1
|
Kim H, Williams SJ, Colombo JS. Characterization of Fibronectin-Adherent, Non-Fibronectin-Adherent, and Explant-Derived Human Dental Pulp Stem Cell Populations. Dent J (Basel) 2025; 13:159. [PMID: 40277489 PMCID: PMC12026221 DOI: 10.3390/dj13040159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/18/2025] [Accepted: 03/28/2025] [Indexed: 04/26/2025] Open
Abstract
Background/Objectives: Dental pulp stem cells (DPSCs) are of significant interest due to their mesenchymal lineage and relative availability from extracted teeth. This study aims to examine the relationship between fibronectin-adherent, non-fibronectin-adherent, and explant-derived DPSC populations in terms of the population doubling rate in culture and the expression of mesenchymal cell surface markers and their capacity for osteodifferentiation. Methods: Human pulp tissue was removed from healthy extracted human teeth, enzymatically digested prior to seeding onto fibronectin-coated plates, and left to adhere for 20 min, yielding a fibronectin-adherent population. The remaining non-adherent cells were transferred and designated 'non-fibronectin-adherent.' Intact pulp was placed on uncoated plastic for 5 days, with the migrated cells designated 'explant-derived'. DPSCs from these populations were examined in terms of population doubling rates, the expression of CD90, CD44, CD105, and CD73, and the expression of RUNX2, SPP1, and BGLAP after 7 days in osteoinductive media. Results: The fibronectin-adherent cells had the greatest population doubling over time. All populations demonstrated comparable percentages of cells positive for mesenchymal markers, though individual marker expression varied slightly. The explant-derived cells showed increased expression of RUNX2 after 7 days in osteoinductive media, while the treated single-cell-suspension-derived populations showed increased expression of SPP1 mRNA. Conclusions: Fibronectin enrichment resulted in a population with the greatest rate of population doubling over extended culture compared to the other two populations. The proportion of cells positive for all four mesenchymal surface markers was the same between populations. The fibronectin-adherent and non-adherent cultures may have responded more rapidly to osteoinductive media than the explant-derived cells.
Collapse
Affiliation(s)
| | | | - John S. Colombo
- Department of Biomedical Sciences, School of Dental Medicine, University of Nevada, Las Vegas, NV 89106, USA; (H.K.); (S.J.W.)
| |
Collapse
|
2
|
Entezami S, Sam MR. The role of mesenchymal stem cells-derived from oral and teeth in regenerative and reconstructive medicine. Tissue Cell 2025; 93:102766. [PMID: 39908767 DOI: 10.1016/j.tice.2025.102766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/25/2025] [Accepted: 01/25/2025] [Indexed: 02/07/2025]
Abstract
Defects and abnormalities of the skull, jaw, and face tissues due to various physiological problems such as speech, chewing, and swallowing disorders, cause illness and psychological effects with creation of significant public health challenges. Both autograft and allograft reconstruction methods, have different limitations, especially in the complete reconstruction of complex tissues such as sensory and periodontal tissues, which cannot be wholly relied on for treatment. Recently, mesenchymal stem cells (MSCs)-derived from oral and teeth have emerged as a promising alternative way in regenerative and reconstructive medicine. These types of stem cells with the high differentiation potential and self-renewal capabilities include dental pulp stem cells (DPSCs), stem cells from human exfoliated deciduous teeth (SHEDs), periodontal stem cells (PDLSCs) and gum-derived stem cells (GMSCs). These stem cells can be easily collected from accessible and numerous sources, such as extracted molars and milk teeth, with minimal invasiveness, playing pivotal roles in clinical application. This review explains the applications and therapeutic effects of the above-mentioned MSCs-derived from oral and dental tissues. Each of these stem cells, have unique characteristics and used for the treatment of specific abnormalities and defects. In this article, we aims to elucidate the indispensable and pivotal roles of MSCs-derived from the oral and teeth in addressing intractable and complex challenges in restorative and reconstructive medicine.
Collapse
Affiliation(s)
- Sara Entezami
- Department of orthodontics, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz University, Tabriz, Iran
| | - Mohammad Reza Sam
- Department of Biotechnology, Artemia and Aquaculture Research Institute, Urmia University, Urmia, Iran.
| |
Collapse
|
3
|
Russel WA, Jiménez AG, Paul KD, Hoopes BC, Ay A. Body Temperature Regulation in Domestic Dogs After Agility Trials: The Effects of Season, Training, Body Characteristics, Age, and Genetics. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2025; 343:400-415. [PMID: 39817687 DOI: 10.1002/jez.2899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/09/2024] [Accepted: 12/22/2024] [Indexed: 01/18/2025]
Abstract
An animal's body mass is said to be indirectly related to its rate of heat loss; that is, smaller animals with higher surface area to volume tend to lose heat faster than larger animals. Thus, thermoregulation should be related to body size, however, generalizable patterns are still unclear. Domestic dogs are a diverse species of endothermic mammals, including a 44-fold difference in body size. Previous work in sedentary dogs has determined that body size and other morphological variables tend to predict the thermoregulation of exercising pet dogs. Here, we aimed to address three questions: (1) whether thermoregulatory differences in domestic dogs across seasons are dictated strictly by external environmental temperatures or if individual thermal acclimation is affected by seasonal temperature variation, even indoors; (2) whether athleticism (or training experience) affects or changes thermoregulation in dogs, as it does in humans; and (3) whether thermoregulation in domestic dogs has a genetic basis. We obtained tympanic membrane (Tear) temperatures and thermal images to measure the rate of temperature change in the eyes, mouth, and nose of athletic dogs following an indoor agility trial. Additionally, we used image analysis to determine body morphology differences. We found body mass to play a strong role in thermoregulation in winter trials (Tmouth p = 0.017, Tnose p = 0.052) but a less determinate role in summer trials. We found distinct differences in thermoregulation patterns between winter and summer. Particularly, coat morphology and length may play different roles in thermoregulation across seasons. Additionally, we found that rates of mouth temperature change differ by an interaction between environmental temperature and training experience (p = 0.044), suggesting seasonal thermoregulation patterns in dogs depend on relative athleticism. Lastly, we found important genetic predictors of temperature change rate, such as GORAB and IGF1, as well as others that exert influence over body size, mitochondrial function, or coat characteristics. These genetic markers indicate markers similar to our whole-animal physiological results. Overall, our data suggest that domestic dogs demonstrate thermal acclimation across seasons, that athleticism changes thermoregulatory patterns in domestic dogs, and that body size-related genes are associated with thermoregulation in dogs.
Collapse
Affiliation(s)
| | | | - Kailey D Paul
- Department of Biology, Colgate University, Hamilton, New York, USA
| | - Barbara C Hoopes
- Department of Biology, Colgate University, Hamilton, New York, USA
| | - Ahmet Ay
- Department of Biology, Colgate University, Hamilton, New York, USA
- Department of Mathematics, Colgate University, Hamilton, New York, USA
| |
Collapse
|
4
|
Hou H, Qiu Z, Che J, Li Y, Sun J, Zhang W, Ma J, Zhang S, Li M, Niu Y, He L. Effects of simulated microgravity on dental pulp stem cell stemness. J Mol Histol 2025; 56:97. [PMID: 40011255 DOI: 10.1007/s10735-025-10377-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 02/16/2025] [Indexed: 02/28/2025]
Abstract
Dental pulp stem cells (DPSCs), a subset of tooth-derived mesenchymal stem cells (MSCs), demonstrate significant promise in clinical stem cell therapy. However, prolonged in vitro expansion commonly results in compromised stemness, limiting therapeutic efficacy. Thus, maintaining the stemness of DPSCs during expansion and culture is a key challenge for regenerative medicine. In the current study, the impact of simulated microgravity (SMG) on DPSC stemness was investigated using the three-dimensional clinostat Cellspace-3D. After SMG treatment for 3 days, DPSCs demonstrated markedly enhanced replicative activity, proliferation efficiency, self-renewal capacity, and effective inhibition of the senescence process. Under specific differentiation induction conditions, DPSCs in the SMG group exhibited superior osteogenic, adipogenic, chondrogenic, and neural differentiation potentials. Additionally, DPSCs exhibited higher expression levels of the MSC surface markers Stro-1 and CD146 and stemness maintenance-related genes Oct4, Nanog, and Sox2 in the SMG group compared to those from the normal gravity (NG) group. To elucidate the potential molecular mechanisms by which SMG influences the stemness of DPSCs, transcriptome sequencing of total RNA was performed, and identified that differentially expressed genes (DEGs) are closely associated with the MAPK signaling pathway. Further verification experiments demonstrated that the MAPK/ERK signaling pathway was activated in the SMG group. In conclusion, SMG effectively maintains the stemness of DPSCs cultivated in vitro, and its mechanism of action may be associated with the activation of the MAPK/ERK signaling pathway.
Collapse
Affiliation(s)
- Huailong Hou
- Department of Endodontics, The First Affiliated Hospital of Harbin Medical University, 143 Yiman Street, St Nangang Dist., Harbin, 150001, China
| | - Zhengjun Qiu
- Department of Endodontics, The First Affiliated Hospital of Harbin Medical University, 143 Yiman Street, St Nangang Dist., Harbin, 150001, China
| | - Jingyi Che
- Department of Endodontics, The First Affiliated Hospital of Harbin Medical University, 143 Yiman Street, St Nangang Dist., Harbin, 150001, China
| | - Yanping Li
- Department of Endodontics, The First Affiliated Hospital of Harbin Medical University, 143 Yiman Street, St Nangang Dist., Harbin, 150001, China
| | - Jingxuan Sun
- Department of Endodontics, The First Affiliated Hospital of Harbin Medical University, 143 Yiman Street, St Nangang Dist., Harbin, 150001, China
| | - Weiwei Zhang
- Department of Endodontics, The First Affiliated Hospital of Harbin Medical University, 143 Yiman Street, St Nangang Dist., Harbin, 150001, China
| | - Jinjie Ma
- Department of Endodontics, The First Affiliated Hospital of Harbin Medical University, 143 Yiman Street, St Nangang Dist., Harbin, 150001, China
| | - Shuang Zhang
- Department of Endodontics, The First Affiliated Hospital of Harbin Medical University, 143 Yiman Street, St Nangang Dist., Harbin, 150001, China
| | - Mengdi Li
- Department of Endodontics, The First Affiliated Hospital of Harbin Medical University, 143 Yiman Street, St Nangang Dist., Harbin, 150001, China
| | - Yumei Niu
- Department of Endodontics, The First Affiliated Hospital of Harbin Medical University, 143 Yiman Street, St Nangang Dist., Harbin, 150001, China.
| | - Lina He
- Department of Endodontics, The First Affiliated Hospital of Harbin Medical University, 143 Yiman Street, St Nangang Dist., Harbin, 150001, China.
| |
Collapse
|
5
|
Kavakebian F, Rezapour A, Seyedebrahimi R, Eslami Farsani M, Jabbari Fakhr M, Zare Jalise S, Ababzadeh S. Intrinsic and extrinsic modulators of human dental pulp stem cells: advancing strategies for tissue engineering applications. Mol Biol Rep 2025; 52:190. [PMID: 39899148 DOI: 10.1007/s11033-025-10281-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/21/2025] [Indexed: 02/04/2025]
Abstract
This review focuses on dental pulp stem cells (DPSCs) which are mesenchymal stem cells (MSCs) and originating from the neural crest. These cells possess a high capacity for self-renewal and multilineage differentiation. Because of these traits, they represent promising sources for tissue engineering, regenerative medicine, and clinical applications. The objective of this study was to assess the extrinsic and intrinsic factors influencing DPSC characteristics and their potential in tissue engineering. This review discusses the external and internal factors affecting DPSC properties, including proliferation, migration, differentiation, and gene expression post extraction. Additionally, it explores the impact of the microenvironment-its composition and physical properties-and genetic and epigenetic regulation on DPSC behavior. Variations in the microenvironment and genetic regulation play pivotal roles in modulating DPSC functions, including their proliferation and differentiation potential. Intrinsic and extrinsic factors are key barriers to realizing the full therapeutic potential of DPSCs. A deeper understanding of the extrinsic and intrinsic factors affecting DPSC behavior is critical for optimizing their use in regenerative medicine, particularly for dental and craniofacial applications. Although DPSCs hold significant promise, challenges remain, and this review provides insights into the current limitations and future directions for DPSC-based therapies. Researchers and clinicians are offered a comprehensive resource for advancing the field.
