1
|
Pandey SK, Nanda A, Gautam AS, Chittoda A, Tiwari A, Singh RK. Ferrous sulfate and lipopolysaccharide co-exposure induce neuroinflammation, neurobehavioral motor deficits, neurodegenerative and histopathological biomarkers relevant to Parkinson's disease-like symptoms in Wistar rats. Biometals 2025:10.1007/s10534-025-00693-7. [PMID: 40379880 DOI: 10.1007/s10534-025-00693-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Accepted: 04/29/2025] [Indexed: 05/19/2025]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra region of the brain. Although iron is one of the essential micronutrients in the brain, its excess exposure and accumulation in the brain substantia nigra and striatum regions may induce critical pathological changes relevant to PD. This study has evaluated neurobehavioral, biochemical, and structural alterations resembling PD-like symptoms induced through a 4-week co-exposure of ferrous sulfate (FeSO4) with lipopolysaccharide (LPS) in Wistar rats. Our results revealed motor deficits, oxidative stress, neuroinflammation, iron dysregulation, protein aggregation, ferroptosis, and apoptotic cell death. Notably, we observed decreased tyrosine hydroxylase levels and increased α-synuclein accumulation, consistent with PD pathology. The immunohistopathological assessments showed astrocyte activation and iron deposition, supporting their roles in neuroinflammation and oxidative stress. Furthermore, we identified alterations in apoptosis and ferroptosis markers, suggesting dose-related involvement of FeSO4 in neuronal death in the rat brain. These findings have highlighted the multifaceted mechanisms during the co-exposure of FeSO4 and LPS-induced neurodegeneration and neuroinflammation relevant to PD. This study emphasizes that therapeutic targeting of these pathological mechanisms may offer a promising therapeutic intervention in PD.
Collapse
Affiliation(s)
- Shivam Kumar Pandey
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Transit Campus, Bijnour-Sisendi Road, Sarojini Nagar, Lucknow, Uttar Pradesh, 226002, India
| | - Anjuman Nanda
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Transit Campus, Bijnour-Sisendi Road, Sarojini Nagar, Lucknow, Uttar Pradesh, 226002, India
| | - Avtar Singh Gautam
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Transit Campus, Bijnour-Sisendi Road, Sarojini Nagar, Lucknow, Uttar Pradesh, 226002, India
| | - Apurva Chittoda
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Transit Campus, Bijnour-Sisendi Road, Sarojini Nagar, Lucknow, Uttar Pradesh, 226002, India
| | - Aman Tiwari
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Transit Campus, Bijnour-Sisendi Road, Sarojini Nagar, Lucknow, Uttar Pradesh, 226002, India
| | - Rakesh Kumar Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Raebareli, Transit Campus, Bijnour-Sisendi Road, Sarojini Nagar, Lucknow, Uttar Pradesh, 226002, India.
| |
Collapse
|
2
|
Tata P, Ghosh A, Jamma T, Kulkarni O, Ganesan R, Ray Dutta J. Caffeic Acid-Biogenic Amine Complexes Outperform Standard Drugs in Reducing Toxicity: Insights from In Vivo Iron Chelation Studies. Mol Pharm 2025. [PMID: 40315048 DOI: 10.1021/acs.molpharmaceut.4c01424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2025]
Abstract
Iron homeostasis imbalance, caused by conditions such as thalassemia, sickle cell anemia, and myocardial infarction, often results in elevated free iron levels, leading to ferroptosis and severe organ damage. While current iron chelators like deferoxamine (DFO) and deferiprone are effective, they are associated with significant side effects, including nephrotoxicity, gastrointestinal bleeding, and liver fibrosis. This creates an urgent need for safer, natural-product-based alternatives for effective iron chelation therapy (ICT). This study investigates caffeic acid (CA)-based complexes with biogenic amines, specifically spermine (CA-Sp) and histidine (CA-His), as potential ICT candidates. Initial in vitro assays on HEK-293 cells under iron dextran (ID)-induced toxicity have demonstrated their protective effects, with CA-Sp exhibiting superior efficacy. The in vivo studies in mice have further validated their potential, showing remarkable iron chelation and toxicity mitigation compared to DFO. Inductively coupled plasma mass spectrometry (ICP-MS) reveals significant iron excretion in fecal matter in the treatment group along with reductions in serum ferritin levels. The markers of nephrotoxicity (creatinine) and liver function (ALT, AST) have also been shown to be normalized in treated groups, while immunological analyses have revealed restored levels of neutrophils, T cells, and B cells. Additionally, the inflammatory cytokines, TNF-α and IL-6, have exhibited significant reductions, with the CA-based formulations surpassing the effects of DFO. Histological analyses using Prussian blue staining have further confirmed reduced iron deposition in vital organs such as the liver, kidney, and spleen. These findings highlight CA-Sp as a particularly promising candidate for ICT, offering a safer and more effective strategy for managing iron overload and its associated complications.
Collapse
Affiliation(s)
- Pranathi Tata
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad, Telangana 500078,India
| | - Aparajita Ghosh
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad, Telangana 500078,India
| | - Trinath Jamma
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad, Telangana 500078,India
| | - Onkar Kulkarni
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad, Telangana 500078,India
| | - Ramakrishnan Ganesan
- Department of Chemistry, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad, Telangana 500078,India
| | - Jayati Ray Dutta
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Hyderabad, Telangana 500078,India
| |
Collapse
|
3
|
Matijosius T, Bakute N, Padgurskas J, Selskiene A, Zarkov A, Griguceviciene A, Kavaliauskaite J, Stirke A, Asadauskas SJ. Corrosion and Biocompatibility Studies of Bioceramic Alumina Coatings on Aluminum Alloy 6082. ACS APPLIED MATERIALS & INTERFACES 2025; 17:24901-24917. [PMID: 40249635 PMCID: PMC12051176 DOI: 10.1021/acsami.5c00532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 04/11/2025] [Accepted: 04/14/2025] [Indexed: 04/19/2025]
Abstract
Recent advances in ceramic materials, particularly porous alumina (Al2O3), have significantly enhanced the safety and efficacy of medical implants by improving biocompatibility and modulating cellular behavior for biomedical applications. Variations in the surface structure and chemical composition of porous Al2O3 promote different biological responses and coating stability, underscoring the need for further biological and corrosion research. Traditional methods for producing alumina ceramics from powder are expensive, time-consuming, and limited in their ability to create complex shapes and large structures due to the brittleness of alumina. This study evaluates the biocompatibility of bioceramic-coated aluminum (Al) alloy 6082 as a lightweight and cost-effective alternative for bone osteosynthesis plates. Al2O3 coatings were achieved through anodization using phosphoric and sulfuric acids. The untreated and anodized alloys were analyzed for chemical stability and biocompatibility and compared with medical-grade titanium alloy. All specimens exhibited excellent biocompatibility, demonstrating high adhesion and viability of the fibroblast cell line. Corrosion resistance and metal ion release were assessed in simulated body fluid, with all specimens effectively suppressing the release of Fe and toxic Al ions. The untreated Al alloy exhibited a higher release of Mn ions than the coated specimens. Notably, the bioceramic coating obtained in sulfuric acid demonstrated 3 orders of magnitude higher corrosion resistance, indicating its potential suitability for biomedical applications. By addressing the limitations of traditional alumina ceramics, our approach enables the fabrication of products in diverse sizes and shapes, offering a practical solution for creating customized biomedical implants.
Collapse
Affiliation(s)
- Tadas Matijosius
- Faculty
of Engineering, Vytautas Magnus University
(VMU), Studentu 15, Akademija, Kaunas LT 53362, Lithuania
- Department
of Chemical Engineering and Technology, State Research Institute Center for Physical Sciences and Technology, Sauletekio 3, Vilnius LT 10257, Lithuania
| | - Neringa Bakute
- Department
of Functional Materials and Electronics, State Research Institute Center for Physical Sciences and Technology, Sauletekio 3, Vilnius LT 10257, Lithuania
| | - Juozas Padgurskas
- Faculty
of Engineering, Vytautas Magnus University
(VMU), Studentu 15, Akademija, Kaunas LT 53362, Lithuania
| | - Ausra Selskiene
- Department
of Characterisation of Materials Structure, State Research Institute Center for Physical Sciences and Technology, Sauletekio 3, Vilnius LT 10257, Lithuania
| | - Aleksej Zarkov
- Institute
of Chemistry, Vilnius University, Naugarduko 24, Vilnius LT-03225, Lithuania
| | - Asta Griguceviciene
- Department
of Electrochemical Material Science, State
Research Institute Center for Physical Sciences and Technology, Sauletekio 3, Vilnius LT 10257, Lithuania
| | - Justina Kavaliauskaite
- Department
of Functional Materials and Electronics, State Research Institute Center for Physical Sciences and Technology, Sauletekio 3, Vilnius LT 10257, Lithuania
| | - Arunas Stirke
- Department
of Functional Materials and Electronics, State Research Institute Center for Physical Sciences and Technology, Sauletekio 3, Vilnius LT 10257, Lithuania
| | - Svajus Joseph Asadauskas
- Department
of Chemical Engineering and Technology, State Research Institute Center for Physical Sciences and Technology, Sauletekio 3, Vilnius LT 10257, Lithuania
| |
Collapse
|
4
|
Abdullah HA, Moawed FSM, Ahmed ESA, Abdel Hamid FF, Haroun RAH. Rutin attenuates iron overload induced-ferroptosis in rats' heart tissue. Nat Prod Res 2025:1-11. [PMID: 40257385 DOI: 10.1080/14786419.2025.2494645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 04/09/2025] [Accepted: 04/14/2025] [Indexed: 04/22/2025]
Abstract
Rutin is a natural flavonoid with antioxidant and iron chelating properties. Therefore, this study aimed to investigate the ameliorative effects of rutin against iron-overload and ionising radiation induced (IR)-ferroptosis in rats' heart tissue. Rats were divided into nine groups; control, Rutin, IR, Fe, Fe + IR, Fe + Rutin, IR+Rutin, Fe + IR+Rutin and Fe + IR+Deferasirox. Serum iron profiles total iron, TIBC, ferritin, transferrin, and hepicidin were determined. Moreover, MDA, GSH, and NO levels and GPx, and SOD activities were also determined. Levels of gene expression of GPX4, Nrf2, DMT1, ACSL4, and caspase3 genes were evaluated by using RT-qPCR. Finally, histopathological examination of rat heart tissues of different groups was done. After rutin treatment, our results revealed that TIBC, ferritin, transferrin, hepicidin, MDA&NO were significantly decreased, while GSH level and GPx&SOD activities were significantly increased. Also, rutin exerting its protective role by increasing GPX4&Nrf2 expressions and decreasing DMTN, ACSL4, and caspase3 expressions. Rutin can be proposed as a therapeutic candidate to attenuate ferroptosis.
Collapse
Affiliation(s)
- Haidy A Abdullah
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Fatma S M Moawed
- Health Radiation Research Department, National Centre for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Esraa S A Ahmed
- Radiation Biology Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Fatma F Abdel Hamid
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | | |
Collapse
|
5
|
Djidel S, Bouaziz A, Barghout N, Bentahar A, Dahamna S, Khennouf S. Phytochemical analysis, antioxidant, antihemolytic and anti-inflammatory properties of ethanolic extract of Cydonia oblonga Mill. fruit. Nat Prod Res 2025:1-9. [PMID: 40094197 DOI: 10.1080/14786419.2025.2477220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 01/27/2025] [Accepted: 03/03/2025] [Indexed: 03/19/2025]
Abstract
The aim of this study was the estimation and identification of some phenolic compounds, in vitro antioxidant, antihemolytic, and anti-inflammatory activities of ethanolic extract prepared from Cydonia oblonga Mill.fruit (QFEE). The amounts of polyphenols, flavonoids, and tannins contents were found to be 141.62 mg GAE/g of dry extract, 0.68 mg QE/g extract, and 50.73 mg TAE/g of extract, respectively. RP-HPLC analysis proved the identification of 8 compounds, including 7-hydroxyflavone as a major flavonoid. QFEE showed an interesting antioxidant activity using DPPH, hydroxyl radical, and iron chelating tests. Also, QFEE had an antihemolytic effect with an IC50 of 1.58 mg/ml. Oral administration of QFEE at doses of 200 and 600 mg/kg on rats reduced the edoema induced by carrageenan. These results suggest that quince extract is an important source of antioxidants that can contribute to the anti-inflammatory effects.
