1
|
Nikolova MT, He Z, Seimiya M, Jonsson G, Cao W, Okuda R, Wimmer RA, Okamoto R, Penninger JM, Camp JG, Treutlein B. Fate and state transitions during human blood vessel organoid development. Cell 2025; 188:3329-3348.e31. [PMID: 40250419 DOI: 10.1016/j.cell.2025.03.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/14/2024] [Accepted: 03/21/2025] [Indexed: 04/20/2025]
Abstract
Human blood vessel organoids (hBVOs) have emerged as a system to model human vascular development and disease. Here, we use single-cell multi-omics together with genetic and signaling pathway perturbations to reconstruct hBVO development. Mesodermal progenitors bifurcate into endothelial and mural fates in vitro, and xenografted BVOs acquire definitive arteriovenous endothelial cell specification. We infer a gene regulatory network and use single-cell genetic perturbations to identify transcription factors (TFs) and receptors involved in cell fate specification, including a role for MECOM in endothelial and mural specification. We assess the potential of BVOs to generate organotypic states, identify TFs lacking expression in hBVOs, and find that induced LEF1 overexpression increases brain vasculature specificity. Finally, we map vascular disease-associated genes to hBVO cell states and analyze an hBVO model of diabetes. Altogether, we provide a comprehensive cell state atlas of hBVO development and illuminate the power and limitation of hBVOs for translational research.
Collapse
Affiliation(s)
- Marina T Nikolova
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Zhisong He
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Makiko Seimiya
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Gustav Jonsson
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria; Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, 1030 Vienna, Austria
| | - Wuji Cao
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Ryo Okuda
- Institute of Human Biology, Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland
| | - Reiner A Wimmer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria; Roche Pharma Research and Early Development, Roche Innovation Center, Basel, Switzerland
| | - Ryoko Okamoto
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria; Department of Medical Genetics, Life Science Institute, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria; Helmholtz Centre for Infection Research, Braunschweig, Germany.
| | - J Gray Camp
- Institute of Human Biology, Roche Pharma Research and Early Development, Roche Innovation Center Basel, Basel, Switzerland; Biozentrum, University of Basel, Basel, Switzerland.
| | - Barbara Treutlein
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
| |
Collapse
|
2
|
Sati SK, Rana U, Joshi C, Teng RJ, Konduri GG. Decreased endothelial micro-RNA-30b-5p impairs angiogenesis in fetal lambs with persistent pulmonary hypertension. Pediatr Res 2025:10.1038/s41390-025-04098-7. [PMID: 40329081 DOI: 10.1038/s41390-025-04098-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 03/17/2025] [Accepted: 04/07/2025] [Indexed: 05/08/2025]
Abstract
BACKGROUND Impaired angiogenesis contributes to increased pulmonary vascular resistance in persistent pulmonary hypertension of the newborn (PPHN). Notch signaling, critical to lung angiogenesis, is modulated by micro-RNAs (miR). RNA sequencing of pulmonary arterial endothelial cells (PAEC) from a PPHN lamb model revealed downregulated miR-30b-5p. METHODS We investigated whether decreased levels of miR-30b-5p in PPHN affect angiogenesis by facilitating excess Dll4, a predicted target for miR-30b-5p. We obtained PAEC from a fetal lamb model of PPHN and transfected them with miR-30b-5p mimic and inhibitor. We assessed protein levels by immunoblotting and in vitro angiogenesis by tube formation in Matrigel. We performed In-situ RNA hybridization for in vivo miR-30b-5p levels in the lamb lungs. RESULTS PPHN lamb lungs showed decreased miR-30b-5p levels in vivo. PPHN PAEC transfected with miR-30b-5p mimic showed improved capillary tube formation. Control PAEC showed inhibition of tube formation after transfection with miR-30b-5p inhibitor. Transfection with miR-30b-5p led to the downregulation of Dll4, in PPHN PAEC. CONCLUSION We conclude that decreased miR-30b-5p in PPHN facilitates overexpression of Dll4, which contributes to impaired angiogenesis in PPHN. MiR-30b-5p improves angiogenesis in PPHN by improving Dll4/Jag1 balance (Jag1, a proangiogenic notch ligand), suggesting an epigenetic role in PPHN. IMPACT The present study describes a novel mechanism of epigenetic control of impaired angiogenesis in PPHN via miR-30b-5p. The present study also provides new direction for future in vivo studies in animals and patients with PPHN to investigate the role of miR-30b-5p as a biomarker of angiogenesis in PPHN.
Collapse
Affiliation(s)
- Sunil K Sati
- Department of Pediatrics and Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ujala Rana
- Department of Pediatrics and Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Chintamani Joshi
- Department of Pediatrics and Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ru-Jeng Teng
- Department of Pediatrics and Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Girija G Konduri
- Department of Pediatrics and Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
3
|
Zhang S, Liu C, Li W, Zhang Y, Yang Y, Yang H, Zhao Z, Xu F, Cao W, Li X, Wang J, Kong L, Du G. Kaempferol promotes angiogenesis through HIF-1α/VEGF-A/Notch1 pathway in ischemic stroke rats. Neurochem Int 2025; 185:105953. [PMID: 39988285 DOI: 10.1016/j.neuint.2025.105953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/31/2025] [Accepted: 02/19/2025] [Indexed: 02/25/2025]
Abstract
Stroke is a severe disease characterized by the obstruction of blood vessels in the central nervous system. An essential therapeutic strategy for ischemic stroke is strengthening angiogenesis, which effectively promotes the long-term recovery of neurological function. Therefore, it is critical to explore and develop new drugs that promote angiogenesis after ischemic stroke. Kaempferol has been employed to treat ischemic diseases; However, its proangiogenic effects in ischemic stroke remain unclear. In the study, we explored the long-term therapeutic effects and mechanisms of kaempferol on ischemic stroke in vivo and in vitro. A rat model of autologous thrombus stroke and oxygen-glucose deprivation (OGD)-induced human brain microvascular endothelial cells (HBMECs) model was established to assess the effects of kaempferol in vivo (50 mg/kg/d, ig, 14 d) and in vitro (0.1, 0.3, 1 μmol L-1). The results showed that long-term administration of kaempferol ameliorated neurological deficits and infarct volume in ischemic stroke rats. In addition, kaempferol relieved vascular embolization; enhanced microvascular endothelial cell survival, proliferation, migration, and lumen formation; increased the density of microvessels in the peri-infarct cortex; and promoted neovascular structure remodeling by increasing the coverage of astrocyte end-feet and expression of tight-junction proteins (TJPs). Further analysis revealed that the HIF-1α/VEGF-A/Notch1 signaling pathway was activated by kaempferol, and that inhibition of Notch1 blocked kaempferol-induced angiogenesis. Taken together, our results indicate that kaempferol exerts neuroprotective effects by stimulating endogenous angiogenesis and neovascular structural remodeling via the HIF-1α/VEGF-A/Notch1 signaling pathway, suggesting the therapeutic potential of kaempferol in ischemic stroke.
Collapse
Affiliation(s)
- Sen Zhang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China; Beijing Key Laboratory of Innovative Drug Discovery and Polymorphic Druggability Research for Cerebrovascular Diseases, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Chengdi Liu
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China; Beijing Key Laboratory of Innovative Drug Discovery and Polymorphic Druggability Research for Cerebrovascular Diseases, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China; Department of Pharmacy, Affiliated Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Wan Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China; Beijing Key Laboratory of Innovative Drug Discovery and Polymorphic Druggability Research for Cerebrovascular Diseases, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Yizhi Zhang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China; Beijing Key Laboratory of Innovative Drug Discovery and Polymorphic Druggability Research for Cerebrovascular Diseases, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Yihui Yang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China; Beijing Key Laboratory of Innovative Drug Discovery and Polymorphic Druggability Research for Cerebrovascular Diseases, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Hong Yang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China; Beijing Key Laboratory of Innovative Drug Discovery and Polymorphic Druggability Research for Cerebrovascular Diseases, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Ziyuan Zhao
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China; Beijing Key Laboratory of Innovative Drug Discovery and Polymorphic Druggability Research for Cerebrovascular Diseases, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Fang Xu
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China; Beijing Key Laboratory of Innovative Drug Discovery and Polymorphic Druggability Research for Cerebrovascular Diseases, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Wanxin Cao
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China; Beijing Key Laboratory of Innovative Drug Discovery and Polymorphic Druggability Research for Cerebrovascular Diseases, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Xiaoxue Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China; Beijing Key Laboratory of Innovative Drug Discovery and Polymorphic Druggability Research for Cerebrovascular Diseases, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China
| | - Jinhua Wang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China; Beijing Key Laboratory of Innovative Drug Discovery and Polymorphic Druggability Research for Cerebrovascular Diseases, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China.
| | - Linglei Kong
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China; Beijing Key Laboratory of Innovative Drug Discovery and Polymorphic Druggability Research for Cerebrovascular Diseases, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China.
| | - Guanhua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, 100050, China; Beijing Key Laboratory of Innovative Drug Discovery and Polymorphic Druggability Research for Cerebrovascular Diseases, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
4
|
Sun J, Lin J, Yin D, Pan Z, Ye Y, Wang Y, Wang X, Guo Q. Androgen receptor inhibitor ameliorates pulmonary arterial hypertension by enhancing the apoptosis level through suppressing the Notch3/Hes5 pathway. Front Pharmacol 2025; 16:1572489. [PMID: 40356960 PMCID: PMC12067419 DOI: 10.3389/fphar.2025.1572489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 04/10/2025] [Indexed: 05/15/2025] Open
Abstract
Background Pulmonary arterial hypertension (PAH) exhibits significant gender differences in prognosis, with male patients typically showing worse outcomes than females. These disparities may stem from differences in androgen receptor expression and activity. Clinical studies suggest that the androgen receptor plays a crucial role in the pathophysiology of PAH, influencing disease progression and treatment response. Despite the lack of targeted therapies for PAH, these findings have spurred investigations into the potential therapeutic role of androgen receptors. This study explores the role of androgen receptors in PAH and evaluates their therapeutic potential. Methods PAH was induced in rats via intraperitoneal injection of monocrotaline (MCT). Following model establishment, Enzalutamide was administered every 3 days at 10 mg/kg once for a total of 7 times (21 days). A mouse model of PAH was developed by subcutaneously injecting SU5416 and exposing the mice to hypoxia. Androgen receptor knockout (AR-/-) mice were also utilized to investigate the role of androgen receptors in disease progression. Key indicators were compared across groups. The in vivo mechanisms through which androgen receptors influence PAH were examined in both rat and mouse models. Additionally, mouse pulmonary artery endothelial cells (PAECs) were cultured under hypoxic conditions to create an in vitro model of PAH, facilitating further investigation into the role of androgen receptors in disease pathogenesis. Results Compared to the normal group, the model group exhibited significantly increased androgen receptor expression in rats, mice, and mPAECs. This was accompanied by pronounced pulmonary artery wall thickening, right ventricular hypertrophy, pulmonary fibrosis, elevated pulmonary artery pressure, and a reduced level of apoptosis both in vivo and in vitro. Furthermore, activation of the Notch3/Hes5 signaling pathway was observed. However, treatment with androgen receptor inhibitors or gene knockout significantly ameliorated these pathological changes. Apoptosis levels increased both in vivo and in vitro, and the activation of the Notch3/Hes5 signaling pathway was effectively inhibited. Conclusion Our findings suggest that in both animal models and the hypoxic mPAECs, inhibition of androgen receptor expression leads to increased apoptosis via suppression of the Notch3/Hes5 signaling pathway. This mechanism likely contributes to the therapeutic effects observed, providing insights for potential treatment strategies targeting androgen receptors in pulmonary arterial hypertension.
Collapse
Affiliation(s)
- Jiayan Sun
- Medical College of Soochow Universuty, Soochow University, Suzhou, Jiangsu, China
- Medical Center of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Emergency and Critical Care Medicine, The Fourth Affiliated Hospital of Soochow University (Suzhou Dushu Lake Hospital), Suzhou, Jiangsu, China
| | - Jiancheng Lin
- Medical College of Soochow Universuty, Soochow University, Suzhou, Jiangsu, China
- Medical Center of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Emergency and Critical Care Medicine, The Fourth Affiliated Hospital of Soochow University (Suzhou Dushu Lake Hospital), Suzhou, Jiangsu, China
| | - Di Yin
- Medical College of Soochow Universuty, Soochow University, Suzhou, Jiangsu, China
- Medical Center of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Emergency and Critical Care Medicine, The Fourth Affiliated Hospital of Soochow University (Suzhou Dushu Lake Hospital), Suzhou, Jiangsu, China
| | - Zetao Pan
- Medical College of Soochow Universuty, Soochow University, Suzhou, Jiangsu, China
- Medical Center of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Emergency and Critical Care Medicine, The Fourth Affiliated Hospital of Soochow University (Suzhou Dushu Lake Hospital), Suzhou, Jiangsu, China
| | - Yuheng Ye
- Medical College of Soochow Universuty, Soochow University, Suzhou, Jiangsu, China
- Medical Center of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Emergency and Critical Care Medicine, The Fourth Affiliated Hospital of Soochow University (Suzhou Dushu Lake Hospital), Suzhou, Jiangsu, China
| | - Yi Wang
- Medical College of Soochow Universuty, Soochow University, Suzhou, Jiangsu, China
- Medical Center of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Emergency and Critical Care Medicine, The Fourth Affiliated Hospital of Soochow University (Suzhou Dushu Lake Hospital), Suzhou, Jiangsu, China
| | - Xiaowan Wang
- Medical College of Soochow Universuty, Soochow University, Suzhou, Jiangsu, China
- Medical Center of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Emergency and Critical Care Medicine, The Fourth Affiliated Hospital of Soochow University (Suzhou Dushu Lake Hospital), Suzhou, Jiangsu, China
| | - Qiang Guo
- Medical College of Soochow Universuty, Soochow University, Suzhou, Jiangsu, China
- Medical Center of Soochow University, Soochow University, Suzhou, Jiangsu, China
- Department of Emergency and Critical Care Medicine, The Fourth Affiliated Hospital of Soochow University (Suzhou Dushu Lake Hospital), Suzhou, Jiangsu, China
- The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
5
|
Zhang BT, Song X, Cho CS(W, Wong CK, Wang D. Deciphering Anticancer Mechanisms of Calycosin in Lung Adenocarcinoma Through Multi-Omics: Targeting SMAD3-Mediated NOTCH Signaling in the Tumor Microenvironment. Cancers (Basel) 2025; 17:1455. [PMID: 40361382 PMCID: PMC12071042 DOI: 10.3390/cancers17091455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2025] [Revised: 04/23/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025] Open
Abstract
OBJECTIVE Lung adenocarcinoma (LUAD) remains a leading cause of cancer-related mortality, particularly in advanced stages. This study investigates the anticancer mechanisms of calycosin, an isoflavonoid derived from Astragalus membranaceus, in LUAD. METHODS Using integrative approaches including bulk and single-cell RNA sequencing, network pharmacology, and molecular docking, we identified SMAD3 as a critical biomarker associated with LUAD staging and prognosis. RESULTS Calycosin targets SMAD3, modulating the NOTCH signaling pathway in monocytes/macrophages to suppress tumor growth, invasion, and immune evasion. Enrichment analyses revealed significant involvement of NOTCH signaling components in SMAD3-correlated genes, particularly in advanced-stage LUAD. Single-cell RNA sequencing further demonstrated NOTCH pathway enrichment in tumor-associated monocytes/macrophages. Additionally, KMT2A was identified as a key transcriptional regulator in these cells. CONCLUSIONS These findings highlight the potential effects of calycosin and provide novel insights into targeting the tumor-immune microenvironment in LUAD.