Collapse
Affiliation(s)
- Fatemeh Kavakebian
- Tissue Engineering and Applied Cell Sciences Department, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Alireza Rezapour
- Tissue Engineering and Applied Cell Sciences Department, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Reihaneh Seyedebrahimi
- Anatomy Department, School of Medicine, Qom University of Medical Sciences, Qom, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Mohsen Eslami Farsani
- Anatomy Department, School of Medicine, Qom University of Medical Sciences, Qom, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Massoumeh Jabbari Fakhr
- Tissue Engineering and Applied Cell Sciences Department, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Saeedeh Zare Jalise
- Tissue Engineering and Applied Cell Sciences Department, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Shima Ababzadeh
- Tissue Engineering and Applied Cell Sciences Department, School of Medicine, Qom University of Medical Sciences, Qom, Iran.
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
| |
Collapse
|
6
|
Nikolic S, Alastra G, Pultar F, Lüthy L, Stadlinger B, Carreira EM, Bugueno IM, Mitsiadis TA. Mutanobactin-D, a Streptococcus mutans Non-Ribosomal Cyclic Lipopeptide, Induces Osteogenic/Odontogenic Differentiation of Human Dental Pulp Stem Cells and Human Bone Marrow Stem Cells. Int J Mol Sci 2025; 26:1144. [PMID: 39940912 PMCID: PMC11817755 DOI: 10.3390/ijms26031144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/09/2025] [Accepted: 01/26/2025] [Indexed: 02/16/2025] Open
Abstract
Bacterium-triggered carious lesions implicate dental hard tissue destruction and the simultaneous initiation of regenerative events comprising dental stem cell activation. Streptococcus mutans (S. mutans) is a prominent pathogen of the oral cavity and the principal cause of caries. S. mutans generates complex products involved in interbacterial interactions, including Mutanobactin-D (Mub-D), which belongs to a group of non-ribosomal cyclic lipopeptides. In the present study, we aimed to analyse the potential role of the synthetic Mub-D peptide in cell populations involved in tissue regenerative processes. To this end, we assessed the in vitro effects of Mub-D in human dental pulp stem cells (hDPSCs) and human bone marrow stem cells (hBMSCs). Our data demonstrated a concentration-dependent effect of Mub-D on their viability and a significant increase in their proliferation and osteogenic/odontogenic differentiation. These events were associated with specific changes in gene expression, where CCDN-1, RUNX-2, OSX, OCN, DMP-1, DSPP, and BMP-2 genes were upregulated. The ability of Mub-D to modulate the osteogenic/odontogenic differentiation of both hDPSCs and hBMSCs and considerably enhance mineralisation in a controlled and concentration-dependent manner opens new perspectives for stem cell-based regenerative approaches in the clinics.
Collapse
Affiliation(s)
- Sandra Nikolic
- Orofacial Development and Regeneration, Institute of Oral Biology, Faculty of Medicine, Centre of Dental Medicine, University of Zurich, 8032 Zurich, Switzerland; (S.N.); (G.A.)
| | - Giuseppe Alastra
- Orofacial Development and Regeneration, Institute of Oral Biology, Faculty of Medicine, Centre of Dental Medicine, University of Zurich, 8032 Zurich, Switzerland; (S.N.); (G.A.)
- Department of Veterinary Medical Sciences, University of Bologna, 40126 Bologna, Italy
| | - Felix Pultar
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland; (F.P.); (L.L.); (E.M.C.)
| | - Lukas Lüthy
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland; (F.P.); (L.L.); (E.M.C.)
| | - Bernd Stadlinger
- Clinic of Cranio-Maxillofacial and Oral Surgery, University of Zurich, 8032 Zurich, Switzerland;
| | - Erick M. Carreira
- Laboratory of Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zürich, 8093 Zürich, Switzerland; (F.P.); (L.L.); (E.M.C.)
| | - Isaac Maximiliano Bugueno
- Orofacial Development and Regeneration, Institute of Oral Biology, Faculty of Medicine, Centre of Dental Medicine, University of Zurich, 8032 Zurich, Switzerland; (S.N.); (G.A.)
| | - Thimios A. Mitsiadis
- Orofacial Development and Regeneration, Institute of Oral Biology, Faculty of Medicine, Centre of Dental Medicine, University of Zurich, 8032 Zurich, Switzerland; (S.N.); (G.A.)
- Foundation for Research and Technology—Hellas (FORTH), University of Crete, 700 13 Heraklion, Greece
| |
Collapse
|
7
|
Peng B, Li Z, Cheng Y, Jiang H, Ye Q, Han G. Dental pulp stem cell-derived intracellular vesicles prevent orthodontic relapse by inhibiting PI3K/Akt/NF-κB-mediated osteoclast activity. Stem Cell Res Ther 2025; 16:22. [PMID: 39849611 PMCID: PMC11756174 DOI: 10.1186/s13287-025-04146-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/13/2025] [Indexed: 01/25/2025] Open
Abstract
BACKGROUND Orthodontic relapse, the undesired deviation of teeth from their corrected positions, remains a significant challenge in clinical orthodontics. Incomplete periodontal bone remodeling has been identified as a key factor in this process. Despite decades of research, currently there are no effective strategies to prevent relapse. METHODS We isolated and identified dental pulp stem cell-derived intracellular vesicles (DPSC-IV) from human dental pulp tissue. To investigate its effect, DPSC-IV was added to osteoblast or osteoclast differentiation medium. During the orthodontic retention period, DPSC-IV was administrated to rats by subgingival injection. Relapse distance and relapse rate were calculated to evaluate DPSC-IV's ability to prevent relapse. Additionally, Western blot analysis were used to examine DPSC-IV's inhibitory effect on osteoclast differentiation. RESULTS DPSC-IV significantly promoted osteoblast differentiation and inhibited osteoclast differentiation. Application of DPSC-IV during retention resulted in a significant reduction in both relapse distance and relapse rate, with improved periodontal structure and decreased osteoclast activity. This effect was mediated by the PI3K/Akt/NF-κB signaling pathway and could be reversed by the PI3K activator insulin-like growth factor-1 (IGF-1). CONCLUSION This study highlights the potential of DPSC-IV as a novel preventive approach against orthodontic relapse, offering a novel strategy for maintaining long-term orthodontic stability.
Collapse
Affiliation(s)
- Boyuan Peng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, NO.237, Luo Yu Road, Hongshan District, Wuhan City, 430079, China
| | - Ziwei Li
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Gaoxin 6th Road, Jiangxia, Wuhan, Hubei, 430000, People's Republic of China
| | - Yong Cheng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, NO.237, Luo Yu Road, Hongshan District, Wuhan City, 430079, China
| | - Henghua Jiang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, NO.237, Luo Yu Road, Hongshan District, Wuhan City, 430079, China
- Department of Orthodontics Division II, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China
| | - Qingsong Ye
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Gaoxin 6th Road, Jiangxia, Wuhan, Hubei, 430000, People's Republic of China.
- Sydney School of Dentistry, The University of Sydney, Camperdown, Sydney, NSW, Australia.
| | - Guangli Han
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, NO.237, Luo Yu Road, Hongshan District, Wuhan City, 430079, China.
- Department of Orthodontics Division II, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, China.
| |
Collapse
|
8
|
Fesenko II, Monteiro JLGC. Editorial: The future of third molar surgery. FRONTIERS IN ORAL HEALTH 2024; 5:1512305. [PMID: 39726769 PMCID: PMC11669648 DOI: 10.3389/froh.2024.1512305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 11/27/2024] [Indexed: 12/28/2024] Open
Affiliation(s)
- Ievgen I. Fesenko
- Department of Oral and Maxillofacial Surgery, Kyiv Medical University, Kyiv, Ukraine
| | | |
Collapse
|
9
|
Shipman WD, Fonseca R, Dominguez M, Bhayani S, Gilligan C, Diwan S, Rosenblum D, Ashina S, Tolba R, Abd-Elsayed A, Kaye AD, Hasoon J, Schatman ME, Deer T, Yong J, Robinson CL. An Update on Emerging Regenerative Medicine Applications: The Use of Extracellular Vesicles and Exosomes for the Management of Chronic Pain. Curr Pain Headache Rep 2024; 28:1289-1297. [PMID: 39495409 DOI: 10.1007/s11916-024-01309-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2024] [Indexed: 11/05/2024]
Abstract
PURPOSE OF REVIEW Chronic pain affects nearly two billion people worldwide, surpassing heart disease, diabetes, and cancer in terms of economic costs. Lower back pain alone is the leading cause of years lived with disability worldwide. Despite limited treatment options, regenerative medicine, particularly extracellular vesicles (EVs) and exosomes, holds early promise for patients who have exhausted other treatment options. EVs, including exosomes, are nano-sized structures released by cells, facilitating cellular communication through bioactive molecule transfer, and offering potential regenerative properties to damaged tissues. Here, we review the potential of EVs and exosomes for the management of chronic pain. RECENT FINDINGS In osteoarthritis, various exosomes, such as those derived from synovial mesenchymal stem cells, human placental cells, dental pulp stem cells, and bone marrow-derived mesenchymal stem cells (MSCs), demonstrate the ability to reduce inflammation, promote tissue repair, and alleviate pain in animal models. In intervertebral disc disease, Wharton's jelly MSC-derived EVs enhance cell viability and reduce inflammation. In addition, various forms of exosomes have been shown to reduce signs of inflammation in neurons and alleviate pain in neuropathic conditions in animal models. Although clinical applications of EVs and exosomes are still in the early clinical stages, they offer immense potential in the future management of chronic pain conditions. Clinical trials are ongoing to explore their therapeutic potential further, and with more research the potential applicability of EVs and exosomes will be fully understood.
Collapse
Affiliation(s)
- William D Shipman
- Department of Dermatology, Yale University School of Medicine, 333 Cedar Street, LMP 5040, Box 208059, New Haven, CT, 06520, USA.