Collapse
Affiliation(s)
- Saliha Djidel
- Laboratory of Phytotherapy Applied to Chronic Diseases, Faculty of Nature and Life Sciences, University Ferhat Abbas, Setif, Algeria
| | - Amel Bouaziz
- Laboratory of Phytotherapy Applied to Chronic Diseases, Faculty of Nature and Life Sciences, University Ferhat Abbas, Setif, Algeria
| | - Nihed Barghout
- Laboratory of Phytotherapy Applied to Chronic Diseases, Faculty of Nature and Life Sciences, University Ferhat Abbas, Setif, Algeria
| | - Assia Bentahar
- Laboratory of Phytotherapy Applied to Chronic Diseases, Faculty of Nature and Life Sciences, University Ferhat Abbas, Setif, Algeria
| | - Saliha Dahamna
- Laboratory of Phytotherapy Applied to Chronic Diseases, Faculty of Nature and Life Sciences, University Ferhat Abbas, Setif, Algeria
| | - Seddik Khennouf
- Laboratory of Phytotherapy Applied to Chronic Diseases, Faculty of Nature and Life Sciences, University Ferhat Abbas, Setif, Algeria
| |
Collapse
|
6
|
Nazlić J, Gujinović D, Mudnić I, Boban Z, Dželalija AM, Tandara L, Gugo K, Radman M, Kovačić V, Boban M. Red wine consumption activates the erythropoietin-erythroferrone-hepcidin erythropoietic pathway in both apparently healthy individuals and patients with type 2 diabetes. Food Funct 2025; 16:1864-1871. [PMID: 39931951 DOI: 10.1039/d4fo04555f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
Alcohol consumption is associated with reduced expression of hepcidin, a key iron-regulatory hormone, which may lead to accumulation of iron in the body. Although polyphenols from wine may have effects on hepcidin expression and iron absorption contrary to that of alcohol, we recently showed that consumption of 300 ml of red wine for 3 weeks, after an alcohol-free lead-in period of 2 weeks, resulted in decreased serum hepcidin in apparently healthy individuals (n = 13) and subjects with type 2 diabetes (T2D) (n = 18). To determine the mechanism of decrease in hepcidin after wine intervention, additional biochemical analyses of spare serum samples from the same subjects were performed. The decrease in hepcidin was accompanied by increased erythropoietin levels in both groups, while the increase in erythroferrone reached statistical significance only in the T2D group. These results suggest activation of the erythropoietin-erythroferrone-hepcidin pathway by red wine consumption. As an indicator of the activation of the erythropoietin-erythroferrone-hepcidin pathway we observed an increase in the red cell distribution width in both groups and in the reticulocyte count in the T2D group, while serum ferritin decreased. Our study reveals a novel biological effect of wine that may be important in conditions influencing iron homeostasis and functions of hepcidin in general.
Collapse
Affiliation(s)
- Jurica Nazlić
- Department of Intensive Medicine and Clinical Pharmacology, University Hospital of Split, Šoltanska 1, Split 21000, Croatia
| | - Diana Gujinović
- Department of Pharmacology, University of Split School of Medicine, Šoltanska 2a, Split 21000, Croatia.
| | - Ivana Mudnić
- Department of Pharmacology, University of Split School of Medicine, Šoltanska 2a, Split 21000, Croatia.
| | - Zvonimir Boban
- Department of Medical Physics and Biophysics, University of Split School of Medicine, Šoltanska 2a, Split 21000, Croatia
| | - Ana Marija Dželalija
- Department of Pharmacology, University of Split School of Medicine, Šoltanska 2a, Split 21000, Croatia.
| | - Leida Tandara
- Department of Medical Laboratory Diagnostics, University Hospital of Split, Spinčićeva 1 and University of Split School of Medicine, Šoltanska 2a, Split 21000, Croatia
| | - Katarina Gugo
- Department of Medical Laboratory Diagnostics, University Hospital of Split, Spinčićeva 1 and University of Split School of Medicine, Šoltanska 2a, Split 21000, Croatia
| | - Maja Radman
- Department of Endocrinology, Diabetes and Metabolic Diseases, University Hospital of Split, Šoltanska 1, Split 21000, Croatia
| | - Vedran Kovačić
- Department of Intensive Medicine and Clinical Pharmacology, University Hospital of Split, Šoltanska 1, Split 21000, Croatia
| | - Mladen Boban
- Department of Pharmacology, University of Split School of Medicine, Šoltanska 2a, Split 21000, Croatia.
| |
Collapse
|
7
|
Kalu A, Ray SK. Epigallocatechin-3-Gallate, Quercetin, and Kaempferol for Treatment of Parkinson's Disease Through Prevention of Gut Dysbiosis and Attenuation of Multiple Molecular Mechanisms of Pathogenesis. Brain Sci 2025; 15:144. [PMID: 40002477 PMCID: PMC11853474 DOI: 10.3390/brainsci15020144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/23/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative condition in which degeneration mostly occurs in the dopamine (DA)-producing neurons within the substantia nigra in the midbrain. As a result, individuals with this condition suffer from progressively worsening motor impairment because of the resulting DA deficiency, along with an array of other symptoms that, over time, force them into a completely debilitating state. As an age-related disease, PD has only risen in prevalence over the years; thus, an emphasis has recently been placed on discovering a new treatment for this condition that is capable of attenuating its progression. The gut microbiota has become an area of intrigue among PD studies, as research into this topic has shown that imbalances in the gut microbiota (colloquially known as gut dysbiosis) seemingly promote the primary etiologic factors that have been found to be associated with PD and its pathologic progression. With this knowledge, research into PD treatment has begun to expand beyond synthetic pharmaceutical compounds, as a growing emphasis has been placed on studying plant-derived polyphenolic compounds, namely flavonoids, as a new potential therapeutic approach. Due to their capacity to promote a state of homeostasis in the gut microbiota and their long-standing history as powerful medicinal agents, flavonoids have begun to be looked at as promising therapeutic agents capable of attenuating several of the pathologic states seen amidst PD through indirect and direct means. This review article focuses on three flavonoids, specifically epigallocatechin-3-gallate, quercetin, and kaempferol, discussing the mechanisms through which these powerful flavonoids can potentially prevent gut dysbiosis, neuroinflammation, and other molecular mechanisms involved in the pathogenesis and progression of PD, while also exploring their real-world application and how issues of bioavailability and potential drug interactions can be circumvented or exploited.
Collapse
Affiliation(s)
| | - Swapan K. Ray
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, 6439 Garners Ferry Road, Columbia, SC 29209, USA;
| |
Collapse
|
8
|
Sarmento T, Ferreira RS, Franco OL. Plant-Based Diet and Sports Performance. ACS OMEGA 2024; 9:47939-47950. [PMID: 39676988 PMCID: PMC11635497 DOI: 10.1021/acsomega.4c07560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 10/22/2024] [Accepted: 10/25/2024] [Indexed: 12/17/2024]
Abstract
Recently, interest in plant-based diets has grown significantly, driven by health and environmental concerns. Plant-based diets offer potential health benefits, including decreased risk of cardiovascular disease, weight management, and blood glucose regulation. This diet profile is rich in complex carbohydrates, antioxidants, dietary fiber, and phytochemicals. However, antinutrients in some plant foods can make nutrient absorption difficult, necessitating careful dietary planning. Plant-based diets can also improve sports performance; in addition, they can positively influence the intestinal microbial community, which can promote health and performance. The present study covered a review from 1986 to 2024 and involved an experimental design with human participants. The main objective was to evaluate the impact of plant-based diets on sports performance. Recent research suggests that plant-based diets do not harm athletic performance and may positively impact sports performance by improving blood flow and reducing oxidative stress. These findings have potential clinical significance, particularly for athletes seeking to optimize their physical capabilities through dietary interventions.
Collapse
Affiliation(s)
- Tatiana
Cantarella Sarmento
- S-Inova
Biotech Postgraduate in Biotechnology, Catholic
University Dom Bosco (UCDB), Campo
Grande 79117-900, Brazil
| | | | - Octávio Luiz Franco
- S-Inova
Biotech Postgraduate in Biotechnology, Catholic
University Dom Bosco (UCDB), Campo
Grande 79117-900, Brazil
- Center
for Proteomic and Biochemical Analysis, Postgraduate Program in Genomic
Sciences and Biotechnology, Catholic University
of Brasilia (UCB), Brasilia 70990-160, Brazil
| |
Collapse
|
9
|
Tian M, Huang X, Li M, Lou P, Ma H, Jiang X, Zhou Y, Liu Y. Ferroptosis in diabetic cardiomyopathy: from its mechanisms to therapeutic strategies. Front Endocrinol (Lausanne) 2024; 15:1421838. [PMID: 39588340 PMCID: PMC11586197 DOI: 10.3389/fendo.2024.1421838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/15/2024] [Indexed: 11/27/2024] Open
Abstract
Diabetic cardiomyopathy (DCM) is defined as structural and functional cardiac abnormalities in diabetes, and cardiomyocyte death is the terminal event of DCM. Ferroptosis is iron-dependent oxidative cell death. Evidence has indicated that iron overload and ferroptosis play important roles in the pathogenesis of DCM. Mitochondria, an important organelle in iron homeostasis and ROS production, play a crucial role in cardiomyocyte ferroptosis in diabetes. Studies have shown some anti-diabetic medicines, plant extracts, and ferroptosis inhibitors might improve DCM by alleviating ferroptosis. In this review, we systematically reviewed the evidence of ferroptosis in DCM. Anti-ferroptosis might be a promising therapeutic strategy for the treatment of DCM.
Collapse
Affiliation(s)
- Meimei Tian
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xinli Huang
- Department of Pathophysiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Min Li
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Pingping Lou
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Huijie Ma
- Department of Physiology, Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Shijiazhuang, China
| | - Xinli Jiang
- Department of Ophthalmology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yaru Zhou
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yan Liu
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
10
|
Han H, Zhang G, Zhang X, Zhao Q. Nrf2-mediated ferroptosis inhibition: a novel approach for managing inflammatory diseases. Inflammopharmacology 2024; 32:2961-2986. [PMID: 39126567 DOI: 10.1007/s10787-024-01519-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 06/28/2024] [Indexed: 08/12/2024]
Abstract
Inflammatory diseases, including psoriasis, atherosclerosis, rheumatoid arthritis, and ulcerative colitis, are characterized by persistent inflammation. Moreover, the existing treatments for inflammatory diseases only provide temporary relief by controlling symptoms, and treatments of unstable and expensive. Therefore, new therapeutic solutions are urgently needed to address the underlying causes or symptoms of inflammatory diseases. Inflammation frequently coincides with a high level of (reactive oxygen species) ROS activation, serving as a fundamental element in numerous physiological and pathological phenotypes that can result in serious harm to the organism. Given its pivotal role in inflammation, oxidative stress, and ferroptosis, ROS represents a focal node for investigating the (nuclear factor E2-related factor 2) Nrf2 pathway and ferroptosis, both of which are intricately linked to ROS. Ferroptosis is mainly triggered by oxidative stress and involves iron-dependent lipid peroxidation. The transcription factor Nrf2 targets several genes within the ferroptosis pathway. Recent studies have shown that Nrf2 plays a significant role in three key ferroptosis-related routes, including the synthesis and metabolism of glutathione/glutathione peroxidase 4, iron metabolism, and lipid processes. As a result, ferroptosis-related treatments for inflammatory diseases have attracted much attention. Moreover, drugs targeting Nrf2 can be used to manage inflammatory conditions. This review aimed to assess ferroptosis regulation mechanism and the role of Nrf2 in ferroptosis inhibition. Therefore, this review article may provide the basis for more research regarding the treatment of inflammatory diseases through Nrf2-inhibited ferroptosis.
