1
|
Perçin G, Riege K, Fröbel J, Metz J, Culemann S, Lesche M, Reinhardt S, Höfer T, Hoffmann S, Waskow C. Embryonic macrophages orchestrate niche cell homeostasis for the establishment of the definitive hematopoietic stem cell pool. Nat Commun 2025; 16:4428. [PMID: 40368907 PMCID: PMC12078706 DOI: 10.1038/s41467-025-59059-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 03/25/2025] [Indexed: 05/16/2025] Open
Abstract
Embryonic macrophages emerge before the onset of definitive hematopoiesis, seed into discrete tissues and contribute to specialized resident macrophages throughout life. Presence of embryonic macrophages in the bone marrow and functional impact on hematopoietic stem cells (HSC) or the niche remains unclear. Here we show that bone marrow macrophages consist of two ontogenetically distinct cell populations from embryonic and adult origin. Newborn mice lacking embryonic macrophages have decreased HSC numbers in the bone marrow suggesting an important function for embryo-derived macrophages in orchestrating HSC trafficking around birth. The establishment of a normal cellular niche space in the bone marrow critically depends on embryonic macrophages that are important for the development of mesenchymal stromal cells, but not other non-hematopoietic niche cells, providing evidence for a specific role for embryo-derived macrophages in the establishment of the niche environment pivotal for the establishment of a normally sized HSC pool.
Collapse
Affiliation(s)
- Gülce Perçin
- Immunology of Aging, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany.
| | - Konstantin Riege
- Computational Biology of Aging, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Julia Fröbel
- Immunology of Aging, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Jonas Metz
- Theoretical Systems Biology, German Cancer Research Center, Heidelberg, Germany
| | - Stephan Culemann
- Immunology of Aging, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
| | - Mathias Lesche
- DRESDEN-concept Genome Center, c/o CMCB Center for Molecular and Cellular Bioengineering Technology Platform of the TUD Dresden University of Technology, Dresden, Germany
| | - Susanne Reinhardt
- DRESDEN-concept Genome Center, c/o CMCB Center for Molecular and Cellular Bioengineering Technology Platform of the TUD Dresden University of Technology, Dresden, Germany
| | - Thomas Höfer
- Theoretical Systems Biology, German Cancer Research Center, Heidelberg, Germany
| | - Steve Hoffmann
- Computational Biology of Aging, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany
- Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich-Schiller-University, Jena, Germany
| | - Claudia Waskow
- Immunology of Aging, Leibniz Institute on Aging - Fritz Lipmann Institute (FLI), Jena, Germany.
- Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich-Schiller-University, Jena, Germany.
- Department of Medicine III, Faculty of Medicine, TU Dresden, Dresden, Germany.
| |
Collapse
|
2
|
Arjmand B, Mehran P, Badamchizadeh S, Alavi-Moghadam S, Arjmand R, Rezaei-Tavirani M, Aghayan HR, Larijani B, Vaezi M, Janbabaei G, Hajifathali A. The Role of Aging and Senescence in Bone Marrow Transplantation Outcome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025. [PMID: 40259169 DOI: 10.1007/5584_2025_861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
Bone marrow transplantation is considered a cornerstone in the treatment of hematologic malignancies and blood disorders. While it may offer the possibility of a cure through the use of high-dose chemotherapy and radiation, outcomes are significantly impacted by biological and medical factors. Herein, aging is associated with reduced hematopoiesis, immune function, and overall regenerative capacity of tissues. Growth arrest, a crucial property of cellular senescence, inhibits bone marrow function, lowers immune surveillance in aged adults, and reduces the efficiency of bone marrow transplantation. The clinical course for older recipients is further complicated by the presence of prolonged immunosuppression, slower recovery, and higher complication rates, including life-threatening graft-versus-host disease. Accordingly, there is increasing interest in explaining how aging, cellular senescence, and transplant outcomes are interrelated. The current chapter outlines the mechanisms whereby aging and senescence contribute to the immunological dysregulation and poor bone marrow transplantation outcomes observed in elderly cancer patients. The authors' goal is to suggest therapeutic approaches that will enhance the quality of life and survival rates of elderly bone marrow transplant recipients.
Collapse
Affiliation(s)
- Babak Arjmand
- Hematology-Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology, and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Pouya Mehran
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Sepideh Alavi-Moghadam
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Rasta Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Hamid Reza Aghayan
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohamad Vaezi
- Hematology-Oncology and Stem Cell Transplantation Research Center, Research Institute for Oncology, Hematology, and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Ghasem Janbabaei
- Hematologic Malignancies Research Center, Research Institute for Oncology, Hematology, and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Hajifathali
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
De Pace R, Iaquinta MR, Benkhalqui A, D'Agostino A, Trevisiol L, Nocini R, Mazziotta C, Rotondo JC, Bononi I, Tognon M, Martini F, Mazzoni E. Revolutionizing bone healing: the role of 3D models. CELL REGENERATION (LONDON, ENGLAND) 2025; 14:7. [PMID: 40113735 PMCID: PMC11926310 DOI: 10.1186/s13619-025-00225-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/31/2025] [Accepted: 02/28/2025] [Indexed: 03/22/2025]
Abstract
The increasing incidence of bone diseases has driven research towards Bone Tissue Engineering (BTE), an innovative discipline that uses biomaterials to develop three-dimensional (3D) scaffolds capable of mimicking the natural environment of bone tissue. Traditional approaches relying on two-dimensional (2D) models have exhibited significant limitations in simulating cellular interactions and the complexity of the bone microenvironment. In response to these challenges, 3D models such as organoids and cellular spheroids have emerged as effective tools for studying bone regeneration. Adult mesenchymal stem cells have proven crucial in this context, as they can differentiate into osteoblasts and contribute to bone tissue repair. Furthermore, the integration of composite biomaterials has shown substantial potential in enhancing bone healing. Advanced technologies like microfluidics offer additional opportunities to create controlled environments for cell culture, facilitating more detailed studies on bone regeneration. These advancements represent a fundamental step forward in the treatment of bone pathologies and the promotion of skeletal health. In this review, we report on the evolution of in vitro culture models applied to the study of bone healing/regrowth, starting from 2 to 3D cultures and microfluids. The different methodologies of in vitro model generation, cells and biomaterials are presented and discussed.
Collapse
Affiliation(s)
- Raffaella De Pace
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, 44121, Italy
| | - Maria Rosa Iaquinta
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- University Center for Studies On Gender Medicine, University of Ferrara, Ferrara, Italy
| | - Assia Benkhalqui
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- Department of Surgery, University of Verona, Verona, Italy
| | | | - Lorenzo Trevisiol
- Centre for Medical Sciences (CISMed), University of Trento, Trento, Italy
- Unit of Maxillofacial Surgery, Santa Chiara Regional Hospital, APSS, Trento, Italy
| | | | - Chiara Mazziotta
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- University Center for Studies On Gender Medicine, University of Ferrara, Ferrara, Italy
| | - John Charles Rotondo
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- University Center for Studies On Gender Medicine, University of Ferrara, Ferrara, Italy
| | - Ilaria Bononi
- Centralized Laboratory of Pre-Clinical Research, University of Ferrara, Ferrara, Italy
| | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- University Center for Studies On Gender Medicine, University of Ferrara, Ferrara, Italy
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Elisa Mazzoni
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, 44121, Italy.
| |
Collapse
|
4
|
Agas D, Sabbieti MG. Untangling Ariadne's Thread Within the Bone Marrow Maze: A Close-Up View of Stem/Progenitor Cells' Interactome and Secretome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025. [PMID: 40035957 DOI: 10.1007/5584_2024_847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
The bone marrow (BM) is a multifactorial, highly dynamic, still not fully "mapped," reservoir. The BM labyrinthine landscape is subject to a relentless debate on the specialized and stem/progenitor cells' scattering within designated microareas. Certainly, BM tissue plays a watchdog role in bone modeling and remodeling, hematopoiesis, immune surveillance, and endocrine response integration. Parameters like tissue topographical distinctiveness, stiffness and porosity grade, and cells' behavioral idiosyncrasies in terms of stem/progenitor cell housing, activation, and motility represent a knotty problem not easily solved. Given that the disruption of BM microdomains has been associated with a number of severe pathological disorders, the comprehension and preservation of the BM workspace at multiple levels have become mandatory. Solid evidence has showed the existence of an intricate and tightly regulated cross-talk between the BM cellular occupants. Direct physical cell-cell connections and soluble mediators, including cytokines, chemokines, growth factors, exosomes and microvesicles, orchestrate composite intracellular signaling routes. The spatiotemporal action of definite biofactors ensures a functional blood-producing organ with a physiological bone turnover and prompts the action of multipotent stromal/hematopoietic cells. Recently, significant research efforts have been addressed to build bioengineered niche-mimic models based on biofunctionalized scaffolds and organoid-like constructs. These artificial BM niches combine and transduce various aspects of bioinformatics and tissue engineering to unravel the complexities of BM organization. This chapter aims to unfold the recent breakthroughs in the understanding of a BM intramural cell-cell dialogue in a physiological and, in some cases, within an inflammatory background. BM maze is gradually being discovered, but there is still a long way to go.
Collapse
Affiliation(s)
- Dimitrios Agas
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, MC, Italy.
| | | |
Collapse
|
5
|
Kasherwal V, Kale V, Vaidya A. Extracellular vesicles secreted by leukemic cells as mediators of dysregulated hematopoiesis: acute myeloid leukemia as a case in point. Expert Rev Hematol 2025; 18:225-237. [PMID: 40008450 DOI: 10.1080/17474086.2025.2471860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 01/23/2025] [Accepted: 02/19/2025] [Indexed: 02/27/2025]
Abstract
INTRODUCTION Acute myeloid leukemia (AML) cells exhibit a profound capacity for resistance to conventional chemotherapeutic agents, posing a substantial challenge to existing therapeutic paradigms. Interestingly, this happens in the face of a luxuriant proliferation of leukemic blasts in the peripheral blood. This paradox of concurrent proliferative activity and cellular quiescence underscores a complex biological phenomenon that is intricately mediated by AML-derived Extracellular vesicles (EVs). AREAS COVERED An extensive literature review search was done on PubMed/Scopus/Web of Sciences databases to identify studies published between 2013 and 2024 elucidating and demonstrating the effect of AML-derived EVs, Microvesicles (MVs) and Exosomes (Exos) in regulating the normal and dysregulated bone marrow (BM) niche. EXPERT OPINION The review delves into understanding the molecular mechanisms underlying the dual behavior of AML cells - proliferation and quiescence, with a special focus on the role of the EVs and their subtypes viz. Exos and MVs in establishing a discrete BM microenvironment that is subversive to chemotherapy. It offers a novel perspective on the intricate interplay between the leukemic cells and their microenvironment, with implications for therapeutic interventions targeting AML persistence and drug resistance.
Collapse
Affiliation(s)
- Vishakha Kasherwal
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
| | - Vaijayanti Kale
- Symbiosis Centre for Stem Cell Research, Symbiosis International (Deemed University), Pune, India
| | - Anuradha Vaidya
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Pune, India
- Symbiosis Centre for Stem Cell Research, Symbiosis International (Deemed University), Pune, India
| |
Collapse
|
6
|
Niazi V, Ghafouri-Fard S. Effect of bone marrow niche on hematopoietic stem cells. Histochem Cell Biol 2024; 163:19. [PMID: 39714560 DOI: 10.1007/s00418-024-02348-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2024] [Indexed: 12/24/2024]
Abstract
Hematopoietic stem cells (HSCs) reside in a milieu that supports their functions, differentiation, and survival. This niche consists of several types of cells, including mesenchymal stem/stromal cells, endothelial cells, osteoblasts, megakaryocytes, macrophages, adipocytes, lymphoid cells, and nerve fibers. The interactions between these cells and HSCs have a role in HSC fate. Several studies have focused on identification of the biological and cellular mechanisms contributing to the establishment of this niche. However, the exact mechanisms of the interaction between HSCs and the bone marrow niche have not been elucidated yet. Unraveling these mechanisms would help in the design of effective methods for maintenance and multiplication of HSCs in clinical settings, in addition to establishment of novel therapies for hematopoietic diseases. The current review summarizes the effects of the niche cells on HSC function and underlying mechanisms of interplay between HSCs and their niche.
Collapse
Affiliation(s)
- Vahid Niazi
- Stem Cell Research Center, Golestan University of Medical Science, Gorgan, Iran
- School of Advanced Technologies in Medicine, Golestan University of Medical Science, Gorgan, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Lian JW, Li SY, Clarke RB, Howell SJ, Meng QJ. Can we utilise the circadian clock to target cancer stem cells? Cancer Lett 2024; 611:217360. [PMID: 39608441 DOI: 10.1016/j.canlet.2024.217360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 11/03/2024] [Accepted: 11/25/2024] [Indexed: 11/30/2024]
Abstract
The 24-hourly circadian clock has been implicated in the regulation of multiple cancer hallmarks and characteristics. Cancer stem cells (CSCs) are a small but significant population of cells within many cancers, characterised by their self-renewal and clonogenic capacities. Increasing evidence points to CSCs having prominent roles in metastasis and drug resistance. However, it remains largely unknown how circadian clocks are involved with CSCs and what implications these interactions have for cancer progression and therapeutics. In this review, we examine the growing evidence on the role of circadian clocks in CSCs and discuss the potential therapeutic implications. This opens up new opportunities to target CSCs through various chronotherapeutic approaches, potentially improving clinical cancer outcomes. We propose different scenarios in which targeting circadian clocks in CSCs or their surrounding microenvironment could be developed into effective therapeutic strategies, including: (1) direct pharmacological targeting of core clock molecules, (2) optimising the timing of systemic anticancer therapies, and (3) targeting the neighbouring cells or systemic factors that influence tumour cells in a circadian-dependent manner.
