1
|
Ramsperger-Gleixner M, Li C, Wallon N, Kuckhahn A, Weisbach V, Weyand M, Heim C. Characterisation of Mesenchymal Stromal Cells (MSCs) from Human Adult Thymus as a Potential Cell Source for Regenerative Medicine. J Clin Med 2025; 14:3474. [PMID: 40429470 PMCID: PMC12112012 DOI: 10.3390/jcm14103474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 04/30/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025] Open
Abstract
Background: Mesenchymal stem cell-based therapy may be indicated in ischaemic heart disease. The use of autologous adipose-derived mesenchymal stromal cells (AdMSCs) offers regenerative potential due to their paracrine effects. The aim of this study was to expand and characterise adult human thymus-derived MSCs harvested during open heart surgery with respect to their stem cell and paracrine properties. Methods: Enzymatically and non-enzymatically isolated human thymic AdMSCs (ThyAdMSCs) were cultured in xeno-free media containing pooled human platelet lysate (pPL). MSC characterisation was performed. Ex vivo expanded ThyAdMSCs were differentiated into three lineages. Proliferative capacity and immunomodulatory properties were assessed by proliferation assays and mixed lymphocyte reaction, respectively. Gene expression analysis was performed by qPCR. Results: Both isolation methods yielded fibroblast-like cells with plastic adherence and high proliferation. Flow cytometry revealed distinct expression of MSC markers in the absence of haematopoietic cell surface markers. Ex vivo expanded ThyAdMSCs could be differentiated into adipocytes, osteocytes, and chondrocytes. Activated peripheral blood mononuclear cells were significantly reduced when co-cultured with ThyAdMSCs, indicating their ability to inhibit immune cells in vitro. Gene expression analysis showed significantly less IFNγ and TNFα, indicating an alteration of the activated and pro-inflammatory state in the presence of ThyAdMSCs. Conclusions: These results demonstrate an efficient method to generate AdMSCs from human thymus. These MSCs have a strong immunomodulatory capacity and are, therefore, a promising cell source for regenerative medicine. The culture conditions are crucial for cells to proliferate in culture. Further research could explore the use of ThyAdMSCs or their secretome in surgical procedures.
Collapse
Affiliation(s)
- Martina Ramsperger-Gleixner
- Department of Cardiac Surgery, University Hospital of Erlangen-Nürnberg, Krankenhausstraße 12, 91054 Erlangen, Germany
- Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Chang Li
- Department of Cardiac Surgery, University Hospital of Erlangen-Nürnberg, Krankenhausstraße 12, 91054 Erlangen, Germany
| | - Nina Wallon
- Department of Cardiac Surgery, University Hospital of Erlangen-Nürnberg, Krankenhausstraße 12, 91054 Erlangen, Germany
- Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Annika Kuckhahn
- Department of Cardiac Surgery, University Hospital of Erlangen-Nürnberg, Krankenhausstraße 12, 91054 Erlangen, Germany
- Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Volker Weisbach
- Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Department of Transfusion Medicine and Haemostaseology, University Hospital of Erlangen-Nürnberg, Krankenhausstraße 12, 91054 Erlangen, Germany
| | - Michael Weyand
- Department of Cardiac Surgery, University Hospital of Erlangen-Nürnberg, Krankenhausstraße 12, 91054 Erlangen, Germany
- Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Christian Heim
- Department of Cardiac Surgery, University Hospital of Erlangen-Nürnberg, Krankenhausstraße 12, 91054 Erlangen, Germany
- Friedrich-Alexander Universität Erlangen-Nürnberg, 91054 Erlangen, Germany
- Department of Cardiac and Vascular Surgery, Klinikum Bayreuth GmbH, Medizincampus Oberfranken (MCO), of Friedrich-Alexander University Erlangen-Nürnberg, Preuschwitzer Straße 101, 95445 Bayreuth, Germany
| |
Collapse
|
2
|
Egli P, Boone L, Huber L, Higgins C, Gaonkar PP, Arrington J, Naskou MC, Peroni J, Gordon J, Lascola KM. Pilot study characterizing a single pooled preparation of equine platelet lysate for nebulization in the horse. Front Vet Sci 2024; 11:1488942. [PMID: 39726585 PMCID: PMC11670369 DOI: 10.3389/fvets.2024.1488942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024] Open
Abstract