Collapse
Affiliation(s)
- Hang Han
- College of Pharmacy, Chongqing Medical University, Chongqing, Chongqing, 400016, China
| | - Guojiang Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing, Chongqing, 400016, China
| | - Xiao Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing, Chongqing, 400016, China.
| | - Qinjian Zhao
- College of Pharmacy, Chongqing Medical University, Chongqing, Chongqing, 400016, China.
| |
Collapse
|
11
|
Menezes L, Sampaio RMSN, Meurer L, Szpoganicz B, Cervo R, Cargnelutti R, Wang L, Yang J, Prabhakar R, Fernandes C, Horn A. A Multipurpose Metallophore and Its Copper Complexes with Diverse Catalytic Antioxidant Properties to Deal with Metal and Oxidative Stress Disorders: A Combined Experimental, Theoretical, and In Vitro Study. Inorg Chem 2024; 63:14827-14850. [PMID: 39078252 PMCID: PMC11323273 DOI: 10.1021/acs.inorgchem.4c00232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024]
Abstract
We report the discovery that the molecule 1-(pyridin-2-ylmethylamino)propan-2-ol (HL) can reduce oxidative stress in neuronal C6 glioma cells exposed to reactive oxygen species (O2-•, H2O2, and •OH) and metal (Cu+) stress conditions. Furthermore, its association with Cu2+ generates [Cu(HL)Cl2] (1) and [Cu(HL)2](ClO4)2 (2) complexes that also exhibit antioxidant properties. Potentiometric titration data show that HL can coordinate to Cu2+ in 1:1 and 1:2 Cu2+:ligand ratios, which was confirmed by monocrystal X-ray studies. The subsequent ultraviolet-visible, electrospray ionization mass spectrometry, and electron paramagnetic resonance experiments show that they can decompose a variety of reactive oxygen species (ROS). Kinetic studies revealed that 1 and 2 mimic the superoxide dismutase and catalase activities. Complex 1 promotes the fastest decomposition of H2O2 (kobs = 2.32 × 107 M-1 s-1), efficiently dismutases the superoxide anion (kcat = 3.08 × 107 M-1 s-1), and scavenges the hydroxyl radical (RSA50 = 25.7 × 10-6 M). Density functional theory calculations support the formation of dinuclear Cu-peroxide and mononuclear Cu-superoxide species in the reactions of [Cu(HL)Cl2] with H2O2 and O2•-, respectively. Furthermore, both 1 and 2 also reduce the oxidative stress of neuronal glioma C6 cells exposed to different ROS, including O2•- and •OH.
Collapse
Affiliation(s)
- Lucas
B. Menezes
- Departamento
de Química, Universidade Federal
de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Raquel M. S. N. Sampaio
- Laboratório
de Ciências Químicas, Universidade
Estadual do Norte Fluminense Darcy Ribeiro, 28013-602 Campos dos Goytacazes, RJ, Brazil
| | - Lino Meurer
- Departamento
de Química, Universidade Federal
de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Bruno Szpoganicz
- Departamento
de Química, Universidade Federal
de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Rodrigo Cervo
- Departamento
de Química, Universidade Federal
de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Roberta Cargnelutti
- Departamento
de Química, Universidade Federal
de Santa Maria, 97105-900 Santa Maria, RS, Brazil
| | - Lukun Wang
- Department
of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Jiawen Yang
- Department
of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Rajeev Prabhakar
- Department
of Chemistry, University of Miami, Coral Gables, Florida 33146, United States
| | - Christiane Fernandes
- Departamento
de Química, Universidade Federal
de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| | - Adolfo Horn
- Departamento
de Química, Universidade Federal
de Santa Catarina, 88040-900 Florianópolis, SC, Brazil
| |
Collapse
|
12
|
Gamaleldin MM, Abraham IL, Meabed MH, Elberry AA, Abdelhalim SM, Mahmoud Hussein AF, Hussein RR. Manuka combinations with nigella sativa and hydroxyurea in treating iron overload of pediatric β-thalassemia major, randomized clinical trial. Heliyon 2024; 10:e33707. [PMID: 39044986 PMCID: PMC11263651 DOI: 10.1016/j.heliyon.2024.e33707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND β-thalassemia major is microcytic hypochromic anemia disorder inherited from parents, resulting from a mutation in the β-globin locus. As a result, a quantitative defective hemoglobin synthesis and relative excess in α-globin is occurred. As such, frequent blood transfusion is required, that leads to iron overload. Iron overload results in several pathological complications, including cell death, tissue injury, organ dysfunction, and liver fibrosis. The present study examined the effectiveness of nigella Sativa and manuka honey combination or manuka honey alone to the conventional therapy (Deferasirox + blood transfusion) used for preventing and managing iron overload in pediatric β-thalassemia major patients. METHODS One hundred sixty-five patients participated in this randomized, double-blind, standard therapy-controlled, parallel-design multisite trial. The patients were randomly allocated into three groups, receiving either 500 mg nigella sativa oil combined with manuka honey lozenge (344 mg) daily or manuka honey alone plus the conventional therapy for ten treatment months. Ferritin level, serum iron, transferrin saturation, total iron binding capacity, alanine transaminase, and aspartate transaminase were determined at baseline and month 10. RESULTS Eventually, serum ferritin and iron were decreased significantly in the nigella sativa + manuka honey group as compared with the control group. Other clinical parameters were significantly impacted. The level of alanine transaminase and aspartate transaminase were significantly decreased in the nigella sativa plus manuka honey group compared with the control group. CONCLUSION Results showed that nigella sativa plus manuka honey was more effective than manuka alone or the conventional treatment alone in managing iron overload of β-thalassemia major patients.
Collapse
Affiliation(s)
- Mohamed M. Gamaleldin
- Department of Clinical Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
- Department of Pharmacy Practice & Science, R. K. Coit College of Pharmacy, University of Arizona, Tucson, AZ, USA
- Department of Pharmaceutical Sciences (Pharm-D Program), Fakeeh College for Medical Sciences, Jeddah, Saudi Arabia
| | - Ivo L. Abraham
- Department of Pharmacy Practice & Science, R. K. Coit College of Pharmacy, University of Arizona, Tucson, AZ, USA
- Department of Family and Community Medicine, College of Medicine, University of Arizona, Tucson, AZ, USA
- Clinical Translational Sciences, University of Arizona Health Sciences, Arizona, USA
| | | | - Ahmed A. Elberry
- Department of Clinical Pharmacology, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
- Department of Pharmacy Practice, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
| | - Shaimaa M. Abdelhalim
- Department of Pharmaceutical Sciences (Pharm-D Program), Fakeeh College for Medical Sciences, Jeddah, Saudi Arabia
| | | | - Raghda R.S. Hussein
- Department of Clinical Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
13
|
Kostić AŽ, Arserim-Uçar DK, Materska M, Sawicka B, Skiba D, Milinčić DD, Pešić MB, Pszczółkowski P, Moradi D, Ziarati P, Bienia B, Barbaś P, Sudagıdan M, Kaur P, Sharifi-Rad J. Unlocking Quercetin's Neuroprotective Potential: A Focus on Bee-Collected Pollen. Chem Biodivers 2024; 21:e202400114. [PMID: 38386539 DOI: 10.1002/cbdv.202400114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 02/24/2024]
Abstract
In the quest to evade side effects associated with synthetic drugs, mankind is continually exploring natural sources. In recent decades, neurodegenerative disorders (NDDs) have surged dramatically compared to other human diseases. Flavonoids, naturally occurring compounds, have emerged as potential preventers of NDD development. Notably, quercetin and its derivatives demonstrated excellent antioxidant properties in the fight against NDDs. Recognizing bee-collected pollen (BP) as a well-established excellent source of quercetin and its derivatives, this review seeks to consolidate available data on the prevalence of this flavonoid in BP, contingent upon its botanical and geographical origins. It aims to advocate for BP as a superb natural source of "drugs" that could serve as preventative measures against NDDs. Examination of numerous published articles, detailing the phenolic profile of BP, suggests that it can be a great source of quercetin, with an average range of up to 1000 mg/kg. In addition to quercetin, 24 derivatives (with rutin being the most predominant) have been identified. Theoretical calculations, based on the recommended dietary intake for quercetin, indicate that BP can fulfil from 0.1 to over 100 % of the requirement, depending on BP's origin and bioaccessibility/bioavailability during digestion.
Collapse
Affiliation(s)
- Aleksandar Ž Kostić
- Chair of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080, Belgrade
| | - Dılhun Keriman Arserim-Uçar
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Bingöl University, Bingöl, 12000, Türkiye
| | - Małgorzata Materska
- Department of Chemistry, Faculty of Food Science and Biotechnology, University of Life Sciences in Lublin, Akademicka 15 Street, 20-950, Lublin, Poland
| | - Barbara Sawicka
- Department of Plant Production Technology and Commodities Science, University of Life Sciences in Lublin, 20-950, Lublin, Poland
| | - Dominika Skiba
- Department of Plant Production Technology and Commodities Science, University of Life Sciences in Lublin, 20-950, Lublin, Poland
| | - Danijel D Milinčić
- Chair of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080, Belgrade
| | - Mirjana B Pešić
- Chair of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080, Belgrade
| | - Piotr Pszczółkowski
- Experimental Department of Cultivar Assessment, Research Centre for Cultivar Testing, Uhnin, 21-211, Dębowa Kłoda, Poland
| | - Donya Moradi
- Nutrition and Food Sciences Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Parisa Ziarati
- Department of Medicinal Chemistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Bernadetta Bienia
- Food Production and Safety Department, National Academy of Applied Sciences, Rynek 1 str., 38-400, Krosno, Poland
| | - Piotr Barbaś
- Department Agronomy of Potato, Plant Breeding and Acclimatization Institute - National Research Institute, Branch Jadwisin, 05-140, Serock, Poland
| | - Mert Sudagıdan
- Kit-ARGEM R&D Center, Konya Food and Agriculture University, Meram, 42080, Konya, Türkiye
| | - Preetinder Kaur
- Department of Processing and Food Engineering, College of Agricultural Engineering and Technology, Punjab Agricultural University, Ludhiana, 141004, Punjab
| | - Javad Sharifi-Rad
- Facultad de Medicina, Universidad del Azuay, 14-008, Cuenca, Ecuador
| |
Collapse
|
14
|
Chen G, Luo S, Guo H, Lin J, Xu S. Licochalcone A alleviates ferroptosis in doxorubicin-induced cardiotoxicity via the PI3K/AKT/MDM2/p53 pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4247-4262. [PMID: 38078919 DOI: 10.1007/s00210-023-02863-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/19/2023] [Indexed: 05/23/2024]
Abstract
Licochalcone A (Lico A), a flavonoid found in licorice, possesses multiple pharmacological activities in modulating oxidative stress, glycemia, inflammation, and lipid metabolism. This study aimed to explore the potential mechanism of Lico A in mitigating ferroptosis associated with doxorubicin-induced cardiotoxicity (DIC). Initially, network pharmacology analysis was applied to identify the active components present in licorice and their targeted genes associated with DIC. Subsequently, to assess the role of Lico A in a DIC mouse model, electrocardiograms, myocardial injury markers, and myocardial histopathological changes were measured. Additionally, cell viability, reactive oxygen species (ROS), ferrous iron, glutathione/glutathione disulfide (GSH/GSSG), and malondialdehyde (MDA) were measured in the cell model as hallmarks of ferroptosis. Finally, the PI3K/AKT/MDM2/p53 signaling pathway and ferroptosis-related proteins were measured in vitro and in vivo. Bioinformatics results revealed that 8 major compounds of licorice, including Lico A, primarily regulated targets such as p53 and the PI3K/AKT signaling pathways in DIC. In the mouse model of DIC, Lico A significantly ameliorated serum biomarkers, histopathology, and electrocardiogram abnormalities. Pretreatment with Lico A enhanced the viability of H9C2 cells treated with doxorubicin. Furthermore, Lico A administration resulted in decreased levels of ROS, ferrous iron, and MDA and increased levels of GSH/GSSG. At the protein level, Lico A increased the phosphorylation of PI3K/AKT/MDM2, reduced p53 accumulation, and induced the upregulation of SLC7A11 and GPX4 expression. However, selective inhibition of PI3K/AKT and plasmid-based overexpression of p53 significantly abolished the anti-ferroptosis functions of Lico A. In conclusion, Lico A attenuates DIC by suppressing p53-mediated ferroptosis through activating PI3K/AKT/MDM2 signaling.
