1
|
Hartmann S, Radochonski L, Ye C, Martinez-Sobrido L, Chen J. SARS-CoV-2 ORF3a drives dynamic dense body formation for optimal viral infectivity. Nat Commun 2025; 16:4393. [PMID: 40355429 PMCID: PMC12069715 DOI: 10.1038/s41467-025-59475-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 04/24/2025] [Indexed: 05/14/2025] Open
Abstract
SARS-CoV-2 hijacks multiple organelles for virion assembly, of which the mechanisms have not been fully understood. Here, we identified a SARS-CoV-2-driven membrane structure named the 3a dense body (3DB). 3DBs are unusual electron-dense and dynamic structures driven by the accessory protein ORF3a via remodeling a specific subset of the trans-Golgi network (TGN) and early endosomal membrane. 3DB formation is conserved in related bat and pangolin coronaviruses but was lost during the evolution to SARS-CoV. During SARS-CoV-2 infection, 3DB recruits the viral structural proteins spike (S) and membrane (M) and undergoes dynamic fusion/fission to maintain the optimal unprocessed-to-processed ratio of S on assembled virions. Disruption of 3DB formation resulted in virions assembled with an abnormal S processing rate, leading to a dramatic reduction in viral entry efficiency. Our study uncovers the crucial role of 3DB in maintaining maximal SARS-CoV-2 infectivity and highlights its potential as a target for COVID-19 prophylactics and therapeutics.
Collapse
Affiliation(s)
- Stella Hartmann
- Department of Microbiology, University of Chicago, Chicago, IL, USA
- Howard Taylor Ricketts Laboratory, University of Chicago, Lemont, IL, USA
| | - Lisa Radochonski
- Department of Microbiology, University of Chicago, Chicago, IL, USA
- Howard Taylor Ricketts Laboratory, University of Chicago, Lemont, IL, USA
| | - Chengjin Ye
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | | | - Jueqi Chen
- Department of Microbiology, University of Chicago, Chicago, IL, USA.
- Howard Taylor Ricketts Laboratory, University of Chicago, Lemont, IL, USA.
| |
Collapse
|
2
|
Hinkle JJ, Trychta KA, Wires ES, Osborn RM, Leach JR, Faraz ZF, Svarcbahs R, Richie CT, Dewhurst S, Harvey BK. Subcellular localization of SARS-CoV-2 E and 3a proteins along the secretory pathway. J Mol Histol 2025; 56:98. [PMID: 40025386 PMCID: PMC11872775 DOI: 10.1007/s10735-025-10375-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 02/13/2025] [Indexed: 03/04/2025]
Abstract
SARS-CoV-2 E and 3a proteins are important for the assembly, budding, and release of viral particles. These two transmembrane proteins have been implicated in forming channels in the membrane that allow the transport of ions to favor viral replication. During an active infection, both proteins generally localize to the endoplasmic reticulum (ER), ER-Golgi intermediate compartment (ERGIC), and the Golgi where viral assembly occurs. The ER and Golgi are critical for the proper packaging and trafficking of cellular proteins along the secretory pathways which determine a protein's final destination inside or outside of the cell. The SARS-CoV-2 virus primarily infects epithelial cells that are highly secretory in nature such as those in the lung and gut. Here we quantified the distribution of SARS-CoV-2 E and 3a proteins along the secretory pathways in a human intestinal epithelial cell line. We used NaturePatternMatch to demonstrate that epitope-tagged E and 3a proteins expressed alone via transient transfection have a similar immunoreactivity pattern as E and 3a proteins expressed by wild-type viral infection. While E and 3a proteins localized with all selected cellular markers to varying degrees, 3a protein displayed a higher correlation coefficient with the Golgi, early/late endosome, lysosome, and plasma membrane when compared to E protein. This work is the first to provide quantification of the subcellular distribution of E and 3a proteins along the multiple components of the secretory pathway and serves as a basis to develop models for examining how E and 3a alter proteostasis within these structures and affect their function.