Collapse
Affiliation(s)
- Bi-Tian Zhang
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China;
| | - Xiaoyu Song
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150001, China;
| | | | - Chun-Kwok Wong
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China;
- Department of Chemical Pathology, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong, China
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Dongjie Wang
- Institute of Chinese Medicine and State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China;
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518172, China
| |
Collapse
|
6
|
Kananivand M, Nouri F, Yousefi MH, Pajouhi A, Ghorbani H, Afkhami H, Razavi ZS. Mesenchymal stem cells and their exosomes: a novel approach to skin regeneration via signaling pathways activation. J Mol Histol 2025; 56:132. [PMID: 40208456 DOI: 10.1007/s10735-025-10394-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 03/06/2025] [Indexed: 04/11/2025]
Abstract
Accelerating wound healing is a crucial objective in surgical and regenerative medicine. The wound healing process involves three key stages: inflammation, cell proliferation, and tissue repair. Mesenchymal stem cells (MSCs) have demonstrated significant therapeutic potential in promoting tissue regeneration, particularly by enhancing epidermal cell migration and proliferation. However, the precise molecular mechanisms underlying MSC-mediated wound healing remain unclear. This review highlights the pivotal role of MSCs and their exosomes in wound repair, with a specific focus on critical signaling pathways, including PI3K/Akt, WNT/β-catenin, Notch, and MAPK. These pathways regulate essential cellular processes such as proliferation, differentiation, and angiogenesis. Moreover, in vitro and in vivo studies reveal that MSCs accelerate wound closure, enhance collagen deposition, and modulate immune responses, contributing to improved tissue regeneration. Understanding these mechanisms provides valuable insights into MSC-based therapeutic strategies for enhancing wound healing.
Collapse
Affiliation(s)
- Maryam Kananivand
- Medical Department, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Nouri
- Department of Biology, School of Basic Sciences, Science and Research Branch, Islamic Azad University (SRBIAU), Tehran, Iran
| | - Mohammad Hasan Yousefi
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Student Research Committee, Qom University of Medical Sciences, Qom, Iran
| | - Ali Pajouhi
- Student Research Committee, USERN Office, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hakimeah Ghorbani
- Department of Sciences, Faculty of Biological Sciences, Tabriz University of Sciences, Tabriz, Iran
| | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran.
- Student Research Committee, Qom University of Medical Sciences, Qom, Iran.
| | - Zahra Sadat Razavi
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Zhu Q, Balasubramanian A, Asirvatham JR, Chatterjee M, Piyarathna B, Kaur J, Mohamed N, Wu L, Wang S, Pourfarrokh N, Binsol PD, Bhargava M, Rasaily U, Xu Y, Zheng J, Jebakumar D, Rao A, Gutierrez C, Omilian A, Morrison C, Das GM, Ambrosone C, Seeley EH, Chen SH, Li Y, Chang E, Li X, Baker E, Aneja R, Zhang XHF, Sreekumar A. Integrative spatial omics reveals distinct tumor-promoting multicellular niches and immunosuppressive mechanisms in Black American and White American patients with TNBC. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.03.17.585428. [PMID: 38562769 PMCID: PMC10983891 DOI: 10.1101/2024.03.17.585428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Racial disparities in the clinical outcomes of triple-negative breast cancer (TNBC) have been well-documented, but the underlying biological mechanisms remain poorly understood. To investigate these disparities, we employed a multi-omic approach integrating imaging mass cytometry and spatial transcriptomics to characterize the tumor microenvironment (TME) in self-identified Black American (BA) and White American (WA) TNBC patients. Our analysis revealed that the TME in BA patients is marked by a network of endothelial cells, macrophages, and mesenchymal-like cells, which correlates with reduced patient survival. In contrast, the WA TNBC microenvironment is enriched in T-cells and neutrophils, indicative of T-cell exhaustion and suppressed immune responses. Ligand-receptor and pathway analyses further demonstrated that BA TNBC tumors exhibit a relatively "immune-cold" profile, while WA TNBC tumors display features of an "inflamed" TME, suggesting the evolution of a unique immunosuppressive mechanism. These findings provide insight into racially distinct tumor-promoting and immunosuppressive microenvironments, which may contribute to the observed differences in clinical outcomes among BA and WA TNBC patients. Statement of Significance This study identifies distinct tumor microenvironment (TME) profiles in Black and White American TNBC patients, providing new insights into the biological mechanisms driving outcome disparities. Our findings highlight the role of the tumor-endothelial-macrophage niche in these disparities, offering a potential therapeutic target for race-inclusive strategies aimed at improving clinical outcomes. By revealing racial differences in treatment response profiles, this work underscores the necessity for tailored therapies in TNBC. These insights lay the groundwork for the development of inclusive, precision-driven treatment approaches that may help mitigate racial disparities and enhance patient outcomes.
Collapse
|
8
|
Zhong J, Gao RR, Zhang X, Yang JX, Liu Y, Ma J, Chen Q. Dissecting endothelial cell heterogeneity with new tools. CELL REGENERATION (LONDON, ENGLAND) 2025; 14:10. [PMID: 40121354 PMCID: PMC11929667 DOI: 10.1186/s13619-025-00223-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/20/2025] [Accepted: 02/22/2025] [Indexed: 03/25/2025]
Abstract
The formation of a blood vessel network is crucial for organ development and regeneration. Over the past three decades, the central molecular mechanisms governing blood vessel growth have been extensively studied. Recent evidence indicates that vascular endothelial cells-the specialized cells lining the inner surface of blood vessels-exhibit significant heterogeneity to meet the specific needs of different organs. This review focuses on the current understanding of endothelial cell heterogeneity, which includes both intra-organ and inter-organ heterogeneity. Intra-organ heterogeneity encompasses arterio-venous and tip-stalk endothelial cell specialization, while inter-organ heterogeneity refers to organ-specific transcriptomic profiles and functions. Advances in single-cell RNA sequencing (scRNA-seq) have enabled the identification of new endothelial subpopulations and the comparison of gene expression patterns across different subsets of endothelial cells. Integrating scRNA-seq with other high-throughput sequencing technologies promises to deepen our understanding of endothelial cell heterogeneity at the epigenetic level and in a spatially resolved context. To further explore human endothelial cell heterogeneity, vascular organoids offer powerful tools for studying gene function in three-dimensional culture systems and for investigating endothelial-tissue interactions using human cells. Developing organ-specific vascular organoids presents unique opportunities to unravel inter-organ endothelial cell heterogeneity and its implications for human disease. Emerging technologies, such as scRNA-seq and vascular organoids, are poised to transform our understanding of endothelial cell heterogeneity and pave the way for innovative therapeutic strategies to address human vascular diseases.
Collapse
Affiliation(s)
- Jing Zhong
- Center for Cell Lineage Atlas, CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Center for Cell Lineage Atlas, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Rong-Rong Gao
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences); Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan 250117, Shandong, China
| | - Xin Zhang
- Center for Cell Lineage Atlas, CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Center for Cell Lineage Atlas, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jia-Xin Yang
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Yang Liu
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, 510006, China.
| | - Jinjin Ma
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, 510006, China.
- The Institute of Future Health, South China of Technology, Guangzhou International Campus, Guangzhou, 511442, China.
| | - Qi Chen
- Center for Cell Lineage Atlas, CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.
- China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Center for Cell Lineage Atlas, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences); Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan 250117, Shandong, China.
| |
Collapse
|
9
|
Avolio E, Bassani B, Campanile M, Mohammed KA, Muti P, Bruno A, Spinetti G, Madeddu P. Shared molecular, cellular, and environmental hallmarks in cardiovascular disease and cancer: Any place for drug repurposing? Pharmacol Rev 2025; 77:100033. [PMID: 40148035 DOI: 10.1016/j.pharmr.2024.100033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 12/17/2024] [Indexed: 03/29/2025] Open
Abstract
Cancer and cardiovascular disease (CVD) are the 2 biggest killers worldwide. Specific treatments have been developed for the 2 diseases. However, mutual therapeutic targets should be considered because of the overlap of cellular and molecular mechanisms. Cancer research has grown at a fast pace, leading to an increasing number of new mechanistic treatments. Some of these drugs could prove useful for treating CVD, which realizes the concept of cancer drug repurposing. This review provides a comprehensive outline of the shared hallmarks of cancer and CVD, primarily ischemic heart disease and heart failure. We focus on chronic inflammation, altered immune response, stromal and vascular cell activation, and underlying signaling pathways causing pathological tissue remodeling. There is an obvious scope for targeting those shared mechanisms, thereby achieving reciprocal preventive and therapeutic benefits. Major attention is devoted to illustrating the logic, advantages, challenges, and viable examples of drug repurposing and discussing the potential influence of sex, gender, age, and ethnicity in realizing this approach. Artificial intelligence will help to refine the personalized application of drug repurposing for patients with CVD. SIGNIFICANCE STATEMENT: Cancer and cardiovascular disease (CVD), the 2 biggest killers worldwide, share several underlying cellular and molecular mechanisms. So far, specific therapies have been developed to tackle the 2 diseases. However, the development of new cardiovascular drugs has been slow compared with cancer drugs. Understanding the intersection between pathological mechanisms of the 2 diseases provides the basis for repurposing cancer therapeutics for CVD treatment. This approach could allow the rapid development of new drugs for patients with CVDs.
Collapse
Affiliation(s)
- Elisa Avolio
- Bristol Heart Institute, Laboratory of Experimental Cardiovascular Medicine, Translational Health Sciences, Bristol Medical School, University of Bristol, United Kingdom.
| | - Barbara Bassani
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry, and Immunology, IRCCS MultiMedica, Milan, Italy
| | - Marzia Campanile
- Laboratory of Cardiovascular Pathophysiology - Regenerative Medicine, IRCCS MultiMedica, Milan, Italy; Department of Biosciences, University of Milan, Milan, Italy
| | - Khaled Ak Mohammed
- Bristol Heart Institute, Laboratory of Experimental Cardiovascular Medicine, Translational Health Sciences, Bristol Medical School, University of Bristol, United Kingdom; Department of Cardiothoracic Surgery, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Paola Muti
- IRCCS MultiMedica, Milan, Italy; Department of Biomedical, Surgical and Dental Health Sciences, University of Milan, Italy
| | - Antonino Bruno
- Laboratory of Innate Immunity, Unit of Molecular Pathology, Biochemistry, and Immunology, IRCCS MultiMedica, Milan, Italy; Laboratory of Immunology and General Pathology, Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy.
| | - Gaia Spinetti
- Laboratory of Cardiovascular Pathophysiology - Regenerative Medicine, IRCCS MultiMedica, Milan, Italy.
| | - Paolo Madeddu
- Bristol Heart Institute, Laboratory of Experimental Cardiovascular Medicine, Translational Health Sciences, Bristol Medical School, University of Bristol, United Kingdom.
| |
Collapse
|
10
|
Chen H, Peng C, Fang F, Li Y, Liu X, Hu Y, Wang G, Liu X, Shen Y. Angiogenesis within atherosclerotic plaques: Mechanical regulation, molecular mechanism and clinical diagnosis. MECHANOBIOLOGY IN MEDICINE 2025; 3:100114. [PMID: 40396135 PMCID: PMC12082165 DOI: 10.1016/j.mbm.2025.100114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/12/2024] [Accepted: 01/05/2025] [Indexed: 05/22/2025]
Abstract
Atherosclerosis (AS) is a disease characterized by focal cholesterol accumulation and insoluble inflammation in arterial intima, leading to the formation of an atherosclerotic plaque consisting of lipids, cells, and fibrous matrix. The presence of plaque can restrict or obstruct blood flow, resulting in arterial stenosis and local mechanical microenvironment changes including flow shear stress, vascular matrix stiffness, and plaque structural stress. Neovascularization within the atherosclerotic plaque plays a crucial role in both plaque growth and destabilization, potentially leading to plaque rupture and fatal embolism. However, the exact interactions between neovessels and plaque remain unclear. In this review, we provide a comprehensive analysis of the origin of intraplaque neovessels, the contributing factors, underlying molecular mechanisms, and associated signaling pathways. We specifically emphasize the role of mechanical factors contributing to angiogenesis in atherosclerotic plaques. Additionally, we summarize the imaging techniques and therapeutic strategies for intraplaque neovessels to enhance our understanding of this field.
Collapse
Affiliation(s)
- Hanxiao Chen
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Chengxiu Peng
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Fei Fang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Yuhao Li
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Xiaran Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Ying Hu
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Guixue Wang
- Jinfeng Laboratory, Chongqing 401329, China
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
- Jinfeng Laboratory, Chongqing 401329, China
| | - Yang Shen
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
- Jinfeng Laboratory, Chongqing 401329, China
| |
Collapse
|
11
|
Gusti Y, Liu W, Athar F, Cahill PA, Redmond EM. Endothelial Homeostasis Under the Influence of Alcohol-Relevance to Atherosclerotic Cardiovascular Disease. Nutrients 2025; 17:802. [PMID: 40077672 PMCID: PMC11901717 DOI: 10.3390/nu17050802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 02/21/2025] [Accepted: 02/23/2025] [Indexed: 03/14/2025] Open
Abstract
Alcohol, in the form of ethyl alcohol or ethanol, is a widely consumed substance with significant implications for human health. Research studies indicate multifaceted effects of alcohol on the cardiovascular system with both protective and harmful effects on atherosclerotic cardiovascular disease (ASCVD), depending on the amount involved and the pattern of consumption. Among the critical components of the cardiovascular system are endothelial cells which line blood vessels. These cells are pivotal in maintaining vessel homeostasis, regulating blood flow, and preventing thrombosis. Their compromised function correlates with arterial disease progression and is predictive of cardiovascular events. Here we review research investigating how alcohol exposure affects the endothelium to gain insight into potential mechanisms mediating alcohol's influence on ASCVD underlying heart attacks and strokes. Studies highlight opposite effects of low versus high levels of alcohol on many endothelial functions. In general, low-to-moderate levels of alcohol (~5-25 mM) maintain the endothelium in a non-activated state supporting vascular homeostasis, while higher alcohol levels (≥50 mM) lead to endothelial dysfunction and promotes atherosclerosis. These biphasic endothelial effects of alcohol might underlie the varying impacts of different alcohol consumption patterns on ASCVD.
Collapse
Affiliation(s)
| | | | | | | | - Eileen M. Redmond
- Department of Surgery, University of Rochester Medical Center, Rochester, NY 14642-8410, USA; (Y.G.); (W.L.); (F.A.); (P.A.C.)
| |
Collapse
|
12
|
Verma M, Fatima S, Syed A, Elgorban AM, Abid I, Wong LS, Khan MS, Ansari IA. 3-Acetyl-11-keto-β-boswellic acid (AKBA) induced antiproliferative effect by suppressing Notch signaling pathway and synergistic interaction with cisplatin against prostate cancer cells. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-03899-1. [PMID: 39985578 DOI: 10.1007/s00210-025-03899-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/08/2025] [Indexed: 02/24/2025]
Abstract
Studies on the assessment of anticancer efficacy of plant-derived phytochemicals by targeting signaling pathways have drawn a lot of attention recently for human health. Multiple investigations have proposed an involvement of Notch pathway in the processes of cancer angiogenesis and metastasis, and drug resistance. Moreover, overexpression of Notch signaling is associated with increased prostate cancer (PrCa) cell growth and development. A number of chemotherapeutic agents are reported to become resistant over a period of time and have severe side effects. To increase efficacy and lessen drug-induced toxicity, a variety of bioactive compounds have been utilized alone or as adjuncts to traditional chemotherapy. Therefore, in the present study, the potential of AKBA in inhibiting the proliferation of PrCa cells by modulating Notch signaling components and its efficacy in combination with cisplatin was investigated. The results exhibited a substantial reduction in cell survival (IC50 = 25.28 µM at 24 h and 16.50 µM at 48 h) and cellular alterations in AKBA-treated PrCa cells. Additionally, AKBA caused nuclear condensation, increased reactive oxygen species (ROS) generation, mitochondrial membrane depolarization, and caspase activation, ultimately leading to apoptosis in PrCa cells. Moreover, AKBA-elicited apoptosis was evidenced by an augmentation in the Bax to Bcl2 ratio. AKBA was also found to induce G0/G1 arrest which was substantiated by reduced cyclin D1 and CDK4 expression levels concomitantly with increased expression of p21 and p27 genes. Intriguingly, AKBA demonstrated significant downregulation of Notch signaling mediators. Furthermore, the isobolograms of the combination treatment indicated that AKBA has the potential to synergistically enhance the cytotoxic efficacy of cisplatin in DU145 cells, as evidenced by CI < 1 across all tested combinations. Overall, the results of this study suggest strong antiproliferative, apoptotic, and chemo-sensitizing potential of AKBA. Thus, AKBA holds a promising drug candidature warranting further investigation as a probable therapeutic option for both the prevention and treatment of PrCa and other solid tumors.
