighted median, weighted mode, simple mode, MR pleiotropy residual sum and outlier (MR-PRESSO), and MR-Egger methods. A reverse Mendelian randomisation analysis was also performed. RESULTS Alistipes (odds ratio [OR] = 2.269, 95% confidence interval [CI] 1.100-4.679, P = 0.027) and Victivallis (OR = 1.558, 95% CI 1.019-2.380, P = 0.040) were associated with an increased risk of PAH, while Coprobacter (OR = 0.585, 95% CI 0.358-0.956, P = 0.032), Erysipelotrichaceae (UCG003) (OR = 0.494, 95% CI 0.245-0.996, P = 0.049), Lachnospiraceae (UCG008) (OR = 0.596, 95% CI 0.367-0.968, P = 0.036), and Ruminococcaceae (UCG005) (OR = 0.472, 95% CI 0.231-0.962, P = 0.039) protected against PAH. No associations were observed between PAH and gut microbiota-derived metabolites (trimethylamine N-oxide [TMAO] and its precursors betaine, carnitine, and choline), short-chain fatty acids (SCFAs), or diet. Although inverse variance-weighted analysis demonstrated that elevated choline levels were correlated with an increased risk of PAH, the results were not consistent with the sensitivity analysis. Therefore, the association was considered insignificant. Reverse Mendelian randomisation analysis demonstrated that PAH had no causal impact on gut microbiota-derived metabolites but could contribute to increased the levels of Butyricicoccus and Holdemania, while decreasing the levels of Clostridium innocuum, Defluviitaleaceae UCG011, Eisenbergiella, and Ruminiclostridium 5. CONCLUSIONS Gut microbiota were discovered suggestive evidence of the impacts of genetically predicted abundancy of certain microbial genera on PAH. Results of our study point that the production of SCFAs or TMAO does not mediate this association, which remains to be explained mechanistically.
Collapse
Affiliation(s)
- Xin Li
- Center for Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Beilishi Rd, Xicheng District, Beijing, 10003, China
| | - Jiang-Shan Tan
- Emergency and Critical Care Center, Fuwai Hospital, National Center for Cardiovascular Diseases of China, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Xu
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Zhihui Zhao
- Center for Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Beilishi Rd, Xicheng District, Beijing, 10003, China
| | - Qing Zhao
- Center for Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Beilishi Rd, Xicheng District, Beijing, 10003, China
| | - Yi Zhang
- Center for Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Beilishi Rd, Xicheng District, Beijing, 10003, China
- Department of ICU, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- University of Electronic Science and Technology of China, Chengdu, China
| | - Anqi Duan
- Center for Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Beilishi Rd, Xicheng District, Beijing, 10003, China
| | - Zhihua Huang
- Center for Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Beilishi Rd, Xicheng District, Beijing, 10003, China
| | - Sicheng Zhang
- Center for Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Beilishi Rd, Xicheng District, Beijing, 10003, China
| | - Luyang Gao
- Center for Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Beilishi Rd, Xicheng District, Beijing, 10003, China
| | - Yue Jin Yang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tao Yang
- Center for Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Beilishi Rd, Xicheng District, Beijing, 10003, China
| | - Qi Jin
- Center for Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Beilishi Rd, Xicheng District, Beijing, 10003, China
- Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai Institute of Cardiovascular Diseases, Shanghai, China
| | - Qin Luo
- Center for Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Beilishi Rd, Xicheng District, Beijing, 10003, China.
| | - Yanmin Yang
- Emergency and Critical Care Center, Fuwai Hospital, National Center for Cardiovascular Diseases of China, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Zhihong Liu
- Center for Pulmonary Vascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, No.167 Beilishi Rd, Xicheng District, Beijing, 10003, China.
| |
Collapse
|
5
|
Yang Y, Zhang H, Wang Y, Xu J, Shu S, Wang P, Ding S, Huang Y, Zheng L, Yang Y, Xiong C. Promising dawn in the management of pulmonary hypertension: The mystery veil of gut microbiota. IMETA 2024; 3:e159. [PMID: 38882495 PMCID: PMC11170974 DOI: 10.1002/imt2.159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/15/2023] [Accepted: 11/25/2023] [Indexed: 06/18/2024]
Abstract
The gut microbiota is a complex community of microorganisms inhabiting the intestinal tract, which plays a vital role in human health. It is intricately involved in the metabolism, and it also affects diverse physiological processes. The gut-lung axis is a bidirectional pathway between the gastrointestinal tract and the lungs. Recent research has shown that the gut microbiome plays a crucial role in immune response regulation in the lungs and the development of lung diseases. In this review, we present the interrelated factors concerning gut microbiota and the associated metabolites in pulmonary hypertension (PH), a lethal disease characterized by elevated pulmonary vascular pressure and resistance. Our research team explored the role of gut-microbiota-derived metabolites in cardiovascular diseases and established the correlation between metabolites such as putrescine, succinate, trimethylamine N-oxide (TMAO), and N, N, N-trimethyl-5-aminovaleric acid with the diseases. Furthermore, we found that specific metabolites, such as TMAO and betaine, have significant clinical value in PH, suggesting their potential as biomarkers in disease management. In detailing the interplay between the gut microbiota, their metabolites, and PH, we underscored the potential therapeutic approaches modulating this microbiota. Ultimately, we endeavor to alleviate the substantial socioeconomic burden associated with this disease. This review presents a unique exploratory analysis of the link between gut microbiota and PH, intending to propel further investigations in the gut-lung axis.
Collapse
Affiliation(s)
- Yicheng Yang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Hanwen Zhang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Yaoyao Wang
- State Key Laboratory of Cardiovascular Disease, Department of Nephrology Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Jing Xu
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
- Department of Genetics University Medical Center Groningen, University of Groningen Groningen The Netherlands
| | - Songren Shu
- State Key Laboratory of Cardiovascular Disease, Department of Cardiac Surgery Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Peizhi Wang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
- Center for Molecular Cardiology University of Zurich Zurich Switzerland
| | - Shusi Ding
- China National Clinical Research Center for Neurological Diseases, Tiantan Hospital, Advanced Innovation Center for Human Brain Protection The Capital Medical University Beijing China
| | - Yuan Huang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiac Surgery Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Lemin Zheng
- China National Clinical Research Center for Neurological Diseases, Tiantan Hospital, Advanced Innovation Center for Human Brain Protection The Capital Medical University Beijing China
- Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, School of Basic Medical Sciences, Health Science Center The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, Peking University Beijing China
| | - Yuejin Yang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| | - Changming Xiong
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College Beijing China
| |
Collapse
|
6
|
Yazdani A. WITHDRAWN: Broadcasters, receivers, functional groups of metabolites and the link to heart failure using polygenic factors. RESEARCH SQUARE 2024:rs.3.rs-3272974. [PMID: 37674714 PMCID: PMC10479558 DOI: 10.21203/rs.3.rs-3272974/v2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The full text of this preprint has been withdrawn, as it was submitted in error. Therefore, the authors do not wish this work to be cited as a reference. Questions should be directed to the corresponding author.
Collapse
|
7
|
Yazdani A. WITHDRAWN: Broadcasters, receivers, functional groups of metabolites and the link to heart failure using polygenic factors. RESEARCH SQUARE 2024:rs.3.rs-3272974. [PMID: 37674714 PMCID: PMC10479558 DOI: 10.21203/rs.3.rs-3272974/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
The full text of this preprint has been withdrawn, as it was submitted in error. Therefore, the authors do not wish this work to be cited as a reference. Questions should be directed to the corresponding author.