Collapse
Affiliation(s)
- Joshua J Hinkle
- Intramural Research Program, National Institute on Drug Abuse, NIH, Suite 200, 251 Bayview Blvd, Baltimore, MD, 21224, USA.
| | - Kathleen A Trychta
- Intramural Research Program, National Institute on Drug Abuse, NIH, Suite 200, 251 Bayview Blvd, Baltimore, MD, 21224, USA
| | - Emily S Wires
- Intramural Research Program, National Institute on Drug Abuse, NIH, Suite 200, 251 Bayview Blvd, Baltimore, MD, 21224, USA
| | - Raven M Osborn
- School of Medicine & Dentistry, University of Rochester, Rochester, NY, 14642, USA
| | - Justin R Leach
- School of Medicine & Dentistry, University of Rochester, Rochester, NY, 14642, USA
| | - Zoha F Faraz
- Intramural Research Program, National Institute on Drug Abuse, NIH, Suite 200, 251 Bayview Blvd, Baltimore, MD, 21224, USA
| | - Reinis Svarcbahs
- Intramural Research Program, National Institute on Drug Abuse, NIH, Suite 200, 251 Bayview Blvd, Baltimore, MD, 21224, USA
| | - Christopher T Richie
- Intramural Research Program, National Institute on Drug Abuse, NIH, Suite 200, 251 Bayview Blvd, Baltimore, MD, 21224, USA
| | - Stephen Dewhurst
- School of Medicine & Dentistry, University of Rochester, Rochester, NY, 14642, USA
| | - Brandon K Harvey
- Intramural Research Program, National Institute on Drug Abuse, NIH, Suite 200, 251 Bayview Blvd, Baltimore, MD, 21224, USA.
| |
Collapse
|
3
|
Zhang C, Gerzanich V, Cruz-Cosme R, Zhang J, Tsymbalyuk O, Tosun C, Sallapalli BT, Liu D, Keledjian K, Papadimitriou JC, Drachenberg CB, Nasr M, Zhang Y, Tang Q, Simard JM, Zhao RY. SARS-CoV-2 ORF3a induces COVID-19-associated kidney injury through HMGB1-mediated cytokine production. mBio 2024; 15:e0230824. [PMID: 39345136 PMCID: PMC11559048 DOI: 10.1128/mbio.02308-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 08/12/2024] [Indexed: 10/01/2024] Open
Abstract
The primary challenge posed by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is COVID-19-related mortality, often exacerbated by additional medical complications, such as COVID-19-associated kidney injuries (CAKIs). Up to half of COVID-19 patients experience kidney complications, with those facing acute respiratory failure and kidney injury having the worst overall prognosis. Despite the significant impact of CAKI on COVID-19-related mortality and its enduring effects in long COVID, the underlying causes and molecular mechanisms of CAKI remain elusive. In this study, we identified a functional relationship between the expression of the SARS-CoV-2 ORF3a protein and inflammation-driven apoptotic death of renal tubular epithelial cells in patients with CAKI. We demonstrate in vitro that ORF3a independently induces renal cell-specific apoptotic cell death, as evidenced by the elevation of kidney injury molecule-1 (KIM-1) and the activation of NF-kB-mediated proinflammatory cytokine (TNFα and IL-6) production. By examining kidney tissues of SARS-CoV-2-infected K18-ACE2 transgenic mice, we observed a similar correlation between ORF3a-induced cytopathic changes and kidney injury. This correlation was further validated through reconstitution of the ORF3a effects via direct adenoviral injection into mouse kidneys. Through medicinal analysis, we identified a natural compound, glycyrrhizin (GL4419), which not only blocks viral replication in renal cells, but also mitigates ORF3a-induced renal cell death by inhibiting activation of a high mobility group box 1 (HMGB1) protein, leading to a reduction of KIM-1. Moreover, ORF3a interacts with HMGB1. Overproduction or downregulation of hmgb1 expression results in correlative changes in renal cellular KIM-1 response and respective cytokine production, implicating a crucial role of HMGB1 in ORF3a-inflicted kidney injuries. Our data suggest a direct functional link between ORF3a and kidney injury, highlighting ORF3a as a unique therapeutic target contributing to CAKI. IMPORTANCE The major challenge of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection during the pandemic is COVID-19-related mortality, which has tragically claimed millions of lives. COVID-19-associated morbidity and mortality are often exacerbated by pre-existing medical conditions, such as chronic kidney diseases (CKDs), or the development of acute kidney injury (AKI) due to COVID-19, collectively known as COVID-19-associated kidney injuries (CAKIs). Patients who experience acute respiratory