Collapse
Affiliation(s)
- Mahima Verma
- Integral Centre of Excellence for Interdisciplinary Research (ICEIR), Integral University, Lucknow, 226026, India
- Department of Biosciences, Integral University, Lucknow, 226026, India
| | - Shireen Fatima
- Integral Centre of Excellence for Interdisciplinary Research (ICEIR), Integral University, Lucknow, 226026, India
- Department of Biosciences, Integral University, Lucknow, 226026, India
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Abdallah M Elgorban
- Centre of Excellence in Biotechnology Research (CEBR), King Saud University, Riyadh, Saudi Arabia
| | - Islem Abid
- Centre of Excellence in Biotechnology Research (CEBR), King Saud University, Riyadh, Saudi Arabia
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Putra Nilai, 71800, Nilai, Negeri Sembilan, Malaysia
| | - Mohd Sajid Khan
- Department of Biochemistry, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Irfan Ahmad Ansari
- Integral Centre of Excellence for Interdisciplinary Research (ICEIR), Integral University, Lucknow, 226026, India.
- Department of Biosciences, Integral University, Lucknow, 226026, India.
| |
Collapse
|
13
|
Choi BK, Jo MH, Shin HJ, Park SJ. Anti-Angiogenic Potential of Marine Streptomyces-Derived Lucknolide A on VEGF/VEGFR2 Signaling in Human Endothelial Cells. Molecules 2025; 30:987. [PMID: 40076212 PMCID: PMC11901821 DOI: 10.3390/molecules30050987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/16/2025] [Accepted: 02/18/2025] [Indexed: 03/14/2025] Open
Abstract
Angiogenesis, primarily driven by the vascular endothelial growth factor (VEGF) and its receptor, the VEGFR, plays a key role in various pathological processes such as cancer progression. Here, we investigated the anti-angiogenic effects of Lucknolide A (LA), a marine Streptomyces-derived compound, and evaluated its potential as a VEGFR2 inhibitor. LA selectively inhibited the proliferation of human endothelial cells EA.hy926 and HUVEC while exhibiting minimal effects on normal fibroblasts and various tumor cells. LA induced S-phase cell cycle arrest and apoptosis in EA.hy926 cells, increasing apoptotic markers p53, Bax, and p21 and decreasing the anti-apoptotic protein Bcl-2, with these effects being further enhanced under VEGF stimulation. Additionally, LA suppressed VEGFR2 phosphorylation and its downstream signaling pathways, including Akt/mTOR/p70S6K, MEK/ERK, Src, FAK, and p38 MAPK, which are crucial for endothelial survival and angiogenesis. Molecular docking studies revealed that LA binds to both inactive (DFG-out, PDB: 4ASD) and active (DFG-in, PDB: 3B8R) VEGFR2 conformations, with a significantly stronger affinity for the active state (-107.96 kcal/mol) than the inactive state (-33.56 kcal/mol), suggesting its potential as a VEGFR2 kinase inhibitor. Functionally, LA significantly inhibited VEGF-induced endothelial migration, tube formation, and microvessel sprouting in both in vitro and ex vivo rat aortic ring assays. Additionally, LA reduced tumor-associated tube formation induced by human breast tumor cells (MDA-MB-231), indicating its potential to suppress VEGF-dependent tumor angiogenesis. These findings suggest that LA is a promising selective anti-angiogenic agent with potential therapeutic applications in angiogenesis-related diseases such as cancer.
Collapse
Affiliation(s)
- Byeoung-Kyu Choi
- Department of Bio-Convergence Engineering, Dongyang Mirae University, Seoul 08221, Republic of Korea;
| | - Min-Hee Jo
- BB21 Plus Program, Department of Chemistry, Pukyong National University, Busan 48513, Republic of Korea;
| | - Hee Jae Shin
- Marine Natural Products Laboratory, Korea Institute of Ocean Science and Technology, Busan 49111, Republic of Korea
- Department of Marine Technology and Convergence Engineering, Korea National University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Sun Joo Park
- BB21 Plus Program, Department of Chemistry, Pukyong National University, Busan 48513, Republic of Korea;
| |
Collapse
|
14
|
Famta P, Shah S, Vambhurkar G, Pandey G, Bagasariya D, Kumar KC, Prasad SB, Shinde A, Wagh S, Srinivasarao DA, Kumar R, Khatri DK, Asthana A, Srivastava S. Amelioration of breast cancer therapies through normalization of tumor vessels and microenvironment: paradigm shift to improve drug perfusion and nanocarrier permeation. Drug Deliv Transl Res 2025; 15:389-406. [PMID: 39009931 DOI: 10.1007/s13346-024-01669-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/04/2024] [Indexed: 07/17/2024]
Abstract
Breast cancer (BC) is the most commonly diagnosed cancer among women. Chemo-, immune- and photothermal therapies are employed to manage BC. However, the tumor microenvironment (TME) prevents free drugs and nanocarriers (NCs) from entering the tumor premises. Formulation scientists rely on enhanced permeation and retention (EPR) to extravasate NCs in the TME. However, recent research has demonstrated the inconsistent nature of EPR among different patients and tumor types. In addition, angiogenesis, high intra-tumor fluid pressure, desmoplasia, and high cell and extracellular matrix density resist the accumulation of NCs in the TME. In this review, we discuss TME normalization as an approach to improve the penetration of drugs and NCSs in the tumor premises. Strategies such as normalization of tumor vessels, reversal of hypoxia, alleviation of high intra-tumor pressure, and infiltration of lymphocytes for the reversal of therapy failure have been discussed in this manuscript. Strategies to promote the infiltration of anticancer immune cells in the TME after vascular normalization have been discussed. Studies strategizing time points to administer TME-normalizing agents are highlighted. Mechanistic pathways controlling the angiogenesis and normalization processes are discussed along with the studies. This review will provide greater tumor-targeting insights to the formulation scientists.
Collapse
Affiliation(s)
- Paras Famta
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Saurabh Shah
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Ganesh Vambhurkar
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Giriraj Pandey
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Deepkumar Bagasariya
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Kondasingh Charan Kumar
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Sajja Bhanu Prasad
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Akshay Shinde
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Suraj Wagh
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Dadi A Srinivasarao
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Rahul Kumar
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dharmendra Kumar Khatri
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
- Molecular and Cellular Biology Laboratory, Department of Pharmacology, Nims Institute of Pharmacy, Nims University, Jaipur, Rajasthan, India
| | - Amit Asthana
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Saurabh Srivastava
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India.
| |
Collapse
|
15
|
Joković N, Pešić S, Vitorović J, Bogdanović A, Sharifi-Rad J, Calina D. Glucosinolates and Their Hydrolytic Derivatives: Promising Phytochemicals With Anticancer Potential. Phytother Res 2025; 39:1035-1089. [PMID: 39726346 DOI: 10.1002/ptr.8419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/29/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024]
Abstract
Recent research has increasingly focused on phytochemicals as promising anticancer agents, with glucosinolates (GSLs) and their hydrolytic derivatives playing a central role. These sulfur-containing compounds, found in plants of the Brassicales order, are converted by myrosinase enzymes into biologically active products, primarily isothiocyanates (ITCs) and indoles, which exhibit significant anticancer properties. Indole-3-carbinol, diindolylmethane, sulforaphane (SFN), phenethyl isothiocyanate (PEITC), benzyl isothiocyanate, and allyl isothiocyanate have shown potent anticancer effects in animal models, particularly in breast, prostate, lung, melanoma, bladder, hepatoma, and gastrointestinal cancers. Clinical studies further support the chemopreventive effects of SFN and PEITC, particularly in detoxifying carcinogens and altering biochemical markers in cancer patients. These compounds have demonstrated good bioavailability, low toxicity, and minimal adverse effects, supporting their potential therapeutic application. Their anticancer mechanisms include the modulation of reactive oxygen species, suppression of cancer-related signaling pathways, and direct interaction with tumor cell proteins. Additionally, semi-synthetic derivatives of GSLs have been developed to enhance anticancer efficacy. In conclusion, GSLs and their derivatives offer significant potential as both chemopreventive and therapeutic agents, warranting further clinical investigation to optimize their application in cancer treatment.
Collapse
Affiliation(s)
- Nataša Joković
- Department of Biology and Ecology, Faculty of Science and Mathematics, University of Niš, Niš, Serbia
| | - Strahinja Pešić
- Department of Biology and Ecology, Faculty of Science and Mathematics, University of Niš, Niš, Serbia
| | - Jelena Vitorović
- Department of Biology and Ecology, Faculty of Science and Mathematics, University of Niš, Niš, Serbia
| | - Andrija Bogdanović
- Department of Biology and Ecology, Faculty of Science and Mathematics, University of Niš, Niš, Serbia
| | - Javad Sharifi-Rad
- Universidad Espíritu Santo, Samborondón, Ecuador
- Department of Medicine, College of Medicine, Korea University, Seoul, Republic of Korea
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| |
Collapse
|
16
|
Nonnast E, Mira E, Mañes S. The role of laminins in cancer pathobiology: a comprehensive review. J Transl Med 2025; 23:83. [PMID: 39825429 PMCID: PMC11742543 DOI: 10.1186/s12967-025-06079-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/03/2025] [Indexed: 01/20/2025] Open
Abstract
Laminins (LMs) are a family of heterotrimeric glycoproteins that form the structural foundation of basement membranes (BM). By acting as molecular bridges between cells and the extracellular matrix (ECM) through integrins and other surface receptors, they regulate key cellular signals that influence cell behavior and tissue architecture. Despite their physiological importance, our understanding of the role of LMs in cancer pathobiology remains fragmented. In this article, we review the diverse functions of LMs in promoting cancer cell proliferation, adhesion, and migration-critical steps in cancer metastasis. Beyond their direct effects on tumor cells, LMs influence stromal interactions and modulate tumor microenvironment dynamics, affecting processes such as angiogenesis, immune cell infiltration, cancer-associated fibroblast activation, and immune evasion. Understanding the complex roles of LMs in cancer biology, as well as their differential expression patterns in malignancies, could provide new diagnostic tools for predicting disease outcomes and pave the way for innovative therapeutic strategies, such as targeting LM-receptor interactions or modulating ECM dynamics to impede tumor growth and metastasis.
Collapse
Affiliation(s)
- Elena Nonnast
- Department of Immunology and Oncology, Centro Nacional Biotecnología (CNB-CSIC), Darwin, 3. Campus Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Emilia Mira
- Department of Immunology and Oncology, Centro Nacional Biotecnología (CNB-CSIC), Darwin, 3. Campus Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| | - Santos Mañes
- Department of Immunology and Oncology, Centro Nacional Biotecnología (CNB-CSIC), Darwin, 3. Campus Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| |
Collapse
|
17
|
Jeong PS, Kang HG, Cha D, Jeon SB, Kim MJ, Song BS, Sim BW, Lee S. Role of the Notch signaling pathway in porcine oocyte maturation. Cell Commun Signal 2025; 23:1. [PMID: 39748238 PMCID: PMC11697911 DOI: 10.1186/s12964-024-01996-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 12/12/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND Although the Notch signaling pathway is known to play an important role in ovarian follicle development in mammals, whether it is involved in oocyte maturation remains unclear. Therefore, this study was performed to elucidate the existence and role of the Notch signaling pathway during oocyte maturation in a porcine model. METHODS Reverse transcription-polymerase chain reaction (RT-PCR) and immunocytochemical assays were used to determine the existence of Notch signaling pathway-related transcripts and proteins in porcine cumulus-oocyte complexes (COCs). In vitro maturation (IVM) and parthenogenetic activation of oocytes were employed to examine the effects of Notch signaling inhibition on meiotic progression and embryogenesis of COCs using RO4929097 (RO), an inhibitor of γ secretase. Various staining methods (TUNEL, Phalloidin-TRITC, MitoTracker, JC-1, BODIPY FL ATP, ER-Tracker, Fluo-3, and Rhod-2) and immunocytochemical and quantitative PCR assays were used to identify the effects of Notch signaling inhibition on meiotic progression, embryogenesis, cell cycle progression, spindle assembly, chromosome alignment, mitochondrial and endoplasmic reticulum distribution, and downstream pathway targets in COCs. RESULTS The RT-PCR and immunocytochemical analyses revealed the presence of Notch signaling-related receptors (NOTCH1-4) and ligands (JAG1 and 2 and DLL1, 3, and 4) at 0, 22, 28, and 44 h of IVM in the COCs. RO treatment during oocyte maturation markedly reduced meiotic maturation and embryogenesis, inhibiting the cell cycle progression, spindle assembly, and chromosome alignment processes that are important for meiotic maturation. Furthermore, RO significantly impaired the cellular distribution and functions of the mitochondria and endoplasmic reticula, which are important organelles for the cytoplasmic maturation of oocytes. Finally, the involvement of canonical Notch signaling in oocyte maturation was confirmed by the decreased expression of HES and HEY family transcripts and proteins in the RO-treated COCs. CONCLUSIONS It was first demonstrated that Notch signaling pathway-related transcripts and proteins were expressed during the meiotic maturation of porcine COCs. Furthermore, the inhibition of Notch signaling during IVM revealed the essential role of this signaling pathway during oocyte maturation in pigs.
Collapse
Affiliation(s)
- Pil-Soo Jeong
- Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
| | - Hyo-Gu Kang
- Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
| | - Dabin Cha
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Se-Been Jeon
- Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
| | - Min Ju Kim
- Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
| | - Bong-Seok Song
- Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
| | - Bo-Woong Sim
- Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea.
- Department of Functional Genomics, University of Science and Technology, Daejeon, 34113, Republic of Korea.
| | - Sanghoon Lee
- Laboratory of Theriogenology, College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
18
|
Sessa F, Pomara C, Schembari F, Esposito M, Capasso E, Pesaresi M, Osuna E, Ulas E, Zammit C, Salerno M. MiRNA Dysregulation in Brain Injury: An In Silico Study to Clarify the Role of a MiRNA Set. Curr Neuropharmacol 2025; 23:209-231. [PMID: 39129166 PMCID: PMC11793054 DOI: 10.2174/1570159x22666240808124427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/14/2024] [Accepted: 05/19/2024] [Indexed: 08/13/2024] Open
Abstract
BACKGROUND The identification of specific circulating miRNAs has been proposed as a valuable tool for elucidating the pathophysiology of brain damage or injury and predicting patient outcomes. OBJECTIVE This study aims to apply several bioinformatic tools in order to clarify miRNA interactions with potential genes involved in brain injury, emphasizing the need of using a computational approach to determine the most likely correlations between miRNAs and target genes. Specifically, this study centers on elucidating the roles of miR-34b, miR-34c, miR-135a, miR-200c, and miR-451a. METHODS After a careful evaluation of different software available (analyzing the strengths and limitations), we applied three tools, one to perform an analysis of the validated targets (miRTarBase), and two to evaluate functional annotations (miRBase and TAM 2.0). RESULTS Research findings indicate elevated levels of miR-135a and miR-34b in patients with traumatic brain injury (TBI) within the first day post-injury, while miR-200c and miR-34c were found to be upregulated after 7 days. Moreover, miR-451a and miR-135a were found overexpressed in the serum, while miRNAs 34b, 34c, and 200c, had lower serum levels at baseline post brain injury. CONCLUSION This study emphasizes the use of computational methods in determining the most likely relationships between miRNAs and target genes by investigating several bioinformatic techniques to elucidate miRNA interactions with potential genes. Specifically, this study focuses on the functions of miR-34b, miR-34c, miR-135a, miR-200c, and miR-451a, providing an up-to-date overview and suggesting future research directions for identifying theranomiRNAs related to brain injury, both at the tissue and serum levels.