Collapse
Affiliation(s)
- Ganxiao Chen
- Department of Cardiology, Affiliated Nanping First Hospital, Fujian Medical University, Nanping, Fujian, China
| | - Shunxiang Luo
- Department of Cardiology, Affiliated Nanping First Hospital, Fujian Medical University, Nanping, Fujian, China
| | - Hongdou Guo
- Department of Cardiology, Affiliated Nanping First Hospital, Fujian Medical University, Nanping, Fujian, China
| | - Jiayi Lin
- Department of Cardiology, Affiliated Nanping First Hospital, Fujian Medical University, Nanping, Fujian, China
| | - Shanghua Xu
- Department of Cardiology, Affiliated Nanping First Hospital, Fujian Medical University, Nanping, Fujian, China.
| |
Collapse
|
15
|
Lv H, Qian D, Xu S, Fan G, Qian Q, Cha D, Qian X, Zhou G, Lu B. Modulation of long noncoding RNAs by polyphenols as a novel potential therapeutic approach in lung cancer: A comprehensive review. Phytother Res 2024; 38:3240-3267. [PMID: 38739454 DOI: 10.1002/ptr.8202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/10/2024] [Accepted: 03/19/2024] [Indexed: 05/16/2024]
Abstract
Lung cancer stands as a formidable global health challenge, necessitating innovative therapeutic strategies. Polyphenols, bioactive compounds synthesized by plants, have garnered attention for their diverse health benefits, particularly in combating various cancers, including lung cancer. The advent of whole-genome and transcriptome sequencing technologies has illuminated the pivotal roles of long noncoding RNAs (lncRNAs), operating at epigenetic, transcriptional, and posttranscriptional levels, in cancer progression. This review comprehensively explores the impact of polyphenols on both oncogenic and tumor-suppressive lncRNAs in lung cancer, elucidating on their intricate regulatory mechanisms. The comprehensive examination extends to the potential synergies when combining polyphenols with conventional treatments like chemotherapy, radiation, and immunotherapy. Recognizing the heterogeneity of lung cancer subtypes, the review emphasizes the need for the integration of nanotechnology for optimized polyphenol delivery and personalized therapeutic approaches. In conclusion, we collect the latest research, offering a holistic overview of the evolving landscape of polyphenol-mediated modulation of lncRNAs in lung cancer therapy. The integration of polyphenols and lncRNAs into multidimensional treatment strategies holds promise for enhancing therapeutic efficacy and navigating the challenges associated with lung cancer treatment.
Collapse
Affiliation(s)
- Hong Lv
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Taicang, China
| | - Dawei Qian
- Department of Thoracic Surgery, Tongling Yi'an District People's Hospital, Tongling, China
| | - Shuhua Xu
- Department of Cardiothoracic Surgery, Dongtai Hospital of Traditional Chinese Medicine, Dongtai, China
| | - Guiqin Fan
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Taicang, China
| | - Qiuhong Qian
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Taicang, China
| | - Dongsheng Cha
- Department of Thoracic Surgery, Tongling Yi'an District People's Hospital, Tongling, China
| | - Xingjia Qian
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Taicang, China
| | - Guoping Zhou
- Department of Cardiothoracic Surgery, Dongtai Hospital of Traditional Chinese Medicine, Dongtai, China
| | - Bing Lu
- Department of Pulmonary and Critical Care Medicine, Taicang TCM Hospital, Taicang, China
| |
Collapse
|
16
|
Xiong F, Zhang Y, Li T, Tang Y, Song SY, Zhou Q, Wang Y. A detailed overview of quercetin: implications for cell death and liver fibrosis mechanisms. Front Pharmacol 2024; 15:1389179. [PMID: 38855739 PMCID: PMC11157233 DOI: 10.3389/fphar.2024.1389179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/29/2024] [Indexed: 06/11/2024] Open
Abstract
Background Quercetin, a widespread polyphenolic flavonoid, is known for its extensive health benefits and is commonly found in the plant kingdom. The natural occurrence and extraction methods of quercetin are crucial due to its bioactive potential. Purpose This review aims to comprehensively cover the natural sources of quercetin, its extraction methods, bioavailability, pharmacokinetics, and its role in various cell death pathways and liver fibrosis. Methods A comprehensive literature search was performed across several electronic databases, including PubMed, Embase, CNKI, Wanfang database, and ClinicalTrials.gov, up to 10 February 2024. The search terms employed were "quercetin", "natural sources of quercetin", "quercetin extraction methods", "bioavailability of quercetin", "pharmacokinetics of quercetin", "cell death pathways", "apoptosis", "autophagy", "pyroptosis", "necroptosis", "ferroptosis", "cuproptosis", "liver fibrosis", and "hepatic stellate cells". These keywords were interconnected using AND/OR as necessary. The search focused on studies that detailed the bioavailability and pharmacokinetics of quercetin, its role in different cell death pathways, and its effects on liver fibrosis. Results This review details quercetin's involvement in various cell death pathways, including apoptosis, autophagy, pyroptosis, necroptosis, ferroptosis, and cuproptosis, with particular attention to its regulatory influence on apoptosis and autophagy. It dissects the mechanisms through which quercetin affects these pathways across different cell types and dosages. Moreover, the paper delves into quercetin's effects on liver fibrosis, its interactions with hepatic stellate cells, and its modulation of pertinent signaling cascades. Additionally, it articulates from a physical organic chemistry standpoint the uniqueness of quercetin's structure and its potential for specific actions in the liver. Conclusion The paper provides a detailed analysis of quercetin, suggesting its significant role in modulating cell death mechanisms and mitigating liver fibrosis, underscoring its therapeutic potential.
Collapse
Affiliation(s)
- Fei Xiong
- Department of Gastroenterology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, Chengdu, China
| | - Yichen Zhang
- Department of Rheumatology and Immunology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Ting Li
- Department of Rheumatology, Wenjiang District People’s Hospital, Chengdu, China
| | - Yiping Tang
- Department of Rheumatology and Immunology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Si-Yuan Song
- Baylor College of Medicine, Houston, TX, United States
| | - Qiao Zhou
- Department of Rheumatology and Immunology, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Yi Wang
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
17
|
Berger S, Oesterle I, Ayeni KI, Ezekiel CN, Rompel A, Warth B. Polyphenol exposure of mothers and infants assessed by LC-MS/MS based biomonitoring in breast milk. Anal Bioanal Chem 2024; 416:1759-1774. [PMID: 38363307 PMCID: PMC10899372 DOI: 10.1007/s00216-024-05179-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/24/2024] [Accepted: 01/24/2024] [Indexed: 02/17/2024]
Abstract
Exposure to polyphenols is relevant throughout critical windows of infant development, including the breastfeeding phase. However, the quantitative assessment of polyphenols in human breast milk has received limited attention so far, though polyphenols may positively influence infant health. Therefore, a targeted LC-MS/MS assay was developed to investigate 86 analytes representing different polyphenol classes in human breast milk. The sample preparation consisted of liquid extraction, salting out, freeze-out, and a dilution step. Overall, nearly 70% of the chemically diverse polyphenols fulfilled all strict validation criteria for full quantitative assessment. The remaining analytes did not fulfill all criteria at every concentration level, but can still provide useful semi-quantitative insights into nutritional and biomedical research questions. The limits of detection for all analyzed polyphenols were in the range of 0.0041-87 ng*mL-1, with a median of 0.17 ng*mL-1. Moreover, the mean recovery was determined to be 82% and the mean signal suppression and enhancement effect was 117%. The developed assay was applied in a proof-of-principle study to investigate polyphenols in breast milk samples provided by twelve Nigerian mothers at three distinct time points post-delivery. In total, 50 polyphenol analytes were detected with almost half being phenolic acids. Phase II metabolites, including genistein-7-β-D-glucuronide, genistein-7-sulfate, and daidzein-7-β-D-glucuronide, were also detected in several samples. In conclusion, the developed method was demonstrated to be fit-for-purpose to simultaneously (semi-) quantify a wide variety of polyphenols in breast milk. It also demonstrated that various polyphenols including their biotransformation products were present in breast milk and therefore likely transferred to infants where they might impact microbiome development and infant health.
Collapse
Affiliation(s)
- Sabrina Berger
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, 1090, Vienna, Austria
| | - Ian Oesterle
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, 1090, Vienna, Austria
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, 1090, Wien, Austria
- Vienna Doctoral School of Chemistry (DoSChem), University of Vienna, 1090, Vienna, Austria
| | - Kolawole I Ayeni
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, 1090, Vienna, Austria
- Department of Microbiology, Babcock University, Ilishan-Remo, Ogun State, Nigeria
| | - Chibundu N Ezekiel
- Institute for Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz Str. 20, 3430, Tulln, Austria
| | - Annette Rompel
- Universität Wien, Fakultät für Chemie, Institut für Biophysikalische Chemie, 1090, Wien, Austria
| | - Benedikt Warth
- Department of Food Chemistry and Toxicology, Faculty of Chemistry, University of Vienna, 1090, Vienna, Austria.
- Exposome Austria, Research Infrastructure and National EIRENE Node, Vienna, Austria.
| |
Collapse
|
18
|
Roth-Walter F, Berni Canani R, O'Mahony L, Peroni D, Sokolowska M, Vassilopoulou E, Venter C. Nutrition in chronic inflammatory conditions: Bypassing the mucosal block for micronutrients. Allergy 2024; 79:353-383. [PMID: 38084827 DOI: 10.1111/all.15972] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/14/2023] [Accepted: 11/27/2023] [Indexed: 02/01/2024]
Abstract
Nutritional Immunity is one of the most ancient innate immune responses, during which the body can restrict nutrients availability to pathogens and restricts their uptake by the gut mucosa (mucosal block). Though this can be a beneficial strategy during infection, it also is associated with non-communicable diseases-where the pathogen is missing; leading to increased morbidity and mortality as micronutritional uptake and distribution in the body is hindered. Here, we discuss the acute immune response in respect to nutrients, the opposing nutritional demands of regulatory and inflammatory cells and particularly focus on some nutrients linked with inflammation such as iron, vitamins A, Bs, C, and other antioxidants. We propose that while the absorption of certain micronutrients is hindered during inflammation, the dietary lymph path remains available. As such, several clinical trials investigated the role of the lymphatic system during protein absorption, following a ketogenic diet and an increased intake of antioxidants, vitamins, and minerals, in reducing inflammation and ameliorating disease.
Collapse
Affiliation(s)
- Franziska Roth-Walter
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Vienna, Austria
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Roberto Berni Canani
- Department of Translational Medical Science and ImmunoNutritionLab at CEINGE-Advanced Biotechnologies, University of Naples "Federico II", Naples, Italy
| | - Liam O'Mahony
- Department of Medicine, School of Microbiology, APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Diego Peroni
- Section of Paediatrics, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zürich, Davos, Switzerland
- Christine Kühne - Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Emilia Vassilopoulou
- Pediatric Area, Fondazione IRCCS Ca' Granda-Ospedale Maggiore Policlinico, Milan, Italy
- Department of Nutritional Sciences and Dietetics, International Hellenic University, Thessaloniki, Greece
| | - Carina Venter
- Children's Hospital Colorado, University of Colorado, Aurora, Colorado, USA
| |
Collapse
|
19
|
Rispo F, De Negri Atanasio G, Demori I, Costa G, Marchese E, Perera-Del-Rosario S, Serrano-Candelas E, Palomino-Schätzlein M, Perata E, Robino F, Ferrari PF, Ferrando S, Letasiova S, Markus J, Zanotti-Russo M, Grasselli E. An extensive review on phenolic compounds and their potential estrogenic properties on skin physiology. Front Cell Dev Biol 2024; 11:1305835. [PMID: 38250328 PMCID: PMC10798251 DOI: 10.3389/fcell.2023.1305835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 12/07/2023] [Indexed: 01/23/2024] Open
Abstract
Polyphenolic compounds constitute a diverse group of natural components commonly occurring in various plant species, known for their potential to exert both beneficial and detrimental effects. Additionally, these polyphenols have also been implicated as endocrine-disrupting (ED) chemicals, raising concerns about their widespread use in the cosmetics industry. In this comprehensive review, we focus on the body of literature pertaining to the estrogenic properties of ED chemicals, with a particular emphasis on the interaction of isoflavones with estrogen receptors. Within this review, we aim to elucidate the multifaceted roles and effects of polyphenols on the skin, exploring their potential benefits as well as their capacity to act as ED agents. By delving into this intricate subject matter, we intend to provoke thoughtful consideration, effectively opening a Pandora's box of questions for the reader to ponder. Ultimately, we invite the reader to contemplate whether polyphenols should be regarded as friends or foes in the realm of skincare and endocrine disruption.