- Skin & Beauty Center, Pasadena, CA, USA.
| | - Raquel Fonseca
- Department of Neurology, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Moises Dominguez
- Department of Neurology, Weill Cornell Medicine, New York, NY, USA
| | - Sadiq Bhayani
- Pain Management Department in the Anesthesiology Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, UAE
| | | | - Sudhir Diwan
- Manhattan Spine and Pain Medicine, Lenox Hill Hospital, New York, NY, USA
| | - David Rosenblum
- Department of Anesthesiology, Division of Pain Medicine, Maimonides Medical Center, New York, NY, USA
| | - Sait Ashina
- Department of Anesthesiology, Critical Care, and Pain Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Reda Tolba
- Pain Management Department in the Anesthesiology Institute, Cleveland Clinic Abu Dhabi, Abu Dhabi, UAE
| | - Alaa Abd-Elsayed
- Department of Anesthesiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Alan D Kaye
- Department of Anesthesiology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, USA
| | - Jamal Hasoon
- Department of Anesthesia and Pain Medicine, UTHealth McGovern Medical School, Houston, TX, USA
| | - Michael E Schatman
- Department of Anesthesiology, Perioperative Care, and Pain Medicine, NYU Grossman School of Medicine, New York, NY, USA
- Department of Population Health-Division of Medical Ethics, NYU Grossman School of Medicine, New York, NY, USA
| | - Timothy Deer
- The Spine and Nerve Center of the Virginias, Charleston, WV, USA
| | - Jason Yong
- Department of Anesthesiology, Perioperative, and Pain Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Christopher L Robinson
- Department of Anesthesiology, Perioperative, and Pain Medicine, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
10
|
Chen Y, Petho A, Ganapathy A, George A. DPP an extracellular matrix molecule induces Wnt5a mediated signaling to promote the differentiation of adult stem cells into odontogenic lineage. Sci Rep 2024; 14:26187. [PMID: 39478025 PMCID: PMC11525562 DOI: 10.1038/s41598-024-76069-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 10/10/2024] [Indexed: 11/02/2024] Open
Abstract
Dentin phosphophoryn (DPP) an extracellular matrix protein activates Wnt signaling in DPSCs (dental pulp stem cells). Wnt/β catenin signaling is essential for tooth development but the role of DPP-mediated Wnt5a signaling in odontogenesis is not well understood. Wnt5a is typically considered as a non-canonical Wnt ligand that elicits intracellular signals through association with a specific cohort of receptors and co-receptors in a cell and context-dependent manner. In this study, DPP facilitated the interaction of Wnt5a with Frizzled 5 and LRP6 to induce nuclear translocation of β-catenin. β-catenin has several nuclear binding partners that promote the activation of Wnt target genes responsible for odontogenic differentiation. Interestingly, steady increase in the expression of Vangl2 receptor suggest planar cell polarity signaling during odontogenic differentiation. In vitro observations were further strengthened by the low expression levels of Wnt5a and β-catenin in the teeth of DSPP KO mice which exhibit impaired odontoblast differentiation and defective dentin mineralization. Together, this study suggests that the DPP-mediated Wnt5a signaling could be exploited as a therapeutic approach for the differentiation of dental pulp stem cells into functional odontoblasts and dentin regeneration.
Collapse
Affiliation(s)
- Yinghua Chen
- Department of Oral Biology, University of Illinois Chicago, Chicago, IL, 60612, USA
| | - Adrienn Petho
- Department of Oral Biology, University of Illinois Chicago, Chicago, IL, 60612, USA
| | - Amudha Ganapathy
- Department of Oral Biology, University of Illinois Chicago, Chicago, IL, 60612, USA
| | - Anne George
- Department of Oral Biology, University of Illinois Chicago, Chicago, IL, 60612, USA.
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, 801 S. Paulina St, Chicago, IL, 60612, USA.
| |
Collapse
|
11
|
Zhou Q, Lei Y. ARMCX3 regulates ROS signaling, affects neural differentiation and inflammatory microenvironment in dental pulp stem cells. Heliyon 2024; 10:e37079. [PMID: 39296219 PMCID: PMC11407977 DOI: 10.1016/j.heliyon.2024.e37079] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/21/2024] Open
Abstract
Background The neural differentiation of dental pulp stem cells (DPSCs) exhibits great potential in the treatment of dental pulp repair and neurodegenerative diseases. However, the precise molecular mechanisms underlying this process remain unclear. This study was designed to reveal the roles and regulatory mechanisms of the armadillo repeat-containing X-linked 3 (ARMCX3) in neural differentiation and inflammatory microenvironment in human DPSCs (hDPSCs). Methods We treated hDPSCs with porphyromonas gingivalis lipopolysaccharide (Pg-LPS) to simulate the inflammatory microenvironment. Then the lentiviral vectors were introduced to construct stable cell lines with ARMCX3 knockdown or overexpression. The expression of neural-specific markers, ARMCX3 and inflammation factors were estimated by immunofluorescence (IF), quantitative real-time polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA) assays. Additionally, we used IF assays and specific kits to investigate the regulatory role of ARMCX3 on reactive oxygen species (ROS) signaling. Moreover, a ROS inhibitor was utilized to verify whether ROS inhibition reversed the effects of ARMCX3 in Pg-LPS-treated hDPSCs. Results This work illustrated that Pg-LPS treatment significantly enhanced ARMCX3 expression and inflammatory response, and inhibited neural differentiation in hDPSCs. ARMCX3 knockdown effectively accelerated neural differentiation and controlled inflammatory cytokines at a lower level in hDPSCs in the presence of Pg-LPS. Additionally, knockdown of ARMCX3 notably reduced ROS production and ROS inhibition effectively eliminated the roles of ARMCX3 overexpression in hDPSCs. Besides, all results were proved to be statistically significant. Conclusion This investigation proved that ARMCX3 affected neural differentiation and inflammation microenvironment in hDPSCs at least partly by mediating ROS signal. These findings provided a new perspective on the mechanism of neural differentiation of hDPSCs and help to better explore the therapeutic schedule of pulpitis and neurodegenerative diseases.
Collapse
Affiliation(s)
- Quanying Zhou
- Department of Stomatology, Wuhan Ninth Hospital, Wuhan, Hubei, 430080, China
| | - Yi Lei
- Department of Stomatology, Wuhan Ninth Hospital, Wuhan, Hubei, 430080, China
| |
Collapse
|
12
|
Eldeeb D, Okada H, Suzuki Y, Seki M, Tanaka J, Mishima K, Chung UI, Ohba S, Hojo H. Exploring the role of DNMT1 in dental papilla cell fate specification during mouse tooth germ development through integrated single-cell transcriptomics and bulk RNA sequencing. J Oral Biosci 2024; 66:530-538. [PMID: 38942194 DOI: 10.1016/j.job.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/22/2024] [Accepted: 06/24/2024] [Indexed: 06/30/2024]
Abstract
OBJECTIVES This study aimed to investigate the regulatory mechanisms governing dental mesenchymal cell commitment during tooth development, focusing on odontoblast differentiation and the role of epigenetic regulation in this process. METHODS We performed single-cell RNA sequencing (scRNA-seq) of dental cells from embryonic day 14.5 (E14.5) mice to understand the heterogeneity of developing tooth germ cells. Computational analyses including gene regulatory network (GRN) assessment were conducted. We validated our findings using immunohistochemistry (IHC) and in vitro loss-of-function analyses using the DNA methyltransferase 1 (DNMT1) inhibitor Gsk-3484862 in primary dental mesenchymal cells (DMCs) isolated from E14.5 mouse tooth germs. Bulk RNA-seq of Gsk-3484862-treated DMCs was performed to identify potential downstream targets of DNMT1. RESULTS scRNA-seq analysis revealed diverse cell populations within the tooth germs, including epithelial, mesenchymal, immune, and muscle cells. Using single-cell regulatory network inference and clustering (SCENIC), we identified Dnmt1 as a key regulator of early odontoblast development. IHC analysis showed the ubiquitous expression of DNMT1 in the dental papilla and epithelium. Bulk RNA-seq of cultured DMCs showed that Gsk-3484862 treatment upregulated odontoblast-related genes, whereas genes associated with cell division and the cell cycle were downregulated. Integrated analysis of bulk RNA-seq data with scRNA-seq SCENIC profiles was used to identify the potential Dnmt1 target genes. CONCLUSIONS Dnmt1 may negatively affect odontoblast commitment and differentiation during tooth development. These findings contribute to a better understanding of the molecular mechanisms underlying tooth development and future development of hard-tissue regenerative therapies.
Collapse
Affiliation(s)
- Dahlia Eldeeb
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Japan; Department of Oral Biology, Faculty of Dentistry, Cairo University, Egypt
| | - Hiroyuki Okada
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Japan; Department of Orthopaedic Surgery, Graduate School of Medicine, The University of Tokyo, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Japan
| | - Masahide Seki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Japan
| | - Junichi Tanaka
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Japan
| | - Kenji Mishima
- Division of Pathology, Department of Oral Diagnostic Sciences, School of Dentistry, Showa University, Japan
| | - Ung-Il Chung
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Japan; Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Japan
| | - Shinsuke Ohba
- Department of Tissue and Developmental Biology, Graduate School of Dentistry, Osaka University, Japan.
| | - Hironori Hojo
- Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Japan; Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Japan.
| |
Collapse
|
13
|
Patntirapong S, Khankhow J, Julamorn S. Long-term passage impacts human dental pulp stem cell activities and cell response to drug addition in vitro. PeerJ 2024; 12:e17913. [PMID: 39193517 PMCID: PMC11348901 DOI: 10.7717/peerj.17913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
Background Dental pulp stem cells (DPSCs) possess mesenchymal stem cell characteristics and have potential for cell-based therapy. Cell expansion is essential to achieve sufficient cell numbers. However, continuous cell replication causes cell aging in vitro, which usually accompanies and potentially affect DPSC characteristics and activities. Continuous passaging could alter susceptibility to external factors such as drug treatment. Therefore, this study sought to investigate potential outcome of in vitro passaging on DPSC morphology and activities in the absence or presence of external factor. Methods Human DPSCs were subcultured until reaching early passages (P5), extended passages (P10), and late passages (P15). Cells were evaluated and compared for cell and nuclear morphologies, cell adhesion, proliferative capacity, alkaline phosphatase (ALP) activity, and gene expressions in the absence or presence of external factor. Alendronate (ALN) drug treatment was used as an external factor. Results Continuous passaging of DPSCs gradually lost their normal spindle shape and increased in cell and nuclear sizes. DPSCs were vulnerable to ALN. The size and shape were altered, leading to morphological abnormality and inhomogeneity. Long-term culture and ALN interfered with cell adhesion. DPSCs were able to proliferate irrespective of cell passages but the rate of cell proliferation in late passages was slower. ALN at moderate dose inhibited cell growth. ALN caused reduction of ALP activity in early passage. In contrast, extended passage responded differently to ALN by increasing ALP activity. Late passage showed higher collagen but lower osteocalcin gene expressions compared with early passage in the presence of ALN. Conclusion An increase in passage number played critical role in cell morphology and activities as well as responses to the addition of an external factor. The effects of cell passage should be considered when used in basic science research and clinical applications.
Collapse
Affiliation(s)
- Somying Patntirapong
- Thammasat University Research Unit in Dental and Bone Substitute Biomaterials, Faculty of Dentistry, Thammasat University, Pathumthani, Thailand
| | | | - Sikarin Julamorn
- Faculty of Dentistry, Thammasat University, Pathumthani, Thailand
| |
Collapse
|
14
|
Farshbaf A, Mottaghi M, Mohammadi M, Monsef K, Mirhashemi M, Attaran Khorasani A, Mohtasham N. Regenerative application of oral and maxillofacial 3D organoids based on dental pulp stem cell. Tissue Cell 2024; 89:102451. [PMID: 38936200 DOI: 10.1016/j.tice.2024.102451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/30/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
Dental pulp stem cells (DPSCs) originate from the neural crest and the present mesenchymal phenotype showed self-renewal capabilities and can differentiate into at least three lineages. DPSCs are easily isolated with minimal harm, no notable ethical constraints, and without general anesthesia to the donor individuals. Furthermore, cryopreservation of DPSCs provides this opportunity for autologous transplantation in future studies without fundamental changes in stemness, viability, proliferation, and differentiating features. Current approaches for pulp tissue regeneration include pulp revascularization, cell-homing-based regenerative endodontic treatment (RET), cell-transplantation-based regenerative endodontic treatment, and allogeneic transplantation. In recent years, a novel technology, organoid, provides a mimic physiological condition and tissue construct that can be applied for tissue engineering, genetic manipulation, disease modeling, single-cell high throughput analysis, living biobank, cryopreserving and maintaining cells, and therapeutic approaches based on personalized medicine. The organoids can be a reliable preclinical prediction model for evaluating cell behavior, monitoring drug response or resistance, and comparing healthy and pathological conditions for therapeutic and prognostic approaches. In the current review, we focused on the promising application of 3D organoid technology based on DPSCs in oral and maxillofacial tissue regeneration. We discussed encountering challenges and limitations, and found promising solutions to overcome obstacles.