Collapse
Affiliation(s)
- Francesco Sessa
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, Catania, Italy
| | - Cristoforo Pomara
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, Catania, Italy
| | - Flavia Schembari
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, Catania, Italy
| | | | - Emanuele Capasso
- Department of Advanced Biomedical Science-Legal Medicine Section, University of Naples “Federico II”, 80131 Naples, Italy
| | - Mauro Pesaresi
- Section of Legal Medicine, Department of Biomedical Sciences and Public Health, Polytechnic University of Marche, Via Tronto, Ancona, 60126, Italy
| | - Eduardo Osuna
- Department of Forensic Medicine. University of Murcia. 30120 Murcia, Spain
| | - Efehan Ulas
- Faculty of Medicine, Department of Biostatistics and Medical Informatics, Kirklareli University, Kirklareli, Turkey
| | - Christian Zammit
- Department of Anatomy, Faculty of Medicine and Surgery, University of Malta, Msida 2080, Malta
| | - Monica Salerno
- Department of Medical, Surgical and Advanced Technologies “G.F. Ingrassia”, University of Catania, Catania, Italy
| |
Collapse
|
19
|
Kane K, Edwards D, Chen J. The influence of endothelial metabolic reprogramming on the tumor microenvironment. Oncogene 2025; 44:51-63. [PMID: 39567756 PMCID: PMC11706781 DOI: 10.1038/s41388-024-03228-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/22/2024]
Abstract
Endothelial cells (ECs) that line blood vessels act as gatekeepers and shape the metabolic environment of every organ system. In normal conditions, endothelial cells are relatively quiescent with organ-specific expression signatures and metabolic profiles. In cancer, ECs are metabolically reprogrammed to promote the formation of new blood vessels to fuel tumor growth and metastasis. In addition to EC's role on tumor cells, the tortuous tumor vasculature contributes to an immunosuppressive environment by limiting T lymphocyte infiltration and activity while also promoting the recruitment of other accessory pro-angiogenic immune cells. These elements aid in the metastatic spreading of cancer cells and contribute to therapeutic resistance. The concept of restoring a more stabilized vasculature in concert with cancer immunotherapy is emerging as a potential approach to overcoming barriers in cancer treatment. This review summarizes the metabolism of endothelial cells, their regulation of nutrient uptake and delivery, and their impact in shaping the tumor microenvironment and anti-tumor immunity. We highlight new therapeutic approaches that target the tumor vasculature and harness the immune response. Appreciating the integration of metabolic state and nutrient levels and the crosstalk among immune cells, tumor cells, and ECs in the TME may provide new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Kelby Kane
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA
| | - Deanna Edwards
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA
- Division of Rheumatology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jin Chen
- Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA.
- Division of Rheumatology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
- Vanderbilt Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA.
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA.
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, USA.
| |
Collapse
|
20
|
Palani S, Joseph J, Sridhar P, Bupesh G, Saravanan KM, Chandrasekaran R. Apoptotic and Molecular Mechanisms of Carthamidin in Breast Cancer Therapy: An Integrated In Vitro and In Silico Study. Mol Biotechnol 2024:10.1007/s12033-024-01331-2. [PMID: 39704751 DOI: 10.1007/s12033-024-01331-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/18/2024] [Indexed: 12/21/2024]
Abstract
The current study examines the anticancer properties of the chemical carthamidin in breast cancer through in-vitro and in silico analysis. This study's results demonstrated that carthamidin strongly inhibited the proliferation of MCF 7 cells in vitro, as evidenced by an IC50 value of 128.65 µg/mL at 24 h, determined using the MTT test. Laser confocal microscopy utilizing AO/EB labeling validated apoptotic effects through upregulating pro-apoptotic cell markers. At the same time, the ROS assay demonstrated elevated ROS production in the treated cells. LDH leakage was corroborated by leakage analysis, revealing high LDH levels at 100 µg/mL. The cellular growth parameters were subsequently examined via flow cytometry, showing that the cell cycle was halted in the G0/G1 phase, with 82.9% of the cells residing there. The molecular docking research demonstrated that carthamidin displayed a significant binding affinity with Notch receptors - NOTCH 1-4 and p53, with binding scores ranging from - 5.027 to - 7.402 kcal/mol. The results suggest that carthamidin has therapeutic potential in inducing apoptosis and impairing cancer cells, warranting further investigation in breast cancer treatments.
Collapse
Affiliation(s)
- Selvakumari Palani
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641021, India
| | - John Joseph
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641021, India
| | - Priyadharshan Sridhar
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641021, India
| | - Giridharan Bupesh
- Department of Forestry, Nagaland University, Lumami, Nagaland, 798627, India.
| | | | - Rajkuberan Chandrasekaran
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641021, India.
| |
Collapse
|
21
|
Ashby A, Murphy P, Jukosky J, Whipple CA. The Effects of Perfluorooctanesulfonic acid (PFOS) on Human Umbilical Vein Endothelial Cells (HUVECs) Proliferation and Gene Expression and its Implications on Fetal Development. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001318. [PMID: 39712934 PMCID: PMC11659881 DOI: 10.17912/micropub.biology.001318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/30/2024] [Accepted: 11/25/2024] [Indexed: 12/24/2024]
Abstract
Polyfluoro-alkyl substances (PFAS) are widely distributed environmental contaminants linked to human toxicity and developmental delays, especially low birthweight (LBW). In this study, Human Umbilical Vein Endothelial Cells (HUVECs) were exposed to the PFAS perfluorooctanesulfonic acid (PFOS). After 48-hours, their proliferation, and differential gene expression were assessed. A small, yet significant, reduction in proliferation was seen at 50 μg/mL and 75 μg/mL. RNA sequencing showed that estrogen response and notch signaling pathways were significantly altered. This study increases our understanding of how PFAS may interfere with endothelial cell (HUVECs) functions which may have larger effects on fetal growth, development, and birthweight.
Collapse
Affiliation(s)
- Alycia Ashby
- Colby–Sawyer College, New London, New Hampshire, United States
| | - Patrick Murphy
- Colby–Sawyer College, New London, New Hampshire, United States
| | - James Jukosky
- Colby–Sawyer College, New London, New Hampshire, United States
| | | |
Collapse
|
22
|
Xia X, Wang Z, Song L, Cheng Y, Xiong P, Li S. FAM3C Regulates Glioma Cell Proliferation, Invasion, Apoptosis, and Epithelial Mesenchymal Transition via the Notch Pathway. Cancer Med 2024; 13:e70412. [PMID: 39629744 PMCID: PMC11615680 DOI: 10.1002/cam4.70412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/19/2024] [Accepted: 10/30/2024] [Indexed: 12/08/2024] Open
Abstract
BACKGROUND Previous studies have implicated the involvement of FAM3C in cancerous development and progression. Herein, we aimed to further investigate the oncological mechanism of FAM3C, specifically in glioma. METHODS We utilized open-source bioinformatics tools and platforms to analyze the transcriptional expression levels, prognosis, and correlation with clinical variables of FAM3C in gliomas, and subsequently, to hypothesize its potential molecular functions and possibly associated signaling pathways. Following this, glioma tissues were obtained from resected specimens of patients to assess the expression of FAM3C and molecular markers related to epithelial-mesenchymal transition (EMT) and Notch signaling pathways. Furthermore, glioma cell lines were subjected to treatments including FAM3C siRNA knockdown, lentiviral overexpression, and Notch signaling pathway blockade, enabling the investigation of molecular functions of FAM3C in vitro, particularly in EMT and Notch signaling pathways, as well as its effects on cancer cell proliferation, cell cycle progression, apoptosis, and invasion, using assays such as MMT cell proliferation assay, transwell migration, and flow cytometry analysis. Finally, a mouse subcutaneous xenograft model was established to explore the integrative function of FAM3C in glioma growth in vivo. RESULTS The expression level of FAM3C correlated with the progression of glioma grade and served as a prognostic indicator for poor patient outcomes. Subsequent experiments conducted on glioma cell lines, tumor tissues, and mouse models reinforced the close association of FAM3C with processes including glioma cell proliferation, cell cycle progression, apoptosis, and invasion. Additionally, it was observed that FAM3C is involved in the regulation of the Notch signaling pathway. CONCLUSIONS FAM3C emerges as a potential candidate for clinical detection and prognostic biomarker application. Its regulatory role in glioma cell proliferation, cell cycle progression, and modulation of epithelial-mesenchymal transition-driven invasion and migration via the Notch signaling pathway implies its potential to unveil novel therapeutic targets for glioma treatment.
Collapse
Affiliation(s)
- Xiaochao Xia
- Departments of NeurosurgeryAffiliated Hospital of North Sichuan Medical CollegeNanchongChina
| | - Zihao Wang
- Departments of NeurosurgeryAffiliated Hospital of North Sichuan Medical CollegeNanchongChina
| | - Lvmeng Song
- Departments of NeurosurgeryAffiliated Hospital of North Sichuan Medical CollegeNanchongChina
| | - Yinchuan Cheng
- Departments of NeurosurgeryAffiliated Hospital of North Sichuan Medical CollegeNanchongChina
| | - Ping Xiong
- Departments of NeurosurgeryAffiliated Hospital of North Sichuan Medical CollegeNanchongChina
| | - Shun Li
- Departments of NeurosurgeryAffiliated Hospital of North Sichuan Medical CollegeNanchongChina
| |
Collapse
|
23
|
Franco MS, Raulefs S, Schilling D, Combs SE, Schmid TE. Impact of Radiation on Invasion and Migration of Glioma In Vitro and In Vivo. Cancers (Basel) 2024; 16:3900. [PMID: 39682088 DOI: 10.3390/cancers16233900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/14/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Glioblastoma (GBM) constitutes the most common primary brain tumor and it remains incurable despite therapeutic advances. The high infiltration/invasion potential of GBM cells is considered to be one of the reasons for the inevitable recurrence of the disease. Radiotherapy (RT) is part of the standard care for patients with GBM, and its benefits on overall survival are extensively reported. However, numerous preclinical studies show that X-ray irradiation can enhance the motility of GBM cells. In the present review, we bring together state-of-the-art research on the impact of radiation on GBM cell motility. The mechanisms through which irradiation impacts the brain tumor microenvironment and the tumor cells themselves, leading to more aggressive/invasive tumors, are described. Finally, we summarize potential pharmacological strategies to overcome this problem. Clinical data validating the occurrence of these processes are urgently needed as they could be of great value for patient outcomes. With this comprehensive review, we expect to highlight the need for methods which allow for monitoring the post-irradiation invasive behavior of GBM in patients.
Collapse
Affiliation(s)
- Marina Santiago Franco
- School of Medicine and Health, Department of Radiation Oncology, TUM University Hospital, Technical University of Munich, 81675 Munich, Germany
- Institute of Radiation Medicine, Helmholtz Munich, 85764 Neuherberg, Germany
| | - Susanne Raulefs
- School of Medicine and Health, Department of Radiation Oncology, TUM University Hospital, Technical University of Munich, 81675 Munich, Germany
- Institute of Radiation Medicine, Helmholtz Munich, 85764 Neuherberg, Germany
| | - Daniela Schilling
- School of Medicine and Health, Department of Radiation Oncology, TUM University Hospital, Technical University of Munich, 81675 Munich, Germany
- Institute of Radiation Medicine, Helmholtz Munich, 85764 Neuherberg, Germany
| | - Stephanie E Combs
- School of Medicine and Health, Department of Radiation Oncology, TUM University Hospital, Technical University of Munich, 81675 Munich, Germany
- Institute of Radiation Medicine, Helmholtz Munich, 85764 Neuherberg, Germany
- Deutsches Konsortium für Translationale Krebsforschung (DKTK), Partner Site Munich, 80336 Munich, Germany
| | - Thomas E Schmid
- School of Medicine and Health, Department of Radiation Oncology, TUM University Hospital, Technical University of Munich, 81675 Munich, Germany
- Institute of Radiation Medicine, Helmholtz Munich, 85764 Neuherberg, Germany
| |
Collapse
|
24
|
Mu X, Zhou Y, Yu Y, Zhang M, Liu J. The roles of cancer stem cells and therapeutic implications in melanoma. Front Immunol 2024; 15:1486680. [PMID: 39611156 PMCID: PMC11602477 DOI: 10.3389/fimmu.2024.1486680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/28/2024] [Indexed: 11/30/2024] Open
Abstract
Melanoma is a highly malignant skin tumor characterized by high metastasis and poor prognosis. Recent studies have highlighted the pivotal role of melanoma stem cells (MSCs)-a subpopulation of cancer stem cells (CSCs)-in driving tumor growth, metastasis, therapeutic resistance, and recurrence. Similar to CSCs in other cancers, MSCs possess unique characteristics, including specific surface markers, dysregulated signaling pathways, and the ability to thrive within complex tumor microenvironment (TME). This review explored the current landscape of MSC research, discussing the identification of MSC-specific surface markers, the role of key signaling pathways such as Wnt/β-catenin, Notch, and Hedgehog (Hh), and how interactions within the TME, including hypoxia and immune cells, contribute to MSC-mediated drug resistance and metastatic behavior. Furthermore, we also investigated the latest therapeutic strategies targeting MSCs, such as small-molecule inhibitors, immune-based approaches, and novel vaccine developments, with an emphasis on their potential to overcome melanoma progression and improve clinical outcomes. This review aims to provide valuable insights into the complex roles of MSCs in melanoma biology and offers perspectives for future research and therapeutic advances against this challenging disease.
Collapse
Affiliation(s)
- Xiaoli Mu
- The Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yixin Zhou
- The Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yongxin Yu
- The Department of Plastic and Reconstructive Surgery, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Mingyi Zhang
- The Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiyan Liu
- The Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
25
|
Law M, Wang PC, Zhou ZY, Wang Y. From Microcirculation to Aging-Related Diseases: A Focus on Endothelial SIRT1. Pharmaceuticals (Basel) 2024; 17:1495. [PMID: 39598406 PMCID: PMC11597311 DOI: 10.3390/ph17111495] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/23/2024] [Accepted: 11/03/2024] [Indexed: 11/29/2024] Open
Abstract
Silent information regulator sirtuin 1 (SIRT1) is an NAD+-dependent deacetylase with potent anti-arterial aging activities. Its protective function in aging-related diseases has been extensively studied. In the microcirculation, SIRT1 plays a crucial role in preventing microcirculatory endothelial senescence by suppressing inflammation and oxidative stress while promoting mitochondrial function and optimizing autophagy. It suppresses hypoxia-inducible factor-1α (HIF-1α)-mediated pathological angiogenesis while promoting healthy, physiological capillarization. As a result, SIRT1 protects against microvascular dysfunction, such as diabetic microangiopathy, while enhancing exercise-induced skeletal muscle capillarization and energy metabolism. In the brain, SIRT1 upregulates tight junction proteins and strengthens their interactions, thus maintaining the integrity of the blood-brain barrier. The present review summarizes recent findings on the regulation of microvascular function by SIRT1, the underlying mechanisms, and various approaches to modulate SIRT1 activity in microcirculation. The importance of SIRT1 as a molecular target in aging-related diseases, such as diabetic retinopathy and stroke, is underscored, along with the need for more clinical evidence to support SIRT1 modulation in the microcirculation.