Collapse
Affiliation(s)
- Jia-Wen Lian
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Shi-Yang Li
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Robert B Clarke
- Breast Biology Group, Manchester Breast Centre, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Sacha J Howell
- Breast Biology Group, Manchester Breast Centre, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Qing-Jun Meng
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
8
|
Landspersky T, Stein M, Saçma M, Geuder J, Braitsch K, Rivière J, Hettler F, Romero Marquez S, Vilne B, Hameister E, Richter D, Schönhals E, Tuckermann J, Verbeek M, Herhaus P, Hecker JS, Bassermann F, Götze KS, Enard W, Geiger H, Oostendorp RAJ, Schreck C. Targeting CDC42 reduces skeletal degeneration after hematopoietic stem cell transplantation. Blood Adv 2024; 8:5400-5414. [PMID: 39159429 PMCID: PMC11526086 DOI: 10.1182/bloodadvances.2024012879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/13/2024] [Accepted: 06/16/2024] [Indexed: 08/21/2024] Open
Abstract
ABSTRACT Osteopenia and osteoporosis are common long-term complications of the cytotoxic conditioning regimen for hematopoietic stem cell transplantation (HSCT). We examined mesenchymal stem and progenitor cells (MSPCs), which include skeletal progenitors, from mice undergoing HSCT. Such MSPCs showed reduced fibroblastic colony-forming units frequency, increased DNA damage, and enhanced occurrence of cellular senescence, whereas there was a reduced bone volume in animals that underwent HSCT. This reduced MSPC function correlated with elevated activation of the small Rho guanosine triphosphate hydrolase CDC42, disorganized F-actin distribution, mitochondrial abnormalities, and impaired mitophagy in MSPCs. Changes and defects similar to those in mice were also observed in MSPCs from humans undergoing HSCT. A pharmacological treatment that attenuated the elevated activation of CDC42 restored F-actin fiber alignment, mitochondrial function, and mitophagy in MSPCs in vitro. Finally, targeting CDC42 activity in vivo in animals undergoing transplants improved MSPC quality to increase both bone volume and trabecular bone thickness. Our study shows that attenuation of CDC42 activity is sufficient to attenuate reduced function of MSPCs in a BM transplant setting.
Collapse
Affiliation(s)
- Theresa Landspersky
- School of Medicine, Department of internal Medicine III, Technical University of Munich, Munich, Germany
| | - Merle Stein
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
| | - Mehmet Saçma
- Institute of Molecular Medicine, Stem Cells, and Aging, Ulm University, Ulm, Germany
| | - Johanna Geuder
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians University, Munich, Germany
| | - Krischan Braitsch
- School of Medicine, Department of internal Medicine III, Technical University of Munich, Munich, Germany
| | - Jennifer Rivière
- School of Medicine, Department of internal Medicine III, Technical University of Munich, Munich, Germany
| | - Franziska Hettler
- School of Medicine, Department of internal Medicine III, Technical University of Munich, Munich, Germany
| | - Sandra Romero Marquez
- School of Medicine, Department of internal Medicine III, Technical University of Munich, Munich, Germany
| | - Baiba Vilne
- Bioinformatics Laboratory, Rīga Stradiņš University, Riga, Lettland
| | - Erik Hameister
- School of Medicine, Department of internal Medicine III, Technical University of Munich, Munich, Germany
| | - Daniel Richter
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
| | - Emely Schönhals
- School of Medicine, Department of internal Medicine III, Technical University of Munich, Munich, Germany
| | - Jan Tuckermann
- Institute of Comparative Molecular Endocrinology, Ulm University, Ulm, Germany
| | - Mareike Verbeek
- School of Medicine, Department of internal Medicine III, Technical University of Munich, Munich, Germany
| | - Peter Herhaus
- School of Medicine, Department of internal Medicine III, Technical University of Munich, Munich, Germany
| | - Judith S. Hecker
- School of Medicine, Department of internal Medicine III, Technical University of Munich, Munich, Germany
| | - Florian Bassermann
- School of Medicine, Department of internal Medicine III, Technical University of Munich, Munich, Germany
| | - Katharina S. Götze
- School of Medicine, Department of internal Medicine III, Technical University of Munich, Munich, Germany
| | - Wolfgang Enard
- Anthropology and Human Genomics, Faculty of Biology, Ludwig-Maximilians University, Munich, Germany
| | - Hartmut Geiger
- Institute of Molecular Medicine, Stem Cells, and Aging, Ulm University, Ulm, Germany
| | - Robert A. J. Oostendorp
- School of Medicine, Department of internal Medicine III, Technical University of Munich, Munich, Germany
| | - Christina Schreck
- School of Medicine, Department of internal Medicine III, Technical University of Munich, Munich, Germany
| |
Collapse
|
9
|
Alsultan A, Farge D, Kili S, Forte M, Weiss DJ, Grignon F, Boelens JJ. International Society for Cell and Gene Therapy Clinical Translation Committee recommendations on mesenchymal stromal cells in graft-versus-host disease: easy manufacturing is faced with standardizing and commercialization challenges. Cytotherapy 2024; 26:1132-1140. [PMID: 38804990 PMCID: PMC12046531 DOI: 10.1016/j.jcyt.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 05/29/2024]
Abstract
Mesenchymal stromal cells (MSCs) have been used in multiple clinical trials for steroid-refractory moderate-severe (grade II-IV) acute graft-versus-host disease (aGVHD) across the world over the last two decades. Despite very promising results in a variety of trials, it failed to get widespread approval by regulatory agencies such as the U.S. Food and Drug Administration and the European Medicines Agency. What lessons can we learn from this for future studies on MSCs and other cell therapy products? Broad heterogeneity among published trials using MSCs in aGVHD was likely the core problem. We propose a standardized approach in regards to donor-related factors, MSCs-related characteristics, as well as clinical trial design, to limit heterogeneity in trials for aGVHD and to fulfill the requirements of regulatory agencies. This approach may be expanded beyond MSCs to other Cell and Gene therapy products and trials in other diseases.
Collapse
Affiliation(s)
- Abdulrahman Alsultan
- Department of Pediatrics, College of Medicine, King Saud University, Riyadh, Saudi Arabia; Transplantation and Cellular Therapy, MSK Kids, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Dominique Farge
- Internal Medicine Unit (UF 04): CRMR MATHEC, Autoimmune diseases and Cellular Therapy, St-Louis Hospital, Center of reference for rare systemic autoimmune diseases of Ile-de-France (FAI2R), AP-HP, Hôpital St-Louis, Paris University, IRSL, Paris, France; Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Sven Kili
- Sven Kili Consulting Ltd., Shrewsbury, UK; Saisei Ventures, Boston, Massachusetts, USA; CCRM, Toronto, Canada
| | | | - Daniel J Weiss
- University of Vermont College of Medicine, Burlington, Vermont, USA
| | - Felix Grignon
- International Society for Cell & Gene Therapy, Vancouver, Canada
| | - Jaap Jan Boelens
- Transplantation and Cellular Therapy, MSK Kids, Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA.
| |
Collapse
|
10
|
Martini S, Drzeniek NM, Stark R, Kollert MR, Du W, Reinke S, Ort M, Hardt S, Kotko I, Kath J, Schlickeiser S, Geißler S, Wagner DL, Krebs AC, Volk HD. Long-term in vitromaintenance of plasma cells in a hydrogel-enclosed human bone marrow microphysiological 3D model system. Biofabrication 2024; 16:045005. [PMID: 38955197 DOI: 10.1088/1758-5090/ad5dfe] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 07/01/2024] [Indexed: 07/04/2024]
Abstract
Plasma cells (PCs) in bone marrow (BM) play an important role in both protective and pathogenic humoral immune responses, e.g. in various malignant and non-malignant diseases such as multiple myeloma, primary and secondary immunodeficiencies and autoimmune diseases. Dedicated microenvironmental niches in the BM provide PCs with biomechanical and soluble factors that support their long-term survival. There is a high need for appropriate and robust model systems to better understand PCs biology, to develop new therapeutic strategies for PCs-related diseases and perform targeted preclinical studies with high predictive value. Most preclinical data have been derived fromin vivostudies in mice, asin vitrostudies of human PCs are limited due to restricted survival and functionality in conventional 2D cultures that do not reflect the unique niche architecture of the BM. We have developed a microphysiological, dynamic 3D BM culture system (BM-MPS) based on human primary tissue (femoral biopsies), mechanically supported by a hydrogel scaffold casing. While a bioinert agarose casing did not support PCs survival, a photo-crosslinked collagen-hyaluronic acid (Col-HA) hydrogel preserved the native BM niche architecture and allowed PCs survivalin vitrofor up to 2 weeks. Further, the Col-HA hydrogel was permissive to lymphocyte migration into the microphysiological system´s circulation. Long-term PCs survival was related to the stable presence in the culture of soluble factors, as APRIL, BAFF, and IL-6. Increasing immunoglobulins concentrations in the medium confirm their functionality over culture time. To the best of our knowledge, this study is the first report of successful long-term maintenance of primary-derived non-malignant PCsin vitro. Our innovative model system is suitable for in-depthin vitrostudies of human PCs regulation and exploration of targeted therapeutic approaches such as CAR-T cell therapy or biologics.
Collapse
Affiliation(s)
- Stefania Martini
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Berlin, Germany
- Institute of Medical Immunology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Norman Michael Drzeniek
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Berlin, Germany
- Institute of Medical Immunology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Regina Stark
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Matthias Reiner Kollert
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Berlin, Germany
- Julius Wolff Institute, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Weijie Du
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Center for Advanced Therapies (BeCAT), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Simon Reinke
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Melanie Ort
- Julius Wolff Institute, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
- Department of Biology, Chemistry and Pharmacy, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Sebastian Hardt
- Center for Musculoskeletal Surgery Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Iuliia Kotko
- Institute of Medical Immunology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Jonas Kath
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Center for Advanced Therapies (BeCAT), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Stephan Schlickeiser
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Berlin, Germany
- CheckImmune GmbH, Berlin, Germany
| | - Sven Geißler
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Berlin, Germany
- Julius Wolff Institute, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Dimitrios Laurin Wagner
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Berlin, Germany
- Berlin Center for Advanced Therapies (BeCAT), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
- Institute of Transfusion Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Anna-Catharina Krebs
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Berlin, Germany
- Institute of Medical Immunology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
- Berlin Center for Advanced Therapies (BeCAT), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Hans-Dieter Volk
- BIH Center for Regenerative Therapies (BCRT), Berlin Institute of Health (BIH) at Charité-Universitätsmedizin Berlin, Berlin, Germany
- Institute of Medical Immunology, Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
- Berlin Center for Advanced Therapies (BeCAT), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
11
|
Bandyopadhyay S, Duffy MP, Ahn KJ, Sussman JH, Pang M, Smith D, Duncan G, Zhang I, Huang J, Lin Y, Xiong B, Imtiaz T, Chen CH, Thadi A, Chen C, Xu J, Reichart M, Martinez Z, Diorio C, Chen C, Pillai V, Snaith O, Oldridge D, Bhattacharyya S, Maillard I, Carroll M, Nelson C, Qin L, Tan K. Mapping the cellular biogeography of human bone marrow niches using single-cell transcriptomics and proteomic imaging. Cell 2024; 187:3120-3140.e29. [PMID: 38714197 PMCID: PMC11162340 DOI: 10.1016/j.cell.2024.04.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 02/02/2024] [Accepted: 04/12/2024] [Indexed: 05/09/2024]
Abstract
Non-hematopoietic cells are essential contributors to hematopoiesis. However, heterogeneity and spatial organization of these cells in human bone marrow remain largely uncharacterized. We used single-cell RNA sequencing (scRNA-seq) to profile 29,325 non-hematopoietic cells and discovered nine transcriptionally distinct subtypes. We simultaneously profiled 53,417 hematopoietic cells and predicted their interactions with non-hematopoietic subsets. We employed co-detection by indexing (CODEX) to spatially profile over 1.2 million cells. We integrated scRNA-seq and CODEX data to link predicted cellular signaling with spatial proximity. Our analysis revealed a hyperoxygenated arterio-endosteal neighborhood for early myelopoiesis, and an adipocytic localization for early hematopoietic stem and progenitor cells (HSPCs). We used our CODEX atlas to annotate new images and uncovered mesenchymal stromal cell (MSC) expansion and spatial neighborhoods co-enriched for leukemic blasts and MSCs in acute myeloid leukemia (AML) patient samples. This spatially resolved, multiomic atlas of human bone marrow provides a reference for investigation of cellular interactions that drive hematopoiesis.