Collapse
|
8
|
Hou C, Chen Y, Hazeena SH, Tain Y, Hsieh C, Chen D, Liu R, Shih M. Cardiovascular risk of dietary trimethylamine oxide precursors and the therapeutic potential of resveratrol and its derivatives. FEBS Open Bio 2024; 14:358-379. [PMID: 38151750 PMCID: PMC10909991 DOI: 10.1002/2211-5463.13762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 12/11/2023] [Accepted: 12/27/2023] [Indexed: 12/29/2023] Open
Abstract
Overall diet, lifestyle choices, genetic predisposition, and other underlying health conditions may contribute to higher trimethylamine N-oxide (TMAO) levels and increased cardiovascular risk. This review explores the potential therapeutic ability of RSV to protect against cardiovascular diseases (CVD) and affect TMAO levels. This review considers recent studies on the association of TMAO with CVD. It also examines the sources, mechanisms, and metabolism of TMAO along with TMAO-induced cardiovascular events. Plant polyphenolic compounds, including resveratrol (RSV), and their cardioprotective mechanism of regulating TMAO levels and modifying gut microbiota are also discussed here. RSV's salient features and bioactive properties in reducing CVD have been evaluated. The close relationship between TMAO and CVD is clearly understood from currently available data, making it a potent biomarker for CVD. Precise investigation, including clinical trials, must be performed to understand RSV's mechanism, dose, effects, and derivatives as a cardioprotectant agent.
Collapse
Affiliation(s)
- Chih‐Yao Hou
- Department of Seafood Science, College of HydrosphereNational Kaohsiung University of Science and TechnologyTaiwan
| | - Yu‐Wei Chen
- Department of Food Science and BiotechnologyNational Chung Hsing UniversityTaichungTaiwan
- Department of PediatricsKaohsiung Chang Gung Memorial HospitalTaiwan
| | - Sulfath Hakkim Hazeena
- Department of Seafood Science, College of HydrosphereNational Kaohsiung University of Science and TechnologyTaiwan
| | - You‐Lin Tain
- Department of PediatricsKaohsiung Chang Gung Memorial HospitalTaiwan
- Institute for Translational Research in BiomedicineKaohsiung Chang Gung Memorial HospitalTaiwan
- College of MedicineChang Gung UniversityTaoyuanTaiwan
| | - Chang‐Wei Hsieh
- Department of Food Science and BiotechnologyNational Chung Hsing UniversityTaichungTaiwan
- Department of Medical ResearchChina Medical University HospitalTaichungTaiwan
| | - De‐Quan Chen
- Department of Seafood Science, College of HydrosphereNational Kaohsiung University of Science and TechnologyTaiwan
| | - Rou‐Yun Liu
- Department of Seafood Science, College of HydrosphereNational Kaohsiung University of Science and TechnologyTaiwan
| | - Ming‐Kuei Shih
- Graduate Institute of Food Culture and InnovationNational Kaohsiung University of Hospitality and TourismTaiwan
| |
Collapse
|
9
|
Maksymiuk KM, Szudzik M, Samborowska E, Chabowski D, Konop M, Ufnal M. Mice, rats, and guinea pigs differ in FMOs expression and tissue concentration of TMAO, a gut bacteria-derived biomarker of cardiovascular and metabolic diseases. PLoS One 2024; 19:e0297474. [PMID: 38266015 PMCID: PMC10807837 DOI: 10.1371/journal.pone.0297474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/06/2024] [Indexed: 01/26/2024] Open
Abstract
INTRODUCTION Increased plasma trimethylamine oxide (TMAO) is observed in cardiovascular and metabolic diseases, originating from the gut microbiota product, trimethylamine (TMA), via flavin-containing monooxygenases (FMOs)-dependent oxidation. Numerous studies have investigated the association between plasma TMAO and various pathologies, yet limited knowledge exists regarding tissue concentrations of TMAO, TMAO precursors, and interspecies variability. METHODS Chromatography coupled with mass spectrometry was employed to evaluate tissue concentrations of TMAO and its precursors in adult male mice, rats, and guinea pigs. FMO mRNA and protein levels were assessed through PCR and Western blot, respectively. RESULTS Plasma TMAO levels were similar among the studied species. However, significant differences in tissue concentrations of TMAO were observed between mice, rats, and guinea pigs. The rat renal medulla exhibited the highest TMAO concentration, while the lowest was found in the mouse liver. Mice demonstrated significantly higher plasma TMA concentrations compared to rats and guinea pigs, with the highest TMA concentration found in the mouse renal medulla and the lowest in the rat lungs. FMO5 exhibited the highest expression in mouse liver, while FMO3 was highly expressed in rats. Guinea pigs displayed low expression of FMOs in this tissue. CONCLUSION Despite similar plasma TMAO levels, mice, rats, and guinea pigs exhibited significant differences in tissue concentrations of TMA, TMAO, and FMO expression. These interspecies variations should be considered in the design and interpretation of experimental studies. Furthermore, these findings may suggest a diverse importance of the TMAO pathway in the physiology of the evaluated species.
Collapse
Affiliation(s)
- Klaudia M. Maksymiuk
- Laboratory of the Centre for Preclinical Research, Department of Experimental Physiology and Pathophysiology, Medical University of Warsaw, Warsaw, Poland
| | - Mateusz Szudzik
- Laboratory of the Centre for Preclinical Research, Department of Experimental Physiology and Pathophysiology, Medical University of Warsaw, Warsaw, Poland
| | - Emilia Samborowska
- Mass spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Dawid Chabowski
- Laboratory of the Centre for Preclinical Research, Department of Experimental Physiology and Pathophysiology, Medical University of Warsaw, Warsaw, Poland
| | - Marek Konop
- Laboratory of the Centre for Preclinical Research, Department of Experimental Physiology and Pathophysiology, Medical University of Warsaw, Warsaw, Poland
| | - Marcin Ufnal
- Laboratory of the Centre for Preclinical Research, Department of Experimental Physiology and Pathophysiology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
10
|
Usman I, Anwar A, Shukla S, Pathak P. Mechanistic Review on the Role of Gut Microbiota in the Pathology of Cardiovascular Diseases. Cardiovasc Hematol Disord Drug Targets 2024; 24:13-39. [PMID: 38879769 DOI: 10.2174/011871529x310857240607103028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/30/2024] [Accepted: 05/17/2024] [Indexed: 07/31/2024]
Abstract
Cardiovascular diseases (CVDs), which stand as the primary contributors to illness and death on a global scale, include vital risk factors like hyperlipidemia, hypertension, diabetes, and smoking, to name a few. However, conventional cardiovascular risk factors offer only partial insight into the complexity of CVDs. Lately, a growing body of research has illuminated that the gut microbiome and its by-products are also of paramount importance in the initiation and progression of CVDs. The gastrointestinal tract houses trillions of microorganisms, commonly known as gut microbiota, that metabolize nutrients, yielding substances like trimethylamine-N-oxide (TMAO), bile acids (BAs), short-chain fatty acids (SCFAs), indoxyl sulfate (IS), and so on. Strategies aimed at addressing these microbes and their correlated biological pathways have shown promise in the management and diagnosis of CVDs. This review offers a comprehensive examination of how the gut microbiota contributes to the pathogenesis of CVDs, particularly atherosclerosis, hypertension, heart failure (HF), and atrial fibrillation (AF), explores potential underlying mechanisms, and highlights emerging therapeutic prospects in this dynamic domain.