Collapse
Affiliation(s)
- Francesca Rispo
- Department of Earth, Environment and Life Science, University of Genoa, Genova, Italy
| | | | - Ilaria Demori
- Department of Pharmacy, University of Genoa, Genova, Italy
| | - Giosuè Costa
- Department of Health Sciences, University "Magna Graecia", Catanzaro, Italy
| | - Emanuela Marchese
- Department of Health Sciences, University "Magna Graecia", Catanzaro, Italy
| | - Simón Perera-Del-Rosario
- ProtoQSAR SL, Centro Europeo de Empresas Innovadoras (CEEI), Parque Tecnológico de Valencia, Valencia, Spain
- Departament de Medicina i Ciències de la Vida, Institut de Biologia Evolutiva (CSIC-UPF), Universitat Pompeu Fabra, Barcelona, Spain
| | - Eva Serrano-Candelas
- ProtoQSAR SL, Centro Europeo de Empresas Innovadoras (CEEI), Parque Tecnológico de Valencia, Valencia, Spain
| | | | | | | | - Pier Francesco Ferrari
- Department of Civil, Chemical and Environmental Engineering, University of Genoa, Genova, Italy
| | - Sara Ferrando
- Department of Earth, Environment and Life Science, University of Genoa, Genova, Italy
| | | | - Jan Markus
- MatTek In Vitro Life Science Laboratories, Bratislava, Slovakia
| | | | - Elena Grasselli
- Department of Earth, Environment and Life Science, University of Genoa, Genova, Italy
- Interuniversity Center for the Promotion of 3R Principles in Teaching and Research (Centro 3R), Pisa, Italy
- National Center for the Development of New Technologies in Agriculture (Agritech), Napoli, Italy
| |
Collapse
|
20
|
Lim L, Kang J, Song J. Extreme diversity of 12 cations in folding ALS-linked hSOD1 unveils novel hSOD1-dependent mechanisms for Fe 2+/Cu 2+-induced cytotoxicity. Sci Rep 2023; 13:19868. [PMID: 37964005 PMCID: PMC10645853 DOI: 10.1038/s41598-023-47338-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/12/2023] [Indexed: 11/16/2023] Open
Abstract
153-Residue copper-zinc superoxide dismutase 1 (hSOD1) is the first gene whose mutation was linked to FALS. To date, > 180 ALS-causing mutations have been identified within hSOD1, yet the underlying mechanism still remains mysterious. Mature hSOD1 is exceptionally stable constrained by a disulfide bridge to adopt a Greek-key β-barrel fold that accommodates copper/zinc cofactors. Conversely, nascent hSOD1 is unfolded and susceptible to aggregation and amyloid formation, requiring Zn2+ to initiate folding to a coexistence of folded and unfolded states. Recent studies demonstrate mutations that disrupt Zn2+-binding correlate with their ability to form toxic aggregates. Therefore, to decode the role of cations in hSOD1 folding provides not only mechanistic insights, but may bear therapeutic implications for hSOD1-linked ALS. Here by NMR, we visualized the effect of 12 cations: 8 essential for humans (Na+, K+, Ca2+, Zn2+, Mg2+, Mn2+, Cu2+, Fe2+), 3 mimicking zinc (Ni2+, Cd2+, Co2+), and environmentally abundant Al3+. Surprisingly, most cations, including Zn2+-mimics, showed negligible binding or induction for folding of nascent hSOD1. Cu2+ exhibited extensive binding to the unfolded state but led to severe aggregation. Unexpectedly, for the first time Fe2+ was deciphered to have Zn2+-like folding-inducing capacity. Zn2+ was unable to induce folding of H80S/D83S-hSOD1, while Fe2+ could. In contrast, Zn2+ could trigger folding of G93A-hSOD1, but Fe2+ failed. Notably, pre-existing Fe2+ disrupted the Zn2+-induced folding of G93A-hSOD1. Comparing with the ATP-induced folded state, our findings delineate that hSOD1 maturation requires: (1) intrinsic folding capacity encoded by the sequence; (2) specific Zn2+-coordination; (3) disulfide formation and Cu-load catalyzed by hCCS. This study unveils a previously-unknown interplay of cations in governing the initial folding of hSOD1, emphasizing the pivotal role of Zn2+ in hSOD1-related ALS and implying new hSOD1-dependent mechanisms for Cu2+/Fe2+-induced cytotoxicity, likely relevant to aging and other diseases.
Collapse
Affiliation(s)
- Liangzhong Lim
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 119260, Republic of Singapore
| | - Jian Kang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 119260, Republic of Singapore
| | - Jianxing Song
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, 119260, Republic of Singapore.
| |
Collapse
|
21
|
Mithila M, Islam MR, Khatun MR, Gazi MS, Hossain SJ. Sonneratia apetala (Buch.-Ham.) Fruit Extracts Ameliorate Iron Overload and Iron-Induced Oxidative Stress in Mice. Prev Nutr Food Sci 2023; 28:278-284. [PMID: 37842250 PMCID: PMC10567606 DOI: 10.3746/pnf.2023.28.3.278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 10/17/2023] Open
Abstract
Iron overload results in oxidative damage to various biomolecules including DNA, proteins and lipids which ultimately leads to cell death. The Sonneratia apetala fruit contains a high content of antioxidants and displays several bioactive properties. Therefore, the powder of the S. apetala fruit was successively fractionated into n-hexane (Hex), chloroform (Chl), and methanol (Met) fractions to evaluate their efficiency in ameliorating iron overload. In vitro, a colorimetric method was used to assess the Fe-chelating activity of the fractions using ferrozine. The fractions were also used in vivo to examine their efficacy in ameliorating iron overload and iron-induced oxidative stress in mice induced by intraperitoneal injection of ferric carboxymaltose at 100 mg/kg body weight (bw). Among the fractions, Met showed the highest Fe-chelation ability with an inhibitory concentration 50 of 165 μg/mL followed by Hex (270 μg/mL), and Chl (418 μg/mL). In vivo, the results showed a significantly (P<0.05) lower iron profile (iron and ferritin concentrations in serum and liver tissue and total iron-binding capacity of serum) in the Met and the Hex treated mice groups than in the iron-overloaded group. Met at 1,000 μg/kg bw completely ameliorated iron overload in the blood and the liver tissue of mice. At this concentration, Met also prevented iron-induced oxidative stress in the liver tissue of iron-overloaded mice by restoring reducing power, total antioxidant capacity, and total protein. Thus, the S. apetala fruit, especially its Met fraction can be used in treating iron overload and associated toxicity.
Collapse
Affiliation(s)
- Mehenaz Mithila
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna 9208, Bangladesh
| | - M Rabiul Islam
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna 9208, Bangladesh
| | - Mst Rima Khatun
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna 9208, Bangladesh
| | - M Shamim Gazi
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna 9208, Bangladesh
| | - Sheikh Julfikar Hossain
- Biotechnology and Genetic Engineering Discipline, Khulna University, Khulna 9208, Bangladesh
| |
Collapse
|
22
|
Zhang H, Sun C, Sun Q, Li Y, Zhou C, Sun C. Susceptibility of acute myeloid leukemia cells to ferroptosis and evasion strategies. Front Mol Biosci 2023; 10:1275774. [PMID: 37818101 PMCID: PMC10561097 DOI: 10.3389/fmolb.2023.1275774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/15/2023] [Indexed: 10/12/2023] Open
Abstract
Acute myeloid leukemia (AML) is a highly aggressive hematologic malignancy with a 5-year survival rate of less than 30%. Continuous updating of diagnostic and therapeutic strategies has not been effective in improving the clinical benefit of AML. AML cells are prone to iron metabolism imbalance due to their unique pathological characteristics, and ferroptosis is a novel cell death mode that is dominated by three cellular biological processes: iron metabolism, oxidative stress and lipid metabolism. An in-depth exploration of the unique ferroptosis mechanism in AML can provide new insights for the diagnosis and treatment of this disease. This study summarizes recent studies on ferroptosis in AML cells and suggests that the metabolic characteristics, gene mutation patterns, and dependence on mitochondria of AML cells greatly increase their susceptibility to ferroptosis. In addition, this study suggests that AML cells can establish a variety of strategies to evade ferroptosis to maintain their survival during the process of occurrence and development, and summarizes the related drugs targeting ferroptosis pathway in AML treatment, which provides development directions for the subsequent mechanism research and clinical treatment of AML.
Collapse
Affiliation(s)
- Hanyun Zhang
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chunjie Sun
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Qi Sun
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Ye Li
- State Key Laboratory of Quality Research in Chinese Medicine and Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Chao Zhou
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
| | - Changgang Sun
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China
- College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
| |
Collapse
|
23
|
Kinoshita N, Gessho M, Torii T, Ashida Y, Akamatsu M, Guo AK, Lee S, Katsuno T, Nakajima W, Budirahardja Y, Miyoshi D, Todokoro T, Ishida H, Nishikata T, Kawauchi K. The iron chelator deferriferrichrysin induces paraptosis via extracellular signal-related kinase activation in cancer cells. Genes Cells 2023; 28:653-662. [PMID: 37264202 DOI: 10.1111/gtc.13053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/08/2023] [Accepted: 05/22/2023] [Indexed: 06/03/2023]
Abstract
Cancer cells generally exhibit increased iron uptake, which contributes to their abnormal growth and metastatic ability. Iron chelators have thus recently attracted attention as potential anticancer agents. Here, we show that deferriferrichrysin (Dfcy), a natural product from Aspergillus oryzae acts as an iron chelator to induce paraptosis (a programmed cell death pathway characterized by ER dilation) in MCF-7 human breast cancer cells and H1299 human lung cancer cells. We first examined the anticancer efficacy of Dfcy in cancer cells and found that Dfcy induced ER dilation and reduced the number of viable cells. Extracellular signal-related kinase (ERK) was activated by Dfcy treatment, and the MEK inhibitor U0126, a small molecule commonly used to inhibit ERK activity, prevented the increase in ER dilation in Dfcy-treated cells. Concomitantly, the decrease in the number of viable cells upon treatment with Dfcy was attenuated by U0126. Taken together, these results demonstrate that the iron chelator Dfcy exhibits anticancer effects via induction of ERK-dependent paraptosis.