Collapse
Affiliation(s)
- Shovik Bandyopadhyay
- Cellular and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael P Duffy
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kyung Jin Ahn
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jonathan H Sussman
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Minxing Pang
- Applied Mathematics & Computational Science Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - David Smith
- Center for Single Cell Biology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Gwendolyn Duncan
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Iris Zhang
- Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Jeffrey Huang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Yulieh Lin
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Barbara Xiong
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tamjid Imtiaz
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Chia-Hui Chen
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Anusha Thadi
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Changya Chen
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jason Xu
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Melissa Reichart
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zachary Martinez
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Caroline Diorio
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chider Chen
- Department of Oral and Maxillofacial Surgery/Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vinodh Pillai
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Oraine Snaith
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Derek Oldridge
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Siddharth Bhattacharyya
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ivan Maillard
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Martin Carroll
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Charles Nelson
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ling Qin
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Kai Tan
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Center for Single Cell Biology, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
12
|
Mohammed RN, Khoshnaw NS, Mohammed VF, Hassan DO, Abdullah CN, Mahmood TI, Abbass HA, Ahmed D, Noori KD, Saeed LI, Salih SM, Sidiq HS, Ali DO, Shwan A, Majolino I, Ipsevich F. Establishment of reference values based on influential characteristics of hematopoietic stem cells and immune cell subsets in the bone marrow. Heliyon 2024; 10:e30888. [PMID: 38774070 PMCID: PMC11107188 DOI: 10.1016/j.heliyon.2024.e30888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/18/2024] [Accepted: 05/07/2024] [Indexed: 05/24/2024] Open
Abstract
Hematopoietic stem cell transplantation is still a curative treatment for many haematological cancers. Many factors, such as age, sex, ethnic background, smoking status, and body mass index, affect average reference values in different populations. This study aimed to establish a reference range for the absolute numbers and percentages of healthy individuals' hematopoietic stem cells and immune cells in the bone marrow. Seventy-one healthy donors (32 males and 39 females) were enrolled in the study. Following bone marrow harvesting, using flow cytometry, immunophenotyping was performed to determine the absolute number and percentage of CD34+ stem cells and various immune subsets. We found no statistically significant difference in the absolute count of HSCs or immune cell subsets in the bone marrow between males and females. Regarding age, the younger group had more significant CD34+ and immune cell subsets. Donors with healthier body weights tend to have richer bone marrow cellularity. Establishing a reference value for hematopoietic stem cells and immune cells in the bone marrow based on various influential factors is pivotal for defining bone marrow status and donor selection.
Collapse
Affiliation(s)
- Rebar N. Mohammed
- Department of Medical Laboratory Technology, Faculty of Health Science, Qaiwan International University, Sulaimani, Kurdistan Region, Iraq
- College of Veterinary Medicine, University of Sulaimani, Sulaymaniyah, Iraq
- Bone Marrow Transplant Center, Hiwa Hospital, Sulaymaniyah, KRG, Iraq
| | - Najmaddin S.H. Khoshnaw
- Department of Medical Laboratory Science, College of Science, Komar University of Science and Technology, KRG, Iraq
- Department of Clinical Science, College of Medicine, University of Sulaimani, Sulaymaniyah, Iraq
| | | | - Dastan O. Hassan
- Bone Marrow Transplant Center, Hiwa Hospital, Sulaymaniyah, KRG, Iraq
| | | | | | - Huda A. Abbass
- Bone Marrow Transplant Center, Hiwa Hospital, Sulaymaniyah, KRG, Iraq
| | - Dereen Ahmed
- Bone Marrow Transplant Center, Hiwa Hospital, Sulaymaniyah, KRG, Iraq
| | - Kani D. Noori
- Bone Marrow Transplant Center, Hiwa Hospital, Sulaymaniyah, KRG, Iraq
| | - Lanja I. Saeed
- Bone Marrow Transplant Center, Hiwa Hospital, Sulaymaniyah, KRG, Iraq
| | | | - Hiwa S. Sidiq
- Bone Marrow Transplant Center, Hiwa Hospital, Sulaymaniyah, KRG, Iraq
| | - Dlnya Omer Ali
- Bone Marrow Transplant Center, Hiwa Hospital, Sulaymaniyah, KRG, Iraq
| | - Alan Shwan
- Bone Marrow Transplant Center, Hiwa Hospital, Sulaymaniyah, KRG, Iraq
| | - Ignazio Majolino
- Ospedale San Camillo and Salvator Mundi International Hospital, Rome, Italy
| | - Francesco Ipsevich
- Ospedale San Camillo and Salvator Mundi International Hospital, Rome, Italy
| |
Collapse
|
13
|
Luanpitpong S, Tangkiettrakul K, Kang X, Srisook P, Poohadsuan J, Samart P, Klaihmon P, Janan M, Lorthongpanich C, Laowtammathron C, Issaragrisil S. OGT and OGA gene-edited human induced pluripotent stem cells for dissecting the functional roles of O-GlcNAcylation in hematopoiesis. Front Cell Dev Biol 2024; 12:1361943. [PMID: 38752196 PMCID: PMC11094211 DOI: 10.3389/fcell.2024.1361943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/14/2024] [Indexed: 05/18/2024] Open
Abstract
Hematopoiesis continues throughout life to produce all types of blood cells from hematopoietic stem cells (HSCs). Metabolic state is a known regulator of HSC self-renewal and differentiation, but whether and how metabolic sensor O-GlcNAcylation, which can be modulated via an inhibition of its cycling enzymes O-GlcNAcase (OGA) and O-GlcNAc transferase (OGT), contributes to hematopoiesis remains largely unknown. Herein, isogenic, single-cell clones of OGA-depleted (OGAi) and OGT-depleted (OGTi) human induced pluripotent stem cells (hiPSCs) were successfully generated from the master hiPSC line MUSIi012-A, which were reprogrammed from CD34+ hematopoietic stem/progenitor cells (HSPCs) containing epigenetic memory. The established OGAi and OGTi hiPSCs exhibiting an increase or decrease in cellular O-GlcNAcylation concomitant with their loss of OGA and OGT, respectively, appeared normal in phenotype and karyotype, and retained pluripotency, although they may favor differentiation toward certain germ lineages. Upon hematopoietic differentiation through mesoderm induction and endothelial-to-hematopoietic transition, we found that OGA inhibition accelerates hiPSC commitment toward HSPCs and that disruption of O-GlcNAc homeostasis affects their commitment toward erythroid lineage. The differentiated HSPCs from all groups were capable of giving rise to all hematopoietic progenitors, thus confirming their functional characteristics. Altogether, the established single-cell clones of OGTi and OGAi hiPSCs represent a valuable platform for further dissecting the roles of O-GlcNAcylation in blood cell development at various stages and lineages of blood cells. The incomplete knockout of OGA and OGT in these hiPSCs makes them susceptible to additional manipulation, i.e., by small molecules, allowing the molecular dynamics studies of O-GlcNAcylation.
Collapse
Affiliation(s)
- Sudjit Luanpitpong
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Blood Products and Cellular Immunotherapy Research Group, Research Division, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kantpitchar Tangkiettrakul
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Blood Products and Cellular Immunotherapy Research Group, Research Division, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Xing Kang
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Pimonwan Srisook
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Jirarat Poohadsuan
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Parinya Samart
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Phatchanat Klaihmon
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Montira Janan
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Blood Products and Cellular Immunotherapy Research Group, Research Division, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chanchao Lorthongpanich
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Blood Products and Cellular Immunotherapy Research Group, Research Division, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chuti Laowtammathron
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Surapol Issaragrisil
- Siriraj Center of Excellence for Stem Cell Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Division of Hematology, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
14
|
Allara M, Girard JR. Towards an integrated understanding of inflammatory pathway influence on hematopoietic stem and progenitor cell differentiation. Bioessays 2024; 46:e2300142. [PMID: 38488673 DOI: 10.1002/bies.202300142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 03/28/2024]
Abstract
Recent research highlights that inflammatory signaling pathways such as pattern recognition receptor (PRR) signaling and inflammatory cytokine signaling play an important role in both on-demand hematopoiesis as well as steady-state hematopoiesis. Knockout studies have demonstrated the necessity of several distinct pathways in these processes, but often lack information about the contribution of specific cell types to the phenotypes in question. Transplantation studies have increased the resolution to the level of specific cell types by testing the necessity of inflammatory pathways specifically in donor hematopoietic stem and progenitor cells (HSPCs) or in recipient niche cells. Here, we argue that for an integrated understanding of how these processes occur in vivo and to inform the development of therapies that modulate hematopoietic responses, we need studies that knockout inflammatory signaling receptors in a cell-specific manner and compare the phenotypes caused by knockout in individual niche cells versus HSPCs.
Collapse
Affiliation(s)
- Michael Allara
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts, USA
| | - Juliet R Girard
- Department of Biology, University of Massachusetts Boston, Boston, Massachusetts, USA
| |
Collapse
|
15
|
Bandyopadhyay S, Duffy M, Ahn KJ, Pang M, Smith D, Duncan G, Sussman J, Zhang I, Huang J, Lin Y, Xiong B, Imtiaz T, Chen CH, Thadi A, Chen C, Xu J, Reichart M, Pillai V, Snaith O, Oldridge D, Bhattacharyya S, Maillard I, Carroll M, Nelson C, Qin L, Tan K. Mapping the Cellular Biogeography of Human Bone Marrow Niches Using Single-Cell Transcriptomics and Proteomic Imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.14.585083. [PMID: 38559168 PMCID: PMC10979999 DOI: 10.1101/2024.03.14.585083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The bone marrow is the organ responsible for blood production. Diverse non-hematopoietic cells contribute essentially to hematopoiesis. However, these cells and their spatial organization remain largely uncharacterized as they have been technically challenging to study in humans. Here, we used fresh femoral head samples and performed single-cell RNA sequencing (scRNA-Seq) to profile 29,325 enriched non-hematopoietic bone marrow cells and discover nine transcriptionally distinct subtypes. We next employed CO-detection by inDEXing (CODEX) multiplexed imaging of 18 individuals, including both healthy and acute myeloid leukemia (AML) samples, to spatially profile over one million single cells with a novel 53-antibody panel. We discovered a relatively hyperoxygenated arterio-endosteal niche for early myelopoiesis, and an adipocytic, but not endosteal or perivascular, niche for early hematopoietic stem and progenitor cells. We used our atlas to predict cell type labels in new bone marrow images and used these predictions to uncover mesenchymal stromal cell (MSC) expansion and leukemic blast/MSC-enriched spatial neighborhoods in AML patient samples. Our work represents the first comprehensive, spatially-resolved multiomic atlas of human bone marrow and will serve as a reference for future investigation of cellular interactions that drive hematopoiesis.
Collapse
Affiliation(s)
- Shovik Bandyopadhyay
- Cellular and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Michael Duffy
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Kyung Jin Ahn
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Minxing Pang
- Applied Mathematics & Computational Science Graduate Group, University of Pennsylvania, Philadelphia, PA
| | - David Smith
- Center for Single Cell Biology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Gwendolyn Duncan
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA
| | - Jonathan Sussman
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Iris Zhang
- Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA
| | - Jeffrey Huang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA
| | - Yulieh Lin
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Barbara Xiong
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Tamjid Imtiaz
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA
| | - Chia-Hui Chen
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Anusha Thadi
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Changya Chen
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Jason Xu
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Melissa Reichart
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Vinodh Pillai
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Oraine Snaith
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Derek Oldridge
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Siddharth Bhattacharyya
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ivan Maillard
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Martin Carroll
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Charles Nelson
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ling Qin
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Kai Tan
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Center for Single Cell Biology, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
16
|
Varisli L, Vlahopoulos S. Epithelial-Mesenchymal Transition in Acute Leukemias. Int J Mol Sci 2024; 25:2173. [PMID: 38396852 PMCID: PMC10889420 DOI: 10.3390/ijms25042173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/25/2024] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a metabolic process that confers phenotypic flexibility to cells and the ability to adapt to new functions. This transition is critical during embryogenesis and is required for the differentiation of many tissues and organs. EMT can also be induced in advanced-stage cancers, leading to further malignant behavior and chemotherapy resistance, resulting in an unfavorable prognosis for patients. Although EMT was long considered and studied only in solid tumors, it has been shown to be involved in the pathogenesis of hematological malignancies, including acute leukemias. Indeed, there is increasing evidence that EMT promotes the progression of acute leukemias, leading to the emergence of a more aggressive phenotype of the disease, and also causes chemotherapy resistance. The current literature suggests that the levels and activities of EMT inducers and markers can be used to predict prognosis, and that targeting EMT in addition to conventional therapies may increase treatment success in acute leukemias.
Collapse
Affiliation(s)
- Lokman Varisli
- Department of Molecular Biology and Genetics, Science Faculty, Dicle University, Diyarbakir 21280, Turkey
| | - Spiros Vlahopoulos
- First Department of Pediatrics, National and Kapodistrian University of Athens, Thivon & Levadeias 8, Goudi, 11527 Athens, Greece
| |
Collapse
|
17
|
Gorur V, Kranc KR, Ganuza M, Telfer P. Haematopoietic stem cell health in sickle cell disease and its implications for stem cell therapies and secondary haematological disorders. Blood Rev 2024; 63:101137. [PMID: 37919142 DOI: 10.1016/j.blre.2023.101137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 11/04/2023]
Abstract
Gene modification of haematopoietic stem cells (HSCs) is a potentially curative approach to sickle cell disease (SCD) and offers hope for patients who are not eligible for allogeneic HSC transplantation. Current approaches require in vitro manipulation of healthy autologous HSC prior to their transplantation. However, the health and integrity of HSCs may be compromised by a variety of disease processes in SCD, and challenges have emerged in the clinical trials of gene therapy. There is also concern about increased susceptibility to haematological malignancies during long-term follow up of patients, and this raises questions about genomic stability in the stem cell compartment. In this review, we evaluate the evidence for HSC deficits in SCD and then discuss their potential causation. Finally, we suggest several questions which need to be addressed in order to progress with successful HSC manipulation for gene therapy in SCD.