Collapse
Affiliation(s)
- Iqra Usman
- Department of Pharmacy, Amity Institute of Pharmacy, Amity University, Lucknow Campus, U.P., 226010, India
| | - Aamir Anwar
- Department of Pharmacy, Amity Institute of Pharmacy, Amity University, Lucknow Campus, U.P., 226010, India
| | - Shivang Shukla
- Department of Pharmacy, Amity Institute of Pharmacy, Amity University, Lucknow Campus, U.P., 226010, India
| | - Priya Pathak
- Department of Pharmacy, Amity Institute of Pharmacy, Amity University, Lucknow Campus, U.P., 226010, India
| |
Collapse
|
11
|
Yang Y, Li X, Wang P, Shu S, Liu B, Liang Y, Yang B, Zhao Z, Luo Q, Liu Z, Zheng L, Zeng Q, Xiong C. The significance of dynamic monitoring plasma TMAO level in pulmonary arterial hypertension - a cohort study. Ther Adv Respir Dis 2024; 18:17534666231224692. [PMID: 38205629 PMCID: PMC10785727 DOI: 10.1177/17534666231224692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND Gut microbiota assumes an essential role in the development and progression of pulmonary arterial hypertension (PAH). Trimethylamine N-oxide (TMAO), a gut microbiota-dependent metabolite, is correlated with the prognosis of patients with PAH. However, the correlation between changes in TMAO (ΔTMAO) and the prognosis of PAH remains elusive. OBJECTIVES To investigate the association between ΔTMAO and prognosis of PAH, and explore whether dynamic assessment of TMAO level was superior to measurement at a single time point in predicting prognosis. DESIGN Single-center cohort study. METHODS Consecutive patients diagnosed with PAH and had at least two TMAO measurements taken from May 2019 to June 2020 were eligible. The outcome events of this study were defined as adverse clinical events. RESULTS A total of 117 patients with PAH who had two TMAO measurements and follow-up were included in this study. Patients with ΔTMAO ⩾1.082 μmol/L had over four times increased risk of adverse clinical events than their counterparts after adjusting for confounders [hazard ratio (HR) 4.050, 95% confidence interval (CI): 1.468-11.174; p = 0.007]. Patients with constant high TMAO levels at both time points had the highest risk of adverse clinical events compared with patients with constant low TMAO levels (HR 3.717, 95% CI: 1.627-8.492; p = 0.002). ΔTMAO was also associated with changes in parameters reflecting PAH severity (p < 0.05). CONCLUSION Changes in TMAO were independently correlated with prognosis in patients with PAH, irrespective of baseline level of TMAO. ΔTMAO also correlated with alteration in disease severity. Repeated assessment of TMAO level contributes to better identification of patients with increased risk of adverse clinical events.
Collapse
Affiliation(s)
- Yicheng Yang
- Center of Respiratory and Pulmonary Vascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Li
- Center of Respiratory and Pulmonary Vascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Peizhi Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Songren Shu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bingyang Liu
- Center of Respiratory and Pulmonary Vascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanru Liang
- Center of Respiratory and Pulmonary Vascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Beilan Yang
- Center of Respiratory and Pulmonary Vascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhihui Zhao
- Center of Respiratory and Pulmonary Vascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qin Luo
- Center of Respiratory and Pulmonary Vascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhihong Liu
- Center of Respiratory and Pulmonary Vascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lemin Zheng
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Health Science Center, Peking University, No. 38 Xueyuan Road, Haidian District, Beijing 100083, China
- China National Clinical Research Center for Neurological Diseases, Tiantan Hospital, Advanced Innovation Center for Human Brain Protection, The Capital Medical University, Beijing 100050, China
| | - Qixian Zeng
- Center of Respiratory and Pulmonary Vascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 North Lishi Road, Xicheng District, Beijing 100037, China
| | - Changming Xiong
- Center of Respiratory and Pulmonary Vascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 167 North Lishi Road, Xicheng District, Beijing 100037, China
| |
Collapse
|
12
|
Garcia CK, Gambino BJ, Robinson GP, Rua MT, Alzahrani JM, Clanton TL. Delayed metabolic disturbances in the myocardium after exertional heat stroke: contrasting effects of exertion and thermal load. J Appl Physiol (1985) 2023; 135:1186-1198. [PMID: 37795530 PMCID: PMC10979828 DOI: 10.1152/japplphysiol.00372.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/05/2023] [Accepted: 09/27/2023] [Indexed: 10/06/2023] Open
Abstract
Epidemiological studies report higher risks of cardiovascular disease in humans exposed to heat stroke earlier in life. Previously, we explored mechanistic links between heat stroke and developing cardiac abnormalities using a preclinical mouse model of exertional heat stroke (EHS). Profound metabolic abnormalities developed in the ventricles of females but not males after 2 wk of recovery. Here we tested whether this lack of response in males could be attributed to the lower exercise performances or reduced thermal loads they experienced with the same running protocol. We systematically altered environmental temperature (Te) during EHS to manipulate heat exposure and exercise performance in the males. Three groups of adult C57BL/6 male mice were studied: "EHS-34" (Te = 34°C), "EHS-41" (Te = 41°C), and "EHS-39.5" (Te = 39.5°C). Mice ran until symptom limitation (unconsciousness), reaching max core temperature (Tc,max). After a 2-wk recovery, the mice were euthanized, and the ventricles were removed for untargeted metabolomics. Results were compared against age-matched nonexercise controls. The EHS-34 mice greatly elevated their exercise performance but reached lower Tc,max and lower thermal loads. The EHS-41 mice exhibited equivalent thermal loads, exercise times, and Tc,max compared with EHS-39.5. The ventricles from EHS-34 mice exhibited the greatest metabolic disturbances in the heart, characterized by shifts toward glucose metabolism, reductions in acylcarnitines, increased amino acid metabolites, elevations in antioxidants, altered TCA cycle flux, and increased xenobiotics. In conclusion, delayed metabolic disturbances following EHS in male myocardium appear to be greatly amplified by higher levels of exertion in the heat, even with lower thermal loads and max core temperatures.NEW & NOTEWORTHY Epidemiological data demonstrate greater cardiovascular risk in patients with previous heat stroke exposure. Using a preclinical mouse model of exertional heat stroke, male mice were exposed to one of three environmental temperatures (Te) during exercise. Paradoxically, after 2 wk, the mice in the lowest Te, exhibiting the largest exercise response and lowest heat load, had the greatest ventricular metabolic disturbances. Metabolic outcomes resemble developing left ventricular hypertrophy or stress-induced heart disease.
Collapse
Affiliation(s)
- Christian K Garcia
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, United States
| | - Bryce J Gambino
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, United States
| | - Gerard P Robinson
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, United States
| | - Michael T Rua
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, United States
| | - Jamal M Alzahrani
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, United States
| | - Thomas L Clanton
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, United States
| |
Collapse
|
13
|
Ma L, Zhang L, Li J, Zhang X, Xie Y, Li X, Yang B, Yang H. The potential mechanism of gut microbiota-microbial metabolites-mitochondrial axis in progression of diabetic kidney disease. Mol Med 2023; 29:148. [PMID: 37907885 PMCID: PMC10617243 DOI: 10.1186/s10020-023-00745-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/19/2023] [Indexed: 11/02/2023] Open
Abstract
Diabetic kidney disease (DKD), has become the main cause of end-stage renal disease (ESRD) worldwide. Lately, it has been shown that the onset and advancement of DKD are linked to imbalances of gut microbiota and the abnormal generation of microbial metabolites. Similarly, a body of recent evidence revealed that biological alterations of mitochondria ranging from mitochondrial dysfunction and morphology can also exert significant effects on the occurrence of DKD. Based on the prevailing theory of endosymbiosis, it is believed that human mitochondria originated from microorganisms and share comparable biological characteristics with the microbiota found in the gut. Recent research has shown a strong correlation between the gut microbiome and mitochondrial function in the occurrence and development of metabolic disorders. The gut microbiome's metabolites may play a vital role in this communication. However, the relationship between the gut microbiome and mitochondrial function in the development of DKD is not yet fully understood, and the role of microbial metabolites is still unclear. Recent studies are highlighted in this review to examine the possible mechanism of the gut microbiota-microbial metabolites-mitochondrial axis in the progression of DKD and the new therapeutic approaches for preventing or reducing DKD based on this biological axis in the future.