Collapse
Affiliation(s)
- Martin Law
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (M.L.)
| | - Pei-Chun Wang
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (M.L.)
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China
| | - Zhong-Yan Zhou
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (M.L.)
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China
- Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yu Wang
- Department of Pharmacology and Pharmacy, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China; (M.L.)
- State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
26
|
Srejovic JV, Muric MD, Jakovljevic VL, Srejovic IM, Sreckovic SB, Petrovic NT, Todorovic DZ, Bolevich SB, Sarenac Vulovic TS. Molecular and Cellular Mechanisms Involved in the Pathophysiology of Retinal Vascular Disease-Interplay Between Inflammation and Oxidative Stress. Int J Mol Sci 2024; 25:11850. [PMID: 39519401 PMCID: PMC11546760 DOI: 10.3390/ijms252111850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Retinal vascular diseases encompass several retinal disorders, including diabetic retinopathy, retinopathy of prematurity, age-related macular degeneration, and retinal vascular occlusion; these disorders are classified as similar groups of disorders due to impaired retinal vascularization. The aim of this review is to address the main signaling pathways involved in the pathogenesis of retinal vascular diseases and to identify crucial molecules and the importance of their interactions. Vascular endothelial growth factor (VEGF) is recognized as a crucial and central molecule in abnormal neovascularization and a key phenomenon in retinal vascular occlusion; thus, anti-VEGF therapy is now the most successful form of treatment for these disorders. Interaction between angiopoietin 2 and the Tie2 receptor results in aberrant Tie2 signaling, resulting in loss of pericytes, neovascularization, and inflammation. Notch signaling and hypoxia-inducible factors in ischemic conditions induce pathological neovascularization and disruption of the blood-retina barrier. An increase in the pro-inflammatory cytokines-TNF-α, IL-1β, and IL-6-and activation of microglia create a persistent inflammatory milieu that promotes breakage of the blood-retinal barrier and neovascularization. Toll-like receptor signaling and nuclear factor-kappa B are important factors in the dysregulation of the immune response in retinal vascular diseases. Increased production of reactive oxygen species and oxidative damage follow inflammation and together create a vicious cycle because each factor amplifies the other. Understanding the complex interplay among various signaling pathways, signaling cascades, and molecules enables the development of new and more successful therapeutic options.
Collapse
Affiliation(s)
- Jovana V. Srejovic
- University Clinical Center “Kragujevac”, 34000 Kragujevac, Serbia; (J.V.S.); (S.B.S.); (N.T.P.); (D.Z.T.)
- Department of Ophthalmology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Maja D. Muric
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.D.M.); (V.L.J.)
| | - Vladimir Lj. Jakovljevic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.D.M.); (V.L.J.)
- Center of Excellence for the Study of Redox Balance in Cardiovascular and Metabolic Disorders, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Human Pathology, First Moscow State Medical University I.M. Sechenov, Moscow 119435, Russia;
| | - Ivan M. Srejovic
- Department of Physiology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (M.D.M.); (V.L.J.)
- Center of Excellence for the Study of Redox Balance in Cardiovascular and Metabolic Disorders, University of Kragujevac, 34000 Kragujevac, Serbia
- Department of Pharmacology, First Moscow State Medical University I.M. Sechenov, Moscow 119435, Russia
| | - Suncica B. Sreckovic
- University Clinical Center “Kragujevac”, 34000 Kragujevac, Serbia; (J.V.S.); (S.B.S.); (N.T.P.); (D.Z.T.)
- Department of Ophthalmology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Nenad T. Petrovic
- University Clinical Center “Kragujevac”, 34000 Kragujevac, Serbia; (J.V.S.); (S.B.S.); (N.T.P.); (D.Z.T.)
- Department of Ophthalmology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Dusan Z. Todorovic
- University Clinical Center “Kragujevac”, 34000 Kragujevac, Serbia; (J.V.S.); (S.B.S.); (N.T.P.); (D.Z.T.)
- Department of Ophthalmology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Sergey B. Bolevich
- Department of Human Pathology, First Moscow State Medical University I.M. Sechenov, Moscow 119435, Russia;
| | - Tatjana S. Sarenac Vulovic
- University Clinical Center “Kragujevac”, 34000 Kragujevac, Serbia; (J.V.S.); (S.B.S.); (N.T.P.); (D.Z.T.)
- Department of Ophthalmology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| |
Collapse
|
27
|
Ding R, Cao W, Chen Y, Zhu Y, Yin D. SnRNA-seq reveals differential functional transcriptional pathway alterations in three mutant types of dilated cardiomyopathy. Int J Biol Macromol 2024; 281:136353. [PMID: 39395510 DOI: 10.1016/j.ijbiomac.2024.136353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/26/2024] [Accepted: 10/04/2024] [Indexed: 10/14/2024]
Abstract
Dilated cardiomyopathy (DCM) is a leading cause of heart failure, characterized by ventricular dilation, thinning of the ventricular walls, and systolic dysfunction in either the left or both ventricles, often accompanied by fibrosis. Human cardiac tissue is composed of various cell types, including cardiomyocytes (CMs), fibroblasts (FBs), endothelial cells (ECs), macrophages, lymphocytes and so on. In DCM patients, these cells frequently undergo functional and phenotypic changes, contributing to contractile dysfunction, inflammation, fibrosis, and cell death, thereby increasing the risk of heart failure. This study focuses on DCM patients with mutations (LMNA, RBM20, and TTN) and analyzes functional changes in subpopulations of four cardiac cell types. The study involves functional annotation of subpopulations within each cell type and explores the association between gene mutations and specific functions and pathways. Additionally, the SCENIC method is employed of a particular cell subpopulation with significant functional importance, aiming to identify key transcriptional regulators in specific cell states. By analyzing the expression levels of ligand-receptor pairs in vCM4, vFB2, EC5.0, T cells, and NK cells across the DCM mutant genotypes, we predicted their signaling pathways and communications. This research provides insights into the molecular mechanisms of DCM and potential therapeutic targets.
Collapse
Affiliation(s)
- Rui Ding
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan 430062, China
| | - Wenzhao Cao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan 430062, China
| | - Yongbo Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan 430062, China
| | - Yanrui Zhu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan 430062, China
| | - Dan Yin
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan 430062, China.
| |
Collapse
|
28
|
Ma J, Yang L, Wu J, Huang Z, Zhang J, Liu M, Li M, Luo J, Wang H. Unraveling the Molecular Mechanisms of SIRT7 in Angiogenesis: Insights from Substrate Clues. Int J Mol Sci 2024; 25:11578. [PMID: 39519130 PMCID: PMC11546391 DOI: 10.3390/ijms252111578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/20/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Angiogenesis, a vital physiological or pathological process regulated by complex molecular networks, is widely implicated in organismal development and the pathogenesis of various diseases. SIRT7, a member of the Sirtuin family of nicotinamide adenine dinucleotide + (NAD+) dependent deacetylases, plays crucial roles in cellular processes such as transcriptional regulation, cell metabolism, cell proliferation, and genome stability maintenance. Characterized by its enzymatic activities, SIRT7 targets an array of substrates, several of which exert regulatory effects on angiogenesis. Experimental evidence from in vitro and in vivo studies consistently demonstrates the effects of SIRT7 in modulating angiogenesis, mediated through various molecular mechanisms. Consequently, understanding the regulatory role of SIRT7 in angiogenesis holds significant promise, offering novel avenues for therapeutic interventions targeting either SIRT7 or angiogenesis. This review delineates the putative molecular mechanisms by which SIRT7 regulates angiogenesis, taking its substrates as a clue, endeavoring to elucidate experimental observations by integrating knowledge of SIRT7 substrates and established angiogenenic mechanisms.
Collapse
Affiliation(s)
- Junjie Ma
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; (J.M.); (L.Y.); (J.W.); (Z.H.); (J.Z.); (J.L.)
| | - Liqian Yang
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; (J.M.); (L.Y.); (J.W.); (Z.H.); (J.Z.); (J.L.)
| | - Jiaxing Wu
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; (J.M.); (L.Y.); (J.W.); (Z.H.); (J.Z.); (J.L.)
| | - Zhihong Huang
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; (J.M.); (L.Y.); (J.W.); (Z.H.); (J.Z.); (J.L.)
| | - Jiaqi Zhang
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; (J.M.); (L.Y.); (J.W.); (Z.H.); (J.Z.); (J.L.)
| | - Minghui Liu
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing 100191, China; (M.L.); (M.L.)
| | - Meiting Li
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing 100191, China; (M.L.); (M.L.)
| | - Jianyuan Luo
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; (J.M.); (L.Y.); (J.W.); (Z.H.); (J.Z.); (J.L.)
- Department of Medical Genetics, Center for Medical Genetics, Peking University Health Science Center, Beijing 100191, China; (M.L.); (M.L.)
| | - Haiying Wang
- Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; (J.M.); (L.Y.); (J.W.); (Z.H.); (J.Z.); (J.L.)
| |
Collapse
|
29
|
Robeson M, Goudy SL, Davis ME. Differential Effects of Four Canonical Notch-Activating Ligands on c-Kit+ Cardiac Progenitor Cells. Int J Mol Sci 2024; 25:11182. [PMID: 39456964 PMCID: PMC11508355 DOI: 10.3390/ijms252011182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/28/2024] Open
Abstract
Notch signaling, an important signaling pathway in cardiac development, has been shown to mediate the reparative functions of c-kit+ progenitor cells (CPCs). However, it is unclear how each of the four canonical Notch-activating ligands affects intracellular processes in c-kit+ cells when used as an external stimulus. Neonatal c-kit+ CPCs were stimulated using four different chimeric Notch-activating ligands tethered to Dynabeads, and the resulting changes were assessed using TaqMan gene expression arrays, with subsequent analysis by principal component analysis (PCA). Additionally, functional outcomes were measured using an endothelial cell tube formation assay and MSC migration assay to assess the paracrine capacity to stimulate new vessel formation and recruit other reparative cell types to the site of injury. Gene expression data showed that stimulation with Jagged-1 is associated with the greatest pro-angiogenic gene response, including the expression of VEGF and basement membrane proteins, while the other canonical ligands, Jagged-2, Dll-1, and Dll-4, are more associated with regulatory and epigenetic changes. The functional assay showed differential responses to the four ligands in terms of angiogenesis, while none of the ligands produced a robust change in migration. These data demonstrate how the four Notch-activating ligands differentially regulate CPC gene expression and function.
Collapse
Affiliation(s)
- Matthew Robeson
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA;
| | - Steven L. Goudy
- Department of Pediatric Otolaryngology, Emory University, Atlanta, GA 30322, USA;
| | - Michael E. Davis
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA;
- Children’s Heart Research and Outcomes (HeRO) Center, Emory University and Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA
| |
Collapse
|
30
|
Shin YJ, Chae SY, Lee H, Fang X, Cui S, Lim SW, Lee KI, Lee JY, Li C, Yang CW, Chung BH. CRISPR/Cas9-mediated suppression of A4GALT rescues endothelial cell dysfunction in a fabry disease vasculopathy model derived from human induced pluripotent stem cells. Atherosclerosis 2024; 397:118549. [PMID: 39141976 DOI: 10.1016/j.atherosclerosis.2024.118549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 07/08/2024] [Accepted: 07/31/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND AND AIMS The objective of this study was to investigate the efficacy of CRISPR/Cas9-mediated A4GALT suppression in rescuing endothelial dysfunction in Fabry disease (FD) endothelial cells (FD-ECs) derived from human induced pluripotent stem cells (hiPSCs). METHODS We differentiated hiPSCs (WT (wild-type), WTC-11), GLA-mutant hiPSCs (GLA-KO, CMC-Fb-002), and CRISPR/Cas9-mediated A4GALT-KO hiPSCs (GLA/A4GALT-KO, Fb-002-A4GALT-KO) into ECs and compared FD phenotypes and endothelial dysfunction. We also analyzed the effect of A4GALT suppression on reactive oxygen species (ROS) formation and transcriptome profiles through RNA sequencing. RESULTS GLA-mutant hiPSC-ECs (GLA-KO and CMC-Fb-002) showed downregulated expression of EC markers and significantly reduced α-GalA expression with increased Gb-3 deposition and intra-lysosomal inclusion bodies. However, CRISPR/Cas9-mediated A4GALT suppression in GLA/A4GALT-KO and Fb-002-A4GALT-KO hiPSC-ECs increased expression levels of EC markers and rescued these FD phenotypes. GLA-mutant hiPSC-ECs failed to form tube-like structure in tube formation assays, showing significantly decreased migration of cells into the scratched wound area. In contrast, A4GALT suppression improved tube formation and cell migration capacity. Western blot analysis revealed that MAPK and AKT phosphorylation levels were downregulated while SOD and catalase were upregulated in GLA-KO hiPSC-ECs. However, suppression of A4GALT restored these protein alterations. RNA sequencing analysis demonstrated significant transcriptome changes in GLA-mutant EC, especially in angiogenesis, cell death, and cellular response to oxidative stress. However, these were effectively restored in GLA/A4GALT-KO hiPSC-ECs. CONCLUSIONS CRISPR/Cas9-mediated A4GALT suppression rescued FD phenotype and endothelial dysfunction in GLA-mutant hiPSC-ECs, presenting a potential therapeutic approach for FD-vasculopathy.
Collapse
Affiliation(s)
- Yoo Jin Shin
- Transplantation Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Seung Yun Chae
- Division of Nephrology, Department of Internal Medicine, Seoul St. Mary's Hospital, The College of Medicine, The Catholic University of Korea, South Korea
| | - Hanbi Lee
- Transplantation Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea; Division of Nephrology, Department of Internal Medicine, Seoul St. Mary's Hospital, The College of Medicine, The Catholic University of Korea, South Korea
| | - Xianying Fang
- Transplantation Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sheng Cui
- Transplantation Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | - Sun Woo Lim
- Transplantation Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea
| | | | | | - Can Li
- Department of Nephrology, Yanbian University Hospital, Yanji, China
| | - Chul Woo Yang
- Transplantation Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea; Division of Nephrology, Department of Internal Medicine, Seoul St. Mary's Hospital, The College of Medicine, The Catholic University of Korea, South Korea
| | - Byung Ha Chung
- Transplantation Research Center, College of Medicine, The Catholic University of Korea, Seoul, South Korea; Division of Nephrology, Department of Internal Medicine, Seoul St. Mary's Hospital, The College of Medicine, The Catholic University of Korea, South Korea.
| |
Collapse
|
31
|
Limbu S, McCloskey KE. An Endothelial Cell Is Not Simply an Endothelial Cell. Stem Cells Dev 2024; 33:517-527. [PMID: 39030822 PMCID: PMC11564855 DOI: 10.1089/scd.2024.0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/18/2024] [Indexed: 07/22/2024] Open
Abstract
Endothelial cells (ECs) are a multifaceted component of the vascular system with roles in immunity, maintaining tissue fluid balance, and vascular tone. Dysregulation or dysfunction of ECs can have far-reaching implications, leading pathologies ranging from cardiovascular diseases, such as hypertension and atherosclerosis, ischemia, chronic kidney disease, blood-brain barrier integrity, dementia, and tumor metastasis. Recent advancements in regenerative medicine have highlighted the potential of stem cell-derived ECs, particularly from induced pluripotent stem cells, to treat ischemic tissues, as well as models of vascular integrity. This review summarizes what is known in the generation of ECs with an emphasis on tissue-specific ECs and EC subphenotypes important in the development of targeted cell-based therapies for patient treatment.