Collapse
Affiliation(s)
- Vishaka Gorur
- William Harvey Research Institute, Queen Mary University of London, EC1M 6BQ, UK.
| | - Kamil R Kranc
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, EC1M 6BQ, UK.
| | - Miguel Ganuza
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary University of London, EC1M 6BQ, UK.
| | - Paul Telfer
- Blizard Institute, Queen Mary University of London, E1 2AT, UK.
| |
Collapse
|
18
|
Cunningham KT, Mills KHG. Modulation of haematopoiesis by protozoal and helminth parasites. Parasite Immunol 2023; 45:e12975. [PMID: 36797216 PMCID: PMC10909493 DOI: 10.1111/pim.12975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/07/2023] [Accepted: 02/13/2023] [Indexed: 02/18/2023]
Abstract
During inflammation, haematopoietic stem cells (HSCs) in the bone marrow (BM) and periphery rapidly expand and preferentially differentiate into myeloid cells that mediate innate immune responses. HSCs can be directed into quiescence or differentiation by sensing alterations to the haematopoietic niche, including cytokines, chemokines, and pathogen-derived products. Most studies attempting to identify the mechanisms of haematopoiesis have focused on bacterial and viral infections. From intracellular protozoan infections to large multicellular worms, parasites are a global health burden and represent major immunological challenges that remain poorly defined in the context of haematopoiesis. Immune responses to parasites vary drastically, and parasites have developed sophisticated immunomodulatory mechanisms that allow development of chronic infections. Recent advances in imaging, genomic sequencing, and mouse models have shed new light on how parasites induce unique forms of emergency haematopoiesis. In addition, parasites can modify the haematopoiesis in the BM and periphery to improve their survival in the host. Parasites can also induce long-lasting modifications to HSCs, altering future immune responses to infection, inflammation or transplantation, a term sometimes referred to as central trained immunity. In this review, we highlight the current understanding of parasite-induced haematopoiesis and how parasites target this process to promote chronic infections.
Collapse
Affiliation(s)
- Kyle T. Cunningham
- Wellcome Centre for Integrative ParasitologyInstitute of Infection and Immunity, University of GlasgowGlasgowUK
| | - Kingston H. G. Mills
- Immune Regulation Research GroupTrinity Biomedical Sciences Institute, Trinity College DublinDublinIreland
| |
Collapse
|
19
|
Larsen MC, Rondelli CM, Almeldin A, Song YS, N’Jai A, Alexander DL, Forsberg EC, Sheibani N, Jefcoate CR. AhR and CYP1B1 Control Oxygen Effects on Bone Marrow Progenitor Cells: The Enrichment of Multiple Olfactory Receptors as Potential Microbiome Sensors. Int J Mol Sci 2023; 24:16884. [PMID: 38069208 PMCID: PMC10706615 DOI: 10.3390/ijms242316884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Polycyclic aromatic hydrocarbon (PAH) pollutants and microbiome products converge on the aryl hydrocarbon receptor (AhR) to redirect selective rapid adherence of isolated bone marrow (BM) cells. In young adult mice, Cyp1b1-deficiency and AhR activation by PAH, particularly when prolonged by Cyp1a1 deletion, produce matching gene stimulations in these BM cells. Vascular expression of Cyp1b1 lowers reactive oxygen species (ROS), suppressing NF-κB/RelA signaling. PAH and allelic selectivity support a non-canonical AhR participation, possibly through RelA. Genes stimulated by Cyp1b1 deficiency were further resolved according to the effects of Cyp1b1 and Cyp1a1 dual deletions (DKO). The adherent BM cells show a cluster of novel stimulations, including select developmental markers; multiple re-purposed olfactory receptors (OLFR); and α-Defensin, a microbial disruptor. Each one connects to an enhanced specific expression of the catalytic RNA Pol2 A subunit, among 12 different subunits. Mesenchymal progenitor BMS2 cells retain these features. Cyp1b1-deficiency removes lymphocytes from adherent assemblies as BM-derived mesenchymal stromal cells (BM-MSC) expand. Cyp1b1 effects were cell-type specific. In vivo, BM-MSC Cyp1b1 expression mediated PAH suppression of lymphocyte progenitors. In vitro, OP9-MSC sustained these progenitors, while Csf1 induced monocyte progenitor expansion to macrophages. Targeted Cyp1b1 deletion (Cdh5-Cre; Cyp1b1fl/fl) established endothelium control of ROS that directs AhR-mediated suppression of B cell progenitors. Monocyte Cyp1b1 deletion (Lyz2-Cre; Cyp1b1fl/fl) selectively attenuated M1 polarization of expanded macrophages, but did not enhance effects on basal M2 polarization. Thus, specific sources of Cyp1b1 link to AhR and to an OLFR network to provide BM inflammatory modulation via diverse microbiome products.
Collapse
Affiliation(s)
- Michele C. Larsen
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (M.C.L.); (A.A.)
| | | | - Ahmed Almeldin
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (M.C.L.); (A.A.)
| | - Yong-Seok Song
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA;
| | - Alhaji N’Jai
- Department of Pathobiological Sciences, University of Wisconsin, Madison, WI 53706, USA;
| | - David L. Alexander
- Institute for the Biology of Stem Cells, University of California, Santa Cruz, CA 95064, USA; (D.L.A.); (E.C.F.)
| | - E. Camilla Forsberg
- Institute for the Biology of Stem Cells, University of California, Santa Cruz, CA 95064, USA; (D.L.A.); (E.C.F.)
| | - Nader Sheibani
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (M.C.L.); (A.A.)
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA;
| | - Colin R. Jefcoate
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; (M.C.L.); (A.A.)
| |
Collapse
|
20
|
Sharma NS, Choudhary B. Good Cop, Bad Cop: Profiling the Immune Landscape in Multiple Myeloma. Biomolecules 2023; 13:1629. [PMID: 38002311 PMCID: PMC10669790 DOI: 10.3390/biom13111629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/26/2023] [Accepted: 10/29/2023] [Indexed: 11/26/2023] Open
Abstract
Multiple myeloma (MM) is a dyscrasia of plasma cells (PCs) characterized by abnormal immunoglobulin (Ig) production. The disease remains incurable due to a multitude of mutations and structural abnormalities in MM cells, coupled with a favorable microenvironment and immune suppression that eventually contribute to the development of drug resistance. The bone marrow microenvironment (BMME) is composed of a cellular component comprising stromal cells, endothelial cells, osteoclasts, osteoblasts, and immune cells, and a non-cellular component made of the extracellular matrix (ECM) and the liquid milieu, which contains cytokines, growth factors, and chemokines. The bone marrow stromal cells (BMSCs) are involved in the adhesion of MM cells, promote the growth, proliferation, invasion, and drug resistance of MM cells, and are also crucial in angiogenesis and the formation of lytic bone lesions. Classical immunophenotyping in combination with advanced immune profiling using single-cell sequencing technologies has enabled immune cell-specific gene expression analysis in MM to further elucidate the roles of specific immune cell fractions from peripheral blood and bone marrow (BM) in myelomagenesis and progression, immune evasion and exhaustion mechanisms, and development of drug resistance and relapse. The review describes the role of BMME components in MM development and ongoing clinical trials using immunotherapeutic approaches.
Collapse
Affiliation(s)
- Niyati Seshagiri Sharma
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Electronic City, Bengaluru 560100, India
- Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Bibha Choudhary
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Electronic City, Bengaluru 560100, India
| |
Collapse
|
21
|
Khaledian B, Thibes L, Shimono Y. Adipocyte regulation of cancer stem cells. Cancer Sci 2023; 114:4134-4144. [PMID: 37622414 PMCID: PMC10637066 DOI: 10.1111/cas.15940] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/08/2023] [Accepted: 08/13/2023] [Indexed: 08/26/2023] Open
Abstract
Cancer stem cells (CSCs) are a highly tumorigenic subpopulation of the cancer cells within a tumor that drive tumor initiation, progression, and therapy resistance. In general, stem cell niche provides a specific microenvironment in which stem cells are present in an undifferentiated and self-renewable state. CSC niche is a specialized tumor microenvironment for CSCs which provides cues for their maintenance and propagation. However, molecular mechanisms for the CSC-niche interaction remain to be elucidated. We have revealed that adipsin (complement factor D) and its downstream effector hepatocyte growth factor are secreted from adipocytes and enhance the CSC properties in breast cancers in which tumor initiation and progression are constantly associated with the surrounding adipose tissue. Considering that obesity, characterized by excess adipose tissue, is associated with an increased risk of multiple cancers, it is reasonably speculated that adipocyte-CSC interaction is similarly involved in many types of cancers, such as pancreas, colorectal, and ovarian cancers. In this review, various molecular mechanisms by which adipocytes regulate CSCs, including secretion of adipokines, extracellular matrix production, biosynthesis of estrogen, metabolism, and exosome, are discussed. Uncovering the roles of adipocytes in the CSC niche will propose novel strategies to treat cancers, especially those whose progression is linked to obesity.
Collapse
Affiliation(s)
- Behnoush Khaledian
- Department of BiochemistryFujita Health University School of MedicineToyoakeAichiJapan
| | - Lisa Thibes
- Department of BiochemistryFujita Health University School of MedicineToyoakeAichiJapan
| | - Yohei Shimono
- Department of BiochemistryFujita Health University School of MedicineToyoakeAichiJapan
| |
Collapse
|
22
|
Silva FS, Barros-Lima A, Souza-Barros M, Crespo-Neto JA, Santos VGR, Pereira DS, Alves-Hanna FS, Magalhães-Gama F, Faria JAQA, Costa AG. A dual-role for IL-10: From leukemogenesis to the tumor progression in acute lymphoblastic leukemia. Cytokine 2023; 171:156371. [PMID: 37725872 DOI: 10.1016/j.cyto.2023.156371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/21/2023]
Abstract
Acute lymphoblastic leukemia (ALL) is the most common pediatric cancer in the world, and accounts for 25% of all childhood cancers among children under 15 years of age. Longitudinal studies have shown that children with ALL are born with a deregulated immune response that, together with postnatal environmental exposures, favor the onset of the disease. In this context, IL-10, a key cytokine in the regulation of the immune response, presents itself as a paradoxical mediator, initially influencing the development of ALL through the regulation of inflammatory processes and later on the progression of malignancy, with the increase of this molecule in the leukemia microenvironment. According to the literature, this cytokine plays a critical role in the natural history of the disease and plays an important role in two different though complex scenarios. Thus, in this review, we explore the dual role of IL-10 in ALL, and describe its biological characteristics, immunological mechanisms and genetics, as well as its impact on the leukemia microenvironment and its clinical implications.
Collapse
Affiliation(s)
- Flavio Souza Silva
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil; Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| | - Amanda Barros-Lima
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil; Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| | - Mateus Souza-Barros
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil; Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| | - Juniel Assis Crespo-Neto
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| | | | - Daniele Sá Pereira
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil; Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil; Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil
| | - Fabíola Silva Alves-Hanna
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil; Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil
| | - Fábio Magalhães-Gama
- Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil; Programa de Pós-Graduação em Ciências da Saúde, Instituto René Rachou - Fundação Oswaldo Cruz (FIOCRUZ) Minas, Belo Horizonte, Brazil
| | - Jerusa Araújo Quintão Arantes Faria
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil
| | - Allyson Guimarães Costa
- Programa de Pós-Graduação em Imunologia Básica e Aplicada, Instituto de Ciências Biológicas, Universidade Federal do Amazonas (UFAM), Manaus, Brazil; Diretoria de Ensino e Pesquisa, Fundação Hospitalar de Hematologia e Hemoterapia do Amazonas (HEMOAM), Manaus, Brazil; Programa de Pós-Graduação em Ciências Aplicadas à Hematologia, Universidade do Estado do Amazonas (UEA), Manaus, Brazil; Escola de Enfermagem de Manaus, UFAM, Manaus, Brazil.
| |
Collapse
|
23
|
Boahen A, Hu D, Adams MJ, Nicholls PK, Greene WK, Ma B. Bidirectional crosstalk between the peripheral nervous system and lymphoid tissues/organs. Front Immunol 2023; 14:1254054. [PMID: 37767094 PMCID: PMC10520967 DOI: 10.3389/fimmu.2023.1254054] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
The central nervous system (CNS) influences the immune system generally by regulating the systemic concentration of humoral substances (e.g., cortisol and epinephrine), whereas the peripheral nervous system (PNS) communicates specifically with the immune system according to local interactions/connections. An imbalance between the components of the PNS might contribute to pathogenesis and the further development of certain diseases. In this review, we have explored the "thread" (hardwiring) of the connections between the immune system (e.g., primary/secondary/tertiary lymphoid tissues/organs) and PNS (e.g., sensory, sympathetic, parasympathetic, and enteric nervous systems (ENS)) in health and disease in vitro and in vivo. Neuroimmune cell units provide an anatomical and physiological basis for bidirectional crosstalk between the PNS and the immune system in peripheral tissues, including lymphoid tissues and organs. These neuroimmune interactions/modulation studies might greatly contribute to a better understanding of the mechanisms through which the PNS possibly affects cellular and humoral-mediated immune responses or vice versa in health and diseases. Physical, chemical, pharmacological, and other manipulations of these neuroimmune interactions should bring about the development of practical therapeutic applications for certain neurological, neuroimmunological, infectious, inflammatory, and immunological disorders/diseases.