Collapse
Affiliation(s)
- Natsuki Kinoshita
- Frontiers of Innovative Research in Science and Technology, Konan University, Kobe, Japan
| | - Masaya Gessho
- Frontiers of Innovative Research in Science and Technology, Konan University, Kobe, Japan
| | - Takeru Torii
- Frontiers of Innovative Research in Science and Technology, Konan University, Kobe, Japan
| | - Yukako Ashida
- Frontiers of Innovative Research in Science and Technology, Konan University, Kobe, Japan
| | - Minori Akamatsu
- Frontiers of Innovative Research in Science and Technology, Konan University, Kobe, Japan
| | - Alvin Kunyao Guo
- Cancer and Stem Cell Biology Program, Duke-NUS Medical School, Singapore, Singapore
| | - Sunmin Lee
- Frontiers of Innovative Research in Science and Technology, Konan University, Kobe, Japan
| | - Tatsuya Katsuno
- Center of Anatomical, Pathological and Forensic Medical Researches, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Wataru Nakajima
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Tokyo, Japan
| | - Yemima Budirahardja
- Frontiers of Innovative Research in Science and Technology, Konan University, Kobe, Japan
| | - Daisuke Miyoshi
- Frontiers of Innovative Research in Science and Technology, Konan University, Kobe, Japan
| | | | - Hiroki Ishida
- Research Institute, Gekkeikan Sake Co., Ltd, Kyoto, Japan
| | - Takahito Nishikata
- Frontiers of Innovative Research in Science and Technology, Konan University, Kobe, Japan
| | - Keiko Kawauchi
- Frontiers of Innovative Research in Science and Technology, Konan University, Kobe, Japan
| |
Collapse
|
24
|
Harper P. A Review of the Dietary Intake, Bioavailability and Health Benefits of Ellagic Acid (EA) with a Primary Focus on Its Anti-Cancer Properties. Cureus 2023; 15:e43156. [PMID: 37692691 PMCID: PMC10484468 DOI: 10.7759/cureus.43156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2023] [Indexed: 09/12/2023] Open
Abstract
Ellagitannins (ET) and ellagic acid (EA) are polyphenols, present in common foods, which may exhibit significant health benefits against inflammation, infection and cancer. EA is metabolised by the gut flora to produce urolithins, which are absorbed into the systemic circulation. Urolithins are widely documented to reduce oxidative stress associated with many diseases including cancer, heart disease and liver damage. In particular, Urolithin C and D have been shown to have high anti-oxidant properties through the inhibition of reactive oxygen species (ROS). The anti-inflammatory properties of EA have been demonstrated through the down-regulation of pro-inflammatory enzymes such as COX-2 and iNOS as well as decreasing the expression of adhesion molecules. EA also regulates the gut microflora and possesses antimicrobial activity against various strains of harmful bacteria such as methicillin-resistant Staphylococcus aureus (MRSA) and Helicobacter pylori. Numerous studies have documented the anticarcinogenic benefits of EA and have been performed on, but not limited to, prostate, colon and breast cancer cell lines and in vivo models. Conventional treatments for cancer, such as chemotherapy, can often be associated with significant side effects such as fatigue, hair loss and alopecia. Naturally-occurring food substances such as ETs potentially offer a risk-free preventative measure against cancer and could perhaps be used in synergy with current treatments. More level 1 studies are required to inform the evidence-base on this topic.
Collapse
Affiliation(s)
- Philip Harper
- Life Sciences, University of Southampton, Southampton, GBR
| |
Collapse
|
25
|
Fakhimahmadi A, Hasanaj I, Hofstetter G, Pogner C, Gorfer M, Wiederstein M, Szepannek N, Bianchini R, Dvorak Z, Jensen SA, Berger M, Jensen-Jarolim E, Hufnagl K, Roth-Walter F. Nutritional Provision of Iron Complexes by the Major Allergen Alt a 1 to Human Immune Cells Decreases Its Presentation. Int J Mol Sci 2023; 24:11934. [PMID: 37569310 PMCID: PMC10418924 DOI: 10.3390/ijms241511934] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/14/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023] Open
Abstract
Alternaria alternata is a common fungus strongly related with severe allergic asthma, with 80% of affected individuals being sensitized solely to its major allergen Alt a 1. Here, we assessed the function of Alt a 1 as an innate defense protein binding to micronutrients, such as iron-quercetin complexes (FeQ2), and its impact on antigen presentation in vitro. Binding of Alt a 1 to FeQ2 was determined in docking calculations. Recombinant Alt a 1 was generated, and binding ability, as well as secondary and quaternary structure, assessed by UV-VIS, CD, and DLS spectroscopy. Proteolytic functions were determined by casein and gelatine zymography. Uptake of empty apo- or ligand-filled holoAlt a 1 were assessed in human monocytic THP1 cells under the presence of dynamin and clathrin-inhibitors, activation of the Arylhydrocarbon receptor (AhR) using the human reporter cellline AZ-AHR. Human PBMCs were stimulated and assessed for phenotypic changes in monocytes by flow cytometry. Alt a 1 bound strongly to FeQ2 as a tetramer with calculated Kd values reaching pico-molar levels and surpassing affinities to quercetin alone by a factor of 5000 for the tetramer. apoAlt a 1 but not holoAlta 1 showed low enzymatic activity against casein as a hexamer and gelatin as a trimer. Uptake of apo- and holo-Alt a 1 occurred partly clathrin-dependent, with apoAlt a 1 decreasing labile iron in THP1 cells and holoAlt a 1 facilitating quercetin-dependent AhR activation. In human PBMCs uptake of holoAlt a 1 but not apoAlt a 1 significantly decreased the surface expression of the costimulatory CD86, but also of HLADR, thereby reducing effective antigen presentation. We show here for the first time that the presence of nutritional iron complexes, such as FeQ2, significantly alters the function of Alt a 1 and dampens the human immune response, thereby supporting the notion that Alt a 1 only becomes immunogenic under nutritional deprivation.
Collapse
Affiliation(s)
- Aila Fakhimahmadi
- Comparative Medicine, The Interuniversity Messerli Research Institute, 1210 Vienna, Austria; (A.F.); (I.H.); (G.H.); (N.S.); (R.B.); (S.A.J.); (M.B.); (E.J.-J.); (K.H.)
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Ilir Hasanaj
- Comparative Medicine, The Interuniversity Messerli Research Institute, 1210 Vienna, Austria; (A.F.); (I.H.); (G.H.); (N.S.); (R.B.); (S.A.J.); (M.B.); (E.J.-J.); (K.H.)
| | - Gerlinde Hofstetter
- Comparative Medicine, The Interuniversity Messerli Research Institute, 1210 Vienna, Austria; (A.F.); (I.H.); (G.H.); (N.S.); (R.B.); (S.A.J.); (M.B.); (E.J.-J.); (K.H.)
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Clara Pogner
- Bioresources Unit, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, 3430 Tulln, Austria; (C.P.); (M.G.)
| | - Markus Gorfer
- Bioresources Unit, Center for Health & Bioresources, AIT Austrian Institute of Technology GmbH, 3430 Tulln, Austria; (C.P.); (M.G.)
| | - Markus Wiederstein
- Department of Biosciences, University of Salzburg, 5020 Salzburg, Austria;
| | - Nathalie Szepannek
- Comparative Medicine, The Interuniversity Messerli Research Institute, 1210 Vienna, Austria; (A.F.); (I.H.); (G.H.); (N.S.); (R.B.); (S.A.J.); (M.B.); (E.J.-J.); (K.H.)
| | - Rodolfo Bianchini
- Comparative Medicine, The Interuniversity Messerli Research Institute, 1210 Vienna, Austria; (A.F.); (I.H.); (G.H.); (N.S.); (R.B.); (S.A.J.); (M.B.); (E.J.-J.); (K.H.)
| | - Zdenek Dvorak
- Department of Cell Biology and Genetics, Faculty of Science, Palacky University, 779 00 Olomouc, Czech Republic;
| | - Sebastian A. Jensen
- Comparative Medicine, The Interuniversity Messerli Research Institute, 1210 Vienna, Austria; (A.F.); (I.H.); (G.H.); (N.S.); (R.B.); (S.A.J.); (M.B.); (E.J.-J.); (K.H.)
| | - Markus Berger
- Comparative Medicine, The Interuniversity Messerli Research Institute, 1210 Vienna, Austria; (A.F.); (I.H.); (G.H.); (N.S.); (R.B.); (S.A.J.); (M.B.); (E.J.-J.); (K.H.)
| | - Erika Jensen-Jarolim
- Comparative Medicine, The Interuniversity Messerli Research Institute, 1210 Vienna, Austria; (A.F.); (I.H.); (G.H.); (N.S.); (R.B.); (S.A.J.); (M.B.); (E.J.-J.); (K.H.)
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Karin Hufnagl
- Comparative Medicine, The Interuniversity Messerli Research Institute, 1210 Vienna, Austria; (A.F.); (I.H.); (G.H.); (N.S.); (R.B.); (S.A.J.); (M.B.); (E.J.-J.); (K.H.)
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| | - Franziska Roth-Walter
- Comparative Medicine, The Interuniversity Messerli Research Institute, 1210 Vienna, Austria; (A.F.); (I.H.); (G.H.); (N.S.); (R.B.); (S.A.J.); (M.B.); (E.J.-J.); (K.H.)
- Institute of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
26
|
Solnier J, Chang C, Pizzorno J. Consideration for Flavonoid-Containing Dietary Supplements to Tackle Deficiency and Optimize Health. Int J Mol Sci 2023; 24:ijms24108663. [PMID: 37240008 DOI: 10.3390/ijms24108663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Randomized clinical trials (RCT) and observational studies have highlighted the importance of flavonoid consumption for human health. Several studies have associated a high intake of dietary flavonoids with (a) enhanced metabolic and cardiovascular health, (b) enhanced cognitive and vascular endothelial functions, (c) an improved glycemic response in type 2 diabetes mellitus, and (d) a reduced risk of breast cancer in postmenopausal women. Since flavonoids belong to a broad and diverse family of polyphenolic plant molecules-with more than 6000 compounds interspersed in the human diet-researchers are still uncertain whether the intake of single, individual polyphenols or a large combination of them (i.e., synergistic action) can produce the greatest health benefits for humans. Furthermore, studies have reported a poor bioavailability of flavonoid compounds in humans, which presents a major challenge for determining their optimal dosage, recommended intake, and, consequently, their therapeutic value. Especially because of their scarce bioavailability from foods-along with the overall declining food quality and nutrient density in foods-the role of flavonoid supplementation may become increasingly important for human health. Although research shows that dietary supplements can be a highly useful tool to complement diets that lack sufficient amounts of important nutrients, some caution is warranted regarding possible interactions with prescription and non-prescription drugs, especially when taken concurrently. Herein, we discuss the current scientific basis for using flavonoid supplementation to improve health as well as the limitations related to high intakes of dietary flavonoids.
Collapse
Affiliation(s)
- Julia Solnier
- ISURA, Clinical Research Unit, 101-3680 Bonneville Place, Burnaby, BC V3N 4T5, Canada
| | - Chuck Chang
- ISURA, Clinical Research Unit, 101-3680 Bonneville Place, Burnaby, BC V3N 4T5, Canada
| | | |
Collapse
|
27
|
Abo-Elghiet F, Mohamed SA, Yasin NAE, Temraz A, El-Tantawy WH, Ahmed SF. The effect of Alnus incana (L.) Moench extracts in ameliorating iron overload-induced hepatotoxicity in male albino rats. Sci Rep 2023; 13:7635. [PMID: 37169909 PMCID: PMC10175300 DOI: 10.1038/s41598-023-34480-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 05/02/2023] [Indexed: 05/13/2023] Open
Abstract
Iron overload causes multiorgan dysfunction and serious damage. Alnus incana from the family Betulaceae, widely distributed in North America, is used for treating diseases. In this study, we investigated the iron chelating, antioxidant, anti-inflammatory, and antiapoptotic activities of the total and butanol extract from Alnus incana in iron-overloaded rats and identified the bioactive components in both extracts using liquid chromatography-mass spectrometry. We induced iron overload in the rats via six intramuscular injections of 12.5 mg iron dextran/100 g body weight for 30 days. The rats were then administered 60 mg ferrous sulfate /kg body weight once daily using a gastric tube. The total and butanol extracts were given orally, and the reference drug (deferoxamine) was administered subcutaneously for another month. After two months, we evaluated the biochemical, histopathological, histochemical, and immunohistochemical parameters. Iron overload significantly increased the serum iron level, liver biomarker activities, hepatic iron content, malondialdehyde, tumor necrosis factor-alpha, and caspase-3 levels. It also substantially (P < 0.05) reduced serum albumin, total protein, and total bilirubin content, and hepatic reduced glutathione levels. It caused severe histopathological alterations compared to the control rats, which were markedly (P < 0.05) ameliorated after treatment. The total extract exhibited significantly higher anti-inflammatory and antiapoptotic activities but lower antioxidant and iron-chelating activities than the butanol extract. Several polyphenolic compounds, including flavonoids and phenolic acids, were detected by ultraperformance liquid chromatography-electrospray ionization-quadrupole time-of-flight mass spectrometry (UPLC-ESI-QTOF-MS) analysis. Our findings suggest that both extracts might alleviate iron overload-induced hepatoxicity and other pathological conditions characterized by hepatic iron overload, including thalassemia and sickle-cell anemia.