Collapse
Affiliation(s)
- Shiwani Limbu
- Quantitative and System Biology Graduate Program, University of California, Merced, USA
| | - Kara E. McCloskey
- Quantitative and System Biology Graduate Program, University of California, Merced, USA
- Materials Science and Engineering Department, University of California, Merced, USA
| |
Collapse
|
32
|
Wang J, Xiong T, Wu Q, Qin X. Integrated Strategies for Targeting Arteriogenesis and Angiogenesis After Stroke. Transl Stroke Res 2024:10.1007/s12975-024-01291-4. [PMID: 39225878 DOI: 10.1007/s12975-024-01291-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/29/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
The interdependence between arteriogenesis and angiogenesis is crucial for enhancing perfusion by synchronously improving leptomeningeal collaterals (LMCs) and microvascular networks after stroke. However, current approaches often focus on promoting arteriogenesis and angiogenesis separately, neglecting the potential synergistic benefits of targeting both processes simultaneously. Therefore, it is imperative to consider both arteriogenesis and angiogenesis as integral and complementary strategies for post-stroke revascularization. To gain a deeper understanding of their relationships after stroke and to facilitate the development of targeted revascularization strategies, we compared them based on their timescale, space, and pathophysiology. The temporal differences in the occurrence of arteriogenesis and angiogenesis allow them to restore blood flow at different stages after stroke. The spatial differences in the effects of arteriogenesis and angiogenesis enable them to specifically target the ischemic penumbra and core infarct region. Additionally, the endothelial cell, as the primary effector cell in their pathophysiological processes, is promising target for enhancing both. Therefore, we provide an overview of key signals that regulate endothelium-mediated arteriogenesis and angiogenesis. Finally, we summarize current therapeutic strategies that involve these signals to promote both processes after stroke, with the aim of inspiring future therapeutic advances in revascularization.
Collapse
Affiliation(s)
- Jing Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Taoying Xiong
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Qisi Wu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Xinyue Qin
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
33
|
Ning J, Pan M, Yang H, Wang Z, Wang X, Guo K, Feng Y, Xie T, Chen Y, Chen C, Liu S, Zhang Y, Wang Y, Yan X, Han J. Melatonin Attenuates Diabetic Retinopathy by Regulating EndMT of Retinal Vascular Endothelial Cells via Inhibiting the HDAC7/FOXO1/ZEB1 Axis. J Pineal Res 2024; 76:e13008. [PMID: 39300782 DOI: 10.1111/jpi.13008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 08/02/2024] [Accepted: 08/31/2024] [Indexed: 09/22/2024]
Abstract
Diabetic retinopathy (DR) is characterized as a microvascular disease. Nonproliferative diabetic retinopathy (NPDR) presents with alterations in retinal blood flow and vascular permeability, thickening of the basement membrane, loss of pericytes, and formation of acellular capillaries. Endothelial-mesenchymal transition (EndMT) of retinal microvessels may play a critical role in advancing NPDR. Melatonin, a hormone primarily secreted by the pineal gland, is a promising therapeutic for DR. This study explored the EndMT in retinal microvessels of NPDR and its related mechanisms. The effect of melatonin on the retina of diabetic rats was evaluated by electroretinogram (ERG) and histopathologic slide staining. Furthermore, the effect of melatonin on human retinal microvascular endothelial cells (HRMECs) was detected by EdU incorporation assay, scratch assay, transwell assay, and tube formation test. Techniques such as RNA-sequencing, overexpression or knockdown of target genes, extraction of cytoplasmic and nuclear protein, co-immunoprecipitation (co-IP), and multiplex immunofluorescence facilitated the exploration of the mechanisms involved. Our findings reveal, for the first time, that melatonin attenuates diabetic retinopathy by regulating EndMT of retinal vascular endothelial cells via inhibiting the HDAC7/FOXO1/ZEB1 axis. Collectively, these results suggest that melatonin holds potential as a therapeutic strategy to reduce retinal vascular damage and protect vision in NPDR.
Collapse
Affiliation(s)
- Jiayi Ning
- Department of Ophthalmology, Tangdu Hospital, Air Force Medical University, Xi'an, China
- Xi'an Medical University, Xi'an, Shaanxi Province, China
| | - Minghong Pan
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
- Department of Cardiothoracic Surgery, Western Theater Command Air Force Hospital, Chengdu, China
| | - Hanyi Yang
- Department of Ophthalmology, Tangdu Hospital, Air Force Medical University, Xi'an, China
- Xi'an Medical University, Xi'an, Shaanxi Province, China
| | - Zhaoyang Wang
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Xiaolan Wang
- Department of Ophthalmology, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Kai Guo
- Department of Ophthalmology, Tangdu Hospital, Air Force Medical University, Xi'an, China
- Department of Thoracic Surgery, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Yingtong Feng
- Department of Cardiothoracic Surgery, The 71st Group Army Hospital of PLA/The Affiliated Huaihai Hospital of Xuzhou Medical University, Xuzhou, China
| | - Tingke Xie
- Department of Ophthalmology, Tangdu Hospital, Air Force Medical University, Xi'an, China
- Xi'an Medical University, Xi'an, Shaanxi Province, China
| | - Yixuan Chen
- Department of Ophthalmology, Tangdu Hospital, Air Force Medical University, Xi'an, China
- Xi'an Medical University, Xi'an, Shaanxi Province, China
| | - Chengming Chen
- Department of Ophthalmology, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Sida Liu
- Department of Ophthalmology, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Yimeng Zhang
- Department of Ophthalmology, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Yuanyong Wang
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Xiaolong Yan
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Jing Han
- Department of Ophthalmology, Tangdu Hospital, Air Force Medical University, Xi'an, China
| |
Collapse
|
34
|
Antar SA, ElMahdy MK, Darwish AG. Examining the contribution of Notch signaling to lung disease development. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6337-6349. [PMID: 38652281 DOI: 10.1007/s00210-024-03105-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/12/2024] [Indexed: 04/25/2024]
Abstract
Notch pathway is a widely observed signaling system that holds pivotal functions in regulating various developmental cellular functions and operations. The Notch signaling mechanism is crucial for lung homeostasis, damage, and restoration. Based on increasing evidence, the Notch pathway has been identified, as critical for fibrosis and subsequently, the development of chronic fibroproliferative conditions in various organs and tissues. Recent research indicates that deregulation of Notch signaling correlates with the pathogenesis of significant pulmonary conditions, particularly chronic obstructive pulmonary disease (COPD), pulmonary fibrosis, asthma, pulmonary arterial hypertension (PAH), lung carcinoma, and pulmonary abnormalities in some hereditary disorders. In various cellular and tissue environments, and across both physiological and pathological conditions, multiple consequences of Notch activation have been observed. Studies have ascertained that the Notch signaling cascade exhibits close associations with various other signaling systems. This study provides an updated overview of Notch signaling's role, especially its link to fibrosis and its potential therapeutic implications. This study sheds light on the latest findings regarding the mechanisms and outcomes of irregular or lacking Notch activity in the onset and development of pulmonary diseases. As our insight into this signaling mechanism suggests that modulating Notch signaling might hold potential as a valuable additional therapeutic approach in upcoming research.
Collapse
Affiliation(s)
- Samar A Antar
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA, 24016, USA.
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, 34518, Egypt.
| | - Mohamed Kh ElMahdy
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta, 34518, Egypt
| | - Ahmed G Darwish
- Center for Viticulture and Small Fruit Research, College of Agriculture and Food Sciences, Florida A&M University, Tallahassee, FL, 32308, USA
| |
Collapse
|
35
|
Alqithami SM, Machwe A, Orren DK. Cigarette Smoke-Induced Epithelial-to-Mesenchymal Transition: Insights into Cellular Mechanisms and Signaling Pathways. Cells 2024; 13:1453. [PMID: 39273025 PMCID: PMC11394110 DOI: 10.3390/cells13171453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
This review delves into the molecular complexities underpinning the epithelial-to-mesenchymal transition (EMT) induced by cigarette smoke (CS) in human bronchial epithelial cells (HBECs). The complex interplay of pathways, including those related to WNT//β-catenin, TGF-β/SMAD, hypoxia, oxidative stress, PI3K/Akt, and NF-κB, plays a central role in mediating this transition. While these findings significantly broaden our understanding of CS-induced EMT, the research reviewed herein leans heavily on 2D cell cultures, highlighting a research gap. Furthermore, the review identifies a stark omission of genetic and epigenetic factors in recent studies. Despite these shortcomings, the findings furnish a consolidated foundation not only for the academic community but also for the broader scientific and industrial sectors, including large tobacco companies and manufacturers of related products, both highlighting areas of current understanding and identifying areas for deeper exploration. The synthesis herein aims to propel further research, hoping to unravel the complexities of the EMT in the context of CS exposure. This review not only expands our understanding of CS-induced EMT but also reveals critical limitations in current methodologies, primarily the reliance on 2D cell cultures, which may not adequately simulate more complex biological interactions. Additionally, it highlights a significant gap in the literature concerning the genetic and epigenetic factors involved in CS-induced EMT, suggesting an urgent need for comprehensive studies that incorporate these types of experiments.
Collapse
Affiliation(s)
- Sarah Mohammed Alqithami
- Department of Toxicology and Cancer Biology, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | | | | |
Collapse
|
36
|
Paik NY, Neethling J, Anwar M, Gupta P, Sanborn MA, Shen Z, Bandara T, Hyun J, Naiche LA, Kitajewski JK, Rehman J, Shin JW, Mehta D, Pajcini KV. Notch transcriptional target tmtc1 maintains vascular homeostasis. Cell Mol Life Sci 2024; 81:370. [PMID: 39190102 PMCID: PMC11349727 DOI: 10.1007/s00018-024-05407-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 07/31/2024] [Accepted: 08/11/2024] [Indexed: 08/28/2024]
Abstract
Proper lung function requires the maintenance of a tight endothelial barrier while simultaneously permitting the exchange of macromolecules and fluids to underlying tissue. Disruption of this barrier results in an increased vascular permeability in the lungs, leading to acute lung injury. In this study, we set out to determine whether transcriptional targets of Notch signaling function to preserve vascular integrity. We tested the in vivo requirement for Notch transcriptional signaling in maintaining the pulmonary endothelial barrier by using two complementary endothelial-specific Notch loss-of-function murine transgenic models. Notch signaling was blocked using endothelial-specific activation of an inhibitor of Notch transcriptional activation, Dominant Negative Mastermindlike (DNMAML; CDH5CreERT2), or endothelial-specific loss of Notch1 (Notch1f/f; CDH5CreERT2). Both Notch mutants increased vascular permeability with pan-Notch inhibition by DNMAML showing a more severe phenotype in the lungs and in purified endothelial cells. RNA sequencing of primary lung endothelial cells (ECs) identified novel Notch targets, one of which was transmembrane O-mannosyltransferase targeting cadherins 1 (tmtc1). We show that tmtc1 interacts with vascular endothelial cadherin (VE-cadherin) and regulates VE-cadherin egress from the endoplasmic reticulum through direct interaction. Our findings demonstrate that Notch signaling maintains endothelial adherens junctions and vascular homeostasis by a transcriptional mechanism that drives expression of critical factors important for processing and transport of VE-cadherin.
Collapse
Affiliation(s)
- Na Yoon Paik
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago College of Medicine, Chicago, IL, 60612, USA
| | - Jacob Neethling
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago College of Medicine, Chicago, IL, 60612, USA
| | - Mumtaz Anwar
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago College of Medicine, Chicago, IL, 60612, USA
| | - Prerak Gupta
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago College of Medicine, Chicago, IL, 60612, USA
| | - Mark A Sanborn
- Department of Biochemistry, University of Illinois at Chicago College of Medicine, Chicago, IL, USA
| | - Zekun Shen
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago College of Medicine, Chicago, IL, 60612, USA
| | - Thilinie Bandara
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago College of Medicine, Chicago, IL, 60612, USA
| | - James Hyun
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago College of Medicine, Chicago, IL, 60612, USA
| | - L A Naiche
- Department of Physiology and Biophysics, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - Jan K Kitajewski
- Department of Physiology and Biophysics, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - Jalees Rehman
- Department of Biochemistry, University of Illinois at Chicago College of Medicine, Chicago, IL, USA
| | - Jae-Won Shin
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago College of Medicine, Chicago, IL, 60612, USA
| | - Dolly Mehta
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago College of Medicine, Chicago, IL, 60612, USA
| | - Kostandin V Pajcini
- Department of Pharmacology and Regenerative Medicine, University of Illinois at Chicago College of Medicine, Chicago, IL, 60612, USA.
| |
Collapse
|
37
|
Raja Xavier JP, Okumura T, Apweiler M, Chacko NA, Singh Y, Brucker SY, Takeda S, Lang F, Salker MS. Placental growth factor mediates pathological uterine angiogenesis by activating the NFAT5-SGK1 signaling axis in the endometrium: implications for preeclampsia development. Biol Res 2024; 57:55. [PMID: 39152497 PMCID: PMC11330076 DOI: 10.1186/s40659-024-00526-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/26/2024] [Indexed: 08/19/2024] Open
Abstract
After menstruation the uterine spiral arteries are repaired through angiogenesis. This process is tightly regulated by the paracrine communication between endometrial stromal cells (EnSCs) and endothelial cells. Any molecular aberration in these processes can lead to complications in pregnancy including miscarriage or preeclampsia (PE). Placental growth factor (PlGF) is a known contributing factor for pathological angiogenesis but the mechanisms remain poorly understood. In this study, we investigated whether PlGF contributes to pathological uterine angiogenesis by disrupting EnSCs and endothelial paracrine communication. We observed that PlGF mediates a tonicity-independent activation of nuclear factor of activated T cells 5 (NFAT5) in EnSCs. NFAT5 activated downstream targets including SGK1, HIF-1α and VEGF-A. In depth characterization of PlGF - conditioned medium (CM) from EnSCs using mass spectrometry and ELISA methods revealed low VEGF-A and an abundance of extracellular matrix organization associated proteins. Secreted factors in PlGF-CM impeded normal angiogenic cues in endothelial cells (HUVECs) by downregulating Notch-VEGF signaling. Interestingly, PlGF-CM failed to support human placental (BeWo) cell invasion through HUVEC monolayer. Inhibition of SGK1 in EnSCs improved angiogenic effects in HUVECs and promoted BeWo invasion, revealing SGK1 as a key intermediate player modulating PlGF mediated anti-angiogenic signaling. Taken together, perturbed PlGF-NFAT5-SGK1 signaling in the endometrium can contribute to pathological uterine angiogenesis by negatively regulating EnSCs-endothelial crosstalk resulting in poor quality vessels in the uterine microenvironment. Taken together the signaling may impact on normal trophoblast invasion and thus placentation and, may be associated with an increased risk of complications such as PE.