Collapse
Affiliation(s)
- Alieh Farshbaf
- Dental Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahtab Mottaghi
- School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Mohammadi
- Medical Informatics Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Kouros Monsef
- Dental Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Mirhashemi
- Department of Oral and Maxillofacial Pathology, and Oral and Maxillofacial Diseases Research Center, School of Dentistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Nooshin Mohtasham
- Oral and Maxillofacial Diseases Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
15
|
El-Akabawy G, El-Kersh SOF, El-Kersh AOFO, Amin SN, Rashed LA, Abdel Latif N, Elshamey A, Abdallah MAAEM, Saleh IG, Hein ZM, El-Serafi I, Eid N. Dental pulp stem cells ameliorate D-galactose-induced cardiac ageing in rats. PeerJ 2024; 12:e17299. [PMID: 38799055 PMCID: PMC11127642 DOI: 10.7717/peerj.17299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/03/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Ageing is a key risk factor for cardiovascular disease and is linked to several alterations in cardiac structure and function, including left ventricular hypertrophy and increased cardiomyocyte volume, as well as a decline in the number of cardiomyocytes and ventricular dysfunction, emphasizing the pathological impacts of cardiomyocyte ageing. Dental pulp stem cells (DPSCs) are promising as a cellular therapeutic source due to their minimally invasive surgical approach and remarkable proliferative ability. AIM This study is the first to investigate the outcomes of the systemic transplantation of DPSCs in a D-galactose (D-gal)-induced rat model of cardiac ageing. Methods. Thirty 9-week-old Sprague-Dawley male rats were randomly assigned into three groups: control, ageing (D-gal), and transplanted groups (D-gal + DPSCs). D-gal (300 mg/kg/day) was administered intraperitoneally daily for 8 weeks. The rats in the transplantation group were intravenously injected with DPSCs at a dose of 1 × 106 once every 2 weeks. RESULTS The transplanted cells migrated to the heart, differentiated into cardiomyocytes, improved cardiac function, upregulated Sirt1 expression, exerted antioxidative effects, modulated connexin-43 expression, attenuated cardiac histopathological alterations, and had anti-senescent and anti-apoptotic effects. CONCLUSION Our results reveal the beneficial effects of DPSC transplantation in a cardiac ageing rat model, suggesting their potential as a viable cell therapy for ageing hearts.
Collapse
Affiliation(s)
- Gehan El-Akabawy
- Department of Basic Medical Sciences, College of Medicine, Ajman University, Ajman, United Arab Emirates
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
- Department of Anatomy and Embryology, Faculty of Medicine, Menoufia University, Menoufia, Egypt
| | | | | | - Shaimaa Nasr Amin
- Department of Anatomy, Physiology and Biochemistry, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
- Department of Physiology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Laila Ahmed Rashed
- Department of Medical Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Noha Abdel Latif
- Department of Medical Pharmacology, Faculty of Medicine, Cairo University, Cairo, Egypt
- Department of Medical Pharmacology, Armed Forces College of Medicine, Cairo, Egypt
| | - Ahmed Elshamey
- Samanoud General Hospital, Samannoud City, Samanoud, Gharbia, Egypt
| | | | - Ibrahim G. Saleh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Cairo, Egypt
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Sinai University, Kantra, Ismailia, Egypt
| | - Zaw Myo Hein
- Department of Basic Medical Sciences, College of Medicine, Ajman University, Ajman, United Arab Emirates
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Ibrahim El-Serafi
- Department of Basic Medical Sciences, College of Medicine, Ajman University, Ajman, United Arab Emirates
| | - Nabil Eid
- Department of Anatomy, Division of Human Biology, School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| |
Collapse
|
16
|
Xu S, Wei J, Liu Y, Zhang L, Duan M, Li J, Niu Z, Pu X, Huang M, Chen H, Zhou X, Xie J. PDGF-AA guides cell crosstalk between human dental pulp stem cells in vitro via the PDGFR-α/PI3K/Akt axis. Int Endod J 2024; 57:549-565. [PMID: 38332717 DOI: 10.1111/iej.14038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/10/2024]
Abstract
AIM To explore the influence of PDGF-AA on cell communication between human dental pulp stem cells (DPSCs) by characterizing gap junction intercellular communication (GJIC) and its potential biomechanical mechanism. METHODOLOGY Quantitative real-time PCR was used to measure connexin family member expression in DPSCs. Cell migration and CCK-8 assays were utilized to examine the influence of PDGF-AA on DPSC migration and proliferation. A scrape loading/dye transfer assay was applied to evaluate GJIC triggered by PDGF-AA, a PI3K/Akt signalling pathway blocker (LY294002) and a PDGFR-α blocker (AG1296). Western blotting and immunofluorescence were used to test the expression and distribution of the Cx43 and p-Akt proteins in DPSCs. Scanning electron microscopy (SEM) and immunofluorescence were used to observe the morphology of GJIC in DPSCs. RESULTS PDGF-AA promoted gap junction formation and intercellular communication between human dental pulp stem cells. PDGF-AA upregulates the expression of Cx43 to enhance gap junction formation and intercellular communication. PDGF-AA binds to PDGFR-α and activates PI3K/Akt signalling to regulate cell communication. CONCLUSIONS This research demonstrated that PDGF-AA can enhance Cx43-mediated GJIC in DPSCs via the PDGFR-α/PI3K/Akt axis, which provides new cues for dental pulp regeneration from the perspective of intercellular communication.
Collapse
Affiliation(s)
- Siqun Xu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jieya Wei
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yang Liu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Li Zhang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Mengmeng Duan
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jiazhou Li
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Zhixing Niu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xiaohua Pu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Minglei Huang
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Hao Chen
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
17
|
Ye L, Yu Z, He L, Yuan J, Zhang X, Li L, Huang X, Ma Y, Zhang L. KAT2A-mediated succinylation modification of notch1 promotes the proliferation and differentiation of dental pulp stem cells by activating notch pathway. BMC Oral Health 2024; 24:407. [PMID: 38556862 PMCID: PMC10981825 DOI: 10.1186/s12903-024-03951-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/29/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Dental pulp stem cells (DPSCs) are a kind of undifferentiated dental mesenchymal stem cells with strong self-renewal ability and multi-differentiation potential. This study aimed to investigate the regulatory functions of succinylation modification in DPSCs. METHODS DPSCs were isolated from the dental pulp collected from healthy subjects, and then stem cell surface markers were identified using flow cytometry. The osteogenic differentiation ability of DPSCs was verified by alkaline phosphatase (ALP) and alizarin red staining methods, while adipogenic differentiation was detected by oil red O staining. Meanwhile, the mRNA of two desuccinylases (SIRT5 and SIRT7) and three succinylases (KAT2A, KAT3B, and CPT1A) in DPSCs before and after mineralization induction were detected using quantitative real-time PCR. The cell cycle was measured by flow cytometry, and the expression of bone-specific genes, including COL1a1 and Runx2 were evaluated by western blotting and were combined for the proliferation and differentiation of DPSCs. Co-immunoprecipitation (co-IP) and immunofluorescence were combined to verify the binding relationship between proteins. RESULTS The specific markers of mesenchymal stem cells were highly expressed in DPSCs, while the osteogenic differentiation ability of isolated DPSCs was confirmed via ALP and alizarin red staining. Similarly, the oil red O staining also verified the adipogenic differentiation ability of DPSCs. The levels of KAT2A were found to be significantly upregulated in mineralization induction, which significantly decreased the ratio of G0/G1 phase and increased S phase cells; converse results regarding cell cycle distribution were obtained when KAT2A was inhibited. Moreover, overexpression of KAT2A promoted the differentiation of DPSCs, while its inhibition exerted the opposite effect. The elevated KAT2A was found to activate the Notch1 signaling pathway, which succinylated Notch1 at the K2177 site to increase their corresponding protein levels in DPSCs. The co-IP results showed that KAT2A and Notch1 were endogenously bound to each other, while inhibition of Notch1 reversed the effects of KAT2A overexpression on the DPSCs proliferation and differentiation. CONCLUSION KAT2A interacted directly with Notch1, succinylating the Notch1 at the K2177 site to increase their corresponding protein levels in DPSCs. Similarly, KAT2A-mediated succinylation modification of Notch1 promotes the DPSCs proliferation and differentiation, suggesting that targeting KAT2A and Notch1 may contribute to tooth regeneration.
Collapse
Affiliation(s)
- Longwei Ye
- Department of Oral Health and Prevention, The First Affiliated Hospital of Harbin Medical University. Harbin Medical University, School of Stomatology, No.143 Yiman Street, Nangang District, Harbin City, 150001, Heilongjiang Province, China
| | - Zeqin Yu
- Department of Oral Health and Prevention, The First Affiliated Hospital of Harbin Medical University. Harbin Medical University, School of Stomatology, No.143 Yiman Street, Nangang District, Harbin City, 150001, Heilongjiang Province, China
| | - Lin He
- Department of Stomatology, Heilongjiang Province Hospital, Harbin City, 150081, Heilongjiang Province, China
| | - Jie Yuan
- Department of Oral Health and Prevention, The First Affiliated Hospital of Harbin Medical University. Harbin Medical University, School of Stomatology, No.143 Yiman Street, Nangang District, Harbin City, 150001, Heilongjiang Province, China
| | - Xiaodan Zhang
- Department of Oral Health and Prevention, The First Affiliated Hospital of Harbin Medical University. Harbin Medical University, School of Stomatology, No.143 Yiman Street, Nangang District, Harbin City, 150001, Heilongjiang Province, China
| | - Lei Li
- Department of Oral Health and Prevention, The First Affiliated Hospital of Harbin Medical University. Harbin Medical University, School of Stomatology, No.143 Yiman Street, Nangang District, Harbin City, 150001, Heilongjiang Province, China
| | - Xin Huang
- Department of Oral Health and Prevention, The First Affiliated Hospital of Harbin Medical University. Harbin Medical University, School of Stomatology, No.143 Yiman Street, Nangang District, Harbin City, 150001, Heilongjiang Province, China
| | - Yanyan Ma
- Pharmaceutical Department, The First Affiliated Hospital of Harbin Medical University, Harbin City, 150001, Heilongjiang Province, China
| | - Lei Zhang
- Department of Oral Health and Prevention, The First Affiliated Hospital of Harbin Medical University. Harbin Medical University, School of Stomatology, No.143 Yiman Street, Nangang District, Harbin City, 150001, Heilongjiang Province, China.
| |
Collapse
|
18
|
Grawish ME. Human dental pulp stem/stromal cells in clinical practice. World J Stem Cells 2024; 16:54-57. [PMID: 38455102 PMCID: PMC10915954 DOI: 10.4252/wjsc.v16.i2.54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/28/2023] [Accepted: 01/30/2024] [Indexed: 02/26/2024] Open
Abstract
Dental pulp stem/stromal cells (DPSCs) are fibroblast-like, neural crest-derived, and multipotent cells that can differentiate into several lineages. They are relatively easy to isolate from healthy and inflamed pulps, with little ethical concerns and can be successfully cryopreserved and thawed. The therapeutic effects of DPSCs derived from animal or human sources have been extensively studied through in-vitro and in-vivo animal experiments and the findings indicated that DPSCs are effective not only for dental diseases but also for systemic diseases. Understanding that translational research is a critical step through which the fundamental scientific discoveries could be translated into applicable diagnostics and therapeutics that directly benefit humans, several clinical studies were carried out to generate evidence for the efficacy and safety of autogenous or allogeneic human DPSCs (hDPSCs) as a treatment modality for use in cell-based therapy, regenerative medicine/dentistry and tissue engineering. In clinical medicine, hDPSCs were effective for treating acute ischemic stroke and human exfoliated deciduous teeth-conditioned medium (SHED-CM) repaired vascular damage of the corpus cavernous, which is the main cause of erectile dysfunction. Whereas in clinical dentistry, autologous SHED was able to regenerate necrotic dental pulp after implantation into injured teeth, and micrografts enriched with autologous hDPSCs and collagen sponge were considered a treatment option for human intrabony defects. In contrast, hDPSCs did not add a significant regenerative effect when they were used for the treatment of post-extraction sockets. Large-scale clinical studies across diverse populations are still lacking to provide robust evidence on the safety and efficacy of hDPSCs as a new treatment option for various human diseases including dental-related problems.