Introduction Platelet lysate (PL) demonstrates antimicrobial and anti-inflammatory properties offering potential for treatment of bacterial pneumonia in horses. It remains unknown whether nebulization is suitable for PL administration in horses. This pilot study characterized particle size and flow rate of pooled equine PL (single preparation) nebulized using an equine-specific nebulizer (Flexivent®). Methods Protein composition and antimicrobial activity were compared before and after nebulization. Protein composition was evaluated according to growth factor, antimicrobial peptide and cytokine concentrations and proteomic analysis. To evaluate antimicrobial activity, bacterial growth inhibition [maximum growth (μmax); carrying capacity (K)] were determined for E. coli, Streptococcus equi subsp zooepidemicus and Rhodococcus equi (WT and MDR) using pre- and post-nebulized PL concentrations of 50%. Results Flow rate and median particle size were 0.8 ml/min and 4.991 μm with 52% of particles ≤ 5 μm. Differences in PL protein composition were detected with nebulization. For E. coli and S. zooepidemicus, nebulization did not alter effect of PL on growth parameters. PL treatments decreased K for S. zooepidemicus (p = 0.009) compared to BHI. For R. equi K was increased post- vs. pre-nebulization (WT and MDR) and μmax increased pre- vs, post-nebulization (MDR). PL treatments increased K and μmax for MDR R. equi and μmax for WT R. equi compared to BHI (p ≤ 0.05). Conclusion Nebulization of PL in vitro is technically feasible. The results of this study support further investigation to better characterize the effect of nebulization on PL and its suitability for nebulization in horses.
Collapse
Affiliation(s)
- Patricia Egli
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Lindsey Boone
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Laura Huber
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Courtney Higgins
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Pankaj P. Gaonkar
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Justine Arrington
- Roy J. Carver Biotechnology Center, Proteomics Core, University of Illinois, Urbana, IL, United States
| | - Maria C. Naskou
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - John Peroni
- JF Peroni Laboratory, Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Julie Gordon
- JF Peroni Laboratory, Department of Large Animal Medicine, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Kara M. Lascola
- Department of Clinical Sciences, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| |
Collapse
|
3
|
Yeh WT, Yu EYL, Lu YH, Livkisa D, Burnouf T, Lundy DJ. Bioprocessing of human platelet concentrates to generate lysates and extracellular vesicles for therapeutic applications. MethodsX 2024; 13:102822. [PMID: 39105089 PMCID: PMC11299553 DOI: 10.1016/j.mex.2024.102822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 06/22/2024] [Indexed: 08/07/2024] Open
Abstract
This work describes protocols for preparing specific forms of human platelet lysates from pooled platelet concentrates (PCs) and the isolation of platelet-derived extracellular vesicles (p-EVs). Clinical-grade PCs can be sourced from blood establishments immediately following expiration for transfusion use. Here, we describe methods to process PCs into specific lysates from which p-EVs can be isolated. Each lysate type is prepared using platelet activation and processing methods which produce distinct products that may be useful in different applications. For example, serum-converted platelet lysate (SCPL)-EVs were recently shown to have powerful therapeutic properties following myocardial infarction in mice. EVs can be isolated from all products using size exclusion chromatography, producing pure and consistent p-EVs from multiple batches. Together, these methods allow isolation of p-EVs with excellent potential for clinical and preclinical applications.•Platelet concentrates (PCs) obtained from local blood establishments are reliable and sustainable sources to generate biomaterials.•We outline five distinct methods of platelet lysate generation and one method for extracellular vesicle isolation.•Each platelet lysate form has different biological properties which may be suitable for certain applications.