Collapse
Affiliation(s)
- Leilei Ma
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese, Medicine Acupuncture and Moxibustion, Tianjin, 300380, China
| | - Li Zhang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese, Medicine Acupuncture and Moxibustion, Tianjin, 300380, China
| | - Jing Li
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese, Medicine Acupuncture and Moxibustion, Tianjin, 300380, China
| | - Xiaotian Zhang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese, Medicine Acupuncture and Moxibustion, Tianjin, 300380, China
| | - Yiran Xie
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese, Medicine Acupuncture and Moxibustion, Tianjin, 300380, China
| | - Xiaochen Li
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese, Medicine Acupuncture and Moxibustion, Tianjin, 300380, China
| | - Bo Yang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese, Medicine Acupuncture and Moxibustion, Tianjin, 300380, China
| | - Hongtao Yang
- Department of Nephrology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, National Clinical Research Center for Chinese, Medicine Acupuncture and Moxibustion, Tianjin, 300380, China.
| |
Collapse
|
14
|
Yazdani A, Mendez-Giraldez R, Yazdani A, Schaid D, Won Kong S, Hadi M, Samiei A, Wittenbecher C, Lasky-Su J, Clish C, Marotta F, Kosorok M, Mora S, Muehlschlegel J, Chasman D, Larson M, Elsea S. Broadcasters, receivers, functional groups of metabolites and the link to heart failure progression using polygenic factors. RESEARCH SQUARE 2023:rs.3.rs-3246406. [PMID: 37645766 PMCID: PMC10462252 DOI: 10.21203/rs.3.rs-3246406/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
In a prospective study with records of heart failure (HF) incidence, we present metabolite profiling data from individuals without HF at baseline. We uncovered the interconnectivity of metabolites using data-driven and causal networks augmented with polygenic factors. Exploring the networks, we identified metabolite broadcasters, receivers, mediators, and subnetworks corresponding to functional classes of metabolites, and provided insights into the link between metabolomic architecture and regulation in health. We incorporated the network structure into the identification of metabolites associated with HF to control the effect of confounding metabolites. We identified metabolites associated with higher or lower risk of HF incidence, the associations that were not confounded by the other metabolites, such as glycine, ureidopropionic and glycocholic acids, and LPC 18:2. We revealed the underlying relationships of the findings. For example, asparagine directly influenced glycine, and both were inversely associated with HF. These two metabolites were influenced by polygenic factors and only essential amino acids which are not synthesized in the human body and come directly from the diet. Metabolites may play a critical role in linking genetic background and lifestyle factors to HF progression. Revealing the underlying connectivity of metabolites associated with HF strengthens the findings and facilitates a mechanistic understanding of HF progression.
Collapse
Affiliation(s)
| | | | - Akram Yazdani
- Division of Clinical and Translational Sciences, Department of Internal Medicine, at The University of Texas Health Science Center at Houston, McGovern Medical School
| | - Daniel Schaid
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55902
| | | | - Mohamad Hadi
- School of Mathematics, University of science and technology of Iran, Tehran
| | - Ahmad Samiei
- Computational Health Informatics Program, Boston Children's Hospital, Boston, MA
| | | | | | | | | | | | - Samia Mora
- Brigham and Women's Hospital and Harvard Medical School
| | | | | | | | | |
Collapse
|
15
|
Inceu AI, Neag MA, Craciun AE, Buzoianu AD. Gut Molecules in Cardiometabolic Diseases: The Mechanisms behind the Story. Int J Mol Sci 2023; 24:3385. [PMID: 36834796 PMCID: PMC9965280 DOI: 10.3390/ijms24043385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Atherosclerotic cardiovascular disease is the most common cause of morbidity and mortality worldwide. Diabetes mellitus increases cardiovascular risk. Heart failure and atrial fibrillation are associated comorbidities that share the main cardiovascular risk factors. The use of incretin-based therapies promoted the idea that activation of alternative signaling pathways is effective in reducing the risk of atherosclerosis and heart failure. Gut-derived molecules, gut hormones, and gut microbiota metabolites showed both positive and detrimental effects in cardiometabolic disorders. Although inflammation plays a key role in cardiometabolic disorders, additional intracellular signaling pathways are involved and could explain the observed effects. Revealing the involved molecular mechanisms could provide novel therapeutic strategies and a better understanding of the relationship between the gut, metabolic syndrome, and cardiovascular diseases.
Collapse
Affiliation(s)
- Andreea-Ioana Inceu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Maria-Adriana Neag
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Anca-Elena Craciun
- Department of Diabetes, and Nutrition Diseases, Iuliu Hatieganu University of Medicine and Pharmacy, 400006 Cluj-Napoca, Romania
| | - Anca-Dana Buzoianu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| |
Collapse
|
16
|
Li Y, Yang S, Jin X, Li D, Lu J, Wang X, Wu M. Mitochondria as novel mediators linking gut microbiota to atherosclerosis that is ameliorated by herbal medicine: A review. Front Pharmacol 2023; 14:1082817. [PMID: 36733506 PMCID: PMC9886688 DOI: 10.3389/fphar.2023.1082817] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/06/2023] [Indexed: 01/18/2023] Open
Abstract
Atherosclerosis (AS) is the main cause of cardiovascular disease (CVD) and is characterized by endothelial damage, lipid deposition, and chronic inflammation. Gut microbiota plays an important role in the occurrence and development of AS by regulating host metabolism and immunity. As human mitochondria evolved from primordial bacteria have homologous characteristics, they are attacked by microbial pathogens as target organelles, thus contributing to energy metabolism disorders, oxidative stress, and apoptosis. Therefore, mitochondria may be a key mediator of intestinal microbiota disorders and AS aggravation. Microbial metabolites, such as short-chain fatty acids, trimethylamine, hydrogen sulfide, and bile acids, also affect mitochondrial function, including mtDNA mutation, oxidative stress, and mitophagy, promoting low-grade inflammation. This further damages cellular homeostasis and the balance of innate immunity, aggravating AS. Herbal medicines and their monomers can effectively ameliorate the intestinal flora and their metabolites, improve mitochondrial function, and inhibit atherosclerotic plaques. This review focuses on the interaction between gut microbiota and mitochondria in AS and explores a therapeutic strategy for restoring mitochondrial function and intestinal microbiota disorders using herbal medicines, aiming to provide new insights for the prevention and treatment of AS.