Collapse
Affiliation(s)
- Angela Boahen
- Department of Medical Microbiology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Seri-Kembangan, Selangor, Malaysia
| | - Dailun Hu
- Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Murray J. Adams
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA, Australia
| | - Philip K. Nicholls
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA, Australia
| | - Wayne K. Greene
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA, Australia
| | - Bin Ma
- School of Medical, Molecular and Forensic Sciences, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
24
|
Goh I, Botting RA, Rose A, Webb S, Engelbert J, Gitton Y, Stephenson E, Londoño MQ, Mather M, Mende N, Imaz-Rosshandler I, Yang L, Horsfall D, Basurto-Lozada D, Chipampe NJ, Rook V, Lee JTH, Ton ML, Keitley D, Mazin P, Vijayabaskar M, Hannah R, Gambardella L, Green K, Ballereau S, Inoue M, Tuck E, Lorenzi V, Kwakwa K, Alsinet C, Olabi B, Miah M, Admane C, Popescu DM, Acres M, Dixon D, Ness T, Coulthard R, Lisgo S, Henderson DJ, Dann E, Suo C, Kinston SJ, Park JE, Polanski K, Marioni J, van Dongen S, Meyer KB, de Bruijn M, Palis J, Behjati S, Laurenti E, Wilson NK, Vento-Tormo R, Chédotal A, Bayraktar O, Roberts I, Jardine L, Göttgens B, Teichmann SA, Haniffa M. Yolk sac cell atlas reveals multiorgan functions during human early development. Science 2023; 381:eadd7564. [PMID: 37590359 PMCID: PMC7614978 DOI: 10.1126/science.add7564] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 07/03/2023] [Indexed: 08/19/2023]
Abstract
The extraembryonic yolk sac (YS) ensures delivery of nutritional support and oxygen to the developing embryo but remains ill-defined in humans. We therefore assembled a comprehensive multiomic reference of the human YS from 3 to 8 postconception weeks by integrating single-cell protein and gene expression data. Beyond its recognized role as a site of hematopoiesis, we highlight roles in metabolism, coagulation, vascular development, and hematopoietic regulation. We reconstructed the emergence and decline of YS hematopoietic stem and progenitor cells from hemogenic endothelium and revealed a YS-specific accelerated route to macrophage production that seeds developing organs. The multiorgan functions of the YS are superseded as intraembryonic organs develop, effecting a multifaceted relay of vital functions as pregnancy proceeds.
Collapse
Affiliation(s)
- Issac Goh
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
- Biosciences Institute, Newcastle University, NE2 4HH, UK
| | - Rachel A. Botting
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
- Biosciences Institute, Newcastle University, NE2 4HH, UK
| | - Antony Rose
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
- Biosciences Institute, Newcastle University, NE2 4HH, UK
| | - Simone Webb
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
- Biosciences Institute, Newcastle University, NE2 4HH, UK
| | | | - Yorick Gitton
- Sorbonne Université, INSERM, CNRS, Institut de la Vision,
Paris, France
| | - Emily Stephenson
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
- Biosciences Institute, Newcastle University, NE2 4HH, UK
| | | | - Michael Mather
- Biosciences Institute, Newcastle University, NE2 4HH, UK
| | - Nicole Mende
- Department of Haematology, Wellcome-MRC Cambridge Stem Cell
Institute, CB2 0AW, UK
| | - Ivan Imaz-Rosshandler
- Department of Haematology, Wellcome-MRC Cambridge Stem Cell
Institute, CB2 0AW, UK
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus,
CD2 0QH, UK
| | - Lu Yang
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
| | - Dave Horsfall
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
- Biosciences Institute, Newcastle University, NE2 4HH, UK
| | - Daniela Basurto-Lozada
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
- Biosciences Institute, Newcastle University, NE2 4HH, UK
| | - Nana-Jane Chipampe
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
| | - Victoria Rook
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
| | - Jimmy Tsz Hang Lee
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
| | - Mai-Linh Ton
- Department of Haematology, Wellcome-MRC Cambridge Stem Cell
Institute, CB2 0AW, UK
| | - Daniel Keitley
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
- Department of Zoology, University of Cambridge, Cambridge UK
| | - Pavel Mazin
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
| | - M.S. Vijayabaskar
- Department of Haematology, Wellcome-MRC Cambridge Stem Cell
Institute, CB2 0AW, UK
| | - Rebecca Hannah
- Department of Haematology, Wellcome-MRC Cambridge Stem Cell
Institute, CB2 0AW, UK
| | - Laure Gambardella
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
| | - Kile Green
- Translational and Clinical Research Institute, Newcastle University,
NE2 4HH, UK
| | - Stephane Ballereau
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
| | - Megumi Inoue
- Sorbonne Université, INSERM, CNRS, Institut de la Vision,
Paris, France
| | - Elizabeth Tuck
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
| | - Valentina Lorenzi
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
| | - Kwasi Kwakwa
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
| | - Clara Alsinet
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
- Centre Nacional d’Analisi Genomica-Centre de Regulacio
Genomica (CNAG-CRG), Barcelona Institute of Science and Technology (BIST),
Barcelona, Spain
| | - Bayanne Olabi
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
- Biosciences Institute, Newcastle University, NE2 4HH, UK
| | - Mohi Miah
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
- Biosciences Institute, Newcastle University, NE2 4HH, UK
| | - Chloe Admane
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
- Biosciences Institute, Newcastle University, NE2 4HH, UK
| | | | - Meghan Acres
- Biosciences Institute, Newcastle University, NE2 4HH, UK
| | - David Dixon
- Biosciences Institute, Newcastle University, NE2 4HH, UK
| | - Thomas Ness
- NovoPath, Department of Pathology, Newcastle Hospitals NHS
Foundation Trust, Newcastle upon Tyne, UK
| | - Rowen Coulthard
- NovoPath, Department of Pathology, Newcastle Hospitals NHS
Foundation Trust, Newcastle upon Tyne, UK
| | - Steven Lisgo
- Biosciences Institute, Newcastle University, NE2 4HH, UK
| | | | - Emma Dann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
| | - Chenqu Suo
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
| | - Sarah J. Kinston
- Department of Haematology, Wellcome-MRC Cambridge Stem Cell
Institute, CB2 0AW, UK
| | - Jong-eun Park
- Korea Advanced Institute of Science and Technology, Daejeon, South
Korea
| | - Krzysztof Polanski
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
| | - John Marioni
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
- EMBL-EBI, Wellcome Genome Campus, Cambridge, UK
- CRUK Cambridge Institute, University of Cambridge, Cambridge,
UK
| | - Stijn van Dongen
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
| | - Kerstin B. Meyer
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
| | - Marella de Bruijn
- MRC Molecular Haematology Unit, MRC Weatherall Institute of
Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS,
UK
| | - James Palis
- Department of Pediatrics, University of Rochester Medical Center,
Rochester, 14642, NY, USA
| | - Sam Behjati
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
- Department of Paediatrics, University of Cambridge, Cambridge,
UK
| | - Elisa Laurenti
- Department of Haematology, Wellcome-MRC Cambridge Stem Cell
Institute, CB2 0AW, UK
| | - Nicola K. Wilson
- Department of Haematology, Wellcome-MRC Cambridge Stem Cell
Institute, CB2 0AW, UK
| | - Roser Vento-Tormo
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
| | - Alain Chédotal
- Sorbonne Université, INSERM, CNRS, Institut de la Vision,
Paris, France
| | - Omer Bayraktar
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
| | - Irene Roberts
- Department of Paediatrics, University of Oxford, OX3 9DS, UK
| | - Laura Jardine
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
- Biosciences Institute, Newcastle University, NE2 4HH, UK
| | - Berthold Göttgens
- Department of Haematology, Wellcome-MRC Cambridge Stem Cell
Institute, CB2 0AW, UK
| | - Sarah A. Teichmann
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
- Theory of Condensed Matter Group, Cavendish Laboratory/Department
of Physics, University of Cambridge, Cambridge, UK
| | - Muzlifah Haniffa
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton,
Cambridge CB10 1SA, UK
- Biosciences Institute, Newcastle University, NE2 4HH, UK
- Department of Dermatology and NIHR Newcastle Biomedical Research
Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, NE1 4LP,
UK
| |
Collapse
|
25
|
Leow BCS, Kok CH, Yeung DT, Hughes TP, White DL, Eadie LN. The acquisition order of leukemic drug resistance mutations is directed by the selective fitness associated with each resistance mechanism. Sci Rep 2023; 13:13110. [PMID: 37567965 PMCID: PMC10421868 DOI: 10.1038/s41598-023-40279-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023] Open
Abstract
In Chronic Myeloid Leukemia, the transition from drug sensitive to drug resistant disease is poorly understood. Here, we used exploratory sequencing of gene transcripts to determine the mechanisms of drug resistance in a dasatinib resistant cell line model. Importantly, cell samples were collected sequentially during drug exposure and dose escalation, revealing several resistance mechanisms which fluctuated over time. BCR::ABL1 overexpression, BCR::ABL1 kinase domain mutation, and overexpression of the small molecule transporter ABCG2, were identified as dasatinib resistance mechanisms. The acquisition of mutations followed an order corresponding with the increase in selective fitness associated with each resistance mechanism. Additionally, it was demonstrated that ABCG2 overexpression confers partial ponatinib resistance. The results of this study have broad applicability and help direct effective therapeutic drug usage and dosing regimens and may be useful for clinicians to select the most efficacious therapy at the most beneficial time.
Collapse
Affiliation(s)
- Benjamin C S Leow
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health & Medical Research Institute, Adelaide, SA, 5000, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Chung H Kok
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health & Medical Research Institute, Adelaide, SA, 5000, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, 5000, Australia
| | - David T Yeung
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health & Medical Research Institute, Adelaide, SA, 5000, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, 5000, Australia
- Australasian Leukaemia & Lymphoma Group, Richmond, VIC, 3121, Australia
- Royal Adelaide Hospital, Adelaide, SA, 5000, Australia
| | - Timothy P Hughes
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health & Medical Research Institute, Adelaide, SA, 5000, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, 5000, Australia
- Australasian Leukaemia & Lymphoma Group, Richmond, VIC, 3121, Australia
- Royal Adelaide Hospital, Adelaide, SA, 5000, Australia
| | - Deborah L White
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health & Medical Research Institute, Adelaide, SA, 5000, Australia
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, 5000, Australia
- Australasian Leukaemia & Lymphoma Group, Richmond, VIC, 3121, Australia
- Australian & New Zealand Children's Haematology/Oncology Group, Clayton, VIC, 3168, Australia
- Australian Genomics Health Alliance, Parkville, VIC, 3052, Australia
| | - Laura N Eadie
- Blood Cancer Program, Precision Cancer Medicine Theme, South Australian Health & Medical Research Institute, Adelaide, SA, 5000, Australia.
- Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA, 5000, Australia.
| |
Collapse
|
26
|
Błaszczyk JW. Metabolites of Life: Phosphate. Metabolites 2023; 13:860. [PMID: 37512567 PMCID: PMC10385453 DOI: 10.3390/metabo13070860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
The process of aging and escalating the failure of all body organs has become the center of interest in contemporary science and medicine. The leading role of phosphate-calcium tandem deficiency as a pacemaker of metabolic senescence has emerged recently. Most of the phosphates in the human body are stored in the bones, which seem to play a pivotal role in all metabolic and energetic processes. Bone metabolism combines physical activity with adaptive changes in the internal environment of the body, which is necessary for its survival. Phosphate-calcium signaling is the primary mechanism for controlling homeostasis and its recovery after exercise-induced disorders. Phosphates play an important role in the regulation of energy metabolism both by regulating postprandial glucose storage in the muscles and in the liver, as well as the distribution and adaptation of energy metabolites to the needs of the brain and skeletal muscles. The bone-driven energy metabolism is of decisive importance for maintaining all vital functions of the body organs, including their proper functioning and integrated interplay. The phosphate-calcium tandem contributes to the development and proper functioning of the organism, whereas energy dysmetabolism is the main cause of aging and the final termination of life.
Collapse
|
27
|
Pottosin I, Olivas-Aguirre M, Dobrovinskaya O. In vitro simulation of the acute lymphoblastic leukemia niche: a critical view on the optimal approximation for drug testing. J Leukoc Biol 2023; 114:21-41. [PMID: 37039524 DOI: 10.1093/jleuko/qiad039] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/12/2023] Open
Abstract
Acute lymphoblastic leukemia with the worst prognosis is related to minimal residual disease. Minimal residual disease not only depends on the individual peculiarities of leukemic clones but also reflects the protective role of the acute lymphoblastic leukemia microenvironment. In this review, we discuss in detail cell-to-cell interactions in the 2 leukemic niches, more explored bone marrow and less studied extramedullary adipose tissue. A special emphasis is given to multiple ways of interactions of acute lymphoblastic leukemia cells with the bone marrow or extramedullary adipose tissue microenvironment, indicating observed differences in B- and T-cell-derived acute lymphoblastic leukemia behavior. This analysis argued for the usage of coculture systems for drug testing. Starting with a review of available sources and characteristics of acute lymphoblastic leukemia cells, mesenchymal stromal cells, endothelial cells, and adipocytes, we have then made an update of the available 2-dimensional and 3-dimensional systems, which bring together cellular elements, components of the extracellular matrix, or its imitation. We discussed the most complex available 3-dimensional systems like "leukemia-on-a-chip," which include either a prefabricated microfluidics platform or, alternatively, the microarchitecture, designed by using the 3-dimensional bioprinting technologies. From our analysis, it follows that for preclinical antileukemic drug testing, in most cases, intermediately complex in vitro cell systems are optimal, such as a "2.5-dimensional" coculture of acute lymphoblastic leukemia cells with niche cells (mesenchymal stromal cells, endothelial cells) plus matrix components or scaffold-free mesenchymal stromal cell organoids, populated by acute lymphoblastic leukemia cells. Due to emerging evidence for the correlation of obesity and poor prognosis, a coculture of adipocytes with acute lymphoblastic leukemia cells as a drug testing system is gaining shape.