Collapse
Affiliation(s)
- Fatma Abo-Elghiet
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy for Girls, Al Azhar University, Cairo, Egypt
| | - Shaza A Mohamed
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy for Girls, Al Azhar University, Cairo, Egypt
| | - Noha A E Yasin
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Abeer Temraz
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy for Girls, Al Azhar University, Cairo, Egypt
| | | | - Samah Fathy Ahmed
- National Organization for Drug Control and Research, Dokki, Cairo, Egypt
| |
Collapse
|
28
|
Ding W, Lin L, Yue K, He Y, Xu B, Shaukat A, Huang S. Ferroptosis as a Potential Therapeutic Target of Traditional Chinese Medicine for Mycotoxicosis: A Review. TOXICS 2023; 11:395. [PMID: 37112624 PMCID: PMC10142935 DOI: 10.3390/toxics11040395] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 06/19/2023]
Abstract
Mycotoxin contamination has become one of the biggest hidden dangers of food safety, which seriously threatens human health. Understanding the mechanisms by which mycotoxins exert toxicity is key to detoxification. Ferroptosis is an adjustable cell death characterized by iron overload and lipid reactive oxygen species (ROS) accumulation and glutathione (GSH) depletion. More and more studies have shown that ferroptosis is involved in organ damage from mycotoxins exposure, and natural antioxidants can alleviate mycotoxicosis as well as effectively regulate ferroptosis. In recent years, research on the treatment of diseases by Chinese herbal medicine through ferroptosis has attracted more attention. This article reviews the mechanism of ferroptosis, discusses the role of ferroptosis in mycotoxicosis, and summarizes the current status of the regulation of various mycotoxicosis through ferroptosis by Chinese herbal interventions, providing a potential strategy for better involvement of Chinese herbal medicine in the treatment of mycotoxicosis in the future.
Collapse
Affiliation(s)
- Wenli Ding
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; (W.D.)
| | - Luxi Lin
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; (W.D.)
| | - Ke Yue
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; (W.D.)
| | - Yanfeng He
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; (W.D.)
| | - Bowen Xu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; (W.D.)
| | - Aftab Shaukat
- National Center for International Research on Animal Genetics, Breeding and Reproduction (NCIRAGBR), Huazhong Agricultural University, Wuhan 430070, China
| | - Shucheng Huang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China; (W.D.)
| |
Collapse
|
29
|
Du YW, Li XK, Wang TT, Zhou L, Li HR, Feng L, Ma H, Liu HB. Cyanidin-3-glucoside inhibits ferroptosis in renal tubular cells after ischemia/reperfusion injury via the AMPK pathway. Mol Med 2023; 29:42. [PMID: 37013504 PMCID: PMC10069074 DOI: 10.1186/s10020-023-00642-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 03/21/2023] [Indexed: 04/05/2023] Open
Abstract
BACKGROUND Ferroptosis, which is characterized by lipid peroxidation and iron accumulation, is closely associated with the pathogenesis of acute renal injury (AKI). Cyanidin-3-glucoside (C3G), a typical flavonoid that has anti-inflammatory and antioxidant effects on ischemia‒reperfusion (I/R) injury, can induce AMP-activated protein kinase (AMPK) activation. This study aimed to show that C3G exerts nephroprotective effects against I/R-AKI related ferroptosis by regulating the AMPK pathway. METHODS Hypoxia/reoxygenation (H/R)-induced HK-2 cells and I/R-AKI mice were treated with C3G with or without inhibiting AMPK. The level of intracellular free iron, the expression of the ferroptosis-related proteins acyl-CoA synthetase long chain family member 4 (ACSL4) and glutathione peroxidase 4 (GPX4), and the levels of the lipid peroxidation markers 4-hydroxynonenal (4-HNE), lipid reactive oxygen species (ROS) and malondialdehyde (MDA) were examined. RESULTS We observed the inhibitory effect of C3G on ferroptosis in vitro and in vivo, which was characterized by the reversion of excessive intracellular free iron accumulation, a decrease in 4-HNE, lipid ROS, MDA levels and ACSL4 expression, and an increase in GPX4 expression and glutathione (GSH) levels. Notably, the inhibition of AMPK by CC significantly abrogated the nephroprotective effect of C3G on I/R-AKI models in vivo and in vitro. CONCLUSION Our results provide new insight into the nephroprotective effect of C3G on acute I/R-AKI by inhibiting ferroptosis by activating the AMPK pathway.
Collapse
Affiliation(s)
- Yi-Wei Du
- Department of Nephrology, Tangdu Hospital, Air Force Military Medical University (Fourth Military Medical University), Xi'an, 710038, China
| | - Xiao-Kang Li
- Department of Cardiology, Tangdu Hospital, Air Force Military Medical University (Fourth Military Medical University), Xi'an, 710038, China
| | - Ting-Ting Wang
- Department of Nephrology, Tangdu Hospital, Air Force Military Medical University (Fourth Military Medical University), Xi'an, 710038, China
| | - Lu Zhou
- Department of Nephrology, Tangdu Hospital, Air Force Military Medical University (Fourth Military Medical University), Xi'an, 710038, China
| | - Hui-Rong Li
- Department of Nephrology, Tangdu Hospital, Air Force Military Medical University (Fourth Military Medical University), Xi'an, 710038, China
| | - Lan Feng
- Department of Nephrology, Tangdu Hospital, Air Force Military Medical University (Fourth Military Medical University), Xi'an, 710038, China
| | - Heng Ma
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Air Force Military Medical University (Fourth Military Medical University), Xi'an, 710038, China.
| | - Hong-Bao Liu
- Department of Nephrology, Tangdu Hospital, Air Force Military Medical University (Fourth Military Medical University), Xi'an, 710038, China.
| |
Collapse
|
30
|
The Increased Release Kinetics of Quercetin from Superparamagnetic Nanocarriers in Dialysis. Antioxidants (Basel) 2023; 12:antiox12030732. [PMID: 36978980 PMCID: PMC10045069 DOI: 10.3390/antiox12030732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
The actual cumulative mass of released quercetin from nanoparticles within the dialysis membrane was determined under the influence of external stationary and alternating magnetic fields. We have shown that the control of the release kinetics of quercetin from MNPs, i.e., the distribution of quercetin between the nanoparticles and the suspension within the membrane, can be tuned by the simple combination of stationary and alternating magnetic fields. Under non-sink conditions, the proportion of quercetin in the suspension inside the membrane is increased toward the nanoparticles, resulting in the increased release of quercetin. The results obtained could be applied to the release of insoluble flavonoids in aqueous suspensions in general.
Collapse
|
31
|
Duda-Chodak A, Tarko T. Possible Side Effects of Polyphenols and Their Interactions with Medicines. Molecules 2023; 28:molecules28062536. [PMID: 36985507 PMCID: PMC10058246 DOI: 10.3390/molecules28062536] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Polyphenols are an important component of plant-derived food with a wide spectrum of beneficial effects on human health. For many years, they have aroused great interest, especially due to their antioxidant properties, which are used in the prevention and treatment of many diseases. Unfortunately, as with any chemical substance, depending on the conditions, dose, and interactions with the environment, it is possible for polyphenols to also exert harmful effects. This review presents a comprehensive current state of the knowledge on the negative impact of polyphenols on human health, describing the possible side effects of polyphenol intake, especially in the form of supplements. The review begins with a brief overview of the physiological role of polyphenols and their potential use in disease prevention, followed by the harmful effects of polyphenols which are exerted in particular situations. The individual chapters discuss the consequences of polyphenols’ ability to block iron uptake, which in some subpopulations can be harmful, as well as the possible inhibition of digestive enzymes, inhibition of intestinal microbiota, interactions of polyphenolic compounds with drugs, and impact on hormonal balance. Finally, the prooxidative activity of polyphenols as well as their mutagenic, carcinogenic, and genotoxic effects are presented. According to the authors, there is a need to raise public awareness about the possible side effects of polyphenols supplementation, especially in the case of vulnerable subpopulations.
Collapse
|
32
|
Scarano A, Laddomada B, Blando F, De Santis S, Verna G, Chieppa M, Santino A. The Chelating Ability of Plant Polyphenols Can Affect Iron Homeostasis and Gut Microbiota. Antioxidants (Basel) 2023; 12:antiox12030630. [PMID: 36978878 PMCID: PMC10045931 DOI: 10.3390/antiox12030630] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
In the past decades, many studies have widely examined the effects of dietary polyphenols on human health. Polyphenols are well known for their antioxidant properties and for their chelating abilities, by which they can be potentially employed in cases of pathological conditions, such as iron overload. In this review, we have highlighted the chelating abilities of polyphenols, which are due to their structural specific sites, and the differences for each class of polyphenols. We have also explored how the dietary polyphenols and their iron-binding abilities can be important in inflammatory/immunomodulatory responses, with a special focus on the involvement of macrophages and dendritic cells, and how they might contribute to reshape the gut microbiota into a healthy profile. This review also provides evidence that the axes “polyphenol–iron metabolism–inflammatory responses” and “polyphenol–iron availability–gut microbiota” have not been very well explored so far, and the need for further investigation to exploit such a potential to prevent or counteract pathological conditions.
Collapse
Affiliation(s)
- Aurelia Scarano
- Institute of Science of Food Production, C.N.R. Unit of Lecce, 73100 Lecce, Italy
| | - Barbara Laddomada
- Institute of Science of Food Production, C.N.R. Unit of Lecce, 73100 Lecce, Italy
| | - Federica Blando
- Institute of Science of Food Production, C.N.R. Unit of Lecce, 73100 Lecce, Italy
| | - Stefania De Santis
- Department of Pharmacy-Pharmaceutical Science, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Giulio Verna
- Digestive Health Research Institute, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Marcello Chieppa
- Department of Biological and Environmental Sciences and Technologies (DISTEBA), University of Salento, 73100 Lecce, Italy
- Correspondence: (M.C.); (A.S.)
| | - Angelo Santino
- Institute of Science of Food Production, C.N.R. Unit of Lecce, 73100 Lecce, Italy
- Correspondence: (M.C.); (A.S.)
| |
Collapse
|
33
|
Jiao D, Xu J, Lou C, Luo Y, Ni C, Shen G, Fang M, Gong X. Quercetin alleviates subarachnoid hemorrhage-induced early brain injury via inhibiting ferroptosis in the rat model. Anat Rec (Hoboken) 2023; 306:638-650. [PMID: 36437694 DOI: 10.1002/ar.25130] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/02/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022]
Abstract
Early brain injury (EBI) refers to a series of pathophysiological brain lesions that occur within 72 hr after subarachnoid hemorrhage (SAH), which is an extremely crucial factor in the poor prognosis of patients. In EBI, ferroptosis has been proven to cause neuronal death. Quercetin (QCT) is effective in deactivating reactive oxygen species (ROS), inhibiting lipid peroxidation, and even chelating iron, but its role in SAH remains unclear. In this study, the mortality rate, severity grade of SAH, brain water content (BWC), blood-brain barrier permeability, and neurological function of the rats were detected. Moreover, mitochondrial morphology in cortical neurons were observed and their sizes were subsequently quantified. The levels of lipid peroxidation on glutathione and malondialdehyde (MDA) and glutathione peroxidase (GSH-Px) were determined, whereas the protein expressions of glutathione peroxidase 4 (GPX4), SLC7A11 (xCT), transferrin receptor 1 (TfR1), and ferroportin-1 (FPN1) were analyzed by western immunoblotting. The neurodegeneration involved in EBI was investigated by fluoro-Jade C staining, while iron staining was utilized to measure iron content. Our results showed that inhibition of ferroptosis by QCT could suppress EBI and improve neurological function in SAH rats. QCT increased the expression levels of GPX4, xCT, and FPN1, while downregulated TfR1, and exerted protective effects on neurons as well as alleviated iron accumulation and lipid peroxidation in the cortex of SAH rats. In conclusion, our study revealed that QCT might alleviate the EBI by inhibiting ferroptosis in SAH rats.