Collapse
Affiliation(s)
- Yujuan Li
- Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shengjie Yang
- Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiao Jin
- Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dan Li
- Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jing Lu
- Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China,Beijing University of Chinese Medicine, Beijing, China
| | - Xinyue Wang
- Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Min Wu
- Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China,*Correspondence: Min Wu,
| |
Collapse
|
17
|
Remiszewski P, Pędzińska-Betiuk A, Mińczuk K, Schlicker E, Klimek J, Dzięcioł J, Malinowska B. Effects of the peripheral CB1 receptor antagonist JD5037 in mono— and polytherapy with the AMPK activator metformin in a monocrotaline-induced rat model of pulmonary hypertension. Front Pharmacol 2022; 13:965613. [PMID: 36120288 PMCID: PMC9479636 DOI: 10.3389/fphar.2022.965613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/01/2022] [Indexed: 12/12/2022] Open
Abstract
Pulmonary hypertension (PH) is a disease leading to increased pressure in the pulmonary artery and right heart failure. The adenosine monophosphate-activated protein kinase (AMPK) activator, metformin, has a protective effect against PH. CB1 receptor blockade reduces the number of pathological alterations in experimental lung fibrosis. The current study evaluates the effect of the peripheral cannabinoid CB1 receptor antagonist JD5037 in mono- and polytherapy with metformin in rat monocrotaline-induced mild PH. Animals received metformin (100 mg/kg), JD5037 (3 mg/kg), or a combination of both once daily for 21 days. Monocrotaline (60 mg/kg) increased right ventricular (RV) systolic pressure (RVSP), led to RV and lung hypertrophy and remodeling, and decreased oxygen saturation. Metformin partially restored the monocrotaline-induced effects, i.e., decreased RVSP, increased oxygen saturation, and counteracted cardiac fibrotic, hypertrophic, and inflammatory changes. JD5037 modified parameters related to inflammation and/or fibrosis. Only polytherapy with metformin and JD5037 improved Fulton’s index and coronary artery hypertrophy and tended to be more effective than monotherapy against alterations in RVSP, oxygen saturation and coronary artery tunica media vacuolization. In conclusion, monotherapy with JD5037 does not markedly influence the PH-related changes. However, polytherapy with metformin tends to be more efficient than any of these compounds alone.
Collapse
Affiliation(s)
- Patryk Remiszewski
- Department of Experimental Physiology and Pathophysiology, Medical University of Bialystok, Bialystok, Poland
| | - Anna Pędzińska-Betiuk
- Department of Experimental Physiology and Pathophysiology, Medical University of Bialystok, Bialystok, Poland
| | - Krzysztof Mińczuk
- Department of Experimental Physiology and Pathophysiology, Medical University of Bialystok, Bialystok, Poland
| | - Eberhard Schlicker
- Department of Pharmacology and Toxicology, University of Bonn, Bonn, Germany
| | - Justyna Klimek
- Department of Human Anatomy, Medical University of Bialystok, Bialystok, Poland
| | - Janusz Dzięcioł
- Department of Human Anatomy, Medical University of Bialystok, Bialystok, Poland
| | - Barbara Malinowska
- Department of Experimental Physiology and Pathophysiology, Medical University of Bialystok, Bialystok, Poland
- *Correspondence: Barbara Malinowska,
| |
Collapse
|
18
|
Yang Y, Zeng Q, Gao J, Yang B, Zhou J, Li K, Li L, Wang A, Li X, Liu Z, Luo Q, Zhao Z, Liu B, Xue J, Jiang X, Konerman MC, Zheng L, Xiong C. High-circulating gut microbiota-dependent metabolite trimethylamine N-oxide is associated with poor prognosis in pulmonary arterial hypertension. EUROPEAN HEART JOURNAL OPEN 2022; 2:oeac021. [PMID: 36071697 PMCID: PMC9442843 DOI: 10.1093/ehjopen/oeac021] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/17/2022] [Indexed: 12/30/2022]
Abstract
Aims We aimed to examine the hypothesis that circulating trimethylamine-N-oxide (TMAO) levels serve as a biomarker in pulmonary arterial hypertension (PAH), and to determine whether 3,3-dimethyl-1-butanol (DMB), a TMAO inhibitor, exerted a protective effect in monocrotaline (MCT)-induced PAH rats. Methods and results In-patients with PAH were prospectively recruited from the Fuwai Hospital. Fasting blood samples were obtained to assess the TMAO levels and other laboratory values during the initial and second hospitalization. In a MCT-induced PAH rat, a normal diet and water supplemented with or without 1% DMB were administered for 4 weeks. The TMAO levels, haemodynamic examinations, changes in organ-tissue, and molecular levels were evaluated. In total, 124 patients with PAH were enrolled in this study. High TMAO levels were correlated with increased disease severity and poor prognosis even after adjusting for confounders. The TMAO levels in the rats decreased in the MCT + DMB group, accompanied by improved haemodynamic parameters, decreased right ventricular hypertrophy, and amelioration of pulmonary vascular remodelling. The decrease in abnormal apoptosis, excessive cell proliferation, transforming growth factor-β expression, and restoration of endothelial nitric oxide synthase after DMB treatment further explained the amelioration of PAH. Conclusion Increased TMAO levels were associated with poor prognosis in patients with PAH, and DMB played a protective effect in MCT-induced PAH rat.
Collapse
Affiliation(s)
- Yicheng Yang
- Center of Pulmonary Vascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qixian Zeng
- Center of Pulmonary Vascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianing Gao
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Health Science Center, Peking University, Beijing, China
| | - Beilan Yang
- Center of Pulmonary Vascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingjing Zhou
- Center of Pulmonary Vascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ke Li
- China National Clinical Research Center for Neurological Diseases, Tiantan Hospital, Advanced Innovation Center for Human Brain Protection, The Capital Medical University, Beijing, China
| | - Li Li
- Department of Pathology, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Anxin Wang
- China National Clinical Research Center for Neurological Diseases, Tiantan Hospital, Advanced Innovation Center for Human Brain Protection, The Capital Medical University, Beijing, China
| | - Xin Li
- Center of Pulmonary Vascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhihong Liu
- Center of Pulmonary Vascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qin Luo
- Center of Pulmonary Vascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhihui Zhao
- Center of Pulmonary Vascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bingyang Liu
- Center of Pulmonary Vascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Xue
- China National Clinical Research Center for Neurological Diseases, Tiantan Hospital, Advanced Innovation Center for Human Brain Protection, The Capital Medical University, Beijing, China
| | - Xue Jiang
- China National Clinical Research Center for Neurological Diseases, Tiantan Hospital, Advanced Innovation Center for Human Brain Protection, The Capital Medical University, Beijing, China
| | - Matthew C Konerman
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Institute for Health Care Policy and Innovation, University of Michigan, Ann Arbor, MI, USA
- VA Center for Clinical Management Research, Ann Arbor, MI, USA
| | - Lemin Zheng
- The Institute of Cardiovascular Sciences and Institute of Systems Biomedicine, School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences of Ministry of Education, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, Health Science Center, Peking University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Tiantan Hospital, Advanced Innovation Center for Human Brain Protection, The Capital Medical University, Beijing, China
| | - Changming Xiong
- Center of Pulmonary Vascular Disease, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Disease, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
19
|
Lu X, Liu J, Zhou B, Wang S, Liu Z, Mei F, Luo J, Cui Y. Microbial metabolites and heart failure: Friends or enemies? Front Microbiol 2022; 13:956516. [PMID: 36046023 PMCID: PMC9420987 DOI: 10.3389/fmicb.2022.956516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/19/2022] [Indexed: 12/12/2022] Open
Abstract
Heart failure (HF), a global health issue characterized by structural or functional cardiac dysfunction, which was found to be associated with the gut microbiome recently. Although multiple studies suggested that the gut microbiome may have an impact on the development of cardiovascular diseases, the underlying mechanism of the gut microbiome in HF remains unclear. The study of metabolites from gut microbiota influenced by dietary nutrition uptake suggested that gut microbiota may affect the process of HF. However, on the basis of the microbiota’s complicated roles and their interactions with metabolites, studies of microbial metabolites in HF had rarely been described so far. In this review, we focused on dietary nutrition-related factors that were involved in the development and progression of HF, such as trimethylamine N-oxide (TMAO), short-chain fatty acids (SCFAs), and bile acids (BAs), to summarize their advances and several potential targets in HF. From a therapeutic standpoint, we discussed microbial metabolites as a potential strategy and their applications in HF as well.