Collapse
Affiliation(s)
- Mohammed E Grawish
- Department of Oral Biology, Faculty of Dentistry, Mansoura University, Mansoura 35561, Egypt
- Department of Oral Biology, Faculty of Oral and Dental Medicine, Delta University for Science and Technology, Mansoura 11152, Egypt.
| |
Collapse
|
19
|
Santilli F, Fabrizi J, Santacroce C, Caissutti D, Spinello Z, Candelise N, Lancia L, Pulcini F, Delle Monache S, Mattei V. Analogies and Differences Between Dental Stem Cells: Focus on Secretome in Combination with Scaffolds in Neurological Disorders. Stem Cell Rev Rep 2024; 20:159-174. [PMID: 37962698 PMCID: PMC10799818 DOI: 10.1007/s12015-023-10652-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2023] [Indexed: 11/15/2023]
Abstract
Mesenchymal stem cells (MSCs) are well known for their beneficial effects, differentiation capacity and regenerative potential. Dental-derived MSCs (DSCs) are more easily accessible and have a non-invasive isolation method rather than MSCs isolated from other sources (umbilical cord, bone marrow, and adipose tissue). In addition, DSCs appear to have a relevant neuro-regenerative potential due to their neural crest origin. However, it is now known that the beneficial effects of MSCs depend, at least in part, on their secretome, referring to all the bioactive molecules (neurotrophic factors) released in the conditioned medium (CM) or in the extracellular vesicles (EVs) in particular exosomes (Exos). In this review, we described the similarities and differences between various DSCs. Our focus was on the secretome of DSCs and their applications in cell therapy for neurological disorders. For neuro-regenerative purposes, the secretome of different DSCs has been tested. Among these, the secretome of dental pulp stem cells and stem cells from human exfoliated deciduous teeth have been the most widely studied. Both CM and Exos obtained from DSCs have been shown to promote neurite outgrowth and neuroprotective effects as well as their combination with scaffold materials (to improve their functional integration in the tissue). For these reasons, the secretome obtained from DSCs in combination with scaffold materials may represent a promising tissue engineering approach for neuroprotective and neuro-regenerative treatments.
Collapse
Affiliation(s)
- Francesca Santilli
- Biomedicine and Advanced Technologies Rieti Center, "Sabina Universitas", Via A.M. Ricci 35/A, 02100, Rieti, Italy
| | - Jessica Fabrizi
- Department of Experimental Medicine, "Sapienza" University, Viale Regina Elena 324, 00161, Rome, Italy
| | - Costantino Santacroce
- Biomedicine and Advanced Technologies Rieti Center, "Sabina Universitas", Via A.M. Ricci 35/A, 02100, Rieti, Italy
| | - Daniela Caissutti
- Department of Experimental Medicine, "Sapienza" University, Viale Regina Elena 324, 00161, Rome, Italy
| | - Zaira Spinello
- Department of Experimental Medicine, "Sapienza" University, Viale Regina Elena 324, 00161, Rome, Italy
| | - Niccolò Candelise
- National Center for Drug Research and Evaluation, Istituto Superiore di Sanità, Viale Regina Elena, 29900161, Rome, Italy
| | - Loreto Lancia
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100, L'Aquila, Italy
| | - Fanny Pulcini
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100, L'Aquila, Italy
| | - Simona Delle Monache
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, Via Vetoio, 67100, L'Aquila, Italy.
| | - Vincenzo Mattei
- Dipartimento di Scienze della Vita, della Salute e delle Professioni Sanitarie, Link Campus University, Via del Casale di San Pio V 44, 00165, Rome, Italy.
| |
Collapse
|
20
|
Barchiki F, Fracaro L, Dominguez AC, Senegaglia AC, Vaz IM, Soares P, de Moura SAB, Brofman PRS. Biocompatibility of ABS and PLA Polymers with Dental Pulp Stem Cells Enhance Their Potential Biomedical Applications. Polymers (Basel) 2023; 15:4629. [PMID: 38139880 PMCID: PMC10747830 DOI: 10.3390/polym15244629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Polylactic Acid (PLA) and Acrylonitrile-Butadiene-Styrene (ABS) are commonly used polymers in 3D printing for biomedical applications. Dental Pulp Stem Cells (DPSCs) are an accessible and proliferative source of stem cells with significant differentiation potential. Limited knowledge exists regarding the biocompatibility and genetic safety of ABS and PLA when in contact with DPSCs. This study aimed to investigate the impact of PLA and ABS on the adhesion, proliferation, osteogenic differentiation, genetic stability, proteomics, and immunophenotypic profile of DPSCs. A total of three groups, 1- DPSC-control, 2- DPSC+ABS, and 3- DPSC+PLA, were used in in vitro experiments to evaluate cell morphology, proliferation, differentiation capabilities, genetic stability, proteomics (secretome), and immunophenotypic profiles regarding the interaction between DPSCs and polymers. Both ABS and PLA supported the adhesion and proliferation of DPSCs without exhibiting significant cytotoxic effects and maintaining the capacity for osteogenic differentiation. Genetic stability, proteomics, and immunophenotypic profiles were unaltered in DPSCs post-contact with these polymers, highlighting their biosafety. Our findings suggest that ABS and PLA are biocompatible with DPSCs and demonstrate potential in dental or orthopedic applications; the choice of the polymer will depend on the properties required in treatment. These promising results stimulate further studies to explore the potential therapeutic applications in vivo using prototyped polymers in personalized medicine.
Collapse
Affiliation(s)
- Fabiane Barchiki
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba 80215-901, Brazil; (L.F.); (A.C.S.); (I.M.V.); (P.R.S.B.)
- INCT—REGENERA National Institute of Science and Technology in Regenerative Medicine, Rio de Janeiro 21941-902, Brazil
| | - Letícia Fracaro
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba 80215-901, Brazil; (L.F.); (A.C.S.); (I.M.V.); (P.R.S.B.)
- INCT—REGENERA National Institute of Science and Technology in Regenerative Medicine, Rio de Janeiro 21941-902, Brazil
| | - Alejandro Correa Dominguez
- Laboratory of Basic Biology of Stem Cells, Carlos Chagas Institute, Fiocruz-PR, Curitiba 81350-010, Brazil;
| | - Alexandra Cristina Senegaglia
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba 80215-901, Brazil; (L.F.); (A.C.S.); (I.M.V.); (P.R.S.B.)
- INCT—REGENERA National Institute of Science and Technology in Regenerative Medicine, Rio de Janeiro 21941-902, Brazil
| | - Isadora May Vaz
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba 80215-901, Brazil; (L.F.); (A.C.S.); (I.M.V.); (P.R.S.B.)
- INCT—REGENERA National Institute of Science and Technology in Regenerative Medicine, Rio de Janeiro 21941-902, Brazil
| | - Paulo Soares
- LaBES—Laboratory of Biomaterials and Surface Engineering, Polytechnic School, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba 80215-901, Brazil;
| | - Sérgio Adriane Bezerra de Moura
- Departament of Morphology, Campus Universitário Lagoa Nova, Universidade Federal do Rio Grande do Norte (UFRN), Natal 59072-970, Brazil;
| | - Paulo Roberto Slud Brofman
- Core for Cell Technology, School of Medicine, Pontifícia Universidade Católica do Paraná (PUCPR), Curitiba 80215-901, Brazil; (L.F.); (A.C.S.); (I.M.V.); (P.R.S.B.)
- INCT—REGENERA National Institute of Science and Technology in Regenerative Medicine, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
21
|
Chehelgerdi M, Behdarvand Dehkordi F, Chehelgerdi M, Kabiri H, Salehian-Dehkordi H, Abdolvand M, Salmanizadeh S, Rashidi M, Niazmand A, Ahmadi S, Feizbakhshan S, Kabiri S, Vatandoost N, Ranjbarnejad T. Exploring the promising potential of induced pluripotent stem cells in cancer research and therapy. Mol Cancer 2023; 22:189. [PMID: 38017433 PMCID: PMC10683363 DOI: 10.1186/s12943-023-01873-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/27/2023] [Indexed: 11/30/2023] Open
Abstract
The advent of iPSCs has brought about a significant transformation in stem cell research, opening up promising avenues for advancing cancer treatment. The formation of cancer is a multifaceted process influenced by genetic, epigenetic, and environmental factors. iPSCs offer a distinctive platform for investigating the origin of cancer, paving the way for novel approaches to cancer treatment, drug testing, and tailored medical interventions. This review article will provide an overview of the science behind iPSCs, the current limitations and challenges in iPSC-based cancer therapy, the ethical and social implications, and the comparative analysis with other stem cell types for cancer treatment. The article will also discuss the applications of iPSCs in tumorigenesis, the future of iPSCs in tumorigenesis research, and highlight successful case studies utilizing iPSCs in tumorigenesis research. The conclusion will summarize the advancements made in iPSC-based tumorigenesis research and the importance of continued investment in iPSC research to unlock the full potential of these cells.
Collapse
Affiliation(s)
- Matin Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Fereshteh Behdarvand Dehkordi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mohammad Chehelgerdi
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran.