Collapse
Affiliation(s)
- Wei-Ting Yeh
- School of Biomedical Engineering, Taipei Medical University, 301 Yuantong Road, Taipei 235603, Taiwan
| | - Ezrin Yi-Ling Yu
- School of Biomedical Engineering, Taipei Medical University, 301 Yuantong Road, Taipei 235603, Taiwan
| | - Ya-Hsuan Lu
- School of Biomedical Engineering, Taipei Medical University, 301 Yuantong Road, Taipei 235603, Taiwan
| | - Dora Livkisa
- International PhD Program in Biomedical Engineering, Taipei Medical University, 301 Yuantong Road, Taipei 235603, Taiwan
| | - Thierry Burnouf
- International PhD Program in Biomedical Engineering, Taipei Medical University, 301 Yuantong Road, Taipei 235603, Taiwan
- Graduate Institute of Biomedical Materials & Tissue Engineering, Taipei Medical University, 301 Yuantong Road, Taipei 235603, Taiwan
| | - David J. Lundy
- International PhD Program in Biomedical Engineering, Taipei Medical University, 301 Yuantong Road, Taipei 235603, Taiwan
- Graduate Institute of Biomedical Materials & Tissue Engineering, Taipei Medical University, 301 Yuantong Road, Taipei 235603, Taiwan
| |
Collapse
|
4
|
Trochanowska-Pauk N, Walski T, Bohara R, Mikolas J, Kubica K. Platelet Storage-Problems, Improvements, and New Perspectives. Int J Mol Sci 2024; 25:7779. [PMID: 39063021 PMCID: PMC11277025 DOI: 10.3390/ijms25147779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Platelet transfusions are routine procedures in clinical treatment aimed at preventing bleeding in critically ill patients, including those with cancer, undergoing surgery, or experiencing trauma. However, platelets are susceptible blood cells that require specific storage conditions. The availability of platelet concentrates is limited to five days due to various factors, including the risk of bacterial contamination and the occurrence of physical and functional changes known as platelet storage lesions. In this article, the problems related to platelet storage lesions are categorized into four groups depending on research areas: storage conditions, additive solutions, new testing methods for platelets (proteomic and metabolomic analysis), and extensive data modeling of platelet production (mathematical modeling, statistical analysis, and artificial intelligence). This article provides extensive information on the challenges, potential improvements, and novel perspectives regarding platelet storage.
Collapse
Affiliation(s)
- Natalia Trochanowska-Pauk
- Department of Physics and Biophysics, The Faculty of Biotechnology and Food Science, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland;
| | - Tomasz Walski
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, 50-370 Wrocław, Poland;
| | - Raghvendra Bohara
- Centre for Interdisciplinary Research, D.Y. Patil Educational Society, Kolhapur 416006, India;
| | - Julia Mikolas
- Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 41-800 Zabrze, Poland
| | - Krystian Kubica
- Department of Biomedical Engineering, Faculty of Fundamental Problems of Technology, Wrocław University of Science and Technology, 50-370 Wrocław, Poland;
| |
Collapse
|
5
|
Livkisa D, Chang TH, Burnouf T, Czosseck A, Le NTN, Shamrin G, Yeh WT, Kamimura M, Lundy DJ. Extracellular vesicles purified from serum-converted human platelet lysates offer strong protection after cardiac ischaemia/reperfusion injury. Biomaterials 2024; 306:122502. [PMID: 38354518 DOI: 10.1016/j.biomaterials.2024.122502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/06/2024] [Accepted: 02/05/2024] [Indexed: 02/16/2024]
Abstract
Extracellular vesicles (EVs) from cultured cells or bodily fluids have been demonstrated to show therapeutic value following myocardial infarction. However, challenges in donor variation, EV generation and isolation methods, and material availability have hindered their therapeutic use. Here, we show that human clinical-grade platelet concentrates from a blood establishment can be used to rapidly generate high concentrations of high purity EVs from sero-converted platelet lysate (SCPL-EVs) with minimal processing, using size-exclusion chromatography. Processing removed serum carrier proteins, coagulation factors and complement proteins from the original platelet lysate and the resultant SCPL-EVs carried a range of trophic factors and multiple recognised cardioprotective miRNAs. As such, SCPL-EVs protected rodent and human cardiomyocytes from hypoxia/re-oxygenation injury and stimulated angiogenesis of human cardiac microvessel endothelial cells. In a mouse model of myocardial infarction with reperfusion, SCPL-EV delivery using echo-guided intracavitary percutaneous injection produced large improvements in cardiac function, reduced scar formation and promoted angiogenesis. Since platelet-based biomaterials are already widely used clinically, we believe that this therapy could be rapidly suitable for a human clinical trial.