Collapse
Affiliation(s)
- Xiaofeng Lu
- Department of Cardiovascular Surgery, Heart Center, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Jingjing Liu
- Department of Cardiovascular Surgery, Heart Center, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Bengbu Medical College, Bengbu, China
| | - Bing Zhou
- Department of Cardiovascular Surgery, Heart Center, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Shuwei Wang
- Department of Cardiovascular Surgery, Heart Center, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Zhifang Liu
- Department of Cardiovascular Surgery, Heart Center, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Fuyang Mei
- Department of Cardiovascular Surgery, Heart Center, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Junxiang Luo
- Department of Critical Care Medicine, Lishui Hospital of Traditional Chinese Medicine, Lishui, China
- Junxiang Luom,
| | - Yong Cui
- Department of Cardiovascular Surgery, Heart Center, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- *Correspondence: Yong Cui,
| |
Collapse
|
20
|
Gunaydin Akyildiz A, Biondi-Zoccai G, De Biase D. Impact of the Gastrointestinal Tract Microbiota on Cardiovascular Health and Pathophysiology. J Cardiovasc Pharmacol 2022; 80:13-30. [PMID: 35384898 DOI: 10.1097/fjc.0000000000001273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/25/2022] [Indexed: 11/25/2022]
Abstract
The microbiota of the gastrointestinal tract (GIT) is an extremely diverse community of microorganisms, and their collective genomes (microbiome) provide a vast arsenal of biological activities, particularly enzymatic ones, which are far from being fully elucidated. The study of the microbiota (and the microbiome) is receiving great interest from the biomedical community because it carries the potential to improve risk prediction models, refine primary and secondary prevention efforts, and also design more appropriate and personalized therapies, including pharmacological ones. A growing body of evidence, although sometimes impaired by the limited number of subjects involved in the studies, suggests that GIT dysbiosis, that is, the altered microbial composition, has an important role in causing and/or worsening cardiovascular disease (CVD). Bacterial translocation and the alteration of levels of microbe-derived metabolites can thus be important to monitor and modulate because they may lead to initiation and progression of CVD and to its establishment as chronic state. We hereby aim to provide readers with details on available resources and experimental approaches that are used in this fascinating field of biomedical research and on some novelties on the impact of GIT microbiota on CVD.
Collapse
Affiliation(s)
- Aysenur Gunaydin Akyildiz
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Bezmialem Vakif University, Istanbul, Turkey
| | - Giuseppe Biondi-Zoccai
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy; and
- Mediterranea Cardiocentro, Napoli, Italy
| | - Daniela De Biase
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy; and
| |
Collapse
|
21
|
Bordoni L, Malinowska AM, Petracci I, Szwengiel A, Gabbianelli R, Chmurzynska A. Diet, Trimethylamine Metabolism, and Mitochondrial DNA: An Observational Study. Mol Nutr Food Res 2022; 66:e2200003. [PMID: 35490412 DOI: 10.1002/mnfr.202200003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/14/2022] [Indexed: 12/11/2022]
Abstract
SCOPE Mitochondrial DNA copy number (mtDNAcn) and its methylation level in the D-loop area have been correlated with metabolic health and are suggested to vary in response to environmental stimuli, including diet. Circulating levels of trimethylamine-n-oxide (TMAO), which is an oxidative derivative of the trimethylamine (TMA) produced by the gut microbiome from dietary precursors, have been associated with chronic diseases and are suggested to have an impact on mitochondrial dynamics. This study is aimed to investigate the relationship between diet, TMA, TMAO, and mtDNAcn, as well as DNA methylation. METHODS AND RESULTS Two hundred subjects with extreme (healthy and unhealthy) dietary patterns are recruited. Dietary records are collected to assess their nutrient intake and diets' quality (Healthy Eating Index). Blood levels of TMA and TMAO, circulating levels of TMA precursors and their dietary intakes are measured. MtDNAcn, nuclear DNA methylation long interspersed nuclear element 1 (LINE-1), and strand-specific D-loop methylation levels are assessed. There is no association between dietary patterns and mtDNAcn. The TMAO/TMA ratio is negatively correlated with d-loop methylation levels but positively with mtDNAcn. CONCLUSIONS These findings suggest a potential association between TMA metabolism and mitochondrial dynamics (and mtDNA), indicating a new avenue for further research.
Collapse
Affiliation(s)
- Laura Bordoni
- Unit of Molecular Biology and Nutrigenomics, School of Pharmacy, University of Camerino, Camerino, 62032, MC, Italy
| | - Anna M Malinowska
- Department of Human Nutrition and Dietetics, Poznań University of Life Sciences, Poznań, 60-624, Poland
| | - Irene Petracci
- School of Advanced Studies, University of Camerino, Camerino, 62032, MC, Italy
| | - Artur Szwengiel
- Department of Food Technology of Plant Origin, Poznań University of Life Sciences, Poznań, 60-624, Poland
| | - Rosita Gabbianelli
- Unit of Molecular Biology and Nutrigenomics, School of Pharmacy, University of Camerino, Camerino, 62032, MC, Italy
| | - Agata Chmurzynska
- Department of Human Nutrition and Dietetics, Poznań University of Life Sciences, Poznań, 60-624, Poland
| |
Collapse
|
22
|
Gebrayel P, Nicco C, Al Khodor S, Bilinski J, Caselli E, Comelli EM, Egert M, Giaroni C, Karpinski TM, Loniewski I, Mulak A, Reygner J, Samczuk P, Serino M, Sikora M, Terranegra A, Ufnal M, Villeger R, Pichon C, Konturek P, Edeas M. Microbiota medicine: towards clinical revolution. J Transl Med 2022; 20:111. [PMID: 35255932 PMCID: PMC8900094 DOI: 10.1186/s12967-022-03296-9] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/03/2022] [Indexed: 02/07/2023] Open
Abstract
The human gastrointestinal tract is inhabited by the largest microbial community within the human body consisting of trillions of microbes called gut microbiota. The normal flora is the site of many physiological functions such as enhancing the host immunity, participating in the nutrient absorption and protecting the body against pathogenic microorganisms. Numerous investigations showed a bidirectional interplay between gut microbiota and many organs within the human body such as the intestines, the lungs, the brain, and the skin. Large body of evidence demonstrated, more than a decade ago, that the gut microbial alteration is a key factor in the pathogenesis of many local and systemic disorders. In this regard, a deep understanding of the mechanisms involved in the gut microbial symbiosis/dysbiosis is crucial for the clinical and health field. We review the most recent studies on the involvement of gut microbiota in the pathogenesis of many diseases. We also elaborate the different strategies used to manipulate the gut microbiota in the prevention and treatment of disorders. The future of medicine is strongly related to the quality of our microbiota. Targeting microbiota dysbiosis will be a huge challenge.