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Hamidreza Kabiri
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | | | - Mohammad Abdolvand
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Sharareh Salmanizadeh
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar-Jereeb Street, Isfahan, 81746-73441, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Anoosha Niazmand
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Saba Ahmadi
- Department of Molecular and Medical Genetics, Tbilisi State Medical University, Tbilisi, Georgia
| | - Sara Feizbakhshan
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Saber Kabiri
- Novin Genome (NG) Lab, Research and Development Center for Biotechnology, Shahrekord, Iran
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Nasimeh Vatandoost
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Tayebeh Ranjbarnejad
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| |
Collapse
|
22
|
Zawadzka-Knefel A, Rusak A, Mrozowska M, Machałowski T, Żak A, Haczkiewicz-Leśniak K, Kulus M, Kuropka P, Podhorska-Okołów M, Skośkiewicz-Malinowska K. Chitin scaffolds derived from the marine demosponge Aplysina fistularis stimulate the differentiation of dental pulp stem cells. Front Bioeng Biotechnol 2023; 11:1254506. [PMID: 38033818 PMCID: PMC10682193 DOI: 10.3389/fbioe.2023.1254506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/24/2023] [Indexed: 12/02/2023] Open
Abstract
The use of stem cells for tissue regeneration is a prominent trend in regenerative medicine and tissue engineering. In particular, dental pulp stem cells (DPSCs) have garnered considerable attention. When exposed to specific conditions, DPSCs have the ability to differentiate into osteoblasts and odontoblasts. Scaffolds are critical for cell differentiation because they replicate the 3D microenvironment of the niche and enhance cell adhesion, migration, and differentiation. The purpose of this study is to present the biological responses of human DPSCs to a purified 3D chitin scaffold derived from the marine demosponge Aplysina fistularis and modified with hydroxyapatite (HAp). Responses examined included proliferation, adhesion, and differentiation. The control culture consisted of the human osteoblast cell line, hFOB 1.19. Electron microscopy was used to examine the ultrastructure of the cells (transmission electron microscopy) and the surface of the scaffold (scanning electron microscopy). Cell adhesion to the scaffolds was determined by neutral red and crystal violet staining methods. An alkaline phosphatase (ALP) assay was used for assessing osteoblast/odontoblast differentiation. We evaluated the expression of osteogenic marker genes by performing ddPCR for ALP, RUNX2, and SPP1 mRNA expression levels. The results show that the chitin biomaterial provides a favorable environment for DPSC and hFOB 1.19 cell adhesion and supports both cell proliferation and differentiation. The chitin scaffold, especially with HAp modification, isolated from A. fistularis can make a significant contribution to tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Anna Zawadzka-Knefel
- Department of Conservative Dentistry with Endodontics, Wroclaw Medical University, Wroclaw, Poland
| | - Agnieszka Rusak
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Monika Mrozowska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Tomasz Machałowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Poznan, Poland
| | - Andrzej Żak
- Electron Microscopy Laboratory, Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
| | | | - Michał Kulus
- Division of Ultrastructural Research, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | - Piotr Kuropka
- Division of Histology and Embryology, Department of Biostructure and Animal Physiology, Faculty of Veterinary Medicine, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Marzenna Podhorska-Okołów
- Division of Ultrastructural Research, Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland
| | | |
Collapse
|
23
|
Vimalraj S, Saravanan S. Tooth-derived stem cells integrated biomaterials for bone and dental tissue engineering. Cell Tissue Res 2023; 394:245-255. [PMID: 37548764 DOI: 10.1007/s00441-023-03815-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 07/12/2023] [Indexed: 08/08/2023]
Abstract
Recent years have seen the emergence of tissue engineering strategies as a means to overcome some of the limits of conventional medical treatment. A biomaterial with tailored physio-chemical characteristics is used in this sophisticated method to transport stem cells and growth factors/bioactive substances, or to attract local endogenous cells, enabling new tissue formation. Biomaterials might serve as a biomimetic structure inspired by the natural milieu, assisting the cells in establishing their natural relationships. Such a method would benefit from having ready access to an abundant reservoir of stem cells with strong tissue regeneration capacity, in addition to using biological compatible material to promote new tissue creation. Teeth may have a plethora of self-renewing, multipotent mesenchymal stem cell (MSC) populations. Recent advancements and promising directions for cell transplantation and homing techniques using dental MSCs for tissue regeneration are discussed in this review paper. Overall, this research paints a picture of the present landscape of new approaches to using tooth-derived MSCs in conjunction with biomaterials and bioactive substances for tissue regeneration.
Collapse
Affiliation(s)
- Selvaraj Vimalraj
- Department of Prosthodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600 077, Tamil Nadu, India.
| | - Sekaran Saravanan
- Department of Prosthodontics, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600 077, Tamil Nadu, India
| |
Collapse
|
24
|
Rossi N, Hadad H, Bejar-Chapa M, Peretti GM, Randolph MA, Redmond RW, Guastaldi FPS. Bone Marrow Stem Cells with Tissue-Engineered Scaffolds for Large Bone Segmental Defects: A Systematic Review. TISSUE ENGINEERING. PART B, REVIEWS 2023; 29:457-472. [PMID: 36905366 DOI: 10.1089/ten.teb.2022.0213] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Critical-sized bone defects (CSBDs) represent a significant clinical challenge, stimulating researchers to seek new methods for successful bone reconstruction. The aim of this systematic review is to assess whether bone marrow stem cells (BMSCs) combined with tissue-engineered scaffolds have demonstrated improved bone regeneration in the treatment of CSBD in large preclinical animal models. A search of electronic databases (PubMed, Embase, Web of Science, and Cochrane Library) focused on in vivo large animal studies identified 10 articles according to the following inclusion criteria: (1) in vivo large animal models with segmental bone defects; (2) treatment with tissue-engineered scaffolds combined with BMSCs; (3) the presence of a control group; and (4) a minimum of a histological analysis outcome. Animal research: reporting of in Vivo Experiments guidelines were used for quality assessment, and Systematic Review Center for Laboratory animal Experimentation's risk of bias tool was used to define internal validity. The results demonstrated that tissue-engineered scaffolds, either from autografts or allografts, when combined with BMSCs provide improved bone mineralization and bone formation, including a critical role in the remodeling phase of bone healing. BMSC-seeded scaffolds showed improved biomechanical properties and microarchitecture properties of the regenerated bone when compared with untreated and scaffold-alone groups. This review highlights the efficacy of tissue engineering strategies for the repair of extensive bone defects in preclinical large-animal models. In particular, the use of mesenchymal stem cells, combined with bioscaffolds, seems to be a successful method in comparison to cell-free scaffolds.
Collapse
Affiliation(s)
- Nicolò Rossi
- Wellman Center for Photomedicine and Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Henrique Hadad
- Skeletal Biology Research Center, Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| | - Maria Bejar-Chapa
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Giuseppe M Peretti
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Mark A Randolph
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Robert W Redmond
- Wellman Center for Photomedicine and Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Fernando P S Guastaldi
- Skeletal Biology Research Center, Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard School of Dental Medicine, Boston, Massachusetts, USA
| |
Collapse
|
25
|
Wang W, Sun J, Aarabi G, Peters U, Fischer F, Klatt J, Gosau M, Smeets R, Beikler T. Effect of tetracycline hydrochloride application on dental pulp stem cell metabolism-booster or obstacle for tissue engineering? Front Pharmacol 2023; 14:1277075. [PMID: 37841936 PMCID: PMC10568071 DOI: 10.3389/fphar.2023.1277075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction: Stem cells and scaffolds are an important foundation and starting point for tissue engineering. Human dental pulp stem cells (DPSC) are mesenchymal stem cells with self-renewal and multi-directional differentiation potential, and are ideal candidates for tissue engineering due to their excellent biological properties and accessibility without causing major trauma at the donor site. Tetracycline hydrochloride (TCH), a broad-spectrum antibiotic, has been widely used in recent years for the synthesis of cellular scaffolds to reduce the incidence of postoperative infections. Methods: In order to evaluate the effects of TCH on DPSC, the metabolism of DPSC in different concentrations of TCH environment was tested. Moreover, cell morphology, survival rates, proliferation rates, cell migration rates and differentiation abilities of DPSC at TCH concentrations of 0-500 μg/ml were measured. Phalloidin staining, live-dead staining, MTS assay, cell scratch assay and real-time PCR techniques were used to detect the changes in DPSC under varies TCH concentrations. Results: At TCH concentrations higher than 250 μg/ml, DPSC cells were sequestered, the proportion of dead cells increased, and the cell proliferation capacity and cell migration capacity decreased. The osteogenic and adipogenic differentiation abilities of DPSC, however, were already inhibited at TCH con-centrations higher than 50 μg/ml. Here, the expression of the osteogenic genes, runt-related transcription factor 2 (RUNX2) and osteocalcin (OCN), the lipogenic genes lipase (LPL), as well as the peroxisome proliferator-activated receptor-γ (PPAR-γ) expression were found to be down-regulated. Discussion: The results of the study indicated that TCH in concentrations above 50 µg/ml negatively affects the differentiation capability of DPSC. In addition, TCH at concentrations above 250 µg/ml adversely affects the growth status, percentage of living cells, proliferation and migration ability of cells.
Collapse
Affiliation(s)
- Wang Wang
- Department of Periodontics, Preventive and Restorative Dentistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jiangling Sun
- Department of Science and Education, Guiyang Stomatological Hospital, Guiyang, Guizhou, China
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ghazal Aarabi
- Department of Periodontics, Preventive and Restorative Dentistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulrike Peters
- Department of Periodontics, Preventive and Restorative Dentistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Frank Fischer
- Department of Periodontics, Preventive and Restorative Dentistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Klatt
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Gosau
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ralf Smeets
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thomas Beikler
- Department of Periodontics, Preventive and Restorative Dentistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
26
|
Fatima N, Khan AA, Vishwakarma SK. In vitro Isolation and Characterization of Multipotent Postnatal Stem Cells from Human Dental Pulp: An Approach for Regeneration of Neural Crest Tissue. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2023; 15:S1040-S1042. [PMID: 37693979 PMCID: PMC10485528 DOI: 10.4103/jpbs.jpbs_232_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/13/2023] [Accepted: 03/16/2023] [Indexed: 09/12/2023] Open
Abstract
Postnatal dental pulp tissues give the proper justification of the stem cell assimilation and characteristic of the multipotent of the stem cells. Researchers use an in vitro isolation process for clarifying the different stages of staining and cell division. Data collected from various sources helps in understanding how the stem cells help in tissue regeneration. It highlights the immunological phenotypes with the synthesis with cDNA for mentioning molecular immunology. Study also mentions the mitochondrial consistency to measure the potentiality regarding the immunology and the way it differs from 0 to 21 days. Researchers also mention the way for the future development by utilizing the key advantages and definite multipotent of the dental stem cells.
Collapse
Affiliation(s)
- Nikhat Fatima
- Rama Dental College, Hospital and Research Centre, Kanpur, Uttar Pradesh, India
| | - Aleem A. Khan
- Central Laboratory for Stem Cell Research and Translational Medicine, CLRD, Deccan College of Medical Sciences, Kanchanbagh, Hyderabad, Telangana, India
| | - Sandeep K. Vishwakarma
- Central Laboratory for Stem Cell Research and Translational Medicine, CLRD, Deccan College of Medical Sciences, Kanchanbagh, Hyderabad, Telangana, India
| |
Collapse
|
27
|
Drobiova H, Sindhu S, Ahmad R, Haddad D, Al-Mulla F, Al Madhoun A. Wharton's jelly mesenchymal stem cells: a concise review of their secretome and prospective clinical applications. Front Cell Dev Biol 2023; 11:1211217. [PMID: 37440921 PMCID: PMC10333601 DOI: 10.3389/fcell.2023.1211217] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Accumulating evidence indicates that most primary Wharton's jelly mesenchymal stem cells (WJ-MSCs) therapeutic potential is due to their paracrine activity, i.e., their ability to modulate their microenvironment by releasing bioactive molecules and factors collectively known as secretome. These bioactive molecules and factors can either be released directly into the surrounding microenvironment or can be embedded within the membrane-bound extracellular bioactive nano-sized (usually 30-150 nm) messenger particles or vesicles of endosomal origin with specific route of biogenesis, known as exosomes or carried by relatively larger particles (100 nm-1 μm) formed by outward blebbing of plasma membrane called microvesicles (MVs); exosomes and MVs are collectively known as extracellular vesicles (EVs). The bioactive molecules and factors found in secretome are of various types, including cytokines, chemokines, cytoskeletal proteins, integrins, growth factors, angiogenic mediators, hormones, metabolites, and regulatory nucleic acid molecules. As expected, the secretome performs different biological functions, such as immunomodulation, tissue replenishment, cellular homeostasis, besides possessing anti-inflammatory and anti-fibrotic effects. This review highlights the current advances in research on the WJ-MSCs' secretome and its prospective clinical applications.