Collapse
Affiliation(s)
- Janet P Raja Xavier
- Department of Women's Health, University of Tübingen, 72076, Calwerstraße 7/6, Tübingen, Germany
| | - Toshiyuki Okumura
- Department of Obstetrics and Gynaecology, Juntendo University School of Medicine, Tokyo, Japan
| | - Melina Apweiler
- Department of Women's Health, University of Tübingen, 72076, Calwerstraße 7/6, Tübingen, Germany
| | - Nirzari A Chacko
- Department of Women's Health, University of Tübingen, 72076, Calwerstraße 7/6, Tübingen, Germany
| | - Yogesh Singh
- Department of Women's Health, University of Tübingen, 72076, Calwerstraße 7/6, Tübingen, Germany
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Sara Y Brucker
- Department of Women's Health, University of Tübingen, 72076, Calwerstraße 7/6, Tübingen, Germany
| | - Satoru Takeda
- Department of Obstetrics and Gynaecology, Juntendo University School of Medicine, Tokyo, Japan
| | - Florian Lang
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | - Madhuri S Salker
- Department of Women's Health, University of Tübingen, 72076, Calwerstraße 7/6, Tübingen, Germany.
| |
Collapse
|
38
|
Zhu Y, Li Y, Tang Y, Zhang J, Jia S, Jiang Z, Luo X, Ishikawa M, Kato T. Comparing qSMI and qCEUS for assessing vascularization in uterine cervical cancer: operable versus non-operable group. Front Oncol 2024; 14:1380725. [PMID: 39188687 PMCID: PMC11345174 DOI: 10.3389/fonc.2024.1380725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/26/2024] [Indexed: 08/28/2024] Open
Abstract
Objective The present study aimed to compare the effectiveness and reliability of quantified superb microvascular imaging (qSMI) and quantified contrast-enhanced ultrasonography (qCEUS) in assessing vascularization in both operable and non-operable uterine cervical cancer. Methods A case-control study included 64 patients with pathology-proven and untreated cervical cancer, who underwent transvaginal ultrasonography combined with qSMI and qCEUS between January 2022 and June 2023. SMI results were quantified as the vascular index (VI), which were compared to 12 quantitative parameters of CEUS calculated with time-intensity curves (TIC). Results According to FIGO staging and different treatment regimens, 64 patients with cervical cancer were divided into operable group (IA ~ IIA, n = 19) and non-operable group (IIB ~ IV, n = 45). In comparison to the operable group, the non-operable group showed significantly higher values in VI, peak intensity (PI), area under the curve (AUC), wash-in area (iAUC), wash-out area (oAUC), wash-in rate (WiR), mean intensity (Mean Int), and standard deviation (STD) (all P < 0.05). VI demonstrated strong correlations with CEUS parameters, notably PI (r = 0.854, P < 0.001) and AUC (r = 0.635, P < 0.001). Furthermore, VI showed a better predictive performance for treatment-group assignment than qCEUS parameters, with an 80.7% accuracy, 64.4% sensitivity and 89.5% specificity. Conclusion Both qSMI and qCEUS exhibit significant and comparable utility in detecting microvascular hyperplasia and predicting treatment-group assignments in cervical cancer. Furthermore, qSMI may offer added convenience in implementation.
Collapse
Affiliation(s)
- Yi Zhu
- Department of Ultrasound, Sichuan Cancer Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Yanjie Li
- Department of Ultrasound, Sichuan Cancer Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- Graduate School, Chengdu Medical College, Chengdu, China
| | - Yixin Tang
- Department of Ultrasound, Suining Central Hospital, Suining, China
| | - Jie Zhang
- Department of Gynecological Oncology, Sichuan Cancer Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Shijun Jia
- Department of Pathology, Sichuan Cancer Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Zhuolin Jiang
- Department of Ultrasound, Sichuan Cancer Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- Graduate School, Chengdu Medical College, Chengdu, China
| | - Xinyi Luo
- Department of Ultrasound, Sichuan Cancer Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- Graduate School, Chengdu Medical College, Chengdu, China
| | - Mitsuya Ishikawa
- Department of Gynecology, National Cancer Center Hospital, Tokyo, Japan
| | - Tomoyasu Kato
- Department of Gynecology, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
39
|
Coursier D, Calvo F. CAFs vs. TECs: when blood feuds fuel cancer progression, dissemination and therapeutic resistance. Cell Oncol (Dordr) 2024; 47:1091-1112. [PMID: 38453816 PMCID: PMC11322395 DOI: 10.1007/s13402-024-00931-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/23/2024] [Indexed: 03/09/2024] Open
Abstract
Neoplastic progression involves complex interactions between cancer cells and the surrounding stromal milieu, fostering microenvironments that crucially drive tumor progression and dissemination. Of these stromal constituents, cancer-associated fibroblasts (CAFs) emerge as predominant inhabitants within the tumor microenvironment (TME), actively shaping multiple facets of tumorigenesis, including cancer cell proliferation, invasiveness, and immune evasion. Notably, CAFs also orchestrate the production of pro-angiogenic factors, fueling neovascularization to sustain the metabolic demands of proliferating cancer cells. Moreover, CAFs may also directly or indirectly affect endothelial cell behavior and vascular architecture, which may impact in tumor progression and responses to anti-cancer interventions. Conversely, tumor endothelial cells (TECs) exhibit a corrupted state that has been shown to affect cancer cell growth and inflammation. Both CAFs and TECs are emerging as pivotal regulators of the TME, engaging in multifaceted biological processes that significantly impact cancer progression, dissemination, and therapeutic responses. Yet, the intricate interplay between these stromal components and the orchestrated functions of each cell type remains incompletely elucidated. In this review, we summarize the current understanding of the dynamic interrelationships between CAFs and TECs, discussing the challenges and prospects for leveraging their interactions towards therapeutic advancements in cancer.
Collapse
Affiliation(s)
- Diane Coursier
- Instituto de Biomedicina y Biotecnología de Cantabria (Consejo Superior de Investigaciones Científicas, Universidad de Cantabria), Santander, Spain
| | - Fernando Calvo
- Instituto de Biomedicina y Biotecnología de Cantabria (Consejo Superior de Investigaciones Científicas, Universidad de Cantabria), Santander, Spain.
| |
Collapse
|
40
|
Damås JK, Otterdal K, Astrup E, Lekva T, Janardhanan J, Michelsen A, Aukrust P, Varghese GM, Ueland T. Canonical notch activation in patients with scrub typhus: association with organ dysfunction and poor outcome. Infection 2024; 52:1357-1365. [PMID: 38502427 PMCID: PMC11288987 DOI: 10.1007/s15010-024-02192-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/19/2024] [Indexed: 03/21/2024]
Abstract
PURPOSE The mechanisms that control inflammation in scrub typhus are not fully elucidated. The Notch pathways are important regulators of inflammation and infection, but have not been investigated in scrub typhus. METHODS Plasma levels of the canonical Notch ligand Delta-like protein 1 (DLL1) were measured by enzyme immunoassay and RNA expression of the Notch receptors (NOTCH1, NOTCH2 and NOTCH4) in whole blood was analyzed by real-time PCR in patients with scrub typhus (n = 129), in patients with similar febrile illness without O. tsutsugamushi infection (n = 31) and in healthy controls (n = 31); all from the same area of South India. RESULTS Our main results were: (i) plasma DLL1 was markedly increased in scrub typhus patients at hospital admission with a significant decrease during recovery. (ii) RNA expression of NOTCH4 was decreased at admission in whole blood. (iii) A similar pattern for DLL1 and NOTCH4 was seen in febrile disease controls. (iv) Admission DLL1 in plasma was associated with disease severity and short-term survival. (vi) Regulation of Notch pathways in O. tsutsugamushi-infected monocytes as evaluated by public repository data revealed enhanced canonical Notch activation with upregulation of DLL1 and downregulation of NOTCH4. CONCLUSION Our findings suggest that scrub typhus patients are characterized by enhanced canonical Notch activation. Elevated plasma levels of DLL1 were associated with organ dysfunction and poor outcomes in these patients.
Collapse
Affiliation(s)
- Jan K Damås
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Infectious Diseases, St. Olavs Hospital, Trondheim, Norway
- Department of Medicine, Christian Medical College, Vellore, Tamil Nadu, India
| | - Kari Otterdal
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Department of Medicine, Christian Medical College, Vellore, Tamil Nadu, India
| | - Elisabeth Astrup
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Akershus University Hospital, Lørenskog, Norway
- Department of Medicine, Christian Medical College, Vellore, Tamil Nadu, India
| | - Tove Lekva
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Department of Medicine, Christian Medical College, Vellore, Tamil Nadu, India
| | - Jeshina Janardhanan
- Department of Medicine, Christian Medical College, Vellore, Tamil Nadu, India
- Department of Infectious Diseases, Christian Medical College, Vellore, Tamil Nadu, India
| | - Annika Michelsen
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Department of Medicine, Christian Medical College, Vellore, Tamil Nadu, India
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Medicine, Christian Medical College, Vellore, Tamil Nadu, India
| | - George M Varghese
- Department of Medicine, Christian Medical College, Vellore, Tamil Nadu, India
- Department of Infectious Diseases, Christian Medical College, Vellore, Tamil Nadu, India
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Oslo, Norway.
- Faculty of Medicine, University of Oslo, Oslo, Norway.
- Thrombosis Research Center (TREC), Division of Internal Medicine, University Hospital of North Norway, Tromsø, Norway.
- Department of Medicine, Christian Medical College, Vellore, Tamil Nadu, India.
| |
Collapse
|
41
|
Song J, Zhou D, Cui L, Wu C, Jia L, Wang M, Li J, Ya J, Ji X, Meng R. Advancing stroke therapy: innovative approaches with stem cell-derived extracellular vesicles. Cell Commun Signal 2024; 22:369. [PMID: 39039539 PMCID: PMC11265156 DOI: 10.1186/s12964-024-01752-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024] Open
Abstract
Stroke is a leading cause of mortality and long-term disability globally, with acute ischemic stroke (AIS) being the most common subtype. Despite significant advances in reperfusion therapies, their limited time window and associated risks underscore the necessity for novel treatment strategies. Stem cell-derived extracellular vesicles (EVs) have emerged as a promising therapeutic approach due to their ability to modulate the post-stroke microenvironment and facilitate neuroprotection and neurorestoration. This review synthesizes current research on the therapeutic potential of stem cell-derived EVs in AIS, focusing on their origin, biogenesis, mechanisms of action, and strategies for enhancing their targeting capacity and therapeutic efficacy. Additionally, we explore innovative combination therapies and discuss both the challenges and prospects of EV-based treatments. Our findings reveal that stem cell-derived EVs exhibit diverse therapeutic effects in AIS, such as promoting neuronal survival, diminishing neuroinflammation, protecting the blood-brain barrier, and enhancing angiogenesis and neurogenesis. Various strategies, including targeting modifications and cargo modifications, have been developed to improve the efficacy of EVs. Combining EVs with other treatments, such as reperfusion therapy, stem cell transplantation, nanomedicine, and gut microbiome modulation, holds great promise for improving stroke outcomes. However, challenges such as the heterogeneity of EVs and the need for standardized protocols for EV production and quality control remain to be addressed. Stem cell-derived EVs represent a novel therapeutic avenue for AIS, offering the potential to address the limitations of current treatments. Further research is needed to optimize EV-based therapies and translate their benefits to clinical practice, with an emphasis on ensuring safety, overcoming regulatory hurdles, and enhancing the specificity and efficacy of EV delivery to target tissues.
Collapse
Affiliation(s)
- Jiahao Song
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100053, China
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Da Zhou
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100053, China.
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Lili Cui
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100053, China
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Chuanjie Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100053, China
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Lina Jia
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100053, China
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Mengqi Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100053, China
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Jingrun Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100053, China
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Jingyuan Ya
- Academic Unit of Mental Health and Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, England
| | - Xunming Ji
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100053, China
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Ran Meng
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Advanced Center of Stroke, Beijing Institute for Brain Disorders, Beijing, 100053, China.
- National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
42
|
Raza Q, Nadeem T, Youn SW, Swaminathan B, Gupta A, Sargis T, Du J, Cuervo H, Eichmann A, Ackerman SL, Naiche LA, Kitajewski J. Notch signaling regulates UNC5B to suppress endothelial proliferation, migration, junction activity, and retinal plexus branching. Sci Rep 2024; 14:13603. [PMID: 38866944 PMCID: PMC11169293 DOI: 10.1038/s41598-024-64375-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024] Open
Abstract
Notch signaling guides vascular development and function by regulating diverse endothelial cell behaviors, including migration, proliferation, vascular density, endothelial junctions, and polarization in response to flow. Notch proteins form transcriptional activation complexes that regulate endothelial gene expression, but few of the downstream effectors that enable these phenotypic changes have been characterized in endothelial cells, limiting our understanding of vascular Notch activities. Using an unbiased screen of translated mRNA rapidly regulated by Notch signaling, we identified novel in vivo targets of Notch signaling in neonatal mouse brain endothelium, including UNC5B, a member of the netrin family of angiogenic-regulatory receptors. Endothelial Notch signaling rapidly upregulates UNC5B in multiple endothelial cell types. Loss or gain of UNC5B recapitulated specific Notch-regulated phenotypes. UNC5B expression inhibited endothelial migration and proliferation and was required for stabilization of endothelial junctions in response to shear stress. Loss of UNC5B partially or wholly blocked the ability of Notch activation to regulate these endothelial cell behaviors. In the developing mouse retina, endothelial-specific loss of UNC5B led to excessive vascularization, including increased vascular outgrowth, density, and branchpoint count. These data indicate that Notch signaling upregulates UNC5B as an effector protein to control specific endothelial cell behaviors and inhibit angiogenic growth.
Collapse
Affiliation(s)
- Qanber Raza
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, 1853 W Polk St, Rm 522 (MC 901), Chicago, IL, 60612, USA
| | - Taliha Nadeem
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, 1853 W Polk St, Rm 522 (MC 901), Chicago, IL, 60612, USA
| | - Seock-Won Youn
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, 1853 W Polk St, Rm 522 (MC 901), Chicago, IL, 60612, USA
| | - Bhairavi Swaminathan
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, 1853 W Polk St, Rm 522 (MC 901), Chicago, IL, 60612, USA
| | - Ahana Gupta
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, 1853 W Polk St, Rm 522 (MC 901), Chicago, IL, 60612, USA
| | - Timothy Sargis
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, 1853 W Polk St, Rm 522 (MC 901), Chicago, IL, 60612, USA
| | - Jing Du
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, 1853 W Polk St, Rm 522 (MC 901), Chicago, IL, 60612, USA
| | - Henar Cuervo
- Centro Nacional de Investigaciones Cardiovasculares Carlos III- CNIC- (F.S.P), Madrid, Spain
| | | | | | - L A Naiche
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, 1853 W Polk St, Rm 522 (MC 901), Chicago, IL, 60612, USA.
| | - Jan Kitajewski
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, 1853 W Polk St, Rm 522 (MC 901), Chicago, IL, 60612, USA
- University of Illinois Cancer Center, Chicago, USA
| |
Collapse
|
43
|
Wang H, Zhang N, Wang X, Tian J, Yi J, Yao L, Huang G. Emerging role of mesenchymal stem cell-derived exosome microRNA in radiation injury. Int J Radiat Biol 2024; 100:996-1008. [PMID: 38776447 DOI: 10.1080/09553002.2024.2347348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024]
Abstract
PURPOSE Radiation injury (RI) is a common occurrence in malignant tumors patients receiving radiation therapy. While killing tumor cells, normal tissue surrounding the target area is inevitably irradiated at a certain dose, which can cause varying results of radiation injury. Currently, there are limited clinical treatments available for radiation injuries. In recent years, the negative effects of stem cell therapy have been reported more clearly and non-cellular therapies such as exosomes have become a focus of attention for researchers. As a type of vesicle-like substances secreted by mesenchymal stem cells (MSC), MSC derived exosomes (MSC-exo) carry DNA, mRNA, microRNA (miRNAs), specific proteins, lipids, and other active substances involved in intercellular information exchange. miRNAs released by MSC-exo are capable of alleviating and repairing damaged tissues through anti-apoptosis, modulating immune response, regulating inflammatory response and promoting angiogenesis, which indicates that MSC-exo miRNAs have great potential for application in the prevention and treatment of radiation injury. Therefore, it is necessary to explore the underlying therapeutic mechanisms of MSC-exo miRNAs in this process, which may shed new lights on the treatment of radiation injury. CONCLUSIONS Increasing evidence confirms that MSC-exo has shown encouraging applications in tissue repair due to the anti-apoptotic, immunoreactive, and pro-angiogenesis effects of the miRNAs it carries as intercellular communication carriers. However, miRNA-based therapeutics are still in their infancy and many practical issues remain to be addressed for clinical applications.