Collapse
Affiliation(s)
| | - Carole Nicco
- Department Endocrinology, Metabolism and Diabetes, Faculté de Médecine Cochin-Port Royal, Université de Paris, INSERM U1016, Institut Cochin, 24 Rue du Faubourg St Jacques, 75014, Paris, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Souhaila Al Khodor
- Maternal and Child Health Department, Research Branch, Sidra Medicine, Doha, Qatar
| | | | | | | | | | - Cristina Giaroni
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | | | | | | | | | - Paulina Samczuk
- Clinical Research Centre, Medical University of Bialystok, Bialystok, Poland
| | - Matteo Serino
- IRSD, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France
| | - Mariusz Sikora
- National Institute of Geriatrics, Rheumatology and Rehabilitation, Warsaw, Poland
| | - Annalisa Terranegra
- Maternal and Child Health Department, Research Branch, Sidra Medicine, Doha, Qatar
| | | | | | - Chantal Pichon
- Center for Molecular Biophysics CNRS UPR 4301, University of Orléans, Orléans, France
| | - Peter Konturek
- Teaching Hospital of the University of Jena, Jena, Germany
| | - Marvin Edeas
- Department Endocrinology, Metabolism and Diabetes, Faculté de Médecine Cochin-Port Royal, Université de Paris, INSERM U1016, Institut Cochin, 24 Rue du Faubourg St Jacques, 75014, Paris, France.
- Laboratory of Excellence GR-Ex, Paris, France.
| |
Collapse
|
23
|
Imdad S, Lim W, Kim JH, Kang C. Intertwined Relationship of Mitochondrial Metabolism, Gut Microbiome and Exercise Potential. Int J Mol Sci 2022; 23:ijms23052679. [PMID: 35269818 PMCID: PMC8910986 DOI: 10.3390/ijms23052679] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 02/04/2023] Open
Abstract
The microbiome has emerged as a key player contributing significantly to the human physiology over the past decades. The potential microbial niche is largely unexplored in the context of exercise enhancing capacity and the related mitochondrial functions. Physical exercise can influence the gut microbiota composition and diversity, whereas a sedentary lifestyle in association with dysbiosis can lead to reduced well-being and diseases. Here, we have elucidated the importance of diverse microbiota, which is associated with an individual's fitness, and moreover, its connection with the organelle, the mitochondria, which is the hub of energy production, signaling, and cellular homeostasis. Microbial by-products, such as short-chain fatty acids, are produced during regular exercise that can enhance the mitochondrial capacity. Therefore, exercise can be employed as a therapeutic intervention to circumvent or subside various metabolic and mitochondria-related diseases. Alternatively, the microbiome-mitochondria axis can be targeted to enhance exercise performance. This review furthers our understanding about the influence of microbiome on the functional capacity of the mitochondria and exercise performance, and the interplay between them.
Collapse
Affiliation(s)
- Saba Imdad
- Molecular Metabolism in Health & Disease, Exercise Physiology Laboratory, Sport Science Research Institute, Inha University, Incheon 22212, Korea;
- Department of Biomedical Laboratory Science, College of Health Science, Cheongju University, Cheongju 28503, Korea
| | - Wonchung Lim
- Department of Sports Medicine, College of Health Science, Cheongju University, Cheongju 28503, Korea;
| | - Jin-Hee Kim
- Department of Biomedical Laboratory Science, College of Health Science, Cheongju University, Cheongju 28503, Korea
- Correspondence: (J.-H.K.); (C.K.)
| | - Chounghun Kang
- Molecular Metabolism in Health & Disease, Exercise Physiology Laboratory, Sport Science Research Institute, Inha University, Incheon 22212, Korea;
- Department of Physical Education, College of Education, Inha University, Incheon 22212, Korea
- Correspondence: (J.-H.K.); (C.K.)
| |
Collapse
|
24
|
Chen Y, Liu Y, Wang Y, Chen X, Wang C, Chen X, Yuan X, Liu L, Yang J, Zhou X. Prevotellaceae produces butyrate to alleviate PD-1/PD-L1 inhibitor-related cardiotoxicity via PPARα-CYP4X1 axis in colonic macrophages. J Exp Clin Cancer Res 2022; 41:1. [PMID: 34980222 PMCID: PMC8722009 DOI: 10.1186/s13046-021-02201-4] [Citation(s) in RCA: 121] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/26/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Immune checkpoint inhibitor-related cardiotoxicity is one of the most lethal adverse effects, and thus, the identification of underlying mechanisms for developing strategies to overcome it has clinical importance. This study aimed to investigate whether microbiota-host interactions contribute to PD-1/PD-L1 inhibitor-related cardiotoxicity. METHODS A mouse model of immune checkpoint inhibitor-related cardiotoxicity was constructed by PD-1/PD-L1 inhibitor BMS-1 (5 and 10 mg/kg), and cardiomyocyte apoptosis and cardiotoxicity were determined by hematoxylin and eosin, Masson's trichome and TUNEL assays. 16S rRNA sequencing was used to define the gut microbiota composition. Gut microbiota metabolites short-chain fatty acids (SCFAs) were determined by HPLC. The serum levels of myocardial enzymes (creatine kinase, aspartate transaminase, creatine kinase-MB and lactate dehydrogenase) and the production of M1 factors (TNF-α and IL-1β) were measured by ELISA. The colonic macrophage phenotype was measured by mmunofluorescence and qPCR. The expression of Claudin-1, Occludin, ZO-1 and p-p65 was measured by western blot. The gene expression of peroxisome proliferator-activated receptor α (PPARα) and cytochrome P450 (CYP) 4X1 was determined using qPCR. Statistical analyses were performed using Student's t-test for two-group comparisons, and one-way ANOVA followed by Student-Newman-Keul test for multiple-group comparisons. RESULTS We observed intestinal barrier injury and gut microbiota dysbiosis characterized by Prevotellaceae and Rikenellaceae genus depletion and Escherichia-Shigella and Ruminococcaceae genus enrichment, accompanied by low butyrate production and M1-like polarization of colonic macrophages in BMS-1 (5 and 10 mg/kg)-induced cardiotoxicity. Fecal microbiota transplantation mirrored the effect of BMS-1 on cardiomyocyte apoptosis and cardiotoxicity, while macrophage depletion and neutralization of TNF-α and IL-1β greatly attenuated BMS-1-induced cardiotoxicity. Importantly, Prevotella loescheii recolonization and butyrate supplementation alleviated PD-1/PD-L1 inhibitor-related cardiotoxicity. Mechanistically, gut microbiota dysbiosis promoted M1-like polarization of colonic macrophages and the production of proinflammatory factors TNF-α and IL-1β through downregulation of PPARα-CYP4X1 axis. CONCLUSIONS Intestinal barrier dysfunction amplifies PD-1/PD-L1 inhibitor-related cardiotoxicity by upregulating proinflammatory factors TNF-α and IL-1β in colonic macrophages via downregulation of butyrate-PPARα-CYP4X1 axis. Thus, targeting gut microbiota to polarize colonic macrophages away from the M1-like phenotype could provide a potential therapeutic strategy for PD-1/PD-L1 inhibitor-related cardiotoxicity.