Collapse
Affiliation(s)
- Hana Drobiova
- Human Genetics Unit, Department of Pathology, College of Medicine, Kuwait University, Jabriya, Kuwait
| | - Sardar Sindhu
- Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman, Kuwait
- Department of Immunology and Microbiology, Dasman Diabetes Institute, Dasman, Kuwait
| | - Rasheed Ahmad
- Department of Immunology and Microbiology, Dasman Diabetes Institute, Dasman, Kuwait
| | - Dania Haddad
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait
| | - Fahd Al-Mulla
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait
| | - Ashraf Al Madhoun
- Animal and Imaging Core Facilities, Dasman Diabetes Institute, Dasman, Kuwait
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait
| |
Collapse
|
28
|
Kaufman S, Chang P, Pendleton E, Chandar N. MicroRNA26a Overexpression Hastens Osteoblast Differentiation Capacity in Dental Stem Cells. Cell Reprogram 2023; 25:109-120. [PMID: 37200520 DOI: 10.1089/cell.2023.0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023] Open
Abstract
Dental pulp stem cells (DPSCs) and stem cells from human exfoliated deciduous teeth (SHED) are a source of mesenchymal stem cells with the potential to differentiate into several cell types. We initially isolated SHED cells and compared their osteogenic capacity with commercially available DPSCs. Both cells exhibited similar capacities of growth and osteogenic differentiation. A fourfold to sixfold increase in endogenous microRNA26a (miR26a) expression during osteogenic differentiation of preosteoblasts and a similar but attenuated increase (twofold to fourfold) in differentiating SHED was observed, suggesting a role in the process. We, therefore, overexpressed miR26a in SHED to determine if the osteogenic differentiation capacity can be potentiated in vitro. SHED with a threefold increase in miR26a expression showed increased growth rate when compared with parent cells. When exposed to an osteogenic differentiating promoting medium, the miR26a overexpressing cells showed 100-fold increases in the expression of bone marker genes such as type 1 collagen, alkaline phosphatase, and Runx2. The mineralization capacity of these cells was also increased 15-fold. As miR26a targets regulate several bone-specific genes, we evaluated the effect of miR26a overexpression on established targets. We found a moderate decrease in SMAD1 and a profound decrease in PTEN expression. miR26a could potentiate its effect on osteoblast differentiation by its ability to inhibit PTEN and increase the viability of cells and their numbers, a process essential in osteoblast differentiation. Our studies suggest that the upregulation of miR26a can increase bone formation and may serve as an important target to further investigate its potential in tissue engineering applications.
Collapse
Affiliation(s)
- Steven Kaufman
- Department of Biochemistry and Molecular Genetics, Midwestern University, Downers Grove, Illinois, USA
| | - Peter Chang
- Dental Institute, Midwestern University Clinics, Downers Grove, Illinois, USA
| | - Elisha Pendleton
- Department of Biochemistry and Molecular Genetics, Midwestern University, Downers Grove, Illinois, USA
| | - Nalini Chandar
- Department of Biochemistry and Molecular Genetics, Midwestern University, Downers Grove, Illinois, USA
| |
Collapse
|
29
|
Min Q, Yang L, Tian H, Tang L, Xiao Z, Shen J. Immunomodulatory Mechanism and Potential Application of Dental Pulp-Derived Stem Cells in Immune-Mediated Diseases. Int J Mol Sci 2023; 24:ijms24098068. [PMID: 37175774 PMCID: PMC10178746 DOI: 10.3390/ijms24098068] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Dental pulp stem cells (DPSCs) are mesenchymal stem cells (MSCs) derived from dental pulp tissue, which have high self-renewal ability and multi-lineage differentiation potential. With the discovery of the immunoregulatory ability of stem cells, DPSCs have attracted much attention because they have similar or even better immunomodulatory effects than MSCs from other sources. DPSCs and their exosomes can exert an immunomodulatory ability by acting on target immune cells to regulate cytokines. DPSCs can also migrate to the lesion site to differentiate into target cells to repair the injured tissue, and play an important role in tissue regeneration. The aim of this review is to summarize the molecular mechanism and target cells of the immunomodulatory effects of DPSCs, and the latest advances in preclinical research in the treatment of various immune-mediated diseases, providing new reflections for their clinical application. DPSCs may be a promising source of stem cells for the treatment of immune-mediated diseases.
Collapse
Affiliation(s)
- Qi Min
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Liqiong Yang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Hua Tian
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Lu Tang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, China
- Cell Therapy and Cell Drugs of Luzhou Key Laboratory, Luzhou 646000, China
- South Sichuan Institute of Translational Medicine, Luzhou 646000, China
| |
Collapse
|
30
|
Carvalho S, Santos JI, Moreira L, Gonçalves M, David H, Matos L, Encarnação M, Alves S, Coutinho MF. Neurological Disease Modeling Using Pluripotent and Multipotent Stem Cells: A Key Step towards Understanding and Treating Mucopolysaccharidoses. Biomedicines 2023; 11:biomedicines11041234. [PMID: 37189853 DOI: 10.3390/biomedicines11041234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/17/2023] Open
Abstract
Despite extensive research, the links between the accumulation of glycosaminoglycans (GAGs) and the clinical features seen in patients suffering from various forms of mucopolysaccharidoses (MPSs) have yet to be further elucidated. This is particularly true for the neuropathology of these disorders; the neurological symptoms are currently incurable, even in the cases where a disease-specific therapeutic approach does exist. One of the best ways to get insights on the molecular mechanisms driving that pathogenesis is the analysis of patient-derived cells. Yet, not every patient-derived cell recapitulates relevant disease features. For the neuronopathic forms of MPSs, for example, this is particularly evident because of the obvious inability to access live neurons. This scenario changed significantly with the advent of induced pluripotent stem cell (iPSC) technologies. From then on, a series of differentiation protocols to generate neurons from iPSC was developed and extensively used for disease modeling. Currently, human iPSC and iPSC-derived cell models have been generated for several MPSs and numerous lessons were learnt from their analysis. Here we review most of those studies, not only listing the currently available MPS iPSC lines and their derived models, but also summarizing how they were generated and the major information different groups have gathered from their analyses. Finally, and taking into account that iPSC generation is a laborious/expensive protocol that holds significant limitations, we also hypothesize on a tempting alternative to establish MPS patient-derived neuronal cells in a much more expedite way, by taking advantage of the existence of a population of multipotent stem cells in human dental pulp to establish mixed neuronal and glial cultures.
Collapse
Affiliation(s)
- Sofia Carvalho
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
- Center for the Study of Animal Science-Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculdade de Medicina Veterinária Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Faculty of Pharmacy, University of Coimbra, Polo das Ciências da Saúde, Azinhaga de SantaComba, 3000-548 Coimbra, Portugal
| | - Juliana Inês Santos
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
- Center for the Study of Animal Science-Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculdade de Medicina Veterinária Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Luciana Moreira
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
- Center for the Study of Animal Science-Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculdade de Medicina Veterinária Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Mariana Gonçalves
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
- Center for the Study of Animal Science-Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculdade de Medicina Veterinária Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Inov4Agro, University of Trás-os-Montes and Alto Douro, 5000-801 Vila Real, Portugal
| | - Hugo David
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
- Center for the Study of Animal Science-Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculdade de Medicina Veterinária Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
- Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Liliana Matos
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
- Center for the Study of Animal Science-Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculdade de Medicina Veterinária Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Marisa Encarnação
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
- Center for the Study of Animal Science-Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculdade de Medicina Veterinária Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Sandra Alves
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
- Center for the Study of Animal Science-Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculdade de Medicina Veterinária Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Maria Francisca Coutinho
- Research and Development Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge, INSA I.P., Rua Alexandre Herculano, 321, 4000-055 Porto, Portugal
- Center for the Study of Animal Science-Instituto de Ciências, Tecnologias e Agroambiente da Universidade do Porto, CECA-ICETA, University of Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal
- Associate Laboratory for Animal and Veterinary Sciences, AL4AnimalS, Faculdade de Medicina Veterinária Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| |
Collapse
|
31
|
Krivanek J, Buchtova M, Fried K, Adameyko I. Plasticity of Dental Cell Types in Development, Regeneration, and Evolution. J Dent Res 2023; 102:589-598. [PMID: 36919873 DOI: 10.1177/00220345231154800] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Recent years have improved our understanding of the plasticity of cell types behind inducing, building, and maintaining different types of teeth. The latest efforts were aided by progress in single-cell transcriptomics, which helped to define not only cell states with mathematical precision but also transitions between them. This includes new aspects of dental epithelial and mesenchymal stem cell niches and beyond. These recent efforts revealed continuous and fluid trajectories connecting cell states during dental development and exposed the natural plasticity of tooth-building progenitors. Such "developmental" plasticity seems to be employed for organizing stem cell niches in adult continuously growing teeth. Furthermore, transitions between mature cell types elicited by trauma might represent a replay of embryonic continuous cell states. Alternatively, they could constitute transitions that evolved de novo, not known from the developmental paradigm. In this review, we discuss and exemplify how dental cell types exhibit plasticity during dynamic processes such as development, self-renewal, repair, and dental replacement. Hypothetically, minor plasticity of cell phenotypes and greater plasticity of transitions between cell subtypes might provide a better response to lifetime challenges, such as damage or dental loss. This plasticity might be additionally harnessed by the evolutionary process during the elaboration of dental cell subtypes in different animal lineages. In turn, the diversification of cell subtypes building teeth brings a diversity of their shape, structural properties, and functions.
Collapse
Affiliation(s)
- J Krivanek
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - M Buchtova
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | - K Fried
- Department of Neuroscience, Karolinska Institutet, Solna, Sweden
| | - I Adameyko
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria.,Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
32
|
Fu Y, Cui S, Zhou Y, Qiu L. Dental Pulp Stem Cell-Derived Exosomes Alleviate Mice Knee Osteoarthritis by Inhibiting TRPV4-Mediated Osteoclast Activation. Int J Mol Sci 2023; 24:4926. [PMID: 36902356 PMCID: PMC10003468 DOI: 10.3390/ijms24054926] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative disease that causes chronic pain and joint swelling and even disables millions of patients. However, current non-surgical treatment for OA can only relieve pain without obvious cartilage and subchondral bone repair. Mesenchymal stem cell (MSC)-secreted exosomes have promising therapeutic effects on knee OA, but the efficacy of MSC-exosome therapy is not well determined, and the mechanisms involved are still unclear. In this study, we isolated dental pulp stem cell (DPSC)-derived exosomes by ultracentrifugation and determined the therapeutic effects of a single intra-articular injection of DPSC-derived exosomes in a mice knee OA model. The results showed that the DPSC-derived exosomes effectively improved abnormal subchondral bone remodeling, inhibited the occurrence of bone sclerosis and osteophytes, and alleviated cartilage degradation and synovial inflammation in vivo. Moreover, transient receptor potential vanilloid 4 (TRPV4) was activated during the progression of OA. Enhanced TRPV4 activation facilitated osteoclast differentiation, and TRPV4 inhibition blocked this process in vitro. DPSC-derived exosomes repressed osteoclast activation in vivo by inhibiting TRPV4 activation. Our findings demonstrated that a topical, single injection of DPSC-derived exosomes is a potential strategy for knee OA treatment, and that the exosomes regulated osteoclast activation by TRPV4 inhibition, which may act as a promising target for clinical OA treatment.