Collapse
Affiliation(s)
- Huike Wang
- School of Stomatology, ZunYi Medical University, Zunyi, Guizhou, China
| | - Nini Zhang
- School of Stomatology, ZunYi Medical University, Zunyi, Guizhou, China
| | - Xue Wang
- School of Stomatology, ZunYi Medical University, Zunyi, Guizhou, China
| | - Jia Tian
- School of Stomatology, ZunYi Medical University, Zunyi, Guizhou, China
| | - Jie Yi
- School of Stomatology, ZunYi Medical University, Zunyi, Guizhou, China
| | | | - Guilin Huang
- School of Stomatology, ZunYi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
44
|
Abbey CA, Duran CL, Chen Z, Chen Y, Roy S, Coffell A, Sveeggen TM, Chakraborty S, Wells GB, Chang J, Bayless KJ. Identification of New Markers of Angiogenic Sprouting Using Transcriptomics: New Role for RND3. Arterioscler Thromb Vasc Biol 2024; 44:e145-e167. [PMID: 38482696 PMCID: PMC11043006 DOI: 10.1161/atvbaha.123.320599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/28/2024] [Indexed: 04/26/2024]
Abstract
BACKGROUND New blood vessel formation requires endothelial cells to transition from a quiescent to an invasive phenotype. Transcriptional changes are vital for this switch, but a comprehensive genome-wide approach focused exclusively on endothelial cell sprout initiation has not been reported. METHODS Using a model of human endothelial cell sprout initiation, we developed a protocol to physically separate cells that initiate the process of new blood vessel formation (invading cells) from noninvading cells. We used this model to perform multiple transcriptomics analyses from independent donors to monitor endothelial gene expression changes. RESULTS Single-cell population analyses, single-cell cluster analyses, and bulk RNA sequencing revealed common transcriptomic changes associated with invading cells. We also found that collagenase digestion used to isolate single cells upregulated the Fos proto-oncogene transcription factor. Exclusion of Fos proto-oncogene expressing cells revealed a gene signature consistent with activation of signal transduction, morphogenesis, and immune responses. Many of the genes were previously shown to regulate angiogenesis and included multiple tip cell markers. Upregulation of SNAI1 (snail family transcriptional repressor 1), PTGS2 (prostaglandin synthase 2), and JUNB (JunB proto-oncogene) protein expression was confirmed in invading cells, and silencing JunB and SNAI1 significantly reduced invasion responses. Separate studies investigated rounding 3, also known as RhoE, which has not yet been implicated in angiogenesis. Silencing rounding 3 reduced endothelial invasion distance as well as filopodia length, fitting with a pathfinding role for rounding 3 via regulation of filopodial extensions. Analysis of in vivo retinal angiogenesis in Rnd3 heterozygous mice confirmed a decrease in filopodial length compared with wild-type littermates. CONCLUSIONS Validation of multiple genes, including rounding 3, revealed a functional role for this gene signature early in the angiogenic process. This study expands the list of genes associated with the acquisition of a tip cell phenotype during endothelial cell sprout initiation.
Collapse
Affiliation(s)
- Colette A. Abbey
- Texas A&M Health, Department of Medical Physiology, Texas A&M School of Medicine, Bryan TX
- Department of Molecular & Cellular Medicine, Texas A&M School of Medicine, Bryan, TX
| | - Camille L. Duran
- Department of Molecular & Cellular Medicine, Texas A&M School of Medicine, Bryan, TX
| | - Zhishi Chen
- Center for Genomic and Precision Medicine, Institute of Biosciences and Technology, Houston, TX
| | - Yanping Chen
- Center for Genomic and Precision Medicine, Institute of Biosciences and Technology, Houston, TX
| | - Sukanya Roy
- Texas A&M Health, Department of Medical Physiology, Texas A&M School of Medicine, Bryan TX
| | - Ashley Coffell
- Department of Molecular & Cellular Medicine, Texas A&M School of Medicine, Bryan, TX
| | - Timothy M. Sveeggen
- Department of Molecular & Cellular Medicine, Texas A&M School of Medicine, Bryan, TX
| | - Sanjukta Chakraborty
- Texas A&M Health, Department of Medical Physiology, Texas A&M School of Medicine, Bryan TX
| | - Gregg B. Wells
- Department of Molecular & Cellular Medicine, Texas A&M School of Medicine, Bryan, TX
- Department of Cell Biology and Genetics, Texas A&M School of Medicine, Bryan, TX
| | - Jiang Chang
- Center for Genomic and Precision Medicine, Institute of Biosciences and Technology, Houston, TX
| | - Kayla J. Bayless
- Texas A&M Health, Department of Medical Physiology, Texas A&M School of Medicine, Bryan TX
- Department of Molecular & Cellular Medicine, Texas A&M School of Medicine, Bryan, TX
| |
Collapse
|
45
|
Shepley BR, Bain AR. Is Notch1 a neglected vascular mechanosensor? Physiol Rev 2024; 104:655-658. [PMID: 37943247 DOI: 10.1152/physrev.00033.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/10/2023] Open
Affiliation(s)
- Brooke R Shepley
- Department of Kinesiology, University of Windsor, Windsor, Ontario, Canada
| | - Anthony R Bain
- Department of Kinesiology, University of Windsor, Windsor, Ontario, Canada
| |
Collapse
|
46
|
Tsartsalis S, Sleven H, Fancy N, Wessely F, Smith AM, Willumsen N, Cheung TKD, Rokicki MJ, Chau V, Ifie E, Khozoie C, Ansorge O, Yang X, Jenkyns MH, Davey K, McGarry A, Muirhead RCJ, Debette S, Jackson JS, Montagne A, Owen DR, Miners JS, Love S, Webber C, Cader MZ, Matthews PM. A single nuclear transcriptomic characterisation of mechanisms responsible for impaired angiogenesis and blood-brain barrier function in Alzheimer's disease. Nat Commun 2024; 15:2243. [PMID: 38472200 PMCID: PMC10933340 DOI: 10.1038/s41467-024-46630-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Brain perfusion and blood-brain barrier (BBB) integrity are reduced early in Alzheimer's disease (AD). We performed single nucleus RNA sequencing of vascular cells isolated from AD and non-diseased control brains to characterise pathological transcriptional signatures responsible for this. We show that endothelial cells (EC) are enriched for expression of genes associated with susceptibility to AD. Increased β-amyloid is associated with BBB impairment and a dysfunctional angiogenic response related to a failure of increased pro-angiogenic HIF1A to increased VEGFA signalling to EC. This is associated with vascular inflammatory activation, EC senescence and apoptosis. Our genomic dissection of vascular cell risk gene enrichment provides evidence for a role of EC pathology in AD and suggests that reducing vascular inflammatory activation and restoring effective angiogenesis could reduce vascular dysfunction contributing to the genesis or progression of early AD.
Collapse
Affiliation(s)
- Stergios Tsartsalis
- Department of Brain Sciences, Imperial College London, London, UK
- Department of Psychiatry, University of Geneva, Geneva, Switzerland
| | - Hannah Sleven
- Nuffield Department of Clinical Neurosciences, Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, Sherrington Road, University of Oxford, Oxford, UK
| | - Nurun Fancy
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
| | - Frank Wessely
- UK Dementia Research Institute Centre, Cardiff University, Cardiff, UK
| | - Amy M Smith
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
- Centre for Brain Research and Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland, New Zealand
| | - Nanet Willumsen
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
| | - To Ka Dorcas Cheung
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
| | - Michal J Rokicki
- UK Dementia Research Institute Centre, Cardiff University, Cardiff, UK
| | - Vicky Chau
- UK Dementia Research Institute Centre, Imperial College London, London, UK
| | - Eseoghene Ifie
- Neuropathology Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Combiz Khozoie
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
| | - Olaf Ansorge
- Neuropathology Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Xin Yang
- Department of Brain Sciences, Imperial College London, London, UK
- St Edmund Hall, University of Oxford, Oxford, UK
| | - Marion H Jenkyns
- Department of Brain Sciences, Imperial College London, London, UK
| | - Karen Davey
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
| | - Aisling McGarry
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
| | - Robert C J Muirhead
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
| | - Stephanie Debette
- University of Bordeaux, Inserm, Bordeaux Population Health Research Center, Team ELEANOR, UMR 1219, 33000, Bordeaux, France
| | - Johanna S Jackson
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute Centre, Imperial College London, London, UK
| | - Axel Montagne
- Centre for Clinical Brain Sciences, and UK Dementia Research Institute, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - David R Owen
- Department of Brain Sciences, Imperial College London, London, UK
| | - J Scott Miners
- Dementia Research Group, University of Bristol, Bristol, UK
| | - Seth Love
- Dementia Research Group, University of Bristol, Bristol, UK
| | - Caleb Webber
- UK Dementia Research Institute Centre, Cardiff University, Cardiff, UK
| | - M Zameel Cader
- Nuffield Department of Clinical Neurosciences, Kavli Institute for Nanoscience Discovery, Dorothy Crowfoot Hodgkin Building, Sherrington Road, University of Oxford, Oxford, UK
| | - Paul M Matthews
- Department of Brain Sciences, Imperial College London, London, UK.
- UK Dementia Research Institute Centre, Imperial College London, London, UK.
- St Edmund Hall, University of Oxford, Oxford, UK.
| |
Collapse
|
47
|
Chen F, Wu P, Zhang H, Sun G. Signaling Pathways Triggering Therapeutic Hydrogels in Promoting Chronic Wound Healing. Macromol Biosci 2024; 24:e2300217. [PMID: 37831962 DOI: 10.1002/mabi.202300217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/08/2023] [Indexed: 10/15/2023]
Abstract
In recent years, there has been a significant increase in the prevalence of chronic wounds, such as pressure ulcers, diabetic foot ulcers, and venous ulcers of the lower extremities. The main contributors to chronic wound formation are bacterial infection, prolonged inflammation, and peripheral vascular disease. However, effectively treating these chronic wounds remains a global challenge. Hydrogels have extensively explored as wound healing dressing because of their excellent biocompatibility and structural similarity to extracellular matrix (ECM). Nonetheless, much is still unknown how the hydrogels promote wound repair and regeneration. Signaling pathways play critical roles in wound healing process by controlling and coordinating cells and biomolecules. Hydrogels, along with their therapeutic ingredients that impact signaling pathways, have the potential to significantly enhance the wound healing process and its ultimate outcomes. Understanding this interaction will undoubtedly provide new insights into developing advanced hydrogels for wound repair and regeneration. This paper reviews the latest studies on classical signaling pathways and potential targets influenced by hydrogel scaffolds in chronic wound healing. This work hopes that it will offer a different perspective in developing more efficient hydrogels for treating chronic wounds.
Collapse
Affiliation(s)
- Fang Chen
- Hebei Provincial Key Laboratory of Skeletal Metabolic Physiology of Chronic Kidney Disease, Affiliated Hospital of Hebei University, Baoding, 071000, China
- First Department of Bone Injury, Luzhou Municipal Hospital of Traditional Chinese Medicine, Luzhou, Sichuan, 646000, China
| | - Pingli Wu
- College of Chemistry and Materials Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Hebei University, Baoding, 071002, China
| | - Haisong Zhang
- Hebei Provincial Key Laboratory of Skeletal Metabolic Physiology of Chronic Kidney Disease, Affiliated Hospital of Hebei University, Baoding, 071000, China
| | - Guoming Sun
- Sunogel Biotechnologies Inc., Lutherville Timonium, 9 W Ridgely Road Ste 270, Maryland, 21093, USA
| |
Collapse
|
48
|
Oliveira RHDM, Annex BH, Popel AS. Endothelial cells signaling and patterning under hypoxia: a mechanistic integrative computational model including the Notch-Dll4 pathway. Front Physiol 2024; 15:1351753. [PMID: 38455844 PMCID: PMC10917925 DOI: 10.3389/fphys.2024.1351753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/12/2024] [Indexed: 03/09/2024] Open
Abstract
Introduction: Several signaling pathways are activated during hypoxia to promote angiogenesis, leading to endothelial cell patterning, interaction, and downstream signaling. Understanding the mechanistic signaling differences between endothelial cells under normoxia and hypoxia and their response to different stimuli can guide therapies to modulate angiogenesis. We present a novel mechanistic model of interacting endothelial cells, including the main pathways involved in angiogenesis. Methods: We calibrate and fit the model parameters based on well-established modeling techniques that include structural and practical parameter identifiability, uncertainty quantification, and global sensitivity. Results: Our results indicate that the main pathways involved in patterning tip and stalk endothelial cells under hypoxia differ, and the time under hypoxia interferes with how different stimuli affect patterning. Additionally, our simulations indicate that Notch signaling might regulate vascular permeability and establish different Nitric Oxide release patterns for tip/stalk cells. Following simulations with various stimuli, our model suggests that factors such as time under hypoxia and oxygen availability must be considered for EC pattern control. Discussion: This project provides insights into the signaling and patterning of endothelial cells under various oxygen levels and stimulation by VEGFA and is our first integrative approach toward achieving EC control as a method for improving angiogenesis. Overall, our model provides a computational framework that can be built on to test angiogenesis-related therapies by modulation of different pathways, such as the Notch pathway.
Collapse
Affiliation(s)
| | - Brian H. Annex
- Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Aleksander S. Popel
- Department of Biomedical Engineering, School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
49
|
Yang K, Yi T. Tumor cell stemness in gastrointestinal cancer: regulation and targeted therapy. Front Mol Biosci 2024; 10:1297611. [PMID: 38455361 PMCID: PMC10918437 DOI: 10.3389/fmolb.2023.1297611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/14/2023] [Indexed: 03/09/2024] Open
Abstract
The cancer stem cells are a rare group of self-renewable cancer cells capable of the initiation, progression, metastasis and recurrence of tumors, and also a key contributor to the therapeutic resistance. Thus, understanding the molecular mechanism of tumor stemness regulation, especially in the gastrointestinal (GI) cancers, is of great importance for targeting CSC and designing novel therapeutic strategies. This review aims to elucidate current advancements in the understanding of CSC regulation, including CSC biomarkers, signaling pathways, and non-coding RNAs. We will also provide a comprehensive view on how the tumor microenvironment (TME) display an overall tumor-promoting effect, including the recruitment and impact of cancer-associated fibroblasts (CAFs), the establishment of an immunosuppressive milieu, and the induction of angiogenesis and hypoxia. Lastly, this review consolidates mainstream novel therapeutic interventions targeting CSC stemness regulation.
Collapse
Affiliation(s)
- Kangqi Yang
- School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Tuo Yi
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
50
|
Wang M, Yu F, Zhang Y, Li P. Novel insights into Notch signaling in tumor immunity: potential targets for cancer immunotherapy. Front Immunol 2024; 15:1352484. [PMID: 38444855 PMCID: PMC10912471 DOI: 10.3389/fimmu.2024.1352484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/06/2024] [Indexed: 03/07/2024] Open
Abstract
Notch signaling pathway is a highly conserved system of cell-to-cell communication that participates in various biological processes, such as stem cell maintenance, cell fate decision, cell proliferation and death during homeostasis and development. Dysregulation of Notch signaling has been associated with many aspects of cancer biology, such as maintenance of cancer stem-like cells (CSCs), cancer cell metabolism, angiogenesis and tumor immunity. Particularly, Notch signaling can regulate antitumor or pro-tumor immune cells within the tumor microenvironment (TME). Currently, Notch signaling has drawn significant attention in the therapeutic development of cancer treatment. In this review, we focus on the role of Notch signaling pathway in remodeling tumor immune microenvironment. We describe the impact of Notch signaling on the efficacy of cancer immunotherapies. Furthermore, we summarize the results of relevant preclinical and clinical trials of Notch-targeted therapeutics and discuss the challenges in their clinical application in cancer therapy. An improved understanding of the involvement of Notch signaling in tumor immunity will open the door to new options in cancer immunotherapy treatment.
Collapse
Affiliation(s)
- Man Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| | | | | | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, China
| |
Collapse
|