failure with CAKI have the poorest clinical outcomes, including increased mortality. Despite these alarming clinical findings, there is a critical gap in our understanding of the underlying causes of CAKI. Our study establishes a direct correlation between the expression of the SARS-CoV-2 viral ORF3a protein and kidney injury induced by ORF3a linking to CAKI. This functional relationship was initially observed in our clinical studies of COVID-19 patients with AKI and was further validated through animal and in vitro cellular studies, either by expressing ORF3a alone or in the context of viral infection. By elucidating this functional relationship and its underlying mechanistic pathways, our research deepens the understanding of COVID-19-associated kidney diseases and presents potential therapeutic avenues to address the healthcare challenges faced by individuals with underlying conditions.
Collapse
Affiliation(s)
- Chenyu Zhang
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ruth Cruz-Cosme
- Department of Microbiology, Howard University College of Medicine, Washington, DC, USA
| | - Jiantao Zhang
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Orest Tsymbalyuk
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Cigdem Tosun
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | - Dongxiao Liu
- Department of Microbiology, Howard University College of Medicine, Washington, DC, USA
| | - Kaspar Keledjian
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - John C. Papadimitriou
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Cinthia B. Drachenberg
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Mohamed Nasr
- Division of AIDS, NIAID, NIH, Drug Development and Clinical Sciences Branch, Bethesda, Maryland, USA
| | - Yanjin Zhang
- Department of Veterinary Medicine, University of Maryland, College Park, Maryland, USA
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, Washington, DC, USA
| | - J. Marc Simard
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Research and Development Service, VA Maryland Health Care System, Baltimore, Maryland, USA
| | - Richard Y. Zhao
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Research and Development Service, VA Maryland Health Care System, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Institute of Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Zhang J, Benko Z, Zhang C, Zhao RY. Advanced Protocol for Molecular Characterization of Viral Genome in Fission Yeast ( Schizosaccharomyces pombe). Pathogens 2024; 13:566. [PMID: 39057793 PMCID: PMC11279667 DOI: 10.3390/pathogens13070566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Fission yeast, a single-cell eukaryotic organism, shares many fundamental cellular processes with higher eukaryotes, including gene transcription and regulation, cell cycle regulation, vesicular transport and membrane trafficking, and cell death resulting from the cellular stress response. As a result, fission yeast has proven to be a versatile model organism for studying human physiology and diseases such as cell cycle dysregulation and cancer, as well as autophagy and neurodegenerative diseases like Alzheimer's, Parkinson's, and Huntington's diseases. Given that viruses are obligate intracellular parasites that rely on host cellular machinery to replicate and produce, fission yeast could serve as a surrogate to identify viral proteins that affect host cellular processes. This approach could facilitate the study of virus-host interactions and help identify potential viral targets for antiviral therapy. Using fission yeast for functional characterization of viral genomes offers several advantages, including a well-characterized and haploid genome, robustness, cost-effectiveness, ease of maintenance, and rapid doubling time. Therefore, fission yeast emerges as a valuable surrogate system for rapid and comprehensive functional characterization of viral proteins, aiding in the identification of therapeutic antiviral targets or viral proteins that impact highly conserved host cellular functions with significant virologic implications. Importantly, this approach has a proven track record of success in studying various human and plant viruses. In this protocol, we present a streamlined and scalable molecular cloning strategy tailored for genome-wide and comprehensive functional characterization of viral proteins in fission yeast.