Collapse
Affiliation(s)
- Igor Pottosin
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Av. Enrique Arreola Silva 883, Guzmán City, Jalisco, 49000, Mexico
| | - Miguel Olivas-Aguirre
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Av. Enrique Arreola Silva 883, Guzmán City, Jalisco, 49000, Mexico
- Division of Exact, Natural and Technological Sciences, South University Center (CUSUR), University of Guadalajara, Jalisco, Mexico
| | - Oxana Dobrovinskaya
- Laboratory of Immunobiology and Ionic Transport Regulation, University Center for Biomedical Research, University of Colima, Av. Enrique Arreola Silva 883, Guzmán City, Jalisco, 49000, Mexico
| |
Collapse
|
28
|
MiRNAs in Hematopoiesis and Acute Lymphoblastic Leukemia. Int J Mol Sci 2023; 24:ijms24065436. [PMID: 36982511 PMCID: PMC10049736 DOI: 10.3390/ijms24065436] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 03/14/2023] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common kind of pediatric cancer. Although the cure rates in ALL have significantly increased in developed countries, still 15–20% of patients relapse, with even higher rates in developing countries. The role of non-coding RNA genes as microRNAs (miRNAs) has gained interest from researchers in regard to improving our knowledge of the molecular mechanisms underlying ALL development, as well as identifying biomarkers with clinical relevance. Despite the wide heterogeneity reveled in miRNA studies in ALL, consistent findings give us confidence that miRNAs could be useful to discriminate between leukemia linages, immunophenotypes, molecular groups, high-risk-for-relapse groups, and poor/good responders to chemotherapy. For instance, miR-125b has been associated with prognosis and chemoresistance in ALL, miR-21 has an oncogenic role in lymphoid malignancies, and the miR-181 family can act either as a oncomiR or tumor suppressor in several hematological malignancies. However, few of these studies have explored the molecular interplay between miRNAs and their targeted genes. This review aims to state the different ways in which miRNAs could be involved in ALL and their clinical implications.
Collapse
|
29
|
Shin B, Rothenberg EV. Multi-modular structure of the gene regulatory network for specification and commitment of murine T cells. Front Immunol 2023; 14:1108368. [PMID: 36817475 PMCID: PMC9928580 DOI: 10.3389/fimmu.2023.1108368] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/11/2023] [Indexed: 02/04/2023] Open
Abstract
T cells develop from multipotent progenitors by a gradual process dependent on intrathymic Notch signaling and coupled with extensive proliferation. The stages leading them to T-cell lineage commitment are well characterized by single-cell and bulk RNA analyses of sorted populations and by direct measurements of precursor-product relationships. This process depends not only on Notch signaling but also on multiple transcription factors, some associated with stemness and multipotency, some with alternative lineages, and others associated with T-cell fate. These factors interact in opposing or semi-independent T cell gene regulatory network (GRN) subcircuits that are increasingly well defined. A newly comprehensive picture of this network has emerged. Importantly, because key factors in the GRN can bind to markedly different genomic sites at one stage than they do at other stages, the genes they significantly regulate are also stage-specific. Global transcriptome analyses of perturbations have revealed an underlying modular structure to the T-cell commitment GRN, separating decisions to lose "stem-ness" from decisions to block alternative fates. Finally, the updated network sheds light on the intimate relationship between the T-cell program, which depends on the thymus, and the innate lymphoid cell (ILC) program, which does not.
Collapse
Affiliation(s)
- Boyoung Shin
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Ellen V. Rothenberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
30
|
Aru B, Pehlivanoğlu C, Dal Z, Dereli-Çalışkan NN, Gürlü E, Yanıkkaya-Demirel G. A potential area of use for immune checkpoint inhibitors: Targeting bone marrow microenvironment in acute myeloid leukemia. Front Immunol 2023; 14:1108200. [PMID: 36742324 PMCID: PMC9895857 DOI: 10.3389/fimmu.2023.1108200] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/03/2023] [Indexed: 01/22/2023] Open
Abstract
Acute myeloid leukemia (AML) arises from the cells of myeloid lineage and is the most frequent leukemia type in adulthood accounting for about 80% of all cases. The most common treatment strategy for the treatment of AML includes chemotherapy, in rare cases radiotherapy and stem cell and bone marrow transplantation are considered. Immune checkpoint proteins involve in the negative regulation of immune cells, leading to an escape from immune surveillance, in turn, causing failure of tumor cell elimination. Immune checkpoint inhibitors (ICIs) target the negative regulation of the immune cells and support the immune system in terms of anti-tumor immunity. Bone marrow microenvironment (BMM) bears various blood cell lineages and the interactions between these lineages and the noncellular components of BMM are considered important for AML development and progression. Administration of ICIs for the AML treatment may be a promising option by regulating BMM. In this review, we summarize the current treatment options in AML treatment and discuss the possible application of ICIs in AML treatment from the perspective of the regulation of BMM.
Collapse
Affiliation(s)
- Başak Aru
- Immunology Department, Faculty of Medicine, Yeditepe University, Istanbul, Türkiye
| | - Cemil Pehlivanoğlu
- Immunology Department, Faculty of Medicine, Yeditepe University, Istanbul, Türkiye
| | - Zeynep Dal
- School of Medicine, Yeditepe University, Istanbul, Türkiye
| | | | - Ege Gürlü
- School of Medicine, Yeditepe University, Istanbul, Türkiye
| | - Gülderen Yanıkkaya-Demirel
- Immunology Department, Faculty of Medicine, Yeditepe University, Istanbul, Türkiye,*Correspondence: Gülderen Yanıkkaya-Demirel,
| |
Collapse
|
31
|
Garcia-Gimenez A, Richardson SE. The role of microenvironment in the initiation and evolution of B-cell precursor acute lymphoblastic leukemia. Front Oncol 2023; 13:1150612. [PMID: 36959797 PMCID: PMC10029760 DOI: 10.3389/fonc.2023.1150612] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 02/21/2023] [Indexed: 03/09/2023] Open
Abstract
B cell precursor acute lymphoblastic leukemia (BCP-ALL) is a malignant disorder of immature B lineage immune progenitors and is the commonest cancer in children. Despite treatment advances it remains a leading cause of death in childhood and response rates in adults remain poor. A preleukemic state predisposing children to BCP-ALL frequently arises in utero, with an incidence far higher than that of transformed leukemia, offering the potential for early intervention to prevent disease. Understanding the natural history of this disease requires an appreciation of how cell-extrinsic pressures, including microenvironment, immune surveillance and chemotherapy direct cell-intrinsic genetic and epigenetic evolution. In this review, we outline how microenvironmental factors interact with BCP-ALL at different stages of tumorigenesis and highlight emerging therapeutic avenues.
Collapse
Affiliation(s)
- Alicia Garcia-Gimenez
- Department of Haematology, Wellcome Trust—Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Simon E. Richardson
- Department of Haematology, Wellcome Trust—Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
- Cambridge University Hospitals, Cambridge, United Kingdom
- *Correspondence: Simon E. Richardson,
| |
Collapse
|
32
|
Sánchez‐Lanzas R, Kalampalika F, Ganuza M. Diversity in the bone marrow niche: Classic and novel strategies to uncover niche composition. Br J Haematol 2022; 199:647-664. [PMID: 35837798 PMCID: PMC9796334 DOI: 10.1111/bjh.18355] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/20/2022] [Accepted: 06/30/2022] [Indexed: 01/01/2023]
Abstract
Our view on the role and composition of the bone marrow (BM) has dramatically changed over time from a simple nutrient for the bone to a highly complex multicellular tissue that sustains haematopoiesis. Among these cells, multipotent haematopoietic stem cells (HSCs), which are predominantly quiescent, possess unique self-renewal capacity and multilineage differentiation potential and replenish all blood lineages to maintain lifelong haematopoiesis. Adult HSCs reside in specialised BM niches, which support their functions. Much effort has been put into deciphering HSC niches due to their potential clinical relevance. Multiple cell types have been implicated as HSC-niche components including sinusoidal endothelium, perivascular stromal cells, macrophages, megakaryocytes, osteoblasts and sympathetic nerves. In this review we provide a historical perspective on how technical advances, from genetic mouse models to imaging and high-throughput sequencing techniques, are unveiling the plethora of molecular cues and cellular components that shape the niche and regulate HSC functions.
Collapse
Affiliation(s)
- Raúl Sánchez‐Lanzas
- Centre for Haemato‐Oncology, Barts Cancer InstituteQueen Mary University of LondonLondonUK
| | - Foteini Kalampalika
- Centre for Haemato‐Oncology, Barts Cancer InstituteQueen Mary University of LondonLondonUK
| | - Miguel Ganuza
- Centre for Haemato‐Oncology, Barts Cancer InstituteQueen Mary University of LondonLondonUK
| |
Collapse
|
33
|
Cruz LJ, Rezaei S, Grosveld F, Philipsen S, Eich C. Nanoparticles targeting hematopoietic stem and progenitor cells: Multimodal carriers for the treatment of hematological diseases. Front Genome Ed 2022; 4:1030285. [PMID: 36407494 PMCID: PMC9666682 DOI: 10.3389/fgeed.2022.1030285] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/10/2022] [Indexed: 10/03/2023] Open
Abstract
Modern-day hematopoietic stem cell (HSC) therapies, such as gene therapy, modify autologous HSCs prior to re-infusion into myelo-conditioned patients and hold great promise for treatment of hematological disorders. While this approach has been successful in numerous clinical trials, it relies on transplantation of ex vivo modified patient HSCs, which presents several limitations. It is a costly and time-consuming procedure, which includes only few patients so far, and ex vivo culturing negatively impacts on the viability and stem cell-properties of HSCs. If viral vectors are used, this carries the additional risk of insertional mutagenesis. A therapy delivered to HSCs in vivo, with minimal disturbance of the HSC niche, could offer great opportunities for novel treatments that aim to reverse disease symptoms for hematopoietic disorders and could bring safe, effective and affordable genetic therapies to all parts of the world. However, substantial unmet needs exist with respect to the in vivo delivery of therapeutics to HSCs. In the last decade, in particular with the development of gene editing technologies such as CRISPR/Cas9, nanoparticles (NPs) have become an emerging platform to facilitate the manipulation of cells and organs. By employing surface modification strategies, different types of NPs can be designed to target specific tissues and cell types in vivo. HSCs are particularly difficult to target due to the lack of unique cell surface markers that can be utilized for cell-specific delivery of therapeutics, and their shielded localization in the bone marrow (BM). Recent advances in NP technology and genetic engineering have resulted in the development of advanced nanocarriers that can deliver therapeutics and imaging agents to hematopoietic stem- and progenitor cells (HSPCs) in the BM niche. In this review we provide a comprehensive overview of NP-based approaches targeting HSPCs to control and monitor HSPC activity in vitro and in vivo, and we discuss the potential of NPs for the treatment of malignant and non-malignant hematological disorders, with a specific focus on the delivery of gene editing tools.
Collapse
Affiliation(s)
- Luis J. Cruz
- Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Somayeh Rezaei
- Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Frank Grosveld
- Erasmus University Medical Center, Department of Cell Biology, Rotterdam, Netherlands
| | - Sjaak Philipsen
- Erasmus University Medical Center, Department of Cell Biology, Rotterdam, Netherlands
| | - Christina Eich
- Translational Nanobiomaterials and Imaging, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
34
|
Stem Cell Therapy for Sequestration of Traumatic Brain Injury-Induced Inflammation. Int J Mol Sci 2022; 23:ijms231810286. [PMID: 36142198 PMCID: PMC9499317 DOI: 10.3390/ijms231810286] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/30/2022] [Accepted: 09/04/2022] [Indexed: 11/17/2022] Open
Abstract
Traumatic brain injury (TBI) is one of the leading causes of long-term neurological disabilities in the world. TBI is a signature disease for soldiers and veterans, but also affects civilians, including adults and children. Following TBI, the brain resident and immune cells turn into a “reactive” state, characterized by the production of inflammatory mediators that contribute to the development of cognitive deficits. Other injuries to the brain, including radiation exposure, may trigger TBI-like pathology, characterized by inflammation. Currently there are no treatments to prevent or reverse the deleterious consequences of brain trauma. The recognition that TBI predisposes stem cell alterations suggests that stem cell-based therapies stand as a potential treatment for TBI. Here, we discuss the inflamed brain after TBI and radiation injury. We further review the status of stem cells in the inflamed brain and the applications of cell therapy in sequestering inflammation in TBI.
Collapse
|
35
|
Hettler F, Schreck C, Marquez SR, Engleitner T, Vilne B, Landspersky T, Weidner H, Hausinger R, Mishra R, Oellinger R, Rauner M, Naumann R, Peschel C, Bassermann F, Rad R, Istvanffy R, Oostendorp RA. Osteoprogenitor SFRP1 prevents exhaustion of hematopoietic stem cells via PP2A-PR72/130-mediated regulation of p300. Haematologica 2022; 108:490-501. [PMID: 35950533 PMCID: PMC9890018 DOI: 10.3324/haematol.2022.280760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Indexed: 02/03/2023] Open
Abstract
Remodeling of the bone marrow microenvironment in chronic inflammation and in aging reduces hematopoietic stem cell (HSC) function. To assess the mechanisms of this functional decline of HSC and find strategies to counteract it, we established a model in which the Sfrp1 gene was deleted in Osterix+ osteolineage cells (OS1Δ/Δ mice). HSC from these mice showed severely diminished repopulating activity with associated DNA damage, enriched expression of the reactive oxygen species pathway and reduced single-cell proliferation. Interestingly, not only was the protein level of Catenin beta-1 (bcatenin) elevated, but so was its association with the phosphorylated co-activator p300 in the nucleus. Since these two proteins play a key role in promotion of differentiation and senescence, we inhibited in vivo phosphorylation of p300 through PP2A-PR72/130 by administration of IQ-1 in OS1Δ/Δ mice. This treatment not only reduced the b-catenin/phosphop300 association, but also decreased nuclear p300. More importantly, in vivo IQ-1 treatment fully restored HSC repopulating activity of the OS1Δ/Δ mice. Our findings show that the osteoprogenitor Sfrp1 is essential for maintaining HSC function. Furthermore, pharmacological downregulation of the nuclear b-catenin/phospho-p300 association is a new strategy to restore poor HSC function.