Collapse
Affiliation(s)
- Dora Livkisa
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Tzu-Hsin Chang
- Graduate Institute of Biomedical Materials & Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Thierry Burnouf
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Biomedical Materials & Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan; International Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Andreas Czosseck
- Graduate Institute of Biomedical Materials & Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Nhi Thao Ngoc Le
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Gleb Shamrin
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Wei-Ting Yeh
- School of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Masao Kamimura
- Department of Medical and Robotic Engineering Design, Faculty of Advanced Engineering, Tokyo University of Science, Japan
| | - David J Lundy
- International PhD Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Biomedical Materials & Tissue Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei, Taiwan; Center for Cell Therapy, Taipei Medical University Hospital, Taipei, Taiwan.
| |
Collapse
|
6
|
Shekari F, Alibhai FJ, Baharvand H, Börger V, Bruno S, Davies O, Giebel B, Gimona M, Salekdeh GH, Martin‐Jaular L, Mathivanan S, Nelissen I, Nolte‐’t Hoen E, O'Driscoll L, Perut F, Pluchino S, Pocsfalvi G, Salomon C, Soekmadji C, Staubach S, Torrecilhas AC, Shelke GV, Tertel T, Zhu D, Théry C, Witwer K, Nieuwland R. Cell culture-derived extracellular vesicles: Considerations for reporting cell culturing parameters. JOURNAL OF EXTRACELLULAR BIOLOGY 2023; 2:e115. [PMID: 38939735 PMCID: PMC11080896 DOI: 10.1002/jex2.115] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/18/2023] [Accepted: 09/17/2023] [Indexed: 06/29/2024]
Abstract
Cell culture-conditioned medium (CCM) is a valuable source of extracellular vesicles (EVs) for basic scientific, therapeutic and diagnostic applications. Cell culturing parameters affect the biochemical composition, release and possibly the function of CCM-derived EVs (CCM-EV). The CCM-EV task force of the Rigor and Standardization Subcommittee of the International Society for Extracellular Vesicles aims to identify relevant cell culturing parameters, describe their effects based on current knowledge, recommend reporting parameters and identify outstanding questions. While some recommendations are valid for all cell types, cell-specific recommendations may need to be established for non-mammalian sources, such as bacteria, yeast and plant cells. Current progress towards these goals is summarized in this perspective paper, along with a checklist to facilitate transparent reporting of cell culturing parameters to improve the reproducibility of CCM-EV research.
Collapse
Affiliation(s)
- Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
- Advanced Therapy Medicinal Product Technology Development Center (ATMP‐TDC), Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
| | | | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research CenterRoyan Institute for Stem Cell Biology and Technology, ACECRTehranIran
- Department of Developmental Biology, School of Basic Sciences and Advanced Technologies in BiologyUniversity of Science and CultureTehranIran
| | - Verena Börger
- Institute for Transfusion MedicineUniversity Hospital Essen, University of Duisburg‐EssenEssenGermany
| | - Stefania Bruno
- Department of Medical Sciences and Molecular Biotechnology CenterUniversity of TorinoTurinItaly
| | - Owen Davies
- School of Sport, Exercise and Health SciencesLoughborough UniversityLoughboroughUK
| | - Bernd Giebel
- Institute for Transfusion MedicineUniversity Hospital Essen, University of Duisburg‐EssenEssenGermany
| | - Mario Gimona
- GMP UnitSpinal Cord Injury & Tissue Regeneration Centre Salzburg (SCI‐TReCS) and Research Program “Nanovesicular Therapies” Paracelsus Medical UniversitySalzburgAustria
| | | | - Lorena Martin‐Jaular
- Institut Curie, INSERM U932 and Curie CoreTech Extracellular VesiclesPSL Research UniversityParisFrance
| | - Suresh Mathivanan
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular ScienceLa Trobe UniversityMelbourneVICAustralia
| | - Inge Nelissen
- VITO (Flemish Institute for Technological Research), Health departmentBoeretangBelgium
| | - Esther Nolte‐’t Hoen
- Department of Biomolecular Health Sciences, Faculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Lorraine O'Driscoll
- School of Pharmacy and Pharmaceutical Sciences & Trinity Biomedical Sciences InstituteTrinity College DublinDublinIreland