Collapse
Affiliation(s)
- Jiantao Zhang
- Department of Pathology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; (J.Z.); (C.Z.)
| | - Zsigmond Benko
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, University of Debrecen, 4032 Debrecen, Hungary;
| | - Chenyu Zhang
- Department of Pathology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; (J.Z.); (C.Z.)
| | - Richard Y. Zhao
- Department of Pathology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA; (J.Z.); (C.Z.)
- Department of Microbiology-Immunology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
- Institute of Human Virology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
- Institute of Global Health, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
- Research & Development Service, VA Maryland Health Care System, Baltimore, MD 21201, USA
| |
Collapse
|
5
|
Hartmann S, Radochonski L, Ye C, Martinez-Sobrido L, Chen J. SARS-CoV-2 ORF3a drives dynamic dense body formation for optimal viral infectivity. RESEARCH SQUARE 2024:rs.3.rs-4292014. [PMID: 38798602 PMCID: PMC11118709 DOI: 10.21203/rs.3.rs-4292014/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
SARS-CoV-2 uses the double-membrane vesicles as replication organelles. However, how virion assembly occurs has not been fully understood. Here we identified a SARS-CoV-2-driven membrane structure named the 3a dense body (3DB). 3DBs have unusual electron-dense and dynamic inner structures, and their formation is driven by the accessory protein ORF3a via hijacking a specific subset of the trans-Golgi network (TGN) and early endosomal membranes. 3DB formation is conserved in related bat and pangolin coronaviruses yet lost during the evolution to SARS-CoV. 3DBs recruit the viral structural proteins spike (S) and membrane (M) and undergo dynamic fusion/fission to facilitate efficient virion assembly. A recombinant SARS-CoV-2 virus with an ORF3a mutant specifically defective in 3DB formation showed dramatically reduced infectivity for both extracellular and cell-associated virions. Our study uncovers the crucial role of 3DB in optimal SARS-CoV-2 infectivity and highlights its potential as a target for COVID-19 prophylactics and therapeutics.
Collapse
Affiliation(s)
- Stella Hartmann
- Department of Microbiology, University of Chicago, Chicago, IL, USA 60637
- Howard Taylor Ricketts Laboratory, University of Chicago, Lemont, IL, USA 60439
| | - Lisa Radochonski
- Department of Microbiology, University of Chicago, Chicago, IL, USA 60637
- Howard Taylor Ricketts Laboratory, University of Chicago, Lemont, IL, USA 60439
| | - Chengjin Ye
- Texas Biomedical Research Institute, San Antonio, TX, USA 78227
| | | | - Jueqi Chen
- Department of Microbiology, University of Chicago, Chicago, IL, USA 60637
- Howard Taylor Ricketts Laboratory, University of Chicago, Lemont, IL, USA 60439
| |
Collapse
|
6
|
Walia K, Sharma A, Paul S, Chouhan P, Kumar G, Ringe R, Sharma M, Tuli A. SARS-CoV-2 virulence factor ORF3a blocks lysosome function by modulating TBC1D5-dependent Rab7 GTPase cycle. Nat Commun 2024; 15:2053. [PMID: 38448435 PMCID: PMC10918171 DOI: 10.1038/s41467-024-46417-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 02/26/2024] [Indexed: 03/08/2024] Open
Abstract
SARS-CoV-2, the causative agent of COVID-19, uses the host endolysosomal system for entry, replication, and egress. Previous studies have shown that the SARS-CoV-2 virulence factor ORF3a interacts with the lysosomal tethering factor HOPS complex and blocks HOPS-mediated late endosome and autophagosome fusion with lysosomes. Here, we report that SARS-CoV-2 infection leads to hyperactivation of the late endosomal and lysosomal small GTP-binding protein Rab7, which is dependent on ORF3a expression. We also observed Rab7 hyperactivation in naturally occurring ORF3a variants encoded by distinct SARS-CoV-2 variants. We found that ORF3a, in complex with Vps39, sequesters the Rab7 GAP TBC1D5 and displaces Rab7 from this complex. Thus, ORF3a disrupts the GTP hydrolysis cycle of Rab7, which is beneficial for viral production, whereas the Rab7 GDP-locked mutant strongly reduces viral replication. Hyperactivation of Rab7 in ORF3a-expressing cells impaired CI-M6PR retrieval from late endosomes to the trans-Golgi network, disrupting the biosynthetic transport of newly synthesized hydrolases to lysosomes. Furthermore, the tethering of the Rab7- and Arl8b-positive compartments was strikingly reduced upon ORF3a expression. As SARS-CoV-2 egress requires Arl8b, these findings suggest that ORF3a-mediated hyperactivation of Rab7 serves a multitude of functions, including blocking endolysosome formation, interrupting the transport of lysosomal hydrolases, and promoting viral egress.