Collapse
Affiliation(s)
- Franziska Hettler
- Technical University of Munich, School of Medicine, Department of Internal Medicine III Hematology/Oncology, Munich, Germany,FH and CS contributed equally as co-first authors
| | - Christina Schreck
- Technical University of Munich, School of Medicine, Department of Internal Medicine III Hematology/Oncology, Munich, Germany,FH and CS contributed equally as co-first authors
| | - Sandra Romero Marquez
- Technical University of Munich, School of Medicine, Department of Internal Medicine III Hematology/Oncology, Munich, Germany
| | - Thomas Engleitner
- Technical University of Munich, School of Medicine, Center for Translational Cancer Research (TranslaTUM), Munich, Germany: ,Technical University of Munich, School of Medicine, Institute of Molecular Oncology and Functional Genomics, Munich, Germany
| | - Baiba Vilne
- Bioinformatics Research Unit, Riga Stradins University Riga, Riga, Latvia,netOmics, Riga, Latvia
| | - Theresa Landspersky
- Technical University of Munich, School of Medicine, Department of Internal Medicine III Hematology/Oncology, Munich, Germany
| | - Heike Weidner
- Bone Lab Dresden, Department of Medicine III & Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Renate Hausinger
- Technical University of Munich, School of Medicine, Department of Internal Medicine III Hematology/Oncology, Munich, Germany
| | - Ritu Mishra
- Technical University of Munich, School of Medicine, Center for Translational Cancer Research (TranslaTUM), Munich, Germany: ,School of Medicine, Institute of Clinical Chemistry and Pathobiochemistry, Technical University of Munich, Munich, Germany
| | - Rupert Oellinger
- Technical University of Munich, School of Medicine, Center for Translational Cancer Research (TranslaTUM), Munich, Germany: ,Technical University of Munich, School of Medicine, Institute of Molecular Oncology and Functional Genomics, Munich, Germany
| | - Martina Rauner
- Bone Lab Dresden, Department of Medicine III & Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany
| | - Ronald Naumann
- Max Planck Institute of Molecular Cell Biology and Genetics, Transgenic Core Facility, Dresden, Germany
| | - Christian Peschel
- Technical University of Munich, School of Medicine, Department of Internal Medicine III Hematology/Oncology, Munich, Germany,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Florian Bassermann
- Technical University of Munich, School of Medicine, Department of Internal Medicine III Hematology/Oncology, Munich, Germany,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Roland Rad
- Technical University of Munich, School of Medicine, Center for Translational Cancer Research (TranslaTUM), Munich, Germany: ,Technical University of Munich, School of Medicine, Institute of Molecular Oncology and Functional Genomics, Munich, Germany,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Rouzanna Istvanffy
- Technical University of Munich, School of Medicine, Department of Internal Medicine III Hematology/Oncology, Munich, Germany,Current afliation: Technical University of Munich, School of Medicine, Surgery Department, Munich, Germany
| | - Robert A.J. Oostendorp
- Technical University of Munich, School of Medicine, Department of Internal Medicine III Hematology/Oncology, Munich, Germany,RI and RAJO contributed equally as co-senior authors
| |
Collapse
|
36
|
Okagu IU, Ezeorba TPC, Aguchem RN, Ohanenye IC, Aham EC, Okafor SN, Bollati C, Lammi C. A Review on the Molecular Mechanisms of Action of Natural Products in Preventing Bone Diseases. Int J Mol Sci 2022; 23:ijms23158468. [PMID: 35955603 PMCID: PMC9368769 DOI: 10.3390/ijms23158468] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/23/2022] [Accepted: 07/25/2022] [Indexed: 12/10/2022] Open
Abstract
The drugs used for treating bone diseases (BDs), at present, elicit hazardous side effects that include certain types of cancers and strokes, hence the ongoing quest for the discovery of alternatives with little or no side effects. Natural products (NPs), mainly of plant origin, have shown compelling promise in the treatments of BDs, with little or no side effects. However, the paucity in knowledge of the mechanisms behind their activities on bone remodeling has remained a hindrance to NPs’ adoption. This review discusses the pathological development of some BDs, the NP-targeted components, and the actions exerted on bone remodeling signaling pathways (e.g., Receptor Activator of Nuclear Factor κ B-ligand (RANKL)/monocyte/macrophage colony-stimulating factor (M-CSF)/osteoprotegerin (OPG), mitogen-activated protein kinase (MAPK)s/c-Jun N-terminal kinase (JNK)/nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), Kelch-like ECH-associated protein 1 (Keap-1)/nuclear factor erythroid 2–related factor 2 (Nrf2)/Heme Oxygenase-1 (HO-1), Bone Morphogenetic Protein 2 (BMP2)-Wnt/β-catenin, PhosphatidylInositol 3-Kinase (PI3K)/protein kinase B (Akt)/Glycogen Synthase Kinase 3 Beta (GSK3β), and other signaling pathways). Although majority of the studies on the osteoprotective properties of NPs against BDs were conducted ex vivo and mostly on animals, the use of NPs for treating human BDs and the prospects for future development remain promising.
Collapse
Affiliation(s)
- Innocent U. Okagu
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001, Nigeria; (I.U.O.); (T.P.C.E.); (R.N.A.); (E.C.A.)
| | - Timothy P. C. Ezeorba
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001, Nigeria; (I.U.O.); (T.P.C.E.); (R.N.A.); (E.C.A.)
| | - Rita N. Aguchem
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001, Nigeria; (I.U.O.); (T.P.C.E.); (R.N.A.); (E.C.A.)
| | - Ikenna C. Ohanenye
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| | - Emmanuel C. Aham
- Department of Biochemistry, Faculty of Biological Sciences, University of Nigeria, Nsukka 410001, Nigeria; (I.U.O.); (T.P.C.E.); (R.N.A.); (E.C.A.)
- Natural Science Unit, School of General Studies, University of Nigeria, Nsukka 410001, Nigeria
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Sunday N. Okafor
- Department of Pharmaceutical and Medicinal Chemistry, University of Nigeria, Nsukka 410001, Nigeria;
| | - Carlotta Bollati
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, 20133 Milano, Italy;
| | - Carmen Lammi
- Department of Pharmaceutical Sciences, University of Milan, via Mangiagalli 25, 20133 Milano, Italy;
- Correspondence: ; Tel.: +39-02-5031-9372
| |
Collapse
|
37
|
Fallati A, Di Marzo N, D’Amico G, Dander E. Mesenchymal Stromal Cells (MSCs): An Ally of B-Cell Acute Lymphoblastic Leukemia (B-ALL) Cells in Disease Maintenance and Progression within the Bone Marrow Hematopoietic Niche. Cancers (Basel) 2022; 14:cancers14143303. [PMID: 35884364 PMCID: PMC9323332 DOI: 10.3390/cancers14143303] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/17/2022] [Accepted: 07/04/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary B-cell acute lymphoblastic leukemia (B-ALL) is the most common pediatric cancer. Even though the cure rate actually exceeds 85%, the prognosis of relapsed/refractory patients is dismal. Recent literature data indicate that the bone marrow (BM) microenvironment could play a crucial role in the onset, maintenance and progression of the disease. In particular, mesenchymal stromal cells (MSCs), which are key components of the BM niche, actively crosstalk with leukemic cells providing crucial signals for their survival and resistance to therapy. We hereby review the main mechanisms exploited by MSCs to nurture and protect B-ALL cells that could become appealing targets for innovative microenvironment remodeling therapies to be coupled with classical leukemia-directed strategies. Abstract Mesenchymal stromal cells (MSCs) are structural components of the bone marrow (BM) niche, where they functionally interact with hematopoietic stem cells and more differentiated progenitors, contributing to hematopoiesis regulation. A growing body of evidence is nowadays pointing to a further crucial contribution of MSCs to malignant hematopoiesis. In the context of B-cell acute lymphoblastic leukemia (B-ALL), MSCs can play a pivotal role in the definition of a leukemia-supportive microenvironment, impacting on disease pathogenesis at different steps including onset, maintenance and progression. B-ALL cells hijack the BM microenvironment, including MSCs residing in the BM niche, which in turn shelter leukemic cells and protect them from chemotherapeutic agents through different mechanisms. Evidence is now arising that altered MSCs can become precious allies to leukemic cells by providing nutrients, cytokines, pro-survivals signals and exchanging organelles, as hereafter reviewed. The study of the mechanisms exploited by MSCs to nurture and protect B-ALL blasts can be instrumental in finding new druggable candidates to target the leukemic BM microenvironment. Some of these microenvironment-targeting strategies are already in preclinical or clinical experimentation, and if coupled with leukemia-directed therapies, could represent a valuable option to improve the prognosis of relapsed/refractory patients, whose management represents an unmet medical need.
Collapse
|
38
|
Griffin JM, Healy FM, Dahal LN, Floisand Y, Woolley JF. Worked to the bone: antibody-based conditioning as the future of transplant biology. J Hematol Oncol 2022; 15:65. [PMID: 35590415 PMCID: PMC9118867 DOI: 10.1186/s13045-022-01284-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/06/2022] [Indexed: 11/29/2022] Open
Abstract
Conditioning of the bone marrow prior to haematopoietic stem cell transplant is essential in eradicating the primary cause of disease, facilitating donor cell engraftment and avoiding transplant rejection via immunosuppression. Standard conditioning regimens, typically comprising chemotherapy and/or radiotherapy, have proven successful in bone marrow clearance but are also associated with severe toxicities and high incidence of treatment-related mortality. Antibody-based conditioning is a developing field which, thus far, has largely shown an improved toxicity profile in experimental models and improved transplant outcomes, compared to traditional conditioning. Most antibody-based conditioning therapies involve monoclonal/naked antibodies, such as alemtuzumab for graft-versus-host disease prophylaxis and rituximab for Epstein–Barr virus prophylaxis, which are both in Phase II trials for inclusion in conditioning regimens. Nevertheless, alternative immune-based therapies, including antibody–drug conjugates, radio-labelled antibodies and CAR-T cells, are showing promise in a conditioning setting. Here, we analyse the current status of antibody-based drugs in pre-transplant conditioning regimens and assess their potential in the future of transplant biology.
Collapse
Affiliation(s)
- James M Griffin
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK
| | - Fiona M Healy
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK
| | - Lekh N Dahal
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK
| | - Yngvar Floisand
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK.,The Clatterbridge Cancer Centre NHS Foundation Trust, Liverpool, UK
| | - John F Woolley
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK.
| |
Collapse
|
39
|
Watt SM. The long and winding road: homeostatic and disordered haematopoietic microenvironmental niches: a narrative review. BIOMATERIALS TRANSLATIONAL 2022; 3:31-54. [PMID: 35837343 PMCID: PMC9255786 DOI: 10.12336/biomatertransl.2022.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/05/2022] [Accepted: 03/10/2022] [Indexed: 11/18/2022]
Abstract
Haematopoietic microenvironmental niches have been described as the 'gatekeepers' for the blood and immune systems. These niches change during ontogeny, with the bone marrow becoming the predominant site of haematopoiesis in post-natal life under steady state conditions. To determine the structure and function of different haematopoietic microenvironmental niches, it is essential to clearly define specific haematopoietic stem and progenitor cell subsets during ontogeny and to understand their temporal appearance and anatomical positioning. A variety of haematopoietic and non-haematopoietic cells contribute to haematopoietic stem and progenitor cell niches. The latter is reported to include endothelial cells and mesenchymal stromal cells (MSCs), skeletal stem cells and/or C-X-C motif chemokine ligand 12-abundant-reticular cell populations, which form crucial components of these microenvironments under homeostatic conditions. Dysregulation or deterioration of such cells contributes to significant clinical disorders and diseases worldwide and is associated with the ageing process. A critical appraisal of these issues and of the roles of MSC/C-X-C motif chemokine ligand 12-abundant-reticular cells and the more recently identified skeletal stem cell subsets in bone marrow haematopoietic niche function under homeostatic conditions and during ageing will form the basis of this research review. In the context of haematopoiesis, clinical translation will deal with lessons learned from the vast experience garnered from the development and use of MSC therapies to treat graft versus host disease in the context of allogeneic haematopoietic transplants, the recent application of these MSC therapies to treating emerging and severe coronavirus disease 2019 (COVID-19) infections, and, given that skeletal stem cell ageing is one proposed driver for haematopoietic ageing, the potential contributions of these stem cells to haematopoiesis in healthy bone marrow and the benefits and challenges of using this knowledge for rejuvenating the age-compromised bone marrow haematopoietic niches and restoring haematopoiesis.