Collapse
Affiliation(s)
- Dian Jiao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Jianmiao Xu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Chengjian Lou
- Department of Neurosurgery, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Yuhuan Luo
- Department of Pediatrics, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chengtao Ni
- Graduate School, Bengbu Medical College, Bengbu, China
| | - Guanghong Shen
- The Affiliated People's Hospital of Hangzhou Medical College, Hangzhou Medical College, Hangzhou, China
| | - Marong Fang
- Institute of Neuroscience, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiangyang Gong
- Rehabilitation Medicine Center, Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
34
|
Davinelli S, Medoro A, Ali S, Passarella D, Intrieri M, Scapagnini G. Dietary Flavonoids and Adult Neurogenesis: Potential Implications for Brain Aging. Curr Neuropharmacol 2023; 21:651-668. [PMID: 36321225 PMCID: PMC10207917 DOI: 10.2174/1570159x21666221031103909] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/27/2022] [Accepted: 08/19/2022] [Indexed: 02/10/2023] Open
Abstract
Adult neurogenesis deficiency has been proposed to be a common hallmark in different age-related neurodegenerative diseases. The administration of flavonoids is currently reported as a potentially beneficial strategy for preventing brain aging alterations, including adult neurogenesis decline. Flavonoids are a class of plant-derived dietary polyphenols that have drawn attention for their neuroprotective and pro-cognitive effects. Although they undergo extensive metabolism and localize in the brain at low concentrations, flavonoids are now believed to improve cerebral vasculature and interact with signal transduction cascades involved in the regulation of adult neurogenesis. Furthermore, many dietary flavonoids have been shown to reduce oxidative stress and neuroinflammation, improving the neuronal microenvironment where adult neurogenesis occurs. The overall goal of this review is to summarize the evidence supporting the role of flavonoids in modulating adult neurogenesis as well as to highlight how these dietary agents may be promising candidates in restoring healthy brain function during physiological and pathological aging.
Collapse
Affiliation(s)
- Sergio Davinelli
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso 86100, Italy
| | - Alessandro Medoro
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso 86100, Italy
| | - Sawan Ali
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso 86100, Italy
| | - Daniela Passarella
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso 86100, Italy
| | - Mariano Intrieri
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso 86100, Italy
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso 86100, Italy
| |
Collapse
|
35
|
Ying L, Yan L, Huimin Z, Min L, Xiaojuan Z, Zhanjian W, Yaru Z. Tea polyphenols improve glucose metabolism in ceruloplasmin knockout mice via decreasing hepatic iron deposition. CYTA - JOURNAL OF FOOD 2022. [DOI: 10.1080/19476337.2022.2112299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Lei Ying
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Liu Yan
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Zhou Huimin
- Department of Endocrinology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Li Min
- Department of Nephrology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Zhang Xiaojuan
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Wang Zhanjian
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| | - Zhou Yaru
- Department of Endocrinology, The Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, P.R. China
| |
Collapse
|
36
|
Pathaw N, Devi KS, Sapam R, Sanasam J, Monteshori S, Phurailatpam S, Devi HC, Chanu WT, Wangkhem B, Mangang NL. A comparative review on the anti-nutritional factors of herbal tea concoctions and their reduction strategies. Front Nutr 2022; 9:988964. [PMID: 36276812 PMCID: PMC9581206 DOI: 10.3389/fnut.2022.988964] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/09/2022] [Indexed: 11/27/2022] Open
Abstract
Tea is an important beverage consumed worldwide. Of the different types of tea available, herbal tea is an important beverage consumed owing to its popularity as a drink and stress relieving factors, several different herbal concoctions made from seeds, leaves, or roots are currently consumed and sold as herbal teas. The herbal teas are not the usual tea but "tisanes." They are caffeine free and popular for their medicinal property or immune boosters. Herbal tea formulations are popularly sold and consumed by millions owing to their health benefits as they are rich in antioxidants and minerals. However, plants are also known to contain toxic and anti-nutritional factors. Anti-nutritional factors are known to interfere with the metabolic process and hamper the absorption of important nutrients in the body. These anti-nutritional factors include saponins, tannins, alkaloids, oxalates, lectins, goitrogens, cyanogens, and lethogens. These chemicals are known to have deleterious effects on human health. Therefore, it is important to understand and assess the merits and demerits before consumption. Also, several techniques are currently used to process and reduce the anti-nutrients in foods. This review is focused on comparing the contents of various anti-nutritional factors in some underutilized plants of North-East India used as herbal tea along with processing methods that can be used to reduce the level of these anti-nutrients.
Collapse
Affiliation(s)
- Neeta Pathaw
- Indian Council of Agricultural Research, Research Complex for North Eastern Hill Region, Imphal, Manipur, India
| | - Konjengbam Sarda Devi
- Indian Council of Agricultural Research, Research Complex for North Eastern Hill Region, Imphal, Manipur, India
| | - Redina Sapam
- Indian Council of Agricultural Research, Research Complex for North Eastern Hill Region, Imphal, Manipur, India
| | - Jyotsana Sanasam
- Indian Council of Agricultural Research, Research Complex for North Eastern Hill Region, Imphal, Manipur, India
| | - Sapam Monteshori
- Indian Council of Agricultural Research, Research Complex for North Eastern Hill Region, Imphal, Manipur, India
| | - Sumitra Phurailatpam
- Multi Technology Testing Centre and Vocational Training Centre, College of Agriculture, Central Agricultural University, Imphal, Manipur, India
| | | | | | - Baby Wangkhem
- College of Agriculture, Central Agricultural University, Imphal, Manipur, India
| | - Naorem Loya Mangang
- Indian Council of Agricultural Research, Research Complex for North Eastern Hill Region, Imphal, Manipur, India
| |
Collapse
|
37
|
Effects of Moderate Consumption of Red Wine on Hepcidin Levels in Patients with Type 2 Diabetes Mellitus. Foods 2022; 11:foods11131881. [PMID: 35804697 PMCID: PMC9266169 DOI: 10.3390/foods11131881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/17/2022] [Accepted: 06/21/2022] [Indexed: 11/26/2022] Open
Abstract
Iron overload is often associated with type 2 diabetes (T2D), indicating that hepcidin, the master regulator of iron homeostasis, might be involved in diabetes pathogenesis. Alcohol consumption may also result in increased body iron stores. However, the moderate consumption of wine with meals might be beneficial in T2D. This effect has been mainly attributed to both the ethanol and the polyphenolic compounds in wine. Therefore, we examined the effects of red wine on hepcidin in T2D patients and non-diabetic controls. The diabetic patients (n = 18) and age- and BMI-matched apparently healthy controls (n = 13) were men, aged 40−65 years, non-smoking, with BMI < 35 kg/m2. Following a 2-week alcohol-free period, both groups consumed 300 mL of red wine for 3 weeks. The blood samples for the iron status analysis were taken at the end of each period. The red wine intake resulted in a decrease in serum hepcidin in both the diabetic subjects (p = 0.045) and controls (p = 0.001). The levels of serum ferritin also decreased after wine in both groups, reaching statistical significance only in the control subjects (p = 0.017). No significant alterations in serum iron, transferrin saturation, or soluble transferrin receptors were found. The suppression of hepcidin, a crucial iron-regulatory hormone and acute-phase protein, in T2D patients and healthy controls, is a novel biological effect of red wine. This may deepen our understanding of the mechanisms of the cardiometabolic effects of wine in T2D.
Collapse
|
38
|
Han D, Yao Y, Chen L, Miao Z, Xu S. Apigenin ameliorates di(2-ethylhexyl) phthalate-induced ferroptosis: The activation of glutathione peroxidase 4 and suppression of iron intake. Food Chem Toxicol 2022; 164:113089. [PMID: 35500696 DOI: 10.1016/j.fct.2022.113089] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/28/2022] [Accepted: 04/26/2022] [Indexed: 10/18/2022]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is a widely artificial persistent organic pollutant, the contamination of which infiltrates daily human life from many aspects, imperceptibly causing damage to multiple organs in the body, including the liver. Apigenin (APG) is widely distributed in vegetables and fruits and can relieve or prevent the injuries caused by exogenous chemicals through various pharmacological effects, such as antioxidant effects. To investigate the mechanism of DEHP-induced liver injury and the antagonistic effects of APG, we treated AML12 cells with 1 mM DEHP and/or APG. Ultrastructural morphology analysis indicated that DEHP induced typical ferroptosis-like damage. In addition, we found that DEHP exposure induced ferroptosis by enhancing reactive oxygen species (ROS) levels, disrupting iron homeostasis and lipid peroxidation, and regulating the expression of ferroptosis-related genes. Notably, supplementation with APG significantly inhibited these abnormal changes, and molecular docking further showed evidence of the activating effects of APG ligand on glutathione peroxidase 4 (GPX4). These results demonstrated that the protective effects of APG on DEHP-induced ferroptosis were achieved by activating GPX4 and suppressing intracellular iron accumulation. This information not only adds to DEHP toxicological data but also provides a basis for the practical application of APG.
Collapse
Affiliation(s)
- Dongxu Han
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yujie Yao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Lu Chen
- College of Animal Science, Tarim University, Alar, Xinjiang Uygur Autonomous Region, 843300, PR China
| | - Zhiying Miao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
39
|
Kubicova L, Bachmann G, Weckwerth W, Chobot V. (±)-Catechin-A Mass-Spectrometry-Based Exploration Coordination Complex Formation with Fe II and Fe III. Cells 2022; 11:958. [PMID: 35326409 PMCID: PMC8946835 DOI: 10.3390/cells11060958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 02/06/2023] Open
Abstract
Catechin is an extensively investigated plant flavan-3-ol with a beneficial impact on human health that is often associated with antioxidant activities and iron coordination complex formation. The aim of this study was to explore these properties with FeII and FeIII using a combination of nanoelectrospray-mass spectrometry, differential pulse voltammetry, site-specific deoxyribose degradation assay, FeII autoxidation assay, and brine shrimp mortality assay. Catechin primarily favored coordination complex formation with Fe ions of the stoichiometry catechin:Fe in the ratio of 1:1 or 2:1. In the detected Fe-catechin coordination complexes, FeII prevailed. Differential pulse voltammetry, the site-specific deoxyribose degradation, and FeII autoxidation assays proved that coordination complex formation affected catechin's antioxidant effects. In situ formed Fe-catechin coordination complexes showed no toxic activities in the brine shrimp mortality assay. In summary, catechin has properties for the possible treatment of pathological processes associated with ageing and degeneration, such as Alzheimer's and Parkinson's diseases.
Collapse
Affiliation(s)
- Lenka Kubicova
- Division of Molecular Systems Biology, Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, A-1030 Vienna, Austria; (L.K.); (G.B.); (W.W.)
| | - Gert Bachmann
- Division of Molecular Systems Biology, Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, A-1030 Vienna, Austria; (L.K.); (G.B.); (W.W.)
| | - Wolfram Weckwerth
- Division of Molecular Systems Biology, Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, A-1030 Vienna, Austria; (L.K.); (G.B.); (W.W.)
- Vienna Metabolomics Center (VIME), University of Vienna, Djerassiplatz 1, A-1030 Vienna, Austria
| | - Vladimir Chobot
- Division of Molecular Systems Biology, Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Djerassiplatz 1, A-1030 Vienna, Austria; (L.K.); (G.B.); (W.W.)
| |
Collapse
|
40
|
Characterization and Valorization of the Agricultural Waste Obtained from Lavandula Steam Distillation for Its Reuse in the Food and Pharmaceutical Fields. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27051613. [PMID: 35268713 PMCID: PMC8911589 DOI: 10.3390/molecules27051613] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 02/07/2023]
Abstract
The main focus of the current research was the characterization of the by-products from the steam distillation of Lavandula angustifolia Mill. (LA) and Lavandula x intermedia Emeric ex Loisel (LI) aerial parts, as they are important sources of bioactive compounds suitable for several applications in the food, cosmetic, and pharmaceutical industries. The oil-exhausted biomasses were extracted and the total polyphenol and flavonoid contents were, respectively, 19.22 ± 4.16 and 1.56 ± 0.21 mg/g for LA extract and 17.06 ± 3.31 and 1.41 ± 0.10 mg/g for LI extract. The qualitative analysis by liquid chromatography-electrospray tandem mass spectrometry (HPLC-ESI-MS) revealed that both the extracts were rich in phenolic acids and glycosylated flavonoids. The extracts exhibited radical scavenging, chelating, reducing activities, and inhibitory capacities on acetylcholinesterase and tyrosinase. The IC50 values against acetylcholinesterase and tyrosinase were, respectively, 5.35 ± 0.47 and 5.26 ± 0.02 mg/mL for LA, and 6.67 ± 0.12 and 6.56 ± 0.16 mg/mL for LI extracts. In conclusion, the oil-exhausted biomasses demonstrated to represent important sources of bioactive compounds, suitable for several applications in the food, cosmetic, and pharmaceutical industries.
Collapse
|