Collapse
Affiliation(s)
- Kshitiz Walia
- Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Abhishek Sharma
- Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India
| | - Sankalita Paul
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Punjab, India
| | - Priya Chouhan
- Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Gaurav Kumar
- Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India
| | - Rajesh Ringe
- Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India
| | - Mahak Sharma
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, Punjab, India
| | - Amit Tuli
- Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India.
| |
Collapse
|
7
|
Zhang J, Cruz-Cosme R, Zhang C, Liu D, Tang Q, Zhao RY. Endoplasmic reticulum-associated SARS-CoV-2 ORF3a elicits heightened cytopathic effects despite robust ER-associated degradation. mBio 2024; 15:e0303023. [PMID: 38078754 PMCID: PMC10790703 DOI: 10.1128/mbio.03030-23] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 01/17/2024] Open
Abstract
IMPORTANCE The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has tragically claimed millions of lives through coronavirus disease 2019 (COVID-19), and there remains a critical gap in our understanding of the precise molecular mechanisms responsible for the associated fatality. One key viral factor of interest is the SARS-CoV-2 ORF3a protein, which has been identified as a potent inducer of host cellular proinflammatory responses capable of triggering the catastrophic cytokine storm, a primary contributor to COVID-19-related deaths. Moreover, ORF3a, much like the spike protein, exhibits a propensity for frequent mutations, with certain variants linked to the severity of COVID-19. Our previous research unveiled two distinct types of ORF3a mutant proteins, categorized by their subcellular localizations, setting the stage for a comparative investigation into the functional and mechanistic disparities between these two types of ORF3a variants. Given the clinical significance and functional implications of the natural ORF3a mutations, the findings of this study promise to provide invaluable insights into the potential roles undertaken by these mutant ORF3a proteins in the pathogenesis of COVID-19.
Collapse
Affiliation(s)
- Jiantao Zhang
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ruth Cruz-Cosme
- Department of Microbiology, Howard University College of Medicine, Washington, DC, USA
| | - Chenyu Zhang
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Dongxiao Liu
- Department of Microbiology, Howard University College of Medicine, Washington, DC, USA
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, Washington, DC, USA
| | - Richard Y. Zhao
- Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Institute of Global Health, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Research & Development Service, VA Maryland Health Care System, Baltimore, Maryland, USA
| |
Collapse
|
8
|
Zhang J, Hom K, Zhang C, Nasr M, Gerzanich V, Zhang Y, Tang Q, Xue F, Simard JM, Zhao RY. SARS-CoV-2 ORF3a Protein as a Therapeutic Target against COVID-19 and Long-Term Post-Infection Effects. Pathogens 2024; 13:75. [PMID: 38251382 PMCID: PMC10819734 DOI: 10.3390/pathogens13010075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 has posed unparalleled challenges due to its rapid transmission, ability to mutate, high mortality and morbidity, and enduring health complications. Vaccines have exhibited effectiveness, but their efficacy diminishes over time while new variants continue to emerge. Antiviral medications offer a viable alternative, but their success has been inconsistent. Therefore, there remains an ongoing need to identify innovative antiviral drugs for treating COVID-19 and its post-infection complications. The ORF3a (open reading frame 3a) protein found in SARS-CoV-2, represents a promising target for antiviral treatment due to its multifaceted role in viral pathogenesis, cytokine storms, disease severity, and mortality. ORF3a contributes significantly to viral pathogenesis by facilitating viral assembly and release, essential processes in the viral life cycle, while also suppressing the body's antiviral responses, thus aiding viral replication. ORF3a also has been implicated in triggering excessive inflammation, characterized by NF-κB-mediated cytokine production, ultimately leading to apoptotic cell death and tissue damage in the lungs, kidneys, and the central nervous system. Additionally, ORF3a triggers the activation of the NLRP3 inflammasome, inciting a cytokine storm, which is a major contributor to the severity of the disease and subsequent mortality. As with the spike protein, ORF3a also undergoes mutations, and certain mutant variants correlate with heightened disease severity in COVID-19. These mutations may influence viral replication and host cellular inflammatory responses. While establishing a direct link between ORF3a and mortality is difficult, its involvement in promoting inflammation and exacerbating disease severity likely contributes to higher mortality rates in severe COVID-19 cases. This review offers a comprehensive and detailed exploration of ORF3a's potential as an innovative antiviral drug target. Additionally, we outline potential strategies for discovering and developing ORF3a inhibitor drugs to counteract its harmful effects, alleviate tissue damage, and reduce the severity of COVID-19 and its lingering complications.