Collapse
Affiliation(s)
- Yaxin Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yanzhuo Liu
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yang Wang
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-related Diseases, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xuewei Chen
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Chenlong Wang
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xuehan Chen
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-related Diseases, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xi Yuan
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-related Diseases, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Lilong Liu
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-related Diseases, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Jing Yang
- Department of Pharmacology and Hubei Province Key Laboratory of Allergy and Immune-related Diseases, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China.
| | - Xiaoyang Zhou
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
25
|
Zou Y, Song X, Liu N, Sun W, Liu B. Intestinal Flora: A Potential New Regulator of Cardiovascular Disease. Aging Dis 2022; 13:753-772. [PMID: 35656118 PMCID: PMC9116925 DOI: 10.14336/ad.2021.1022] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/22/2021] [Indexed: 12/02/2022] Open
Abstract
Although substantial progress has been made in reducing the burden of the disease by preventing the risk factors of cardiovascular disease (CVD), potential risk factors still exist and lead to its progression. In recent years, numerous studies have revealed that intestinal flora can interfere with the physiological processes of the host through changes in composition and function or related metabolites. Intestinal flora thus affects the occurrence and development of a variety of CVDs, including atherosclerosis, ischemic heart disease, and heart failure. Moreover, studies have found that interventions for intestinal flora and its metabolites provide new opportunities for CVD treatment. This article mainly discusses the interaction between the human intestinal flora and its metabolites, the occurrence and development of CVD, and the potential of intestinal flora as a new target for the diagnosis and treatment of CVD.
Collapse
Affiliation(s)
| | | | | | - Wei Sun
- Correspondence should be addressed to: Dr. Sun Wei () and Bin Liu (), Department of Cardiology, The Second Hospital of Jilin University, Changchun, China
| | - Bin Liu
- Correspondence should be addressed to: Dr. Sun Wei () and Bin Liu (), Department of Cardiology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
26
|
Vilskersts R, Kigitovica D, Korzh S, Videja M, Vilks K, Cirule H, Skride A, Makrecka-Kuka M, Liepinsh E, Dambrova M. Protective Effects of Meldonium in Experimental Models of Cardiovascular Complications with a Potential Application in COVID-19. Int J Mol Sci 2021; 23:45. [PMID: 35008470 PMCID: PMC8744985 DOI: 10.3390/ijms23010045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 12/18/2022] Open
Abstract
Right ventricular (RV) and left ventricular (LV) dysfunction is common in a significant number of hospitalized coronavirus disease 2019 (COVID-19) patients. This study was conducted to assess whether the improved mitochondrial bioenergetics by cardiometabolic drug meldonium can attenuate the development of ventricular dysfunction in experimental RV and LV dysfunction models, which resemble ventricular dysfunction in COVID-19 patients. Effects of meldonium were assessed in rats with pulmonary hypertension-induced RV failure and in mice with inflammation-induced LV dysfunction. Rats with RV failure showed decreased RV fractional area change (RVFAC) and hypertrophy. Treatment with meldonium attenuated the development of RV hypertrophy and increased RVFAC by 50%. Mice with inflammation-induced LV dysfunction had decreased LV ejection fraction (LVEF) by 30%. Treatment with meldonium prevented the decrease in LVEF. A decrease in the mitochondrial fatty acid oxidation with a concomitant increase in pyruvate metabolism was noted in the cardiac fibers of the rats and mice with RV and LV failure, respectively. Meldonium treatment in both models restored mitochondrial bioenergetics. The results show that meldonium treatment prevents the development of RV and LV systolic dysfunction by enhancing mitochondrial function in experimental models of ventricular dysfunction that resembles cardiovascular complications in COVID-19 patients.
Collapse
Affiliation(s)
- Reinis Vilskersts
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (S.K.); (M.V.); (K.V.); (H.C.); (M.M.-K.); (E.L.); (M.D.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Rigas Stradins University, LV-1007 Riga, Latvia
| | - Dana Kigitovica
- Department of Internal Diseases, Faculty of Medicine, Rigas Stradins University, LV-1007 Riga, Latvia; (D.K.); (A.S.)
- Department of Nephrology, Pauls Stradins Clinical University Hospital, LV-1012 Riga, Latvia
| | - Stanislava Korzh
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (S.K.); (M.V.); (K.V.); (H.C.); (M.M.-K.); (E.L.); (M.D.)
| | - Melita Videja
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (S.K.); (M.V.); (K.V.); (H.C.); (M.M.-K.); (E.L.); (M.D.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Rigas Stradins University, LV-1007 Riga, Latvia
| | - Karlis Vilks
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (S.K.); (M.V.); (K.V.); (H.C.); (M.M.-K.); (E.L.); (M.D.)
- Department of Molecular Biology, Faculty of Biology, University of Latvia, LV-1050 Riga, Latvia
| | - Helena Cirule
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (S.K.); (M.V.); (K.V.); (H.C.); (M.M.-K.); (E.L.); (M.D.)
| | - Andris Skride
- Department of Internal Diseases, Faculty of Medicine, Rigas Stradins University, LV-1007 Riga, Latvia; (D.K.); (A.S.)
- Department of Rare Diseases, Pauls Stradins Clinical University Hospital, LV-1012 Riga, Latvia
| | - Marina Makrecka-Kuka
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (S.K.); (M.V.); (K.V.); (H.C.); (M.M.-K.); (E.L.); (M.D.)
| | - Edgars Liepinsh
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (S.K.); (M.V.); (K.V.); (H.C.); (M.M.-K.); (E.L.); (M.D.)
| | - Maija Dambrova
- Laboratory of Pharmaceutical Pharmacology, Latvian Institute of Organic Synthesis, LV-1006 Riga, Latvia; (S.K.); (M.V.); (K.V.); (H.C.); (M.M.-K.); (E.L.); (M.D.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Rigas Stradins University, LV-1007 Riga, Latvia
| |
Collapse
|
27
|
Krueger ES, Lloyd TS, Tessem JS. The Accumulation and Molecular Effects of Trimethylamine N-Oxide on Metabolic Tissues: It's Not All Bad. Nutrients 2021; 13:nu13082873. [PMID: 34445033 PMCID: PMC8400152 DOI: 10.3390/nu13082873] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/15/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023] Open
Abstract
Since elevated serum levels of trimethylamine N-oxide (TMAO) were first associated with increased risk of cardiovascular disease (CVD), TMAO research among chronic diseases has grown exponentially. We now know that serum TMAO accumulation begins with dietary choline metabolism across the microbiome-liver-kidney axis, which is typically dysregulated during pathogenesis. While CVD research links TMAO to atherosclerotic mechanisms in vascular tissue, its molecular effects on metabolic tissues are unclear. Here we report the current standing of TMAO research in metabolic disease contexts across relevant tissues including the liver, kidney, brain, adipose, and muscle. Since poor blood glucose management is a hallmark of metabolic diseases, we also explore the variable TMAO effects on insulin resistance and insulin production. Among metabolic tissues, hepatic TMAO research is the most common, whereas its effects on other tissues including the insulin producing pancreatic β-cells are largely unexplored. Studies on diseases including obesity, diabetes, liver diseases, chronic kidney disease, and cognitive diseases reveal that TMAO effects are unique under pathologic conditions compared to healthy controls. We conclude that molecular TMAO effects are highly context-dependent and call for further research to clarify the deleterious and beneficial molecular effects observed in metabolic disease research.
Collapse
Affiliation(s)
- Emily S. Krueger
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84602, USA; (E.S.K.); (T.S.L.)
| | - Trevor S. Lloyd
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84602, USA; (E.S.K.); (T.S.L.)
- Medical Education Program, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
| | - Jeffery S. Tessem
- Department of Nutrition, Dietetics and Food Science, Brigham Young University, Provo, UT 84602, USA; (E.S.K.); (T.S.L.)
- Correspondence: ; Tel.: +1-801-422-9082
| |
Collapse
|