| | - Francesca Perut
- Biomedical Science and Technologies and Nanobiotechnology LabIRCCS Istituto Ortopedico RizzoliBolognaItaly
| | - Stefano Pluchino
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
| | - Gabriella Pocsfalvi
- Institute of Biosciences and BioResourcesNational Research CouncilNaplesItaly
| | - Carlos Salomon
- Translational Extracellular Vesicles in Obstetrics and Gynae‐Oncology Group, UQ Centre for Clinical Research, Royal Brisbane and Women's Hospital, Faculty of MedicineThe University of QueenslandBrisbaneAustralia
| | - Carolina Soekmadji
- School of Biomedical Sciences, Faculty of MedicineUniversity of QueenslandBrisbaneAustralia
| | | | - Ana Claudia Torrecilhas
- Laboratório de Imunologia Celular e Bioquímica de Fungos e Protozoários, Departamento de Ciências FarmacêuticasUniversidade Federal de São Paulo (UNIFESP)SPBrazil
| | - Ganesh Vilas Shelke
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthBethesdaMarylandUSA
| | - Tobias Tertel
- Institute for Transfusion MedicineUniversity Hospital Essen, University of Duisburg‐EssenEssenGermany
| | - Dandan Zhu
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVICAustralia
| | - Clotilde Théry
- Institut Curie, INSERM U932 and Curie CoreTech Extracellular VesiclesPSL Research UniversityParisFrance
| | - Kenneth Witwer
- Departments of Molecular and Comparative Pathobiology and Neurology and Richman Family Precision Medicine Center of Excellence in Alzheimer's DiseaseJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Rienk Nieuwland
- Laboratory of Experimental Clinical Chemistry, Department of Clinical Chemistry, Amsterdam University Medical CentersLocation AMC, University of AmsterdamAmsterdamThe Netherlands
- Amsterdam Vesicle Center, Amsterdam University Medical Centers, location AMCUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
7
|
Kee LT, Lee YT, Ng CY, Hassan MNF, Ng MH, Mahmood Z, Abdul Aziz S, Law JX. Preparation of Fibrinogen-Depleted Human Platelet Lysate to Support Heparin-Free Expansion of Umbilical Cord-Derived Mesenchymal Stem Cells. BIOLOGY 2023; 12:1085. [PMID: 37626970 PMCID: PMC10452143 DOI: 10.3390/biology12081085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 07/18/2023] [Accepted: 07/18/2023] [Indexed: 08/27/2023]
Abstract
Human platelet lysate (hPL) has high levels of fibrinogen and coagulation factors, which can lead to gel and precipitate formation during storage and cell culture. Heparin derived from animals is commonly added to minimize these risks, but cannot completely eliminate them. Thus, this study proposes an alternative method to prepare fibrinogen-depleted hPL (Fd-hPL) that supports heparin-free expansion of mesenchymal stem cells (MSCs). hPL was added to heparin to prepare heparin-hPL (H-hPL), whilst Fd-hPL was prepared by adding calcium salt to hPL to remove the fibrin clot. The concentrations of calcium, fibrinogen, and growth factors in H-hPL and Fd-hPL were compared. The effects of H-hPL and Fd-hPL on umbilical cord-derived MSCs (UC-MSCs) were assessed. The results showed that Fd-hPL possessed a significantly higher calcium concentration and a lower fibrinogen level than H-hPL. The concentrations of BDNF, TGF-β1, and PDGF-BB showed no significant difference between H-hPL and Fd-hPL, but Fd-hPL had a lower VEGF concentration. Fd-hPL retained the characteristics of UC-MSCs, as it did not affect the cell viability, proliferation, multilineage differentiation potential, or surface marker expression. In conclusion, Fd-hPL effectively supported the in vitro expansion of MSCs without compromising their characteristics, positioning it as a potential substitute for FBS in MSC culture.
Collapse
Affiliation(s)
- Li Ting Kee
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (L.T.K.); (C.Y.N.); (M.N.F.H.); (M.H.N.)
| | - Yi Ting Lee
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Chiew Yong Ng
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (L.T.K.); (C.Y.N.); (M.N.F.H.); (M.H.N.)
| | - Muhammad Najib Fathi Hassan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (L.T.K.); (C.Y.N.); (M.N.F.H.); (M.H.N.)
| | - Min Hwei Ng
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (L.T.K.); (C.Y.N.); (M.N.F.H.); (M.H.N.)
| | - Zalina Mahmood
- National Blood Centre of Malaysia, Kuala Lumpur 50400, Malaysia;
| | - Suria Abdul Aziz
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Jia Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (L.T.K.); (C.Y.N.); (M.N.F.H.); (M.H.N.)