Collapse
Affiliation(s)
- Suzanne M. Watt
- Stem Cell Research, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
- Myeloma Research Laboratory, Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
- Cancer Program, Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, Australia
| |
Collapse
|
40
|
Enukashvily NI, Semenova N, Chubar AV, Ostromyshenskii DI, Gushcha EA, Gritsaev S, Bessmeltsev SS, Rugal VI, Prikhodko EM, Kostroma I, Zherniakova A, Kotova AV, Belik LA, Shumeev A, Maslennikova II, Ivolgin DI. Pericentromeric Non-Coding DNA Transcription Is Associated with Niche Impairment in Patients with Ineffective or Partially Effective Multiple Myeloma Treatment. Int J Mol Sci 2022; 23:ijms23063359. [PMID: 35328779 PMCID: PMC8951104 DOI: 10.3390/ijms23063359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stromal cells (MSC) ‘educated’ by tumor cells are an essential component of the multiple myeloma (MM) tumor microenvironment (TME) involved in tumor progression. Transcription of tandemly repeated (TR) non-coding DNA is often activated in many tumors and is required for tumor progression and cancer cells genome reorganization. The aim of the work was to study functional properties including the TR DNA transcription profile of MSC from the hematopoietic niche of treated MM patients. Healthy donors (HD) and patients after bortezomib-based treatment (with partial or complete response, PoCR, and non-responders, NR) were enrolled in the study. Their trephine biopsies were examined histologically to evaluate the hematopoietic niche. MSC cultures obtained from the biopsies were used for evaluation of the proliferation rate, osteogenic differentiation, presence of tumor MSC markers, resistance to bortezomib, and pericentromeric TR DNA transcription level. The MSC ‘education’ by multiple myeloma cells was mimicked in co-culture experiments with or without bortezomib. The TR DNA transcription profile was accessed. The histological examination revealed the persistence of the tumor microenvironment (especially of the vasculature) in treated patients. In co-culture experiments, MSC of bortezomib-treated patients were more resistant to bortezomib and protected cancer MM cells of the RPMI8226 cell line more effectively than HD-MSC did. The MSC obtained from PoCR and NR samples differed in their functional properties (proliferation capacity, osteogenic potential, and cancer-associated fibroblasts markers). Transcriptome analysis revealed activation of the TR transcription in cells of non-hematopoietic origin from NR patients’ bone marrow. The pericentromeric TR DNA of HS2/HS3 families was among the most upregulated in stromal MSC but not in cancer cells. The highest level of transcription was observed in NR-MSC. Transcription of HS2/HS3 was not detected in healthy donors MSC unless they were co-cultured with MM cancer cells and acquired cancer-associated phenotype. Treatment with TNFα downregulated HS2/HS3 transcription in MSC and upregulated in MM cells. Our results suggest that the hematopoietic niche retains the cancer-associated phenotype after treatment. Pericentromeric non-coding DNA transcription is associated with the MSC cancer-associated phenotype in patients with ineffective or partially effective multiple myeloma treatment.
Collapse
Affiliation(s)
- Natella I. Enukashvily
- Lab of the Non-Coding DNA Studies, Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (A.V.C.); (D.I.O.); (E.A.G.); (A.V.K.); (L.A.B.)
- Cell Technologies Lab, North-Western State Medical University Named after I.I. Mechnikov, 191015 St. Petersburg, Russia; (I.I.M.); (D.I.I.)
- Correspondence: (N.I.E.); (N.S.)
| | - Natalia Semenova
- Clinical Department, Russian Research Institute of Hematology and Transfusiology FMBA of Russia, 191024 St. Petersburg, Russia; (S.G.); (S.S.B.); (V.I.R.); (I.K.); (A.Z.)
- Correspondence: (N.I.E.); (N.S.)
| | - Anna V. Chubar
- Lab of the Non-Coding DNA Studies, Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (A.V.C.); (D.I.O.); (E.A.G.); (A.V.K.); (L.A.B.)
| | - Dmitry I. Ostromyshenskii
- Lab of the Non-Coding DNA Studies, Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (A.V.C.); (D.I.O.); (E.A.G.); (A.V.K.); (L.A.B.)
| | - Ekaterina A. Gushcha
- Lab of the Non-Coding DNA Studies, Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (A.V.C.); (D.I.O.); (E.A.G.); (A.V.K.); (L.A.B.)
| | - Sergei Gritsaev
- Clinical Department, Russian Research Institute of Hematology and Transfusiology FMBA of Russia, 191024 St. Petersburg, Russia; (S.G.); (S.S.B.); (V.I.R.); (I.K.); (A.Z.)
| | - Stanislav S. Bessmeltsev
- Clinical Department, Russian Research Institute of Hematology and Transfusiology FMBA of Russia, 191024 St. Petersburg, Russia; (S.G.); (S.S.B.); (V.I.R.); (I.K.); (A.Z.)
| | - Viktor I. Rugal
- Clinical Department, Russian Research Institute of Hematology and Transfusiology FMBA of Russia, 191024 St. Petersburg, Russia; (S.G.); (S.S.B.); (V.I.R.); (I.K.); (A.Z.)
| | - Egor M. Prikhodko
- Pokrovsky Stem Cell Bank, LLC, 199106 St. Petersburg, Russia; (E.M.P.); (A.S.)
- Faculty of Clinical Propaedeutics, North-Western State Medical University Named after I.I. Mechnikov, 191015 St. Petersburg, Russia
| | - Ivan Kostroma
- Clinical Department, Russian Research Institute of Hematology and Transfusiology FMBA of Russia, 191024 St. Petersburg, Russia; (S.G.); (S.S.B.); (V.I.R.); (I.K.); (A.Z.)
| | - Anastasia Zherniakova
- Clinical Department, Russian Research Institute of Hematology and Transfusiology FMBA of Russia, 191024 St. Petersburg, Russia; (S.G.); (S.S.B.); (V.I.R.); (I.K.); (A.Z.)
| | - Anastasia V. Kotova
- Lab of the Non-Coding DNA Studies, Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (A.V.C.); (D.I.O.); (E.A.G.); (A.V.K.); (L.A.B.)
| | - Liubov A. Belik
- Lab of the Non-Coding DNA Studies, Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (A.V.C.); (D.I.O.); (E.A.G.); (A.V.K.); (L.A.B.)
| | - Alexander Shumeev
- Pokrovsky Stem Cell Bank, LLC, 199106 St. Petersburg, Russia; (E.M.P.); (A.S.)
| | - Irina I. Maslennikova
- Cell Technologies Lab, North-Western State Medical University Named after I.I. Mechnikov, 191015 St. Petersburg, Russia; (I.I.M.); (D.I.I.)
- Pokrovsky Stem Cell Bank, LLC, 199106 St. Petersburg, Russia; (E.M.P.); (A.S.)
| | - Dmitry I. Ivolgin
- Cell Technologies Lab, North-Western State Medical University Named after I.I. Mechnikov, 191015 St. Petersburg, Russia; (I.I.M.); (D.I.I.)
- Pokrovsky Stem Cell Bank, LLC, 199106 St. Petersburg, Russia; (E.M.P.); (A.S.)
| |
Collapse
|
41
|
Hematopoietic Progenitors and the Bone Marrow Niche Shape the Inflammatory Response and Contribute to Chronic Disease. Int J Mol Sci 2022; 23:ijms23042234. [PMID: 35216355 PMCID: PMC8879433 DOI: 10.3390/ijms23042234] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 11/17/2022] Open
Abstract
It is now well understood that the bone marrow (BM) compartment can sense systemic inflammatory signals and adapt through increased proliferation and lineage skewing. These coordinated and dynamic alterations in responding hematopoietic stem and progenitor cells (HSPCs), as well as in cells of the bone marrow niche, are increasingly viewed as key contributors to the inflammatory response. Growth factors, cytokines, metabolites, microbial products, and other signals can cause dysregulation across the entire hematopoietic hierarchy, leading to lineage-skewing and even long-term functional adaptations in bone marrow progenitor cells. These alterations may play a central role in the chronicity of disease as well as the links between many common chronic disorders. The possible existence of a form of “memory” in bone marrow progenitor cells is thought to contribute to innate immune responses via the generation of trained immunity (also called innate immune memory). These findings highlight how hematopoietic progenitors dynamically adapt to meet the demand for innate immune cells and how this adaptive response may be beneficial or detrimental depending on the context. In this review, we will discuss the role of bone marrow progenitor cells and their microenvironment in shaping the scope and scale of the immune response in health and disease.
Collapse
|
42
|
The Hematology of Tomorrow Is Here-Preclinical Models Are Not: Cell Therapy for Hematological Malignancies. Cancers (Basel) 2022; 14:cancers14030580. [PMID: 35158848 PMCID: PMC8833715 DOI: 10.3390/cancers14030580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/13/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Cell therapy is revolutionizing the prospect of deadly hematological malignancies such as high-risk acute myeloid leukemia. Stem cell therapy of allogeneic source from compatible human leukocyte antigen donor has exceptional success promoting durable remissions, but the rate of relapse is currently still high and there is transplant-related mortality. This review presents the current knowledge on the clinical use of mesenchymal stromal cells to improve outcomes in hematopoietic stem cell transplants. As an alternative or adjuvant approach to prevent relapse, we summarize the status of the promising forms of cellular immunotherapy aimed at targeting not only the bulk but also the cells of origin of leukemia. Finally, we discuss the available in vivo models for disease modelling and treatment efficacy prediction in these contexts. Abstract The purpose of this review is to present the current knowledge on the clinical use of several forms of cell therapy in hematological malignancies and the preclinical models available for their study. In the context of allogeneic hematopoietic stem cell transplants, mesenchymal stromal cells are pursued to help stem cell engraftment and expansion, and control graft versus host disease. We further summarize the status of promising forms of cellular immunotherapy including CAR T cell and CAR NK cell therapy aimed at eradicating the cells of origin of leukemia, i.e., leukemia stem cells. Updates on other forms of cellular immunotherapy, such as NK cells, CIK cells and CAR CIK cells, show encouraging results in AML. The considerations in available in vivo models for disease modelling and treatment efficacy prediction are discussed, with a particular focus on their strengths and weaknesses for the study of healthy and diseased hematopoietic stem cell reconstitution, graft versus host disease and immunotherapy. Despite current limitations, cell therapy is a rapidly evolving field that holds the promise of improved cure rates, soon. As a result, we may be witnessing the birth of the hematology of tomorrow. To further support its development, improved preclinical models including humanized microenvironments in mice are urgently needed.
Collapse
|
43
|
Baldari S, Manni I, Di Rocco G, Paolini F, Palermo B, Piaggio G, Toietta G. Reduction of Cell Proliferation by Acute C 2H 6O Exposure. Cancers (Basel) 2021; 13:4999. [PMID: 34638483 PMCID: PMC8508324 DOI: 10.3390/cancers13194999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/17/2021] [Accepted: 09/28/2021] [Indexed: 12/15/2022] Open
Abstract
Endogenous acetaldehyde production from the metabolism of ingested alcohol exposes hematopoietic progenitor cells to increased genotoxic risk. To develop possible therapeutic strategies to prevent or reverse alcohol abuse effects, it would be critical to determine the temporal progression of acute ethanol toxicity on progenitor cell numbers and proliferative status. We followed the variation of the cell proliferation rate in bone marrow and spleen in response to acute ethanol intoxication in the MITO-Luc mouse, in which NF-Y-dependent cell proliferation can be assessed in vivo by non-invasive bioluminescent imaging. One week after ethanol administration, bioluminescent signals in bone marrow and spleen decreased below the level corresponding to physiological proliferation, and they progressively resumed to pre-treatment values in approximately 4 weeks. Boosting acetaldehyde catabolism by administration of an aldehyde dehydrogenase activity activator or administration of polyphenols with antioxidant activity partially restored bone marrow cells' physiological proliferation. These results indicate that in this mouse model, bioluminescent alteration reflects the reduction of the physiological proliferation rate of bone marrow progenitor cells due to the toxic effect of aldehydes generated by alcohol oxidation. In summary, this study presents a novel view of the impact of acute alcohol intake on bone marrow cell proliferation in vivo.
Collapse
Affiliation(s)
- Silvia Baldari
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (S.B.); (F.P.); (B.P.)
| | - Isabella Manni
- Stabilimento Allevatore Fornitore Utilizzatore (SAFU), IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (I.M.); (G.P.)
| | - Giuliana Di Rocco
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy;
| | - Francesca Paolini
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (S.B.); (F.P.); (B.P.)
| | - Belinda Palermo
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (S.B.); (F.P.); (B.P.)
| | - Giulia Piaggio
- Stabilimento Allevatore Fornitore Utilizzatore (SAFU), IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (I.M.); (G.P.)
| | - Gabriele Toietta
- Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, 00144 Rome, Italy; (S.B.); (F.P.); (B.P.)
| |
Collapse
|
44
|
Inflammaging, an Imbalanced Immune Response That Needs to Be Restored for Cancer Prevention and Treatment in the Elderly. Cells 2021; 10:cells10102562. [PMID: 34685542 PMCID: PMC8533838 DOI: 10.3390/cells10102562] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/03/2021] [Accepted: 09/24/2021] [Indexed: 12/21/2022] Open
Abstract
Nowadays, new advances in society and health have brought an increased life expectancy. However, at the same time, aging comes with complications that impact the development of autoimmunity, neurodegenerative diseases and cancer. These complications affect the quality of life and impact the public health system. Specifically, with aging, a low-grade chronic sterile systemic inflammation with self-reactivity in the absence of acute infection occurs termed inflammaging. Inflammaging is related to an imbalanced immune response that can be either naturally acquired with aging or accelerated due to external triggers. Different molecules, metabolites and inflammatory forms of cell death are highly involved in these processes. Importantly, adoptive cellular immunotherapy is a modality of treatment for cancer patients that administers ex vivo expanded immune cells in the patient. The manipulation of these cells confers them enhanced proinflammatory properties. A general consequence of proinflammatory events is the development of autoimmune diseases and cancer. Herein, we review subsets of immune cells with a pertinent role in inflammaging, relevant proteins involved in these inflammatory events and external triggers that enhance and accelerate these processes. Moreover, we mention relevant preclinical studies that demonstrate associations of chronic inflammation with cancer development.
Collapse
|