Collapse
Affiliation(s)
- Yu Fu
- Fourth Clinical Division, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| | - Shengjie Cui
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| | - Yanheng Zhou
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| | - Lixin Qiu
- Fourth Clinical Division, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
| |
Collapse
|
33
|
The protective role of curcumin in human dental pulp stem cells stimulated by lipopolysaccharide via inhibiting NF-κB p65 phosphorylation to suppress NLRP3 inflammasome activation. Clin Oral Investig 2023:10.1007/s00784-023-04885-8. [PMID: 36735089 DOI: 10.1007/s00784-023-04885-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/26/2023] [Indexed: 02/04/2023]
Abstract
OBJECTIVES This study aims to investigate the anti-inflammatory effect of curcumin and underlying mechanisms regarding the modulation of the nod-like receptor pyrin domain containing 3 (NLRP3) inflammasome in human dental pulp stem cells (hDPSCs). MATERIALS AND METHODS The impact of curcumin on the viability of hDPSCs was evaluated. The effect of curcumin on the expression of IL-1β and NLRP3 in hDPSCs stimulated by lipopolysaccharide (LPS) was assessed. Then, LPS-primed hDPSCs were pre-treated with curcumin before ATP triggering NLRP3 inflammasome activation, and NLRP3 inflammasome-related mediators were assessed. The mechanism of curcumin inactivation of LPS plus ATP-induced inflammasome associated with NF-κB pathway was explored. The NF-κB pathway related pro-inflammatory mediators at mRNA and protein levels were evaluated. The expression of NF-κB p65 and phosphorylation p65 was visualized after curcumin or NF-κB inhibitor administrating respectively in hDPSCs with an activated NLRP3 inflammasome. Statistical analysis was performed. RESULTS While curcumin at the concentration of 0.5-5 μM showed no obvious impact on the viability of hDPSCs, it significantly decreased IL-1β and NLRP3 mRNA expression in LPS-induced hDPSCs in a dose-dependent manner. Curcumin significantly inhibited the LPS plus ATP-primed NLRP3 inflammasome activation in hDPSCs (NLRP3, ASC, caspase-1, and IL-1β). Curcumin evidently attenuated the LPS plus ATP-induced expression of NF-κB pathway-related pro-inflammatory mediators (IL-6, IL-8, TNF-α, and COX-2). Furthermore, curcumin effectively reduced p65 phosphorylation, which acts as an NF-κB inhibitor in hDPSCs with an activated NLRP3 inflammasome. CONCLUSIONS Curcumin pre-treatment may exert an anti-inflammatory role via inactivation of the NLRP3 inflammasome by inhibiting NF-κB p65 phosphorylation in cultured hDPSCs. CLINICAL RELEVANCE Curcumin may have therapeutic potential in pulp inflammation.
Collapse
|
34
|
Santilli F, Fabrizi J, Pulcini F, Santacroce C, Sorice M, Delle Monache S, Mattei V. Gangliosides and Their Role in Multilineage Differentiation of Mesenchymal Stem Cells. Biomedicines 2022; 10:biomedicines10123112. [PMID: 36551867 PMCID: PMC9775755 DOI: 10.3390/biomedicines10123112] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/10/2022] [Accepted: 11/30/2022] [Indexed: 12/05/2022] Open
Abstract
Gangliosides (GGs) are a glycolipid class present on Mesenchymal Stem Cells (MSCs) surfaces with a critical appearance role in stem cell differentiation, even though their mechanistic role in signaling and differentiation remains largely unknown. This review aims to carry out a critical analysis of the predictive role of gangliosides as specific markers of the cellular state of undifferentiated and differentiated MSCs, towards the osteogenic, chondrogenic, neurogenic, and adipogenic lineage. For this reason, we analyzed the role of GGs during multilineage differentiation processes of several types of MSCs such as Umbilical Cord-derived MSCs (UC-MSCs), Bone Marrow-derived MSCs (BM-MSCs), Dental Pulp derived MSCs (DPSCs), and Adipose derived MSCs (ADSCs). Moreover, we examined the possible role of GGs as specific cell surface markers to identify or isolate specific stem cell isotypes and their potential use as additional markers for quality control of cell-based therapies.
Collapse
Affiliation(s)
- Francesca Santilli
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, Angelo Maria Ricci 35A, 02100 Rieti, Italy
| | - Jessica Fabrizi
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, Angelo Maria Ricci 35A, 02100 Rieti, Italy
- Department of Experimental Medicine, Sapienza University, Regina Elena 324, 00161 Rome, Italy
| | - Fanny Pulcini
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Vetoio, 67100 L’Aquila, Italy
| | - Costantino Santacroce
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, Angelo Maria Ricci 35A, 02100 Rieti, Italy
| | - Maurizio Sorice
- Department of Experimental Medicine, Sapienza University, Regina Elena 324, 00161 Rome, Italy
| | - Simona Delle Monache
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Vetoio, 67100 L’Aquila, Italy
- Correspondence: (S.D.M.); (V.M.)
| | - Vincenzo Mattei
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, Angelo Maria Ricci 35A, 02100 Rieti, Italy
- Correspondence: (S.D.M.); (V.M.)
| |
Collapse
|
35
|
Kurenkova AD, Romanova IA, Kibirskiy PD, Timashev P, Medvedeva EV. Strategies to Convert Cells into Hyaline Cartilage: Magic Spells for Adult Stem Cells. Int J Mol Sci 2022; 23:11169. [PMID: 36232468 PMCID: PMC9570095 DOI: 10.3390/ijms231911169] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 11/30/2022] Open
Abstract
Damaged hyaline cartilage gradually decreases joint function and growing pain significantly reduces the quality of a patient's life. The clinically approved procedure of autologous chondrocyte implantation (ACI) for treating knee cartilage lesions has several limits, including the absence of healthy articular cartilage tissues for cell isolation and difficulties related to the chondrocyte expansion in vitro. Today, various ACI modifications are being developed using autologous chondrocytes from alternative sources, such as the auricles, nose and ribs. Adult stem cells from different tissues are also of great interest due to their less traumatic material extraction and their innate abilities of active proliferation and chondrogenic differentiation. According to the different adult stem cell types and their origin, various strategies have been proposed for stem cell expansion and initiation of their chondrogenic differentiation. The current review presents the diversity in developing applied techniques based on autologous adult stem cell differentiation to hyaline cartilage tissue and targeted to articular cartilage damage therapy.
Collapse
Affiliation(s)
- Anastasiia D. Kurenkova
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia or
| | - Irina A. Romanova
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Pavel D. Kibirskiy
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia or
| | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia or
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Ekaterina V. Medvedeva
- Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia or
| |
Collapse
|
36
|
Samiei M, Abdolahinia ED, Fathi M, Barar J, Omidi Y. Chitosan-based bioactive hydrogels for osteogenic differentiation of dental pulp stem cells. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Long-term hypoxia inhibits the passage-dependent stemness decrease and senescence increase of human dental pulp stem cells. Tissue Cell 2022; 76:101819. [DOI: 10.1016/j.tice.2022.101819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/26/2022] [Accepted: 05/07/2022] [Indexed: 11/16/2022]
|
38
|
Hypoxia Induces DPSC Differentiation versus a Neurogenic Phenotype by the Paracrine Mechanism. Biomedicines 2022; 10:biomedicines10051056. [PMID: 35625792 PMCID: PMC9138575 DOI: 10.3390/biomedicines10051056] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 12/10/2022] Open
Abstract
As previously described by several authors, dental pulp stem cells (DPSCs), when adequately stimulated, may acquire a neuronal-like phenotype acting as a favorable source of stem cells in the generation of nerves. Besides, it is known that hypoxia conditioning is capable of stimulating cell differentiation as well as survival and self-renewal, and that multiple growth factors, including Epidermal Growth factor (EGF) and basic fibroblast growth factor (bFGF), are often involved in the induction of the neuronal differentiation of progenitor cells. In this work, we investigated the role of hypoxia in the commitment of DPSCs into a neuronal phenotype. These cells were conditioned with hypoxia (O2 1%) for 5 and 16 days; subsequently, we analyzed the proliferation rate and morphology, and tested the cells for neural and stem markers. Moreover, we verified the possible autocrine/paracrine role of DPSCs in the induction of neural differentiation by comparing the secretome profile of the hypoxic and normoxic conditioned media (CM). Our results showed that the hypoxia-mediated DPSC differentiation was time dependent. Moreover, conditioned media (CM derived from DPSCs stimulated by hypoxia were able, in turn, to induce the neural differentiation of SH-SY5Y neuroblastoma cells and undifferentiated DPSCs. In conclusion, under the herein-mentioned conditions, hypoxia seems to favor the differentiation of DPSCs into neuron-like cells. In this way, we confirm the potential clinical utility of differentiated neuronal DPSCs, and we also suggest the even greater potential of CM-derived-hypoxic DPSCs that could more readily be used in regenerative therapies.
Collapse
|
39
|
Lan C, Chen S, Jiang S, Lei H, Cai Z, Huang X. Different expression patterns of inflammatory cytokines induced by lipopolysaccharides from Escherichia coli or Porphyromonas gingivalis in human dental pulp stem cells. BMC Oral Health 2022; 22:121. [PMID: 35413908 PMCID: PMC9004173 DOI: 10.1186/s12903-022-02161-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 04/07/2022] [Indexed: 12/19/2022] Open
Abstract
Background Lipopolysaccharide (LPS) is one of the leading causes of pulpitis. The differences in establishing an in vitro pulpitis model by using different lipopolysaccharides (LPSs) are unknown. This study aimed to determine the discrepancy in the ability to induce the expression of inflammatory cytokines and the underlying mechanism between Escherichia coli (E. coli) and Porphyromonas gingivalis (P. gingivalis) LPSs in human dental pulp stem cells (hDPSCs).
Material and methods Quantitative real-time polymerase chain reaction (QRT-PCR) was used to evaluate the mRNA levels of inflammatory cytokines including IL-6, IL-8, COX-2, IL-1β, and TNF-α expressed by hDPSCs at each time point. ELISA was used to assess the interleukin-6 (IL-6) protein level. The role of toll-like receptors (TLR)2 and TLR4 in the inflammatory response in hDPSCs initiated by LPSs was assessed by QRT-PCR and flow cytometry. Results The E. coli LPS significantly enhanced the mRNA expression of inflammatory cytokines and the production of the IL-6 protein (p < 0.05) in hDPSCs. The peaks of all observed inflammation mediators’ expression in hDPSCs were reached 3–12 h after stimulation by 1 μg/mL E. coli LPS. E. coli LPS enhanced the TLR4 expression (p < 0.05) but not TLR2 in hDPSCs, whereas P. gingivalis LPS did not affect TLR2 or TLR4 expression in hDPSCs. The TLR4 inhibitor pretreatment significantly inhibited the gene expression of inflammatory cytokines upregulated by E. coli LPS (p < 0.05). Conclusion Under the condition of this study, E. coli LPS but not P. gingivalis LPS is effective in promoting the expression of inflammatory cytokines by hDPSCs. E. coli LPS increases the TLR4 expression in hDPSCs. P. gingivalis LPS has no effect on TLR2 or TLR4 expression in hDPSCs. Supplementary Information The online version contains supplementary material available at 10.1186/s12903-022-02161-x.
Collapse
Affiliation(s)
- Chunhua Lan
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Zhong Road, Fuzhou, 350002, China.,Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Shuai Chen
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Zhong Road, Fuzhou, 350002, China.,Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Shan Jiang
- Southern Medical University, Shenzhen Stomatology Hospital (Pingshan), Shenzhen, China
| | - Huaxiang Lei
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Zhong Road, Fuzhou, 350002, China.,Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Zhiyu Cai
- Department of Stomatology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiaojing Huang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, 246 Yangqiao Zhong Road, Fuzhou, 350002, China. .,Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.
| |
Collapse
|