| |
Collapse
|
8
|
Azmi AF, Yahya MAAM, Azhar NA, Ibrahim N, Ghafar NA, Ghani NAA, Nizar MAM, Yunus SSM, Singh TKL, Law JX, Ng SL. In Vitro Cell Proliferation and Migration Properties of Oral Mucosal Fibroblasts: A Comparative Study on the Effects of Cord Blood- and Peripheral Blood-Platelet Lysate. Int J Mol Sci 2023; 24:ijms24065775. [PMID: 36982842 PMCID: PMC10058190 DOI: 10.3390/ijms24065775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/07/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Cord blood-platelet lysate (CB-PL), containing growth factors such as a platelet-derived growth factor, has a similar efficacy to peripheral blood-platelet lysate (PB-PL) in initiating cell growth and differentiation, which makes it a unique alternative to be implemented into oral ulceration healing. This research study aimed to compare the effectiveness of CB-PL and PB-PL in promoting oral wound closure in vitro. Alamar blue assay was used to determine the optimal concentration of CB-PL and PB-PL in enhancing the proliferation of human oral mucosal fibroblasts (HOMF). The percentage of wound closure was measured using the wound-healing assay for CB-PL and PB-PL at the optimal concentration of 1.25% and 0.3125%, respectively. The gene expressions of cell phenotypic makers (Col. I, Col. III, elastin and fibronectin) were determined via qRT-PCR. The concentrations of PDGF-BB were quantified using ELISA. We found that CB-PL was as effective as PB-PL in promoting wound-healing and both PL were more effective compared to the control (CTRL) group in accelerating the cell migration in the wound-healing assay. The gene expressions of Col. III and fibronectin were significantly higher in PB-PL compared to CB-PL. The PDGF-BB concentration of PB-PL was the highest and it decreased after the wound closed on day 3. Therefore, we concluded that PL from both sources can be a beneficial treatment for wound-healing, but PB-PL showed the most promising wound-healing properties in this study.
Collapse
Affiliation(s)
- Arief Faisal Azmi
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Mohammad Amirul Asyraff Mohd Yahya
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Nur Ain Azhar
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Norliwati Ibrahim
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Norzana Abd Ghafar
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Nur Azurah Abdul Ghani
- Department of Obstetrics and Gynaecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Muhammad Aiman Mohd Nizar
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Siti Salmiah Mohd Yunus
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Tashveender Kaur Lakhbir Singh
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| | - Jia-Xian Law
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia
| | - Sook-Luan Ng
- Department of Craniofacial Diagnostics and Biosciences, Faculty of Dentistry, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur 50300, Malaysia
| |
Collapse
|
9
|
González MB, Cuerva RC, Muñoz BF, Rosell-Valle C, López MM, Arribas BA, Montiel MÁ, Sánchez GC, González MS. Optimization of human platelet lysate production and pathogen reduction in a public blood transfusion center. Transfusion 2022; 62:1839-1849. [PMID: 35924726 DOI: 10.1111/trf.17045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/26/2022] [Accepted: 06/29/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Human platelet lysate (HPL) has been proposed as a safe and efficient xeno-free alternative to fetal bovine serum (FBS) for large-scale culturing of cell-based medicinal products. However, the use of blood derivatives poses a potential risk of pathogen transmission. To mitigate this risk, different pathogen reduction treatment (PRT) practices can be applied on starting materials or on final products, but these methods might modify the final composition and the quality of the products. STUDY DESIGN AND METHODS We evaluated the impact of applying a PRT based on riboflavin and ultraviolet irradiation on the raw materials used to manufacture an improved Good Manufacturing Practices (GMP)-grade HPL product in a public blood center. Growth promotion and the levels of growth factors and proteins were compared between an inactivated product (HPL4-i) and a non-inactivated product (HPL4). Stability studies were performed at 4°C, -20°C, and -80°C. RESULTS The application of a PRT on the starting materials significantly altered the protein composition of HPL4-i as compared with HPL4. Despite this, the growth promoting rates were unaffected when compared with FBS used as a control. While all products were stable at -20°C and -80°C for 24 months, a significant decrease in the activity of HPL4-i was observed when stored at 4°C. CONCLUSION Our results show that the application of a PRT based on riboflavin and ultraviolet light on starting materials used in the manufacture of HPL modifies the final composition of the product, yet its cell growth promoting activity is maintained at levels similar to those of non-inactivated products.