Collapse
Affiliation(s)
- Jiantao Zhang
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (J.Z.); (C.Z.)
| | - Kellie Hom
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA; (K.H.); (F.X.)
| | - Chenyu Zhang
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (J.Z.); (C.Z.)
| | - Mohamed Nasr
- Drug Development and Clinical Sciences Branch, Division of AIDS, NIAID, National Institutes of Health, Bethesda, MD 20892, USA;
| | - Volodymyr Gerzanich
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (V.G.); (J.M.S.)
| | - Yanjin Zhang
- Department of Veterinary Medicine, University of Maryland, College Park, MD 20742, USA;
| | - Qiyi Tang
- Department of Microbiology, Howard University College of Medicine, Washington, DC 20059, USA;
| | - Fengtian Xue
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, MD 21201, USA; (K.H.); (F.X.)
| | - J. Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (V.G.); (J.M.S.)
- Research & Development Service, VA Maryland Health Care System, Baltimore, MD 21201, USA
| | - Richard Y. Zhao
- Department of Pathology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; (J.Z.); (C.Z.)
- Research & Development Service, VA Maryland Health Care System, Baltimore, MD 21201, USA
- Department of Microbiology-Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Institute of Global Health, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
9
|
Busscher BM, Befekadu HB, Liu Z, Xiao TS. SARS-CoV-2 ORF3a-Mediated NF-κB Activation Is Not Dependent on TRAF-Binding Sequence. Viruses 2023; 15:2229. [PMID: 38005906 PMCID: PMC10675646 DOI: 10.3390/v15112229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 10/31/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has caused a global pandemic of Coronavirus Disease 2019 (COVID-19). Excessive inflammation is a hallmark of severe COVID-19, and several proteins encoded in the SARS-CoV-2 genome are capable of stimulating inflammatory pathways. Among these, the accessory protein open reading frame 3a (ORF3a) has been implicated in COVID-19 pathology. Here we investigated the roles of ORF3a in binding to TNF receptor-associated factor (TRAF) proteins and inducing nuclear factor kappa B (NF-κB) activation. X-ray crystallography and a fluorescence polarization assay revealed low-affinity binding between an ORF3a N-terminal peptide and TRAFs, and a dual-luciferase assay demonstrated NF-κB activation by ORF3a. Nonetheless, mutation of the N-terminal TRAF-binding sequence PIQAS in ORF3a did not significantly diminish NF-κB activation in our assay. Our results thus suggest that the SARS-CoV-2 protein may activate NF-κB through alternative mechanisms.
Collapse
Affiliation(s)
- Brianna M. Busscher
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (B.M.B.); (Z.L.)
| | - Henock B. Befekadu
- Department of Physiology and Biophysics, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Zhonghua Liu
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (B.M.B.); (Z.L.)
- MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Tsan Sam Xiao
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA; (B.M.B.); (Z.L.)
| |
Collapse
|