Collapse
Affiliation(s)
- María Bermejo González
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC) Red Andaluza de Diseño y, Traslación de Terapias Avanzadas (RADyTTA), Seville, Spain.,PhD Program in Biología Molecular, Biomedicina e Investigación Clínica, University of Seville, Seville, Spain
| | - Rafael Campos Cuerva
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC) Red Andaluza de Diseño y, Traslación de Terapias Avanzadas (RADyTTA), Seville, Spain.,Centro de Transfusiones, Tejidos y Células de Sevilla (CTTS), Fundación Pública Andaluza para la Gestión de la Investigación en Salud en Sevilla (FISEVI), Seville, Spain
| | - Beatriz Fernández Muñoz
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC) Red Andaluza de Diseño y, Traslación de Terapias Avanzadas (RADyTTA), Seville, Spain
| | - Cristina Rosell-Valle
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC) Red Andaluza de Diseño y, Traslación de Terapias Avanzadas (RADyTTA), Seville, Spain
| | - María Martín López
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC) Red Andaluza de Diseño y, Traslación de Terapias Avanzadas (RADyTTA), Seville, Spain
| | - Blanca Arribas Arribas
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC) Red Andaluza de Diseño y, Traslación de Terapias Avanzadas (RADyTTA), Seville, Spain.,PhD Program in Pharmaceutical Technology and Medicine Sciences (Pharmacy), University of Seville, Seville, Spain
| | - Migue Ángel Montiel
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC) Red Andaluza de Diseño y, Traslación de Terapias Avanzadas (RADyTTA), Seville, Spain.,PhD Program in Pharmaceutical Technology and Medicine Sciences (Pharmacy), University of Seville, Seville, Spain
| | - Gloria Carmona Sánchez
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC) Red Andaluza de Diseño y, Traslación de Terapias Avanzadas (RADyTTA), Seville, Spain.,PhD Program in Biomedicine, University of Granada, Granada, Spain
| | - Mónica Santos González
- Unidad de Producción y Reprogramación Celular de Sevilla (UPRC) Red Andaluza de Diseño y, Traslación de Terapias Avanzadas (RADyTTA), Seville, Spain.,Centro de Transfusiones, Tejidos y Células de Sevilla (CTTS), Fundación Pública Andaluza para la Gestión de la Investigación en Salud en Sevilla (FISEVI), Seville, Spain
| |
Collapse
|
10
|
Rodrigues RM, Valim VDS, Berger M, da Silva APM, Fachel FNS, Wilke II, da Silva WOB, Santi L, da Silva MAL, Amorin B, Sehn F, Yates JR, Guimarães JA, Silla L. The proteomic and particle composition of human platelet lysate for cell therapy products. J Cell Biochem 2022; 123:1495-1505. [PMID: 35892149 DOI: 10.1002/jcb.30310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 11/12/2022]
Abstract
Following health agencies warning, the use of animal origin supplements should be avoided in biological products proposed as therapy in humans. Platelet lysate and several other growth factors sources are alternatives to replace fetal calf serum, the current gold standard in clinical-grade cell culture. However, the platelet supplement's content lacks data due to different production methods. The principle behind these products relays on the lysis of platelets that release several proteins, some of which are contained in heterogeneous granules and coordinate biological functions. This study aims to analyze the composition and reproducibility of a platelet lysate produced with a standardized method, by describing several batches' protein and particle content using proteomics and dynamic light scattering. Proteomics data revealed a diversified protein content, with some related to essential cellular processes such as proliferation, morphogenesis, differentiation, biosynthesis, adhesion, and metabolism. It also detected proteins responsible for activation and binding of transforming growth factor beta, hepatocyte growth factor, and insulin-like growth factor. Total protein, biochemical, and growth factors quantitative data showed consistent and reproducible values across batches. Novel data on two major particle populations is presented, with high dispersion level at 231 ± 96 d.nm and at 30 ± 8 d.nm, possibly being an important way of protein trafficking through the cellular microenvironment. This experimental and descriptive analysis aims to support the content definition and quality criteria of a cell supplement for clinical applications.
Collapse
Affiliation(s)
- Raul M Rodrigues
- School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Markus Berger
- School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | | | - Flávia N S Fachel
- School of Pharmacy, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Ianaê I Wilke
- School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Walter O B da Silva
- Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,School of Pharmacy, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Lucélia Santi
- Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.,School of Pharmacy, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Bruna Amorin
- Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Filipe Sehn
- School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - John R Yates
- Department of Molecular Medicine, Scripps Research, La Jolla, California, USA
| | | | - Lucia Silla
- School of Medicine, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.,Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|